Reconstruction of Three-Dimensional
Microstructures from Non-Destructive

3DXRD Microscopy Measurements

Development of a computational methodology

Appendix

A.C.P. van der Zijden

Section of Microstructural Control in Metals
Department of Materials Science and Engineering
Faculty of Mechanical, Maritime and Materials Engineering

Delft University of Technology

Delft

Delft University of Technology

Contents

T —————— 1
2. Software PACKAGE woovesrrsrssesersre sttt UTTIRTRPTS preeesrenes [P UUTRTOPIRPPPPRPI 3
9.1. Global BT e 3
S 6
2.2.1. Spatial distortion reconstruction — gD Correction.m 6
2.2.1.1. eamolation PrOBES s 7
2.2.1.2. Spline SO s 8
2.2.1.3. Distortion RGO oo 9

2.2.2. Beam center determination — DetermineBC.m 10

9.3. Diffraction image visualization — FITOD coveereerrsessrssses e 11
9.4, Calling program = Ay AT s e 13
92.5. Peak detection — FindPeaks_4d.m, AnalyzeLayer_4d.m 14
2.5.1. Global outline 14
2.5.2. Diffraction ring definition 16
9.5.3. Intensity threshold 18
9.5.4. Mask computation 22
9.5.5. File read-in 24
2.5.6. Peak detection criteria 25

2.6. Spob characterization — hellCheck Ad M.t DIPPPRNS 27
9.6.1. Global outline 28
2.6.2. Non-electronic background correction 29
2.6.3. Tnitial settings 33
2.6.4. Box and shell construction; background intensity computation 34
9.6.5. Criterion evaluation 36
2.6.6. Spot characterization 37
2.6.7. Ypatial distortion correction 38

- 9.7. Spot grouping — A gESOLS.IT o 43
2.7.1. (lobal outline 43

2.7.2.
2.7.3.
2.7.4.
2.7.5.

2.8. Reflection coupling — GrainSpotter

9.8.1. GrainSpotter input
2.9. Grain characterization — CharacterizeGrains. ML o
3. MATLAB code..oivennemeemmemneees U TTRUPURTRUOPORUPOPPPPPPIPRITEET L L
3.1. gD Correction.m
3.2. bispev.m
3.3. fpbisp.m
3.4. fpbspl.m
3.5. DetermineBC.m
3.6. readfrelon2k.m
3.7. Analyze 4d.m
3.8. FindPeaks_4d.m
3.9. AnalyzeLayer_4d.m
3.10. CreateMask2DTilt.m
3.11. ShellCheck _4d.m
3.12. ArrangeSpots.m
3.13. InputGrainSpotter.m
3.14. CharacterizeGrains.m
BibHOGIAPRY voveresesssesssasssssmsemsesesssressst ISP PO TR RIS LILEL AL

[nitial settings

Locating matching spots

Grouping and numbering of spots

Center of mass, intensity profil
... 55

e computation

44
46
A7
51

56

.58

61
65
68
70
71
73
T4
76
7
85
87
96
119
120

il

1. Introduction

This report forms the appendix to the M.Sc. thesis Reconstruction of Three-
Dimensional Microstructures ~ from Non-Destructive 3DXRD Microscopy
Measurements'. That thesis describes the development of a computational
methodology designed for the reconstruction of three-dimensional microstructures
from three-dimensional x-ray diffraction microscopy data. It contains a relatively
basic description of the layout and workings of the associated software package, and
presents the results of application of the software to two available datasets.

However, in case one would like to apply this software package to any other
datasets in the future, it is imperative the user has a thorough understanding of the
structure of the package and especially of the procedures carried out by each
individual subroutine. Tor such a detailed understanding, the author believes the
description of the package contained in the thesis report does not suffice. This
supplement aims at providing the necessary level of insight. It contains two main
chapters: chapter 9 describes the software package, and chapter 3 contains the exact
MATLAB code of the individual subroutines. The workings of the individual routines
are clarified using aumerical examples from the two datasets used in this theses
research. For any details on such matters as x-ray diffraction theory, the
experimental setup, the characteristics of the datasets used in this projects etc., the
reader is referred to the main report.

Chapter 2 starts off by presenting & general overview of the package.
Qubsequently, the individual routines are treated one by one in a meticulous manner.
Whereas the thesis report only mentions the main theoretical difficulties associated
with each computational step, this supplement also discusses the way in which these
issues have been solved in terms of coding, as well as the way in which certain
peculiarities of the specific datasets under consideration have been handled. In

general, chapter 2 contains some overlap with the software description provided in

Chapter 1: Introduction

the main report, yet goes into much more detail when treabing the individual
subroutines. Numerical examples based on the datasets ander consideration in this
project are included. The detailed descriptions of the routines, together with the
occasional numerical examples, should allow for this appendix to be used as a stand-
alone manual for the developed software package. References back to the main report
are made here and there, but these are not vital to understanding of the software.
Chapter 3 contains the exact code of the MATLAB routines written in this
project. The code is given in MATLAB font, including the color designations used in
the program, to allow for improved readability. The descriptions of the individual
routines provided in chapter 2 will often refer to specific lines of code; these can then

be retrieved from chapter 3.

9. Software package

This chapter provides an in-depth treatment of the software package that was
outlined in chapter 4 of the thesis report. Section 2.1 restates the global architecture
of the package. Tt identifies the different steps required for the microstructure
reconstruction, and introduces the programs written to execute these various tasks.
The rest of the chapter provides detailed discussions of the individual routines. Based
on the code of the programs, most of which is included in chapter 3, the reader is
guided through the entire package while being explained what operations are being
performed.

For the sake of completeness, this chapter discusses each individual part of the
software package, including some which have already been discussed in considerable
detail in the main report. Tn some cases, this results in significant overlap with the
contents of the thesis report. The author felt this overlap was justified, however,
since it allows the more experienced 3DXRD experimentalist to use this appendix as
a stand-alone manual of the software package. Numerical examples based on the

datasets analyzed in the main report are included at several locations in this chapter.
2.1. Global architecture

This section explains the basic outline of the newly written software package. It is
mainly a reiteration of the corresponding section of the main report.

First of all, a small word is required on the terminology used in the remainder
of this appendix. The reader should be aware of the distinction made between the
terms 'reflection’, 'spot! and 'peal’. A reflection is defined as the diffraction event from
a specific grain within the sample; the locations of these reflections are determined by
the crystallographic orientation of the grain. By definition, for any reflection the
entire grain obeys the Bragg criterion and diffracts. However, due to the small beam

sizes used in this research, it is quite unlikely that any grain in the sample will be

Chapter 2: Software package

fully illuminated at any time. Therefore, when the Bragg criterion is fulfilled, not the
entire grain but instead only parts thereof will diffract. The results of these partial
diffraction events are termed spots; they are the actual intensity objects visible
within the diffraction Images. In other words, & single reflection will often manifest
itself as multiple spots in the diffraction images. Purthermore, in the ideal case
('ideal’ meaning Lorentzian diffraction spots), each spot is represented by a single
peak: the pixel within that spot with the highest intensity. A peak is defined as a
single pixel which has an intensity higher than a certain threshold value and which
forms a maximuim with respect to all its nearest neighbors in (aj,y,w)—space.

The software was written in MATLAB, version 7.0.4. MATLAB, short for
MATrix LABoratory, is a popular software system especially suited for matrix
computations. It is produced by The Mathworks, a U.S.A.-based company [2]. The
reasons for MATLAB being the programming environment of choice were twofold.
First of all, the recorded diffraction patterns are nothing more than large matrices of
pixels containing a single value (the number of counts) each. Therefore, the fact that
MATLAB is optimized for matrix computations would be a very useful feature. And
secondly, most of the already existing software was written in MATLAB. So,
compabibility would be much less troublesome if new programs would also be written
in MATLAB.

Figure 2.1 repeats the flow chart for the software package created for the
three-dimensional microstructure reconstruction. It depicts how the raw data, in the
form of a large amount of diffraction patterns, are transformed into a reproduction of
the original microstructure. First of all, the diffraction patterns are read in and
scanned for peaks in intensity. This produces & list of the positions of these peaks in
terms of in which image the peaks have been found and on which exact pixel. This
list is then carried over to the next step, where for each peak its exact dimensions are
determined. Now that for each peak its dimensions and hence its total intensity are
known, the resultant list can be seen as an enumeration of all the spots in the
analyzed diffraction patterns. Subsequently, these spots are grouped together,
combining peaks that come from different parts of the same grain. After all, since the
beam is only 15 pm wide in its smallest dimension, it is quite conceivable that a
certain reflection of a specific grain will in fact show up at multiple subsequent slit
positions. When this grouping has been carried out, spots that originate from
different parts of the same grain at the same diffraction angle have been matched,
and such a group of spots together forms a single reflection of that specific grain. In
other words, the result of the grouping of the spots is a list of the reflections coming
from the grains in the gauge volume. These reflections all have associated center of

mass locations, total integrated intensities etc.

Chapter 2: Software package

F Start ’J

< Pre-analysis ‘

& Peak detection \

Peaks

<€ llipot Characterizatioﬂ

@ots

&

Spot grouping \

Reflections
5 | Reflection couplin 4‘
L ping
& Jﬁrain characterizatio:\

@ins
r Finish J

Figure 2.1: Flow chart for the package of MATLAB routines written for the three-dimensional

reconstruction of a polycrystalline microstructure from x-ray diffraction data. The diffraction patterns
are transformed in a stepwise manner into a reproduction of the original microstructure by the

various operations listed on the right.

The final step is the coupling of the individual reflections to real grains. This is
done by the matching of different reflections that originate from the same grain. On
the basis of the crystal symmetry of the phase under consideration (in the case of the
data investigated in this thesis: austenite), given a certain reflection, one can predict
where (in wspace) the other reflections originating from the same grain should lie.
This step is performed by GrainSpotter [3]. This is a piece of software which was
created at the Risg National Laboratory in Denmark and was based on an earlier
software package called GRAINDEX [4]. GrainSpotter's output is a list of groups of
reflections, with each group corresponding to a real grain. By combining the centers
of mass of the individual reflections, the center of mass of the corresponding grain

can then be computed.

Chapter 2: Software package

Now that the global architecture of the software package has been outlined,
the following sections will present in-depth treatments of the individual programs.
This is done on the basis of the routines written for the d-set, since the d-series is
slightly more complicated to analyze than the e-series. If significant differences exist
between the d- and e-versions of a specific routine, these differences are highlighted in
the corresponding section. If no mention is made of such differences, the routines are
nearly identical and the author felt no need to pay the e-version any individual

attention.
2.2. Pre-analysis

The pre-analysis part of the reconstruction serves to determine some parameters
required for subsequent analysis of the diffraction images. Figure 2.2 depicts a flow
chart of the pre-analysis process. The pre-analysis can be seen to consist of five main
tasks. All five tasks provide input which is required for the correct interpretation of
the diffraction images. Furthermore, the output of some of the tasks is required as
input for some of the other operations; these dependencies are the main determinants
of the exact order in which the individual processes are carried out.

Note that not for all of the operations listed in Figure 2.2 new software needed
to be constructed. In fact, this section of the appendix describes only two of the pre-
analysis processes into more detail; the other processes have been carried out using
already existing software, most notably a piece of software called FIT2D, available
from the ESRF [5]. Firstly, the routines written to describe the spatial distortion
present in each diffraction image are outlined. The second subsection describes the

routine written for the determination of the location of the beam center.

9.2.1. Spatial distortion reconstruction — SDCorrection.m

The correction for the spatial distortion introduced by the detector optics was
previously performed within FIT2D. It was manually applied to the entire diffraction
pattern, after which the corrected image could be saved again. Though useful for
analyses involving only a limited number of lmages, clearly this procedure becomes
impracticable when the number of images becomes larger. The original FIT2D code
was therefore translated into several MATLAB routines. For more information on the
distortion correction within FIT2D, the reader is referred back to the main report.
Quffice it to say here that FIT2D uses two bivariate splines of the third degree to
approximate the horizontal and vertical Jistortion of each pixel on the detector's

surface.

Chapter 2: Software package

r Start J
|

Spatial distortion
reconstruction

Dark current
characterization
I
Beam center
determination
|

Detector tilt
L determination

|

Sample-detector
distance

determination

r Finish J

Figure 2.2: Flow chart of the pre-analysis part of the microstructure reconstruction procedure. The

results from the various processes listed in the chart are required for the subsequent analysis of the

diffraction patterns.

2.2.1.1. Translation process

Upon inquiry, the FIT2D routine turned out to be written in a programming
language called Python. The Python program, in turn, mainly acted as a handle for
some routines from the Fortran package FITPACK, a freely available package
specifically written for the calculation of smoothing splines (also called DIERCKX,
after its author) [6]. It was decided to translate this Fortran code into MATLAB
routines, and write a MATLAB handle for these routines on the basis of the original
Python one.

For the Fortran-to-MATLAB conversion the package f2matlab (version 1.90)
was used, which is a package of MATLAB routines that translates Fortran90
subroutines or functions into MATLAB m-files [7]. The Fortran code used for
FITPACK, however, was Fortran77, and could not be used directly as input to

©matlab. It was therefore first translated into Fortran90 using the freely available

Chapter 2: Software package

converter by Alan Miller, to_f90 [8]. After a few manual alterations (mainly required
because to_f90 could not handle DO...END DO statements) the resulting F90
routines were translated into m-files by f2matlab. A new routine, SDCorrection.m,
was written to provide easy access to this set of subroutines. The code of

gDCorrection.m is given in the appendix and starts on page 61.

2.2.1.2. Spline reconstruction

The input to SDCorrect.m consists of the full location of the splinefile (the file
containing all the spline coefficients as explained in the previous subsection). This
location is used in line 28 of the MATLAB code to open the corresponding file. Lines
93 and 24 have already declared the degrees of the splines in both directions. These
degrees are hard-coded, and need to match the degrees of the splines as they were
originally constructed when the spatial distortion characterization of the detector
setup was performed. In this case, the splines were of the third degree in both
dimensions.

The splinefile that is opened in line 98 has a very specific format. Therefore,
the analysis of this splinefile can be performed by simply running over the lines of the
file and picking up the required data at the right points. Lines 38 through 41, for
instance, effectively skip the first three lines of the splinefile. After line 41 has read
the fourth line, this line is analyzed further because this line is expected to contain
some important parameters. Indeed, by using the stronum command (line 42), the
values are read and subsequently assigned to the appropriate variables (lines 43
through 46); in this case, they define the area for which the spline is valid, in other
words the size of the detector. Comparable operations are performed up till line 60,
defining grid spacing (the distance in real space between the holes in the mask), the
pixel sizes of the detector (these follow from combining the grid spacing with the
average number of pixels between two hole projections on the image), and the
number of knots (in both dimensions) of the spline describing the distortion in the x
direction. After the amount of knots has been declared within the splinefile, their
positions are given. This is done in a block of lines with each line containing a
maximum of five values. Line 67 determines how many lines this is for the knots in
FIT2D's x direction, by dividing the number of knots by 5 and rounding upwards.
These lines are subsequently read and the values are written into tzl (lines 68
through 72). The procedure is repeated for the knots in the y direction. After the
positions of the knots have been declared, the values of the spline coefficients are
given. Since the spline is of the third degree in both dimensions, the number of spline
coefficients (ncl) follows from the number of knots in the x direction (nz1) and in the

y direction (nyl) as nel = (nzl —4)(nyl — 4) [9]. Once this number is computed (line

Chapter 2: Software package

81), the values of the coefficients are transferred to the matrix cl. Subsequently, the
entire sequence is repeated for the spline to the ¥y direction distortion (lines 33
through 116).

Now that the spline coefficients have been written into the two matrices cl
and c¢2, the original splines can be reconstructed. This is done in lines 130 and 131.
Each of these lines calls the subroutine bispev.m. This routine is & translation of the
bispev.f routine from FITPACK [6]; its code is given in the appendix, starting on
page 65. The routine is called once for each spline. Its input is the locations of the
knots in both dimensions (tx, tz2), the value of the spline coefficients (cl), the
degrees of the spline (kz, ky) and two matrices defining the area over which to
compute the spline. The latter are designated & and 7, corresponding to the two
directions defined earlier. The combination of the two defines the detector area of
interest. Since in this case the spatial distortion of the entire detector is desired, =
and y are both set to T =Y = L 2 .. 2047 2048] so that together they define the
entire 2048x 2048 pixel detector area.

The bispev routine contains some artifacts from the original Fortran code,
related mainly to the allocation of the workspaces and the checking of the input data.
These have been left in since they take hardly any computational time. The function
of bispev is to call another subroutine called fpbisp (lines 120-121), which is also a
translation of a Fortran routine from FITPACK by the same name. The code of
fpbisp is given on pages 68 and 69. The routine computes the desired spline by
executing two calls to yeb another subroutine, fpbspl.m, and subsequently meshing
the results of the two together. The fpbspl routine (page 70) contains a short
algorithm computing & spline on a single interval using the stable recurrence relation
of Cox and De Boor (10, 11]. Together bispev.m, fpbisp.m and fpbspl.m perform the
main tasks of the spatial distortion correction previously carried out within FIT2D:

the computation of the distortion in both directions for all pixels on the detector.

2.9.1.3. Distortion correction

Returning to 9D Correction.m, lines 130 and 131 produce the two matrices deltaj and
deltai, which contain the distortion of each pixel in FIT2D's x and ¥ direction,
respectively. Note the correlation between FIT2D's (x,y)-directions and the (ij)-
directions in the matrix representation of a diffraction image. FIT2D defines its X
direction as lying along the horizontal and ¥ along the vertical, whereas in the matrix
representation of a diffraction image the i direction corresponds to the fast, vertical
index, and j to the slow, horizontal index. Hence, the distortion matrix computed in
line 130 with the knots lying along FIT2D's x direction (line 130) is called deltaj and

not deltai, and vice versa.

Chapter 2: Software package

Subsequently, the distortion matrices are used to compute the corrected
diffraction images (lines 135 tvhrough 158). This is done by constructing a (20482,6)—
sized matrix termed SDMatriz_ full, which contains for each pixel its location as
recorded (colummns 1 and 2), its distortion in both directions (3 and 4), and its
undistorted location (5 and 6). The matrix is stored as a tab-delimited ASCII file.
The routine finishes by trimming SDMatriz_ full to get rid of entries that will not be
used because they lie beyond the rectangle enclosing the outermost ring of interest. In
this way, the size of the correction matrix is reduced significantly, speeding up the
analysis. Lines 169 through 172 describe the perimeter of this rectangle. They contain
the row and column indices of the outermost rows/columns that are of interest to the
analysis. Lines 176 through 187 subsequently get rid of the unnecessary entries. See
also section 2.5, page 23 for more on this reduction of the peak search area. The
resulting matrix, SDMatriz, is written to disk.

YD Correction.m therefore produces two matrices which are both saved on disk:
a matrix SDMatriz_ full containing the spatial distortion and the undistorted
coordinates of all the pixels on the detector, and matrix SDMatriz which only
contains the entries of the pixels of interest. The former could be useful when one
would like to check whether the spatial distortion computation has been performed
correctly, by comparing a plot of the corrected pixels and their intensities against a
corrected image from FIT2D. The latter is more suitable for the actual on-line
analysis, since the reduced size of this file offers significant speed-up in computational

time.

2.2.2. Beam center determination — DetermineBC.m

As described in the corresponding section of the main report, the location of the
beam center is determined by establishing the weighted average beam center
coordinates on the basis of the direct beam mark. The routine written to this end is
called DetermineBC.m. Its code starts on page 71.

The input to DetermineBC is called image' and should represent the location
of the LaB, diffraction pattern. Lines 22 through 25 of the routine's code define the
estimated location of the direct beam mark, and the size of the box over which the
weighted average will be computed. The values are given in FIT2D =z and ¥y
coordinates. The first estimate of the beam center, (fcest,yest) = (981,1011), is taken
as the pixel within the direct beam mark with the highest intensity. The size of the
box was taken large enough to contain all of the beam mark intensity, but small
enough to lie entirely in the third quadrant of the detector surface, so that the

(minor) effect of the difference in background intensity between the different

quadrants of the detector did not play a role (for more on this, see subsection 5.2.2 of

10

Chapter 2: Software package

the main report). Lines 27 through 32 convert the FIT2D coordinates to mafbrix
indices m and n.

The next step is the computation of the dark current intensity. The dark
current is a near-constant electronic background to the diffraction images, present
even when no sample is mounted and when the beam' shutters are closed, which
should be subtracted from the intensities. The dark current intensities are determined
by averaging 22 dark current measurements. The corresponding files are read (line
39) using a small MATLAB-routine called readfrelon2k.m that was already written in
an earlier project (the code of which is also included in chapter 3). These 22 specific
measurements (filenumbers 26, through 47) have been used because they were
recorded using the same exposure time as the d dataset: one second. For the e
dataset, the exposure time was only half a second; in this case, dark current images
with half a second of exposure time were used. Each of the 22 images was recorded at
a specific w-setting; however, since no sample was present the value for w should not
have had any influence on the intensity. To subtract the dark current intensities as
accurately as possible, the pixels in the LaB, image are corrected pixel for pixel by
subtracting the average dark current intensity found for that specific pixel (line 48).
This also corrects for a phenomenon known as 'hot pixels": faulty pixels which register
a constantly elevated value for the intensity. Since this defect is independent of
whether or not a sample has been mounted, the dark current intensity of such a pixel
will show the same increase in intensity, and therefore on subtraction of the dark
current intensity the hot pixel will be neutralized.

After the LaB, image is corrected for the dark current intensities, the refining
of the location of the beam center commences. The beam center is determined by
computing a weighted average of the row and column indices of the pixels within the
box defined at the start of the routine, using the intensities as weights. The final
beam center location, (mB C,nBC), is returned as the routine's output. This value can
be used in the rest of the analysis as the definitive (albeit still uncorrected for spatial
distortion) beam center location. Furthermore two vectors rowprof and colprof are
created, which contain the average intensity per pixel for each row and column,
respectively. These can be plotted to obtain an idea of the variation of the intensity

with horizontal and vertical position.
9.3. Diffraction image visualization — FIT2D

The already mentioned FIT2D is a piece of software available from the website of the
ESRF [5]. Multiple versions of the program can be downloaded there; the version
used in this project is v12.077. FIT2D can be used for various tasks; its main use in

the current project was the visualizing of the diffraction images. The data collected

11

Chapter 2: Software package

by the Frelon2K camera were stored as .edf-files, a file-type used only by the ESRE.
FIT2D is able to translate these files into images, plotting the intensities against their
horizontal and vertical positions and thus creating a reconstruction of the diffraction
patterns. Figure 2.3 shows an example of such a reconstructed diffraction pattern.
This specific pattern was recorded at stripe 0, layer 0, w=-17°, with beam
dimensions of 15x100 pm® (dataset d). The grayscale of the picture has been inverted
to allow for easier spot identification. Spots now appear as dark marks on a lighter
background.

The diffraction pattern of Figure 2.3 shows some interesting characteristics.
First of all, the spots can be seen to lie on circles that center near the middle of the
detector, as follows from the application of Bragg's law to the experimental situation
at hand. Furthermore, the regions of the diffraction image where no peaks are found
obviously display some considerable background intensity. Clearly, this background
needs to be taken into account when performing a search for peaks. The background
intensity does not appear to be constant over the entire detector; for instance, Figure
2.3 shows a difference between the background intensity on the left-hand side and on

the right-hand side of the detector. Though this difference is quite pronounced in the

Figure 2.3: Example of a diffraction pattern reconstructed using FIT2D. This pattern corresponds to
stripe 0, layer 0, w=-17° For easier spot recognition, the grayscale has been inverted. Notice the
diffraction spots lie on circles approximately around the center of the detector. The difference in
color between the left-hand side and right-hand side of the image is indicative of a small difference

in background intensity between the two. This is caused by a software anomaly.

12

Chapter 2: Software package

figure due to the intensity scaling, the offect is only in the order of a few counts, i.e.
in the order of 0.1 % of the average background intensity. It 1s probably caused by a
software anomaly of the Frelon2KK detector. Still, given the presence of this non-
constant background, the newly written software was required to be able to correct

the diffraction images for this effect.
9.4, Calling program — Analyze 4d.m

This section presents the main routine of the analysis of the d-dataset, called
Analyze_4d.m. The code of Analyze_4d is presented in chapter 3 (starting on page
74). Analyze 4d is nothing more than a convenient way of calling all subroutines in
the correct order. The individual routines are treated in depth in the subsequent
sections. Therefore, the following treatment of Analyze 4d will be relatively brief.

The various subroutines deal with most of the aspects of the analysis as
depicted in Figure 92.1. The first process handled within Analyze 4d is the detection
of the peaks within the individual diffraction images. This is done using the routine
FindPeaks 4d.m, on line 21 of the code. The result of this procedure is a list called
PeakList containing all pixels that have been identified as peaks: having an intensity
above a certain threshold value, and also being a maximum with respect to all their
nearest neighbors. Ideally, each spot within the diffraction images is represented by a
gingle entry in this list. Alternatively, line 22 can be used to retrieve a user-defined
Peaklist; this possibility is useful in case the peak detection has already been
performed at an earlier stage.

After peak detection, the dark current intensities are computed and the file
containing the required spatial distortion corrections is read. When these actions have
been performed, the routine moves on to the third step as indicated in Figure 2.1: the
characterization of the individual spots. This is done using the routine
ShellCheck 4d (lines 64-65). The spots are identified and characterized in terms of
total intensity, diffraction angle etc.

Due to the scanning in the w-direction and the overlap of subsequent slit
settings, individual reflections are likely to be split up into multiple diffraction spots.
So, when all spots have been characterized, those spots which are only partial
reflections are searched and grouped together so that the resultant list is one
containing only complete reflections. This is performed by the routine ArrangeSpots.
When this routine is finished, a list is returned of all complete reflections with their
associated total intensities, center of mass locations etc.

As described in section 2.1, the matching of reflections that originate from the

same grain is not done within Analyze 4d, but instead by a separate piece of

13

Chapter 2: Software package

software called GrainSpotter. A description hereof is included in this chapter. Finally,

the software related to the grain characterization is presented.
2.5. Peak detection — FindPeaks 4d.m, AnalyzeLayer 4d.m

The Frelon2K CCD camera used for collection of the data of the diffraction patterns
gtores these patterns as two-dimensional matrices, each entry being the number of
counts of the corresponding pixel. A diffraction peak will reveal itself as a
significantly higher aumber of counts on a specific pixel. Therefore, the first step of
the analysis is to scan the diffraction patterns for local maxima in the number of
counts recorded by the camera's pixels. This is done by the combination of the two
routines FindPeaks_4d.m and AnalyzeLayer _4d.m.

FindPeaks 4d is a small routine that repeatedly calls AnalyzeLayer_4d; the
latter is responsible for the actual detection of the maxima. This construction was
chosen so as not be restricted to having to analyze the entire d dataset at once; by
having the actual analysis done on a single layer, and continue performing this
analysis on subsequent layers until the entire set was analyzed the possibility
remained to consider only a subset of the data. This could be useful for instance
when one would like to carry out a quick check of the data or of the software, or
when one is interested only in a specific part of the gauge volume. The code of

FindPeaks 4d is given on page 76; AnalyzeLayer 4d starts on page 77.

2.5.1. Global outline

As mentioned above, FindPeaks 4d is only a shell that repeatedly calls the actual
analysis routine. The amount of code, therefore, is limited. The routine starts by
computing the dark current intensities in the same way as is done in Analyze_4d —
by averaging the intensities from 22 separate dark current images. The code could
have been written so as to carry Over the dark current intensities computed in
Analyze 4d into FindPeak 4d, removing the need for recomputing them there.
However, by having them recomputed the possibility remains to operate
FindPeaks_4d as a stand-alone routine, without having to call Analyze 4d. This is
useful for instance when one is only interested in a first estimate of the number of
peaks. The dark current computation is contained in lines 19 through 25. After the
dark current has been computed, the actual peak search is initiated. First of all the
matrix Peaks is initialized, which will eventually contain the output of the program.
Then a double loop is started over all three stripes (numbered 0 through 2) and all
layers (50 per stripe, numbered 0 through 49). For each combination of stripe and

layer, line 35 calls AnalyzeLayer_4d and collects its output as a matrix u. This

14

Chapter 2: Software package

matrix is then appended to Peaks, which in this manner is filled stepwise with the
output of all the different calls of AnalyzeLayer 4d. Finally, line 42 writes Peaks
away into a tab-delimited text file at the specified location.

AnalyzeLayer _4d performs most of the work in the peak search part of the
analysis. It is partly based on routines written at an earlier stage by dr. Enrique
Jimenez-Melero of the Reactor Institute Delft. Figure 2.4 shows a flow chart of the
routine. After commencing by declaring some settings, masks are created that cancel
all data that are not of interest to the current analysis. A loop is then started over all
images corresponding to the layer under investigation. Each image is read, after
which the peak search is executed in two steps — one for each diffraction ring. The
results of the search are appended to the list of peaks identified earlier, thus creating
a single list containing all peaks for this layer.

The following subsections provide in-depth treatments of the various processes
identified in Figure 2.4. The input variables to the routine are the stripe number and
layer number, which together define the slit setting of interest. Furthermore, the
matrix of dark current values is carried over from FindPeaks _4d.m. For
AnalyzeLayer 4d to be used as a stand-alone program, one would only have to

perform a simple cut-and-paste operation of lines 19 through 25 of FindPeaks 4d, in

Start J

I

Parameter settings
I
Mask creation
I

Loop over w-settings

L

l —
Read and mask files
I

Loop over rings

]
Peak search j

: Append results 4‘

]
r Finish J

Figure 2.4: Flow chart of the peak detection process. The routine searches for diffraction peaks within

the images recorded for a specific slit setting. This is done by looping over w and over the diffraction

rings, and then performing a peak search for each iteration.

15

Chapter 2: Software package

combination with some minor adjustments in the routine's code, to include the dark

current computation in the routine itself.

2.5.2. Diffraction ring definition

The routine commences with a quick check of the input values for the stripe and
layer number (lines 15 through 23). If these are not within the expected ranges, an
error message is displayed and control is passed back to the calling program. After
this, some parameter settings are declarved. These values require changing when a
different material or dataset is analyzed. Lines 28 through 31 declare the minimum
and maximum diffraction angles for diffractions from the {200} and {220}-planes.
The theoretical diffraction angles follow from the Bragg criterion. For the steel under
consideration in this thesis project, at a temperature of 1273 K, the austenite lattice
parameter and the diffraction angles are @, = 3.657T9A , 20, = 4.9° and
20,9, = 6.9°, respectively. Based on visual inspection of the diffraction rings (using
FIT2D), a band around these angles was defined to allow for small deviations of the
theoretical angle. Effects contributing to the formation of a range of observed
diffraction angles for a specific { hkl}-family include the incoming beam not being
monochromatic, the beam being slightly divergent, and the occurrence of local
deviations in lattice parameter.

Figure 2.5 illustrates the influence of yet another effect: the intrinsic
assumption of a point-sized sample. It displays a top view (simplified and not to
scale) of the diffraction process. Note that strictly speaking the front and back side of
the sample were slightly curved, since the sample was cylindrical, but this curvature
is omitted in the illustration. Using a single value for the sample-detector distance L,
and the location of the beam center b.c. effectively introduces the assumption of a
point-sized diffraction source, since it fixes the origin of the diffracted beams to a
single point (the center of the illuminated volume, as shown in the figure). In reality,
however, the diffracting grain can be located anywhere within the illuminated
volume, thus introducing an error of half the length/height /width of the volume in
each of the corresponding Jimensions. Figure 2.5 depicts (albeit two-dimensionally)
the situation for which the error is largest: when in reality the diffracting grain lies in
the corner of the illuminated area instead of in the middle. The diffraction spot is an
extra AR further away from the beam center, and therefore when the diffraction
angle is calculated this leads to a higher value of 90 instead of 20, An estimation of

this error can be made in the following manner.

16

Chapter 2: Software package

wbeam

AR

L

Figure 2.5: Outline of how the assumption of a point-sized diffraction source leads to errors in the
diffraction angle. The assumption is introduced implicitly by taking a single value for the sample-
detector distance L, and the beam center location b.c. If a grain is not located in the center of the
{lluminated volume but in one of the corners, this leads to an increase in the distance from the beam

center of AR, translating into a deviation of the measured diffraction angle of A(26)=26"-26.

The value of AR can be seen to equal:

AR = %wbeam + %D t&l’l(20) (21)

in which w,,,, represents the width of the beam, and D represents the diameter of the

sample. The expression for the observed diffraction angle 26 is:

tan(20") = RHAR _ o)+ AR (2.2)
Lsd Lsd

For small angles, a straightforward Taylor expansion shows that the tangent of an
angle is approximately equal to the angle itself (this requires the angle to be
expressed in radians instead of in degrees). For instance, for an angle a=10° we

have:

tan (a [°]) = tan [af X lgO

[md]] = tan(0.175[rad])=0.176 ~ c[rad] (2.3)

17

Chapter 2: Software package

Given the fact that the derivative of tan(a), [tan(a)]'=1+ tan’(a), increases
continuously from 1 to approximately 1.03 over the interval 0° < <10°, it follows
that the assumption of tan(a) = « is a valid one on this interval.

Using this assumption, the difference between the computed diffraction angle

and the theoretical diffraction angle, A(26), can be expressed as:

AR . wbeam + Dta’n(Qg)
2L,

A(26) = 26'— 20 = (2.4)

sd
The amount of deviation therefore depends on the ring of interest (reflected through
the tan(26)-term), the dimensions of the beam and sample, and the sample-detector
distance. For the experimental settings of the eseries (cylindrical sample with
diameter 1 mm., beam width 300 pm.), the {220} diffraction ring (which is associated
with a 2@angle of 6.9° or 0.12 rad), and a sample-detector distance of 241 mm. (for
the exact derivation of this value, see the main report), equation (2.4) predicts a
systematic error in the observed diffraction angle of about 0.87 mrad or 0.05°. So, for
these experimental settings the implicit assumption of a point-sized diffracting
volume introduces a total bandwidth of 0.1°. Add to this the influence of the other
broadening effects mentioned above, and it becomes clear that the visually
determined bandwidth of a few tenths of a degree in either direction can well be
explained on a physical basis. Note that this analysis also holds for the d-series, in

which case Figure 2.5 represents a side view instead of a top view.

2.5.3. Intensity threshold

Line 57 of AnalyzeLayer 4d lays down the intensity threshold for this particular
dataset. That is, the intensity from a pixel is required to be larger than this threshold
value in order for the pixel to be considered a peak. In this case, this threshold equals

twice the square root of the average dark current intensity:

‘[Min,d =2 <ID0> (2'5)

in which I, represents the dark current intensity. The average of this intensity is
calculated over all pixels in the DarkCurrent matrix.

The justification of the criterion described by equation (2.5) is as follows. A
criterion of the form used in this routine is usually built around an expression of the

form
I = N0 g (2'6)

18

Chapter 2: Software package

in which [,;, represents the threshold and oy, the standard deviation in the
background intensity. Generally, the arrival of background counts is modeled using a
Poisson distribution {12]. When the average value of such a Poisson distribution is
high enough (say, larger than 10), this distribution can be approximated using a
normal distribution with mean and variance equal to the average of the Poisson

distribution [13]. This implies that equation (2.6) can be rewritten as

Ly, =n <IBG> (2.7)

with <Ip.,> representing the average background intensity. A value for n of 2, for
instance, implies that about 2.3% of the pixels will have a background intensity
higher than the threshold value [12]. For a value of 3, this fraction drops to only
0.1%.

The average background intensity is computed by defining two background
rings. In this manner, if a dependence of the background intensity on the distance
from the beam center exists this should be visible from the data. The first and second
background ring are located between the austenite's {200}- and {220}-, and {220}-
and {311}-ring, respectively, implying that no diffraction spots are expected within
these rings. Therefore, by determining the average intensities of these rings the
average background intensity of the dataset can be determined, and hence the
threshold criterion of the form of equation (2.7) can be constructed. The value of n is
determined by a trial-and-error type process, in which 2 is taken as the starting value
(a value commonly used for these types of criteria) which can subsequently be refined
based on the amount of pixels incorrectly identified as peaks.

Note that equation (2.5) implies that the only contribution to the background
intensity comes from the dark current. In general, there will also exist a non-
electronic background contribution. This contribution comes from effects like thermal
scattering of the x-rays, and is expected to be dependent on such parameters as beam
dimensions, beam current within the synchrotron storage ring, and temperature. For
the d dataset, however, this contribution turned out to be negligible. The background
intensities for the diffraction images of the d dataset were computed by defining two
background rings per image (defined using minimum and maximum 2é&values:
5.5 <20 <6.5 and 7.5 <20 <7.8 for background rings 1 and 2, respectively). Since
these rings lie well outside of the range of the austenite diffraction rings as given by
the Bragg criterion and listed at the start of the routine, the only intensity expected
within these rings is background intensity. Computation of the average background
intensity within such rings constantly produced values within one or two counts of

the dark current intensities. Table 2.1 lists the average intensities of the two rings,

19

Chapter 2: Software package

<Ipe> and <Ipg>, for the diffraction images from the d dataset, together with the
average dark current intensity <I,;>, averaged over all pixels from all the 22 dark
current images with an exposure time of 1 second. It can be seen that the average
values of the intensities for the d-series background rings are within only a single
count of the average dark current intensity per pixel. Therefore, the threshold
intensity for a peak in the d measurement as described by equation (2.5) can be

based solely on the average dark current intensity.

Table 2.1: Average intensities for the background rings in the two datasets, <Ips> and <Ipe>,
compared to the average intensity of the dark current images used for correction of the respective
dataset, <Ip.>. Whereas the values for the d-series are nearly equal, the e-series appears to contain

a significant contribution from the non-electronic background.

<Iy g ;> (# counts) <Ip g,> (# counts) <Ipo> (# counts)

d-series 1001.0 1001.1 1000.3

e-series 1019.3 1020.7 1000.4

Table 2.1 also lists the average background intensities for the e-series diffraction
images together with the average dark current intensity, the latter being computed
using all dark current files with an exposure time of 0.5 second. In contrast to the d
measurement, for the e-series the values do differ significantly, so there is a clear
contribution of the non-electronic background to the total average background
intensity. This difference between d and e could be caused by the fact that the
illuminated area for the e-series is three times as high as for the d-series, leading to
increased scattering and consequently a higher background level. Note that the
average background intensity of the inner background ring, <Ipg>, is somewhat
smaller than the average intemsity of the outer background ring, <Ipg>. In other
words, the thermal scattering of the x-rays appears to increase slightly with
increasing radial distance from the beam center. This phenomenon can be understood
in light of the increased thermal scattering with increasing diffraction angle, visible
also in the sin(6)-term in the expression for M in the Debye-Waller factor [14] (see
subsection 3.1.3 of the main report).

Due to the non-electronic background contribution, the threshold criterion as
used for the analysis of the d-series (whether it be with n=2, like in equation (2.5),
or with another value for n) no longer suffices. A different criterion is required, which
compensates directly for the higher background intensity. This criterion eventually

became:

20

Chapter 2: Software package

Lo = 331020 + (1020 — (1)) (2.8)
This equation can be seen as an adaptation of the I, = no mentioned earlier,

however in this case n=23 and an offset of (1020-<I,;>) is included. The value of o is
changed from <Ip.> to 1020: the value of the average background intensity in the e-
series diffraction images. Taking a single value for o, independent of pixel location,
ignores the structural increase in the background intensity with increasing distance
from the center, but this is justified since this error is only a small effect, reduced
even further by the square root operation. The offset in equation (2.8) is required as
a consequence of the way in which the background correction is carried out. Before
the scanning for peaks is started, the diffraction image is first corrected for the dark
current intensities by subtracting from each pixel in the image the average intensity
of the corresponding pixel in the dark current images (see for instance line 134 of the
AnalyzeLayer 4d code). The correction for the non-electronic background, however,
is postponed to a later stage. The main reason for this is that the background
intensity of pixels within a diffraction ring, but not belonging to a peak, might be
higher than the background intensity of a pixel within a background ring. This
implies an extra radial dependence of the background intensity, requiring a more
complex correction scheme and prohibiting this from being carried out before peak
scanning. This does mean, though, that at the moment of peak scanning all pixel
intensities still contain a contribution from the non-electronic background. Since this
contribution should be ignored when scanning for peaks, an offset of (1020-<I,y>) is
included. One could also deal with this problem by subtracting a value of 1020
instead of <I,,> from all pixels. In that case, however, element-wise correction
would no longer be possible, and the problem of hot pixels as described in subsection
2.2.2 would reappear. Therefore the choice for the solution presented here was made.
The final deviation of equation (2.8) from equation (2.5) encompasses the
choice for n=23 instead of n=2. As mentioned, 2 is a common starting value for n,
but this value can be refined by a trial-and-error type of process. After initially
running the peak search with n=2, the results showed a large amount of pixels that
were identified as peaks but, as turned out from visual inspection of the data, should
have been discarded. Most notably the list of peaks contained many pixels that were
situated near the edges of real spots, and were in fact a part of those spots, but that
were mistakenly identified as separate peaks due to small perturbations in the
intensities in the vicinity of these pixels. By increasing the value of n to 3, many of
these pixels did not reappear in the list of peaks. Note that this increase of n could
theoretically also lead to the discarding of small but real peaks. However, this is

expected to only be a minor effect for dataset e since the average grain size is

21

Chapter 2: Software package

expected to be relatively large due to the austenitizing treatment of 1 hour prior to

measuring.

2.5.4. Mask computation

Equation (2.5) describes the criterion that any pixel in a d-series diffraction image
must fulfill before it can even be considered as a peak (or, equivalently, equation
(2.8) for dataset €). This criterion is formulated in the code in line 57. The following
step is the computation of the masks of the diffraction rings using the routine
CreateMask2DTilt.m. Each ring has its own mask, Mask_A200 and Mask A220 for
the austenite {200}- and {220}-ring respectively. These masks are matrices of the
same size as the diffraction images, which contain only 1's and 0's: a 1 for each pixel
that lies within the diffraction ring, and a 0 for any pixel outside of this ring. In this
way, when the diffraction image is multiplied by a mask in an element-wise manner,
all pixels will be set to 0 except those within the diffraction ring of interest. This
effectively masks off the part of the detector not of interest to the analysis; hence the

terminology.

Figure 2.6: Schematic representation of the characterization of the degree of detector misalignment.
When the detector screen is not placed perpendicular to the incoming beam (striking the screen at the
beam center b.c.), the detector plane changes from the ideal plane A to A'. The degree of
misalignment is completely characterized by two angles: 1., the angle between the vertical k and the

rotation axis [, and ¢, the angle between 4 and A' (known as the tilt angle).

22

Chapter 2: Software package

The routine CreateMask2DTilt.m had already been written prior to the start
of this project. It was written by dr.ir. Niels van Dijk of the Reactor Institute Delft;
the code of the routine is included in the appendix (page 85). The required input
data are the sample-detector distance and pixel size, the characteristics of the
detector misalignment, the location of the beam center, and the minimum and
maximum scattering angles of the ring of interest. The detector misalignment is
entered using the two angles ¢ and 7, as defined in Figure 2.6. This amount of
misalignment is required because this determines the degree to which the diffraction
rings have been distorted into ellipses. The routine compensates for this by giving the
masks an ellipsoidal shape equal to that of the distorted rings, so no data are lost
when the masks are applied. The location of the beam center follows from the
computation of the weighted average beam center location around the direct beam
mark performed by DetermineBC.m (see subsection 2.2.2).

After the mask creation, some 35 lines follow that determine the outermost
pixels of each mask. In this way, the rectangle inscribed by the masks can be
reconstructed, so that the actual peak scanning can be restricted to this area and
does not include all of the pixels in the outer regions of the detector. This principle is
illustrated in Figure 2.7. Note that all of the pixels on the detector area have already

been set to zero by the masking operations, except for the pixels that lie between the

Pigure 2.7: Schematic representation of the reduction in peak scanning area after the application of
a mask. The masking sets all pixels to zero except those that lie in the ring of interest (dark shades).
By subsequently reducing the scanning area to the rectangle enclosing the diffraction ring (dashed
line), the majority of the detector area can be ignored (light shades). The remaining pixels (white)

have been set to zero by the masking and therefore will not yield a peak.

23

Chapter 2: Software package

two ellipses (this area is highlighted by the dark shades). By refining the scanning
area to the rectangle enclosing the outer ellipse, all pixels further away from the
beam center are ignored (the light shades in Figure 2.7). This greatly reduces the
amount of pixels to be scanned, especially since the two rings of interest in this
project (1+200 and 4-220) are located close to the beam center. The scanning area still
contains a relatively large amount of pixels outside of the area of interest (these form
the white area in the illustration), but since these have been set to zero by the

masking none of these pixels will show up in the resultant list of peaks.
2.5.5. File read-in

Now that the starting parameters have been set and the masks have been
constructed, the actual image analysis can commence. Remember that this routine
analyzes a single layer per call, and that each layer of the sample was scanned over
an wrange of 92° in 92 steps of Aw=1° (for more on the experimental approach, see
subsection 3.1.2 of the thesis report). Therefore the image analysis begins by looping
over these different «w-values. For the analysis of a diffraction pattern, however, the
neighboring files in w-space on either side are also required (as will be explained later
on). Since these are unavailable for the files corresponding to the two outermost wr
settings (w=-30° and w=+61°), these two are not included in the loop. So, line 112
of the code shows the loop running from -29° to +60°. Given the small rotation of
Aw=1° applied at each w-setting, this corresponds to an angular scanning region of
90°.

If w equals -29°, three different diffraction images are read. First of all, the
diffraction image corresponding to w=-29° is read. Line 118 computes the associated
file number, after which line 133 reads the file using readfreldn2k.m, the small routine
that was already mentioned earlier. The image is subsequently corrected for the dark
current intensities (line 134), and the masks for the two rings of interest are applied,
creating two new matrices which will be used later on for the actual peak scanning
(lines 135 and 136). After this main diffraction image has been retrieved, the two
neighboring files in wspace are also read and manipulated in the same manner. As
mentioned above, these files are needed for the actual peak scanning process. So,
although the files corresponding to an w of -30° are not scanned for peaks themselves,
they are used in the scanning process of the neighboring files. The same goes for the
files with w=+61°.

If w is unequal to -29°, then the process of file read-in can be simplified,
because two of the three files used in the peak scanning at the previous w-setting can

be reused for the current operations; they just need to be renamed. This renaming is

24

Chapter 2: Software package

coded in lines 255 through 258, The only new file that needs to be read from disk is
the file corresponding to the subsequent wrsetting; lines 259 through 276.

Lines 178 through 251 contain code that deals with some specific anomalies of
the d dataset. First of all, during the analysis of the d dataset it turned out that one
of the files (file number 0038, corresponding to stripe 0, layer 0, w=+8°) was
missing. It appears something went wrong here during the data collection. The
implication hereof is not only that this specific file cannot be analyzed, but that the
same goes for files 0037 and 0039, the two neighboring files in w-space. Hence these
three files are skipped, using the continue statement to move on to the next iteration
of the loop. Due to the skipping of these three files, when file 0040 is analyzed all
three required images need to be renewed. So, lines 189 through 214 repeat the file
read-in that is normally carried out when w=-29°. Lines 216 through 251, finally,
deal with another abnormality in the dataset, namely that file 3141 represents a
matrix of dimensions 2047x2048 instead of 2048x2048. For some reason the
recording of the data was not performed correctly, and one row of values was lost,
Inspection of the image suggested that this was probably the bottom row of the
detector. The routine readfrelon2k.m works by first going to the end of the file, then
counting backwards 2x2048” bytes (each pixel is represented by two bytes), and then
reconstructing the diffraction image from that point on. Therefore, the top row as it
is constructed during file read-in is discarded (this row contains corrupted data in the
form of numerical representations of ASCII characters from the file's header), and an
extra row of pixels with intensity 1000 (the approximate dark current intensity) is

added at the bottom. From here on, the analysis can continue as usual.

2.5.6. Peak detection criteria

Now that the required files have been read and masked, a new loop is started, this
time over the two rings of interest (line 280). The current ring is identified by the
counting variable ring, which is then used in a switch/case-construction to pick out
the correct masked images and scan area borders (lines 282 till 301). The correct
masked image is néxv available together with its neighbors in wrspace, and the actual
peak searching can commence. This process starts from line 305 downwards. A double
loop is started over the row and column indices of all pixels in the area of interest.
The intensity of each pixel is first checked against the threshold intensity as given by
equation (2.5). The majority of the pixels will not pass this criterion, either because
their intensity has been set to zero by the masking procedure or simply because they
do not belong to a spot.

Those pixels that do have a high enough intensity are then subjected to

another criterion: their intensity is required to be higher than (or equal to) the

25

Chapter 2: Software package

intensities of all its neighbors. This criterion is formulated in lines 308-312. Figure 2.8
presents a schematic representation of how this validation works. The pixel's
intensity is first checked against that of its 8 neighbors within the same image. In
this way, when a pixel belongs to a spot but does not constitute that spot's center, it
will generally not be regarded as a peak on its own because its neighbor in the
direction of the spot center will usually have a higher intensity. If the pixel does pass
this test, it is subsequently compared to its 9 neighbors in both the preceding and
succeeding file in w-space. This ensures that the pixel is not part of the tale of
another spot at a neighboring w-setting. This is relatively unlikely, though, since
lattice strains should be small due to the austenitizing treatment and since the
sample wasn't deformed prior to the measurements. Therefore, the spread in lattice
orientation within a single grain is expected to be small and hence the chance of a
single grain producing intensity at multiple values for wis also minimal.

When a pixel has an intensity higher than the threshold, and its intensity is
also the highest one within the 3x3x3 box in (z,y,w)-space, then that pixel is
identified as a peak. Several characteristics of the peak are now calculated. These
include its distance from the beam center R, its exact diffraction angle 26, and its

azimuthal angle 7. Furthermore, a first indication of the size of the peak is calculated

Figure 2.8: Schematic representation of the second part of the peak scanning process. The pixel
indicated with a cross has an intensity higher than the threshold intensity. It is then checked against
the intensities of its 26 neighbors in three-dimensional (@,y,w)-space. When the intensity of the pixel

in question is larger than or equal to the intensities of all of its neighbors, it is identified as a peak.

26

Chapter 2: Software package

by determining the half-width half-maximum (HWHM) locations of the peak., For
each of the six directions (x, -x, y, -y, w, -w) the distance to the pixel at which the
intensity has dropped to half the intensity of the peak's maximum (or less) is
determined. For each of the three dimensions, the average of the two corresponding
values (rounded up) is then taken as the HWHM value, providing a first estimate of
the peak size. Note that the HWHM value in the w direction can never be more than
2 pixels. As mentioned earlier, a HWHM value of 2 is already quite unlikely; the
possibility of a higher value is neglected. This also prevents the additional problem of
having to read in extra files in order to check the pixel's intensity beyond its nearest
neighbors in wrspace.

All of the peaks' characteristics are written into column matrices. As soon as
the loop over all pixels in the area of interest is finished, the length % of these column
matrices represents the number of peaks found in the diffraction ring under
consideration. These matrices are then concatenated, and subsequently appended to
the matrix u, which contains the results of the previous scans. The matrices are
cleared again, and the process is repeated for the second ring. After this task has
been performed, the next iteration of the loop over w is started. In this way, at the
end of all the loops (line 422), matrix u contains the characteristics of all the peaks
found for the slit settings defined by the input parameters stripe and layer. This
matrix is returned to the calling program as the final output of the routine. In the
case of the current project the calling program was FindPeaks 4d.m, which
appended the output u to the larger matrix Peaks, which eventually became a list of
all the peaks found in the 4d diffraction images. This list was carried forward to the

next part of Analyze 4d.m: the characterization of the corresponding spots.
2.6. Spot characterization — ShellCheck 4d.m

FindPeaks__4d.m has created a list of all the pixels in the 4d diffraction images that
have been identified as a peak. This implies the intensities of these pixels are
significantly higher than the background, and they are higher than (or equal to) the
intensities of their 26 neighbors in (z,y,w)-space. The list contains various attributes
of these pixels, such as their location on the detector, their diffraction angle, their
intensity etc. Furthermore, for each pixel the list contains an estimate of the size of
the corresponding spot in the form of three half-width half-maximum (HWHM)
values, one for each dimension.

Clearly, though, the spot size as follows from the HWHM values will not
always be acceptable for use in further calculations. Fspecially for larger spots the
amount of intensity in the tails of the peaks can be considerable, and a large amount

of this intensity would be lost if one were to use the HWHM values for the final spot

27

Chapter 2: Software package

dimensions. Therefore, a refinement of the spot size is required; the HWHM values

can then serve as a first spot size approximation to the routine. ShellCheck 4d.m

was written with this purpose.

2.6.1. Global outline

This subsection presents the global structure of ShellCheck 4d.m. After this
subsection, the individual processes carried out in this routine will be treated in more
detail.

Figure 2.9 shows a flow chart of the entire routine, which analyzes a single
peak per call. When the routine has been called, first some parameter settings are
declared. When this has finished, a loop is started to determine the exact size of the
diffraction spot in question. This is done on the basis of three objects: a peak box
(representing the current assumed spot size) and two surrounding shells — for a
detailed explanation of this procedure, see subsection 2.6.2. First of all, the peak box
Box0 and the surrounding shells Shelll and Shell2 are created. This is done using the

HWHM values associated with the peak under consideration, which were determined

(Start]
I
Parameter settings

Box and shell creation

I
Background

t
[}

|

)

|

i

1

: intensity computation
|

1

1

:

)

)

)

I
Criterion evaluation

.........................

v

Spot characterization

]
Spatial distortion
correction
I

Finish

Figure 2.9: Flow chart of the spot characterization process. The routine determines the dimensions of
diffraction spots represented by previously detected peaks, and characterizes them in terms of total
corrected intensity and center of gravity detector coordinates. These coordinates are subsequently

corrected for the spatial distortion of the image introduced by the setup's optics.

28

Chapter 2: Software package

during the peak search performed by FindPeaks 4d.m. For each of the two shells,
the average background intensity per pixel is determined as a function of the pixel's
distance to the beam center. The outcomes are subsequently compared on the basis of
a criterion determining whether or not the two are approximately equal. If the
criterion is satisfied, the spot dimensions are accepted and carried on to the next part
of the routine. If the criterion is violated, the peak box and shells are redefined and
the analysis is repeated; this is done until the spot dimensions are adequate.

When the routine has arrived at the correct spot dimensions, the analysis
continues by characterizing the entire spot in terms of its total corrected intensity
(corrected, in this case, meaning that both the electronic and non-electronic
background contributions have been filtered out) and of its center of gravity detector
coordinates. Finally, these coordinates are corrected for the spatial distortion that
was introduced by the optics system during data collection (see subsection 2.2.1).
This yields the corrected center of gravity coordinates and total intensity of the spot,
which are then presented as output to the calling program.

The exact MATLAB code of the routine is given in the appendix and starts on
page 87. As mentioned above, the routine analyzes a single peak per call. The
required input are the peak's characteristics as provided by the peak list created at
an earlier stage by FindPeaks 4d.m. This includes the file in which the peak was
found (in terms of stripe, layer and w), the location of the peak within the diffraction
image (ringnumber, row, column) and the HWHM estimates of its dimensions
(deltarow, deltacolumn, deltaomega). Furthermore, the dark current intensities
(DarkCurrent) and the matrix containing the spatial distortion corrections
(SDMatriz) are carried over from the calling program. This prevents having to

recompute these matrices each time ShellCheck 4d is called.

2.6.2. Non-electronic background correction

The essence of deciding if the spot dimensions have been set correctly, is determining
whether or not the peak box contains all pixels that show an increase in intensity as
a result of the diffraction spot. Hence, some criterion is required to determine
whether or not the pixels bordering the peak box have an intensity that is higher
than expected for pixels that do not belong to a spot, in other words an intensity
higher than can reasonably be attributed to the background. The average background
intensity will generally show a dependence on the distance from the beam center R,
as visible for dataset e in Table 2.1. As explained in subsection 2.5.3, this is mainly
caused by the increased thermal scattering at higher values for R.

So, ShellCheck 4d.m needs some way of determining whether the intensity of

pixels bordering the peak box could reasonably be attributed to the background or

29

Chapter 2: Software package

not; however, the average background intensity is not something that can be
determined simply by averaging a few pixel readings at some distance from the beam
center at which no peaks are expected. Determination of the average background
intensity within a diffraction ring is a complicated procedure, as computing this
would require knowledge of which pixels within such a ring are part of a spot and
which are not, since pixels belonging to a spot should not be included in this
averaging procedure. This, in case, would require prior knowledge of the threshold
intensity, which depends on the average background intensity; and this is exactly
what we are trying to determine. The only way to directly determine the average
background intensity would therefore be some kind of iterative procedure where one
would start with a certain value for the average background intensity (for instance
the average of all pixels in the diffraction ring, so including those belonging to a
peak), determine which pixels belong to peaks and which don't, and use this
knowledge to recompute the éverage background intensity. This new value can then
be used for the subsequent iteration. This could be repeated until the computed
intensity no longer shows any significant changes. The resulting routine, however,
would be complicated and time-consuming.

Therefore, a different approach to this problem was designed. This was mostly
done by dr. Enrique Jimenez-Melero of the Reactor Institute Delft. The approach is
based on the definition of two shells: Shelll, which strictly envelops the peak box
(designated as Box0) in all three dimensions, and Shell2, which strictly envelops
Shelll. The situation is visualized in Figure 2.10. This figure depicts a pixel which
has been identified as a peak, at a distance R, from the beam center. This pixel also
has HWHM values associated with it. These values are used to construct a box
around the peak which serves as a first approximation to the actual spot dimensions.
Around this box (Box0) the two shells are defined. Note that, although the figure
only displays a single diffraction pattern and hence only visualizes the procedure in
the two-dimensional (=,y)-space, the peak box and surrounding shells also extend into
wrspace. ,
As mentioned above, the main difficulty surrounding the determination of the
final peak dimensions is the dependence of the non-electronic background intensity on
the distance from the beam center R. Since the pixels within Box0 — the pixels that
together form the entire spot — as well as the pixels in Shelll do not have a constant
distance to the beam center, the non-electronic background correction they require is
not constant either. For each distance to the beam center, a separate average non-
electronic background intensity value should be computed, so that each of the peak's

pixels can be corrected with the appropriate value.

30

Chapter 2: Software package :

Shell2

Shelll

Beam Center
Diffraction Ring

Figure 2.10: Two-dimensional visualization of the definitions of Shelll and Shell2 used in the
determination of the correct size of the peak box Boxz0 around a peak at a distance R, from the beam
center. Shelll is a shell of a single pixel in width around the peak box Boz0, whereas Shell2, also a
single pixel wide, envelops Shelll. Note that, although the figure only displays the detector's x and y

directions, the peak box and the two enveloping shells also extend into w-space.

This is done in the following manner. For all of the pixels in Box0, Shelll and
Shell2, the distance to the beam center (in units of pixels) is computed. These
distances are rounded to integer pumbers so that a discrete distribution of distances
around R, is formed. Depending on the dimensions of the peak box (varying from 2
to 10 pixels HWHM in either direction), Shell2 for instance will typically contain
pixels with radial distances varying between (R,-10) and (R,+10). Subsequently, for
both shells, the intensities of pixels that have the same distance to the beam center
are averaged. In this manner, & list is created for each shell which contains the
distances of the pixels within that shell to the beam center and their corresponding
average intensity. The following reasoning is now applied. If Shelll does not contain
any intensity from the spot in Box0, and Shell2 does not contain any intensity from
any neighboring spot, then both shells only contain background intensity and
therefore the average background intensity of pixels in Shelll at a certain distance
from the beam center should be approximately equal to that of pixels in Shell2 at the
same distance. So, the average intensity of pixels within Shelll as a function of
distance to beam center, < I 4(R)>, is compared to the average intensity of pixels
within Shell2 at the same distance, <Igo(R)>. If these are approximately equal for all

values of R that fall within Shelll, then the peak box dimensions are accepted as the

31

Chapter 2: Software package

final dimensions. Analysis can continue, using the background intensities from Shelll
for the non-electronic background correction of the pixels in Box0. If Shelll shows
significantly higher intensities than Shell2, then Shelll otill contains intensity from
the spot in Box0. The peak box dimensions are subsequently enlarged by a single
pixel in each direction, and the procedure is executed again. If Shell2 contains higher
intensities than Shelll, then it appears Shell2 contains intensity from a neighboring
spot. The peak box dimensions are lowered by 1 pixel in all directions to try and
exclude this influence, and the procedure is repeated. In this way, the peak box size is
refined until the correct dimensions have been obtained.

The criterion used for determining whether or not <Ig,(R)> and <Igo(R)>
are 'approximately equal' is based on the normal approximation to the Poisson
distribution, and follows a reasoning similar to that of the intensity threshold
criterion outlined in subsection 2.5.3. It is agsumed — as is common practice — that
the background intensity follows a Poisson distribution [13]. In that case, using the
reasoning of subsection 2.5.3, the background intensity of a pixel at a certain distance
R from the beam center can be approximated by a normal distribution with mean
and variance equal to the intensity's average. Remember, however, that the
intensities of Shelll and Shell2 are actually averages of multiple pixels that all lie at
distance R. Averaging N observations from the same distribution has the effect of
reducing the variance of the average by a factor of N as compared to the variance of
a single observation. S0, if Shelll contains N, pixels at a distance R from the beam
center, then the variance (crs,ﬂ)2 of the average background intensity in Shelll at R

can be approximated by:

(Usm>2 = gﬂ?‘\]@ (2.9)
A similar expression can be written for the variance in the background intensity n
Shell? at a distance R from the beam center. By comparing the actual difference
between the average intensities in the two shells, <IS,L1(R)>—<IS,,Z(R)>, to the sum of
their standard deviations, one can LOW determine whether or not the two differ
significantly. The criterion for determining whether the peak box dimensions have

been set correctly then becomes of the form:

(T (R) (T (R)
\(Ism (R)> — (Lo (R)>| < N, + N, (2.10)

in which the left-hand side of the criterion represents the absolute difference between
the two experimentally observed average intensities, and the right-hand side

represents the sum of the standard deviations of the distributions of the average

32

Chapter 2: Software package

intensities in the two shells at distance R. Shelll and Shell2 contain N, and N, pixels
with this specific distance to the beam center, respectively. If the criterion is not met,
and <Ig(R)> is larger than <Igo(R)>, then Shelll contains intensity from the spot
i1 Box0. If the criterion is not satisfied but <Iy,(R)> is larger than <Igy(R)>, then
Shell2 contains intensity from a neighboring spot. In case the criterion is fulfilled,
then the peak box dimensions are adequate. The peak box is taken as the final spot
dimensions, and computation of features like the center of gravity of the spot can

commence.

2.6.3. Initial settings

As with most of the routines, ShellCheck 4d starts by declaring some parameters
that are required later on in the analysis (lines 18 through 22 of the routine's code).
Among these is the beam center location on the detector in terms of its row and
column index. At the end of the routine, the spot's detector coordinates are corrected
for their spatial distortion. Clearly, this procedure should also be performed on the
beam center coordinates, if one wishes to compute a reliable value for for instance R,
the spot's distance to the beam center. This correction is carried out in lines 34-43.
First of all, the borders of the rectangular area covered by the spatial distortion
matrix are determined (see Figure 2.7). This is done by determining the coordinates
of the first and of the last pixel covered by SDMatriz. These pixels form the upper
left and lower right corner of the rectangular area and thus define the entire area.
Knowing these values, the spatial distortion entries corresponding to the beam center
can be retrieved by moving to the correct matrix entry. Since SDMatriz is nothing
more than a list of all the pixels with their corresponding distortions and their
corrected locations, and knowing that the pixels in SDMatriz are listed from left to
right, top to bottom, the index of the entry corresponding to the beam center can be

seen to equal

index = (RowBC —m_min)* (n_maz —n_ min + 1) +

(2.11)
(ColumnBC —mn_ min + 1)

in which (RowBC, ColumnBC) represents the uncorrected beam center location as
declared in line 18, (m_min,n_ min) represents the upper left corner of the area
covered by SDMatriz, and (m_maz,n_ max) represents the lower right corner.
COlearly, a similar reasoning applies to any other pixel within the area covered by the

spatial distortion correction matrix.

33

Chapter 2: Software package

2.6.4. Box and shell construction; background intensity computation

When the various parameters have been declared the routine continues with the
refinement of the peak box dimensions. The idea behind this refinement was
introduced in subsection 9.6.2. This subsection treats the manner in which this
procedure has been translated into MATLAB code.

As mentioned, the spot refinement is performed by means of a loop that is
exited when the correct spot dimensions have been achieved. To control the iterations
of this loop, three variables are introduced that indicate the current state of the
procedure. These go-called flags are introduced in lines 51-53: boz_too_large,
box_too_small, and error_indicator. The first two ave set to 1, while the latter is set
to 0. Furthermore, the fact that file number 0038 1s missing (see subsection 2.5.5)
also requires a flag to deal with potential problems introduced by this anomaly. This
flag is called file38_ flag and is set to 0 on line 55. Finally, the output Total_ Intensity
is already declared in line 57 (for now, just an empty matrix).

Line 59 shows the initiation of the while-loop. The loop can be exited only
when both boz_too_large and boz too_ small both equal 0, or when the error flag is
raised. Given the initial declarations of the flags, the loop will always run at least
once. Within the loop, first of all, the lists of pixels in the peak box and in the
surrounding shells, as well as their derivates Boz0def, Shellldef and Shell2def, are set
to empty matrices. This is necessary because generally these will still contain values
from the previous iteration of the while-loop. After this, lines 75 through 93
determine the borders of the peak box and shells. This is done on the basis of the
location of the peak in three dimensions as following from the peak list,
(Tow,column,w), together with the HWHM values. For subsequent iterations of the
loop, these latter values will generally have ovolved from the HWHM values to more
accurate dimensions.

The w-values of the images under consideration all lie between -30° and +61°.
When a spot is located near these borders of the wregion, the outermost shell Shell2
could extend beyond these borders. In this case, no accurate comparison can be made
between the background intensities in the two shells, and therefore the estimated
spot dimensions cannot be validated. Lines 95 through 104 identify the occurrence of
this problem. When this problem arises, the error flag is raised and the loop is
terminated. Since the criteria of line 59 are no longer all fulfilled, no new iteration of
the loop is initiated.

Lines 106 through 125 correct for the afore-mentioned absence of file 0038.
Since this file is located away from the border of the wrregion, many files are possibly

affected. The loop 1s entered in case the peak box and/or one or both of the two

34

Chapter 2: Software package

shells contain pixels located in this image. If this is the case, then first of all an
attempt is made to reduce deltaomega, to reduce the area in w-space over which the
routine runs. If this can be done the loop is reentered with the new deltaomega value.
Furthermore the flag file38_ flag is raised so that in future iterations the width in the
w direction will not be increased again. If deltaomega cannot be decreased because it
already has its minimum value of 1, then the peak cannot be analyzed and the loop is
exited with the error flag raised. Note that deltaomega indicates the location of
Shelll, and not of the outermost image still belonging to the peak box. So, when
deltaomega equals 1, this indicates that Shelll is located only a single image to the
Neft' and 'right' of the original image in w-space; in other words, the neighboring
images are part of Shelll. Similar reasonings go for deltarow and deltacolumn. TFrom

this, it also follows that the number of pixels belonging to the peak box, N, equals

N, = (2* deltarow — 1)(2 * deltacolumn — 1)(2 * deltaomega — 1) (2.12)

Lines 131-213 construct the peak box and shells. A loop is made over the diffraction
images from the start of Shell2 in w-space to the end of Shell2. Each image is
subsequently corrected for the dark current background. The loop over the peak box
in (z,y)-space together with the loop over the images ensures that all pixels of interest
are taken into account. For each of these pixels, it is determined whether the pixel is
located in Box0, Shelll or Shell2. This is expressed in the various if-, elseif- and
olse-statements within the loop. Each box/shell has a list associated with it that
goes by the same name. If a pixel is found to belong to for instance the first shell,
Shelll, then a new entry is created in the associated pixel list Shelll. This entry
consists of the pixel's distance to the beam center as computed in lines 165 and 166,
the pixel's intensity corrected for the dark current, and the pixel's uncorrected
intensity. This last entry is needed for the evaluation of the criterion as described by
equation (2.10). Furthermore, entries in the peak box list Boz0 also contain the
detector coordinates and the w value for each pixel. These are used later to compute
the center of gravity coordinates of the spot.

When all pixels have been assigned to either Box0, Shelll or Shell2, each of
the corresponding lists will contain many entries which have the same rounded
distance to beam center (termed PizelPos in the routine). Lines 218-288 take these
lists and construct derivates of them (Boz0def, Shellldef, Shell2def) in which the
intensities of entries with equal distances to beam center have been summed and
averaged. In these new lists, each entry consists of five values: the rounded pixel
position, the total summed intensity of pixels with that radius, the number of pixels,

the average corrected intensity, and the average uncorrected intensity (so before dark

35

Chapter 2: Software package

current subtraction). Regarding Shellldef and Shell2def, this latter entry is exactly

the value required for evaluation of the right-hand side of the criterion of equation

(2.10).

9.6.5. Criterion evaluation

Now that the average intensities per pixel in Qhelll and Shell2 are known as a
function of the distance to the beam center, validation of the current spot dimensions
can commence. 1f the peak box is set to the correct size, then for any distance to
beam center the average intensity per pixel in Shelll will not differ significantly from
that of a pixel at the same distance but lying in Shell2. This is evaluated in lines 298
through 374. A loop is started over the length of Shelll def, so that each iteration
corresponds to a specific entry in this list and therefore to a specific rounded distance
to beam center (termed PizelPos1). First of all, the entry in Shell2def with the same
distance to beam center is retrieved (301—305). By retrieving the values of the average
uncorrected pixel intensity and the number of pixels for both of these entries, the
right-hand side of equation (2.10) can be evaluated. This is done on line 313 of the
routine's code, and the outcome is termed criterion. The value of criterion is then
compared to the actual difference between the average corrected intensities per pixel
in Shelll and Shell2 at the distance to beam center under consideration.

In case the difference between the average intensities is larger than criterton,
and the intensity in Shelll is the larger of the two (line 318), then this indicates that
the peak box dimensions are too small. Therefore, deltarow and deltacolumn are
increased by a single pixel. The value of deltaomega is also increased by 1 image, but
only in case the flag file38_ flag hasn't been raised (see the corresponding paragraph
on page 34). The state variable box_too_ small is also increased by 1, to indicate that
the peak box dimensions have been increased. While analyzing the datasets, however,
it turned out that for some peaks the routine continued to increase the peak box size
indefinitely. The routine contains a safety for this occurrence in the form of a
maximum value for the flag box_too_ small. Tf this flag exceeds a value of 20, the
peak is discarded by setting the error indicator to 1 and exiting the loop.

If the difference between the two average intensities is larger than criterion,
but the intensity in Qhell2 is larger than that in Shelll (line 340), then it appears
that the outer shell contains some intensity from a neighboring spot. Therefore, to
ensure that the total integrated intensity of the peak under consideration does not
become contaminated with any intensity from the tail of this neighboring spot, the
peak box dimensions are lowered by a single point. If this reduces any of the
dimensions to zero (this is especially likely for deltaomega, since this has an initial

value of 1 for almost all peaks), this dimension is reset to 1. The indicator

36

Chapter 2: Software package

boz_too_large is also increased by a single point. If all of the dimensions become zero
(line 345), then the peak box cannot shrink any further and hence the peak cannot be
analyzed. The error indicator is adjusted and the loop is exited.

In case the difference between the average pixel intensities in Shelll and Shell2
for a certain value of PizelPosl is small enough to fulfill the criterion (line 367), no
action is required. The next iteration of the loop, and hence the next value of
PizelPosl, is entered. If the routine has already arrived at the last iteration, the two
state variables boz_too_large and box_too_ small are both set to zero, so that the
condition for reentering the while-loop (line 59) is rejected and the routine knows
that the current peak box settings are adequate. The routine can continue with the
next part of the analysis.

The peak box refinement procedure contains one mMore test (376-385). In
certain cases, it is conceivable that the routine ends up oscillating between increasing
and decreasing the peak box size. For instance, if during the first iteration of the
while-loop the box' dimensions are increased because there was still intensity In
Shelll, but in the next iteration the dimensions are reduced again because of the
threat of intensity contamination from a neighboring spot, then the routine would
enter an endless process of increasing and reducing the box size. To prevent this from
happening, a last check is performed on the values of boz_too_ large and
box_too_small. In case they are both larger than 1, then this indicates that both
increasing and decreasing of the peak dimensions has occurred, If this is the case, 10

correct peak box size can be determined, and the loop is exited.
2.6.6. Spot characterization

If the peak refinement procedure has been unable to produce acceptable results, then
this is reflected in the value of error_ indicator: it will have changed from 0 to 1. In
this case, lines 389-392 prematurely end the entire ShellCheck 4d routine and return
an empty matrix Total_ Intensity to the calling program.

However, in case the routine did succeed in refining the dimensions t0 the
correct values, the analysis continues by characterizing the spot in question. First of
all, the total integrated corrected spot intensity is computed; ‘corrected' in this case
meaning that both the clectronic and non-electronic background contributions have
been excluded. As mentioned in subsection 2.6.2, the correction for the non-electronic
background can be carried out by subtracting from each pixel within Box0 the
average intensity of the pixels in Shelll that have the same distance to beam center
PizelPos. Lines 405-415 contain the code accounting for this. The variable
Total _Peak_ Intensity, introduced in line 402, will eventually contain the entire

spot's corrected intensity. For each entry in Boz0def, the entry in Shellldef with the

37

Chapter 2: Software package

same distance to the beam center is retrieved, Say that there are Npp pixels within
Box0 that are located at a specific rounded distance to the beam center (Pizellos).
These pixels add up to a total intensity of I»p. This intensity has already been
corrected for the electronic background contribution (the dark current intensities
have been subtracted), but still contains some amount of non-electronic background
intensity., For this specific distance to beam center, Shellldef lists an average
intensity per pixel of Igy pp. In that case, the intensity of pixels within Box0 at that
specific distance to beam center can be corrected for the non-electronic background
by subtracting the average non-electronic background intensity per pixel times the
number of pixels at that specific distance to beam center. Through this procedure,
the total peak intensity corrected for both types of background,

Total_Peak _Intensiy, can be written as

Total _Peak _ Intensity = Z(IP'P‘ — NP'PAISM,P,P.) (2.13)
P.P.
in which the summation runs over all values of PizelPos for which there are pixels
present in Box0. The loop contained by lines 405-414 does exactly this. The final
value of Total Peak_Intensities represents the total integrated spot intensity.

The next step in the characterization of the diffraction spot is the computation
of the location of the center of gravity. This computation is based on a weighted
average of the coordinates of all the pixels belonging to the spot, using the
corresponding corrected intensities as weights. As a first step, the original list of
pixels belonging to the spot, Boz0 (so before averaging pixels with the same distance
to beam center), is sorted in ascending order on the basis of the distance to the beam
center; the result is called Boz0 Sorted. Then, the intensity of each entry in
Boa0_Sorted is corrected for the non-electronic background by subtracting the
appropriate average background intensity from Shellldef (lines 428-436). So,
Boxz0_Sorted mow contains all pixels in the box, together with their corrected
intensities and their locations in three-dimensional (row,column,w)-space. Lines 442
up till 4564 now compute the center of gravity coordinates of the diffraction spot in

three-dimensional space.

2.6.7. Spatial distortion correction

The final part of ShellCheck _4d.m deals with the correction for the spatial distortion
that all pixels have undergone during data collection. This correction is required since

for reconstruction of the scattering vectors of all diffraction spots, the exact location

38

Chapter 2: Software package

of the spot on the detector is needed. First of all, however, a word on the timing of
this spatial distortion correction is required.

As mentioned in subsection 2.2.1, the spatial distortion introduced by the
system's optics is modeled using two bivariate splines of the third degree in both
dimensions. This means that the function describing the spatial distortion as a
function of a pixel's location on the detector is not linear, and the corrected average
location of a specific spot will not be the same as the average corrected location of

that spot:

£, (amy,) = (f, (m,n))
£ (my () = (£, (m,n))

Here, f,(m,n) and f.(m,n) represent the spline function for the distortion of a pixel

(2.14)

(m,n) in FIT2D's y and x direction, respectively. The angle brackets represent
weighted averages over all pixels within a specific diffraction spot.

Because of this non-linearity of the spatial distortion spline functions, strictly
speaking the spatial distortion correction should be applied to all pixels before the
start of the analysis. In this way, the peak search commences on the corrected
images, and the distortion effects have been cancelled before they can even play a
role in the process. However, this procedure increases the computational load.
Furthermore, it complicates the subsequent analysis because the grid points are no
longer evenly spaced in the (z,y)-plane of the detector. Therefore, it would be
beneficial if it were acceptable to apply the spatial distortion correction at a later
stage of the analysis. To analyze the error introduced by such a delayed application
of the spatial distortion, a single spot was chosen and analyzed using three separate

scenarios:

A| First correct all pixels for their spatial distortion. Then start the
analysis: search for peaks, determine the correct peak box size, and
compute the location of the spot's center of gravity.

B| Perform the peak search, and determine the correct peak box
dimensions. Correct all pixels within the box for their spatial distortion,
and then compute the spot's center of gravity.

C| Perform the peak search, determine the peak box dimensions, and
compute the center of gravity. Correct this center of gravity location

using the spatial distortion spline.

Strictly speaking, scenario A is the correct way of applying the spatial distortion.

Scenario B locates the peaks using the uncorrected pixel locations, and refines the

39

Chapter 2: Software package

peak box sizes using distorted HWHM values. This could influence the final peak box
dimensions determined by the routine. Scenario C reduces the spot to a single set of
center of gravity-coordinates (7"0wCOG,columnGOG), and applies the correction only to
these two coordinates. Clearly this reduces computational load, but the accuracy of
the resulting center of gravity coordinates of the peak might suffer considerably.

The spot chosen to be analyzed using these three separate scenarios was
required to have two important characteristics. First of all, it was required to be a
large spot. This will generally enlarge the differences between the outcomes of the
three scenarios. Secondly, the spot was required to be located in the outer ring under
consideration in this project, the {220}-ring. The general trend of the spatial
distortion is to increase with increasing distance from the detector's center. Therefore,
by picking a peak in the outer ring the influence of the distortion is likely to be
largest, highlighting the differences between the scenarios even more.

The specific diffraction image in which the pixel was to be found was chosen at
random. However, the choice was made a priort for a peak in the e-series, since the
illuminated volume during these measurements was three times as high as during the
d-series, and therefore broader peaks are expected. In this case, the picture chosen
was file number 4e1711, corresponding to the following setbings: stripe= 0, layer=18,
w=-27°. Within this image, a visual search for a suitable spot was conducted.
Eventually, a spot around pixel (868,383) was chosen. This spot was located in the
outer ring, and was one of the larger spots with estimated HWHM values of 10 pixels
in both detector dimensions. The spot was subsequently analyzed using the three

scenarios as listed above. The results are listed in Table 2.2.

Table 2.2: Results of the analysis of the spot around pixel (868,383) of file 4el711 using the three
different scenarios as listed on page 39. Tt can be seen that the influence of postponing the spatial
distortion correction only has a minor effect on the spot's computed center of gravity coordinates on

the detector, (Mg,aMcoc)s and in w-space (Wgoq), as well as on the spot's total integrated intensity.

Woe (°) Meoi Neva Total intensity (F# counts)
Scenario A -27.01 862.91 369.61 141x10°
Scenario B -27.03 863.00 369.61 146x10°
Scenario C -27.03 863.00 369.61 146x10°

The table shows that the differences between the results of the peak analysis
following the three scenarios are only minor. A minute deviation in the horizontal
location of the spot's center of gravity is recorded, as well as a small increase in total
integrated spot intensity (3.5%). Since these results have been obtained for a large

spot in the outermost diffraction ring that is of interest during this project, the

40

Chapter 2: Software package

difference between the results of scenarios A and C can be regarded as a type of
upper limit. It is not likely that the effect of postponing the spatial distortion
correction will be much larger for any of the other spots. So, it appears acceptable to
postpone the spatial distortion correction till after computation of the center of
gravity coordinates of the spot, so that it needs to be applied only once per spot.

The results in Table 2.2 explain why the spatial distortion correction is only
applied now, at the end of the peak characterization routine. Applying the distortion
correction to the averaged peak coordinates does, however, introduce another
difficulty. As outlined in subsection 2.2.1, the routine SDCorrection.m creates a look-
up table of all the pixels in the detector area of interest, together with their
distortions and their corrected intensities. The appropriate correction can then be
carried out by looking up the required shift in this table. Clearly, this table only
contains corrections for integér values of the pixel coordinates. However, the center of
gravity coordinates (mCoG,nOuG) are a result of a weighting procedure, and will
therefore in general not consist of integers. To account for this mismatch, an
interpolation process is used. Figure 2.11 shows a schematic representation of this
process. The figure displays the case for the shift in row coordinate of the pixel (or y
coordinate in the FIT2D coordinate system), but obviously the same reasoning can be
applied to the horizontal distortion.

The center of gravity of a random spot is located at (MoperT0oc)y With
m*< mee< (m*+1) and n¥< nge < (n*+1). The corrected locations of the four
nearest pixels are known and can be found in the look-up table created by
SDCorrection.m. The interpolation routine now constructs a curved surface through

these four pixels according to the following relation:

Moo (mOnG) ncw»o) =M, + My, (anG’ —m¥*) + M, (nC’nG’ —n¥) +
M,, (mo«;c —m*)(nCoG —n*)

Here, m,,, represents the corrected value of the first index as a function of both of

(2.15)

the spot's center of gravity coordinates. The coefficients M, are related to the

corrected values for the nearest pixels in the following manner:

Mll = Mg (m*7n*) (2‘16)
M, = m,,, (m™* +1,n%) — My, (m*,n*) (2.17)
M,, = My, (m*,n* +1) — My, (m*,n*) (2.18)

41

Chapter 2: Software package

mcmv'(Moo Neoy G)

(m*+1,n%) o

(m*+1,n*+1)

Figure 2.11: Schematic representation of the interpolation procedure used for computing the distortion
correction in FIT2D's y direction for non-integer center of gravity coordinates. The correction for a
spot located at (MeomNooe)s With m*<meg,e<(m*+1) and n¥<nge<(n*+1), is computed by
constructing a (curved) surface through the four nearest pixels. The distortion correction is given by
the surface value at the center of gravity coordinates. A similar procedure is used for the x direction.

My, =m (m*an*) + My (m * 41 n* —{—1) —

corre

(2.19)
M, (m* +1Ln*) —my,, (m*,n* +1)
These coefficients can directly be evaluated from inspection of the look-up table.

So, by using equations (2.15)-(2.19) the spatial distortion correction can be
applied to non-integer coordinates. This interpolation procedure is included in the
code of ShellCheck 4d.m in lines 466-493. The first four lines determine the indices
of the four pixels nearest to the spot's center of gravity. Subsequently, the shifts in
both indices of these four pixels are retrieved from the lookup table. Lines 488-493,
finally, evaluate the interpolation equation. When the corrected center of gravity
coordinates are known, the correct values of the other spot characteristics (R, 26, 7)
can also be computed. Note that here the corrected beam center location as
computed at the start of ShellCheck 4d (lines 40-43) is used.

This concludes the peak characterization routine. Total_Intensity, the output
variable already declared in line 57, is now filled with all the spot's characteristics.
These include the details of the image in which the original peak was found, the
corrected center of gravity coordinates, the total spot intensity, and the final
dimensions of the peak box. Total_Intensity is returned to the calling program,
which is generally the main program Analyze 4d.m. Here, the results are appended
to the list of previous calls to ShellCheck 4d.m. In this manner, a new list emerges
(Total_ Peak Intensities) which, when ShellCheck 4d has been called for all peaks,
will contain the intensities and spatial information of all spots that have been

identified.

42

Chapter 2: Software package

However, a single spot on a detector does not necessarily constitute a reflection
of its own. After all, due to the overlap between subsecquent layers, a single grain is
likely to produce intensity at multiple subsequent slit settings. So, spots coming from
different parts of the same grain still need to be grouped together. This is where

ArrangeSpots.m comes in.

2.7. Spot grouping — ArrangeSpots.m

2.7.1. Global outline

The tasks of the routine ArrangeSpots.m are twofold. Firstly, the routine takes the
lists of spots as created by the repeated calling of ShellCheck 4d.m, and groups
together those spots that come from different parts of the same grain and together
form a single reflection. Secondly, when such a reflection has been identified, the
routine computes the total intensity belonging to this reflection. Due to the overlap
between subsequent slit positions, this procedure is more complicated than just a
straightforward summing of the component intensities.

Figure 2.12 shows a flow chart of ArrangeSpots.m. When the routine is called,
first of all the list of spots is retrieved and, if desired, cut so that only part of the
entire collection of spots needs to be analyzed. When this is done, the first spot of the
resulting list is taken. A search is conducted for spots within the list that lie on
approximately the same location on the detector at the same value of w; these spots
are possible candidates for originating from (a different part of) the same grain as the
initial spot. The resulting collection spots are then divided into spot groups, based on
connectivity properties of the spots in (stripe,layer)-space (which translates one-on-
one to the (2,y)-system in laboratory coordinates). From here on, each spot group is
treated as a single reflection and hence as originating from a single, specific grain.
Center of mass coordinates of the reflection on the detector, as well as within the
sample volume are computed. The latter can be seen as a first estimate of the
location of the diffracting grain in real space. Furthermore, the profile of reflection
intensity versus position (in terms of layer number) is derived, giving a first rough
indication of grain shape.

When these computations have been performed, the next spot is taken. If this
spot has already been grouped in a previous iteration, the routine moves to the next
spot on the list. If not, the analysis is performed again. When all spots have been
grouped, the routine ends and returns two matrices to the calling program. One
contains all the original spots, but grouped and numbered so that the individual
spots making up a certain reflection can be inspected. The second contains, for each

reflection, the center of mass coordinates and the total integrated intensity.

43

Chapter 2: Software package

Start
[
Parameter settings

_______________________ {

Pick a spot
I
Already grouped?

X

Find matching spots
I
Sort and number spots

I
Center of mass, total

intensity computation
1 I

All spots grouped?

v
[Finish]

Figure 2.12: Flow chart of the spot grouping process. The routine finds spots that ave likely to be part
of a single specific reflection, and groups and nmumbers these spots. Subsequently, the center of mass

and total intensity profile of the resulting reflection are computed.

Furthermore, during the routine files are created that list for each reflection the

profile of corrected intensity versus layer position.

2.7.2. Initial settings

The code of ArrangeSpots.m starts on page 96. The input to the routine is the
location of the list containing the spots (spotlist) and two integers that allow the user
to only analyze a specific part of the list of spots (startnr and endnr). This provides
the possibility of reduced computational load if one is only interested in the analysis
of part of the set of spots. The routine starts of with some of the parameter settings
that were already introduced in earlier routines. However, the tolerance level set in
line 31 deserves some special attention. As explained, after picking a specific spot the
routine searches for spots that lie on approximately the same location on the detector
as the spot under consideration. The tolerance level tol (in units of pixels) quantifies

this concept of 'approximately the same location'. tol sets the maximum difference

44

Chapter 2: Software package

between the row or column coordinate of the spot under consideration and of the
spots that are designated as lying on 'approximately the same location'. The value for
this tolerance level depends on such aspects as the mosaicity of the grain and the
average grain size, and is determined through trial-and-error in combination with a
visual inspection of the list of spots.

The input parameters starinr and endnr define which part of the spot list to
analyze. The main program Analyze 4d.m uses the values 1 and length_ T'PI for this,
where the latter stands for the length of the spot list. In this manner, the entire list is
analyzed in one run. Still, by allowing for the analysis of only a subset, the routine
becomes more flexible to use. However, this does introduce an extra complication.
Since spots originating from the same grain are grouped together into a single
reflection by the routine, it is imperative the assortment of spots to be analyzed
contains all spots that could come from the same grain. In other words, when
analyzing a certain ring at a certain wsetting, the routine needs to have access to all
spots lying at those specific settings. Allowing the user to set the limits of the list of
spots that are analyzed introduces the risk of the list being incomplete for certain w-
values.

This problem is overcome using lines 53-75. The list of spots is provided as
input using the variable spotlist (note that, although generally the routine expects
spotlist to be a matrix representing the list itself, it can also be entered as a string
stating the location of the list on disk; in that case, line 53 should be activated and
line 54 should be excluded from the routine). This list is first sorted in ascending
order on the basis of the following spot characteristics (in order of importance, from
most to least importance): diffraction ring — round(we,e) — Mg — Nee — Stripe —
layer. Here, round(wg,q) represents the rounded value of the center of gravity w-value
of the peak. This sorting is the first step in arranging the spots in the correct manner.
After all, spots that originate from different parts of the same grain and together
form a single reflection must all lie in the same ring and at the same w-value. Since
the computation of the center of gravity w-value in ShellCheck 4d might have
introduced some small deviations in w, these value are rounded before the sorting is
performed.

Now that the list is sorted in the appropriate manner, the values of startnr
and endnr are refined so that for each ring at a certain wvalue, either all spots or no
spots are included in the list to be analyzed. This refinement takes place in lines 60-
71. startnr (endnr) is decreased (increased) until it designates the first (last) entry for
the (ringnumber,w)-combination of the initial values of the parameter. The dataset
defined by the final values of the two is taken from the spot list, and an extra column

is added in front of it which will be used to tick off the individual spots that have

45

Chapter 2: Software package

been analyzed; the resulting matrix is termed A. Finally, some counting variables and
the output variables M and N are declared (78-82), after which the sorting of the

spots in A can commence.

2.7.3. Locating matching spots

Line 84 starts the actual spot sorting by starting a loop over all entries within the
matrix A. The counting variable nr_start indicates the entry of A wunder
consideration. This parameter is incremented with a value of 1 during each iteration
of the while-loop. For a certain spot, first a check is performed whether the spot
hasn't already been indexed during a previous iteration of the loop. If this is the case,
then the spot will have been ticked through a change of the entry in its first column
from 0 to 1. In this case the spot can be skipped, and the routine advances to the
next iteration of the loop by incrementing nr_start and ending the current iteration
using the continue command (lines 84-88).

When the spot hasn't been considered yet, it will be used as the basis of a new
reflection. A matrix GR is introduced (line 95) that will be filled with all the spots
that lie on approximately the same location on the detector and at the same w-value
as the spot under consideration, and therefore possibly originate from the same grain
as the original spot. Remembering that A was sorted on the basis of ringnumber,
then round(wg,), then mg,q, the while-loop of line 103 first identifies all spots for
which these three parameters fulfill the requirements for the spots to originate from
the same grain. For the value of mg, a tolerance level of 2xtol is used. This
translates into a tolerance of tol in either direction, since the mggvalue of the
original spot will always be the minimum value because this the matrix is sorted in
ascending order based on this exact characteristic. The last entry that fulfills these
criteria is indicated by the counter nr_end.

The list A(nr_start:nr_end,:) consists of all spots that lie in the same ring, at
the same w-value, and in approximately the same row as the original spot. The last
criterion that needs to be fulfilled by a spot for it to be included in the rest of the
loop is that the column coordinate needs to be approximately the same as that of the
original spot, ng,e This criterion is formulated in line 122 (together with the demand
that the spot hasn't been considered in an earlier iteration). Kach spot that fulfills
this criterion is written into GR, and is ticked off in the spot list A. Finally, GR is
sorted in ascending order on the basis of stripe — layer — Mg, — Nge (in order of
decreasing importance). This facilitates the subsequent grouping and numbering

procedure.

46

Chapter 2: Software package

2.7.4. Grouping and numbering of spots

GR eventually consists of all spots on the same ring, at the same w-value, on
(approximately) the same location on the detector. These spots are likely candidates
to all originate from one single reflection from a specific grain. If this is the case, then
the spots should form a single, connected group. The meaning of 'connected' in this
case is illustrated by Figure 2.13. This figure depicts the desired results in terms of
reflection identification for various groups of spots. The group is depicted in terms of
the value for stripe and layer of the various individual spots within the group. When
a spot with a certain (stripe,layer)-combination is present, this is represented by a
black circle. The white circles represent missing spots. A| and B| show groups of
which the spots all lie in the same stripe; C| and D/ illustrate the principle in case the
spots are distributed over two neighboring stripes. Similar illustrations could be
drawn for the case of three stripes.

A| depicts the simplest case (barring a group containing just 1 entry). The
layer numbers of the spots form an increasing sequence in which no entry is missing,
This indicates that, as the beam scanned the sample, at a certain moment a specific
grain generated a reflection. This reflection is spread out over multiple layer settings,
since subsequent settings overlap (and since the grain size might very well exceed the
layer width). So, the reflections is visible in multiple, subsequent diffraction images

(at a specific value of w), after which it disappears again. Since these spots all lie on

stripe
layer

® e
O & & & e | O O O;e e
Al Cl

@) @)

O @ Oi® |0 O O &
B| Dj

Figure 2.13: Schematic illustration of the connectivity property of a group of spots, showing the
presence (black) or absence (white) of spots at a specific location on the detector for a specific w-value
as a function of the illuminated part of the sample in terms of stripe and layer. Connected spots are
treated as belonging to the same reflection (A, C). Absent spots can result in the identification of two

reflections (B). However, spots in neighboring stripes can also provide connectivity (D).

47

Chapter 2: Software package

the same location and in subsequent images, it is very likely that they all belong to
the same reflection. So, they are grouped together and are all assigned the same
reflection number.

However, situation B| could also occur. In this case, the spots all lie on the
same location on the detector and in the same stripe, but one or more spots are
missing, and therefore the spots do not form a connected group. The spots are then
divided into two (or more) groups, since it could be that they do indeed originate
from different grains. The groups remain separated and each group receives its own
reflection number. Still, it could also be that the only reason that one spot is missing
is an unexpectedly high background intensity. In that case, a single reflection would
incorrectly be split into two. It is therefore desirable to keep track of these groups, so
that later on in the analysis the two groups can be added together again in case
additional evidence is found that the two should indeed form a single group. This is
done by numbering the groups not with integer numbers, but with decimal numbers
of the same integer (for instance 2.01, 2.02 etc.).

C| depicts a scenario similar to Al, but here the spots are located in two
stripes. This situation does, however, introduce an extra complication in determining
whether a number of spots form a connected group or not, as shown in D|. Here, the
spots in the upper stripe appear to form two distinct groups; in fact, their pattern is
equal to that of B|. However, the spots in the second stripe 'bridge' the missing entry,
resulting in a single connected group of spots. So, the spots are all numbered equally
again. As mentioned, similar reasonings apply to the case where the spots are spread
out over all three stripes.

The various scenarios of Figure 2.13 indicate some of the issues surrounding
the grouping and numbering of the spots within the list GR. Allowing for all different
possibilities requires quite some coding: lines 154 up to 542 of the MATLAB code are
only about the grouping and humbering. GR is first classified based on the number of
stripes in which the spots lie. Line 156 checks if GR contains more than 1 entry. If
not, the single spot is numbered as a reflection (using the counting variable
reflnumber) and lines 162-538 can be skipped. The situation also remains relatively
straightforward in case all spots come from only a single stripe. Since GR is ordered
on the basis of stripe number, this is easily tested by checking if the values of stripe
for the first and last element of GR are equal (line 162). If so, then the scenario
created by the spots resembles either A| or B| from Figure 2.13. Line 167 checks
which of the two it is, by determining whether or not the layer numbers of the spots
in the group form an incrementing sequence or not. If not, then the spots will be

grouped using decimal numbers (line 168-178). If so, then all spots receive the same

48

Chapter 2: Software package

number reflnumber. Note that dataset e was recorded using only a single stripe, and
therefore the analysis of this set is significantly less complicated than that of set d.

In case the spots come from more than one stripe, an extra step in the analysis
is required. This step is related to the fact illustrated by scenario D| of Figure 2.13,
namely that connectivity of the spots in a certain stripe can also be delivered by the
spots in the neighboring stripe. In the code, the cases of spots from two stripes or
from three stripes are treated separately (lines 182-322 and 323-538, respectively). In
this treatment the case of three stripes will be discussed; the situation for two stripes
is comparable.

The spots within GR are recognized as coming from three stripes if the
difference between the stripe number of the first and last entry of GR is not equal to
0 (all spots from a single stripe) or 1 (all spots from 2 consecutive stripes). Note that,
strictly speaking, the spots could come from only the two outer stripes, but this is
quite unlikely since a grain exhibiting diffraction in stripe 0 and stripe 2 is also
expected to diffract in stripe 1. When the spots are identified as coming from all
three stripes, first of all the number of spots is compared to the value of
3(layer,,, — layer, . + 1). In case the number of spots within GR equals this value or
is only 1 or 2 spots smaller, then the spots will always form a single, connected group,
and can therefore all be numbered equally. This principle can be understood by
referring to Figure 2.14.

The expression 3(layer,,, —layer, . +1) describes the maximum number of

stripe
layer
cle o o0 ole elo o
i O B o Cle e]o
Ole e e O O|l@ e/O0 O
©c/e e e 0 ocle|o|e]|o
O/, 0O ;@®& O olelole!| o
©c|le;ole0° ocle|o|e|o
B| : D|

Figure 2.14: Tustration of how the number of spots within a group can indicate the spots'
connectivity when they are located in all three stripes. For explanation of the symbols, see Figure
2.13. The number of stripes times the difference between the maximum and minimum layer number
determines the possible number of spots (A). If two spots or less are missing, the result is always a

single group (B). If more are absent, the result depends on the location of the missing spots (C, D).

49

Chapter 2: Software package

spots expected in (R when the spots lie in three stripes, as a function of the
maximum and minimum layer number of the spots, layer,,, and layer,,, respectively.
In case all these spots have been identified, the situation at hand will resemble
scenario A|. However, there might also be some missing spots. Still, as long as the
number of absent spots is no more than 2, the spots in the group will still form a
single connected group and can therefore be treated as belonging to the same
reflection; see B]. When the number of missing spots exceeds this value, the number
of resulting spot groups depends on the location of the missing spots in (stripe,layer)-
space (C, D). A similar reasoning can be applied to the case of two stripes, only here
the maximum number of missing spots for the remaining spots to automatically form
a single group is only 1.

Returning to the code, lines 328-334 identify compositions of GR that resemble
Figure 2.14, scenario B|. In this case, the spots are all assigned the same number,
concluding part 1 of the routine. If the criterion is not satisfied, GR needs to be
analyzed in a more thorough manner to determine the way in which the spots have
been distributed over (stripe,layer)-space. This starts with determining how many
spots are located in the various stripes. These numbers are assigned to the variables
k1, k2 and k3 for the first, second and third stripe respectively (lines 340-348). Then,
the spots in the three stripes are divided into groups by regarding each stripe
separately; in other words, connectivity provided by spots in a neighboring stripe is
ignored for now and numbering takes place according to scenario A| or B| of Figure
2.13. Lines 351 through 402 take care of this numbering; note the resemblance
between these lines and lines 167-181, which perform the spot numbering in case GR
contains spots from only a single stripe.

The spots in each stripe have now been grouped and numbered independently
from the other stripes. The next step is linking the stripes together again and
performing the renumbering procedure. The first parﬂ of this process is comparing the
locations of spot groups in stripe 3 and 2, and determining if there are any
connections between groups in these two different stripes. This starts on line 426 with
a loop over all spot groups in the third stripe. For each group, a new loop is started
over all spots within that group. The value of layer of such an individual spot is then
compared to the layer numbers of all spots in the second stripe. If a match is found
(determined by the if-criterion on line 436), then the group to which the spot in the
'third stripe belongs is renumbered with the reflnumber of the matching spot found in
the second stripe (440-441). In this way, connectivity between the two spot groups is
acknowledged. When connectivity has been established, an extra check is performed
to determine whether or not the spot group in stripe 3 links up to even more groups

in stripe 2 (443-465). If so, these are also renumbered using the reflnumber of the first

50

Chapter 2: Software package

matching group in stripe 2. The loop then moves on to the next peak group in the
third stripe. Once all groups in stripe 3 have been checked for connections with
groups in stripe 2, the process is repeated for stripes 2 and 1.

The last part in the numbering process is to renumber the spot groups to make
sure the reflections numbers form an increasing sequence again. After all, as a result
of the renumbering of the various spots of groups the reflection numbers might not be
increasing with a steady pace anymore (for instance 2.01, 2.03, 2.04, 2.06 instead of
2.01-2.04). This final renumbering step is performed by means of lines 546 till 559,
Finally, GR contains the individual spots, grouped together in groups which each
represent an individual reflection. GR is appended to the matrix M, which is the final

output matrix (564).

2.7.5. Center of mass, intensity profile computation

Now that all spots belonging to a specific reflection have been localized and grouped
together, the center of mass coordinates of that reflection as well as the total
integrated intensity can be computed. This is done in part 2 of ArrangeSpots.m. The
main operation during this part of the routine is the reconstruction of the
(intensity,position)-profile.

The idea behind this reconstruction can be understood by referring to Figure
2.15. This figure illustrates how the overlap in subsequent slit settings results in an
increased resolution and how the intensity profile can be deconvoluted using this
overlap. The figure depicts multiple layers (n through n-+5). Since the shift between
two successive layers is less than the layer width (Dpeam), the intensity recorded at for
layer n-+1 will contain a lot of intensity that was also recorded in layer n. This
implies that a simple summing of the intensities of the individual spots which make
up a reflection is incorrect when one wants to determine the total integrated intensity
of a reflection. To solve this issue, the volume from where the reflection originated is
divided into smaller parts. This division is dictated by the layer overlap. The layer
overlap is not constant but varies between 10 or 7.5 pm, and therefore the
subvolumes are not, of equal length either. The figure indicates the typical periodicity
of the sizes of the subvolumes (A-F); most of them are 2.5 pm in width, but every
fifth volume has a width of 5 pm, The intensity originating from a specific subvolume
can now be calculated as a weighted average of fractions of the spot intensities that
originate (partly) from the subvolume in question. For instance, the intensity coming
from volume A, I,, can be computed as an average of parts of the intensities I, I,

a‘nd In+2:

51

Chapter 2: Software package

scanning direction

layer Iyve

b

beam

Figure 2.15: Schematic illustration of the reconstruction of an intensity profile from its component
intensities using the layer overlap. The image shows layers overlapping in the scanning direction; for
reasons of clarity they have been separated from each other vertically in the figure. The overlap
creates an increased resolution in the scanning direction, allowing the intensity coming from for

instance area A to be computed as a weighted average of fractions of I, I, and I,

IA = 1 bA (In + In+1 + In+2) . (2-20)
beam

Each intensity is weighed using by the fraction of the corresponding layer located
within A, after which the average is computed. Layers n, n+1 and n+2 all cover
volume A, so the averaging is carried out over the three corresponding intensities.
Expressions similar to (2.20) can be constructed for the intensities of the other
subvolumes. The result is a profile of intensity versus illuminated sample volume with
a resolution of 2.5 pm (except for every fifth point, which has a resolution of only 5
pm). The profile can be used to compute center of mass coordinates of the reflection

in terms of location on the detector as well as origin of diffraction within the sample.
Returning to the code, the second part of the routine starts on line 567. A loop
is started over all reflections in GR. For each group, it is then determined in how
many stripes the group's spots are located. For dataset e, clearly, this will always be
1, since this set was recorded using only a single stripe. The spots of dataset d,
however, can be located in up to three stripes. For each amount of stripes, a separate
block of code is written. The following will treat the code written for the case in
which the spots are located in all three stripes, but the workings of the other parts of

the code are comparable.

52

Chapter 2: Software package

The code for the three-stripe scenario starts on line 980. Firstly, three matrices
are declared (one for each stripe), and the amount of spots in each stripe is
determined. Subsequently, the three matrices are filled with the starting and finishing
coordinates of the layers associated with the spots in the stripe in question (lines 999-
1085). Take for instance the filling of matrix L1. A loop is initiated over all spots of
the current reflection that lie in the first stripe. The starting point of the first layer is
defined as zero, and since the size of all layers in the overlapping direction is 15 pam,
the finishing point of this layer lies at 15 pm (lines 1001 and 1002). Subsequent layers
are translated with respect to this first layer. Their starting and finishing coordinates
are computed in lines 1003-1016. The layer number of the spot under consideration is
compared to that of its predecessor. As explained in subsection 3.1.2.1 of the thesis
report, the periodicity of the layer shifts is 5 — 7.5 — 5 — 7.5 — & (bm). Because of this
regularity, one can deduce from inspection of the layer number of a certain spot how
far it has been shifted compared to the previous layer. This is performed using the
if/else-block of lines 1006-1014, by evaluating the remainder of the layer number
divided by 5. When the coordinates of the spot in question have been determined,
they are written into matrix L1, Also included in this loop is the calculation of the
center of mass coordinates of the reflection in terms of location on the diffraction
image (row,column,w) as well as in terms of the origin of diffraction (stripe). Note,
however, that the computation of the center of mass layer coordinate is not included.
This calculation is not performed until the intensity profile has been reconstructed,
since this profile offers the opportunity to calculate the layer coordinate with more
precision.

When the matrices L1, L2 and L3 have been filled, one additional operation is
required. The starting and finishing coordinates contained in the matrices are all
defined with respect to the starting point of the first layer in the corresponding
stripe. However, in order to later perform the calculation of the weighted average
layer coordinate, it is required that the coordinates in L1, L2 and L8 are all defined
with respect to the same starting point. Therefore, generally the coordinates in two of
the three matrices need to be shifted by a certain value. This operation is performed
in lines 1108-1193. The obvious starting point is the start of the leftmost layer
belonging to the reflection. Lines 1108-1109 first determine whether the reflection
happens to start in the same layer for all three stripes. If s0, then no shift is required
for any of the three matrices, and only the variable layer start, which indicates the
number of the leftmost layer of the reflection and which is required later on in the
routine, needs to be declared. If there are differences between the starting points of
the reflection in the various stripes, then a switch/case-statement is executed. Line

1113 determines which of the three stripes starts with the lowest-numbered layer.

53

Chapter 2: Software package

When this has been determined, the differences between this layer number and the
starting layers of the other two stripes are calculated. The entries in the two
corresponding matrices are subsequently translated so that their starting points line
up with that of the third matrix. By how much the coordinates need to be translated
again is determined using the periodicity in the layers, like with the filling of the
matrices itself.

So, the result of the operations above is a set of three matrices that contain
the starting and finishing coordinate of each of the reflection's spots, together with
the intensity of the spot. The next step is reconstructing the intensity profile from
these matrices. As explained earlier (in relation to F igure 2.15), the appropriate step
size for the intensity profile is 2.5 pm (in cases like the 5 pm wide area D in the
figure, the area is divided into two parts of 2.5 pm in width which both receive an
equal value for the corresponding intensity). For each volume defined in this manner,
the intensity originating from this volume is computed by an averaging procedure
similar to that of equation (2.20). These calculations are carried out for the three
matrices in lines 1201-1248. The computational procedures can be clarified by taking
a closer look at the code for matrix 7 y for instance (lines 1201 till 1216). A loop is
initiated over all 2.5 pm steps in this stripe, the amount of which (stepnr1) has been
computed in line 1195. The first column of matrix Int_ corrl is filled with the
starting points of these 2.5 pm steps. Lines 1205-1212 then execute a loop which
performs a search within matrix L7 for all layers that cover the subvolume under
consideration. If a layer does cover the subvolume, then this is indicated by the fact
that the starting point of this layer is equal to or smaller than the starting point of
the subvolume, and the finishing point is larger than the starting point of the
subvolume. If both these criteria are fulfilled (this is tested in line 1206), then the
intensity of the corresponding layer is added to the second column of Int corr! and
the counter divider is incremented by a single point. When the loop is finished, the
summed intensities are divided by this counter, resulting in the average intensity for
the 2.5 pm wide subvolume in question.

When these calculations have been performed for all three matrices, the results
need to be written away to disk. One large matrix is constructed which contains the
corrected intensity values for all the 2.5 pm wide subvolumes. This matrix is then
written to disk as a file named grain®**** txt in which the **¥* represent the
reflection number. In this way, the intensity profileé of all individual reflections can
be reexamined after the analysis.

Apart from the creation of the output matrix N, one last important calculation
still needs to be performed: the computation of the center of mass layer coordinate.

This can now be done, using the intensity profile to arrive at a higher resolution,

o4

Chapter 2: Software package

First of all, for each 2.5 pm wide subvolume the coordinate of the middle of that
volume is multiplied by the intensity attributed to it. By summing these values and
dividing by the total intensity, the center of mass layer coordinate is computed in
terms of the shift from the leftmost point of the reflecting volume. This shift (in pm)
now needs to be converted to a layer number. First of all, every 30 pm shift
corresponds to 5 layers (following from the layers' periodicity). This is accounted for
in line 1306. The amount of pm in shift left is then taken into account in lines 1308-
1317. Finally, line 1318 subtracts a value of 0.5 from the center of mass coordinate as
computed so that an integer layer value corresponds to the middle of that layer and
not to the edge. This preserves the consistency with the other center of mass
coordinates computed earlier.

At the end of the routine, the output matrix N is created. For each reflection,
N contains its number, its center of mass coordinates, and its total corrected
intensity. The total output of ArrangeSpots.m thus consists of M (the matrix
containing the reflections with their individual spots), N (containing the aggregate
information on the individual reflections), and the set of grain**** txt-files (each

containing the intensity profile for a specific reflection). -
2.8. Reflection coupling — GrainSpotter

Having reconstructed all individual reflections, the next step of the microstructure
reconstruction consists of linking the reflections to actual grains. Each grain within
the illuminated sample volume will produce reflections at multiple values of w. The
positions of these reflections in terms of location on the detector and w-value are
determined by the crystallographic characteristics of the grain in question. Therefore,
by scanning for groups of reflections that match the crystallographic criteria imposed
by the material, reflections originating from the same grain can be grouped together.
Furthermore, from as little as two independent reflections the grain's crystallographic
orientation can be derived (in case the lattice parameters are unknown: three
reflections) [15]. Linking together the individual reflections is therefore a crucial step
in the reconstruction of the original microstructure.

This reflection matching, also called 'indexing!, was performed using an alpha
version of a program called GrainSpotter [3]. GrainSpotter, developed by dr. Sgren
Schmidt of Risg National Laboratory in Denmark, is based on earlier software called
GRAINDEX [4]. GRAINDEX is a program designed for the image processing and
indexing parts of the analysis of 3DXRD data. GrainSpotter is a stand-alone program
performing only the latter of the two.

Theoretically, there are three different criteria on the basis of which one could

index the individual reflections: the calculated coordinates of the diffracting volume,

55

Chapter 2: Software package

the crystallographic characteristics of the structure, and the total integrated
intensities of the reflections [4]. Of these three, the latter is the least reliable. An
important reason for this is the complications that arise with grains lying near the
boundaries of the illuminated volume. When the sample is rotated about w, these
grains will oscillate in and out of the illuminated area. This can lead to these grains
being only partly illuminated during diffraction, resulting in significantly lower
intensities as compared to diffraction when these grains are fully illuminated. The
criterion based on the calculated coordinates of the diffraction origin, on the other
hand, is only applicable when the uncertainty with which these coordinates are
determined is much smaller than the grain dimensions. The criterion most generally
applicable is that of the crystallography of the material, Therefore, this is the
criterion used by GrainSpotter when indexing the individual reflections.

GrainSpotter indexes the reflections by a stepwise scanning of Euler space,
calculating the expected diffraction vectors as a function of the simulated
crystallographic orientation of a diffracting grain and checking whether or not these
vectors have been recorded. Grains are identified on the basis of two criteria:
completeness and uniqueness. The completeness criterion states that the number of
reflections found for a certain assumed crystallographic orientation, M,,, should not
be much smaller than the theoretically expected number of reflections for that

orientation, M,. This is quantified through the following expression:

M, >1~a,)M, (2.21)
in which a, is a dimensionless parameter determining the stringency of the criterion.
The uniqueness criterion dictates that the set of matching reflections is not allowed
to be a subset of the set of matching reflections for another simulated orientation.
When these two criteria are satisfied, the group of reflections is assigned to a
grain with the crystallographic orientation under consideration. If no group of
reflections can be constructed that fulfills the completeness and uniqueness criteria, it
is inferred that no grain is present with the orientation under consideration. For a

more detailed description of the indexing procedure, the reader is referred to [4, 16].
2.8.1. GrainSpotter input

Although the software for the reflection matching was available from the Danish Risg
National Laboratory, an additional routine still needed to be written. This routine,
InputGrainSpotter.m, was required to convert the output from ArrangeSpots into the

format demanded by GrainSpotter.

56

Chapter 2: Software package

The GrainSpotter input file can be divided into two parts. The first part
contains information on the crystal structure of the material under investigation.
Firstly, it describes the unit cell in terms of lattice parameters, angles and space-
group symmetry. Subsequently, the wavelength of the x-rays used and the wedge
angle are required. The latter is related to the angle between the incident beam and
the w rotation axis; in the current project, where the two are perpendicular, the
wedge angle equals zero. These two values are followed by an enumeration of all
reflections under consideration, together with their associated reciprocal lattice
spacing. Because this part of the input file is well-defined, its creation is not included
in the routine InputGrainSpotter. The routine only creates the second part of the file,
which is subsequently appended to the first part which has been constructed
manually at an earlier stage.

The second part of the input file consists of the details of the experimentally
observed scattering vectors. The scattering vector G is defined as the difference

between the scattered beam vector s and the incoming beam vector s, [17]:

Gz%(s—-so) (2.22)

in which both s and s, are unit vectors, and A represents the wavelength of the

radiation used. It follows that the modulus of the scattering vector equals

2[sin 0‘]

S (2.23)

¢ = I¢] =

in which @ equals half the weighted average diffraction angle of the reflection under
consideration.

The value of G can be determined from the average characteristics of the
reflection under consideration. For inpub into GrainSpotter, G is required to be
expressed in the laboratory coordinate system that has been used before in this
thesis. The system is shown in F igure 2.5. In this system, indicated with the subscript
[, the normalized scattering vector can be seen to depend on dand 7 in the following

manner [16]:

G, —tand
“—g‘—” =|G,,| = cosf|—sinn (2.24)
! G, cosn

2z

57

Chapter 2: Software package

Furnace

| Sample

*

Focal Beam
point stop

slits
Bent Si-Laue crystal

%

2D detector

Figure 2.16: Schematic representation of the sebup of the three-dimensional x-ray diffraction
microscope at beamline ID11 of the ESRF used for the experiments under consideration. The setup
consists of a bent Si-Laue crystal, slits, and a two-dimensional detector. The sample is positioned in a
furnace which is mounted on a table, allowing the sample to be translated and rotated. Figure taken

from [1].

After having obtained the normalized scattering vector from this equation, scaling to
the desired length can be performed using equation (2.23). Apart from the scattering
vector Gy itself, GrainSpotter also requires its modulus as well the reflection's
weighted average location on the detector and the angles 7 and w to be entered as
input,

The code of InputGrainSpotter is included in chapter 3, starting on page 119.
The routine starts with some parameter declarations, after which the output matrix
gvecs is initialized. Starting on line 21, a loop is evaluated that computes the
scattering vector and scattering vector modulus for each reflection. Lines 35-43 write
the required output into gvecs. For more details of the exact input format required

by GrainSpotter, the reader is referred to [3].

2.9. Grain characterization — CharacterizeGrains.m

When GrainSpotter has produced the groups of reflections originating from the same
grains, the final step of the microstructure reconstruction can be performed. This step
entails using the characteristics of the individual reflections assigned to a certain
grain to reconstruct that individual grain in terms of crystallographic orientation and

location of center of mass.

58

Chapter 2: Software package

The orientation of the grain is calculated and provided by GrainSpotter. It is
expressed in the form of an orientation matrix based on the well-known Euler angles,
a common way of describing a crystallographic orientation. For a concise description
of Euler angles in relation to three-dimensional x-ray diffraction microscopy, see for
instance [16], section 3.3. The location of the grain's center of mass, however, is not
provided by GrainSpotter. It needs to be computed by the user, based on the origins
of the individual reflections attributed to the grain in question.

However, the output format of the GrainSpotter results is not particularly
suitable for further computational analysis. In fact, many of the data required for
calculation of individual grains' characteristics need to be retrieved again from the
lists created by ArrangeSpots.m. This process is carried out by CharacterizeGrains.m.
The code of this routine is provided in chapter 3, starting on page 120.

The required input for the routine are the locations of both the output file
from the GrainSpotter analysis, as well of the file containing the individual reflections
created by ArrangeSpots.m. Since the GrainSpotter output file has a well-defined
format (described in [3]) the locations of the desired data are known. This
information is used in analyzing the file.

The file consists of a combination of text and numerical data. Line 15 defines
offset, a constant representing the number of lines in the header of the file. These
lines are skipped during the analysis. The first line of the file, though, contains the
number of identified grains. This number, nrgrains, is retrieved in line 18 of the code.
When this value is known, some variables are initialized, after which a loop is started
over all the grains identified (line 28). By constantly reading and skipping specific
lines of the file, the required data can be retrieved. For instance, the numbers of
theoretically expected and experimentally observed reflections, M0 and Mezxp, can be
retrieved, as well as the grain's orientation matrix UGrain. However, for information
on the grain's center of mass, the reflections need to be traced back to the reflection
list used as input to the routine. This is done within the second for-loop. Each of the
reflections attributed to the grain in question is retrieved from the list of reflections
produced by ArrangeSpots. The required computations can then be performed on the
resulting list of reflections. As an example, CharacterizeGrains produces the list of
reflections called GrainCharacteristics and saves this file, naming it using the grain
number retrieved from the GrainSpotter output. In this manner, the link can be

made between the individual reflections and the grain's attributes.

59

3. MATLAB code

A considerable part of the results of this thesis consists of the actual MATLAB
routines. The individual routines are discussed in chapter 2. The current chapter
provides the exact code of the routines treated there. Fach section introduces an
individual routine, starting on a new page. Line numbers have been added to allow

for simple comparison with the descriptions given in chapter 2.

10

20

30

40

50

Chapter 8: MATLAB code

3.1. SDCorrection.m

%Start of: SDCorrection.m

sSDCorrection computes a spatial correction as described by splinefile to
%411 of the points on a detector, and subsequently trims the resulting
ematrix to contain the distortion values only for pixels lying in the
$Region of Interest (ROT) on the detector, defined by the outermost mask.

oe

o

Note: to facilitate processing of the splinefile, I have manually added
some blanks in the file so that all of the B-spline coefficients are
separated from the following and preceding number. Though this a small
effort, one could also incorporate this in the code.

o o o° v

o

Tvd?. Last edits: February 2007.
function [SDMatrix] = SDCorrect(splinefile);

sDeclaration of the degree of the splines that have been computed (e.g.
sfor k=3, the polynomial on each knot interval is of the third power at
$most) .

kx = 3;
ky = 3;

$First, the splinefile is read in

fid = fopen(splinefile,'r');

if fid == 2
disp('Error: file specified by splinefile cannot be opened!')
return

end

$Recause a fit2d splinefile has a well-defined format, splinefile can be
sread quite easily by simply running over all lines and picking up the
$necessary data

line = fgetl(fid); % ' SPATIAL DISTORTION SPLINE INTERPOLATION COEFFICIENTS'
line = fgetl(fid); %BLANK LINE

line = fgetl(fid); %'VALID REGION'

line = fgetl(fid); %The actual valid region: xmin ymin xmax ymax
A = str2num(line);

xmin = A(1l);

ymin = A(2);

xmax = A(3);

ymax = A(4);

line = fgetl(fid); %BLANK LINE

line = fgetl{(fid); %'GRID SPACING, X-PIXEL SIZE, Y-PIXEL STIZE!
line = fgetl(fid); %The actual values for the spacing and pixel sizes
A = str2num(line);

spacing = A(l);

xsize = A(2);

ysize = A(3);

line = fgetl(fid); %BLANK LINE

e

line = fgetl (fid); %' X-DISTORTION'
line = fgetl(fid); %nxl and nyl: # of knots in x and y direction, resp.,

61

60

70

80

90

100

110

Chapter 3: MATLAB code

efor the X distortion spline

A = str2num(line);
nxl = A(1);
nyl = A(2);
eNow follow three blocks of lines, each line containing 5 values. First,
othe nxl values of the x positions of the knots are given. Then, nyl
2values giving the y positions of the knots. Finally,
%(nxl~kx~l)*(nylfky41) (=(nx1-4)*(nyl-4)) values for the b-spline
%coefficients
txl = [1;
tx1l = ceil(nxl./5); %The number of lines containing x position values
for i = l:tx11

line = fgetl(fid);

A = str2num(line);

txl = [txl A]l;

end
tyl = [1;
tyll = ceil(nyl./5); 5The number of lines containing y position values

for 1 = l:tyll
line = fgetl(£fid);
A = str2num{line);
tyl = [tyl A];

end

cl = [1;

ncl = (nxl-kx-1).*(nyl-ky-1);

cll = ceil(ncl./5); %The number of lines containing b-spline coeff.

for i = l:cll
line = fgetl(fid);
A = str2num(line);
cl = [cl Al;
end
line = fgetl(fid); %BLANK LINE
line fgetl(fid) ; '*Y-DISTORTION'
line fgetl(fid); %nx2 and ny2: # of knots in x and vy direction, resp.,
for the Y distortion spline

o

([

o\©

@

A = str2num(line);
nx2 = A(l);
ny2 = A(2);
tx2 = [1;
£x21 = ceil(nx2./5); %The number of lines containing x position values
for 1 = 1l:tx21
line = fgetl(£fid);
A = str2num(line);
tx2 = [tx2 Al;

end
ty2z = [1;
ty2l = ceil(ny2./5); %The number of lines containing y position values

for i = l:ty21
line = fgetl(£fid);
A = str2num{line);
ty2 = [ty2 Al;

end

c2 = [1;

nc2 = (nx2-kx-1).*(ny2-ky-1);

021 = ceil(nc2./5); %The number of lines containing b-spline coeff.

for i = 1l:c2l
line = fgetl(fid);
A = str2num(line);
c2 = [c2 A);

end

62

120

130

140

150

160

170

Chapter 3: MATLAB code

%Create the two arrays x and y whose cross product describe all points on
%the detector

x = [];

for 1 = 1:2048
x(i) = 1i;

end

Yy = Xj

%A1l the required data have been retrieved from the fit2d splinefile.
%Compute the spatial distortions of all individual points.

deltaj = bispev(txl,tyl,cl,kx,ky,x,v);
deltai bispev(tx2,ty2,c2,kx, ky,x,v);

%Now correct all points on the detector for their distortion.

SDMatrixl1l = ones(2048,1);
SbMatrix2 = [];
SDMatrix?2 [1;
SDMatrix3 = [];
SDMatrix4d = [];
for 1 = 1:2048
SDMatrixl = [SDMatrixl; i.*SDMatrixll];

SDMatrix2 = [SDMatrix2; vl;
SDMatrix3 = [SDMatrix3; deltai(i,:}']);
SDMatrix4 = [SDMatrix4; deltaj(i,:)']l;
end
SDMatrix5 = SDMatrixl+SDMatrix3;
SDMatrix6 = SDMatrix2+SDMatrix4;

%Construct SDMatrix_ full.txt, which is a matrix of dimensions (204872,6)
%containing: [i_orig j_orig delta_i delta j i corr j_corrl]l, where i and j
%are the fast and slow index of the matrix representing the edf images,
$respectively. The i index corresponds to the Y direction in fit2d, and
%$the j index to the X direction.

SDMatrix_full = [SDMatrixl SDMatrix2 SDMatrix3 SDMatrix4 SDMatrix5...
SDMatrix6];

dlmwrite ('E:\4d_4de_Analysis\SDMatrix_full.txt',SDMatrix_full, ...
"delimiter', "\t");

%SDMatrix_full = dlmread('E:\4d_4e Analysis\SDMatrix_full.txt', '\t');

%Define the borders of the rectangle that encloses the outermost mask that
%is used in the analysis of the diffraction patterns, and hence defines
%$the ROI on the detector. These values have been determined by running
%CreateMask2DTilt.m and inspecting the resulting masks. The borders are
$placed multiple pixels beyond the outermost pixel of the outer mask at
%each side, to create a margin for unexpectancies in the data.

m_min = 340;
m_max = 1759;
n_min = 280;
n_max = 1687;

%First, trim off the parts with m < m_min or m > m_max

sdstart = (m_min-1)*2048+1;
sdend = m_max*2048;

63

180

190

Chapter 8: MATLAB code

SDMatrix full = SDMatrix_full (sdstart:sdend, :);
%Then collect all lines with n >= n_min and n =< n_max

SDMatrix = [];
for 1 = 1:(m_max-m_min+1)

SDMatrix = [SDMatrix ; SDMatrix_full((((i-1)*2048+n_min):...

((i-1)*2048+n_max)),:)]1;
end

dlmwrite ('E:\4d_4e_Analysis\SDMatrix.txt',SDMatrix, ‘delimiter', "\t');

64

10

20

30

40

50

Chapter 8: MATLAB code

3.2. bispev.m

o

Star

t of: bispev.m

Translated from Fortran into Matlab using the f2matlab package

The following are the comments from the original Fortran file

Su

broutine bispev evaluates on a grid(x(i),y(J)),1i=1,..

L, MX;

j=

1,...

,my a bivariate spline s(x,y) of degrees kx and ky, given in the

b—

ca

spline representation.

l1ling sequence:
call bispev(tx,nx,ty,ny,c,kx,ky,x, mx,y,my,z,wrk, lwrk,
iwrk, kwrk, ier)

input parameters:

tx : real array, length nx, which contains the position of the
knots in the x-direction.
ty : real array, length ny, which contains the position of the
knots in the y-direction.
c real array, length(nx-kx-1)*(ny-ky-1), which contains the
b-spline coefficients.
kx,ky : integer values, giving the degrees of the spline.
X real array of dimension(mx).
before entry x(i) must be set to the x co-ordinate of the
i-th grid point along the x-axis.
tx(kx+l)<=x{i-1)<=x(1)<=tx(nx-kx), i=2,...,mx.
y real array of dimension(my).
before entry y(j) must be set to the y co-ordinate of the
j—th grid point along the y-axis.
ty(ky+l)<=y(j-1)<=y(])<=ty(ny-ky), j=2,...,my.
wrk : real array of dimension lwrk. used as workspace.
lwrk : integer, specifying the dimension of wrk.
lwrk >= mx* (kx+1)+my* (ky+1)
iwrk : integer array of dimension kwrk. used as workspace.
kwrk : integer, specifyling the dimension of iwrk. kwrk >= mx+my.
output parameters:
zZ real array of dimension(mx*my) .
on succesful exit z{my*(i-1)+3) contains the value of s(x,y)
at the point(x(i),y(3)),i=1, ..., mx;3=1,...,my.
ier : integer error flag
ier=0 : normal return
ier=10: invalid input data(see restrictions)
restrictions:
mx >=1, my >=1, lwrk>=mx* (kx+1)+my* (ky+1l), kwrk>=mx+my
tx(kx+1l) <= x(i-1) <= x{(i) <= tx(nx-kx), i=2,...,mx
Ly (ky+1l) <= y{j-1) <= y(J) <= ty(ny-ky}, j=2,...,my
references
de boor ¢ : on calculating with b-splines, j. approximation theory

6(1972) 50-62.

65

60

70

80

90

100

110

Chapter 3: MATLAB code

% cox m.g. : the numerical evaluation of b-splines, j. inst. maths
% applics 10(1972) 134-149.

% dierckx p. : curve and surface fitting with splines, monographs on
% numerical analysis, oxford university press, 1993.

% author

% p.dierckx

% dept. computer science, k.u.leuven

% celestijnenlaan 200a, b-3001 heverlee, belgium.
% e-mail : Paul.Dierckx@cs.kuleuven.ac.be

% latest update : march 1987

TvdZ. Last edits: November 2006

o\

function [z,1ier] = bispev(tx,ty,c,kx,ky,x,v);

ier = 10; %error flag

nx = size(tx,2); %Total number of knots in the x direction

ny = size(ty,2); %Total number of knots in the y direction

mx = size(x,2); %$Total number of x grid points on which to evaluate spline
my = size(y,2); %Total number of y grid points on which to evaluate spline

lwest = (kx+1).*mx+(ky+1l).*my;
%Allocating two workspaces wrk and iwrk

lwrk = mx* (kx+1)+my* (ky+1);

wrk = zeros(l,lwrk);
kwrk = mx+my;
iwrk = zeros(l, kwrk);

% Before starting computations a data check is made. If the input data
% are invalid control is immediately repassed to the calling program.

if (mx-1 < 0)

return
elseif (mx-1 == 0)
else
for i = 2:mx
if (x(i) < x(i-1))
return
end
end

end

if (my-1 < 0)

return
elseif (my-1 == 0)
else
for 1 = 2:my
if (y(i) < y(i-1))
return
end
end

end

66

120

Chapter 8: MATLAB code

ier = 0;
iw = mx.* (kx+1)+1;
fpbisp(tx,nx,ty,ny,c, kx,ky, x,mx,y,my,wrk (1) ,wrk(iw),iwrk (1), ...

Z:
iwrk (mx+1));
$End of: bispev.m

67

Chapter 8: MATLAB code

3.3. fpbisp.m

[

%Start of: fpbisp.m

$Translated from Fortran into Matlab using the f2matlab package,

%TvdZ. Last edits: November 2006

function z = fpbisp(tx,nx,ty,ny,c, kx,ky,x,mx,y,my,wx,wy,1x,1y);
10

h = zeros(1l,6);

$x dimension

kxl = kx+1;

nkx1l = nx-kxl1;
tbh = tx(kx1l);

te = tx(nkxl+1l);

1 = kxl;
20 11 = 1+1;

for i = 1l:mx
arg = x(1);
if {(arg < tb)

arg = tb;
end
if (arg > te)
arg te;
end

il

30
while (arg >= tx(1l1l)) && (1 ~= nkxl)
1 =11;
11 = 1+1;
end

h = fpbspl(tx,nx,kx,arg,1l,h);

1x(i) = 1-kx1;
for j = 1l:kxl
40 wx(i,3) = h(j);
end
end

%y dimension

kyl = ky+1;

nkyl = ny-kyl;

th = ty(kyl);

te = ty(nkyl+l);
50 1 = kyi;

11 = 1+1;

for i = l:my
arg = y(i);
if (arg < tb)
arg = tb;

68

60

70

80

90

100

Chapter 3: MATLAB code

end
if (arg > te)
arg = te;

end

while (arg >= ty(11))
1 = 11;
11 = 1+1;

end

&& (1 ~= nkyl)

h = fpbspl(ty,ny, ky,arg,1,h);

1y (i) = 1-kyl;
for j = 1l:kyl
wy(i,9) = h(3);
end
end

$meshing together

m = 0;
7 = zeros(mx,my) ;
for i = l:mx

1 = 1x(i).*nkyl;
for il = 1:kx1
h(il) = wx(i,11);

end
for § = limy
11 = 1+1y(3);
sp = 0.;
for i1 = 1:kx1
12 = 11;
for 41 = 1:kyl
12 = 12+1;
sp =
end
11 = 1ll4nkyl;
end
= m+1l;
z{(m) = sp;
end

Q.

$End of: fpbisp.m

sptc(12) .*h(il) . *wy (3, 31);

T e e o e e e e e e e e e ——————

69

10

20

30

Chapter 3: MATLAB code

3.4. fpbspl.m

e

$Start of: fpbspl.m

%$Translated from Fortran into Matlab using f2matlab

Subroutine fpbspl evaluates the (k+1) non-zero b-splines of degree k at
t(l) <= x < t(l+1) using the stable recurrence relation of De Boor and
C

%TvdZz. Last edits: November 2006
function h = fpbspl{(t,n,k,x,1,h);

hh = zeros{(1,5);

for i = 1:3
1i = 1+1;
1j = 1i-j;
f = hh(i)./(£(1i)-t(134));
h(i) = h(i)+f£.*(t(1i)-x);
h{i+1l) = f.*(x-t{(19));
end

%End of: fpbspl.m

S o o e e

70

10

20

30

40

50

Chapter 3: MATLAB code

3.5. DetermineBC.m

%This routine determines the location of the beam center using

%the LaB6 measurement by means of a weighted average of the pixel
%positions of the pixels in and just around the direct beam mark, using
$the corresponding intensities as weights.

o°

$TvdZz, November 2006
function [mBC, nBC, rowprof, colprof] = DetermineBC (image)

$xest and yest, first estimates of the location of the beam center, are
%entered. These values have been determined by visual inspection using the
$ESRF visualization program FIT2D, and are entered in FIT2D coordinates.
$Furthermore, half the width and height of the box over which the
gcomputation will run are entered (deltax en deltay), which have also been
$determined by visual inspection. All values are then transformed into
$matrix indices m and n.

xest = 981;
yest = 1011;
deltax = 20;
deltay = 10;

mest = 2049-yest;
nest = xest;

mmin = mest-deltay;
mmax = mest+deltay;
nmin = nest-deltax;
nmax = nest+deltax;

%Compute the dark current intensities

DarkCurrent = double(zeros(2048,2048));

for nr = 26:47
filename = ['E:\Data\Dark_Current\darkcurrent00' num2str(nr) '.edf'];

AddMatrix = double(readfrelon2k (filename));
DarkCurrent = DarkCurrent+AddMatrix;

end

DarkCurrent = double(DarkCurrent./22);

%$The LaB6-file is read
readfrelon2k (image) ;

double(A);
= A-DarkCurrent;

i

il

A
A
A

$Computation over the submatrix A(imin:imax, jmin:jmax)

mBC = 0;
nBC = 0;
rowprof = zeros(mmax-mmin+1,1);

71

60

70

Chapter 8: MATLAB code

colprof = zeros(nmax-nmin+1,1);
sumsum = sum(sum(A{mmin:mmax, nmin:nmax)));

for i = mmin:mmax
for j = nmin:nmax
weight = A(i, j);
rowprof (i-mmin+l) = rowprof (i-mmin+1)+weight;
colprof (j-nmin+l) = colprof) j-nmin+1)+weight;

mBC = double (mBC+double (i*weight/sumsum)) ;
nBC = double (nBC+double{j*weight/sumsum)) ;
end

end

rowprof = rowprof./(nmax-nmin+1);

colprof = colprof./(mmax-mmin+1);

mBC = double (mBC) ;

nBC double (nBC) ;

It

%$End of: DetermineBC.m

B T e

B e

72

10

20

Chapter 8: MATLAB code

3.6. readfrelon2k.m

o

%$Start of: readfrelonZk.m

o

function [A] = readfrelon2k(filename)
% edf reader for the 2K Frelon camera

% function [Al= readfrelon2k{(filename)

fid = fopen(filename, ‘r');

if (fid~=-1)
fseek (fid, - (2%2048+%2048), 'eof ') ;

A = uintl6 ((fread(fid, [2048,2048], 'uint16'))');

fclose(fid);
else
["edf reader: unable to open file: ',filename]

end

$End of: readfrelonZ2k.m

o e ———— e

B e o i o o o o s i

e

73

10

20

30

40

50

Chapter 8: MATLAB code

3.7. Analyze 4d.m

O o ——— e e e —

6]

gStart of: Analyze_4d.m

O e e e

2This is the main routine for reconstruction of the original austenite
smicrostructure from the diffraction images of the 4d-dataset. This routine
scalls the various subroutines that perform the different steps required
2for the reconstruction. It is possible to exclude some of the code from
2being executed, e.g. when one has already performed a specific part of the
%analysis earlier. In this case, exclude the lines in question using '%'
sand include code reading in the result of the earlier analysis,

e

$TvdZ. Last edits: February 2007

function u = Analyze_4d;

gCreate a list of all peaks of the 4d measurement using FindPeaks_4d, or,
21if this has already been done previously, access this file using the

%dlmread command.

PeakList = FindPeaks_4d;
%PeakList = dlmread('E:\4d_4e#Analysis\4d_PeakvList.txt','\t');

[nr_peaks width_peaklist] = size (PeakList});
$Compute the dark current intensities

DarkCurrent = double(zeros(2048,2048));
for nr = 26:47

filename = ['E:\Data\Dark_Current\darkcurrent00' num2str(nr) '.edf'];
AddMatrix = double{readfrelon2k(filename));
DarkCurrent = DarkCurrent+AddMatrix;

end
DarkCurrent = double(DarkCurrent./22);

s0pen file that contains the spatial distortion correction
SDMatrix = dlmread('E:\4d_4e Analysis\SDMatrix.txt','\t');
2Determine if the estimates for the peak width in all three dimensions are

Scorrect, by comparing background intensities from the two enveloping
%$shells.

Total Peak_Intensities = [];
ind = 1;
for n = l:nr_peaks

stripe = PeakList(n,1);
layer = PeaklList(n,2);
omega = PeakList(n,3);
ringnumber = PeakList(n,4);
row = PeakList(n,5);

74

60

70

80

Chapter 3: MATLAB code

column = PeakList(n,6);

R = PeakList(n,7);

twotheta = PeakList(n,8);

eta = PeakList(n,9);
intensity = PeakList (n,10);
deltarow = PeakList(n,11);
deltacolumn = PeakList(n,12);
deltaomega = PeakList(n,13);

[Total Intensity] = ShellCheck_4d(stripe, layer, omega, ringnumber, ...
row,column,deltarow,deltacolumn,deltaomega,DarkCurrent,SDMatrix);

if isempty(Total Intensity) ==

Total Peak_Intensities(ind,:) = Total_Intensity;

ind = ind+1;
end

end

dlmwrite('E:\4d_4e_Analysis\4d_Total Peak_Intensities.txt',..

Total Peak Intensities, '-append’, 'delimiter', "\t');

%If the peak analysis has been performed separately at an earlier stage,
suse the line below to read in the results of that analysis.

3Total_Peak Intensities = dlmread{'E:\4d_4e_Analysis\'...

% t4d Total Peak_Intensities.txt', '\t');

[length_TPI width_TPI] = size(Total_Peak_Intensities);

[Arranged_Spots,Total Grain_Intensities]
Total_ Peak_ Intensities,l,length TPI);

ArrangeSpots (...

O e —

6]

$End of: Analyze_4d.m

O e ———— e — —

(]

75

10

20

30

40

Chapter 3: MATLAB code

3.8. FindPeaks_4d.m

%Start of: FindPeaks_4d.m

o

%This function creates a list of all peaks in the 4d series. The output is

%in the form of an (nx19)-matrix, where n is the total number of peaks
$found. Each row contains peak information in the following manner:

% [Stripe Layer Omega RingNumber Row Column R TwoTheta Eta Intensity
2DeltaRow DeltaColumn DeltaOmega RowMinus RowPlus ColumnMinus ColumnPlus
$0megaMinus OmegaPlus]}. The output is created by subsequent calls of the
%$subroutine Analyzelayer 4d.m.

oe

%$TvdZz. Last edits: February 2007.
function Peaks = FindPeaks_4d;
$Compute dark current image for electronic background correction
DarkCurrent = double(zeros(2048,2048));
for nr = 26:47
filename = [‘'E:\Datal\Dark_Current\darkcurrent00' numZ2str(nr) '.edf'};
AddMatrix = double (readfrelon2k(filename));
DarkCurrent = DarkCurrent+AddMatrix;
end
DarkCurrent = double (DarkCurrent./22);
%Start peaksearching
Peaks = [1];
for stripe = 0:2

for layer = 0:49

u = Analyzelayer_4d(stripe, layer,DarkCurrent);
Peaks = [Peaks;ul;

end
end

dlmwrite ("E:\4d_4e_Analysis\4d_PeakList.txt',Peaks, 'delimiter', '\t");

$End of: FindPeaks_4d.m

76

10

20

30

40

50

Chapter 3: MATLAB code

3.9. AnalyzeLayer 4d.m

Q

%Start of: AnalyzelLayer_d4d.m

Q
e e

%This program analyzes a single layer from a 4d measurement, corresponding
Sto 92 files with different omega orientations. The files are read,

Stogether with their previous and subsequent file in omega space. Masks are
%then applied so that the data of interest remains. Within these remaining

%images, searches are conducted for peak maxima in (x,y,omega)-space.

o°

$TvdZ. Last edits: February 2007,

function u = AnalyzeLayer_ 4d(stripe, layer, DarkCurrent);

if stripe == || stripe == 1 || stripe ==
else
error('Invalid stripe input. Valid input are: 0, 1, 2.')
end
if rem(layer,1l) == 0 & layer >= 0 & layer <= 49
else
error('Invalid layer input. Valid input is an integer between 0 and'...
'49.7)
end

stripestr = num2str(stripe);
layerstr = num2str (layer);

MinTwoTheta A200 = 4.75; %degrees
MaxTwoTheta_A200 = 5.2;
MinTwoTheta_A220 = 6.8;
MaxTwoTheta_A220 = 7.3;

PixelSize = 47.4; %micrometer

Lsd = 241; %millimeter

Lsd_Pixels = Lsd*1000/PixelSize; S$%i#pixels
BoxHeight = 100; %micrometer

BoxWidth = 15; $%micrometer

RowBeamCenter = 1038; %row index
ColumnBeamCenter = 981; %$column index

$Specification of detector tilt using definitions of CreateMask2DTilt.m.
Tilt Psi and Tilt_EtaT follow from the TILT algorithm in fit2d on the LaB6
$image before spatial correction.

%Note: when computing detector tilt on the corrected image, the value found
%2is much smaller (less than 1 degree).

Tilt Psi = 8.1; %degrees
Tilt_EtaT = 11.9; %degrees

k =
u= [];

sCompute average dark current intensity and the threshold intensity

7

Chapter 3: MATLAB code

avg_dc = mean (mean(DarkCurrent));

IMin = 2*sqrt(avg_dc); %The minimum intensity that is considered as coming
$from a grain equals twice the square root of the
%average D.C. intensity; for a Polsson distribution,
60 %this equals twice the standard deviation.

$Compute the masks for the austenite and background rings, and determine
%the borders of the rectangles that enclose these masks.

Mask_A200 = CreateMask2DTilt (Lsd,PixelSize,Tilt Psi,Tilt_EtaT, ...
ColumnBeamCenter, RowBeamCenter, MinTwoTheta_A200, ...
MaxTwoTheta_A200) ;

Mask_A220 = CreateMask2DTilt (Lsd,PixelSize,Tilt_ Psi,Tilt EtaT, ...
ColumnBeamCenter, RowBeamCenter, MinTwoTheta_AZ220, ...
70 MaxTwoTheta_A220) ;

m_A200_min = 2;

m_A200_max 2047;

n_A200_min = 2;

n_A200_max = 2047;

A200_m = sum{Mask_A200,2});

A200_n = sum{Mask_A200,1);

while A200_m(m_A200_min) == 0
m_A200_min = m_A200_min+1;

il

80 end
while A200_m{(m_A200_max) == 0;
m_A200 _max = m_A200_max-1;
end
while A200_n{(n_A200_min) == 0
n_A200_min = n_A200_min+1;
end
while A200_n(n_A200_max) == 0;
n_A200_max = n_A200_max-1;
end
90

m_A220_min = 2;

m_A220_max 2047;

n_A220_min = 2;

n_A220_max = 2047;

A220_m = sum(Mask_AZ220,2);

A220_n = sum(Mask_A220,1);

while A220 m(m_A220_min) ==
m_A220_min = m_A220_min+1;

i

end
100 while A220_m(m_A220_max) == 0;
m_A220_max = m_A220_max-1;
end
while A220_n(n_A220_min) == 0
n_A220_min = n_A220_min+1;
end
while A220_n(n_A220_max) == 0;
n_A220_max = n_A220_max-1;
end
110 %Read the file to be examined, and create the masked images.
for omega = —-29:60

omegastr = num2str (omega) ;

78

Chapter 3: MATLAB code

if omega == -29

filenr = stripe*4600+layer*92+ (omega+30);

120 if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d000'...
num2str(filenr) '.edf'];

elseif filenr < 100
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00'...
num2str (filenr) '.edf'];
elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d0'...

num2str (filenr) '.edf'];
else
130 filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d'...
num2str (filenr) '.edf'];
end

ImageRaw = double(readfrelonZk(filename)) ;
ImageRaw = ImageRaw-DarkCurrent;
Image_A200 = ImageRaw.*Mask_A200;

Image_A220 = ImageRaw.*Mask_A220;
filenr = filenr-1;
140 if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d000"...
num2str (filenr) '.edf'];
elseif filenr < 100
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00"'...
num2str (filenr) '.edf'}];

elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d0"'...

num2str{(filenr) '.edf'];
else
150 filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d'...
num2str(filenr) '.edf'];
end

ImageRaw = double (readfrelon2k (filename)) ;
ImageRaw = ImageRaw-DarkCurrent;
Image_A200_prev = ImageRaw.*Mask_A200;
Image_A220_prev = ImageRaw.*Mask_A220;

filenr = filenr+2;
160 if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d000"'...
num2str (filenr) '.edf'];

elseif filenr < 100
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00'...

num2str (filenr) '.edf'}l;
elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d0'...
num2str (filenr) '.edf'l];
else
170 filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d'...
num2str (filenr) '.edf'];
end

ImageRaw = double (readfrelon2k (filename)) ;
ImageRaw = ImageRaw-DarkCurrent;
Image_A200_next = ImageRaw.*Mask_AZ200;
Image_A220_next = ImageRaw.*Mask_A220;

Chapter 3: MATLAB code

elseif stripe == 0 && layer == 0 &&
(omega == 7 || omega == || omega == 9)
180
sFile 0038, corresponding to stripe = 0, layer = 0, omega = 8 is
smissing. Hence this file and the two surrounding it in omega space
$cannot be analyzed properly
continue
elseif stripe == 0 && layer == 0 && omega == 10
filenr = stripe*4600+layer*92+ (omega+30);
190
filename = ['E:\Data\FelC3MnA 4d\FelC3MnA_4d00"’ num2str (filenr) ...
t.edf'];
ImageRaw = double (readfrelon2k (filename)) ;
ImageRaw = ImageRaw-DarkCurrent;
Image_A200 = ImageRaw.*Mask_A200;
Image_A220 = ImageRaw.*Mask_A220;
filenr = filenr-1;
200 filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00Q"' num2str (filenr) ...
tLedf'];
ImageRaw = double (readfrelon2k (filename)) ;
ImageRaw = ImageRaw-DarkCurrent;

Image_A200_prev = ImageRaw.*Mask_ AZ200;
Image_A220_prev = ImageRaw.*Mask_A220;

filenr = filenr+2;

filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00’ num2str (filenr) ...
210 '.edf'];

ImageRaw = double (readfrelon2k (filename)) ;

ImageRaw = ImageRaw-DarkCurrent;

Image_A200_next = ImageRaw.*Mask_A200;

Image_A220_next = ImageRaw.*Mask A220;

elseif stripe == 0 && layer == 34 && omega == -18

$File 3141, corresponding to stripe 0, layer 34, omega -17 has
sdimensions 2047x2048 (probably due to a glitch during data

220 scollection); therefore the first row of ImageRaw is discarded,
2since this row contains nonsense (numerical representations of
SASCII characters), after which an extra row of pixels with
$intensity 1000 is added to the bottom of the matrix (visual
sinspection of the location of the direct beam mark in this picture
$suggested that the missing row was probably the bottom one)

Image_A200_prev = Image_A200;
Image_A220_prev = Image_A220;
Image_A200 = Image_A200_next;
230 Image_A220 = Image_A220_next;
filenr = filenr+l;
if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d000'...
num2str(filenr) '.edf'];
elseif filenr < 100
filename = ['E:\Data\FelC3MnA 4d\FelC3MnA_4d00'...
num2str (filenr) '.edf'l;

80

Chapter 3: MATLAB code

elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d0'...

240 num2str(filenr) '.edf'];
else
filename = ['E:\Data\FelC3MnA_ 4d\FelC3MnA_4d'...
num2str (filenr) '.edf'l;
end

ImageRaw = double (readfrelon2k (filename)) ;
ImageRaw = ImageRaw (2:2048, :);
Addition = double(1000*ones{1,2048));
ImageRaw = [ImageRaw;Addition];
ImageRaw = ImageRaw-DarkCurrent;

250 Image_A200_next = ImageRaw.*Mask_A200;
Image_A220_next = ImageRaw.*Mask_A220;

else

Image_A200_prev = Image_A200;
Image_A220_prev = Image_A220;
Image_A200 = Image_A200_next;
Image_A220 = Image_A220_next;

filenr = filenr+l;
260 if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d000"'...
num2str (filenr) '.edf'l;

elseif filenr < 100
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d00"...
num2str (filenr) ‘'.edf'l;
elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_ 4d0'...

num2str (filenr) '.edf'];
else
270 filename = ['E:\Data\FelC3MnA_ 4d\FelC3MnA_4d'...
num2str (filenr) '.edf'l;
end

ImageRaw = double (readfrelon2k (filename));
ImageRaw = ImageRaw-DarkCurrent;
Image_A200_next = ImageRaw.*Mask_A200;
Image_A220_next = ImageRaw.*Mask A220;

end
280 for ring = 1:2

switch ring

case 1
hkl = 'A200';
Image = Image_A200;
Image_prev = Image_A200_prev;
Image_next = Image_A200_next;
m_min = m_A200_min;
m_max = m_A200_max;

290 n_min = n_A200_min;

n_max = n_A200_max;

case 2
hkl = 'A2207%;
Image = Image_A220;
Image_prev = Image_A220_prev;
Image_next = Image_A220_next;
m_min = m_A220_min;
m_max = m_A220_max;

Chapter 8: MATLAB code

n_min = n_A220_min;
300 n_max = n_A220_max;
end

$Find peaks in (x,y,omega)-space

for m = m_min:m_max
for n = n_min:n_max
if Image(m,n) > IMin
if isequal (Image {m,n),max(max(Image (m-1:m+l,n-1:n+1)))})
if Image(m,n) >= max{(max(Image_prev(m-1l:m+l,...

310 n-1:n+1)))
if Image(m,n) >= max(max(Image_next (m-1l:m+1,...
n—-1:n+l1)))
k = k+1;
StripePeak(k,1) = stripe;
LayerPeak (k,1l) = layer;
OmegaPeak (k,1l) = omega;
RingNumberPeak (k,1) = ring;
RowPeak (k,1) = m;
ColumnPeak (k,1) = n;
320 RPeak (k,1) = sqgrt((m-RowBeamCenter)"2+...
(n-ColumnBeamCenter) ~2) ;
TwoThetaPeak (k,1) = (180/pi)*...
atan?2 (RPeak (k, 1), Lsd_Pixels);
EtaPeak(k,1) = (180/pi)*atan2(n-...

ColumnBeamCenter, RowBeamCenter-m) ;

%$In this way, both arguments to atanZ are
$positive when the spot is in the first
$quadrant with respect to the beam centre.
if BEtaPeak(k,1) < O

330 EtaPeak (k,1) = EtaPeak(k)+360;
end
IntensityPeak(k,1l) = Image(m,n);
%Calculate peak width in row direction
% (half width half maximum)

inc = 1;

while Image (m-inc,n) > IntensityPeak(k,1)/2
inc = inc+1;

end

RowMinus (k,1) = RowPeak (k,1)-inc;

340 inc = 1;

while Image (m+inc,n) > IntensityPeak(k,1)/2
inc = inc+l;

end

RowPlus (k,1) = RowPeak(k,1l)+inc;

DeltaRow(k,1) = ceil ((RowPlus(k,1)-...

RowMinus(k,1))/2);
%Calculate peak width in colummn direction
% (half width half maximum)

inc = 1;
350 while Image(m,n-inc) > IntensityPeak(k,1)/2

inc = inc+l;

end

ColumnMinus (k,1) = ColumnPeak (k,1)-inc;

inc = 1;

while Image(m,n+inc) > IntensityPeak(k,1)/2
inc = inc+1;

end

ColumnPlus (k, 1) = ColumnPeak(k,l)+inc;

DeltaColumni{k,1) = ceil(...

82

360

370

380

390

400

410

420

Chapter 3: MATLAB code

end
end
end
end

if k == 0
(17

(ColumnPlus (k, 1) -ColumnMinus (k,1))/2);
$Calculate width in omega direction. It is
2assumed this is never more than 2 in a
$single direction.

inc = 1;

if Image_prev(m,n) > IntensityPeak(k,1)/2
inc = 2;

end

OmegaMinus (k, 1) = OmegaPeak (k,1)-inc;

inc = 1;

if Image_next(m,n) > IntensityPeak(k,1)/2
inc = 2;

end

OmegaPlus (k,1l) = OmegaPeak(k,1)+inc;

DeltaOmega(k,1) = (OmegaPlus(k,1)-...
OmegaMinus (k, 1)) /2;

sAccount for DeltaOmega-dependence on Eta.

DeltaOmega(k,1l) = ceil (DeltaOmega({k,1)*...
abs (sin(EtaPeak (k,1)*pi/180)));

if DeltaOmega(k,1)
%If Eta = 0, change from 0 to 1.
DeltaOmega(k,1l) = 1;
OmegaMinus (k, 1) = OmegaPeak(k,1)-1;
OmegaPlus (k,1) = OmegaPeak(k,1)+1;

end

[StripePeak LayerPeak OmegaPeak RingNumberPeak RowPeak...

ColumnPeak RPeak TwoThetaPeak EtaPeak IntensityPeak...
DeltaRow DeltaColumn DeltaOmega RowMinus RowPlus...
ColumnMinus ColumnPlus OmegaMinus OmegaPlus];

end
u = [u;v];

k = 0;
StripePeak =
LayerPeak = [];
OmegaPeak = [];
RingNumberPeak =
RowPeak = [1;
ColumnPeak =
RPeak = [];
TwoThetaPeak =
EtaPeak = [];
IntensityPeak =
DeltaRow = [];
DeltaColumn = [];
DeltaOmega = [];
RowMinus = [];
RowPlus = [];
ColumnMinus =
ColumnPlus =
OmegaMinus =
OmegaPlus =

[1;

(17
[1;
{1;

[1:

(1
(1;
[1;
[1;

83

Chapter 8: MATLAB code

end
end

%End of: AnalyzelLayer_4d.

O e ————

°

84

10

20

30

40

50

Chapter 3: MATLAB code

3.10. CreateMask2DTilt.m

o)
O T S e

%Start of: CreateMask2DTilt.m

%function CreateMaS}(ZDTilt.rn****‘k****k****v‘:**********k‘k*****k********‘k****‘k
$An ellipsoidal mask is created to the 2D diffraction patterns

Sto remove the data below a scattering angle SAmin and

Sabove a scattering angle SAmax. The beam center is located

sat (CenterX,CenterY). The sample to detector distance Lsd and

%the pixel size are used. Psi is the tilt of the detector and EtaT
2describes the direction of the rotation axis in the XY-plane for

etilt of the 2D detector. The rotation axis is oriented along

% (X-XC,Y-YC) = (sin(EtaT),cos(EtaT)). The direction of the longest

saxis of the ellipse from the beam center is perpendicular to

2this. Note that the center of the ellipse is not equal to the beam
2center; the latter is located in one of the focal points of the ellipse.
$From the rotation angles PsiX and PsiY the total rotation angle

gamounts to: Psi = (PsiX”2+PsiY”2)”(1/2). The rotation angle amounts

%to EtaT = atan2(PsiX,PsiY).

sl,sd 1s required in millimeters, pixel in micrometers.

o

o°

$Niels van Dijk, June 2006.

function u = CreateMask2DTilt (Lsd,pixel,Psi,EtaT,CX,CY,SAmin, SAmax)
%Begil'l k************‘k******‘k****‘k*‘k******'k*‘k*'k***‘k***********‘k***********‘k*
n ***‘k****k****'k******‘k**********‘k**‘k******‘k***************k'k*

$Initialisatio

Eta0 = EtaT+sign(Psi)*90.; % direction for the long axis

I

PsiRad (pi/180.)*Psi;

EtaORad = (pi/180.)*EtaT;

SAminRad = (pi/180.)*SAmin;

SAmaxRad = (pi/180.)*SAmax;

Lsd = Lsd*1000; S$transform Lsd from milli- to micrometers

I

FactorMax 1.-(tan(SAmaxRad) *tan(PsiRad))"2;
FactorMin = 1.-{(tan(SAminRad) *tan(PsiRad))"2;

ROMin (Lsd/pixel) *abs (tan(SAminRad)) ;
ROMax = (Lsd/pixel)*abs(tan(SAmaxRad));

il

R1Min = ROMin/abs (cos(PsiRad)*FactorMin); %long axis ellipse for 2ThetaMin
R1Max = ROMax/abs (cos (PsiRad) *FactorMax); %long axis ellipse for 2ThetaMax

RsMin = ROMin/ (FactorMin)”~(1/2); %short axis ellipse for 2ThetaMin
RsMax = ROMax/ (FactorMax)”*(1/2); %short axis ellipse for 2ThetaMax

dRMin = R1Min*abs(tan(SAminRad)*tan(PsiRad));
dRMax = RlMax*abs{(tan (SAmaxRad)*tan(PsiRad));

CEXMin = CX+dRMin*sin(EtaORad); s¥X value center ellipse for 2ThetaMin
CEYMin = CY+dRMin*cos (EtaORad); %Y value center ellipse for 2ThetaMin

85

60

70

80

Chapter 8: MATLAB code

CEXMax = CX+dRMax*sin(EtaORad); $X value center ellipse for 2ThetaMax
CEYMax CY+dRMax*cos (EtaORad) ; %Y value center ellipse for ZThetaMax

Il

%Masklnq A A AR AAA RN KA R A A AR A AN EAAAKAAN A AR AAAAIKAAARNN A AR KR AR A A A A A XA A AR AT T KA FHAK

Mask = zeros(2048,2048);

[rows cols] = size(Mask);
for m = 1l:rows
dyMax = m-CEYMax;
dyMin m—-CEYMin;
for n = l:cols
dxMax = n-CEXMax;
dxMin = n-CEXMin;
duMax (cos(EtaORad)*dxMax~sin(EtaORad)*dyMax)/RsMax;
duMin (cos(EtaORad)*dxMin—sin(EtaORad)*dyMin)/RsMin;
dvMax = (sin(EtaORad)*dxMax+cos(Eta0Rad)*dyMax)/RlMax;
dvMin = (sin(EtaORad)*dxMin+cos (EtaORad)*dyMin)/R1Min;
if (duMin) *2+(dvMin)*2 >= 1. && {(duMax)"2+(dvMax)"2 <= 1.
Mask (m, n) 1;
else
Mask (m, n)
end
end
end

i

I

0;

u = Mask;

SEnd ********k*k*k'k*k***‘A’*************'A‘**)\’**}r************k*******************

Qo
T s

%$End of: CreateMask2DTilt.m

O o —————

[

86

10

20

30

40

50

Chapter 3: MATLAB code

3.11. ShellCheck 4d.m

%ShellCheck 4d.m determines if the size of the three-dimensional box
g$surrounding a peak as estimated using the half-width-half-maximum values
2is sufficient to envelop all the intensity belonging to the peak in
Squestion. If not, the size is adjusted till it suffices. Average peak
scharacteristics are computed, and spatial distortion correction is
Sapplied.

@

o\

TvdZ. Last edits: September 2006.

function [Total_Intensity] = ShellCheck_4d(stripe,layer,omega, ...
ringnumber,row,column,deltarow,deltacolumn,deltaomega,DarkCurrent,..‘
SDMatrix) ;

RowBC = 1038; %Distorted beam center position - row
ColumnBC = 981; %Distorted beam center position - column
PixelSize = 47.4; %micrometer

Lsd = 241; %millimeter
Lsd_Pixels = Lsd*1000/PixelSize; %#pixels

2Retrieve the corrected beam center position from SDMatrix, which contains
Sthe spatial distortion corrections for the pixels in the ROI. The location
$of this position within matrix SDMatrix depends on n_min, m_max, n_min and

%n_max — the borders of the outermost (i.e. A220) mask - in the following
gmanner :
% index = {(rowBC-m_min)* (n_max-n_min+1l)+(columnBC-n_min+1)

oe

The values of m_min, m_max, n_min and n_max can be retrieved from SDMatrix

e

[lengthSD widthSD] = size (SDMatrix);
m_min = SDMatrix(1,1);

m_max = SDMatrix(lengthSD,1);
n_min = SDMatrix(1,2);
n_max = SDMatrix(lengthSD,2);

RowBC_corr = SDMatrix(((RowBC-m_min)*(n_max-n_min+1l)+...
(ColumnBC-n_min+1}),5);

ColumnBC_corr = SDMatrix(((RowBC-m_min)* (n_max-n_min+1)+...
(ColumnBC—n_min+1)),6);

$Compute the correct peak box size

$Define two parameters which are used to directly indicate whether or not
%the correct box size is reached, and a parameter indicating an error
Soccurence

box_too_large = 1;
box_too_small = 1;
error_indicator = 0;

87

60

70

80

90

100

110

Chapter 3: MATLAB code

file38_flag = 0; %See line 106
Total_Intensity = [];
while (box_too_large ~= 0 || box_too_small ~= 0) && {(error_indicator == 0)

Box0 = [];
Shelll = [];
Shell2 [1;
Box0def = [];
Shellldef = [];
Shell2def = [];

i

%0btain a list of pixel positions around the selected peak for the
scurrent peak box and the two validation shells.

sdeltarow, deltacolumn and deltaomega should represent the position of
sthe first surrounding shell. E.g., if the peak maximum is located at
%(1000,1000) and deltarow = 5, this means pixel (995, 1000) belongs to
¢shelll but (996,1000) belongs to the peak box.

rowmin2 = row-deltarow-1;

rowmax?2 = row+deltarow+l;
columnmin?2 = column-deltacolumn-1;
columnmax?2 = column+deltacolumn+l;
rowminl = row-deltarow;

rowmaxl = row+deltarow;

columnminl = column-deltacolumn;
columnmaxl = column+deltacolumn;
rowmin0 = row-deltarow+l;

rowmax(= row+deltarow-1;

columnmin0 = column-deltacolumn+l;

columnmax0 = column+deltacolumn-1;

omegamin? = omega-deltaomega-1;

omegamax2 = omega+deltaomega+l;

omegaminl = omega-deltaomega;j

omegamaxl = omega+t+deltaomega;

omegamin0 = omega-deltaomega+l;

omegamax0 = omega+deltaomega-1l;

if omegamin2 < -30 || omegamax2 > 6l

message = ['The peak at stripe ' num2str(stripe) ', layer !

num2str (layer) ', omega ' num2str(omega) ', row !
num2str (row) ', column ' num2str(column) ' cannot '

"be used because the peak exceeds the limit of the'...
' omega scan'];

%disp (message)

error_indicator = 1;
break
end
if (stripe == 0) && (layer == 0) && (omegamin2 <= 8) &&...
(omegamax?2 >= 8)
2File 38, corresponding to stripe = 0, layer = 0, omega = 8, is

$missing
if deltaomega > 1
deltaomega = deltaomega-1;
file38_flag = 1;
continue
else
SNo correct box size can be defined, because the algorithm

88

120

130

140

150

160

170

Chapter 8: MATLAB code

end

o R
i

for

soscillates between either increasing or decreasing the box

message = ['No correct box size can be defined for the peak'...
' at stripe ' num2str(stripe) ', layer ' num2str(layer)...
', omega ' num2str(omega) ', row ' num2str(row)...
', column ' num2str (column)];
%disp (message)
error_indicator = 1;
break
end
0;
0;
0;

omeganew = omegamin2:omegamax?
filenr = stripe*4600+layer*92+ (omeganew+30);

if filenr < 10
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_ 4d000'...
num2str (filenr) '.edf'];
elseif filenr < 100
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_ 4d00"...

num2str (filenr) '.edf'];
elseif filenr < 1000
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA 4d0'...
num2str (filenr) '.edf'];
else
filename = ['E:\Data\FelC3MnA_4d\FelC3MnA_4d'...
num2str (filenr) '.edf'];

end
Image = double(readfrelon2k(filename));
$From the localizing of the peaks, earlier, it is known that file
23141 has dimensions 2047x2048 instead of 2048x2048; in this case,
%an extra row of background intensity is added.
if size(Image) == [2047 2048]
Addition = double(1000*ones(1,2048));
Image = [Image;Addition];
elseif size(Image) == [2048 2048]
else
error ('Error: unexpected dimensions for diffraction image')
end
Image_corxr = Image-DarkCurrent;

for m = rowmin2:rowmax?2
for n = columnmin?2:columnmaxz?

PixelPos = sqgrt ((n—-ColumnBC) "2+ (m~RowBC)"2);

PixelPos = round(PixelPos);
if omeganew == omegamin2 || omeganew == omegamax2
k = k+1;

If

Shell2(k, 1) PixelPos;
Shell2 (k, 2) Image_corr (m,n);
Shell2(k,3) = Image(m,n);

elseif omeganew == omegaminl || omeganew == omegamaxl
if m == rowmin2 || m == rowmax2 ||...
n == columnmin2 || n == columnmax2
k = k+1;

Shell2(k,1) = PixelPos;

89

180

190

200

210

220

230

Chapter 8: MATLAB code

Shell2(k,2) = Image_corr(m,n);
Shell2(k,3) = Image(m,n);

else
j o= 3+1;
Shelll(j,1l) = PixelPos;
Shelll(j,2) = Image_corr(m,n);
Shelll(j,3) = Image(m,n);

end

else
if m == rowmin2 || m == rowmax2 ||...
n == columnmin? || == columnmax?2

k = k+1;
Shell2(k,1) = PixelPos;
Shell2 (k,2) = Image_corr(m,n);
Shell2(k,3) = Image{m,n);

elseif m == rowminl || m == rowmaxl ||[...

n == columnminl || n == columnmaxl

j o= J+1i
Shelll(j,1) = PixelPos;
Shelll(j,2) = Image_corr(m,n);
Shelll(j,3) = Image(m,n);

else
r = r+l;
Box0(r,1) = PixelPos;
Box0(r,2) = Image_corr(m,n);
Box0(r,3) = Image(m,n);

end
end
end
end
end

%Also save the row and column coordinates and the
somega value, to later determine the center of
$gravity of the peak

Box0(r,4) = m;
Box0(r,5) = n;
Box0(r,6) = omeganew;

$For the peak box, Shelll and Shell2, average the intensities of pixels
%with the same radius from the beam center.

Shelllmin = min(Shelll(:,1));
Shelllmax = max(Shelll(:,1));
Difl = Shelllmax-Shelllmin;

for 1 = 0:Dif1l
PixelPosRef
SumIntl = 0;
Countl = 0;
SumOrigIntl
for p = 1:7

I

i

0;

Shelllmin+i;

PixelPos = Shelll(p,1);

if PixelPos

Countl =

SumIntl

== PixelPosRef
Countl+1l;
= SumIntl1l+Shelll(p,2);

SumOrigIntl = SumOrigIntl+Shelll(p,3);

end
end
Shellldef (i+1,1)
Shellldef (i+1,2)
Shellldef (i+1,3)

PixelPosRef;
SumIntl;
Countl;

il

1

I

90

240

250

260

270

280

290

Chapter 8: MATLAB code

Shellldef (i+1, 4)
Shellldef (i+1,5)
end

SumIntl/Countl;
SumOrigIntl/Countl;

Shell2min = min(Shell2(:,1));
Shell2max = max(Shell2(:,1));
Dif2 = Shell2max-Shell2min;

for i = 0:Dif2
PixelPosRef
SumInt2 = 0;
Count2 = 0;
SumOrigInt2 = 0;
for p = 1:k
PixelPos = Shell2(p,1);
if PixelPos == PixelPosRef
Count2 = Count2+1;
SumInt?2 = SumInt2+Shell2(p,2);
SumOrigInt2 = SumOrigInt2+Shell2(p,3};
end
end
Shell2def (i+1,1) = PixelPosRef;

ShellZ2min+i;

It

|

Shell2def (i+1,2) = SumInt2;

Shell2def (i+1,3) = Count2;

Shell2def (i+1,4) = SumInt2/Count2;
Shell2def (i+1,5) = SumOrigInt2/Count2;

end
BoxOmin = min{(Box0(:,1));
Box0Omax = max{Box0(:,1));

Dif0 = BoxOmax-BoxOmin;

for 4 = 0:Dif0

PixelPosRef = BoxOmin+i;
SumInt0 = 0;

Count0 = 0;

SumOrigInt0 = 0;

for p = 1l:r
PixelPos = BoxO(p,1);
if PixelPos == PixelPosRef
Count0 = Count0+1;
SumInt0 = SumInt0+Box0(p,2);
SumOrigInt0 = SumOrigInt0+Box0(p,3);
end
end
Box0Odef (i+1,1) = PixelPosRef;

BoxOdef (i+1,2) = SumIntO;

Box0def (i+1,3) = CountO;

BoxOdef (i+1,4) = SumInt0/CountO;
Box0Odef (i+1,5) = SumOrigInt0/CountO;

end
$For each entry in Shelll, check if the corresponding average
%is approximately equal to the average intensity in Shell2

Scorresponding to the same distance from the beam center.

[length_shellldef width_shellldef] = size(Shellldef);

for 1 = 1l:length_shellldef

intensity

91

300

310

320

330

340

350

Chapter 8: MATLAB code

PixelPosl Shellldef (i, 1);
PixelPos2 = Shell2def(j,1);
while PixelPosl ~= PixelPos2
J o= J+L;
PixelPos2 = Shell2def(j,1);
end
I1 = Shellldef(i, 4);
I1_orig = Shellldef (i, 5);
I2 = Shell2def(3j,4);
I2_orig = Shell2def (j,5);
Countl = Shellldef (i, 3);
Count2 = Shell2def (], 3);

criterion = sqrt(Il_orig)/sqrt(Countl)+sqrt(I2_orig)/sqrt(Count2);
$This is the criterion that determines whether or not the
$average intensities in Shelll and Shell2 differ significantly;
%this value corresponds to two standard deviations

if T1-I2 > criterion %Shelll contains intensity from the peak in
%Box0

deltarow = deltarow+l;

deltacolumn = deltacolumn+l;

if file38_ flag == 0
deltaomega = deltaomega+l;
if deltaomega > 2

deltaomega = 2; %deltaomega > 2 is highly unlikely

end

end

box_too_small = box_too_small+l;

if box_too_small > 20
$No correct box size can be defined, because the algorithm
Skeeps increasing the box size 'indefinitely'

message = ['No correct box size can be defined for the '
'peak at stripe ' num2str(stripe) ', layer ‘...
num2str (layer) ', omega ' num2str(omega) ', row '
num2str (row) ', column ' num2str (column)];

%$disp(message)

error_indicator = 1;

end
break %$The for-loop is ended
elseif I2-I1 > criterion %Shell2 contains intensity from a
$neighbouring peak

deltarow = deltarow-1;

deltacolumn = deltacolumn-1;

deltaomega = deltaomega-1;

if deltarow < 1 && deltacolumn < 1 && deltaomega < 1
message = ['The peak at stripe '’ num2str (stripe)...

', layer ' num2str(layer) ', omega ' num2str(omega)...
', row ' num2str(row) ', column ' num2str(column)...

' cannot be used due to overlap from a neighbouring'...
' peak'];

$disp{(message)

error_indicator = 1;

break

else

if deltarow < 1
deltarow = 1;

end

if deltacolumn < 1
deltacolumn = 1;

92

360

370

380

390

400

410

420

Chapter 3: MATLAB code

end

end
if deltaomega < 1
deltaomega = 1;
end
end
box_too_large = box_too_large+l;
break %$The for-loop is ended

else $For this specific distance to beam center R, Box0 is defined

$correctly

if i == length_shellldef
box_too_large = 0;
box_too_small = 0;
end

end

if box_too_large > 1 && box_too_small > 1

SNo correct box size can be defined, because the algorithm
%oscillates between either increasing or decreasing the box

message = ['No correct box size can be defined for the peak at
"stripe ' num2str(stripe) ', layer ' num2str{layer)...
', omega ' numZ2str(omega) ', row ' num2str (row) ', column

num2str {column)];
%disp (message)

error_indicator = 1;
end
end
if error_indicator == 1
Total_Intensity = [];
return
end

$Now that the box is defined correctly, compute total peak intensity

rowsize_peak = 2*deltarow-1;
columnsize_peak = 2*deltacolumn-1;
omegasize peak = 2*deltaomega-1;

[length_box0Odef width_box0def] = size(Box0def);

s = 1;

Total_Peak_Intensity = 0;
NO = sum(BoxOdef (:,3));

for r =

1:1length_box0def

Pos_Box0def = Box0def(r,1);
Pos_Shellldef = Shellldef(s,1);
while Pos_Box0Odef ~= Pos_Shellldef

end

s = s+1;
Pos_Shellldef = Shellldef(s,1);

Total Peak_Intensity = Total Peak_ Intensity+(BoxOdef(r,2}-...

end

Box0def (r,3) .*Shellldef (s, 4));

Total_Peak_ Intensity;

$Compute the center of gravity of the peak

$First,

sort Box0 on the basis of distance from beam center R

1

T

93

430

440

450

460

470

480

Chapter 3: MATLAB code

Box0_Sorted = sortrows (Box0,1);

$Then, subtract the non-electronic background from each pixel intensity

[length_box0 width_box0] = size(Box0);
s = 1;

for r = 1l:length_box0
Pos_Box0 = Box0_Sorted(r,1);
Pos_Shellldef = Shellldef(s,1);
while Pos_Box0 ~= Pos_Shellldef

s = s+l;
Pos_Shellldef = Shellldef(s,1);
end
Box0_Sorted(r,2) = Box0_Sorted(r,2)-Shellldef(s,4);

end

$Now weigh m, n and omega for each entry in Box0_Sorted using the
$intensities as weights, resulting in the position of the center of gravity
%o0f the peak in terms of m, n and omega

Row_CoG = 0;

Column_CoG = 0;

Omega_CoG = 0;

Peak_Intensity = sum(Box0_Sorted(:,2)); %By definition equal to

$Total_Peak_Intensity

for r = l:length_box0
Row_CoG = Row_CoG+Box0_Sorted(r,2).*Box0_Sorted(xr,4);
Column_CoG = Column_CoG+Box0_Sorted(r, 2).*Box0_Sorted(r,5);
Omega_CoG = Omega_CoG+Box0_Sorted(r, 2) .*Box0_Sorted(r,6);

end

Row_CoG = Row_CoG./Peak_Intensity;

Column_CoG = Column_CoG./Peak_Intensity;

Omega_CoG = Omega_CoG./Peak_Intensity;

$The Center of Gravity of the peak has now been computed without any
scorrection for the spatial distortion having been applied. This correction
%$is now applied to the CoG coordinates. Non-integer coordinates are treated
$by applying a linear interpolation to the coordinate between the two
$neighbouring integers.

$Note: a test of the impact of applying the spatial distortion correction
2after the computation of the Center of Gravity instead of before (which
gswould strictly be preferable) showed that this impact is negliglible (less
%than 0.05 pixel).

Row_floor = floor (Row_CoG);

Row_ceil = ceil (Row_CoG);

Column_floor = floor (Column_CoG);

Column_ceil = ceil (Column_CoG);

rff SDMatrix (({Row_floor-m_min)* (n_max-n_min+1)+...
Column_floor—-n_min+1l)),5);

rcf SDMatrix (((Row_ceil-m_min)* (n_max-n_min+1l)+...
Column_floor-n_min+1)),5);

rfc SDMatrix (((Row_floor-m_min)* (n_max-n_min+1)+...

SDMatrix (((Row_ceil-m_min) * (n_max—-n_min+1l)+.,
Column_ceil-n_min+1)),5);

SDMatrix (((Row_floor-m_min)*(n_max-n_min+l)+...
Column_ floor-n_min+1)),6);

SDMatrix (((Row_ceil-m_min)* (n_max-n_min+l)+...

rcc

(
(
(Column_ceil-n_min+1)),5);
(

cff =

(

cct

94

490

500

510

520

Chapter 3: MATLAB code

Column_floor-n_min+1l)),6);
SDMatrix({ (Row_floor-m_min)* {(n_max-n_min+l)+...

(
cfc =
(Column_ceil-n_min+l)),6);

ccc SDMatrix (((Row_ceil-m_min)* (n_max-n_min+l)+...
(Column_ceil-n_min+1)),6);
Row_CoG_corr = (rcf-rff)* (Row_CoG-Row_floor)+(rfc-rff)*...

(Column_CoG—Column_floor)+(rcc+rff—rcf-rfc)*(RowﬁCoG—Row_floor)*...
(Column_CoG-Column_floor)+rff;

Column_CoG_corr = {(ccf-cff)* (Row_CoG-Row_floor)+(cfc—cff)*...
(Column_CoG—Column_floor)+(ccc+cff—ccf—cfc)*(RowaoG—Rowaloor)*...
(Column_CoG—-Column_floor) +cff;

R_CoG = sqgrt ((Column_CoG_corr-ColumnBC_corr)"2+. ..
(Row_CoG_corr—RowBC_corr)"2);

TwoTheta CoG = (180/pi)*atan2(R_CoG,Lsd_Pixels);

Eta CoG = (180/pi)*atan2(Column_CoG_corr-ColumnBC_corr,RowBC_corr-...
Row_CoG_corr) ;

if Eta_CoG < 0
Eta CoG = Eta_CoG+360;

end

s0Output

Row_CoG _corr; $%$Row position of peak, center-of-gravity basis
Column_CoG_corr; %Column position of peak, center-of-gravity basis
Omega_CoG; %Omega position of peak, center-of-gravity basis

Total Peak_Intensity; %Total corrected intensity from peak

NO; %$Total number of pixels attributed to the peak

b0 = BoxOdef; $Positions and average intensities of pixels in BoxO

bl = Shellldef; %Positions and average intensities of pixels in Shelll

b2 = Shell2def; $Positions and average intensities of pixels in Shell2
Total_ Intensity = [stripe layer omega Omega_CoG ringnumber Row_CoG_corr...

Column_CoG_corr R_CoG TwoTheta_CoG Eta_CoG Total Peak_Intensity...
rowsize_peak columnsize_peak omegasize_ peak NOI;

O o e

]

2End of: ShellCheck_ _4d.m

O e

]

95

10

20

30

40

50

Chapter 3: MATLAB code

3.12. ArrangeSpots.m

$Start of: ArrangeSpots.m

%Program that arranges spots coming from different parts of the same grain
$together. Since expected grain size is several times larger than the size
%of the beam, it is expected that many grains will, for a certain value of
Somega, produce a reflection at multiple slit setttings, as different parts
$0f the grain are illuminated when the sample is translated.

o op

TvdZ. Last edits: February 2007,
function [M,N] = ArrangeSpots (spotlist,startnr,endnr);

$Input arguments:

%spotlist = location of file (or name of matrix) containing the spots
$startnr = first spot to include in analysis
$endnr = last spot to include in analysis

Output arguments:

= matrix containing the spots from spotlist, with spots from different
parts of the same grain grouped together. All groups of spots are
nunbered. Length is equal to that of spotlist; width is that of spotlist
plus 1 (column 1, containing the numbering)

N = matrix containing, for each group of spots, the center of mass
coordinates and the total integrated intensity

dP o o o o
=

o o o

spDefine the tolerance for the deviation in spot location between different
$layers

tol = 5;

RowBC = 1038;
ColumnBC = 981;

RowBC_corr = 1038.52; %From file containing the spatial distortions
ColumnBC_corr = 981.37; %$From file containing the spatial distortions
PixelSize = 47.4; %micrometer

Lsd = 241; %millimeter
Lsd Pixels = Lsd*1000/PixelSize; %i#pixels
layerwidth = 15; %microns

$After opening matrix A containing the information on the spots, refine
sstartnr and endnr in such a way that the submatrix A(startnr:endnr, :)
2contains either all or none of the spots for each combination of a certain
fomega and ring number.

$The structure of matrix A will be: A = [stripe layer omega Omega_CoG...
$ringnumber Row_CoG Column_CoG R _CoG TwoTheta_CoG Eta_CoG...
2Total Peak Intensity rowsize_peak columnsize_peak omegasize_peak NOJ;
SFurthermore, A is ordered in ascending order based on the columns (from

gmost to least important): ring number - round(omega CoG) - row_CoG -
%column_CoG - stripe - layer

$A = dlmread(spotlist, "\t');
A = spotlist;

96

60

70

80

90

100

110

Chapter 3: MATLAB code

[length_spotlist width_spotlist] = size(A);
A(:,width_spotlist+l) = round(A(:,4));

A = sortrows(A, [5, (width_spotlist+l),6,7,1,2]);
A = A(:,1:width_spotlist);

while (startnr ~= 1) && (A(startnr,3) == A(startnr-1,3)) &&...
(A(startnr,5) == A(startnr-1,5))
startnr = startnr-1;
end

if endnr > length_ spotlist
endnr = length_spotlist;

else
while {(endnr ~= length_spotlist) && (A(endnr,3) == A{endnr+l,3)) &&...
(A(endnr,5) == A(endnr+l,5)})
endnr = endnr+i;
end
end
A = A(startnr:endnr, :);
[length_A width Al = size(A);
add = zeros{length_A,1l);
A = [add,A]; %This first row will be used for ticking off the spots
nr_start = 1;
reflnumber = 0;
M= [];
N = [];
ncount = 0;
while nr_start <= length_A
if A(nr_start,1l) == %The spot has already been grouped
nr_start = nr_start+l;
continue
else
[length_M width M] = size(M);
ncount = ncount+1;
GR = []; %This matrix will be filled with the spots grouped
%$together
layer = A{nr_start,3);
omega = round(A(nr_start,5));
ring_number = A{(nr_start,6);
row = A{nr_start,7);
column = A(nr_start,8);
nr_end = nr_start;
while (round(A(nr_end,5)) == omega) &&...
(A(nr_end, 6) == ring_number) && (abs(A(nr_end,7)-row) <= 2*tol)

%sTwice the tolerance level, because since the matrix is

$sorted in ascending order based on the row index,

'row'

$will always be the minimum value, and therefore allowing
$for a variation of 'tol' from the center of the spot in

¢BOTH direction requires setting the limit to 2*tol
nr_end = nr_end+l;
if nr_end == length_A+l
break
end
end
nr_end = nr_end-1;

97

120

130

140

150

160

170

Chapter 3: MATLAB code

o

$Find all spots Lhat appear to belong to the same grain as the spot
%at nr_start

j o= 0;
for i = nr_start:nr_end
if (abs(A(i,8)-column) <= tol) && (A(i,1) == 0)
j o= j+1;
GR(J,:) = A(i,:);
A(i,1) = 1; %Ticking off this specific spot
end
end

GR = sortrows(GR, [2,3,7,81);

%We now have a matrix GR containing j spots (all with the same ring
%and omega value) that all fall on approximately the same

2location on the detector. Hence, these spots most likely originate
%from the same grain. The matrix is sorted in ascending

sorder on the basis of (in order of importance): stripe - layer -
Srow - column (though row and column sorting should not have any
%effect in this case).

o

o°

Now we test whether the spots in GR form a complete set (i.e.,
swhether there are no spots 'missing' for certain stripe or layer
svalues). If this is the case, the spots in GR all belong to the
%same grain, and they are all numbered equally. If not, it could be
%GR contains spots from multiple grain; therefore, the subsets are
snumbered differently. However, by numbering the spots using non-—
Sinteger numbers (e.g. 2.01, 2.02, 2.03 etc.) it it still clear
sthat although strictly these have to be identified as different
$grains, it could still be the case that in reality they do
Soriginate from one and the same grain - especially if there are
sonly 1 or 2 spots missing

reflnumber = reflnumber+l;

if §j == 1 %GR contains only a single spot
nr_stripes = 1;
stripel = GR(1,2);
stripe2 = [];

stripe3 = [1;
GR(1,1) = reflnumber;
elseif GR(3,2) == GR(1,2) %All spots come from the same stripe
nr_stripes = 1;
stripel = GR(1,2);
stripe2 = [];

stripe3 = [];
if (GR(j,3)-GR(1,3)+1) > j %There is at least one spot missing
reflnumber = reflnumber+0.01; %So non-integer numbering
%is used
for i = 1:(j-1)
GR(i,1) = reflnumber;
if GR(i,3) ~= GR(i+1,3)-1 %There is (at least) one spot
gmissing
reflnumber = reflnumber+0.01;
end
end

98

180

190

200

210

220

230

Chapter 8: MATLAB code

GR(3,1)
reflnumber =

= reflnumber;
floor (reflnumber) ;

else %No spots are missing

GR(:,1) = reflnumber;
end
elseif GR(j,2)-GR(1,2) == 1 %The spots come from exactly 2 stripes
nr_stripes = 2;
stripel = GR(1,2);
stripe2 = GR(j,2);
stripe3 = [];
if (== 2% (max(GR(:,3))-min(GR(:,3))+1)) |I...
(j == 2*(max{GR(:,3))-min(GR(:,3))+1)-1)

$No more than one spot is missing; it follows that the
gspots form a single connected group in (stripe, layer)-—

else

$space, and therefore come from one grain
GR(:,1) = reflnumber;
k1 = 0; %The number of spots in stripel
while GR(k1+1,2) == stripel

k1l = kl+1;
end
k2 = j-k1; %The number of spots in stripe2

$Number the groups of spots in the two stripes separately
%(i.e. ignoring the other stripe for now)

reflnumber = reflnumber+0.01;
nrl = 1; %The number of distinct spot groups in the first
%stripe
if k1 == 1;
GR(1,1) = reflnumber;
else
for i = 1:(k1l-1)
GR(i,1) = reflnumber;
if GR(1i,3) ~= GR(i+1,3)-1 %There is (at least) one
%spot missing
reflnumber = reflnumber+0.01;
nrl = nrl+l;
end
end
GR(k1l,1) = reflnumber;
end
reflnumber = reflnumber+0.01;
nr2 = 1; %The number of distinct spot groups in the second

$stripe
nr2ind(1,1) = kl+1;
%$starts of the new groups

%Vector containing the locations of the

if k2 == 1;
GR(j,1) = reflnumber;
else
for 1 = (k1+1):(3-1)
GR(i,1) = reflnumber;
if GR(i,3) ~= GR(i+1,3)-1 %There is (at least) one
$spot missing
reflnumber = reflnumber+0.01;
nr2 = nr2+l;
nr2ind(nr2,1) = i+1;
end
end
GR(j,1) = reflnumber;
end
GRstrl = size =

GR((1:k1),:); %The spots in stripel;
[kl width_A]

2
©

99

Chapter 3: MATLAB code

GRstr2 = GR((k1+1:3),:); %The spots in stripeZ; size =
% k2 width_A]
240 %$The groups of spots in each stripe are numbered while
$ignoring the other stripe. However, groups that appear
¢distinct in one stripe can be connected by a third group

%in the other stripe, thus forming one large group

Srepresenting a single grain. This complication is dealt

Swith in the following.
GRstrllay GRstrl(:,3);

GRstr2lay = GRstr2(:,3);
nr2ind = nr2ind-kl; %Vector nr2ind, of length nr2, now

il

$srefers to GRstr2 and GRstr2lay instead of to GR
250 nr2ind(nr2+1,1) = k2+1;
for groupnr = l:nr2 $%Looping over all spot groups in the
%second stripe
indl = [1;
for il = nr2ind(groupnr): (nr2ind(groupnr+1)-1)
$Looping over all spots in a group
str2lay = GRstr2lay(il);
%Find the layer of the spot in question
indl = find(GRstrllay == str2lay);
$Does this layer match the layer of one of
$the spots in the first stripe?

260
1f isempty(indl) == 0
$If so, the entire group is renumbered to
gmatch the number of the group in the first
$stripe
numindl = GRstrl (indi (1),1);
GRstr2 (nr2ind(groupnr) :
(nr2ind{(groupnr+l)-1),1) = numindl;
ind2 = [];
if i1 ~= nr2ind(groupnr+l)-1
270 for 12 = (i1+41):nr2ind(groupnr+1)-1
str2lay = GRstr2lay(i2);
ind2 = find(GRstrllay == strZlay);
%Check 1f the group in stripez
$connects to even more groups in
$stripel
if isempty(ind2) == 0
$If so, these other groups are also
¢renumbered to match the first
sgroup
280 numind?2 = GRstrl (ind2(1),1);
if numindl ~= numind2
for i3 = ind2(1l):k1
if GRstrl(i3, 1) == numind2
GRstr1(i3, 1) = numindl;
end
end
end
ind2 = [];
end
290 end

end
break %A match with stripel is found, so the

%loop over il is terminated
end
end

end
%A1l spots in the two layers have been numbered. However,

%due to the renumbering process it 1s possible the numbers

100

300

310

320

330

340

350

Chapter 3: MATLAB code

$no longer form an equidistant set (e.g. 2.01, 2.02, 2.04,
%2.05 and 2.07 instead of 2.01 through 2.05). So, an extra
$renumbering step is required.
GR({(1:k1),:) = GRstrl;
GR((k1l+1:7),:) = GRstr2;
R = sortrows(GR, [1,2,3,7,8]);
Sort on the basis of reflnumber (then stripe, layer, row,
Scolumn)
for i = 1:(j-1)
diff = round(100* (GR(i+1,1)-GR(i,1)));
switch diff
case 0 %Spots i and (i+l) belong to the same group,
%$so no renumbering required

Q

oe

continue
case 1 %Spots i and (i+l) belong to subsequent
Sgroups, so no renumpering required
continue
otherwise %Spots 1 and (i+1) belong to different
$groups; renumbering required
GR((i+1):3,1) = GR{(i+1):3,1)—-(diff/100-0.01);

end
end
reflnumber = floor (reflnumber);
end
else %The spots come from three (or only the two outer) stripes
nr_stripes = 3;
stripel = 0O;
stripe2 = 1;
stripe3d = 2;
if (§ == 3*(max(GR(:,3))-min(GR(:,3))+1)) [I[...
(7 == 3* (max(GR(:,3))-min(GR(:,3))+1)-1) [1]...
(§ == 3*(max(GR(:,3))-min(GR(:,3))+1)-2)

$No more than two spots are missing; it follows that the
$spots form a single connected group in (stripe, layer)-
$space, and therefore come from one grain

GR(:,1) = reflnumber;

else
nr2ind = []; %Vector containing the locations of the starts
%of the groups in stripe?2
nr3ind = []; %Vector containing the locations of the starts

%$of the groups in stripe3
k1 = 0; %The number of spots in the first stripe

while GR(k1+1l,2) == stripel
ki = kl+1;
end
k2 = 0; %The number of spots in the second stripe
while GR(k1+k2+1,2) == stripe?2
k2 = k2+1;
end

k3 = j-k1-k2; %The number of spots in the third stripe
$Number the groups of spots in the three stripes separately
%(i.e. ignoring the other stripes for now)

reflnumber = reflnumber+0.01;

nrl = 1; %The number of distinct spot groups in the first
$stripe
if k1l == 1;

GR(1,1) = reflnumber;
for 1 = 1:(kl-1)

GR(i,1l) = reflnumber;
if GR(i,3) ~= GR(i+1,3)-1 %There is (at least) one

101

360

370

380

390

400

410

420

Chapter 8: MATLAB code

$spot missing
reflnumber = reflnumber+0.01;
nrl = nrl+l;
end
end
GR(k1l,1) = reflnumber;
end
reflnumber = reflnumber+0.01;
nr2 = 1; %The number of distinct spot groups in the second
%$stripe
nr2ind(1,1) = kl+1;
if k2 == 1;
GR(k1+k2,1) = reflnumber;
else
for i = (k1+1):(kl+k2-1)
GR(i,1) = reflnumber;
if GR(i,3) ~= GR(i+1,3)-1 %There is (at least) one
%spot missing
reflnumber = reflnumber+0.01;
nr2 = nr2+l;

nr2ind(nr2,1l) = i+1;
end
end
GR(k1+k2,1) = reflnumber;
end
reflnumber = reflnumber+0.01;
nr3 = 1; %$The number of distinct spot groups in the third
$stripe
nr3ind(1,1) = k1+k2+1;
if k2 == 1;
GR(j,1) = reflnumber;
else
for 1 = (kl+k2+1):(kl+k2+k3-1)
GR(i,1) = reflnumber;
if GR(i,3) ~= GR(i+1,3)-1 %There is (at least) one
$spot missing
reflnumber = reflnumber+0.01;
nr3 = nr3+1;
nr3ind(nr3,1) = i+1;
end
end
GR(j,1) = reflnumber;
end
GRstrl = GR((1l:k1l),:); %The spots in stripel; size =
%[kl width_A]
GRstr2 = GR{(kl+1:k1+k2),:); %The spots in stripe2; size =
$[k2 width_A]
GRstr3 = GR((k1l+k2+1:3),:); %The spots in stripe3; size =

%$[k3 width A]

%The groups of spots in each stripe are numbered while
$ignoring the other stripes. However, groups that appear
sdistinct in one stripe can be connected by a third group
%in another stripe, thus forming one large group
srepresenting a single grain. This complication is dealt
%with in the following.
GRstrllay = GRstrl(:,3);
GRstr2lay GRstr2(:,3);
GRstr3lay = GRstr3(:,3);
nr2ind = nr2ind-kl; $%$Vector nr2ind, of length nr2Z, now

$refers to GRstr2 and GRstr2lay instead of to GR
nr2ind(nr2+1,1) = k2+1;

It

102

Chapter 3: MATLAB code

nr3ind = nr3ind-kl-k2; %Vector nr3ind, of length nr3, now
$refers to GRstr3 and GRstr3lay instead of to GR
nr3ind (nr3+1,1) = k3+1;
$We first check whether any of the spot groups in the third
$stripe link up to groups in the second stripe.
for groupnr = l:nr3 %Looping over all spot groups in the
$third stripe

indl = [];
for 11 = nr3ind(groupnr): {(nr3ind(groupnr+l)-1)
430 sLooping over all spots in a group

str3lay = GRstr3lay(il);
%Find the layer of the spot in question
indl = find(GRstr2lay == str3lay);
$Does this layer match with the layer of one of
%the spots in the second stripe?
if isempty(indl) ==
$If so, the entire group 1s renumbered to match
%the number of the group in the second stripe
numindl = GRstr2(indl(1),1);
440 GRstr3 (nr3ind (groupnr) :...
(nr3ind(groupnr+1)-1),1) = numindl;
ind2 = [1];
if il ~= nr3ind(groupnr+l)-1
for 12 = (il+1) :nr3ind(groupnr+l)-1
str3lay = GRstr3lay(i2);
ind2 = find(GRstr2lay == str3lay);
%Check if the group in stripe3
$connects to even more groups in
$stripe2
450 if isempty(ind2) ==
$If so, these other groups are also
$renumbered to match the first
Fgroup
numind2 = GRstr2(ind2(1),1);
if numindl ~= numind2
for 13 = ind2(1) :k2

if GRstr2(i3,1) == numind2
GRstr2(i3,1) = numindl;
end
460 end
end
ind2 = [];
end
end
end

break %A match with stripe2 is found, so the
$loop over il is terminated

470 end
%We then check for links between groups in the second and
$first stripe
for groupnr = 1l:nr2 $Looping over all spot groups in the
$second stripe
indl = [];
for i1 = nr2ind(groupnr): (nr2ind(groupnr+l)-1)
$Looping over all spots in a group
str2lay = GRstr2lay(il);
$Find the layer of the spot in question
480 indl = find(GRstrllay == str2lay);
%Does this layer match with the layer of one of

103

490

500

510

520

530

540

Chapter 8: MATLAB code

%the spots in the first stripe?
if isempty(indl) ==

%1f so, the entire group is renumbered to match

%the number of the group in the first stripe

numindl = GRstrl{indl(1),1);

if str2lay > numindl

for i3 = 1:k2
if GRstr2(i3,1) == str2lay

GRstr2(i3,1) = numindl;
%Rename the part of the group in
$stripe’

end
end
for 14 = 1:k3
if GRstr3(id4,1) == str2lay
GRstr3(i4,1) = numindl;
%$And rename the part of the group
%in stripe3, if any
end
end
ind2 = [1];

if il ~= nr2ind(groupnr+1)-1
for 12 = (il+1):nr2ind(groupnr+l)-1
str2lay = GRstr2lay(i2);
ind2 = find(GRstrllay == str2lay);
%Check if the group in stripe?2
%connects to even more groups
%$in stripel
if isempty(ind2) ==
$If so, these other groups are
$also renumbered to match the
$first group
numind2 = GRstrl (ind2(1),1);
if numindl ~= numind2
for 13 = ind2(1l) :kl
if GRstrl(i3,1) ==...
numind2
GRstrl (i3,1) =...
numindl;
end
end
end
ind2 = [];
end
end

for 13 = 1:k1
if GRstrl(i3,1) == numindl
GRstr(i3,1) = str2lay;
end
end
end
break %A match with stripel is found, so the
%loop over il is terminated
end
end
end
GR((1:k1),:) = GRstrl;
GR({(k1l+1:k1+k2),:) = GRstr2;
GR((k1+k2+1:9),:) = GRstr3;

104

Chapter 8: MATLAB code

GR = sortrows(GR, [1,2,3,7,8]1);
2Sort on the basis of reflnumber (then stripe, layer, row,
Scolumn)
for i = 1:(j-1)
diff = round(100* (GR(i+1,1)-GR(i,1)}));
switch diff
case 0 %Spots 1 and (i+1) belong to the same group,
550 %so no renumbering required
continue
case 1 %Spots i and (i+l) belong to subsequent
%groups, so no renumbering required
continue
otherwise %Spots i and (i+1) belong to different
Sgroups - renumbering required
GR((i+1):3j,1) = GR((i+1):3,1)-(diff/100-0.01);
end
end
560 reflnumber = floor (reflnumber);
end
end

M((length_M+1:length_M+3j),:) = GR;
nr_start = nr_start+l;

570
nr_groups = round(((GR(J,1)-GR(1,1))/0.01)+1);
for grp = l:nr_groups
[length_N width_N] = size(N);
if grp == 1
indl = 1; %First entry belonging to this group of spots
ind2 = 1; %$First entry belonging to the next group of spots
%(to be refined)
end
indl = ind2;
580 if grp == nr_groups
ind2 = j+1;
else
while (GR(ind2,1) == GR(indl, 1))
ind2 = ind2+1;
end
end
Int_total = 0;
stripe_CoM = 0;
layer CoM =
590 omega_CoM =
row_CoM = 0;
column_CoM
NRofPixels

0;
0;

I~

0;
0;

I

if GR(indl,2) == GR{ind2-1,2)
%A1l spots in the group lie within the same stripe
L = []; $Matrix that will be filled with the starting and
$finishing coordinates of all layers in the group
= indl: (ind2-1)
600 if 1 == indl
11 0; %Left border of layer GR(i,:)
12 = 15; %Right border of layer GR(i,:)

I
o)
[
}_x

It

N

elise

105

610

620

630

640

650

660

Chapter 3: MATLAB code

for i2 = (layerprev+l):GR(i,3)
reml = rem(iZ2,5);
if (reml == 0) || (reml == 1) || (reml == 3)
%The next layer is shifted 5 mu
11 = 11+45;
12 = 12+5;
else

%The next layer is shifted 7.5 mu
11 = 11+7.5;
12 = 12+7.5;
end
end
end
layerprev = GR(i,3);
L{(i-ind1+1,1) = 11;
L(i-ind1+1,2) 12;
L{i-ind1+1,3) = GR{(i,12);
%Now compute weighted coordinates
omega_CoM = omega_CoM+GR(i,5)*GR(i,12)};
row_CoM = row_CoM+GR (i, 7)*GR(i,12);
column_CoM = column_CoM+GR(1i,8)*GR(1,12);
NRofPixels = NRofPixels+GR(1,16);
end
Raw_Int = sum(GR{indl: (ind2-1),12));
omega_CoM = omega_CoM/Raw_Int;
row_CoM = row_CoM/Raw_Int;
column_CoM = column_CoM/Raw_Int;
R_CoM = sqrt((row_CoM-RowBC_corr)"2+...
(column_CoM-ColumnBC_corr)*2);
TwoTheta_CoM = (180/pi)*atan2(R_CoM,Lsd_Pixels);
Eta_CoM = (180/pi)*atan2(column_CoM-ColumnBC_corr, ...
RowBC_corr-row_CoM) ;
if Bta_CoM < O
Eta_CoM = Eta_CoM+360;

end

$Because of the overlap of the individual layers, the
%resolution in the layer dimension becomes larger than the
%layer width. Therefore the Center of Mass layer coordinate
2is recomputed using refined intensities as weighting
$factors.
stepnr = L(ind2-indl1,2)/2.5;

$Width of the layer region (# of 2.5 micron steps)
Int_corr = zeros{(stepnr,2);

gMatrix that will be filled with the corrected

2intensities of all of the 2.5 micron steps

for 1 = 1l:stepnr
13 = (i-1)*2.5;
Int_corr(i,l) = 13;
divider = 0;
for ind3 = 1:(ind2-indl) %Loop over matrix L
if (13 >= L(ind3,1)) && (13 < L{ind3,2))
Int_corr(i,2) = Int_corr(i,2)+L(ind3,3);

divider = divider+l;
elseif 13 < L{ind3,1)

break
end
end
if divider ~= 0
Int_corr(i,2) = Int_corr(i,2)*(2.5/15)/divider;
end

106

670

680

690

700

710

720

Chapter 3: MATLAB code

end

Int_corr_save = ones{(stepnr,3);

Int_corr_save(:,1l) = GR(indl,2)*Int_corr_save(:,1l);
Int_corr save(:,2:3) = Int_corr(:,:);

if nr_groups > 1
if reflnumber < 10

reflnrstring = ['000' num2str(reflnumber) '.0'...

num2str (grp) };
elseif reflnumber < 100
reflnrstring = ['00' num2str(reflnumber) '.0'...
num2str (grp)];
elseif reflnumber < 1000
reflnrstring = ['0' num2str(reflnumber) '.0"...
num2str (grp)];

else
reflnrstring = [num2str(reflnumber) '.0'...
num2str (grp) 1;
end
else
if reflnumber < 10
reflnrstring = ['000' num2str (reflnumber)];
elseif reflnumber < 100
reflnrstring = ['00' num2str (reflnumber)];
elseif reflnumber < 1000
reflnrstring = ['0' num2str(reflnumber)];
else
reflnrstring = [num2str (reflnumber)];
end
end
writestring = ['dlmwrite(''E:\4d_4de_ Analysis\dd_'...
"Intensity_Profiles\grain' reflnrstring '.txt'','..
"Int_corr_save, ''delimiter'', "'\t'"', "'precision'?',
Ill%.2f|f)‘];
eval (writestring);
Int_total = sum(Int_corr(:,2));

$Total grain intensity, corrected for layer overlap
$Now compute the layer_ CoM coordinate, using the refined
%intensities as weights.
layer_ref = sum((Int_corr(:,1)+1.25).*Int_corr(:,2));
layer_ref = layer_ ref/Int_total;
duml = floor(layer_ref/30);
dum2 = rem(layer_ref, 30);
layer_CoM = GR{indl, 3)+5*duml;

%30 microns correspond to 5 layers
while dum2 >= 15

rem2 = rem{layer_CoM, 5);

layer_CoM = layer_ CoM+l;

if (rem2 == 0) || (rem2 == 2) || (rem2 == 4)
dum2 = dum2-5;

else
dum2 = dum2-7.5;

end

end

layer_CoM = layer_CoM+dum2/15;

layer_CoM = layer_ CoM-0.5;
%So that an integer value for layer CoM corresponds
%the middle of the layer instead of the beginning

N(length_N+1,1) = GR(indl,1);
N(length N+1,2) GR(ind1l, 2);
N(length_N+1, 3) layer_CoM;

T

Lo

107

Chapter 3: MATLAB code

N(length N+1,4) = omega_CoM;
N(length_N+1,5) = GR(1,6)};
N(length N+1,6) = row_CoM;
N(length N+1,7) = column_CoM;
730 N(length N+1,8) = R_CoM;
N(length_N+1,9) = TwoTheta_CoM;
N(length N+1,10) = Eta_CoM;
N(length_N+1,11) = NRofPixels;
N(length_N+1,12) = Int_total;
elseif GR(indl,2) == GR(ind2-1,2)-1
%$The spots in the group come from two stripes
L1 = [];%Matrix that will be filled with the starting and
740 $finishing coordinates of all layers of the spots
%in the first stripe of the group
L2 = [];%$Matrix that will bhe filled with the starting and
$finishing coordinates of all layers of the spots
%in the second stripe of the group
indl2 = indl;
while GR(ind12+1,2) == GR{(indl, 2)
indl2 = indl12+1;
end
for i = indl: (indl2)
750 if i == indl
11 = 0; %Left border of layer GR(i,:)
12 = 15; %Right border of layer GR(i,:)
else
for 12 = (layerprev+l):GR(1i, 3)
reml = rem(i2,5);
if (reml == 0) || (reml == 1) || (reml == 3)
%The next layer is shifted 5 mu
11 = 11+5;
12 = 12+5;
760 else
$The next layer is shifted 7.5 mu
11 = 11+47.5;
12 = 12+47.5;
end
end
end
layerprev = GR(i,3);
Ll1(i-ind1+1,1) = 11;
L1(i-ind1+1,2) = 12;
770 L1(i-ind1+1,3) = GR(1i,12);
$Compute weighted coordinates
stripe_CoM = stripe_CoM+GR(1i,2)*GR(i,12);
omega_CoM = omega_CoM+GR(i,5)*GR(i,12);
row_CoM = row_CoM+GR(i,7)*GR(1i,12);
column CoM = column_CoM+GR (i, 8)*GR(i,12);
NRofPixels = NRofPixels+GR(i,16);
end
for i = (indl12+1):(ind2-1)
if 1 == (indl12+1)
780 11 = 0; %$Left border of layer GR(i,:)
12 = 15; %$Right border of layer GR(i,:)
else
for 12 = (layerprev+l):GR(1,3)
reml = rem(iZ2, 5);
if (reml == 0) || (reml == 1) || (reml == 3)

$The next layer is shifted 5 mu

108

Chapter 8: MATLAB code

11 = 11+5;
12 = 12+5;
else
790 $The next layer is shifted 7.5 mu
11 = 11+7.5;
12 = 12+7.5;
end
end
end
layerprev = GR(i,3);
L2(i-ind12,1) = 11;
L2(i-ind12,2) = 12;
L2(i-ind12,3) = GR(i,12);
800 %Compute weighted coordinates

stripe_CoM = stripe_CoM+GR(i, 2)*GR(i,12);
omega_CoM = omega_CoM+GR(i,5)*GR(1,12);
row_CoM = row_CoM+GR (1, 7)*GR(i,12);
column_CoM = column_CoM+GR(i,8)*GR(i,12});
NRofPixels = NRofPixels+GR(i,16);
end
Raw_Int = sum(GR(indl: (ind2-1),12)});
stripe_CoM = stripe_CoM/Raw_Int;
omega_CoM = omega_CoM/Raw_Int;
810 row_CoM = row_CoM/Raw_Int;
column_CoM = column_CoM/Raw_Int;
R_CoM = sqgrt({(row_CoM-RowBC_corr)*2+...
(column_CoM-ColumnBC_corr) "2} ;
TwoTheta_CoM = (180/pi)*atan2(R_CoM,Lsd_Pixels);
Eta_CoM = (180/pi)*atan2(column_CoM-ColumnBC_corr, ...
RowBC_corr-row_CoM) ;
if Eta_CoM < O
Eta_CoM = Eta_CoM+360;

end

820
$Within matrices L1 and L2, columns 1 and 2 (containing the
%left and right border of the slit positions) are defined
Swith respect to the first slit position for which
$intensity is found in that specific stripe. However, we
$want to define them both w.r.t. the SAME first slit
$position, so that later on weighting of the slit position
%$hbased on the intensities can be performed. Hence the
$following:
diff = GR(indl,3)-GR(ind12+1, 3);

830 if diff < 0 %$Starting slit in stripel is smaller than in
$stripe2; redefine L2(:,1:2) to match the
$stripel starting slit

layer_start = GR(indl, 3);
for i = 0:{abs(diff)-1)
reml = rem(GR(indl12+1,3)-1i,5);
if (reml == 0) || (reml == 1) |} (reml == 3)
L2(:,1:2) = L2(:,1:2)+5;
else
L2(:,1:2) = L2(:,1:2)+7.5;
840 end

end
elseif diff > O
%Starting slit in stripe2 is smaller than in stripel
layer_start = GR(indl2+1,3);
for i = 0:(abs(diff)-1)
reml = rem(GR(indl,3)-1i,5);
if (reml == 0) || (reml == 1) || (reml == 3)

109

850

860

870

880

890

900

Chapter 8: MATLAB code

else

end

~

[y

5S]
I

Li(:,1:2)+5;

o
-
—~
-
=
N
-
It

L1(:,1:2)+7.5;
end

%$Both stripes start at the no action
$required

layer_start = GR(ind1l, 3);

same layer;

stepnrl = L1(ind12+1-ind1,2)/2.5;

$Width of the layer region of stripel in 2.5 mu steps

stepnr2 = L2{(ind2-indl12-1,2)/2.5;

Int__

$Width of the layer region of stripe2 in 2.5 mu steps
corrl = zeros(stepnril, 2);

$Matrix that will be filled with the corrected

$intensities of all of the 2.5 micron steps in stripel
Int_corr2 = zeros{stepnr2, 2);
$Matrix that will be filled with the corrected
%$intensities of all of the 2.5 micron steps in stripe2
for i = l:stepnrl
13 = (i-1)*2.5;
Int_corrl(i,1) = 13;
divider = 0;
for ind3 = 1:(indl2+1-indl) %Loop over matrix LI
if (13 >= L1{ind3,1)) && (13 < L1{ind3,2))
Int_corrl(i,2) = Int_corrl{(i,2)+L1{(ind3, 3);
divider = divider+1;
elseif 13 < L1(ind3,1)
break
end
end
if divider ~= 0
Int_corrl(i,2) = Int_corrl(i,2)*(2.5/15)/divider;
end
end
for i = l:stepnr2
13 = (i-1)*2.5;
Int_corr2(i,1l) = 13;
divider = 0;
for ind3 = 1:(ind2-ind12-1) %Loop over matrix L2
if (13 >= L2(ind3,1)) && (13 < L2(ind3,2))
Int_corr2(i,2) = Int_corr2(i,2)+L2(ind3, 3);
divider = divider+1;
elseif 13 < L2(ind3,1)
break
end
end
if divider ~= 0
Int_corr2(i,2) = Int_corr2(i,2)*(2.5/15)/divider;
end
end
Int_corrl_save = ones(stepnrl, 3);
Int_corrl_save(:,1) = GR(indl,2)*Int_corrl_save(:,1);

Int_corrl_save(:,2:3) =

Int_coxrrl(:,:);

Int_corr2_save = ones(stepnr2, 3);

Int_
Int__
Int_
Int_corr_save(l:stepnrl,:) =

corr2_save(:,1l) = GR(ind2-1,2)*Int_corr2_save(:,1);
corr2_save(:,2:3) = Int_corr2(:,:);
corr_save = zeros((stepnrl+stepnr2),3);

Int_corrl_save;

110

910

920

930

940

950

960

Chapter 8: MATLAB code

Int_corr_save(stepnrl+l:stepnrl+stepnr2,:) =...
Int_corr2_save;
if nr_groups > 1
if reflnumber < 10
reflnrstring = ['000' num2str(reflnumber) '.0'...
num2str (grp)];
elseif reflnumber < 100
reflnrstring = ['00' num2str (reflnumber) '.0'...
num2str (grp)];
elseif reflnumber < 1000
reflnrstring = ['0' num2str (reflnumber) '.0'...
num2str (grp)];

else
reflnrstring = [num2str(reflnumber) '.0'...
num2str (grp)] ;
end
else
if reflnumber < 10
reflnrstring = ['000' num2str(reflnumber)];
elseif reflnumber < 100
reflnrstring = ['00' num2str(reflnumber)];
elseif reflnumber < 1000
reflnrstring = ['0' num2str(reflnumber)];
else
reflnrstring = [num2str (reflnumber)];
end
end
writestring = ['dlmwrite(''E:\4d_4e_Analysis\dd_"'...
'Intensity Profiles\grain' reflnrstring '.txt'','...
'Int_corr_save, ''delimiter'', "'\t'', "'precision'"', '...
||l%'2fll)|];
eval (writestring);
Int_total = sum(Int_corrl(:,2))+sum(Int_corr2(:,2));

%Total grain intensity, corrected for layer overlap

$Now compute the layer_ CoM coordinate, using the refined
%intensities as weights.

layer_ref = sum((Int_corrl{:,1)+1.25).*Int_corrl(:,2))+...

sum((Int_corr2(:,1)+1.25).*Int_corr2(:,2));
layer_ref = layer_ref/Int_total;
duml = floor(layer_ref/30);
dum2 = rem(layer_ref,30);
layer_CoM = layer_start+5*duml;
%30 microns correspond to 5 layers
while dum2 >= 15

rem2 = rem(layer_CoM, 5);

layer_CoM = layer_CoM+1;

if (rem2 == 0) || (rem2 == 2) || (rem2 == 4)
dum2 = dum2-5;

else
dum2 = dum2-7.5;

end

end
layer CoM = layer_CoM+dum2/15;
layer CoM = layer_CoM-0.5;

%So that an integer value for layer_CoM corresponds to

%the middle of the layer instead of the beginning

N(length N+1,1) = GR(indl,1);
N(length N+1,2) = stripe_CoM;
N(length N+1,3) = layer_CoM;

111

970

980

990

1000

1010

1020

1030

Chapter 8: MATLAB code

N(length_N+1,4) = omega_CoM;
N(length N+1,5) = GR(1,6);
N{(length_N+1,6) = row_CoM;
N(length_N+1,7) = column_CoM;
N(length_N+1,8) = R_CoM;
N(length N+1,9) = TwoTheta_ CoM;

N{(length_N+1,10) = Eta CoM;
N{length N+1,11) = NRofPixels;
N(length_N+1,12) = Int_total;

else %The spots in the group come from all three stripes

L1 = [];%Matrix that will be filled with the starting and
$finishing coordinates of all layers of the spots

%$in the first stripe of the group

L2 = [];%Matrix that will be filled with the starting and
$finishing coordinates of all layers of the spots

%in the second stripe of the group

L3 = [];%Matrix that will be filled with the starting and
$finishing coordinates of all layers of the spots

%in the third stripe of the group
ind12 = indil;
while GR(indl12+1,2) == GR{indl, 2)
indl2 = indl12+1;
end
ind23 = indl2+1;
while GR(ind23+1,2) == GR{indl12+1,2)
ind23 = ind23+1;
end
for i = indl: {ind12)
if 1 == indl
11 = 0; %Left border of layer GR(i,:)
12 = 15; %Right border of layer GR(i,:)

else
for 12 = (layerprev+1l) :GR(1, 3)
reml = rem(i2,5);
if (reml == 0) || (reml == 1) || (reml ==
$The next layer is shifted 5 mu
11 = 11+5;
12 = 12+5;
else
$The next layer is shifted 7.5 mu
11 = 11+7.5;
12 = 12+7.5;
end
end
end

layerprev = GR(i,3);
L1(i—-indl1+1,1) = 11;
L1(i-ind1l+1,2)
L1(i-ind1+1,3) GR(1i,12);

$Compute weighted coordinates

stripe_CoM = stripe_CoM+GR(1i,2)*GR(i,12);
omega_CoM = omega_CoM+GR(i,5)*GR(i,12);
row_CoM = row_CoM+GR(i,7)*GR(i,12);
column_CoM = column_CoM+GR (i, 8)*GR(i,12);
NRofPixels = NRofPixels+GR(i,16);

|
Jt
[\l
~

I

end
for 1 = (ind12+1):(ind23)
if i == (indl12+1)
11 = 0; %Left border of layer GR(i,:)

112

Chapter 8: MATLAB code

12 = 15; %Right border of layer GR(i,:)

else
for i2 = (layerprev+1l):GR(i,3)
reml = rem((i2),5);
if (reml == 0) || (reml == 1) || (reml == 3)
%The next layer is shifted 5 mu
11 = 11+5;
12 = 12+5;
else
1040 %The next layer is shifted 7.5 mu
11 = 11+7.5;
12 = 12+7.5;
end
end
end

layerprev = GR(1,3);
L2 (i-ind12,1) = 11;
L2(i-ind12, 2) 12;
L2 (i-ind12, 3) GR(i,12);

1050 %Compute weighted coordinates
stripe_CoM = stripe CoM+GR(i,2)*GR(i,12);
omega_CoM = omega_CoM+GR(i,5)*GR(1i,12);
row_CoM = row_CoM+GR (i, 7)*GR(1,12);
column_CoM = column_CoM+GR({i,8)*GR(i,12);
NRofPixels = NRofPixels+GR(1i,16);

I

i

end
for i = (ind23+1): (ind2-1)
if i == (ind23+1)
11 = 0; %Left border of layer GR(i,:)
1060 12 = 15; %Right border of layer GR(i,:)
else
for 12 = (layerprev+l):GR(i,3)
reml = rem(i2,5);
if (reml == 0) || (reml == 1) || (reml == 3)
$The next layer is shifted 5 mu
11 = 11+5;
12 = 12+5;
else
%The next layer is shifted 7.5 mu
1070 11 = 11+7.5;
12 = 12+7.5;
end
end
end
layerprev = GR(i,3);
L3(i-ind23,1) = 11;
L3(i-ind23,2) = 12;

il

L3(i-ind23, 3) GR(i,12);
%Compute weighted coordinates

1080 stripe_CoM = stripe_CoM+GR(i,2)*GR(i,12);
omega_CoM = omega_CoM+GR(1i,5)*GR(i,12);
row_CoM = row_CoM+GR(i,7)*GR(1,12);
column_CoM = column_CoM+GR (i, 8)*GR(i,12);
NRofPixels = NRofPixels+GR(i,16);

end
Raw_Int = sum(GR(indl: (ind2-1),12));
stripe_CoM = stripe_CoM/Raw_Int;
omega_CoM = omega_CoM/Raw_Int;
row_CoM = row_CoM/Raw_Int;

1090 column_CoM = column_CoM/Raw_Int;
R_CoM = sqgrt((row_CoM-RowBC_corr)*2+...

113

1100

1110

1120

1130

1140

1150

Chapter 8: MATLAB code

(column_CoM-ColumnBC_corr) "2} ;
TwoTheta_CoM = (180/pi)*atan2(R_CoM, Lsd_Pixels);
Eta_CoM = (180/pi)*atan2(column_CoM-ColumnBC_corr, ...
RowBC_corr-row_CoM) ;
if Eta_CoM < O
Eta CoM = Eta_CoM+360;
end

gWithin matrices L1, L2 and L3, columns 1 and 2 (containing
%the left and right border of the slit positions) are
%defined with respect to the first slit position for which
%intensity is found in that specific stripe. However, we
%want to define them all w.r.t. the SAME first slit
$position, so that later on weighting of the slit position
%based on the intensities can be performed. Hence the

$following:
if (GR(indl,3) == GR(ind12+1,3)) &&...
(GR(indl,3) == GR(ind23+1,3))

%Fasiest case
layer_start = GR(indl, 3);
else
[layer_start lindex] = min([GR(indl,3) GR(indl2+1,3)...
GR(ind23+1,3)]);
switch lindex
case 1
diffl GR{ind12+1, 3)-layer_start;
diff2 = GR(ind23+1,3)-layer_start;
if diffl > 0
for 1 = 0:(diffl-1)

If

reml = rem(layer_start+diffl-i,5);
if (reml == 0) || (reml == 1) |]...
(reml == 3)
L2(:,1:2) = L2(:,1:2)+5;
else
L2(:,1:2) = L2(:,1:2)+7.5;
end

end
end
if diff2 > 0O
for 1 = 0:{(diff2-1)

reml = rem(layer_ start+diff2-i,5);
if (reml == 0) || (reml == 1) |}...
(reml == 3)
L3(:,1:2) = L3(:,1:2)+5;
else
L3(:,1:2) = L3(:,1:2)+7.5;
end
end
end
case 2
diffl = GR(ind1,3)-layer_start;
diff2 = GR(ind23+1,3)-layer_start;

if diffl > O
for 1 = 0:(diffl1-1)
reml = rem(layer_start+diffl-i,5);

if (reml == 0) || (reml == 1) |]...
(reml == 3)
Li(:,1:2) = L1(:,2:2)+5;

else
Li(:,1:2) = L1(:,1:2)+7.5;

end

114

1160

1170

1180

1190

1200

1210

Chapter 3: MATLAB code

end

end
end
if diff2 > 0
for i = 0:(diff2-1)
reml = rem(layer_start+diff2-i,5);

if (reml == 0) || (reml == 1) {|}...
(reml == 3)
L3(:,1:2) = L3(:,1:2)+5;

else
L3(:,1:2) = L3(:,1:2)+7.5;

end

end
end
case 3

diffl = GR(indl,3)-layer_start;
diff2 = GR(ind12+1,3)-layer_ start;
if diffl > 0
for 1 = 0:(diffl-1)
reml = rem{layer_start+diffl-i,5);

if (reml == 0) || (reml == 1) |}|....
(reml == 3)
Li(:,1:2) = L1(:,1:2)+5;

else
Li(:,1:2) = L1(:,1:2)+7.5;

end

end
end
if diff2 > 0
for i1 = 0:(diff2-1)
reml = rem(layer_start+diff2-i,5);
£

if (reml == 0) || (reml == 1) |]|...
(reml == 3)
L2(:,1:2) = L2(:,1:2)+5;

else
L2(:,1:2) = L2{(:,1:2)+7.5;

end

end
end
otherwise

end

stepnrl = L1(indl12+1-indl,2)/2.5;
stepnr2 = L2(ind23-indl12,2)/2.5;
stepnr3 = L3(ind2-ind23-1,2)/2.5;

Int_corrl = zeros{stepnrl, 2);
Int_corr2 = zeros{stepnr2,2);
Int_corr3 = zeros{(stepnr3, 2);
for i = l:stepnrl

13 = (i-1)*2.5;
Int_corrl(i,l) = 13;
divider = 0;
for ind3 = 1:(ind12+1-indl) %Loop over matrix L1
if (13 >= L1(ind3,1)) && (13 < L1(ind3,2))
Int_corrl(i,2) = Int_corrli(i,2)+L1(ind3,3);
divider = divider+1;
elseif 13 < L1(ind3,1)
break
end
end
if divider ~= 0

115

1280

1290

1300

1310

1320

1330

Chapter 8: MATLAB code

reflinrstring = [num2str(reflnumber) '.0'...
num2str (grp) };
end
else
if reflnumber < 10
reflnrstring = ['000' num2str (reflnumber)];
elseif reflnumber < 100
reflnrstring = ['00' num2str (reflnumber)];
elseif reflnumber < 1000
reflnrstring = ['0' num2str(reflnumber)];
else
reflnrstring = [num2str (reflnumber)];
end
end

writestring = ['dlmwrite(''E:\4d_4e Analysis\4d_'...
'Intensity Profiles\grain' reflnrstring '.txt'','...

"Int_corr_save, ''delimiter'','""\t'", "'precision'','...
III%.2]CII)|],.

eval (writestring);

Int_total = sum{(Int_corrl(:,2))+sum{Int_corr2(:,2))+...

sum(Int_corr3(:,2}});
$Total grain intensity, corrected for layer overlap

$Now compute the layer CoM coordinate, using the refined
%intensities as weights.

layer_ref = sum((Int_corrl(:,1)+1.25).*Int_corrl(:,2))+...
sum((Int_corr2(:,1)+1.25).*Int_corr2(:,2))+...

sum{ {Int_corr3(:,1)+1.25).*Int_corr3(:,2));
layer_ref = layer_ref/Int_total;
duml = floor (layer_ref/30);
dum2 = rem(layer_ref,30);
layer CoM = layer_start+5*duml;
%30 microns correspond to 5 layers
while dum2 >= 15

rem2 = rem(layer_CoM,5);

layer_CoM = layer_CoM+1;

if (rem2 == 0) {| (rem2 == 2) || (rem2 == 4)
dum2 = dum2-5;

else
dum2 = dum2-7.5;

end

end

layer_CoM = layer_ CoM+dum2/15;

layer_CoM = layer CoM-0.5;
%$So that an integer value for layer_ CoM corresponds
$the middle of the layer instead of the beginning

N{(length N+1,1) = GR(indl,1);
N{(length_N+1,2) stripe_CoM;

It

N{length_N+1,3) = layer_ CoM;
N(length_N+1,4) = omega_CoM;
N(length N+1,5) = GR(1,6);
N{length N+1,6) = row_CoM;

N(length N+1,7) column_CoM;
N(length N+1,8) = R_CoM;
N{length_N+1,9) = TwoTheta_CoM;

il

N(length N+1,10) = Eta_CoM;
N(length_N+1,11) = NRofPixels;
N(length N+1,12) = Int_total;

end

to

117

Chapter 8: MATLAB code

end

ena

1340

%$End of: ArrangeSpots.m

118

10

20

30

40

Chapter 8: MATLAB code

3.13. Input GrainSpotter.m

e e e e e e e

%Start of: InputGrainSpotter.m

rogram that converts the output from ArrangeSpots into the desired format
for reading by GrainSpotter.

o
h g

$TvdZ. Last edits: March 2007.
function gvecs = InputGrainSpotter (RefllList);

RowBC 1038.52;

ColBC = 981.37;

pixel = 47.4;

Lsd = 241;

Lsd_pixels = Lsd*1000/pixel;
wavelength 0.155;

zeros (length (RefllList), 8);

i

gvecs

for n l:length(ReflList)

Row_CoM = ReflList{(n,6);
Col_CoM = ReflList(n,7);

omega = Refllist(n, 4);

eta = Refllist(n,10);

etaRad = pi/180*eta;

twotheta = ReflList(n,9);
thetaRad = pi/180*0.5*twotheta;

ds = 2*abs(sin(thetaRad))/wavelength;

$Determination of the scattering vector G, using equation (3.6) from
%the book by Henning Poulsen on 3DXRD theory

gvecs(n,1l) = -ds*cos(thetaRad)*tan(thetaRad);
gvecs(n,2) = —-ds*cos(thetaRad)*sin(etaRad);
gvecs(n,3) = ds*cos(thetaRad) *cos{etaRad);
gvecs(n,4) = Row_CoM;

gvecs(n,5) = Col_CoM;

gvecs(n,6) = ds;

gvecs(n,7) = eta;

gvecs(n, 8) = omega;

$End of: InputGrainSpotter.m

e

119

10

20

30

40

50

Chapter 8: MATLAB code

3.14. CharacterizeGrains.m

O
%¥Start of: CharacterizeGrains.m

%Routine written to read the file containing the groups of reflections
%identified by GrainSpotter as coming from the same grain. The required
%input are the locations of both the output list created by GrainSpotter as
%well as the list of reflections created by the routine ArrangeSpots.

@

%$TvdZ. Last edits: March 2007

function [TotalRefl, TotalExpected] =
CharacterizeGrains (GrainSpotterList,ReflList);

offset = 11; %Number of lines in the header of GrainSpotterList

%Retrieve the number of identified grains, nrgrains

[strl nrgrains str2] = textread(GrainSpotterList, '$s %u %s',1);

%$Initialize matrix U, which will be filled with the orientation matrices of
%the individual grains

U = zeros(3*nrgrains, 3);

TotalRefl = 0; %The total number of indexed reflections

TotalExpected = 0; %The total number of theoretically expected reflections

linenr = offset;
refllist = dlmread(ReflList, "\t"');

for n = linrgrains

%Retrieve the number of expected (MO) and found (Mexp) reflections for
%the grain in question

[strl grainnr] = textread(GrainSpotterList,'%s %u',1l, 'headerlines', ...
linenr);
[MO Mexp] = textread(GrainSpotterList,'%u %u', 1, 'headerlines', ...

linenr+1);

GrainCharacteristics = zeros(Mexp+3,15);

$This matrix will be filled with the grain's characteristics. The first
%$three elements of the first three rows will contain the orientation
gmatrix U. The rest of the rows will be filled with the individual

$reflections.

UGrain = textread{GrainSpotterList,'',3, 'headerlines',linenr+2);
GrainCharacteristics(1:3,1:3) = UGrain;

GSMatrix = textread(GrainSpotterList,'',Mexp, 'headerlines',linenr+5);
$GSMatrix now contains GrainSpotter's output information for the grain
%in question. For further grain characterization, refllist is required

TotalRefl = TotalRefl+Mexp;
TotalExpected = TotalExpected+M0;

for refl = l:Mexp
reflnr = GSMatrix(refl,2)+1; %reflnr is the row number of the

$reflection under consideration within refllist. The output
$from GrainSpotter is zero-based, so 1 is added.

120

60

70

80

90

Chapter 3: MATLAB code

%Here, the user can specify the required computations. As an
Sexample, for each grain a file is created containing the
%individual reflections’ characteristics. GrainSpotter has already
Screated such a file, but the information contained in this file is
$too limited for use in further analysis.

reflection = refllist(reflnr, :);

GrainCharacteristics(refl+3,1) = reflection(1,1);
GrainCharacteristics(refl+3,2:4) = GSMatrix(refl,3:5);
GrainCharacteristics(refl+3,5:15) = reflection(1l,2:12);

end

if grainnr < 10

grainnrstring = ['000' num2str (grainnr)];
e¢lseif grainnr < 100

grainnrstring = ['00' num2str(grainnr)];
elseif grainnr < 1000

grainnrstring = ['0' num2str(grainnr)];
else

grainnrstring = [num2str(grainnr)];

end

writestring = ['dlmwrite(''E:\4d_4e_Analysis\4dd Grain_'...
'Reflections\grain' grainnrstring '.txt'’,
'GrainCharacteristics, "'delimiter'', ""\t'', ...
'""'‘precision’’, "', 4f7) ') ;

eval (writestring);

]

linenr = linenr+Mexp+6;

%3End of: CharacterizeGrains.m

o

S ——

121

