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ABSTRACT

A severe restri~tion to dilution discharge measurements is that
they are to be applied to steady flcw conditions only.
Uflinga computat ional model, diLut ion +i scharae neasurenent s by
const ant+rate injeetion ere sinulat ed during nnsteady flow
conditions caus~d by Gaussi~n flood waves pro~agating down a
reetangular uniform channel.
'!'he·conputati.onaI results are evaluated in oreer to provide a
means of predicting a discharge measurement's ~ceuracy.
The main souree causing Glscrepancies between the actual and
measured discharges is the difference in propagation velocitiçs
of the tracer eloud and the flood wave.
Correction procedures are recommended, since maximum ~naceuracies
can easily be larger ty an order of magnitude than inaceuracies
euring steady-state conditions.
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CF.APTERI INTRODUCTION

Measl1rame~ts in open channel flo~ are condueted throughout the
world and their aim is obvious: it is hard to think of a river
engineering problem that might b~ 50lved without so~e data on
river characteristicR th~t can help sh~p~ the knowledge of a
river's behaviour. Among river measurerrents, the measurement of
disch~rges t~kes an imvortant placer e.g. to establish a river's
stage-di5charge rel~tionship.
There are several methods to weasure discharçe~
flow. Mention ean be made of e.g. velocity-~rea
boat methods, slope-area methods or the use
measurem~nt structures such as weirs and flumes.
üi Iurion ne thods of measurin-rdischarge have been ïmown since at
least 1863 (Kilpatrick and Cobb (1985;).
~he principle of the method is simpie. After injection and
sufficient mixing of a tracer in a flow, the resulting concen-
tration together with the known amount of-releasej material
determine the discharge.
To this end, both tracer and
requi:rements.The tracer must be soluble in watar, not attachinç t~ suspended
sediments. The concentration resulting from injection must be
measurabla, without causing density currents. Until recently,
chemical salts were generally used as tracers. ~pplication of
radio-active tracers is limited due to handling problems.
Nowadays, stabie fluorescent dyes, preferably Rhodamine WT (e.g.
Wilson (1984», together with fluorometers are used: Fluorometers
neasure the luminiscence of the fluorescent dye when it is
subjected to a light source of a given wave length. The higher
the concentration, the more emitted light is detected.
The requirement of sufficient mixing limits the use of dilution
methods, from a practical point of view, to small streams. Over
the river reach needed for sufficient mIXIng, the measurement'g
results are not to be disturbed by any unknown discharge contri-
buticins,e.g. from tributaries.
Under these conditions, the dilution method is particularly
suitable when and where current meter measurements are
impractical. This may be the case for smalI streams with exces-
sive turbulence or debris, where the flow i5-inacces~sibleto m-an-~-
and/or measuring device, or where the cross-sectional area cannot
be accurately measured.
A severe restrietion is, that in view of a more or less sound
theoretical background, dilution methods are restricted to steady
flow conditions.In this study the applicability of dilution discharge measure-
ments during unsteady flow conditions caused by flood waves is
investigated.problem and scope of this study are defined in Chapter 11.
A mathematical model to determine the nature of the mixing
processes involved is given in Chapter lIl.
Chapters IV and V treat analytical and numerical approaches to
this model.In Chapter VI the computational and analytica! results are
evaluated.Conclusions and recommendations are presented in Chapter VII.

in open channel
methods, moving

of discharge

flow must fuIfil several
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CHAPTER IJ: PROBLEM

2.1 Introduction

~ndar steady flow condition~, both the constant rate and the slug
injection technique can be used for injection. The distinction
between ~he two methods lie~ in the time euring which injection
t1.kE:Splar.e.
Using ~he ~lug i~jection techniqce, a
ably lnstantan~ously, injected. The
uSlng the relationship (o.g. de Vries

tracer amou~t m is, ~refer-
dis~harge can be determined
(1936P):

GO

l'l = r
Q J(~(L,t)-;'i(L,t»dt
o

in which: m = rel6ased tracer amount
Q = discharge
~ = concentration
~i= initial (or 'background') concentration
L = mixing length (fig.l)
t = time

iith the constant rate technique, a constant amount per unit time
of tracer material is, preferably continuously, injected in the
flow. In practice, the time during which injection has to take
place is determined by reaching an equilibrium state: when, at
the place of measurement, the concentration does not increase
anymore (fig. 2), the discharge is determined by (e.g. de Vries
(1986)1) :

M
~(L) = - + ~i

Q{L)
(1)

in which: M = released constant amount per unit time of tracer
material

Since the flow is supposed to be steady and an equilibrium state
is reached, time is, for constant initial concentration, of no
influence in this relationship.
Both methods clearly show that for a good performance, the init-
ial concentration should preferably be negligible with respect to
the concentration resulting from injection.
If careful field and laboratory techniques are used, the relative
error in the discharge determination is on the order of 1% (de
Vries (1986) 1) •
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2.2 Definition • - 7' ... :_ ~,:
, ~;

Although a tncoretical analysis oi a continuous conet~~t rate
i~jection into unsteady open channel flow has not yet been
accomplished, the nature oi this djscharge measur~weLt method
seems use f uI for measuring uns+eady discharge condi ti ons 511Chas
storm water run off events on smalJ streams (Kilpatriek and Cobb
(1985) ) .
In other words, 5traight~orward extension of tha constant rate
method would mea~ extersion of eq. (1), n~glecting the initial
ccncentration, to (fig. 3):

M
g.I(L,t) = (2)

Q (L, t)

It is the applicability of this eq. (2) that is investigated in
this study.

2.3 Aim,Approach and Restrietions

Since eq. (2), though practical, is theoretically incorrect, the
aim of this study is to determine arelation to qualify and
quantify the errors made when using eq. (2) tor discharge
measurements during unsteady flow.
To this end, the influence of flood waves on eoncentrations
resulting from a constant rate injection into a channel of rec-
tangular, uniform cross-seetion is studied. Other common environ-
mental unsteady types of flow, sueh as tidal flows, have not been.
taken into consideration.
The approach has been merely analytical and numerical. Field-
and/or laboratory experiments have not been performed.

_i. ,_ ;/"'q.:'~.i" -.'

;r .
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CHAPTER !II MATHEMATICAL MODEL

:_~ .

3.1 Int~oduction

Slcce it is widely accepted that mari's~onc~ption of his world is
three-dimensional; and there is, for the time being, no reason-
able alternative to this assumption, it may be assumed that all
environmental processes occur in three dimensions. The~efore, a
mat.hematical model describing p~ysical eLvironmental processes
should be formulated in these three dimensicns.
Moreover, since man and nature itself provide ever changing boun-
dary conditions to environmental processes, 9uch a model should
also incorporate time: striving for a new equilibriuw state
requires t iree, This only seems to comp~_icate things, and it often
does.
Sometimes, however, dep~nding on· t~e nature of the physical
environmental processes involved, the concept of tim~ can also be
used to simplify things.
Imagine the release of a soluhle substance in a river. A river
has the pleasant property that one spacial dimension clearly
dominates the other two: its width and depth are much smaller
than its length. Therefore the solute will mix relatively quickly
in vertical and transverse directions. After the solute has been
mixed homogeneously over the river's cross-section, the mixing
process can be described using only one spatial dimension. The
mathematical model to arrive at in Section 2 uses this featur~
and approximates the mixing process in the longitudinal direction
only.Not just any model will do. The aim in modeling nature is satis-
fying accuracy. Despite the most sophisticated attempts, the
model itself often provides a major source of inaccuracy. Nature
is complex and lack of knowledge of its processes calls for
simplifications. Generally speaking, these simplifications do not
tend to increase accuracy.
Degenerating an environmental process to one dimension adds at
least· two (related) problems to the existing ones. Some
parameters, maybe already vaguely known, should be chosen such,
that the approximation is still satisfying compared to a three-
dimensional model. Secondly, a one-dimensional model cannot
describe essentially three-dimensional processes. So the model
cannot describe the initial period, before mIxIng over the
river's cross-section is completed. Section 2 of this Chapter
illustrates this in describing dispersion processes, a dispersion
coefficient and a mixing length.
In Section 3, the second one-dimensional model, that for flood
waves, is given.
Section 4 describes the approach used to dispersion during flood
waves.
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3.2.1 Int:odcction
In arrjving at an equation that describes the dispersion process
of a releasod substance in open channel flow, several assumpticns
about the released suhstance ~~d the receiving water have to be
made.
Th~ sub~tlnce is assumed to ffi0Vewith ;ha water. It does not have
its own specific mode of transportatinn. Dis501ved matter, heat
and very tine partieles ~ave this pr~perty sorrd tim~ after their
release whnn th6 affects of initial momenturuand b110yancy du~ to
th6ir Ielea~e have decayed.
The release is supposed to cause no density currents. Generally
speaking, this means that the substance is low concentrated and
causes DO density differenees large enough to influence the flow
field after initial dilution.
Under these assumptions. corresponding to the tracer require-
me~t5, 5eve~al modes of transportation oecur. These may be sub-
divid~d iato two: conveetion and dispersion. The distinction
between the two depends on the proeess involved in relationship
to the scale of the whol~ s1stem.
Large seale flow earries a eloud of released substance as a
whoie. This transportation mode is denoted by conveetion.
Water notion on ascale smal1 compared to the size of the cloud
of material results in a type of mi~ing denoted by the term
dispersion.
A eloud of material which" is small relative to the seale of tur-
bulent eddies will be subject only to molecular diffusion.
As the eloud grows larger, turbulent diffusion is included in the
dispersion process.
When mixing over the depth of the ehannel has been accomplished,
dispersion due to vertieal non-uniformity of the flow velocity
profile beeomes important.
Some time later, the eloud will oceupy the whole cross-section
and dispersion by transverse non-uniformity is important.

3.2.2 Molecular Diffusion
Usually, molecular diffusion can be neglected in large scale
dispersion processes. Sineer however, dispersion as a whole may
be described analogous to molecular diffusionr a short analysis
is given here.
C~nsider a control volume in a laminar flow field (fig. 1).
Conservation of mass states that the time rate of change of mass
equals the difference in mass flux. Flux is the mass crossing a
unit area per unit time in a given direction.
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For a conservative substance, this yields in one dimension:

+ = 0

in which: Fx = fl~x in x-direct ion

The fluT cons~sts of a convpctive and a diffuRive part. The con-
vectiva flux is th~ rata at which fluid vclume passas through a
unit area, multiplied by the concentration of mass in that
volume:
F;:.eonv = Ui

in which: u = flow velocity in x-direction

The diffusive flux can boadescribed bu 4k'S la'W.This law as-
sumes that the diffusive flux of a ~~;~mass is proportional to
the gradient of the solute concentration in that direction:

Fx.dit" = -D
öx

in which: D = molecular diffusion coefficient.
The negative sign indicates transport to take place from high to
low concentration areas.
Assuming the convective and diffusive flux to be additive yields:

Fx = u~ - D
öx

and so it follows, since D is a constant:

Ö~ Ö ó29S
_+ (u~) - D = 0
ót öx öx2

Extension to three dimensions is more or less straightforward and
yields:
ö~ ó s Ö Ö2~ ó29S ó29S
_+ _(u~) + _(v~) + _(w~) -D(- + _+ -) = 0 (3)

öt öx öy öz öx2 öy2 óz2

in which: v = flow velocity in y-direction
w = flow velocity in z-direction



Fig. 2 Averaging of turbulent
Iluctuations. Note: this is a
schema tic reprtnentation; in reality
th rlme-scale ol the mean velocity
ii will be much larger relative to
the tim~scale of turbulence

Jansen 1979

R

dx

u

t

7"-----AVERAGING INTERVAL(SEVERAL MINU~1

_1
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3.2.3 Turbulent Diffusion
The diffusion pro~ess in turbulent flow is consiee~ably more
co~plicated. Mass introduced in turb11lent flnw wi11 sp~ead much
faster than in laminar flow. Velo~ittes and pressures in thB flow
fi~ld are unsteady and pnsess an appreciable random ~omponent. It
is customary to ipply a time ave:~gtn~ p~ocedure in order to
distinguis~ between the mean flow an1 these turbulent fluctu-
ations. This prOCadl\reaRsurnesthat ~hM instantaneous veloeities
(~nd concentratiuns) can be seen as the sum of a ti~e averaged
and a fluctuating component:

u = u + u'
v = v + v'

1
w = w + w'
in w.hich: ~ =

T
t

and so on.

The averaging period T is suppos~d to be sufficiently long to
permit convergence of the averages of the fluctuating components
to zero, yet not so long as to significantly damp the variation
of the time-averages with t (fig. 2). .
Substitution in eq.(3) and neglecting molecular diffusion yields:
ó ó ó

_(~ + ~ ') + -(u + uI ) (~ + ~ ') + -(v + v')(~ + ~') +
ót êx oy

o
+ -lw + w') (~ + ~') = 0oz

Averaging this equation over a time T as indicated above yields
(e.g. de Vries (1984)2):

0- 0- 0-
- + - Ugl + - v(J + - W(J + - u I ~' +
ót óx oy oz óx oy

V'gI' + - w'~' = 0
oz

In the last three terms, the time averages of a product of
fluctuating velocity and concentration represent mixing through
turbulent diffusion. The obvious approach is to express these
terms as time-mean quantities.
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This Eay b~ 1o~~ by Reynuld's ~na10gy, whic~ concep~ leads to a
tur bu lent di~fcsion tensot Ti.: tfHlt can be vr i tt en , u.31rg the
Einstein sumrnation conventicn, ~s (e.g. Sayre (1975~):

Tij - - -;'u'; for i,j = 1,2,3

in which: x ~ (Xl,X2,X3) nr (x,y,z) ~ector notatio~
u = (U1,U:,U3) or (u,v,w) vector notation

Although this local gradient type transport description is not
exact, since with the larger length scales of turbulence, the
gradients will vary over these length scales, for computations
the assumption of a gradient type transport is believed to be
sound enough (e.g. Booij (1986».
Insarting the diffusion tensor and omitting the tjme-mean
everbars, which are no longer needed, gives:

15~ 15 0 0
+ -(u9J) + (v9J) + -(w9J) +

15t 15x 15x ÓX

Ó 159' Ó 09' Ö 159'
- -(Txx -) - -(T)')' -) - -(T:z::z:-) +

ox ox öy oy oZ IS"- ..

ö ö9J 0 0; ö ö9J
- -(Txy -) - -(T~-:z:-) - -(T:z:x -) +

ox öy öy öz oz öx

0 09J ö 0; ö 159J
- -(Tx:z: -) - -(Tyx -) - -(T:z:y -) = 0

15x öz oy ox öz öy

It is ctlstomary (e.g. Sayre (1975» to assume the coordinate axes
to coincide with the principal axes of the diffusion tensor,
leaving: -

(59J (5 ö 15
- + -(u;) + (v9J)+ -(w9J) +
I5t _ öx öx öx (4)

ö 09J 0 159J s 09J
- -(Txx -) - -(Ty)' -) - -(T:z::z:-) :::: 0

ÓX ox öy öy öz öz
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Fischer (1979) justifies this procedure by stating that in a wide
channel it is reasonable to expect coefficients for vertical,
transverse and longitudinal mixing, because the boundaries
at surface and bottom create a turbulence that will not he iso-
tropie. Thus it can be assumed that there are no other tensor
coeftic:ents since there is no preferred diagonal direction of
motion as long as the axes are rar~llel and perpendicular te the
bottom.
':hemain
reliable
and T:z::z:
straight
(1979)}:

obstacles te progress from here have been the lack of a
theory that relates the spacial variation of Txx, Tvy
to flow and buundary cenditions. Experimental studies in
rectangular chacnels indicate that (e.g. Fischer

in which: a = depth of flow
u* = botto~ friction velocity
T:z:x=vertical Jiffusivity

in which: Tyy= trans~erse diffusivity

The longitudinal turbulent mIxIng coefficient Txx is believed to
be of the same order of magnitude as the transverse mixing coef-
ficient Tyy:

in which: Txx= longitudinal diffusivity

Rates of turbulent longitudinal mIxIng have not been measured
actually. This is due to difficulties in separating longitudinal
mIxIng caused by turbulence and longitudinal mixing caused by
shear flow.

3.2.4 Shear Flow Dispersion

Common to river flows is that mIxIng in flow direction is caused
primarily by the velocity profile in the cross-section (fig. 3).
lf, after release, a tracer cloud has grown large enough to occ-
upy the river's cross-section, it makes sense, in view of a one-
dimensional descriptionr to integrate eq. (4) over the cross-
section A. This yields, with double overbars denoting cross-
sectional means (e.g. Berkhoff (1973»:
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s = ó s ó~
-(;\~) + -(Au~) - -(AT:-::-:-) = 0
3t óx ~x óx

in which: ~ = river's cross-section
In arrlvlng at this equation it is assumed that no diffusive flux
passes lateral boundaries or water furface.
Splitting up the velocity a~d concentratioD in th~ followiag way~

~(X,Y/l/t) = ~(x/t) + ~fI(Xly/Z,t)

u(x/y/z/t} = u(x,t) + u"(x,y,z,t)
1

JI"dYdZin wbieh: ~ (x,t) -=
A

A

and 50 on,
and inserting these yields:
ó ó s s ó~

-(A~) + -(Au·gI) + -(Au"~") - -(AT:-::-:-)= 0
ót ëx ëx ëx óx
An order of magnitude analysis indicates that dispersion by
cross-sectional non-uniformity exceeds turbulent diffusion by far
(e.g. ~lansen (1979». 50:

ó ó Ó =
-(Ag!) + -(Au·gI) + -(Au"~") ~ 0
ê t ëx ëx

The obvious approach, again, is to express the last term in terms
of cross-seetional means. A gener al proced~rre, hpwever, is not
available. Widely used in river engineering is the Taylor method.
Sir G.I. Taylor assumed (in 1953) that the cross-sectional
concentration profile ;"(y/z) is established by a balance between
longitudinal convective transport and cross-seetional diffusive
transport, yielding a 'Fiekian approach' type of relationship:

ó~
AU"9J" = -AK-

ÓX

in which: K = - ~ IJU"f(Y'Z)dYdZ = dispersion coefficient
A

The funetion f(y/z) is defined by: ~" = f(y,z)
óx
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Inserting yie~ós the 1ispersion e!~,tion:
ö ö Ó ó~
-(A~) + -(;lU·~) - -(AK.-) ~ ')
ót ~x 0X ÖX

Fischer (1967) gave a 1uaptitative estimate of the dispersi~n
coefficient in natural strelffiS, by assuming a balance between
longitudinal convectjon and trarsverse diffusion, neg1ecting the
vertica1 profile entir~iy (fig. 4). The function f(y,z) then h&s
the f')rm:

f(y)

y y

f__l r
= I Jl.llladYdY

vaTyyo 0

and K can be written as:
B y Y

1I ,.1 JK = - UII!lJ'_- u"adydydy
A aTyy
000

in which: P = river's width
under the assumption that Uil does not vary with Zo (or x). Labora-
tory and field e~periments yield from this expression the more
workab1e form (e.g. Fischer (1979»:

u2B2
K = 0.011·--

au",
(6)

in which a value Tyy = 0.60au", is used.
In most cases, eq. (6) has been found to agree within a factor 4,
which is, in fact, quite accurate bearing in mind all the
possib1e irregularities contributing to dispersion that can be
found in rivers. Moreover, eq~ (6) has the advantage of predic-
ting dispersion from usua11y availab1e parameters.
Using a value:

(7)

in which: k = coefficient of proportionality
eq. (6) can be written as:

112B2

K = 0.00660
--

Tyy
(8)

The value of k in natura I streams is given by (Fischer (1979»:

k :::0.6 ± 0.3
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3.2.5 Mixing Lengths

3.2.5.1 introduction
The essence of the Taylor method is, that the assumed balance
between longitudinal convection and cross-sectiona] diffufio~ is
~eached under fome circumstances. Essentially this boils dcwn to
ths requirements that (Fischar (1979»:

_ is var!ing 52o~ly along the channel,

ó~!óx is essentially constant over a lon~ period of time,

gin has become small ccmpared to ;.

The last requirement is reached when cross-sectional diffusion
has eV6ned out c~oss-sectional gradient~.
The first two requirements concern the longitudinal direction.
For the 'Fickian app=oach' to eispersion t0 be valid, they are
fulfilled when the longitu1inal concentration profile, origina-
tinç from an instanta~eous release, behave~ like a Gaussian di5-
tribution.

3.2.5.2 cross-secticnal mixing
A variety of empirical as weIl as (semi) theoretical formulas
have been developed for estimating cross-sectional mixing lenghts
in open channel flow. Apart from properties of the released sub-
stance, this mixing length is a ~unction of the degre~ of mixing,
place and way of release and channel and flow properties.
Generally all formulas are developed for a condition that is
supposed to represent complete cross-sectional mixing. This~
however, would require an infinite mixing length which is not
very practical.
The actual degree of ---mixingc-aIi-b-est-\ISO -(1986» be est inat.ed
using the Cobb-Bailey formula:

r n!lij -9JQ qj ]
DQ = 1 - ~ r I 1(-) *100%

L j=l!15Q Q

in which: DQ = flow weighted degree of mIxIng
!lij= concentration in the j-th segment

1 n
!liQ= _. t !lijqj

Q j=l
qj = flow in segment j
n = number of segments in a cross-section
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If no information is available on the variation of tha discharge
over the cross-s~ction (as will ~e the case with most discharge
measurements), an apprnximate prncedure is to substitute a rela-
tive ~idth in place of tha relative discharge in the Cobb-Bailey
formula. The error in determining mea~ concentrations using the
width-wei1hted formula is given in fig. 5 as a function of the
flow-weighted degree of mixing. 7his envelope cur\e is based on
uniform and non-unifor~ cross-s~ctions. Clearly, thc ~ore uniform
Lhe section, the smaller the error, w~ich; however, cannot
dire~tly be conclud6d from fig. 5.
The (~emi) theoretical approach to mixing lengths provides the
most uni~ersal relationships, that are not situ-specific and thus
have the bigger transfer value.
For releases at the ceütre of flow a~d at r~ver banks, the Fisc-
ber formula provides an easy in use and accurate estimate of the
mIxIng length for a degree of mixing of 95% (e.g. ~an Mazijk
(1984». Essentially it is based oe a characteristic time scale
for mixing. From dimensional reasoning, it follows that such a
time scale Te must be proportional to the square of a character-
istic length, divided by a characteristic diffusivity, both
depending on channel and flow properties (Fischer (19~9».
Setting a dimensionless ti~e Td, this can be written as:

De t
Td = ---t =

L2e Te

in which: Td = dimensionless time
De = characteristic diffusivity
Le = characteristic length
Te = characteristic time

Having a turbulent flow down a channel of finite width, a
charaeteristie length wi11 have order of magnitude of the
channe1's width and a characteristic diffusivity can be seen as
the transverse diffusivity Tyy• So:

(9)

From an approximate solution for mixing from a maintained line
souree in a steady uniform flow in two dimensions, Fischer found
that, for a dimensionless distance Xd>O.l" the concentration is
within 5% of its mean value of the cross-seetion after a centre
line release and for Xd>O.4 this degree of mixing is reached
after a side injection, in which:

x

uoTe
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This y i.elds :
U ~2

LO.9S = 0.4 for a side release

11 Bli
LO.95 = 0.1 for a ce~tre release

in whieh: LQ.,s = cross-sectional mixing length tor 95% mixing

3.2.5 3 bntTitudinal mjxin~

Apart from evening out cross-sectional differenees it is
neee3s~ry for the cross-3ectional averaged concentration to decay
towards a Gaussian dist~ibution.
Numerical ~xperiments in uniform channel flow have shown that the
variance 0f a dispersi~g cloud grows linearly with distanee down-
stream fOl Xó>O.2 (Fisc~er (1979». Linear growth cf the varianee
02 is a necessary cendition for the diffusion te apply, but not a
sufficient one. Only after Xó>O.4, the skewed dispersing cloud
starts decaying towards a Gaussian distribution and for Xó>l the
loncitudinal distribution is expected to become approximately
Gaussian (fig. 6».
A numeric~l analysis by Sayre (1975) indicates the initial period
during which Taylor's method does not apply, determined by Tó>O.5
(fig. 7).As-al~ays, real streams complicate things. Sometimes streams are
so irregular, that Taylor's method does not apply throughout the
whole flow field. Nevertheless, the majority of streams are uni-
form enough for an approximate analysis. Incorporating moderate
irregularities, Fischer (1979) uses a value of Xó=O.4 as a limit
to the initial zone. So:

(10)

in which: Li = length of initial zone
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),) F:ood ll~ves

3.3.1 Introduction
This section gives a sOM~what informal derivation of the flocd
wa?e equations. A much more !ophisticated approach can be ~ound
in e.g. Verspuy and De vries (1981).
The last three snbsect ions discuss simpli.f ications of the long
wave ecuations, tha t , tInde,,:,cer t ain c'i rcumet ances can be app lied
to the special ~ase of :lood waves.

3.3.2 Equation of Continuity
Consider a control volume in an open channel flow with cross-
seGtion A (fig. 8). Conservation of inassstates that the change
of maS5 equals its net inflcw. For constant density, this yields,
with o/~s = ö/~z, since ib is small:

öA
(A+ -- dt)dz - Adx =

~x

~
Au<!t - (Au + -(Aufdx)dt

öx

and 150:

óA ö
- _+ '-(Au) = 0
ót ~x

For constant width Band A=B'a this yields:
öa öu

_+u_+a_=O
ót ~x ~x

(11)

3.3.3 Momentum Equation

Consider again the control volume (fig. 8). Newton's second la.
states that the change of momentum in time in a certain direction
equals all forces working in that direction, whieh can be written
as:

ó Ó
-(pBau)ds + -(pBauu)ds = rF:s
öt ós
in which: p = density

The second term on the left hand side accounts for net flux of
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mass balance
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momentllm.
It is now necessa~y to evaluat~ th~ forces F~ wor~ing on ~he
c0n~rnl volume. F0r long waves, the press~re is hydr~st~tic. So
on b0th sides of the volume, a hydrostatic pr&SEUrp ferca is
working. Other forces werking are the flow directed ~omponent of
the mass gravity force and the bnttom friction tL. Negl~cting
otner inf1llences sllch as wind-driven forces or the Coriolis
force, this yields (fig. 9)( neglecting higher ordar ~erms:

óa
rF~ - (-pga--ds + fga·sin(i~)·ds - T~·ds)B

ós
in which: g ~ cravity force

Tb= bottom friction
lns~rting this in the momentum equation yields, after dividing by
póds:
ó s óa Tb

(au) + (aul) + ga - ga·sin(ib) + - - 0
ót ós ÓS II

s ó
Since it. is small , it tol l.cvs _ ::: _ and sin(ib) ::: ib and so,
after differ~ntiation: 15s óx

öa óa 151.1 öu óu 5a Tb
1.1(- + u _+ a -) +a _+ au -+ ga - gaÏb + _ - 0
öt óx óx ö't 6~ 15X Q

The first term vani~hes applying the continuity eq. (11). Divi-
ding by a then yields:
óu 15u oa
_ + u - + g - gib + - - 0ot ÓX OX ap

The bottom friction term Tb in steady uniform flow can be written
as (e.g. Verspuy and de Vries (1981»:

in which: C = Chézy coefficient
If the flow is slightly unsteady, such as with flood waves, this
relationship is still assumed to hold. So:

ou oa
_ + u _ + g - gib + g- = 0
ót ÓX ÓX C2a

(12)
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3.3.4 Kinematic approach

ril a t irst appr ox'ination , i t. CO'l1 e he assuned t.hat t luctuations
in the discharge are so ~low that thR first threp terms i~ eq. 12
are small compared ~o the l.s~ two terms, leavincr:

1.12

- gib + g- = 0
C2a

or:

which is the Chézy equation.

Introdl.lcingthe Chézy eq. :n the continuity eq. yields:
3 óa

_+_u_-o
öt 2 öx

for constant slope and roughness.

This equation describes the propagation of a kinematic wave. The
square friction relationship T~ a UZ yields a propagation
velocity c=1.5·u.

3.3.5 Diffusion Analogy

Where damping of flood waves is important, the kinematic approach
does not give a realistic picture. A more appropriate theory can
then be obtained by retaining the water surface slope in the
momentum equation. Eq. (12)--thusdegenerates -into:

óa u2
9 - gib + g-- = 0

ëx C2a

or:
óa

u2 = C2aib - C2a_
óx

Differentiation with respect to x yields:
C2 óa 2

- - - - - --(-) -
2u óxóx 2u öx
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Inserting thlS in the ccnt~nui~y eq. (11) yields:
óa 3 óa

u --'-- = 0
ót 2 óx

The third term ilOW causes d~mping. The coeff~cient C2a2j2u has
dimens~ons L2T-l and is an~logous to a diffusion coefficie~t.

3.3.5 Evaluaticn

Wnp.n peak flGWS lasting only a few hours occur, even the dif-
fusioa analogy may not give a good description. Then there is no
alternative to using the full dynamic eq. (12).
An attegpt to quantify thc differencef between the three
a~proaches is giwen by Grij&en and Vreugdenhil (1976). Tt is
based cn a linearization cf the m0mentum eq~ations.
In fig. 10a the velocities of propagation c of the three approac-
h~s are compared and in fig. lOb the damping lengths Le, the
lengths over which the wave height is reduced by a factor e-1•
The kinemati~ approach dees net allow damping.
Both ce~parisons in these figures are given as functions of the
Froude n~mber Fr and a parameter E~ For the unit width approach,
they are:

u
Fr --

(ga
glTg 2 ~

E = )

C4a

(13)

(14)

in which Tg is the 'period' of the flood wave.

As can be seen ~rom fig. 10, the larger E, the more accurate the
results for wave propagation compared to the dynamic situation.
Wave damping, however, is systematic in error. Especiallyat
large Froude numbers, a serious underestimate of the rate of
damping can be found using the diffusion analogy.
This error may be reduced by applying a correction proposed by
van de Nes and Hendrikse (1971). They state thatt instead of
evaluating the coefficients in the (linearized) equations at the
steady flow situation prior to the wave passage, a choice of a
mean value within the actual range of the variables gives the
better reference situation.



fiq 10 Comparison of dif·
fusion analogy hOiid linesl and
kinematic ",ave üpproach (dashed
linesl with comolete theory.

Jansen 1979
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.3 .4 nisnersion ;il.•rint; nood ll~

Th~ flow cases treated in the previous section are unsteady
wnereas the dispersion coefficient by Taylor's method essentially
is derived for steady and uniform flow. Extension of Taylor's
ana Iysi.s to unst.ea-ly fJow, has , in the case of pur ely osc ilLatinu
flow be~n done by e.g. Hol16y,Harleman and Fischer (1970) and
C!1atwin (1975).
~or both approac~es it is ~ossibl~ to distl~gui&h tetwee~ two
l:_mi~inq C<1S~S, depenàing on the fle:w period of os ciLlat+on To

and th9 characteristic di~p6rsioR time Tc (Fisch~r (1979)).
S;.lpposeTo) )Tc. In that case the cor.cent ration p,:,ofile!<1" will
hav~ sdfficient time to adapt to the changing velucity profile.
In other wo~ds, the time requirçd for ~" to reach a concentration
:!!rofileis short compared to the time dl.1ringwhich~" actually
has that profile. So a dispersion coefficient of the same nature
as in steady flov can be expected.
In the opposite limit, Tg{(Tc, the concentration profile gets not
enouuh time to adjust to the changing velocity profilè. In purely
oscillating flow, _" can be assumed to oscillate around the mean
·of the symmetrie profiles, which is zero. SOl in thi~ limit, the
dispersion coefficient tends to zero (Ïig. 11).
Int~rmediate behaviour of the dispersion coefficient may be given
by :

T\1
KO:lc = Ko'f (-)

Te

in which: KO:lc= cycl~ averaged dispersion coefficient in an
oscillating flo~ with velocity amplitude ft

Ko = dispersion coefficient in steady flow with
velocity 1.10 = ft

f = function of Tg/Tc
The fl.1nction f{Tg/Tc} is plotted against KOllc/Koin fig. 12 for
an oscillating flow with linear velocity profile between two
parallel plates. For Tg/Tc>1, the averaged d ispersion coefficient
becomes independent of the ratio Tg/Tc and is about half the
value of the dispersion coefficient in the 'corresponding' steady
flow having uo = 6. Fischer (1979) states that this figure may be
used to predict dispersion during tidal flow in an estl.1arywith
little or no surface elevation, but emphasises that dispersion
mechanisms other than shear flow are not accounted for in fig.
12.
The nature of the non-averaged dispersion coefficient in such a
flow can be expressed as:
KOllc= Ko + flcos{2wt) + f2sin(2wt)
in which: fl.2 = functions of Tg/Tc

w = flow cycle frequency = 2n/To
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Fi s c b e r

(a) (b) (c) (d)

Flgure 11 Thc shcar effect in osci'lating flow for the ccse "0 -:; r:. (a) A hypothcticai velocity
distribution 11 = "o .in(21r/(!7). (b) A line souree imroduce.t 'al ( = O. (C) Toe distribution al

( '" ·g/2. (d·,The distribution al ( = Tg.

K IKose 0 .

Figure 12 The rlependcn~e of thc dispersion cocfficient on thc p~riod of oscillation
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Bvid~ntly, the non-averaged dispersion coe~fcient con~ists of a
constant part ,nd a periodic part ot twice tha flow frequency.
Gcslinga and Verboom (197q) indicate thlt ti~e averaJing the
dispersion coefficient over tba flow cyele may be permitted afte~
on~ tidal pp.riod.
Since th9 dispersion
~uperimpose the results
lo obtain the result

eq. (5) is l inear , ::'t 5eem3 possib l e to
for steady and osc~llating fl,w in order
toe the combinea eff~ct cf the two flow

ty,es.
I~ iact, f0r the cycle averaged dis~ersion coefficient, it is:

Regarding the ncn-averaged dispersion coefficient, however, it is
no~ simp]y a matter of sum~ing up the results. This is because a
kind of non-linearity is int=oduced by the product of u" and~"
and because the TaylJr aS5umptions for the steady and unsteady
flow casÇ are not th~ same (Goslinga and Verboom (1919».
In fact, the ~ombined effect of the two flo~ ~ypes generates
interaction terms oscillating with the tidrtlfrequeney.
rlood waves, however, do not reverse, and moreover, their free
surface elevation cannot be neglected. So it feems unjustified to
use any of the previous results.
One important property of flood waves. howev~r; does make it
possible to use the concept of lhe ucsteady flow results up to
now.
Flood wa7es are, generally speakiny, net as unsteady as tidal
flows. Their period is often much longer than the tidal period.
So the ratio Tg/Tc, although of course depecding on othpr factors
sueh as river geometry, has a good chance of being large, that
is, much larger than unity.
Thus, dispersion during sueh a flow cycle can be seen as a steady
state dispersion in a succession of flows that make up the cycle.
In other words (from eq. (8»:

\\2(x, t) B2
K(x,t) = 0.0066·----

Tyy (x, t)
(15 )

The flood wave period is then given by:
Tg /Te = T » 1

in which: T = coefficient of proportionality
So:

B2 B2·C
Tg = T--- = T-----

Tyy kal.l.fg
in which the relationship: u* = (/g/C)·u is used.
Inserting this flood wave period in eq. (14) yields:

E =
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This value of E is usually 50 large that the diffusion analcgy
gives s~tisfying results.
Tt should b~ noted tha~ the dispersion equation and the diffusion
analogy iescribe wave propagation of the same nature. The rat" of
dampicg and the propagation velocity by which the tracer cloud is
~irected by the dispe~sion equatioo, howev~r, are different from
damping rata and prnpagation velocitj of a Elood wave as directed
by the diffusion aaalogy.
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CHAPTER IV ANALYTICAL APPROACH

4.J Introdl.lction

As pointed out in Chapter lIl, cature is complex and mathematic.l
modeis. in which nature ts often already s~hemati~e~ to a trac-
~able d~gree, often cannot te solv~d but ior relatively simple
ca~es. Nevertheless analycical solutions are lisetu], sin~e they
can provide a direct insigbt into their behavicur.
The dispersion equation is of ,arabolic type, 50 on~ initial and
tw.) boundary conditions are required . Naturall y, t.l.ese conditions
have great influence on the solutions and they should therefore,
0f course, correspond with the physical environmental problem
involved.
Rece, solutions to the dispersion equation are, in view of cons-
tRnt rate discharge measurement, sought for an initial constant
concentration distribution throughout the channel &nd a constant
mass input somewher~ along the channel. The channel is of
constant ~idth B.
As will be seen in Gections 2 and 3, such solutions are possible
in uniform flow. Ncn-uniform flow, however, causes severe mathe-
matica! problems.
In Section 4 an attempt is made, after crudely simpl~fying the
dispersion equation, te describe mixing in this flow type too.
Solutions te the flood wave equations are not given here, al-
though these should be used to specify velocity and waterdepth
appearing in the dispersion equation. As stated, there is no
direct need to obtain flood wave solutions, since the flow typ~
corresponding to such waves, is too complex to arrive at analyti-
cal solutions to dispersion during such a flow anyway.

4.2 Ste~dy Uniform Flow Dispersion

In s.teady uniform flow the dispersion eq. (5) reads:

_ + 1]0 - Ko -- - 0ot ox ox2

Assuming that at time t=O there is no tracer material in the
channel yields the initial condition:
~(x,O) = 0
One boundary condition follows from reasoning that at infinitYt
the concentration equals the initial concentration:
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Mass input is a souree term in the dispersion equation. In view
of a one dimensional description, this mass input can be seen as
mass originating from a plane souree. Thus, in fact, the released
suhs~ance is assumed to mix instantaneously over the cross-
section. Fecalling that ~ mass flux is given by a convective ane
a diffusive part, it follo~s:

ó~
(A., UI) ~ - AoK" ) I = Ma (t)

öx :x=O
in which: alt) = distribution of release in time
The Taylor method essentially corresponds to an instantaneous
release, yielding:
a(t)=ö(t) , the Dir~e-delta function.
If the release is continuous, the resulting concentration distri-
bItion eaa be obtained usiny the c0nvolution integral:

t

~(x,t) = JM(tO)~(X,t-tO)dto
o

in .hieh: ~(x,t-to) = coneentration distribution due to an
unit impulse release at t=to.

The initial length Li and eorresponding initial time Ti, during
.hieh the Taylor method does not apply, eause complications
(Goslinga and Verboom (1979».
Apart from the question whether eoncentration distributions found
using the Taylor method differ much from the actual ones, it
follows that only concentration distributions resulting from
instantaneous releases before t-Ti have reaehed a Gaussian dis-
tribution at X>Li. So the convolution integral should be written
as:

t-Ti
gl(x,t)I = JM(tO)~G(X,t-tO) Idto

X>Li X>Li
o

t

r+ JM (tO)~NG (x,t-to) Idto
x>Jli

t-Ti
in whieh: ~G = Gaussian distributed coneentration

~NG = Non-Gaussian ditributed eoneentration
It now follows that
the eontributions
neglected.
It is thus
the mixing
not differ
injeetion.

the eonvolution integral can only be
of the Non-Gaussian initial stage

used if
can be

assumed that the three-dimensional mixing process over
length leads to concentration distributions that do
(much) from distributions developed ·after plain souree
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Thi3 yields that the concentrati0r distribution from a constant
input with:
alt) = H(t" the Heaviside-ster function
can be seen as the sum of the concentration distributions resul-
~ing from impulse jn9uts during the time t.
SO/.with (fig. 1):

;,(g,t) =
M/Ao r- X-IlO t -
--- e xp l- ( pJ

21(nKot) 2/(Kot)

as tho solution for an i~pblse input at x=O,t=O (e.g. de Vries
(1984)}1 it follows that:

91(x,t)
t

I M/Ao X-Uo T -= exp r-( ) Z IdT
2/(riKor) L 2/(Koi) J

o
is the solution for a constant input fr·om t.=O at x=ü •
This integral can be written as (Abramowitz ind Stegun (1965):

for x>O:
M [uot.-x ue x x+ue t

91(x,t) = -- erf( ) - 1 + exp(-)· (erf( ) + I)J
2Aouo 2/(Kot} Ko 2/(Kot)

for x<O:
M [ X-Uo t. ue X x+ue t

~(x,t) = -- erfc( ) - exp(-)·erfc( )]
2Aoue 21 (Kot) Ko 21 (Kot.)

in which: erf(z)
z

= _2_ rexp (-O'z ) do
In J

o
erfc(z) = l-erf(z)

This solut.ion is shown in fig. 2 for different. t.imes t..The
resulting upstream transport may not be realistic from a physical
point of view, since the major part of the dispersion is caused
by differential convectionl which only occurs in the flow direc-
tion. The only physical transport able to produce an upstream
transport is turbulent diffusion which is of minor importance.
In this respect, a boundary condit.ion at x=O allowing only down-
stream transport would be more satisfactory.
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x - x-ut
~ M/A

de Vries 1984

Kt
t: = ....,..-..,..--:-="(H/A)2

_'l

1.25f 10 .

<I> 1,0 r
r-7SC,S

0,25
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~L__ J-~~~~~L_~--~~~--~~~~5 x103
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""- x

f lq 1

8erkho-ll- 1973
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o -- ... x

1
M/(A u)--J...c,o--=-----

o
Fig 2 Concernration Distribunen in the Channcl.
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Such a boundary condition would be:

o at x=O
6x·

ty whicb the mass flux condition is reduced to:
Aoue _I -= MH (t)x=o
Tbe so l.ution n0W is given by (e.g. F~s~her C.979»:

11 ~ X-Uo t ue X x+ue t -
9J~x:t) = --lerfe( } + exp(-) -e rf c I >J

2Aouo 2/(Kot) Ko 2/(Kot)

COillparisonshows that the upstream concentn.tion is now l;rger
by:

M r ue X X+UIJ t -
= -- exp (_"_) -er f c ( ) J

Aouo l Ko 2/(Kot)
in which: D_ = differenee in concentration

Both solutions show that when the equilibrium state is reached
for t...._, the concentration throughout the ehannel tor X}O is:

tf M
j!lo = ---

Aouo Qo
which is the dilution method eq_ (1) used tor determining dis-
charges after a constant rate injecti0n.
Setting a dimensionless time Td = t/Tc and « corresponding dimen-
sionless distance Xd = x/ (ue Tc) (cf. Chapter TIT), yie]ds, f ron
inserting these parameters in the concentration distribution,
that the concentration jII(Xd,Td)is within 95% of the equilibrium
.value M/Qo at a point Xd for values of Td given in fig. 3.
Tt follows that in most practical cases (Xd = 0.4) some 35% of
extra time above the convective time x/uo is needed before the
equi~ibrium state is, approximately, reached.

4.3 Unsteady Uniform Flow Dispersion

In unsteady uniform flow, the dispersion eq. (5) reads:

- + Uo (t) - Ko (t) - - 0
~t ~x ~X2

Analytical solutions could only be given here for unsteady flow
of constant depth {negligible water surface elevation}.



35

-e..
E
Cl.
~..
::...
"'0

E
'"0;::
~
'"0-~

,...
Ol

u..

'<t
ci



.36

Far an impulsc input at t=O,x=O the sol~ti0n
Goslinga and Verboom(1979)):

j"tr "x -0 U~QT

[- 2{< r~odT j
0.)

i~ given by (e.g.

gS (x, t) = ---- exp

2{(d~'dTI

fl
I I
I I
J I

J

For a constant in9ut, using the convolution inlegral, it follows
that tor a release trom t=O at x=O:

t ft

=j
- x - UodT _2

?t/Ac Dy j9S(x,t) exp dT

u<di'dTI :.. UriJ~'dT)
0

A solution allowing no upstream mixing at the point of injection
could not be given h~re.

4.4 Unsteady Non-Uniform 'low Dispersion

In unsteady non-uniform flow the dispersion equation (5) reads:

s [ ögS ]__ a(x,t)K(x,t) -- = 0
a(x,t) öx öx

ö_ ö~
- + u(x,t)
öt óx

1

A general solution to this equation is not available.
A common praGtice in sanitary engineering has been to neglect the
influence of dispersion. In the following, this procedure will be
used to predict at least some aspects of spreading during an un-
steady non-uniform flow.

4.4.1 A Convective Model

Crudely neglecting dispersion yields the simple wave equation:
ÓgS ~~

-+u(x,t) ---0
öt ÖX

An order of magnitude analysis can be used to indicate when the
use of this equation is justified.
Rewriting the dispersion coefficient (6), for a mean value k=0.6,
as:

C'UB2
K = 0.011

.fg·a
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yields the following disparsion equation:
150
_ + u
ót

159.1 1 15 C 159.1
- _ -fO_Ol1-- S:Zu-- ] = 0

I5x a 07. L .fg ;)x

Making the tollowing 5ubstitution:
:::-

z = Z-z

:::
in which: z = dimensionless variabie with order of rnagnit~óe

of l.lnity
Z = constant with order of magnitude of z
z = variabie

yields as orders of magnitude of the three terms above:

-~ U~ CB:ZU~
0.011---

-T L .fg·ALz

or, with U :::L/T and O.Oll·C/.fg :::0.1

1 1
Sz

0.1·-
A·L

Setting:

O.l·sz/AL = T « 1 or Sz /AL c c 10

yields:

::: :::

~. : [ ~~: 1ó~ ógl
_ + U T = 0

::: ::: - - -ót óx a óx óx
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From an aSYlI'i'toticprocedure:
u~ = [ TJ_j + 0(Tn+1)

j=Q

in ~hich: ~j = __.---
j! ÓTJ

i t fellows:

+ T
- n~l Ó~l

l--+ u
ót óx

1 Ó OI!lO) -J
(1.\ ._)

óx
+ ••• +

~t a ÓX

1 Ö Ó9Sn-l )1
(1.\ + 0 (Tn+1 )

ÓX Ja ÓX

So it follows that for a zero-th order approximation onlYt the
concentration is given by the simple wave equation:
(J = (Jo ..;. O{T)

with (Jo following from: + 1.l-- - 0
ót éx

The ratio BZ/At consists of characteristic lengths.
B is the river width B.
A can be seen as the river depth a.
The natllre of the approximation 1.lsedis that it only holds for
slow]y varying circ1..lmstances.Concentration distributions resul-
ting from an instantaneo1.lsrelease can therefore not be computed
1.lsing the simple wave approach. For a continuo1..lsconstant
release, it th1..lSfollows:
L can be seen as the flood wave length Lg

This yields that the approximation can be 1.lsed(T«l) if:
BZ
_" «10
aLg

An estimate of the error made when 1..lsingthis zero-th order
approximation follows from realising that dispersive transport is
neglected compared to the convective transport. So:

F = [. KÓ9S/ÓX]
. \t9S

in which: F = relative error



4.4.2 A Constant Input Solution

Sclving a simple wave equat~on requires one initial and one up-
stream bound~ry condition.
So, togather with the familiar ~nitial condition:

and a bopndary condition:
9$(Ott) = 9S(t)

the problem is defined.
The method followed to obtain ~ solution is the method of charac-
teristics and the problem as defined above is a classical boun-
dary value problem (e.g. Whitha~ (1974».
The characteristics in the x-t plane of the simple wave equation
are:
dx
_ - u(x,t) with - - 0 along the'll.
dt dt
So a value of _ given at a certain ti~e to at the upstream boun-
dary remains constant in time and place along the characteristic
that intersects th~ boundary at t=to.
By varying the parameter tOt all values of _ given at the boun-
dary can be seen 'transported' along all characteristics inter-
secting the boundary and so a solution for _ is given (fig. 4).
Of course, the possibility of actually expressing _ in x and t
depends on the complexity of the functions involved.
Assuming the following relationships for velocity and waterdepth
(for t > x/cl:
u = uo + alt-x/cl
a = ao + ~(t-x/c)
in which: a/~/c are constants, yields:
dx

uo + alt-x/cl
dt
so:

a c
x = C1·exp(- -tl + ct + (ue - c)

c a

Intersecting the boundary x=O at t=to yields a typical character-
istic in the x-t plane:
x 1 1 a

t + ~ (ue - c) - [to + a (u« - c)]-exp[- c (t - tol]
c
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This characteristic 'transports' & boundary value:
!i/B

~(O,to) =
a(O,to)u(I),tl,;)

~limina~io~ of te now yields:
x = f(~,tj

~y which ~ is (imylicitly) given.

For slowly varying circumstances, the bo~ndary condition may be
written as (neglecting higher order terms in 0 and ~):

M/B
aaUo + (aoo + uo~}to

and so I/J is given by:
x 1 [ M/B,,-a.u, 1 0 M/B~-aOUO)J
- ::: t + -(uo-c) - + ~(uo-c)Jexp [- -(t-
c 0 aQo + uo~ c aoo + uoB

In Chapter VI this simple wave approximation will be used to
support the computational results.
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NUMERICAL APP~OACH

5.1 Introdu~tion

A vast aJllountof computational methods on both open ch~nnel flow
anel 4ispersion is avaiJ.able. Quoting from Vreugdenhil (1982):
"Bovever, searching for ~n optimal method does not seem very
'lseful; the import:lI~tthing is to avo id an unc rit icaI use of
~a~ ~um~rical model.'

clearl! defines the nu~erical approach. A ce~ly develop~d model
(Urban11s and vr eebur ç (1~87) has been I.;sed,aftar extension, for
this study,
The .odel uses a
fo'Und at s1.1ccessive
cOIIIP'lted solution
level t+Dt.The .odel is implici t. In an explicit model, the unknovn vari-
ables at a computati~nal point are (generally) directly deter-
llined from variables all known by ~:)mputation at the previous
ti1l-~level. In an implidt nodel , in add i tion . other still un-
kn:tJWD variables fro!:lthe same time level are used. Thus a system
of relations bet~ecn these unknown ~ariables still remains to be
solved (fig. 1).
Alth01.tghthis complicates the computation, implicit models have
the advantage that, under certain conditions, w i th respect to
stability no restrietions concerning the time step are imposed.
Explicit mode1s generally turn ·out to be stabie on1y if the speed
with whicb information travels in tr.enumerical seheme is faster
tha.tthe physiea1 speed of propagation of a disturbanee (fig. 2).
CODcerning aceuracy, however, it should be realised that mesh
ridth and time step must be in reasonab1e re1ation to the length
and time scales involved in the problem at hand. Furthermore,
desired accuracy is strongly related to the spe-eific use of a
computation. Both points are discussed in Section 4.
As with 'Inana1ytica1 approach, initia1 and boundary conditions
are needed to start a computation and solve the difference equat-
ions. These are treated in Section 3.
Yirst1y, the finite difference schematization used, is discussed
in Section 2.

finit~ rlifference appraoch. The solution is
time levels: starting from the previously

at a time t; a step is made to the next time

5.2 Channel Schematization

The numerical model represents a channel as a series of storage
basins connected by conduits with friction and inertia (fig. 3).
The channel is rectangu1ar and of constant width.
At a storage basin (a 'node') the equation of continuity is
app1ied, stating that the net inflow is balanced by a rise or
fa11 in the water level. At the conduits ('branches') the
momentum equation is app1ied and the discharge is computed at the
boundaries between adjacent nodes.
The dispersion equation is solved per node, thus having a mesh
width Dx double the size of the flow equations' mesh width.
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The di f f erence :;quation for ur.s t eaoy .~}.o",is dynau ic and the
difference scheme used is of Cranck-Ni~hol~on type (fig. 4). To
so lve the flOt'l equat ions they ar e Li nearised by ddining e·1·:

a(t+D~) = alt) + Da
in which: Da = difference in e.g. depth

Dt = time step
Prom d known cundition at time t, the variables at t+Dt are
computed by computlng Dar and ~n on. The cnefficients appearing
in the linearised equatio~s are eva1uated at time t.
Tbe difference JchAme fur the dis~ersion equation is a1so cf
Cranck-Niholson ty~e, with th~ mass-flux eva:uated ~t half the
mesh widths, that iSI at the nodez' bounda~ies (fig. 4). The
c~osen schema is central and hoth schemes usa a weighing factor 9
of 0.55, thereby ansuring stability and minimizing numerical
diffusion (fig. 5)

5.3 Initial and Boucdarv Condition~

Solving the difference equation for unst~ady flow1 which is of
hyperbolic type, requiras two initial conditions (one f~r water-
depth (waterlevel) and one for velocity (discharge» and two
boundary conditions (one at every bcundary, either in velocity
(discharge) or waterdepth (waterlevel), or as arelation between
the two).As an initial condition, the model starts from a steady flow
condition, using the Chezy relationship.
At the upstream boundarYI a flood wave discharge is specified
having a Gaussian distribution (fig. 6):

Q(O,t) [
t-r )J2= Qo + Qexp -~ ( cr

in whieh: Q = diseharge amplitude
T = time to peak diseharge
cr= wave's standard deviation

At the downstream boundarYI Jones' formula is used. This is a
local application of the kinematic wave approach to the diffusion
analogy (e.g. Verspuy and de Vries (1981». With:

öa u2

9 - gib + g_ = 0
öx C2a

and:
öa 3 öa_+ - u _- 0
öt 2 öx
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it follows tha~:

c (--- - ie)

wbich is the Jones' formula.
1 dQ

in wbich: c = propagation velocity = tor constant C.
B da
3= _ a ,er unit ~idth
2

Contrary to a stage-discharge relationshiPt as given by the Chezy
relationshiPt Jones' formula accounts for the loop effect in the
flood wave's rating curve (fig. 7).
In the implicit scheme Jones' formula re&dst in waterlevel and
discharge fashion:
hn+1-b"
--- = e[c

Dt
in which: h = waterlevel

R = hydraulie radius
n = number of time steps
a = weighing factor

Llnearisation of hand Q and approaching the coefficients in a
Taylor series with respect to n+aDt yields:
hn+1 = h" + Dh
0"+1 = Q" + DQ

de
C"+1 = e" + a -Dh +

dh
á "+1 dt

t"+l = t" + a --Dh + ••••
C2RAZ dh
Inserting these yields:

1 de de
Dh [_ - ezC" __ Q"Q" - az t"-Q"Q"

Dt dh dh

Now this equation is solved at the downstream boundary instead of
t.hecontinuity equation. The propagation speed is t.akenaccording
to the diffusion analogy (Jansen (1979»:

c = =
Q 1 de 1 dA 1 dR
ä [ ë dh + A dh + 2R dh ]

1 dQ
B da



Fig. 7 :"oop in rating curve

tor flood wave
1 - local maximum tor velocity
2 - local maximum tor dlscharge

3 - local maximum tor depth -
!lood maximum tor discharge

4 - flood maximum tor dep th

Jansen 1979
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Solving the difference equalion fJr disparsion, requires (Chapter
IV) one initia! and two boundary conditions.
~s an initial condition tha ~odel starts with zer0 backJround
concentration ttroughout the channel.
At the upstraam boundary mass input is specified as a source term
in the dispersion equation. In volume fashion the dispersinn
equation then reads (fig. 8):

óV9J m [ t5~ 1
- + L P Au~ -AK - J -:: M
öt i=l t5x j

in which: V ::volume of the r:ode
m = number nf br~nches connected with the node
p = indicator whether a branch discharges to or fro~ a

node
j _ specific boundary with adjacent nodes

lt the downstream boundary the model uses ö_/öx=O as a boundary
condition, so no dispersive transport is assumed (Chapter IV).
Upstream dispersion at the node of release is avcided in the same
way.

5.4 Accura~y

5.4.1 Introduction
Tbe resnlts of a computation have little or
can be said about their accuracy. Giving a
aresult's accuracy is, however, not easy
p03sible.This is, firstly, because many sourees of inaccuracy are incorpo-
rated in the final result of a computation.
Secondly, because the precise error magnitude of the contribu-
tions of these error sourees is often not known.
Thirdly, because the combined effect of these error sourees often
cannot be predicted.
Some error sourees have already·been stipulated. The discrepancy
between nature and mathematics, the inaccuracy of physical data
(e.g. dispersion coefficients or roughness) or even the incorrect
use of a model (e.g. using a simple wave model when its approach
is not justified) .
This section is concerned with errors due to numerical effects.

no value if nothing
precise prediction ot
and often not even

5.4.2 Flood Waves
Damping and propagation of a wave (fig. 9) can be represented
different1y in a numerical computation (fig.lQ).
The ~ropagation velocity may be too large or too small and the
damping mayalso differ due to numerical effects.
The desired accuracy of representation will yield a desirabie
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;il!eshwidth and ti.me step 10r running a comput at ion . Tl:1eLn t Iuence
cf (he weighing factor e is disreryarded ~ere, since it i3 fi~ed
at 0.55 in ~he ~odel at hand.
A quantitative method for choosing Dx and Dt is given by
V!'eugdenhil (1985).
Vith respect to a wa7e that is not damped by friction, the fo1-
lowing ratios between numerical and analytical damping and propa-
~ation velocitiy can be given:

n
dn = Irl = damping factor per wave pariod

c... = ______ = relative celerity per wave ~e~iodarg(r)

in whieh: n = number of time stens per ~ave period
k., = 2n/L., = '"ave nunber
r = amplification !actor of the numeri cal scheme

Fig. 11 gives values of dn and Cl'" for differ~nt Dx and Dt and
9=0.55. In an ideal situatioG, ~oth dn and (.1'" wOl.lldbe unity. The
influence of friction may be analys~d considering the differenti-
al equation:
~Q
-- + rQ = 0ot
and its differenee a~proximation:

9 Qc
in whieh: r = friction factor = 2 c% aoAo

For an initial condition Q(x,O) = Qo the solutions to both
equations above are given by:
Q(t) = Qoexp(-rt)

[
r-u-eirne f"Q(t) = Qo
1 + erDt

Now consider the relaxation time t~=l/r. If the .analytical and
nl.lmericalcomputation would give equal resl.llts,it would follow
that:

r l-(l-e)rDt Jt~/Dt= l/e
L 1 + erDt
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Since, however, t~ere will bo a ~iscrepancy betw~en both soluti-
ons; a damping factor 1r caD D~ defi~ed as:

- rDt:.
d- =

- 1- (1-a) rDt ]
lnl

L 1 + ElrDt
Fig. 12 gives dr as a function of rUt for 9=0.55.
When separate analyses of both mechanisms described yield satis-
factory result3; it may be ex~ected that their combined effect
will be satisfying too (Vr~ugdenhil (19HS)).

5.4.3 Dispersion
Acc1...racyin
by effects
lation, and
mechanism.When separate analyses into these effects yield reasonable
accuracy for a criven Dx, Dt and a, it may, again, be expected
that the accuracy as a whole is acceptable (Vreugdenhil (1985»).

representing the di$persion process is determined
as numerical disperzion: occurrenc~ of spa~ial oscil-
the effects of both the convective and the diffusive

Numerical dispersion caused by the di~ference sc~eme can be
quantified expanding each ditfp.rence term in a Taylor series.
This yields the 'modified' e<{l.lation.For a central scheme (e.g.
Vrel.lgdenhil (1985»:

+ u - K
Ó~gS

-1.I(1-20)Dt- + O(DxZ;DtZ)
öt~~t óx

The right hand side of this
'trl.lncation'error and consists
be recognized with the nature
Vrel.lgdenhil (1985»:

'modified' eql.lation is the
of terms among which a term can
of a diffusion term (e.g.

Knum = -1.I(1-20)Dt·1l~
Apparentl!, the complltation is carried out with an effective
dispersion coefficient:
Kett = K + Knum

This has two conseqllences. For reasons of stability, the effec-
tive dispersion coefficient shol.lld not be negative. This is
ensl.lredfor 0=0.55. For reasons of accllracy, the numeri cal dis-
persion shol.lldbe an order of magnitllde smaller than the physical
dispersion.The model under consideration artificially lowers the physical
dispersion coefficient, to make the effective dispersion coef-
ficient represent the actual physical situation. Tt ShOllld be
emphasised, however, that the other terms in the truncation error
may be important as weIl. They are, however, more difficult to
interpret.
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Fig 12 Friction Influ e n ce
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Even if a computational methnd is stabie, oscillations can occur.
The existence of these oscillations is governed by the cel1-
Peclet number (e.g. V~eugdenhil (1985)':

u'Dx
p =

K

in which: P = cell-Pe~let number
Dx = mes~ width

The souree of their excitation ü a sudden variation in concen-
tration imposed by a boundary condition (e.g. a sudden release of
a large amount of material) . A sufficlent condition tn prevent
these oscillations is given hy (e.g. Vr~ugdenhil (1985»):

P < 2

The accuracy of the finite difference method for diffusion only,
can be judged by considering the diffusion equation as a 'black
box' which transfers a certain 'input 5i1nal' at one location to
an 'output signal' at another (e.g. Vreugdenhil (1985)). The
difference between the transfer functions of the differ~ntlal and
the difference equation during, for example, the relaxation time,
yields a measure for the accuracy. This is given in fig. 13 as
function of 6,K,ko and Dt.
The influence of convection can, again, be estimated by comparing
propagation and damping by the differential and difference
equation. For small values of 2n'Dt/Tg, the relative celerity Cr
~nd damping factor dn are given in fig. 14 as a function of Dt/Tg
for 6=0.55.

5.4.4 Evaluation
From comparing computations with analytical solutions it may be
concluded that the model produces fair results with respect to
steady flow dispersion as weIl as flood wave representation.
Tt is thus assumed that the model will also produce satisfying
results when computing dispersion dbring flood waves.
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CHAPTER VI RESULT~

6.1 Tntrodnction

In view of a practical approach to discharge measnrements dnring
unsteady flc~ by constant rate ~njectionl the errors relative to
measurement3 during steady flow are eval~ated; by ie~ermining t~e
disehdrge from the co,centration distribution (o~ 'chemograph'I,
nsing the steady st3ta rela~ionship (eg. (2)):

i1

!'5 (IJl t )

:n the computational modell sneh a discharge ~easnrement is simu-
Lated, The di.screpancy between the "neasured discharne" Qrn and
the "aetual discharge" Qr defines the rel~tive error:

:.2r (XI t) -Qm (XI t )
s Ixv t ) =

The nature of the function t is studied for Gaussian shaped flood
waves (Chapter V) propagating down a rectangular uniform channel.

6.2 Oualitative Results

In all computations made, the behaviour of the function t in time
at a certain distance from the point of injection is typically
that of fig. 1.
Several sources contribute to this behaviour.
Dispersion causes damping of the Qm wave. Flood
causes damping and distortion of the Qr wave.
causing the oscillation in fig. 11 howeverl is a
tween the aetual and the measured discharge, as
2.

wave behaviour
The main souree

phase. shift be-
is shown in fig.

This phase shift is caused by the difference in propagation velo-
city of both waves. The Qm wave travels with a propagation velo-
city somewhere between the base flow velocity uo and the maximum
flow velocity during flood wave passagel whereas the flood wave
travels with a propagation velocity about 1.5 times as largel the
actual value depending on flood wave properties and river charac-
teristics.
This yields that the time lag
distance from the injection
creases the maximum errors.

between both waves increases with
point (fig. III which, in turn, in-
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T.ais Intluence of the spati aI dlmension on th€; r.inehistory of
tbe err~r has b6e~ o~ser7ed in la~oratoJY and fie:d c~pariments
(e.g. Glover and Johnson ~1974), Vailing and jpbb (198J), Van
craeneubr oeck and Marivo~t {1987)}. 1'he result inn hys t ereric loop
~evelo9ment with distance trom the injection point, observed in
b~h field experiments (fig. 4j and comput at i.ons (fi(J. 5)
t:ypically il1ustrates this.
lith a time lag small compared to the flood wave period, as wi11
be the case wi th most discharue maasur eneuts, maximum er rors
occur near or at. the times of maximum inert ia (öQ!öt) and st.or açe
(~a/~t), w~ile near th6 maxim~m and ml~iwu~ discharges , the
erzor is small. rhi s is sim:l::::.rto observati cns by Ki 'lpatr ick and
Cobb (1986). !t should be noted, h0wever, thal ttes~ ralation-
sbips are not typical, but strongly ~epend o~ ~he or1er of magni-
tude of the time lag compared to thc flood waV6 perioG.
The influence of sourees other than difference in ;)r")pagation
veloeities of both waves may te demonstratpd by artificially
"reshifting" 50 as to cause the time lag ~o disappear. COr:lparinq
tbe thus remaining errors with the origlnal ones, shows (fig. 6).
tbat difÎerence in propagation velvcities is by far the most
important source of error development.

6.3 Analvtical bac~q-ound

As a means of evaluating these computational results the analyti-
cal approach in Chapter IV can b~ used. From that simple wave
approximation it followed that for a flow having:
u = 1.10 + a(t-x/c)
a = ao + ~(t-x/c)
the concentration resulting from a constar.t rate injection was
defined by (t ) x/c}:

- :::
1 [ M/B;-ao ue 1 ] [a M/B;-ao ue }]

t + -(uo-c) - + -a(Uo-C) exp - -(t-
a aoa + ue ~ c aoa + ue ~

x

c

Using the steady state relationship (eq. (2) per unit width):

qm = M/B;

it follows that:

- :::
1

t + -(uo-c)
a

[
qm-aouo 1 - [a qm-aouo)l

- ---- + a-(Uo-c)Jexp - -(t-
ae a + 1.10 ~ C ae a + 1.10 ~ J

x

c

~tarting with a boundary condition:
qm(O,tO) :::aeue + (aeo + uo~)to :::q,..(O,to)
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it.folhlws +hat the aeasui ec discharqe q~l ,aS5tÖ!S point y: at riae
t.following f~om:
x

c

whereas the actual discharge qr passes point x at.t folJowing
from:
t = to .:.xtc.
This is illustrated in fiG. 7.

Defining~

t =
and:
~ = maxltl

it can be concluJed, fro~ computations made tor several values of
uo,ao and a, that:
(-) the maximum discrepancy ~ between actual anel measured dis-
charge grows with distance (fig. 8). This is more pronounced for
waves with a<O (a decreasing velocity) ~han for waves having a>O.
(-) the dis~repancies between actual and measured discharge are
caused by differences in the waves' propagation velocities (fig.
9). The "mean" propagation velocity of a "complet.e" qm-wave, t.hat
is, a wave consisting of both a part with ~>O and a part having
a<O, would be about the base flow velocity Uo (fig. 10).
(-) maximum errors increase with increasing values of a (fig. 8J.

The nature of these results give some back up for the numerical
computations of Section 6.2.

6.4 Ouantitative res1.llts

6.4.1. Theory
ror a quantitative analysis of the relative error t as a function
of river and flow characteristics, a dimensional analysis can be
used.
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For a unit width, the governing equations are:

(in on oa u2
_+ u + g - gib + g = 0
Ot OX óx C2':t

óa Óil óu
_+ U _+ a = 0
ot ÓX óx
00 ó~ 1 (, r ó~ ]

I _+ 11 - _ (:lK_) = 0

l ót ox a öx L óx

Choosing dimensionless variables as fol~ows:

A = a/ao
U = U/Uo
~ = ;. / (Jo

r = K/Ko
X = x/Lo
T = uot/Lo
in which: ao =

uo =
~o =

=
Ko =

=
Lo =

=

base flow depth
base flow velocity
base flow equilibrium eoncentration
M/Baouo
base flow dispersion coefficient =
O.0066·u02B2/Tyyo
base flow mixing length
O.4uoBz/Tyyo
in which: Tyyo = kaou~o

in which: k = eoeff. of proportionality

Inserting these variables in the diffe!:'entialequations yields:

oU óU ao óA ibLo Lo U2
_+ U + g - g + g -- = 0
o'J' OX uo2óX u02 C2aoA

óA oA oU
_+ U _+ A = 0
oT oX óX

ó~ ó~ Ko 1 0 o~
_+ U - _(Ar-) = 0
oT ÓX uoLo A OX oX



Using the Chézy relationship: it = it follows that:
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1l.,2

5U 15U a., éA Lo t]2

+ U + 9 - 9 (1 .- -) = 0

óT 15X uo2ö.x C2 a» A

óA -3A r.U
+ IJ + A :::: 0

15T ÓX öX

öll> öcD Ko 1 15 ócD
+ IJ - -(Af-) = 0

óT èiX u.,Lo A ÖX èiX

in which. t.he following dimendonless par1.meters can be
recoçnized:

ao
(-) 9 = Fr-2

1102

Lo
(-) g

C2ao
Ko

(-)
HoLo

The coefficient of proportionality for transverse dispersion is
another dimensionless parameter:
{-} k

Through the boundary conditions, other dimensionless parameters
are involved {fig. 11}:
(,-)ama"",/ao in which:amax = maximum waterdepth

Uo
{-} - Tg

Lo
{-} Q, defining the flood wave's shape
The final dimensionless parameter determines the relative error
bet-ween achlal and measured discharge :

AU - cD-1
(-) t =

cD-1
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k.4.2 Practjc~l ~rpco~ch

With some reasoning nnd limitations, the number of dimen5innless
parameters involved, can be reduccd.
FiLstly, it has been shown (Chapter IIl) that the di~persion
model's application is essentially restricted to flood waves that
can be described by the dif!usion analogy (T~>}Tc). This has the
consequence that two para~eters Fr-2 and gLo'C2ao can be repla-
cad by one par~me~er:

bLc
,-)..
Secondly, only flood waves of Gaussian distribdtion are consider-
ed, 50 the parameter Q is not taken into acco~nt.
Thirdly, t.he di~tance from toe point of injection Lo is taken
minimal. F~om eq. 8" and 10, it then follows tnat:

10 = O.0165·uoLo
.hieh yields tor the parameter Ko/uoLo a fixsd value:

Ko(-) = 0.0165
uoLo

Finally, only maximum errors are ecnsidered, so the error fluctu-
~tion during flood wave passage is not taken into a~count. This
yields instead of the parameter &:

(-) ~ = maxltl

Resuming, this parameter 6 is now described by;

(-) k

Uo
(-) --Tg

Lo

This latter parameter ean be written as (eq. 9 and 10):

uo
--Tg = 2.5 Tg/Te
Lo
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So :his leaves the maximum error ~ described by:
(-) k

(-)

ama=",
(-)

ae

(-) Tg/Tc

All computations made have sho~n no signifi~ant trend in the
f.nf Iuence of thF! parameter bLo/ao on th~ error n:agnitude.
Examples are given in fig. 12.
For larger values of Tg/Tc, thi~ may be explained by tealising
that damping of the flood wave over the Mixing length is of minor
importance. Moreover{ frbm the qualitative ana1ysis in Section
6.2, it followed that, for all va1u€s of Tg/Tc, wave damping
contribution to the error magnit~de is of minor import~nce com-
pared to the inf1uence of the difference in propagation ve10-
cities.
Omitting distinction to the parameter lbLo!a?, which, in fact,
means a kinematic wave eva1uation of the dynamic wave computa-
tion, yie1ds the fo1lowing graphs (fig. 13 and 14), in which the
inf1uence of the parameter k is shown.
Since the value of the parameter Ko/uoLo is fixed at 0.0165, the
parameter k influences, through Tc, only the va]ue" of Tg/Tc. It
is to be expected that the smaller values of k will yield,
through larger mixing lengths, the larger errors. From the nature
of the graphs, it is clear that for the larger values of Tg/Tc,
however, there should be no significant 4ifference in error
magnitude for different values of k.
Fig. 13 seems to illustrate this for valnes of k=0.25 and k=0.60.
Computations made with values of k=0.95, however, obscure these
results in showing no significant smaller errors compared to the
computations with smaller values of k (fig. 14). Values of k
wil1, in the field, be hard to determine accurately, and their
inf1uence being not very pronounced, it has been decided, in view
of a practical approach, to omit distinction to the transverse
diffusivity coefficient as weIl.
This 1eaves in fig. 15 the maximum errors defined by amax/ao and
Tgn.:
Drawing regression lines through and near points of equal amax/ao
fina1ly gives fig. 16.
For known values of the parameter amax/ao and Tg/Tc and for
values of the other parameters within their indieated ranges, the
maximum relative error ean be estimated from fig. 16.
In the field, the parameter amax/ao can be measured by
(continuous) stage recording.
Estimating the parameter Tg/Tc (or (uo/Lo)·Tg), however, is more
difficult. Even if the flood wave period is known (from e.g. the
stage recording), the value of Tc (or l.lo/Lo)will be hard to
determine, sinee the base flow velocity uo is not known and the
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actu~l mixiag lenqth in toe field L~ will, hO doubt, djffer from
the serni-theoreti~al va]ue La.
An approxi.ete proced~re cao be, to estimate a velocity Um trom
the measured discharge Qm:

Um ~

in which: im - rnaasu~ed depth
Um = esti~ated velocity

and coaput inç :

Um
Tg/Tc I :::;0.4·_·T"

m L,.

in whi~h: L,. = actual mixing length
Tg/Tel ~ estimate~ value of T,,/Tc

m

as an indicator for T~/Tc.From fig. 16 it then follows whether or not a discrepancy between
the actual an~ estiMated val~e of Tg/Tc has much influence on the
maximum error determination.

(i.4.3 Evaluation

It can be concluded from fig. 16 that maximum errors can easily
be an order of magnitude larger than the 1% relative error during
steady flow conditions (Chapter 11). The actual error at the time
of measurement tm, of course, may weIl be much smaller (fig. 1).
Nevertheless, an attempt to improve the measurement's result is
welcome. This can be done by an iterative procedure.
In.a first approximation, such a procedure could be to estimate
the time lag from:

-L,. L,. L,.
td :::; =

Um 1.5·um 3,um

in which: td = estimated time lag

It is hereby assumed that the measured velocity Um is a good
approximation of the Qm-WaVe's propagation velocity and that the
Q,.-wave tràvels 1.5 times as fast (Section 6.2).
Using the Chezy relationship, it follows for constant Chezy-
coefficient:
Q = f(a3/2)
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and so an iterative procedure could be:

in which: tm = time of measurement
An example of the behaviour of the relative e~ror in time after
this correction procedure is typically shown in fig. 17.
From estimating the time lag, a second ap~roximation can be
give:1:

An example of the behaviouT of the relative er~or after this
corr~ction has alLeady bèen shown in fig. 6.
Both frocedures are il~ustrated in fig. 18.
Compared to the original errors their improvements are obvious,
although in the fiel~ their effects will, no doubt, be less
pronounced. ~part fr~m nature's variability causing differences
between the actual me3n flnw velocity, the actual propagation
velocity and their indicated estimations Um and 1.5,um, the
me~surements in the fiAld will also be obscured by measurement
errors and 'noise' in e.g. the stage-recording.
Both procedures will be even more sophisticated using the Jones
formula instead of the Chezy stag~-discharge relationship and by
estimating the time lag from that stage-discharge relationship
(Charter V):

L,.. L,..

Um Cm

ir.which: Cm = _'--- = estimated Q,..-wavepropagation velocity
1 dQm
B dam

and so for constant
corrections:

roughness this yields the following

1 l5am]]._ 1/2

:m ~:: tm ]

and

The improvements of these correction procedures over the previous
ones have not been investigated. Tt is clear, however, that these
last iterations require more measurements.
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As an a~ditinnal feature, the es~imated time lag, to~ether with
an estimation of the fleod wave period (from e.C. thd stade
recordings), provide a means of evaluating the order of magnitude
ot the actual relative error E compared to its maximum value ~
(Section 6.2). For small values of the r t.io ta/T';:Ithc maximum
e~rors (positive and negative (fia. 1) o~cu~ ne~r or at the fast
rising and falling parts of the hydrograph, For larg~r 7alues of
ta/Tg the maximum errors wi11 oecur late~ in the f!eod wave
period.
This is illustrate1 in fig. 19.
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CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS

In view of a practic~~ ap,roach te ~onstant rate dilution
discharge measurements ~uriag flco~ wav~s, t~e errors relative to
measurements during steady flow are evaluated, by determining the
discharge from the c0ncentr~tion distribution (or 'ehemograph'),
using an extended steady state relationship:

11

in ~hich: Qm = measured diseharge
M = constant tracer ~mcunt released per unit time~ = concentration
L = mixing length
t = time

In the eomputational model, such a discharge weasurement is simu-
lated. The discrepancy between the "measured discharge" Qm and
the "actual discharge" Qr defines the relative error:

t:(L,t) =
Q,. (L, t) -Qm (L, t)

Qm(L,t)
in whieh: Q,. = actual discharge

t: = relative error

Computations made for Gaussian shaped flood waves propagating
down a channel of rectangular, uniform cross-seetion, yield the
maximum relative error 5:
ö = maxlt:1
as a funetion of dimensionless parameters in fig. 1.
Within the indieated ranges of the relevant parameters the magni-
tude of the maximum relative error ~ is significantly influeneed
only by two parameters:
am.x/ao : a measure for the flood wave's amplitude

: a measure for the flood wave's length eompared to the
mixing length

The main error souree is a phase shift between the aetual and the
measured discharge. This phase shift is eaused by the difference
in propagation veloeity of the tracer cloud and tbe flood wave.
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Sinep the ~aximum errors 6 can easil~ ~e lar~er oy an order of
mag~itude th~n the 1% reiative erro~ a~hievable during steady
flow conditions, correct ion procedures are :eco~fuended: Lased on
estimating the time 16g between both waves fr~m the known mixing
length and the measured discharge. Tt is thereby assu~ed t~at
(continuous) stage recording is part of the measurement campaign.
An additional feature of the time lag estimation is that one
discharge measure~ent yields approximations of the actual
discharJe at two different time levels.
Moreover, from comparing the e3timated time lag te the flood wave
~eriod, togeth~r ~ith the ~t~ge rd~ordlngs the order of mag~itude
of the actual relative error t co~pared to its maxi~um value 5
can be e,alua~ed-
Since nature rarely direc~s exactly Gaussian shaped flood waves
dopn rlvers oi rectangutar and utiform cross-section, these
results h1ve but an indicative value.
Laboratory and field experiments and mor9 computational work to
take account of nature's variability are therefore recommended as
topics for further study.
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0.25 < k < Q,US

-Fig ., 6- curves



LIST OF IMPORTANTSYMBOLS

svmbol dimensinn

a depth
30 base flow depth
am measllr~d.del)th
3max maximum depth
A cross-section
Ac base flow cross-section

[L]
[L]
[~]
[Lj
[Ll]
~Lz ]

B width [L]

c propagatior. velecity
estimat.ed propag&tion velocity
relative cele~ity per wave period
Chezy coefficip.nt

[LT-1 ]
(LT-l)
[LT-1 ]
['U'hT-1]

Cr
C

dn
dr
D
De
Dt
Dx
D.

damping factor per wave period
damping factor peL rp.laxation t:me
molecular diffusi0TI coefficient
characteristic diifusivity
time step
mesh width
flow weighted degree of mixin~

[-]
[-]
[LlT-l)
[LZT-1)
[T]
[L]
[-]

(-]dimensionless parameter
Froude number
forces in s-direction
mass flux in x-direction

[-]
(MLT-Z]
[ML- ZT-1]

g gravity acceleration [LT- Z]

h water level [L]

[-]

[-]
[L-1 ]
[LZT-1 ]
[LZT-l)
[LlT-1 ]
[LlT-1 ]
[LlT-1 ]

bottom slope
k
ko
K
Ke1'1'
Knum

Ko
Ko:se

coefficient of proportionality
wave number
dispersion coefficient
effective dispersion coefficient
numerical dispersion coefficient
base flow dispersion coefficient
dispersion coefficient in oscillating flow

L mixing length [L]
Le characteristic length [L]
Lo flood wave length [L]
Li length of initial zone [L]
Lr actual mixing length [L]
LO.95cross-sectional mixing length for 95% mixing [L]
m
M

released tracer amount
const. tracer amount released per unit time

[M]
[MT-1]

n number of time steps [-]

P cell-Peclet number [-]



qm ~easured dis~harge ~pr unit width
qr act&al dlsctarqe per ~nit width
Q discharge
Q~ me~sured discharge
Qo base flow discnarge
Qr actual dischRrge

[LlT-l)
[L3T-1]
[LJT-1 J
rL1T-1]
[L3T-1]
[L3T-1)

r friction factor
R hydraulic radius

[T-1]
[L)

5 bottom slope directed cocrdinate (-)

te relayatioL ti~e

[T]
[T)
(T]
[T]
~T]
[-]
[T]
[T]
[L3T-1]
[1J3T-1 ]

t time
td e~timated time la~
tm time oi measureffient
Tc ch1racteristic time
Tó dimenvionless ti~e
TQ flood wave period
Ti initial time
Tyy tr~nsverse diffusivity
Tyyo base flow transverse diffusivity

v flow velocity in y-direction

[LT-1 ]
[LT-t ]
(LT-1]
[LT-1]
[LT-1]
[LT-1 ]

u flow velocity iL x-directi~n
Um estimated velocity
Uo base flow velocity
U* bottom shear flow velocity
U*o base flow bottom shear velocity

w flow velocity in z-direction [LT-1 ]

z vertical coordinate

[-]
[-]

[-]

[-]

x longitudinal coordinate
Xd dimensionless distance
y transverse coordinate

~ coef f i cien t

[LT-3]
[LT-1)

a coefficient

& relative error

[-]

[-]

[-]

[L]

ó maximum rel.ative error

a weighing factor
Q flood wave shape factor
I-' density [ML-l]

Tb . bottom friction
_ concentration
_i initial concentration_0 base flow equilibrium concentration

[ML-l]
[ML-l]
[ML-l]
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