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SUMMARY 

A study has been made of techniques that could be used to extend axial 

singularity methods for incompressible flow, to deal with 

compressibility effects. In particular the accuracy of common 

linearisation methods has been investigated, together with methods for 

the iterative solution of the full potential equation using 

distributions of sources in the flow field. These field sources 

account for the non-linear terms in the equations, and a computer 

programme has been written to implement the method. For a range of 

body shapes, and subsonic Mach numbers, simple distributions of sources 

in the field lead to accurate results after only four iterations. 
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1. INTRODUCTION. 

Over the past three years, research has been carried out, at the 

College of Aeronautics, C.I.T., Cranfield (Refs. 1 to 4), into the use 

of axial singularity techniques for generating the flows around 

stream-lined bodies, and a range of useful methods have been developed. 

One major area of application of the work is in the calculation of the 

aerodynamic characteristics of aircraft fuselages, missiles, and 

aircraft stores. These techniques are inherently concerned with 

incompressible flow. However, the flow over an airframe and stores 

will probably be transonic for most of the flight, since the aircraft 

will probably be flying at high subsonic speeds close to the ground. 

It is obvious that some means of extending the previous methods to 

compressible flow is required. 

Taking only the inviscid approximation for the flow (see Ref. 5, 

Chap, 7), the governing equations are non-linear, requiring a 

numerical/iterative solution throughout the flow field. In general, 

therefore, a flow solution demands not only that complicated geometries 

are dealt with, but also that the flow variables are determined 

everywhere in the field. At the present time, modern computing 

technology is still not capable of calculating flow problems in the 

general case, as Kutler emphasises in his recent review paper (Ref. 6). 

As a consequence of this, current computational software tails into 

two main categories: 
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a. Incompressible solution models which can solve complex 

geometries (e.g. panel methods, see Hess and Smith, Ref. 7), 

which are modified to solve a linearised form of the 

compressible flow equations in scaled a flow domain, i.e. 

using similarity laws. These methods are widely used, even 

though they are only strictly valid for small velocity 

perturbations and purely subsonic flow. 

b. Full field method solutions for a limited range of specific 

cases such as aerofoils, wings, nacelles and bodies as 

described by Kutler in Ref. 6, which solve either the Euler or 

full potential equations, and can thereby deal with transonic 

flows and weak shocks. 

As our own work has been concerned with the generation of 

incompressible flows by using axial distributions of singularities, we 

would like the capability of dealing with, at least, high subsonic Mach 

numbers, whilst still utilising the basic incompressible technique. 

This report presents the results of our investigations into posssible 

ways of extending incompressible flow methods to deal with 

compressibility effects. In particular three areas are investigated. 

a. The accuracy of linearising the equations is investigated, 

together with the possibility of extensions to the 

linearisation process. 

b. The method of a power series expansion in Mach number for 

spherical shapes is developed, and the question of extending 

it to more general shapes considered. 
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c. Solution of the f u l l potent ia l equation by re -wr i t i ng i t in a 

pseudo-Poisson form, and the placing s ingu la r i t i es in the 

f i e l d to allow for compress ib i l i ty . 
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By rewriting the pressure term of the momentum equation in the form 

and then transforming the momentum equation into a scalar equation by 

multiplying it by a^ , gives 

Combining this with the steady continuity equation 2.1.1 gives 

Written out in terms of •*/̂ ;'*''> ^"iM)*"^ » 2.1.8 becomes 

JtiT 

•4- UV flu + ^ \ + U'ur/ötr 4> >t«r\ 

+ ora ( ̂  + ^ u \ == O 

Replacing the velocity components of 2.1.8 with the appropriate 

derivatives of the potential, the equation becomes 

2.1.9 

2.1.1C 

We now have reduced the high speed flow equations to a single 

differential equation for the potential, J2> ; the so-called full 

potential equation. Unfortunately this equation is non-linear, and so 

there is no general theory available which provides an exact solution. 

To overcome this, three alternative possibilities exist: 
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a. to obtain a numerical solution, 

b. to transform the variables to make the equations linear, but 

still exact, 

and c. to find linear equations which are an approximation to the 

exact non-linear ones. 

Using modern computing techniques, numercial solutions are 

possible, if some-what expensive in computer run time and memory 

storage, and so linearised equations are still used in many situations 

to give economical results. With transonic flow, however, the 

equations are inherently non-linear, making the only approach a 

numerical one. 

2.2 Linearisation of the Equations for Subsonic Flow - The Gothert 

Similarity Law. 

Equation 2,1.9 can be linearised by using classical small 

perturbation methods, whereby the velocities are redefined as 

u = U « + u' 

^ = ^' 2.2.1 

or s ur' 

such that u/U« j v / u ^ n d u / U , are a l l very small . Using 2.1.7 in the 

form 

U"" ^ g"^ -t-ur^ -h 0^ = U , ^ + O^'- 2.2.2 

2. ïr-i Z »-i 
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and then substituting 2.2.2 and 2.2.1 into 2.1.7 we obtain 

Removing those terms containing products or squares of the small 

I I r 

perturbation velocities u , vr , ur , on the grounds that they are 

negligible compared to the remaining terms, leads to the much 

simplified form 

+ (Cv-»)U„u' -a»-^)^'* + U^irV^^'-^M^ 
' » 

If it is further argued that terms containing "m^ ,^^ and Ui***> are 

also negligible, we obtain 

which is the final linearised form, valid for Mach numbers less than 

unity. 

This equation can be solved by suitable scaling of the velocity 

potential, jZ» , and the space coordinates, as follows 

ij- = rtij, 2.2.6 
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where the scale factor MrCl-'Vy , the subscript c denotes a 

compressible flow quantity and subscript i refers to the scaled 

variables. Substitution of 2.2.6 into 2.2.5 shows that the scaled 

equation is, in fact, Laplace's equation, and so a solution of 2.2.5 

can be found by calculating the incompressible flow over a scaled shape 

given by 2.2.6. This process is referred to as the Gothert 

transformation. The incompressible velocities are then transformed 

back to the compressible flow values by using the relationships 

Finally a relationship is sought for the pressure coefficient, defined 

as 

^ b = t^-f»- = -^ /f» . A 2.2.8 

1.* V p. I 

For an isentropic gas, equations 2.1.3 and 2.1.7 combine to give 

This can now be subst i tuted into 2.2.8, and using 2.1.7 to remove the 

sound-speed term, 0 , we obtain 

2.2.10 

A linearised form of 2.2.10 can be derived by substituting the small 

perturbation quantities of 2.2.1 into 2.2.10, and retaining only the 

second, or lower, order terms. Thus 
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which can be approximated, ignoring the second term, for elongated 

bodies, by 

2.2.11 

tic .̂.̂  

Therefore, having calculated the flow over the scaled body, the 

pressure coefficient on that body will be given by 

and hence, using 2.2.7, 

or /• I ^ 2.2.12 

This last result enables incompressible solutions for flows around 

scaled bodies to be generated, and the resulting pressure coefficients 

converted back to obtain those on an unsealed body in compressible 

f 1 ow. 

2.3 A Comparison of the Full Potential Equation Results with the 

Linearised Results. 

An investigation has been carried out into the accuracy of the 

linearisation process, by comparing the subsonic axial flows over a 

range of shapes using both the linearised and full potential equations. 

In the first method a computer programme for the axi-symmetric 
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incompressible flow over bodies of revolution, written by Albone (Ref. 

8), and based on Landweber's method (Ref. 9), has been applied to the 

scaled body, as in 2.2.6, and then a scaled pressure distribution 

obtained from 2.2.12. This, then simulates the linearised subsonic 

flow over the body at a given Mach number. Results from this programme 

have then been compared with those from the Aircraft Research 

Association (Bedford, U.K.) Solid Body Programme, which is a finite 

difference solution for the full potential equation in axi-symmetric 

flow. See Baker et al (Ref. 10) for details. 

To represent a typical range of shapes, the comparisons are shown 

in Figs. 1 to 5 for a parabola of revolution, fineness ratio 10, at a 

Mach number of 0.8; an ellipsiod of fineness ratio 5, at Mach numbers 

0.4, 0.6 and 0.8; and a sphere at a Mach number of 0.4. Agreement 

between the two methods is very good for the paraboloid. Fig. 1, except 

at the nose where the finite difference solution has a non-physical 

kink in the pressure distribution. This kink is due to the 

differencing scheme on the sharp nose giving the body slope as zero at 

the nose, and not the nose angle. On the ellipsiod. Figs. 2 to 4, the 

agreement is quite good at the lower Mach number, but becomes worse as 

the Mach number is increased. In particular, at two positions, the 

differences are noticeable; at the nose, where the stagnation pressure 

is not well predicted by the linearised method, and just after the 

rapid flow acceleration, where the linearised equations give a lower 

pressure coefficient than the full potential value. Clearly, at the 

nose the perturbation from the free stream velocity is the same 

magnitude as that velocity itself, and so the assumptions of linear 

theory break down, giving the larger error. The sphere. Fig. 5, shows 

similar trends to the ellipse, but whereas the linearised equations 

give a good prediction of the minimum pressure coefficient on the 
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ellipse, on the sphere they are again in error. 

From these comparisons, the inadequacy of this form of 

linearisation is evident for bluff body shapes at high subsonic Mach 

numbers, and so to continue the investigation, an attempt at 

understanding the problem must be made by a closer examination of the 

equations. 

2.4. Local Linearisation of the Equations 

Although the Gothert scaling leads to errors in the actual values 

of the pressure distribution over bodies at certain flow conditions, 

the overall shape of the distribution is correct, and so, perhaps, the 

basic accuracy might be improved by reformulating the linearisation. 

As the form is correct, let us assume that the terms with derivatives 

èui/^jtjCc^yjin 2.2.3 may be discarded, and that therefore the flow 

equation is given by 

F )u + ^^x'' + è>u/ =: 0 2.4.1 

which is similar to 2.2.5, but with the scaling factor F replacingd-^eo*")' 
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Taking 2.2.4 as the initial linearised form, by ignoring the terms 

above, the form of F is found to be 

F = (Uoo^ + Cir + i)U„ü' 'd,»^)(Cy-i)Ucou'-rf«^) 
-I 

F = or r = i- McV(^»^^^0•^^ 

2.4.2 

Expanding the second bracket in terms of (^-OU^t* /fl^ and then 

ignoring the terms with products of U , we obtain 

which further reduces, for small Mach numbers, to 

F -- I - (*la>H ' + ^'«'/U.) 

4.3 

2.4.4 

This expansion is the same, using 2.2.11 for the pressure coefficient, 

as the 2-dimensional result of Weber, reported by Kuchemann (Ref. 19). 
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Previously, in Section 2.2, the scaling laws for the body radius, 

2.2.6, and the velocity perturbations, 2.2.7, were stated in terms of 

the factor m, where 

m = (I - M''" 

Now from 2.4.4, m may be written as 

M = J? ^ ( l - r«»UVUo.'9*^ 2.4.5 

Solution of the problem has been attempted in an iterative sense by 

scaling the original body shape using 2.4.5, with the incompressible 

velocity distribution over the body used for Ü / U M , and then iterating 

with more refined values of u/Ua» . Stagnation pressure coefficients 

are predicted exactly on blunt shapes, because the factor m goes to 

unity as the flow is brought to rest at the stagnation point, and so 

neither the body or the velocity perturbations are scaled at that 

point, giving the physically correct values, unfortunately, as u/uoe 

increases near the point of maximum thickness of the bodies, so m 

reduces, and therefore the body radius is reduced abnormally. In some 

cases the body form is changed completely, as may be inferred from the 

pressure distribution over the new shape not being similar to the 

correct distribution, as in Fig. 6. 

Despite these deficiencies, the form of 2.4.5 provides a 

qualitative insight into the validity of the Gothert scaling laws, by 

comparison of the body forms shown in Fig. 6 for both the Gothert 

scaling and the scaling using 2.4.5. At the front of the body, the 
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Gothert scaling produces far too high a pressure coefficient, as the 

velocity perturbatiotis are scaled by dividing by m or w which 

increases their magnitude, whereas, from 2.4.5, they should not be 

scaled at all, if ulUto is zero. Away from the nose, a complex 

interaction between the body scaling and subsequent velocity 

perturbation scaling takes place. Where the flow velocity is less than 

its free stream value the Gothert scaled body is too thin, but the 

velocities are made correspondingly higher, and where the flow velocity 

is greater than the free stream value, the Gothert body is too thick, 

and the velocities made correspondingly lower. In the latter case, the 

errors cancel each other out, as the thicker body would have greater 

velocities on it, but these are reduced by the scaling factor. Nearer 

the front, however, where the flow is accelerating, the interaction 

between the body shape and the velocity distribution is not corrected 

by the Gothert scaling, as the results of Section 2.3 show. 

Linearisation of the equations therefore leads to a quick and easy 

solution procedure for simulating the effects of compressibility by 

modifying incompressible flow calculation methods. For fine bodies, or 

low subsonic Mach numbers the results are good, compared to the full 

potential results, but on bluffer shapes the accuracy is reduced. 

Attempts to modify the scaling in an iterative sense are hampered by 

altering the body shape too much, giving an incorrect form for the 

pressure distribution, although they do provide some insight into the 

workings of the scaling laws. All in all, a more refined and accurate 

method of calculating the compressible flow over bodies is required. 
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3. SOLUTION OF THE COMPRESSIBLE FLOW EQUATIONS BY PERTURBATION 

TECHNIQUES 

3.1 The Rayleigh-Janzen Expansion for Subsonic Flow. 

Van Dyke (Ref. 11) l i s t s many approximations using perturbation 

techniques, and describes the method of Rayleigh-Janzen for a c i r cu la r 

cy l inder in s l i g h t l y compressible f low. Here the surface ve loc i ty is 

described as a perturbation from the incompressible flow solut ion using 

a series in f^c9 • Kaplan (Ref. 12) describes a s imi lar method 

fo r a sphere in axi-symmetric f low. 

Development of the method involves re -wr i t ing the basic equation 

2.1.9 in potent ia l form. Noting that from 2.2.2 we have 

and i f fl^ , iX^ are known, we can now see that 2.1.9 becomes 

W =. H^->S'È'ï.^z, ^*K,;Bj,3,^„,i&',,j^A.,.-^3x] 3.1.2 

The solution is formed by assuming that the potential, 0^ , can be 

developed as a power series in 'lo» , such that 

^ ' fifo -^ ;0^, M»"^ •+ ^ T M ^ " - ^ 3.1.3 
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Subst i tu t ing fo r 0 in 3 .1 .2 , and then equating the Mach number 

terms on each side gives a set of equations for the terms jÖ^i > see 

Kaplan (Ref. 12). In f a c t , ^^ is shown to be the solut ion fo r the 

incompressible f low, and each successive term is the solut ion of 

Poisson's equation, where the r i gh t hand side depends only on the 

previous members of the ser ies: 

v X = |(^„.,^j&„.^,... ,.©;) 3.1.4 

Thus the series of 3.1.3, hopefully convergent, can be developed by a 

process of iteration from the basic incompressible solution. 

Although the development above is straightforward, application of 

the method to different body shapes is hampered in several ways as 

follows: 

a. The equations for i^^ become increasingly complex as n 

increases, leading to large amounts of tedious calculation. 

b. Not only must the expressions for Q'y^ in 3.1.4 be satisfied, 

but also the boundary conditions of flow tangency on the 

surface and an undisturbed free stream at infinity must 

be satisfied. In the general case, an analytic form for S^^ 

can not be found directly, but the values for a sphere or 

ellipse can be found. 
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c. The series is believed (Van Dyke Ref. 11) to be convergent 

only i f the value of the local Mach number remains below uni ty 

everywhere in the f i e l d . Thereby, transonic calculat ions can 

not be achieved. 

3.2 Results fo r the Sphere in Axi-Symmetric Flow 

Kaplan's analysis (Ref. 12) for the sphere in axi-symmetric 

f low, as shown in F ig . 7, gives the d i s t r i bu t i on of ve loc i ty over the 

surface taking = 1.408 for a i r , as 

l v | / i v j = i.s- iM e + _ j ( I Ï IA IVe - uissfn^e) ^«^ 

3.2.1 

Equation 2.2.10 can now be used to give the surface pressure 

distribution, and in Fig. 8 the results are plotted for two Mach 

numbers, 0.40 and 0.57, using powers of Mach number up to four, 

together with the results of the ARA finite difference programme at the 

same conditions. This figure shows that the first three terms of the 

expansion give a sufficiently accurate calculation, provided that the 

local Mach number is not too close to unity, as at a Mach number of 

0.57 the solutions are not as close as at a Mach number of 0.4, due to 

the slower convergence where the flow speed is nearly at the local 

sound-speed. Having demonstrated the capability of the method, it is 

now worth exploring to see if the method can be extended to a greater 

range of body shapes. 
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3.3 Possibilities of Extending the Method. 

As mentioned in Section 3.1, the form of each P h "lust not only 

satisfy 3.1.4, but it must also satisfy the boundary conditions, and to 

do this analytically involved finding a suitable Green's function (see 

Kellogg, Ref. 13) for each body shape. For the spherical or elliptic 

shapes this is possible, but in general it is not. However, it may be 

possible to overcome these problems by numerically finding the solution 

to a series of Poisson equations. 

Two approaches could be made, either to solve the equation set 

3.1.4 for each ^^ , or to solve the main equation 3.1.2. In 

either case, the right hand side can be equated to a distribution of 

sources in the flow whose strength is calculated from the previous 

iteration. Physically we can imagine an field of sources in the flow. 

These sources induce velocities at the body surface which violate the 

boundary conditions, and in themselves generate further sources in the 

field, making an iterative technique necessary. 

Whilst our studies were in progress, the works of Slooff (Ref. 14) 

and Johnson et al (Ref. 15) were published, which used a basic 

incompressible panel method solution (see Hess and Smith, Ref. 7), with 

an iterative Poisson-type solution. Our own approach is similar to 

that of Slooff, and this we will now describe. 
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4. SOLUTION OF THE FULL POTENTIAL EQUATION FOR 

AXI-SYMMETRIC FLOW BY ThE USE OF FIELD SOURCES 

4.1 An Outline of the Method. 

Within Section 2.1 we detailed the equations of compressible flow, 

leading to the full potential equation 2.1.10. To deal with 

axi-symmetric body shapes, it is useful to work in cylindrical 

coordinates ( r , " , X ), in which system the full potential 

equation becomes (see Reyhner, Ref. 16) 

-20^0r0xr - Z9fr09 SSfre/r"^ 4.1.1 

and the energy equation 2.2.2 becomes 

«' = a / - ^ i ^ V e L ' + C r ' .̂  ^»yr ' - lvi.1') 4.1.2 

The present development has been restricted to axi-symmetric flow 

alone, and so al l the derivatives with respect to Ö are zero. Thus 

the equations reduce, with a rearrangement, to the following: 

0^^ + î T̂ x •*- 0'^/ '- = PCgSo f ^r^jg'rr » 2 i ^ ^ ^ r 4.1.3 

a^ d* (C 

and 
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Noting that the left hand side of 4.1.3 is the Laplacian operator, V , 

we see that the equation may be written as 

V V = I ( i0k . î r , J0;., <^^r, 0 ^ ) = F ,̂̂  4.1.5 

where 

F̂ .̂  = l.{0:-0^ + 0rXr -^20^0^0^) 4.1.6 
a" 

To complete the problem, boundary conditions have to be applied at the 

body surface, where the flow must be tangential to the surface, i.e. 

for an axi-symmetric body 

jEf. - £ r \ 0^ = 0 4.1.7 

and at infinity, where the free stream must be undisturbed 

V.je^ = tt, eo 4.1.8 
0» 

Equation 4.1.5 is basically Poisson's equation, where the right hand 

side represents a divergence in the field, or in other words, a 

distribution of sources throughout the field. To solve the problem, 

let us consider that the potential, 0 , is made up of two 

components; 0f: , that due to the divergence, r^,v , in the field, 

and J2fp , that due to the body, which will be described as a 

distribution of axial sources, T ^ ^ ^ • This necessarily limits the 

class of body which can be considered, as described in Ref. 1. See 

Fig. 9. 
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Therefore 

where 

0 ^ 0^ ^ 0, * 0,^,^^ 4.1.9 

, 1 . 

0,-. -1 ^''' Jl 4.1.10 

Ö {Cx.5)\r»V 

and 

'̂ - -^Al T ^̂  
As equation 4.1.5 is non- l inear, an i t e r a t i v e solut ion procedure has to 

be adopted enabling ref ined estimates of 0 to be calcu lated. Our 

previous work (Ref. 1) has developed an accurate solut ion procedure for 

axi-symmetric bodies in incompressible, axial f low using axial 

d i s t r i bu t i ons of sources, and so th is solut ion can be used as a 

s ta r t ing so lu t i on , X^A^ • From 0tkt a f i r s t approximation to the 

f i e l d d i s t r i b u t i o n , F^^ , can be found using 4 .1 .6 . The l e f t hand 

sides of the equations 4.1.5 and 4.1.7 are l inear and so a matrix 

solut ion can be found using the approximation to F^,^ as the r igh t 

hand side of 4 .1 .5 , for the values of the axial source d i s t r i bu t i on and 

the f i e l d source d i s t r i b u t i o n , giv ing iS^^and 0^^' T^̂ ŝe two now 

define a new d i s t r i bu t i on of Fp,^ , enabling the process to continue 

as before, u n t i l the value of the to ta l po ten t i a l , J2f , sa t i s f i es both 

4.1.5 in the f i e l d , and 4.1.7 on the surface. 

4.2 Description of the S ingu lar i ty Potent ials and the i r Der ivat ives. 

Numercal ca lcu lat ion of the values of 0 ^ and 0^ is dependent 

on an approximation being made for the source d i s t r i b u t i o n s , both on 

the axis and in the f i e l d . Our paper, Ref. 1 , describes the use of 
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axial source d i s t r i bu t i ons for axi-symmetric bodies in incompressible, 

axial f low, based on the descr ipt ion of the source strength func t ion , 

by a series of segmented polynomials of the form 

j-nC^) - T. C^^ 4.2.1 
a s O 

where j'nC^') is the distribution strength in segment k, and N ^ is the 

degree of the polynomial in that segment. From 4.1.10 the values of 

the five derivatives of 0 Q can be found to be: 

^ x ^ = 1 (̂  i(S)X '. - 3U-0" 1 J 

Combining 4.2.2 with 4.2.1, the form of the integrals is given by 

-̂i , {(X-5V + r-]«""̂ 'i S '•'•' 

This is a standard integral whose solution is given by Gradstein and 

Ryshik (Ref. 17) in the form of a recurrence relationship, and Ref. 1 

gives details of the computation. 
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To describe the field source distribution,r^, use is made of the 

property of axi-symmetric flow that there is no variation with angle 0. 

Thus F,^ is constant at any given position ( X i . H ), and the 

source distribution can be assumed to be a set of rings. From Fig. 10, 

the distance R between a general field point P and a field source point 

Q, is given by 

Taking 9 ^ as zero, for simplicity, then 

In discretising the flow field, small elements of area are defined, and 

their centroids calculated. The integration 4.1.11 can then be carried 

out by assuming that a ring is placed through the centroid to give 

'̂ • -i I ( r =̂̂ %̂ )" 4.2.5 

As the ring position moves further from the body, the flow disturbances 

on the free stream flow reduce to zero, and so from 4.1.6 the value of 

D̂fV 9°^^ ^° zero. This enables the source rings to be placed in a 

restricted volume of fluid, near the body, as an approximation to 

placing them throughout the whole field. Thereby, the magnitude of the 

computation can be reduced. For each ring the derivatives of JS' 
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are given by 

4.2.6 

0 ^ 1\ ^^ r ^ (x^ -^5) elk 

VrrlJ, - ^ X ^3F J 

where R is given by 4 .2 .4 , and the to ta l e f fect of each f l u i d element 

is found by mul t ip ly ing each of 4.2.6 by the elemental area hn . See Apoendix A 

for a discussion of the s t a b i l i t y of these f i e l d d i s t r i b u t i o n s . 

Calculat ion of the e l l i p t i c in tegra ls 4.2.6 can be carr ied out in 

two ways, e i ther numerically or by a standard solut ion routine 

avai lable in the NAG l i b r a r y (Ref. 18). In terms of ca lculat ion t ime, 

no appreciable di f ference has been found between the two methods, and 

so a numerical solut ion is used. 

4.3 Computational Detai ls of the Fie ld Source Method. 

Section 4.1 described the basic technique for the use of a f i e l d 

d i s t r i bu t i on of sources in solving compressible flow problems, and th is 

has been translated in to a computational rout ine for compressible 

axi-symmetric f low, on the Cranf ield VAX 11/782 computer using a main 

FORTRAN programme with eight major subroutines. This programme has 
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been written in a simple form to give an initial evaluation of the 

method. 

4.3.1 Input Data 

To describe the flow situation, the body shape is input as a series 

of (x,r) coordinates from which all other values can be interpolated, 

plus a pointer to indicate either a sharp or blunt nose. The 

calculation is carried out at a given Mach number for a pre-set number 

of iterations. Finally, the axial source distribution parameters of 

segment position and polynomial degree are input, together with the 

field source distribution parameters defined in Fig. 11. 

4.3.2 The Discretisation of the Field. 

Field sources are placed in a given region of fluid around the 

body in three areas; ahead of the nose, along the length of the body, 

and behind the tail of the body. Each area is then divided into a 

number of rectangular or triangular patches as in Fig. 11. Within each 

patch, the source ring is placed at the centroid, and so the centroid 

coordinates are calculated, together with the area of the patch. 

4.3.3 An Incompressible Solution. 

As a starting solution for the iteration process, the programme 

calculates the axial source distribution for the body in incompressible 

flow, i.e. with no field sources. Using previous experience (Ref. 1) 

with axial source distributions, suitable sets of segment locations and 

polynomial degrees are chosen, to give a good representation of the 

body shape. Any axial singularity method is strictly limited to bodies 
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with analytic surface streamlines, having a nose shape that is not too 

bluff, although, as we demonstrated in Ref. 1, many reasonable shapes 

outside these limits can be generated. 

In the previous work, the source distribution was found by 

applying both the flow tangency boundary condition and the "zero stream 

function value" condition at a set of control points. Here, when the 

compressible flow is considered, a stream function can not be defined, 

and so we have applied only the flow tangency condition. This enables 

us to ensure that the flow model is capable of giving a good 

representation before proceeding into the compressible calculation 

routine. Fifty boundary control points are used, distributed either at 

equal spacing for sharp nosed bodies, or with a cosine variation for 

blunt nosed bodies. The coefficients of the source distribution, which 

must be fifty or less in number, are then found using the least squares 

solution procedure of the NAG library (Ref. 18), F04JAF. 

As a check on the accuracy of the solution, the pressure 

distribution and boundary condition error on the body are calculated 

and then output, before the compressible calculation routine is 

entered. 
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4.3.4 The Compressible Calculation Procedure. 

At the beginning of each iteration, approximations to the two 

singularity distributions, one in the field and the other on the axis, 

are known to the programme. Initially, the axial distribution will be 

the incompressible solution, and the field distribution will be zero 

everywhere. From these, the effect of each source ring in the field, 

in terms of the five derivatives of the potential, given by 4.2.6, can 

be summed together, and the influence of the axial distribution, 4.2.2, 

added to it, at a set of field points in the meridian plane. Then, 

using 4.1.4 and 4.1.6, the value of the new ring strength at each 

position is found. If the local Mach number is greater than unity, two 

possible flow solutions could occur, one of which would have expansion 

shocks. In the real flow, the fluid viscosity would prevent such 

solution occuring, and so a damping term is added here to stabilise the 

solution: 

The left hand side of 4.1.3 is calculated at each point, and its value 

output, together with the new field source strength, so that a check 

can be made on the convergence of the process in the field. 

On the first iteration only, the influence matrix is set up by 

writing the left hand side of the boundary condition equation 4.1.7 in 

terms of all the source coefficients at the same fifty surface points 

as those in the incompressible solution. To this, the matrix is 

completed by adding the left hand side of 4.1.5 at each field point, 

written in the same terms. The matrix is then stored on disc to 

facilitate its retrieval in the next iteration, as the solution 
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procedure destroys the matrix stored in the internal memory. 

A solution vector for the influence matrix is assembled from 4.1.7 

and 4.1.5 in terms of the free stream velocity and the latest field 

source distribution, and, where necessary, the influence matrix is 

re-assembled from the disc. Then the NAG routine F04JAF solves for the 

source coefficients, both in the field and on the axis, enabling the 

process to begin again if required. 

When the preset number of iterations are complete the pressure 

distribution is calculated along the body surface, and the results 

output. This terminates the calculation, and the programme is stopped. 

4.4 Some Results Using the Field Source Method. 

4.4.1 Parabolae of Revolution. 

In describing the flow of a compressible fluid, the full potential 

equation 4.1.3 should define, for a given body shape, the value of 

potential, Q( , everywhere. As with all numerical methods, the field 

source method approximates the function 0 using a polynomial 

description for sources on the axis, and a set of source rings outside 

the body. Our initial work (Ref. 1) showed that the axial source 

description is highly accurate, and so we must now evaluate the 

accuracy of the field source rings as their distribution in the flow 

field is varied. Thereby an accurate solution can be obtained for the 

minimum compuational effort. 
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Using the parabola of revolution, with a fineness ratio of 10, at 

a Mach number of 0.8, an initial study of the method has been carried 

out. Here the flow is subsonic throughout the field, and the body 

should cause only small perturbations from the free stream flow, giving 

a relatively easy flow to model. Even so, with only 160 field rings, 

the time for solution is large, being of the order of one hour for four 

iterations on the VAX 11/782 computer. Hence, to reduce cost the 

minimum number of runs has been performed, and so the convergence study 

is not as full as would have been liked. Despite these drawbacks, the 

important trends have been found from the few sets of data obtained. 

One main feature of the method is the rate of convergence of the 

solution, both in terms of matching the left and right hand sides of 

4.1.3 and the surface pressure coefficient. After four iterations, the 

change in pressure coefficient is virtuallly undetectable. Also, the 

source rings ahead of and behind the body have little effect on the 

solution, thus three sets of rings in these areas appear to be 

adequate, if placed within 0.3 body lengths of the nose and tail, in 

the x-direction. Along the body section, 10 sets of rings give a 

reasonable result, and increasing the number beyond this has little 

effect. Radially, outwards from the body, the extent to which rings 

are required is about two calibres, but strip lengths smaller thean 

this lead to a rise in the solution error. Again, about 10 radial 

divisions are required to give good results. 

Figure 12 shows the comparison between the finite difference 

solution and the field source method for a field description of 3 + 10 

+ 3 rings by 10 rings, placed in the area -0.3, 0.0, 1.0, 1.3 with a 

strip height of 0.3. Clearly the accuracy is good for most of the 

body, with some divergence from the finite difference results at the 
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nose. Then, in Figs. 13 and 14, the results (pressure coefficient and 

Mach number) are shown for a similar calculation on a parabola of 

fineness ratio 5, at the same Mach number, but with a field strip 

height of 0.2. Yet again the agreement is encouraging. 

Reducing the fineness ratio still further, to 2.5, produces a body 

which, for a free stream Mach number of 0.8, has transonic flow over 

its surface. At the point of maximum thickness, the flow is supersonic 

and so it continues to accelerate as the body narrows down, before 

being compressed through a shock wave. The pressure distribution, 

therefore, is not symmetrical about the middle of the body length. 

With no damping on the equations, that is a zero value of k in 

4.3.1, the pressure distribution for 3 + 10 + 3 by 10 rings in the area 

-0.3, 0.0, 1.0, 1.3, having a strip height of 0.2, is shown in Fig. 15. 

Over the nose and tail, the results are good, and converged, but where 

there is supersonic flow the distribution is poorer. In particular, 

the results are not converging, and no shock is present. By putting in 

some damping, say 0<k<0.5, the results do converge but the distribution 

is still not a 

To obtain a non-symmetrical pressure distribution, the number of 

rings down the body length has to be increased to around 30 or more, 

and now further axial segments are required in the source distribution 

in order that it has sufficient flexibility to match the surface 

boundary conditions. This obviously increases the amount of 

computation dramatically, and also the rate of convergence throughout 

the field is reduced. Within the limits of our VAX system, no shock 

waves have been found, presumably because the variation of potential in 

the field has not sufficient freedom. 
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4.4.2 Ellipsoid with a Fineness Ratio of Five. 

Having now looked at the results for a pointed shape, let us 

consider the results for an ellipsoid with a fineness ratio of five. 

In all the cases, here, the field distribution was 3 + 15 + 3 by 10 

rings, in the area -0.3, 0.0, 1.0, 1.3 with a strip height of 0.3. At 

each of the three Mach numbers 0.4, 0.6 and 0.8 the flow is wholly 

subsonic, and the field source method predicts the minimum value of the 

pressure coefficient to within 1% of the finite difference solution at 

the first two conditions, and to within 3.5% at the latter. Figure 16 

shows the comparison in pressure coefficient distribution between the 

field source method and the finite difference solution. Quite clearly 

the differences between the two solutions are ^^ery small, with the 

field source method giving an accurate prediction of the stagnation 

pressure, the rapid acceleration over the nose region, and the 

flattening out of the pressure distribution. 

4.4.3 A Sphere. 

Unfortunately the results for a sphere are not very encouraging. 

Within the limitations imposed by the VAX system, both in terms of 

storage and run time limits, an insufficient number of field patches 

can be used. At a Mach number of 0.4, all of the results that we have 

obtained have had a minimum value of pressure coefficient below that of 

the finite difference soltuion. The trend appears to be that the 

results converge at a value close to the finite difference value. 

However only by adding more patches will the truth be known. 
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5. CONCLUDING REMARKS 

From the preceding study of the various methods of allowing for 

compressibility effects, the Gothert-type linearisation is the simplest 

to apply, in that only body and velocity scalings are carried out, in 

association with a standard incompressible flow solution technique. For 

small velocity perturbations, or low free stream Mach numbers, and wholly 

subsonic flow, the results are quite good. However, when the flow over a 

blunt body at a high subsonic Mach number is computed, both the stagnation 

pressure and the rapid acceleration over the nose region are poorly predicted. 

To improve the accuracy, the full equations must be treated, and as a 

Rayleigh-Janzen type of expansion is difficult to apply to general body 

shapes, a numerical approach must be used. 

Considering the equations as being of Poisson form, with the non-linear 

terms defining a source distribution in the flow field, an iterative solution 

can be achieved. Our results show that, at subsonic speeds, the results are 

accurate over a range of typical weapon shapes, only four solution iterations 

being required in most cases. With axi-symmetric flow, the field source method 

is slowed down by having to integrate over each ring, and the effect is the same 

whether elliptic integrals or numerical techniques are used. One method of 

speeding up the calculation would be to abandon the concept of field sources 

altogether, and investigate other forms of describing the field distribution, 

to see if a more efficient distribution is possible. This would effectively 

lead to a similar approach to that of Johnson et al (Ref. 15). 
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Extending the method, outlined here, to three dimensions would be 

difficult as the source distribution in the field varies in x. ,rand & 

and so discrete point sources would have to be used. This would probably lead 

to similar problems of stability to those detailed in Appendix A. Thus, if 

is to be described by a field source distribution, a more refined description 

of the potential is required. 

Where the finite difference methods are difficult to apply is in satisfying 

accurate boundary conditions on complex configurations, as well as gridding 

up the field volume. By comparison, the incompressible techniques already 

match the boundary conditions '^ery accurately, and the complex geometries 

are easily dealt with. Adding sources in the field to these methods does 

not alter any of this. Further, only limited volumes of the flow require the 

sources to be placed within them whereas the present finite difference methods 

have grids throughout the flow field. For fully 3-dimensional configurations, 

the restriction on the finite difference solutions in satisfying the boundary 

conditions may perhaps be overcome by combining the singularity methods with 

finite difference methods, where the singularities match the boundary conditions. 

Thereby, only a restricted amount of differencing is required in areas of 

interest. 
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APPENDIX A. STABILITY OF THE FIELD DISTRIBUTION CALCULATIONS 

Although the use of discrete ring sources to describe the divergence 

of the field is conceptually simple, problems arise when setting up the 

field equations 4.1.5. If a source ring and field point are coincident 

(angle K=270 degrees in Fig. 10, for B =0), the integrals 4.2.6 are 

singular, and the solution degenerates. To overcome this, the field 

points can be placed in between the ring positions and a solution found, 

Yet again the solution degenerates, giving large values for each ring strength 

which oscillate in sign. Quite clearly the discrete ring description is a 

far-field approximation, and so the ring points and field points must be as 

far away from each other as possible. One way of achieving this is to 

integrate only the source function in the field from k=0 to 180 degrees 

inclusive, see Fig. 10. This however would appear a non-physical solution, and 

so must be justified. 

Equation 4.1.5 is a non-linear partial differential equation in x and r, 

which has to be solved by an iteration procedure. The potential function,J0'^ 

is split into two main components (4.1.9); a distribution on the axis J04 

and a distribution in the field 0f . By differentiating these functions, 

neither of which are solutions of 4.1.5 by themselves, the field equation 4.1.5 

and the boundary condition 4.1.7 can be written as a set of linear equations 

which must be solved iteratively. Now, the function of x and r provided that 

it can be differentiated to give the derivatives required in 4.1,5 and 4,1,7. 

Using the half-ring approach gives a rapidly convergent solution where both 

4,1.5 and 4,1.7 are satisfied in the field and on the surface respectively, 

All the results shown in this report for the field source method are derived 

using this approach, 
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Fig.7, A Sphere in Compressible Flow 
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Fig, 10, The Source Ring, 
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