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Abstract:

Spatial contacts among human beings are considered as one of the influential factors during the transmission
of contagious diseases, such as influenza and tuberculosis. Therefore, representing and understanding spatial
contacts plays an important role in epidemic modeling research. However, most current research only con-
siders regular spatial contacts such as contacts at home/school/o�ice, or they assume static social networks
for modeling social contacts and omit travel contacts in their epidemic models. This paper describes a way to
model relatively complete spatial contacts in the context of a large-scale artificial city, which combines di�erent
data sources to construct an agent-basedmodel of the city Beijing. In this model, agents have regular contacts
when executing their daily activity patterns which is similar to other large-scale agent-based epidemic mod-
els. Besides, a microscopic public transportation component is included in the artificial city to model public
travel contacts. Moreover, social contacts also emerge in this model due to the dynamic generation of social
networks. To systematically examine the e�ect of the relatively complete spatial contacts have for epidemic
prediction in the artificial city, a pandemic influenza disease progression model was implemented in this ar-
tificial city. The simulation results validated the model. In addition, the way to model spatial contacts in this
paper shows potential not only for improving comprehension of disease spread dynamics, but also for use in
other social systems, such as public transportation systems and city level evacuation planning.

Keywords: spatial contacts, agent-basedmodeling, artificial city

Introduction

1.1 Transmission of an infectious disease may occur from one person to another by one or more of the following
means (Straif-Bourgeois et al. 2014): direct physical contact (e.g., touching), indirect physical contact (e.g., con-
taminated food) or vector-borne contact (e.g., a droplet). However, most of themeans can be summarizedwith
the term ’spatial contact’. A spatial contact usually occurs between two persons in a geographical space, either
an open environment or an interior space, where they can quickly or easily get in touch with each other di-
rectly or indirectly. For example, if an infected person coughs or sneezes in a bus, then the droplets containing
microorganismsmay enter another person’s body, which causes a disease to spread. This is considered a trans-
mission through a spatial contact. Based on this definition, spatial contacts among human beings are regarded
as one of themost influential factors during the transmission ofmost diseases (Perez &Dragicevic 2009) and in-
corporating the contact patterns into epidemicmodeling can bring a deeper understanding of the transmission
patterns of a hypothetical epidemic among a susceptible population (Mossong et al. 2008).

1.2 Typical epidemic models are based onmathematical models or agent-basedmodels (Ajelli et al. 2010). Mathe-
matical models can estimate the speed of a disease outbreak based on the basic reproduction number which
depends on the number of adequate contacts (Del Valle et al. 2007), while the contact details o�en rely on priori
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contact assumptionswith little or no empirical basis (Mossong et al. 2008) in the formof a set of parameters, for
example, household contact rates, school contact rates and workplace contact rates (Grefenstette et al. 2013).
Thus, current mathematical models do not reveal realistic contact patterns due to the di�iculties in modeling
demographic stochasticity and spatial heterogeneity (Ben-Zion et al. 2010).

1.3 There are numerous agent-based epidemic models and its popularity for researchers to study epidemics has
grown in the past several years (Mei et al. 2010; Grune-Yano� 2010; Chen et al. 2014), as they can characterize
each agent with a variety of variables that are considered relevant tomodel disease spreading such asmobility
patterns, social network characteristics, socio-economic status, health status, etc. (Frias-Martinez 2011). With
the detailed execution of daily behavior of agents, contact patterns can be observed through the agent inter-
actions which utilize the spatial distribution of agents and social networks (Bisset et al. 2009; Ge et al. 2013).
Recently, due to the growth of computational power, large-scale agent-based modeling and simulation have
become possible for epidemic models (Stroud & Valle 2007; Parker & Epstein 2011; Ajelli et al. 2010; Rakowski
et al. 2010; Bisset et al. 2009, 2014; Ge et al. 2013). Among these research works, large-scale spatial contacts
were studied by constructing agent-based artificial society models. For example, a virtual society of Poland
was created by Rakowski et al. (2010), with a particular emphasis on contact patterns arising from daily com-
muting to school or workplaces. The EpiSimSmodel (Stroud & Valle 2007) describes and presents a simulation
of the spatial dynamics of pandemic influenza in an artificial society constructed to match the demographics
of southern California.

1.4 Nevertheless, modeling a complete set of contacts on a large scale still remains a challenging task as the above
large-scale models omitted or simplified the contacts during traveling or social interactions. In the model
EpiSimS (Stroud & Valle 2007), no travel contacts are modeled except for contacts during carpooling services,
and there are no predefined or dynamically generated social networks in the model. To eliminate the need to
simulate every single agent’s day-to-day activities, explicitly stored social networks and random contacts were
considered in a global-scale model (Parker & Epstein 2011). In themodel by Ajelli et al. (2010), random contacts
were used to represent travel contacts in commuting activities and social networks were not discussed. The
research by Rakowski et al. (2010) applied a simple transportation model to estimate travel contacts and no
social networks exist in their model. In both EpiFast (Bisset et al. 2009) and INDEMICS (Bisset et al. 2014), social
contact networks representing proximity relationships between individuals of the population were considered
as input data and no travel contacts were modeled. As far as we can see, the reasons for missing/simplifying
the concrete travel contacts and complex dynamic social contacts in large-scale epidemic models can be sum-
marized as follows:

• System scale and complexity of communication. When the number of agents increases linearly, the com-
munication complexity could increase exponentially, which creates a scalability issue that is hard to deal
with (Hawe et al. 2012). Thus, the current practical solutionsmentioned above either use random/prede-
fined contact networks to reduce the number of communications or implement themodel on distributed
architectures to improve the performance. However, there could be a huge overhead for enabling co-
ordination between agents on distributed architectures as it increases the number of communication
messages and leads to a higher communication complexity. As a matter of fact, to balance between per-
formance and accuracy for large-scale agent-basedmodels, reducing communications by simplifying the
contact network model is an o�en used compromise (see (Stroud & Valle 2007; Parker & Epstein 2011;
Ajelli et al. 2010; Rakowski et al. 2010; Bisset et al. 2009; Ge et al. 2013).

• The inclusion of a microscopic transportation component in the model. Since there is a lot of research
on transport demand modeling which can easily monitor detailed traveling contacts (Zhang et al. 2012,
2013; Zhao & Sadek 2012), it seems to be a rather simple task to include it in an epidemic model as it is
easy to define a travel activity in the agent’s schedule so that there is not much additional information
required except the tra�ic networks. However, this is not the case in simulation practice as the simulation
time resolution in both the microscopic tra�ic model and the epidemic model are not at the same level.
Moreover, a largepartof the tra�ic (e.g., byprivate car) seems tobe lessuseful for studyingdisease spread,
although a crowded bus can be an ideal location for spreading disease.

• The dynamics and unpredictability of social contacts. Social contacts, in the form of joint activities, can
frequently change in real life and influence an individual’s plans and schedules. As the plans for each
person who will participate in a joint social activity have to be synchronized in both time and location, it
is a more complicated task than it may seem (Ronald et al. 2012).
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• Friendship formation. Friendship, as a special form of social networks, has many other characteristics,
such as the ’small world e�ect’ and the power-law distribution of the number of degrees of connectivity
(Singer et al. 2009; Hamill &Gilbert 2010). To include these characteristics in a large-scalemodel, e�icient
algorithms and approaches which balance e�iciency andmemory usage are required.

1.5 The above discussionmotivates the need to design novel algorithms and approaches tomodel spatial contacts
including travel contacts and social contacts in a large-scale epidemicmodel. In this paper, we tried to achieve
this in the context of a large-scale model of the city of Beijing.

1.6 In detail, contributions and organization of the rest of the paper are as follows:

• Firstly, we constructed a model of the city of Beijing including four key model components by a data-
driven approach in section 2. This artificial city is considered as the basis for modeling disease spread. In
total 19 million agents and 8 million locations were modeled. The major algorithms and approaches are
introduced in this section as well.

• Secondly, we presented a classification of spatial contacts and statistically analyzed themodeled spatial
contacts by presenting a set of simulation results in section 3.

• Finally, we implemented a diseasemodel in this artificial city validated themodel results in section 4, by
which we show the e�ect of the modeled spatial contacts for epidemic prediction.

Agent-based Artificial City

What is an artificial city

2.1 An artificial city, as a city-scale artificial society, is a multi-agent simulation systemwhere a set of autonomous
agents carry out activities in parallel, move around the environment locations and communicate with each
other (Sawyer 2003). It requires individual agents representinghumans that havedaily behaviors, togetherwith
locations (households, schools, workplaces, hospitals, stations, etc.) that have a function for agents’ activities.
Basedon theartificial citymodel, fundamental collectivebehaviors are seen to "emerge" fromthe interactionof
individual agents following a few simple rules (Epstein & Axtell 1996). There are a lot of relevant research topics
to modeling an artificial city, such as using agent-based modeling for urban simulation (Navarro et al. 2011),
simulation of residential dynamics in the city (Bhaduri et al. 2014), and the dynamics of pedestrian behavior
(Pelechano et al. 2007).

2.2 In this paper we define the artificial city we construct as a set of located agents and geo-referenced locations,
together with a public transportation system. Located means that the agent has a location associated at any
time in the simulation, both when performing activities in physical locations (for example, eating in a restau-
rant), and during traveling (walking or riding on a bus). As amatter of fact, every object in this artificial city has
a geographic reference (longitude and latitude) assigned to it in order to locate it, either static (physical loca-
tions) or dynamic (agents). This definition gives a strict requirement for the completeness and consistency of
data required for modeling.

Data preparation

2.3 Beijing, as the context of this case study, is the capital of the People’s Republic of China and the second largest
Chinese city by urban population. The population as of 2009 was 19.7 million.

2.4 In the preparation phase of this research, the di�iculty for this case study is the source of the initial data, such
as population and environment. Large-scale real world data sets are expensive to collect and di�icult to obtain
high fidelity ground truth for (Bernstein &O’Brien 2013). Thus, there is a trilemmaof inadequate data from real-
world datasets, statistical simulationmodels, and agent-based simulationmodels. This di�iculty is reflected in
other similar research as well, such as the model of the spread of SARS in Beijing conducted by Huang (2010).
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Item Description Results
Population Number of agents 19611800

Age Scope of age 0-105
Location Number of physical locations 8216011
Families Number of families 8055324

Table 1: The statistics of the synthetic population and physical locations

2.5 To solve this plight, firstlyweacquired the rawdata in an independent researchbyGeet al. (2014). Theyadopted
a mixing method which collect real data (statistical data and geographic information) and generate the other
minimum required data by algorithms, which are the synthetic population and physical locations by utilizing
the real data. More detailed information about the raw data on synthetic population and physical locations are
as follows:

• The statistical population and location data were collected from the National Bureau of Statistics (NBS)
at the city scale, and from the Municipal Bureau of Statistics (MBS) at the district scale, which include
population, age-sex distribution, number of children distribution among families, family size distribution
and geographic distribution of families among districts.

• With the algorithms in Ge et al. (2014), each individual person is specified with the attributes of age, gen-
der, family role, family index and social role to specify this individual’s demographic characteristics. The
family role can be defined as a set {grandparent, parent, child}. The social role is defined as a set {in-
fant, student, worker, retired}. This design is based on findings from the China census data (available at
http://www.stats.gov.cn) that households with more than three generations are a small proportion (less
than 10%) of the total number of households.

• Besides individual persons, physical locations were generated where individuals can perform a variety
of activities. Currently, there are 18 location types, and these location types are classified into 6 cate-
gories: houses, educational institutions, workplaces, consumption locations, entertainment locations,
and medical institutions. Each location has a geographic reference and the distribution of these loca-
tions was generated according to both statistical data and the geographic distribution of the population.

• The consistency between the individual person and the physical location was guaranteed. For example,
a student of age 22 will be assigned a location which belongs to location type ’university’ rather than
’primary school’.

2.6 The statistics of the synthetic population and physical locations are listed in Table 1.

2.7 The statistical results of the generated synthetic population are shown in Figure 1 in the form of an age distri-
bution. According to the previous results, the standard deviation of errors between the generated age and the
statistical data is 0.9823 (95% confidence interval (CI) from 0.7034 to 1.3510).

2.8 With the generated data, Ge et al. (2014) constructed a large-scale agent-based epidemic model. Based on the
samesourceof data, this researchbuilt a large-scale agent-basedmodel in anewway. A key issue andchallenge
of utilizing the rawdata toourmodel is the redundancyof thedata, such as the agents’ preferred location list for
shopping, eating and entertainment. Together with the predefined social networks for agents in the data, the
size of the data is initially around 130 Gb. Since theway to implement the large-scale agent-basedmodel in this
research does not require the predefined location choices and social networks which is entirely di�erent from
Ge et al. (2014)’s method, we post-processed the raw data by extracting only the relevant fields of data items
from the original database. In addition, to speed up the initialization phase, we converted the data from the
database (mysql) to a compressed format (e.g., gzip) to reduce disk transfer time. With these post-processing
steps, the time e�iciency for loading the model could be improved by 65% in our case.

Location

2.9 With the data generated by the statistical information, we modeled each of the 8 million physical locations
in the artificial city Beijing, which represent schools, restaurants, shops, hospitals, etc. The exact numbers of
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Figure 1: Age distribution of the Synthetic Population

Table 2: Location statistics

Location Category Location Type Size
Houses household 4.961 million

Consumption locations restaurant 55257
Consumption locations market 18686
Consumption locations mall 547
Medical institutions clinic 836
Medical institutions community meds 1744
Medical institutions hospital 569
Medical institutions medservice 3335

Educational institutions elementary 1090
Educational institutions kindergarten 1305
Educational institutions middleschool 632
Educational institutions middle university 91
Educational institutions private university 79
Educational institutions university 73
Entertainment locations green 13983
Entertainment locations playground 6151
Entertainment locations garden 93

Workplaces other workplace 11431

locations in each location type are shown in Table 2.

2.10 Each location is characterized by its geographic reference (longitude and latitude), and the total area in square
meters. The added total area parameter to a location is unique in this research, which is used to generate sub-
locations (e.g., classrooms in a school) and serve as an important parameter for disease spread in the location.
From Table 2, we can find that currently there are 18 location types which are categorized into 6 location cat-
egories. Apparently, these can not cover all the location types in reality in Beijing, for example, small shops
in ’Consumption locations’ and cinemas in ’Entertainment locations’ are missing in the current data. Further
research should be conducted on generating or collecting real data for these missing locations which are im-
portant for disease spread, as well.

2.11 We partition each location into sub-locations by giving each location an attribute ’sub-location size’. Sub-loca-
tions can represent separated classrooms in a school, stores in a shopping mall, or o�ices in a working place.
Agents can only have direct contacts when they are in the same location and assigned the same sub-location
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index.

2.12 An e�icient method ’calculateDistance’ is realized in the location class, which calculates the distance between
two locations based on the geographic coordinate information (latitude and longitude). Since the process of
calculating the distance between two locations is an indispensable step for including a transport component
in the model, this method is one of the most frequently called methods during a simulation run. Thus, we
optimized this method by using an approximation of one degree in longitude and latitude when transforming
geographic coordinates into Cartesian coordinates. Compared with the accurate calculation, it speeds up the
calculation up to 70%, while the relative errors are less than 0.5%.

2.13 Tomanage the locations in each location type category, a ’LocationType’ class is created, which can be instan-
tiated for each location type. Besides the necessarymethods tomanage locations, such as getting a location by
index, the two most frequently called methods are ’getNearestLocation’ and ’getLocationArrayMaxDistanceM’.
The first method returns the nearest location of the current location type to any location, and the second one
returns an array of locations of the current location type within a max distance to any location. These two
methods will be frequently called due to the fact that some people are more willing to visit the nearest places
for shopping, eating and leisure when they have no particular preference. Due to the fact that most activities
of agents in the simulation need to ask for a list of closest locations for carrying out that activity, calling these
twomethods would take a lot of computing resources.

2.14 Thus, a three-level cachemechanismwas creatively designed to achieve a balance betweenCPUutilization and
memory usage. The first cache is the nearest cache, which stores the closet location of the current location type
toacertain location. New itemswill beadded to this cacheonly a�er theyhavebeencalculated for the first time.
The second cache is the grid cache. We divide thewhole citymap into grids and keep indexes of locations in the
grids. The third cache is the distance cache, which is used when no results can be found in the nearest cache
or the grid cache. To any specific location, this cache can keep nearby locations ordered by distance. Based on
this design, the algorithm to implement method ’getNearestLocation’ is listed in algorithm 1, and the method
’getLocationArrayMaxDistanceM’ is listed in algorithm2. In order to savememory for the 8million locations, we
keep the indexes of locations as values in these three caches and encode the key into a ’Long’ data type as the
reference of a location.
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Algorithm 1 Get Nearest Location
Input:

Start location SL
Output:

Nearest location NL to SL
1: Calculate key kn of SL for nearest cache map Mn;
2: if Mn contains key kn then
3: get location NL from Mn;
4: return NL;
5: else
6: Calculate key kg of SL for grid cache map Mg;
7: get all locations Lg by retrieving kg from Mg;
8: if Lg not empty then
9: min Distance Dm = Double.MAX_VALUE;
10: for all L ∈ Lg do
11: Calculate distance DL between L and SL;
12: if DL < Dm then
13: NL = L;
14: Dm = DL;
15: end if
16: end for
17: add NL into nearest cache map Mn;
18: return NL;
19: else
20: get all locations Ld within a certain distance (e.g., 1 km as an intermediate option) to SL by using the

method ’getLocationArrayMaxDistanceM’;
21: if Ld is empty then
22: get all locations Ld in the map;
23: end if
24: min Distance Dm = Double.MAX_VALUE;
25: for all L ∈ Ld do
26: Calculate distance DL between L and SL;
27: if DL < Dm then
28: NL = L;
29: Dm = DL;
30: end if
31: end for
32: add NL into nearest cache map Mn;
33: return NL;
34: end if
35: end if
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Algorithm 2 Get Location Array within Max Distance
Input:

Start location SL; Max Distance D;
Output:

Location array Ld within D to SL
1: Calculate key kd of SL for distance cache map Md;
2: if Md contains key kd then
3: get location array Ld from Md;
4: return Ld;
5: else
6: Calculate all grids Gs within distance D to SL;
7: for all G ∈ Gs do
8: Calculate key kg for each G;
9: get all locations Lg in G from grid cache map Mg;
10: for all L ∈ Lg do
11: Calculate distance DL between L and SL;
12: if DL <= D then
13: add L into location array Ld;
14: end if
15: end for
16: end for
17: end if
18: return Ld;

Transportation

2.15 There aremany papers on activity-based transportation simulation (see e.g. Raney & Nagel 2003; Nagel & Rick-
ert 2001; Zhang et al. 2013). These papers mainly focus on the prediction of tra�ic peaks and congestions. In
our implementation of the artificial city Beijing, a microscopic public transportation system is simulated and
integrated with the daily activities of the population with the aim tomodel the ’realistic’ travel contacts.

2.16 The public transportation system is associatedwith the execution of travel activities, which are considered as a
connection between two activities of agents in two di�erent physical locations. An agent that has to commute
by public transport between two locations to conduct its next activity, will execute a travel activity in the mod-
eled transportation system. The transportation system will determine a route for the commuting agent and
calculate the travel duration for the simulation.

2.17 The public transportation component is microscopic as we modeled all lines and stops of the metro and the
bus system in Beijing. No tram lines exist in Beijing’s public transport system. We also exclude the rail train
lines in this model as the trains lines in Beijing are only used as inter-city connections. During each simula-
tion day, modeled buses and metro trains will execute their schedules on these routes based on timetables.
The geographic information and routing data of the transportation infrastructure network were acquired from
OpenStreetMap1 by using the Java library called Osmosis2. It o�ers stop information as nodes and route infor-
mation as links that together form a graph. This graph shows the topology of the whole public transportation
network in Beijing.

2.18 For commuting vehicles (private cars) on the road networks, the real road network was not modeled but esti-
mated travel duration can be calculated according to the distance and historical statistical data on congestion.

2.19 The 190 metro stops and 1380 bus stops of the public transportation system are modeled as extensions of
the general locations in Section 2.3. In addition to the functions of a general location, a bus/metro stop can
’move’ the waiting agent from the current stop to the arriving transporter (bus/metro train) if this transporter
has enough space and is on the right route for the waiting agent in the stop. Moreover, in order to keep the
agents ’simple’ enough for large-scale simulation but ’heterogeneous’ enough for public transportation, only
the stops knowand record transfer informationof thewaiting agents, andwill pass the information to the trans-
porter when the agents are on board. Then the transporter will ’move’ the agent from the bus to a stop when it
arrives at the right transfer or destination stop.
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Figure 2: Part of the graph for public transportation using ’GridZones’

2.20 Agents that transfer in/between stops cause realistic delays, while the transporter also takes a certain delay
whenarriving at a stop to ’move’ agents out andaccept newpassengers. In order tobe realistic, wealso enabled
the bus or metro train to operate through a timetable. This data drivenmethod enables this public transporta-
tion component to simulate people’s real travel behavior.

2.21 To enable the modeled tra�ic infrastructure components to o�er routing information for commuting agents,
a graph for routing was constructed using an open source Java library called jgrapht3 to connect the 1570 bus
andmetro stops. Every two stops of the same bus/metro line are linked and the edge of each link is assigned a
travel duration. We also link stops that are not on the same route but within walkable distance, and assign an
estimated duration by foot on this edge of the link. By default, this graph can o�er a shortest (in travel duration)
path to a potential public transport user. Since this graph will be called millions of times per simulated day in
our model of Beijing, we added a cache in each node (stop) to store the next transfer stop information with its
destination node as the key in the cache.

2.22 However, there is a big challenge for an agent to use this graph to get a travel route, which is to find the first stop
touseas there couldbemore thanonepublic transport stopclose to theagent. Anexplicit solution is comparing
all the nearby stops for every travel request. This could decrease the simulation performance drastically. We
solved this challenge by creating ’GridZones’ as nodes and adding them to the existing graph. We divided the
map into grid cells, and the resolution of the grid can be set flexibly. We call the center of each cell ’GridZone’.
Each ’GridZone’ is a node and is linked to the graph by linking the ’GridZone’ with all stops in this grid cell. The
weight of each edge is assigned an estimated walking duration. When an agent plans to use public transport,
thepublic transportationmodelwill use theagent’s current ’GridZone’ as the start node to calculate the shortest
path. The destination location is treated in a similar manner. The details are shown in Figure 2.

2.23 Besides public transportation, an agent can also choose to commute by his or her own private car (taxis are not
included in this research). An approximate duration of commuting by cars will be given by the transportation
system for the execution of the simulation.

2.24 When the location of an agent’s next activity is within walkable distance, a travel activity ’walk’ is conducted.
Similar to taking a car, no actual road networks are modeled for walking agents in our model but a ’walk’ loca-
tion is created instead. This enables people to meet others by chance when walking, although the probability
is rather small. In ourmodel, there is a ’walk’ locationwith a large area into which all walking agents will be put
temporarily.
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Agent

2.25 Artificial city Beijing simulates 19.6 million agents and their daily behavior. Typical implementations of agents’
behavior in artificial city researchare activity-based,where all activities for thewhole simulationarepredefined
in the input data source (Ge et al. 2014) or generated before the simulation run (Stroud & Valle 2007) which con-
sumes a lot of memory. Assume there are around 20 million agents and each agent has 10 activities per day,
then the total number of activities for a 4 weeks simulation period is 5.6 billion. To reduce memory consump-
tion, we designed an agent as activity pattern based. This design is based on Mossong et al. (2008)’s research
that human behavior patterns are remarkably similar among people in di�erent countries and the patterns are
highly correlated with age.

2.26 Since the age of a person is highly related to the social role (Kite 1996), each agentwas given a social role (infant,
student, worker, elder, unemployed) in the dataset prepared in Section Section 2.2. We distinguish between
roles by giving agents di�erent week patterns. For instance, a university student will be assigned one of the
university studentweekpatterns, and aworkerwill be assigned aworker pattern. To increase the heterogeneity
and richness of these schedules, more than one week pattern are designed for each social role. A week pattern
is made up of seven day patterns. For a typical worker week pattern, the first five days patterns can remain the
same as weekday patterns, and the last two days can be the same as weekend patterns. In the week pattern for
retired agents, the seven day patterns can be the same, for instance.

2.27 In this research, we designed around 20 di�erent day patterns for all social roles in the artificial city Beijing,
which is based on other independent research conclusions. Ta et al. (2015) distinguished theworking people in
the suburb area of Beijing into 5 types by recording the real GPS data and combining the di�erence in activity
(work, eat and shop) distance and commuting frequency. To summarize, they di�erentiated between 5 types of
workers: (1) people who work at home and seldom go out; (2) people who work and do other activities nearby
(within 3 km); (3) people who do activities in average distance of 7 km to home; (4) people who do activities in
an average distance of 10 km to home; (5) people who do activities further than 15 km. Based on this research,
firstly we merged type (3)(4) and (5), and then separate the resulting type into 2 new types by the way of com-
muting to work, which are commuting by public transportation and by private vehicles. The people of the type
of commuting by private vehicles were separated into another 2 new types, which are those who need to car-
pool their children to school every school day and those who don’t. For workers during weekend days, 4 types
of day patterns were designed according to the conclusions made by the research in Yue et al. (2013), which
are: (1) people who stay at home during weekend; (2) people who do activities nearby (within 3 km); (3) people
who do activities further than 3 km by public transportation; (4) people who do activities further than 3 km by
driving.

2.28 For people who are retired, Ta et al. (2015) concluded that they behave mostly like Type (1) and (2) of workers.
Thus, we designed 2 day patterns for them. The first type prefers to stay at home and the other prefers to do ac-
tivities outside but nearby. Besides, there is no di�erence for retired people between weekdays and weekends
in this research. For students, due to the scarce data, 3 types of weekday patternswere designed for typical stu-
dents according to the way they commute to school. For weekend days, 4 types of day patterns were designed
which are similar to workers. Since the commuting ways for students are highly correlated to the distance to
schools in the initial dataset and the patterns of their parents (those who carpool their children to school or to
other shopping and entertainment places), the proportion of assigning patterns to students were determined
by the simulation model, both for weekdays and weekends. For babies, we assumed there is only one typical
day pattern for them which is associated with their parents who work at home. Since this model is used to
predict epidemics, a special day pattern for hospitalized people was designed as well.

2.29 A list of all designed day patterns are presented in Table 3. An algorithm was implemented to pick the proper
weekday patterns and weekend patterns to form a week pattern, and to assign the resulting week pattern to
agents during the initialization phase of the simulation.

2.30 To give a detailed impression of the designed typical day patterns, a weekday pattern example for workers who
carpool their children to school inweekdays is presented in Table 4, and a day pattern example forworkerswho
drive outside during weekends is presented in Table 5.

2.31 Every activity in any day pattern belongs to an activity type, and we categorized the activity types into three
root categories in Figure 3, which are the regular activity, the travel activity and the social activity. Typical activ-
ities, such as sleeping, staying at home, working, shopping and attending school belong to the regular activity
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Table 3: Implemented day patterns according to social roles

Social role Name of Day pattern Proportion for
the social role

Description for the typical day
pattern

Infant B_Pattern 100% For all babies
Student S_DayWalk Based on ini-

tial data and
model

For students whowalk to school in
weekdays

Student S_DayPT Based on ini-
tial data and
model

For students who take public
transportation in weekdays

Student S_DayCarpool Based on par-
ents’ pattern

For students who are sent by par-
ents using cars in weekdays

Student S_WeekendHome Based on ini-
tial data and
model

For students who stay at home
during weekends

Student S_WeekendNearby Based on ini-
tial data and
model

For students who do activities
nearby (within 3 km) during
weekends

Student S_WeekendPT Based on ini-
tial data and
model

For students who do activities out-
side using public transportation
during weekends

Student S_WeekendDrive Based on par-
ents’ pattern

For students who do activities out-
sidewith parents by driving during
weekends

Worker W_DayHome 12.9% For workers who work at home
Worker W_DayNearby 12.2% For workers who work nearby

(within 3 km)
Worker W_DayPT 33.7% Forworkers who take public trans-

portation to work
Worker W_DayDrive 19.2% For workers who drive to work
Worker W_DayCarpool 22% For workers who drive but carpool

child to school first
Worker W_WeekendDayHome 20% Forworkers who stay at home dur-

ing weekends
Worker W_WeekendDayNearby 20% For workers who do activities

nearby (within 3 km) during
weekends

Worker W_WeekendDayPT 30% For workers who do activities
by public transportation during
weekends

Worker W_WeekendDayDrive 30% For workers who do activities by
driving cars during weekends

Retired R_DayHome 50% For retired peoplewho prefer stay-
ing at home

Retired R_DayOut 50% For retired people who prefer do
activities outside

ALL HospitalizedDay Based on simu-
lation

For hospitalized people

category.

2.32 Much like the agent life cycle in a FIPA agent (Poslad 2007), an agent realized in this model has an implicit life
cycle describing the agent states with the execution of activities (see Figure 4).

2.33 The di�erence between the life cycle of FIPA agents and agents in this model is how states are transited. Each
FIPA agent keeps the exact current state in its life cycle and needs a specific transition instruction for updating
to the next state. To achieve this, every agent shouldmaintain a list of future instructions which consumes a lot
of memory. In our model, the current state of the agents is not clear as there are no explicitly defined states in
the agents. Insteadwe keep a current activity indexwithin the current day pattern of an agent. When executing
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Table 4: A day pattern example for workers who carpool children to school in weekdays

No. Activity Name Activity Type Duration
1 sleep StochasticDurationActivity Triangular(6.0, 7.0, 7.5)
2 carpool Child CarpoolActivity based on simulation
3 work UntilFixedTimeActivity until 12:00 am
4 lunch and rest StochasticDurationActivity Triangular(0.4, 0.6, 1.0)
5 work StochasticDurationActivity Uniform(4.0,7.0)
6 drive home TravelActivityCar based on simulation
7 walk to shop TravelActivityWalk based on simulation
8 shop StochasticDurationActivity Triangular(0.1, 0.3, 0.5)
9 walk home TravelActivityWalk based on simulation
10 family dinner FamilySynchronizedActivity Fixed(20:00-21:00)
11 housework StochasticDurationActivity Uniform(1.0,2.0)
12 sleep till midnight UntilFixedTimeActivity until 24:00

Table 5: A day pattern example for workers who drive outside during weekends

No. Activity Name Activity Type Duration
1 sleep StochasticDurationActivity Triangular(7.5, 8.5, 10.0)
2 housework StochasticDurationActivity Uniform(1.0,4.0)
3 drive TravelActivityCar based on simulation
4 shop/entertainment StochasticDurationActivity Uniform(2.0,10.0)
5 eat StochasticDurationActivity Triangular(0.4, 0.6, 1.0)
6 drive home TravelActivityCar based on simulation
7 housework StochasticDurationActivity Uniform(0.5,2.0)
8 sleep till midnight UntilFixedTimeActivity until 24:00

Activity TravelActivity

CarpoolActivity

Synchronized
FixedTimeActivity

BusTransportActivity

FamilySynchronizedActivity

FlexibleDurationActivity

FixedDurationActivity

FriendsSynchronizedActivity

MetroTransportActivity

OfficeSynchronizedActivity

StochasticDurationActivity

TravelActivityCar

TravelActivityWalk

UntilFixedTimeActivity

SocialActivity

RegularActivity

Figure 3: Categories of activities
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Figure 4: Agent life cycle

an activity, the activity itself or activity executor (if this activity is a travel activity or social activity) will specify
a duration for this agent to schedule its next activity. During this period, the agent remains in an implicit state
(e.g., suspended), which is shown in Figure 4. Based on this design, the day patterns and the week patterns
are reusable for agents who have the same social role, which considerably reduces memory usage compared
to the FIPA solution. Take the same assumption mentioned above, assume there are around 20 million agents
and each agent has 10 activities per day, then we can design 100 day patterns instead of the initial 5.6 billion
activities for a 4 week simulation period, which are only around 1000 activities in total. Moreover, the week
pattern of an agent in ourmodel canbe changedas a result of the state of the system (e.g., a policy intervention)
as the week pattern is treated as an index attribute for an agent, which increases the flexibility of the model.

Social networks

2.34 There are three types of social networksmodeled in this research, which are family, colleagues/ classmates and
friendships. Family, colleagues andclassmates relations caneasily arise fromdefininga complete topology that
clearly specifies all relation connections, which is shown in Figure 5.

2.35 Friendships, as the most complex social relation, are relatively di�icult to define. The topology of friend con-
nections changes over time due to the dynamics of friendship relations (Pujol & Flache 2005). This is evenmore
complicated on a large scale (Gatti et al. 2014). Thus, egocentric friend networks are dynamically generated to
represent friendship connections. In this research, friendships will be generated before planning and negotiat-
ing social activities based on an algorithm thatwewill present below. The candidates for the friends come from
three kinds of sources: neighbors, classmates/colleagues and a random selection. When agent A is planning a
social activity, the algorithm for generating friends can be described as follow:

2.36 First, the number of friends Ns is assigned to A which follows a power-law distribution (Hamill & Gilbert 2010).
According to the fact that Dunbar’s number (Hill & Dunbar 2003) ranges from 100 to 250, the largest size of
friends in this research is set to the lower boundary 100 to reduce the computational complexity. The skewness
is set to 0.8, which is an example experiment setting in Hamill & Gilbert (2010).

2.37 Second, the percentage of A’s friends fromdi�erent sources is calculated according to a combination of uniform
distributions (see Table 6) as the source composition of A’s friendsmay di�er from another agent. For example,
agent A may like to make friends with neighbors while agent B may prefer making new friends randomly in
places like shops or restaurants.

2.38 Third, select one candidate randomly from the source and calculate thepossibility that the candidate andagent
A are friends. If the calculation result exceeds a predefined threshold (e.g., 0.25 as an initial setting), put the
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Table 6: Distribution of agent’s friends

Item Number
Total number Ns

Number of friends from neighbors Nn Uni f orm[0, Ns]
Number of friends from classmates/colleagues Nc Uni f orm[0, Ns − Nn]
Number of friends from random selection Nr Ns − Nn − Nc

candidate in agent A’s friends list. Otherwise, select a new candidate and repeat the calculation process till all
A’s friends are generated. If the new friends list is still not full, increase the threshold and repeat the calculation
process again. The calculation process is based on a concept called ’social similarity’, which is proposed in this
paper. It calculates the similarity between two agents. The considered variables include age, social role (week
pattern), family role and the number of friends. In this research, the ’social similarity’ S(A, B) between two
agentsAandB is evaluatedbyaweightedEuclideandistancewhich is shown is in Equation 1,where a represents
age, s represents social role (converted to an index), f represents family role, n represents the agent’s friends
size and µ represents the weights for di�erent variables.

S(A, B) = 1−
√

∑
i=a,s, f ,n

µi(Ai − Bi)2 (1)

Architecture of the artificial city

2.39 Models of locations, agents, social networks and the public transportation component constitute themain part
of the artificial city. The system architecture of the artificial city can be summarized by a class diagram contain-
ing the major classes in our implementation which is shown in Figure 6

2.40 Based on this architecture of the artificial city and our research interest in this paper, we built simulations to
study how spatial contacts can bemodeled and observed, which will be detailed in Section 3.

Spatial Contacts

3.1 In Section 2 we constructed an artificial city with a large population by combining diverse data sets, including
generated data from census information, open map data, etc. With this model, spatial contacts emerge during
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Figure 6: Architecture of artificial city

the execution of the model. We will separate the spatial contacts into three di�erent types and describe how
each type of contact can be observed andmeasured in the following subsections.

3.2 The simulation of the proposed artificial city is implemented using theDSOLpackage (Jacobs et al. 2002)which
is a Java-based discrete event simulation architecture. We ran the simulation on a PC (Intel Core i7-2620MCPU,
16.0 GB RAM) for a simulation period of 30 days.

Regular contacts

3.3 Regular contacts emerge when agents execute their daily regular activities in physical locations. For example,
regular contacts can emerge among students who are in the same school location. When a student is executing
a school activity, and another student is executing a school activity at the same location and the periods have
overlapwith eachother, these two students are considered tohavea regular contact in thismodel. More strictly,
we divided a location into sub-locations. For example, classrooms are considered as the sub-locations in the
school location. Hence, a student can only have regular contactswith other studentswhen they are in the same
classroom.

3.4 In addition to the household for each agent, the school (in the form of ID) is initially predefined for every stu-
dent, as well as the workplace for each worker. The other locations for activities like shopping and sports are
dynamically chosen according to the nearest location algorithms described in Section 2.3.

3.5 Through the execution of the simulation model, the number of people in several typical location types in a
simulated weekday is shown in Figure 7, where the time of the day (0:00-24:00) goes on the x-axis. The ’others’
item in the figure represents all the other location types according to Table 2.

3.6 From Figure 7, it can be found in this model that the largest part of the population during the day time in a
simulated weekday are in their workplaces.

3.7 As an example, the statistical results of the hourly number of people in the house location for ten replications
are presented in Figure 8, where the 95% confidence interval is drawn in the sample point (each hour).

3.8 Since all the population in this research are modeled into four social roles (baby, worker, student and retired),
the hourly results of agents with di�erent role in the house location as an example are presented in Figure 9 for
the weekday experiment and in Figure 10 for the weekend experiment.

3.9 In Figure 9a, we can find that the baby agents stay at home for all 24 hours. This is the result of the design of
the baby pattern, in which babies are modeled to execute all activities at home. Since the results for the baby
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Figure 8: Number of total agents in the house location in a weekday (10 replications)

agents are the same between the weekday andweekend experiments, results are excluded for babies in Figure
10.

3.10 Due to the design of the activity in the pattern, the duration of staying in di�erent types of locations varies
among agents even when they use the same activity pattern. To verify this design, the average duration of
agents staying in di�erent locations in the weekday experiment is presented in Table 7.

3.11 From Table 7, we can find that the longest duration of stay occurs in households, followed by work or study
places.

3.12 It’s not di�icult to find the causal relationship between the designed 20 day patterns in Table 3 for all the agents
and the experiment results as a verification evaluation. To validate this design to some extent, the result of a
survey by Wang et al. (2011) is used to compare with the experimental results. Wang et al. (2011) present the
time-use patterns of the di�erent neighborhood on a normal workday for workers. Based on this, two repre-
sentative neighborhood, TRA and CHC are chosen. Since only workers’ result is in the research by Wang et al.
(2011) and theduration in di�erent places is simply categorized into home, out-of-homeand travel, we recorded
the duration forworkers in di�erent locations separately andmade a comparison in Table 8, where the duration
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Figure 9: Statistics of the number of agents with social roles in the house locations in a weekday (10 replications)

Table 7: Average duration by location types

Type Average Duration Standard Deviation Confidence Interval (95%)
Household 10.2 hours 4.9 hours [7.16, 13.24]
Mall 0.5 hours 0.2 hours [0.38, 0.62]
Market 0.3 hours 0.1 hours [0.24, 0.36]
Restaurant 1.3 hours 0.8 hours [0.80, 1.80]
Workplace 4.2 hours 2.3 hours [2.77, 5.63]
University 6.0 hours 3.6 hours [3.77, 8.23]
Middle school 4.5 hours 2.1 hours [3.20, 5.80]
Hospital 0.9 hours 0.4 hours [0.65, 1.15]
Clinic 0.5 hours 0.2 hours [0.38, 0.62]

Table 8: Comparison of duration in home/out-of-home locations for workers in a weekday

Item Simulation results TRA CHC
In-home Mean 11.4 hours 14.5 hours 15.6 hours

CI(95%) [7.93, 14.87] [12.14, 16.86] [13.06, 18.14]
Out-of-home Mean 9.1 hours 8.0 hours 6.9 hours

CI(95%) [7.05, 11.15] [5.83, 10.17] [4.54, 9.26]

in travel is excluded.

3.13 FromTable 3, we can find that the relative error of the averageduration of staying In-HomebetweenTRA (equiv-
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Figure 10: Statistics of the number of agents with social roles in the house locations in a weekend day (10 replications)

alent to household in this research) and the experiment is relatively high (21.3%), compared to the average du-
ration of stayingOut-of-homebetween TRA (13.8%) and the experiment. This di�erence can be caused bymany
factors, such as the season of the survey, themonotonicity of the surveyed neighborhood and the incomplete-
ness of our designed activity pattern. As our interest in this research is in a new agent-basedmodelingmethod,
we accept this error while more surveys on human behavior patterns in Beijing is required in future research.

3.14 Due to the inclusion of public transportation, agents can have travel contacts which is considered as one novel
contribution in this research. Thus, the patterns of agents’ contacts during commuting are discussed in the
following section.

Travel contacts

3.15 Travel contacts emerge from the inclusion of the public transportation component in this model. We observed
the informationon thenumberof people in thepublic transportation infrastructure components, suchasmetro
stops, metro trains, buses and bus stops during aworking day. As an example, how the numbers of agents with
di�erent social roles in the bus location change in a weekday is shown in Figure 11. Through this transportation
component, travel contacts emerge. In this research, stopsormetro trainsaredivided into several sub-locations
to represent platformsor train compartments, where agents canhave travel contactswhen they are in the same
sub-locations at the same time.

3.16 Aswedescribedbefore, the duration of a travel activity by bus/metro is decidedby the simulationmodel, and is
dependent on several factors, such as the travel distance, the path that the agent chooses (e.g. Dijkstra shortest
path) and the waiting queue in the metro stops.
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Figure 11: Statistics of the number of agents in the bus location in a weekday (10 replications)

Table 9: Comparison of daily travel volume by public transportation in a weekday

Item Simulation results Historical statistics
by bus 7.28 million 8.11 million
by metro 4.55 million 3.95 million

3.17 Validation of a model with a wide range of parameters would be very di�icult (Stocker et al. 2001). Thus, this
simulation study shi�s the focus to validation using several travel statistics. In order to validate the results in
this public transportation component of the whole model, the average travel volume in a weekday by bus and
bymetro are compared to the historical tra�ic statistics report in 2011 (Guo & Li 2012) in Table 9. The reason for
adopting the tra�ic statistics report in 2011 is to keep this research consistent as the generated population data
is based on the census data of 2011.

3.18 From the comparison in Table 9, we can find that the relative errors between simulation results and the histor-
ical tra�ic statistics are within 15%. Several factors are responsible for the di�erences and one of the crucial
di�erences is that the data collected in the report (Guo & Li 2012) only covers part of Beijing city (within the 6th
Ring Road). This di�erence will increase the total relative errors to 28% as the daily travel volume within the
6th Ring Road only accounts for 87% of the whole travel volume in Beijing.

3.19 Regarding the travel purpose, Table 10 shows the comparison of themain purposes of using public transporta-
tion in a weekday. The relative errors are less than 10%.

3.20 From Figure 11, it can be found that the rush hours for public traveling are from 7 am to 8 am and from 5 pm to
6 pm, which match the historical tra�ic statistics (Guo & Li 2012).

3.21 Besides travel volume and travel purpose, travel duration is used to make a comparison for validation as well.
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Table 10: Comparison of daily travel purpose in a weekday

Item Simulation results Historical statistics
For working and school 59.2% 54.5%

For shopping 8.1% 7.6%
For leisure 6.1% 6.5%

Table 11: Comparison of daily travel duration by public transportation in a weekday

Item Simulation results (min) Survey data (min)
Mean time 66.4 52.4

The data for comparison comes from the survey data used in the research by Zhao et al. (2011) which presented
survey data on commuting time (travel duration in this research) in a weekday conducted in a neighborhood in
Beijing in 2001.

3.22 The relative errors between simulation results and the real data mainly come from the lack of certain activity
patterns in themodel, which results in themissing of a large amount of travel volume. For example, themodel
does not include patterns for business people and tourists who would use the public transportation multiple
times in one day. These patterns were excluded in the model due to the lack of available data.

3.23 As a conclusion, we listed themissing components in the artificial citymodel that can be easily improvedwhen
the associated data becomes available.

• More refined activity patterns, such as worker pattern in night shi�, tourist pattern, business people pat-
tern.

• More rules in agents’ architecture whenmaking decisions. For example, people in reality would consider
the choice of routes based on the price of tickets before traveling while agents in this research only con-
sider the shortest path.

• More accurate distribution of the starting time, duration and ending time of activities. For example, the
departure time to workplaces for workers who are employed by universities should be earlier than those
who work in restaurants in general. For now, the departure time for workers with di�erent type of jobs
follows the same distribution in this research.

Social contacts

3.24 In this paper, social contacts are defined as the contacts among agents when executing joint social activities.
The challenges for modeling these contacts are manifold.

3.25 The first is that no friendship social network is predefined in the initial data. All friendship social networks
should be generated before the execution process of friendship social activities based on the algorithms de-
scribed in Section 2.6. For example, part of the friendship relations of agents are generated among his/her
neighbors and colleagues. The reasons to generate friendship social networks dynamically for the agents are
twofold: first, it is too memory-consuming to store all friends lists for all 19 million agents (up to 100 friends
for each agent); and secondly, the real human friendship social networks are dynamic and evolve over time.
To make this friendship relation generated by the stochastic method as stable as possible (most friends of an
agent still remain the sameover time), a reproducible randomgeneratorwas designed using the agent id as the
seed. Hence, every time when agents want to invite his/her friends to conduct a social activity in the simula-
tion, the dynamically generated friendship relations will mostly remain the same although no static friends list
are predefined, or need to be stored. The slight di�erence comes from the sequence of selecting candidates for
friendship calculation from friends sources, which is on a first come, first served basis.

3.26 Another challenge is the consequencesof the first challenge that the joint social activities arenotpre-scheduled
for all participants and only the organizer agent of the joint social activity foresees this activity in its schedule.
Because there are no predefined friendship social networks, it is impossible to assign two consistent and se-
mantically matched week patterns to two individual agents before the simulation starts while the two agents
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Figure 12: Execution process of a social activity

aremodeled dynamically as friends during the simulation. This is solved through dynamically generating artifi-
cial ’Group Agents’ to help execute the friendship social activities. When the originator/organizer agent tries to
execute a social activity, a helping ’Group Agent’ is dynamically generated to take over the task to execute the
social activity. At first it will generate a social network, and then invite the members in the network to attend
this joint social activity. A�er a decision tree considering several rules and conditions (for example time and
distance), each invitee can either decline or accept the invitation. A�er collecting all the response, the ’Group
Agent’ will request all the participants to travel to the social locationwhere agents can be late due to real travel
delaywhich is causedby the transportationmodel. Themajor process of executing a social activity is presented
in Figure 12.

3.27 The detailed interaction procedure can be described as follows:

1. Before an agent starts to execute the current activity in the activity pattern, it will check the next activity
to see if it is a joint social activity. If yes, check if the conditions aremet for organizing it. Then a proposal
of the joint social activity will be sent to all involved social networksmembers. It is worth noting that the
friendship relations in social networkswill only be generated in this step and the agent will only schedule
a social activity within its current pattern.

2. Calculate the attendance possibility a�er receiving a social activity proposal for every agent Ii according
to Equation 2, whereN is the total number of agents involved in the planned social activity, Io is the orga-
nizer of this activity, S(Ii, Ij) calculates the linkweight between the two agents based on a concept ’social
similarity’, which calculates the ’social similarity’ between the two agents. The considered variables in-
clude age a, social role s, family role f and the number of friends n. In this research, the ’social similarity’
is calculated as a weighted Euclidean distance , where µ represents the weight for di�erent variables. By
setting the weight coe�icient {µa, µs, µ f , µn}, the calculation result S(Ii, Ij) will be constrained between
0 and 1. 1 means they are fully connected while 0 means no relations. A(d, E) calculates the interest de-
gree of the activity to the agent, where d is the distance between agent’s current location and proposed
activity location, E gives out the degree that the agent is interested in the activity and σ is a corrective
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Table 12: Parameter initialization for social activity participation analysis

Item Value Description

µa 2.268× 10−5 weight coe�icient
µs 1.563× 10−2 weight coe�icient
µ f 0.0625 weight coe�icient
µn 2.5× 10−5 weight coe�icient
A(d, E) 1 interest degree
t 0.25 attendance threshold

coe�icient for calibration.

P(i, o, N) = e

N
∑

j=1,j 6=o
S(Ii ,Ij)−N

× A(d, E)

S(Ii, Ij) = 1−
√

∑
x=a,s, f ,n

µx(Iix − Ijx )
2

A(d, E) =
σ · E

d

(2)

3. For each agent, compare the attendance possibility with its own attendance threshold t. If it is negative,
send a decline response to the activity organizer and continue its own schedule. Otherwise, start the
second stage process for decision-making based on a decision tree (see Figure 13).

4. Two kinds of decisions can bemade by the agents a�er the decision-tree based process, which are accept
and decline. The decisions will be responded to the organizer immediately, and the organizer will make
a decision on continuing the activity a�er collecting all responses.

5. Social activity organizerswill only negotiatewithothermembers for one time,which is necessary to avoid
deadlocks.

6. When the final decision ismade, the agentswho arewilling to join in the coming social activitywill autho-
rize a dynamically generated Functional Entity, ’Group Agent’, to take the responsibility for state updating
andmoving agents back to their original schedule when the social activity is finished.

3.28 For social contacts among family members and colleagues, the execution process of their joint social activities
is almost the same as the process in Figure 12. However, the di�erence with the friendship social contacts is
that the social networks for family members and colleagues are pre-defined in the initial data.

3.29 To evaluate the emerged social contacts, we constructed a model. The parameters in this experiment are ini-
tialized using the data from Table 12. Since the four factors (age, social role, family role and the number of
friends) are considered to be equally weighted to generate a friendship link, the corresponding weight coe�i-
cients (µa,µs, µ f , µn) are calculated according to boundary conditions, which is to enable the resultS(Ii, Ij) to
be constrained between 0 and 1. 1 means they are fully connected while 0 means that they have no relations.
The other parameters are initialized as one possible experimental setting and the sensitivity of themwill not be
discussed in this paper.

3.30 Based on this initial setting, agents’ friends can be generated when ’FriendsSynchronizedActivity’ is sched-
uled during a simulation run. The number of agents’ friends is assigned to agents by the algorithm in Section
2.6 which follows a power-law distribution (Hamill & Gilbert 2010). The average number of resulted friends is
around 13, which is not well validated due to the missing of actual data in Beijing.

3.31 Togetherwith the family and the classmates/colleagues network, agents’ social networks are formed. However,
agents will only generate their social networks when they need execute social activities.

3.32 Agents, who receive invitations from their friends for attending social activities which are unscheduled in their
activity patterns, can make interactions with the organizing agents in order to make a final decision.

3.33 Table 13 shows the average distribution of agents’ decisions on a new family social activity a�er executing the
processes. The equation-based process and decision tree-based process are the processes a�er which agents
receive an activity proposal.
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Figure 13: Decision tree for joining in social activities

Table 13: Distribution of agents’ decisions on family social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.78 0.67
Decline 0.22 0.33

Table 14: Distribution of agents’ decisions on colleague/classmate social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.88 0.75
Decline 0.12 0.25

3.34 FromTable 13, it can be found that 33%of agents decide to decline the invitation a�er the decision tree process.

3.35 Similar to Table 13, Table 14 shows the average distribution of agents’ decisions on a new colleague/classmate
social activity. The biggest di�erence between the figures is that more agents are willing to participate in a
colleague/classmate social activity than in a family social activity. This is because colleague/classmate social
activities are o�en scheduled during the time when there are no conflicts in the agents’ schedules.

3.36 Table 15 shows the average distribution of agents’ decisions on a new social activity a�er executing the plan-
ning processes. Compared with the other two figures, the unusual aspect of the figure is that fewer agents
accept the new proposal. This demonstrates that the composition of members in a friendship network can be
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Table 15: Distribution of agents’ decisions on friends social activities

Decisions Equation based Process Decision Tree based Process

Accept 0.67 0.54
Decline 0.33 0.46
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Figure 14: Number of people in social activities

heterogeneous in terms of daily schedules.

3.37 Figure 14 shows how the number of agents in di�erent social activities changes during a typical weekday.

3.38 For the family social activity, there are three peaks in Figure 14 and it reaches the highest point in the evening.
This indicates thatpeoplearemorewilling toplanactivitieswith their families. For colleaguesor students, there
are two peaks in themorning and the a�ernoon. This is caused by the day patterns whereworking people have
to attend meetings in the morning and a�ernoon and students attend joint sports activities in the a�ernoon.
For the friend activity, it seems that most friends will only meet in the evening, to have dinner, go shopping or
go to cinemas together. This phenomenon can be verified by the fact that Chinese people are more willing to
have joint dinner as a social interaction (HorizonKey 2007). However, these results can’t be well validated in
this paper as no independent data exists at this moment.

Modeling Disease Spread for Validation

4.1 To systematically validate the resulted spatial contact network, we implemented a pandemic influenza disease
progression model on this artificial city.

Diseasemodel

4.2 Pandemic influenza ismodeled to be contagious in the resulted spatial contact networks. Thephase transitions
are modeled according to the research in Stroud & Valle (2007). In addition to their disease transition model, a
phase called ’Vaccinated’ was added in this research, which can be used for policy modeling. The phase transi-
tions and details about the transition time and probability are presented in Figure 15.

4.3 An infected agent is contagious as of the phase of ’Asymptomatic_ Contagious_Early_Stage’ until the phase
of ’Convalescent’ or the end phases of ’Dead’ or ’IMMUNITY’. However, the contagious probability varies for
di�erent transition phases. The basic contagious rates in the phases are defined in Table 16.

4.4 Besides the basic contagious rates, the probability to infect a susceptible person is also highly related to factors
such as the space of the sub-location, the number of infected persons in the same sub-location and the contact
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Table 16: Basic Transmission Probability(P) of All Contagious Phases

Phase Label Phase P
RACE Asymptomatic_Contagious_Early_Stage 0.15
RACM Asymptomatic_Contagious_Middle_Stage 0.5
RACR Asymptomatic_Contagious_Recovering 0.125
RSES Symptomatic_Early_Stage 1.0
RSUS Symptomatic_Usual_Schedule 1.0
RSUSR Symptomatic_Usual_Schedule_Recovering 0.25
RSSH Symptomatic_Stay_Home 1.0
RSSHR Symptomatic_Stay_Home_Recovering 0.25
RH Hospitalized 0.25

duration. Because of this, we added more parameters in the disease progression model. The final contagious
rate for a susceptible person i in a sub-location L containing N infected persons can be calculated through
Equation 3, where Rj can be found in Table 16, β is a corrective coe�icient for the basic contagious probability,
σL is a corrective coe�icient for the sub-location, SL is the space of the sub-location (in squaremeters) and t_ij
is the contact duration between person i and j.

R(i, N, L) =
(1− e

−
N
∑

j=1
β×Rj×tij

)× σL
SL

(3)

4.5 In this research, the corrective coe�icients β and σL in Equation 1 are both set to 1.0. This simplification is
determined as one possible experimental setting and the sensitivity of this set will not be discussed in this
paper.

4.6 With this disease model implemented in the artificial city, a simulation was conducted to test the e�ect of the
modeled spatial contacts have on disease outbreak. The initial condition for the disease model was that 1 in 2
million people in the population was in the ’Suspect’ phase.

Model validation

4.7 In thedisease spreadmodel, the 16potential phases are categorized into two types: endphases and transitional
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phases. Firstly, we present the number of agents in the end phases of ’IMMUNITY’ in Figure 16.

4.8 One example of the transitional phases is ’Hospitalized’, which is presented in Figure 17.

4.9 Aswestatedbefore, thephase transitionsaremodeledmainlyaccording to the research inStroud&Valle (2007).
To validate the results of disease spread in this research, we made a comparison with the results of disease
spread in Stroud & Valle (2007) through giving out the distribution of ’infected’ agents (from Phase ’Asymp-
tomatic_notContagious’) by age group in Figure 18 and by infection location type in Figure 19.

4.10 From Figure 18, we find that the age group ’10-20’ (mainly constitutes of students) got the highest infection rate
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which is aligned with the conclusion in Stroud & Valle (2007). CDC of the United States collected and analyzed
the reported cases in 2009 and concluded that the infection rate is the highest among people in the 5 years to
24 years of age group 4.

4.11 FromFigure 19, we can find that household (home) is themost possible location type for disease spread among
the full population, followed by workplaces, schools and transportation. This result is also consistent with the
conclusion in Stroud & Valle (2007). To give a detailed view, the distribution of infected agents with di�erent
social roles in di�erent location categories is presented in Figure 20.

4.12 We also presented the distribution of infection sources for di�erent social roles in Figure 21.

4.13 From Figure 21, we can find that the biggest part of the infections for a given social role are from the same
social role type except for babies. It can be explained by the fact that students, workers and retired people stay
with each other in most of their day time while babies always stay with their parents. Especially, workers get a
higher infection possibility from their companions than the other social roles. It is caused by both the facts that
workers are the biggest part of the population and workers are in more closed spaces during the day.
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4.14 Although some basic disease dynamics reported in the figures above are consistent with Stroud & Valle (2007),
there are many di�erence in other specific indicators. For example, Stroud & Valle (2007) reported that about
10% of the population will be symptomatic or convalescing at the pandemic peak a�er 30 days of stable and
exponential growth, while we get a result of around 5% of the population that will be convalescing a�er 16
days. Furthermore, there are are also di�erence in the concrete numerical values in terms of the the breakout
of cumulative infections by location type and the clinical attack rates by age groups. Since we believe these
di�erences are correlated to the artificial city model, and the underlying population data (China vs USA) are
di�erent, these indicators will not be validated in this research.

4.15 In reality, there was an H1N1 outbreak in Beijing in 2009 which lasted more than six months. However, the
historical data, including the peak number of ’infection’ and the time of the peak, will not be used for validation
in this researchdue tomany factors. First of all, thepeaknumberof reported ’infection’wasbasedonconfirmed
cases. These cases do not distinguish the disease phases and do not contain detailed personal information.
Secondly, the reported peak time (day) lasted a rather long period as a series of interventions were conducted
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by di�erent authorities in di�erent part of the city among di�erent social roles from the first case in May 16 to
the peak time on October 28, 2009. Therefore, the simulated results of the extreme situation in this research
cannot be validated. Instead, an expert validation process is required as part of future research.

Comparison with RelatedWorks

Model with same disease transitionmodel

5.1 Since this research shares the same disease (H1N1) model with the research EpiSimS by Stroud & Valle (2007)
for prediction in southern California, it is meaningful to compare the model by EpiSimS with the model in this
research.

5.2 Besides the di�erences in data and parameters such as the basic contagious rate (R0) and the data source, the
major di�erences are reflected in the choices in the design and implementation phases.

• Although sublocations aremodeled in EpiSimS, the activity locations are organized in amorehierarchical
way in this research.

• Weekdays and weekend days are averaged to get a representative day in EpiSimS while they are sepa-
rately modeled in this research.

• EpiSimS does not capture disease transmission during travel while this research includes a public trans-
portation component for commuting.

• Agents’ behavior are based on fixed schedules in EpiSimSwhile both activity pattern can be replaced and
specified activities (e.g., social activity) in the pattern can be rescheduled in this research.

Model with same data source

5.3 Although the population and environmental data originates from Ge et al. (2014)’s research, this research is
independent and the way to design and implement the artificial city model and epidemic prediction model is
di�erent. To show how the research in this paper is unique and innovative, we made a comparison between
this research and the KD-ACP framework (Chen et al. 2015) which was used to implement an epidemic model
based on the same data.

• Agents implemented by KD-ACP behave according to fixed activity schedules in terms of the activity se-
quence, theactivity locations (fixedchoices) andduration. That is, agents inKD-ACPdonothavedecision-
makingcapabilities. Thispapermodelsagents inadi�erentwaybywhichagentsownmulti-leveldecision-
making capabilities while still staying "simple" and "small" enough for computational e�iciency.

• Social networks in KD-ACP are predefined in the initial data, thus, no unscheduled joint social activities
can be executed in the simulation. This paper generates social networks for agents dynamically bywhich
agents can have complex social interactions in order to join in unscheduled joint social activities.

• Subway networks aremodeled to represent thewhole public transportation in KD-ACP. A lot of e�orts are
required to complete the public transportation networks. However, this paper archives this task easily by
connecting tra�ic objects (buses andmetro trains) with travel activities.

• The diseasemodel are considered to be validated in KD-ACP in two indicators, the infection trend and the
basic reproduction number. This paper verifies and validates the model in both people’s daily behavior
and infection details, which include more model details.
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Model with same purpose

5.4 Comparedwith other research (Stroud&Valle 2007; Parker & Epstein 2011; Ajelli et al. 2010; Rakowski et al. 2010;
Bisset et al. 2009, 2014; Ge et al. 2013)whose research trend is on studying someof the interventions for specific
interests, the contribution of this paper is mainly the proposal of a way to model relatively complete spatial
contacts amonga large-scale population, bywhichpolicymakers can testmultiple interventions for controlling
disease spread using one epidemic model. The novelty of this model consists of the following aspects:

• Amicroscopic public transport system (subways and buses) together with a predicted road tra�ic system
are simulated in an artificial city and are well integrated with the daily activities of the population.

• Social networks can be dynamically generated to execute joint social activities.

• Themodel is scalable (19 million agents) and can still be simulated on a PC.

Conclusions

6.1 This paper designed algorithms and approaches tomodel complete spatial contacts for epidemic prediction in
the context of a large-scale artificial city. Firstly, by combining diverse data sets, including generated census-
based data, open source maps, activity patterns, an artificial city with a large population was constructed. In
this artificial city, each of the 8 million physical locations and 19.6 million citizens were modeled. All of these
individuals can carry out regular activities, travel around, and join non-predefined social activities by execut-
ing their daily activities according to a pattern. With this model, spatial contact networks emerge and can be
observed during the execution of the model.

6.2 Among these e�orts, the activity pattern baseddesign of agents canbe considered as the foundation formodel-
ing complete spatial contacts for epidemicpredictions. With this design, thememoryusage for keeping thenec-
essary information for millions of agents can be constrained to an acceptable level while agents can still show
diversebehavior in termsof activity locations, activity durations, travel routes anddecisions for non-predefined
social activities, even when agents have the same activity pattern. Through the execution of di�erent types of
activities in the agent patterns, the spatial contact networks emerge.

6.3 Secondly, to investigate the e�ect of the emerging spatial contact network for epidemic prediction, a pandemic
influenza disease progression model was implemented. The results are consistent with other independent re-
search. We believe this research and the constructedmodel could be an e�ective starting point as themodel in
this research can observe relatively complete spatial contacts for the first time.

6.4 Since this research canalsobe consideredas aproof of conceptwhichexemplifies howcomplete spatial contact
networks in a large-scale city with complex social networks can be modeled using an agent-based method, it
also indicates potential use in areas such as public transportation systems and city level evacuation planning.

6.5 As for future research, two more e�orts are required to refine the model. The first is more actual data, such as
adding more optional week/day patterns by surveying statistics of people’s actual activity patterns, and more
surveying on distribution of people’s friends. The other is to improve the simulation performance by distribut-
ing this model, as it still takes approximately 30 hours to run one replication.
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Notes

1http://www.openstreetmap.org
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2http://wiki.openstreetmap.org/wiki/Osmosis
3http://jgrapht.org
4http://www.cdc.gov/h1n1flu/surveillanceqa.htm
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