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Abstract
The Atmoscope is the idea to use the atmosphere of a planet as a telescopic lens. It uses
the refractive properties of an atmosphere to converge light rays to a focal line. It has been
hypothesized that using Earth’s atmosphere could, under favorable circumstances, yield an am-
plification of 55, 000 for a detector that has a surface area of 1 m2. However, the precise effects
of the oblateness of Earth in combination with the effects of physical effects such as turbu-
lence inside the atmosphere have not yet been researched. Here we show that incorporating
the eccentricity of Earth diminishes the amplification greatly. We found using a ray tracing
model for gradient-index media that the amplification for ellipsoidal planets has the follow-
ing relation with the detector or pixel size: A ∝ D−0.66. For spherical planets this relation is
A ∝ D−1. Furthermore, we implemented velocity diffusion to simulate physical effects inside
the atmosphere, which surprisingly did not affect the amplification significantly. We anticipate
this result to be a starting point for more sophisticated ray tracing models. For example, a full
map for the refraction in the atmosphere could be used to test the effect of a non-homogeneous
atmosphere. Much research still needs to be done, before it can be decided definitively whether
the Atmoscope could be a useful telescope.
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1. Introduction to the Atmoscope

1.1. Telescopes:
Humans have always been interested in the stars: what is out there in outer space? It is then no
surprise that instruments used to gaze at celestial objects have been used as early as the begin-
ning of the 1600s [1], with most famously Galileo Galilei, who was the first to use glass lenses
to observe celestial objects. These type of telescopes that use refractivity (using lenses to bend
the light) are called refraction telescopes. Nowadays, refraction telescopes are still common,
but the famous telescopes used for scientific research are now often reflective telescopes: these
use mirrors to reflect the light from object to observer. Examples of these are Hubble, and the
recently deployed James Webb Telescope. These examples are also space-telescopes: they have
the advantage that they do not have to collect light that has traveled through the atmosphere. In
figure 1 a diagram of both types of telescopes is shown, showing how the light travels through
both versions.

Figure 1: A diagram depicting the two different types of telescopes. Figure a) shows the path of
light rays traveling through a reflective telescope, and b) shows the path of light rays traveling
through a refractive telescope.

1.2. The Atmoscope
The atmosphere of Earth has been a problem for astronomers since they started using tele-
scopes. To capture starlight, they want a calm, clear atmosphere, since any turbulence or other
imperfection can scatter or absorb the starlight. They build their telescopes on top of moun-
tains, so as to have the least amount of atmosphere to look through [2]. The Atmoscope poses
the idea of, instead of seeing the atmosphere as an obstacle to be overcome, using it as a gigan-
tic lens for a telescope. The first mention for idea for this was in a paper by W.B. Hubbard [3],
who commented on the possible uses of the bending of light through the atmosphere of plan-
ets. A more detailed idea and research on the Atmoscope was written by Columbia University
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astronomer David Kipping in 2019 [4], where he called it the "Terrascope". We use the term
Atmoscope in this report, because we want to point out that this idea is not only possible for
Earth, but for any planet with an atmosphere. With the atmosphere of Earth being thinner at the
top, and thicker the closer to the surface, one can imagine it could work similarly to a convex
lens. This causes light rays that enter the atmosphere to converge, and suddenly we have a lens
that is the size of the atmosphere.

Earth

Ocular lens

Detector

Figure 2: Kippings proposed atmoscope: Light rays travel through the atmosphere which acts
like an objective lens, after which these light rays travel through an ocular lens piece and are
finally captured by a detector. Not to scale.

A diagram of the Atmoscope is shown in figure 2. It shows that when light hits the atmo-
sphere, it bends and converges behind the earth. Then it goes through a secondary lens (this is
optional), and is captured by the detector.

There are a few benefits to the Atmoscope when comparing it to normal telescopes.

• It is relatively cheap to build: only a detector needs to be sent out in space, the rest of the
telescope is already in place.

• The amplification of the Atmoscope would be incredible: no other instrument with a lens
this large has ever been used.

• We can use other solar system objects with an atmosphere as telescopes as well.

In Kipping’s paper, he modeled the atmosphere as concentric circles, each with a different
refractive index, and was able from there to construct how light rays travel through the atmo-
sphere.
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1.3. Central flash maps
The consequences of the Atmoscope have already been observed a few times, namely as "cen-
tral flashes". A central flash is an effect that can be observed with stellar occulations: when we
measure the starlight captured from a star that is occulted by another celestial object, instead
of not measuring any starlight anymore, we observe an intensity peak when the star is right
behind the celestial object. This has first been observed by J.L. Elliott in 1977, where they
observed this central flash while studying the occultation of a star by Mars [5]. More recently,
when studying the two Titan stellar occultations of 14 November 2003, B. Sicardy et. al. looked
more into the central flashes that were a result of these occultations [6]. In order to understand
the results of this report, we will show the results of this paper, and explain the context briefly.

One of the occultations of Titan was visible in a region, and the study observed the occulta-
tion from multiple locations in this region. In the figure below, the intensity of collected light is
plotted against time for 5 of these locations. There is a red line plotted over these figures with
the expected intensity.

Figure 3: Observations for the occulation of Titan. There are 5 graphs in this figure, each
for different locations where the occultation has been observed. These locations are Gifberg,
Cederberg, SAAO, Sondfontein and Maïdo (all in South-Africa).

We see in figure 3 that for different locations, the central flashes are different: in Cederberg
there is one very high flash, and in Maïdo there are two intensity peaks. This result led the
authors to construct a ’central flash map’, a figure in which they show the intensity as a function
of location.
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Figure 4: Central flash map of the occultation of Titan [6].

These kinds of flash maps are a large part of the results of this report, and we will show that
the shape of the figure depends on the geometry of the planet that occults the star.

1.4. Research questions
In this report, the Atmoscope will be studied in greater detail. It aims to answer the following
research questions:

• Could the Atmoscope be a useful telescope?

– What effect does the shape of the planet have on the maximum amplification achieved
by the Atmoscope?

– How can we account for physical effects inside the atmosphere that may alter the
quality of the Atmoscope?

1.5. Methodology
These questions will be answered throughout the next chapters. Chapter 2 explains the model
for the Atmoscope used in the rest of the report. Chapter 3 explores the Atmoscope for a
spherical planet, while chapter 4 applies the model to an ellipsoidal planet. Chapter 5 details
the effects of the atmosphere. Chapter 6 discusses the final results, and chapter 7 answers the
research questions and discusses further research questions.
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2. Ray tracing for gradient-index media
Throughout this report, we use geometrical optics: we describe light as rays, and consider
that photons follow this light ray. We need to find these light rays, to be able to obtain the
amplification that results from the atmosphere, and to obtain the flash maps. This is called ray
tracing: for every single light ray we will look at the path it has taken. In this section we will
talk about how we can describe the path of a light ray, by deriving the equations of motion for
gradient-index optics. We also will look at how these equations of motion can then be used in
our code: what numerical methods we use to go from a differential expression to getting our
path.

2.1. Euler-Lagrange equations
Let us consider the light traveling through a medium with changing refractive index, which
influences the speed. Light will bend in the direction of the gradient of the refractive index.
Its path can be derived using the Euler-Lagrange equation. These calculations have been made
before [7]. It is included below for completeness sake.

2.1.1. Euler-Lagrange equation

According to the principle of Fermat, light traveling between two points P0 and P takes the
path that takes the shortest amount of time. The integral of this path, also known as the optical
path length, can be written as in the following equation [8]:

S =

∫ P

P0

n(r)ds. (2.1)

Here n(r) is the refractive index, which depends on the position r, and ds an infinitesimal
length element of the light path. We can rewrite this by seeing that ds can be rewritten, since
ds = vdt where v(r) is the instantaneous velocity, and dt a time element. We introduce v as
the instantaneous the velocity vector:

v =

v1v2
v3

 =


dx
dt

dy
dt

dz
dt

 =

ẋẏ
ż

 = ṙ (2.2)

One can see that v is therefore the length of this vector:

v =
√
ẋ2 + ẏ2 + ż2 (2.3)

which, in combination with the observation that the refractive index is solely a function of
location, gives us the following function for the optical path length:

S =

∫ P

P0

nvdt =

∫ P

P0

n(x, y, z)
√
ẋ2 + ẏ2 + ż2dt. (2.4)

Furthermore, our integral S can be written as
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S =

∫
L(x, y, z, ẋ, ẏ, ż)dt, (2.5)

where L is the Lagrangian of our system.

L(x, y, z, ẋ, ẏ, ż) = n(x, y, z)
√
ẋ2 + ẏ2 + ż2 (2.6)

From this we see we can also write the Lagrangian of our system as follows:

L(r, ṙ) = n(r)v (2.7)

This we can now use in the Euler-Lagrange equations [9]

d

dt

(
∂L
∂ṙi

)
=
∂L
∂ri

, (2.8)

where ri and ṙi are the i component of r and ṙ respectively (so r1 = x, and ṙ1 = v1, etc). We
start with the right hand side of this equation with, and note that v does not depend on r. The
partial derivative with respect to x is

∂L
∂x

= v
∂n(r)

∂x
(2.9)

We get similar results for taking the derivative of L with respect to y and z, and thus we can
write down the following: 

∂L
∂x
∂L
∂y
∂L
∂z

 =


v
∂n(r)

∂x

v
∂n(r)

∂y

v
∂n(r)

∂z

 = v∇n(r) (2.10)

Then for the left hand side of the equations 2.8, note that the second term is a derivative to ṙi,
which is the same as deriving to velocity. So now we look to find these derivatives. To start
with ∂L

∂ṙ1
.

∂L
∂ṙ1

=
∂L
∂v1

= n
∂v

∂v1

= n
∂
√
v21 + v22 + v23
∂v1

(2.11)

Using the chain rule, we see that this becomes

∂L
∂ṙ1

= n(r)
v1√

v21 + v22 + v23
= n

v1
v
, (2.12)

and similarly we have

∂L
∂ṙ2

= n(r)
v2
v

∂L
∂ṙ3

= n(r)
v3
v
.

(2.13)
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We now define the unit velocity vector as follows:

v̂ =
v

v
=

u1u2
u3

 (2.14)

This gives us for our left hand side of equation (2.8):

d

dt

(
∂L
∂ṙi

)
=

d

dt
(n(r)ui) (2.15)

Substituting this equation and equation (2.10) into equation (2.8) we find the final gradient-
index optics Euler-Lagrange equation:

d

dt
(n(r)v̂) = v∇n(r) (2.16)

This means that the change in velocity over time is a function of the gradient of the index, hence
the name gradient-index optics. A dimension check gives us that the left hand side of equation
(2.16) has the following dimension:[

d

dt
(n(r)v̂)

]
=
[
s−1
]
, (2.17)

since n(r) is dimensionless, and v̂ is also dimensionless, because it is a unit vector, which are
dimensionless by definition. On the right hand side of equation (2.16) we get for our dimension:

[v∇n(r)] =
[
m s−1 ·m−1

]
=
[
s−1
]
, (2.18)

which is the same as the left hand side of equation (2.16).

2.1.2. Equations of motion

Now we have the Euler-Lagrange equations of gradient-index optics, but we still need to apply
these to find the equations of motion for our model of the Atmoscope. To do that, we start by
defining the system of analysis. The coordinate system we have defined as in figure 5.

O

z

y

x N

S

Figure 5: The planet placed onto the coordinate system we use, with the blue points being the
North and South Pole.
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In this report we talk about 2 types of planets, with spherical and ellipsoidal shape. Now
that we have defined our system of analysis, let us continue by looking at the left hand side of
equation (2.16). We start by using the chain rule:

d

dt
(n(r)v̂) = v̂

dn(r)

dt
+ n(r)

dv̂

dt

= v̂

(
∂n

∂x

dx

dt
+
∂n

∂y

dy

dt
+
∂n

∂z

dz

dt

)
+ n(r)

dv̂

dt

(2.19)

Now we note that dx
dt

= v1, and similarly for dy
dt

and dy
dt

, so

v̂

(
∂n

∂x

dx

dt
+
∂n

∂y

dy

dt
+
∂n

∂z

dz

dt

)
= v̂

(
v1
∂n

∂x
+ v2

∂n

∂y
+ v3

∂n

∂z

)
= (∇n(r) · v)v̂.

(2.20)

Filling this back into the equation (2.19), we obtain the following:

(∇n(r) · v)v̂ + n(r)
dv̂

dt
= v∇n(r) (2.21)

Bringing the first part of the left hand side to the right we see

n(r)
dv̂

dt
= v∇n(r)− (∇n(r) · v)v̂ (2.22)

Rearranging the terms

n(r)
dv̂

dt
= v∇n(r)− v̂(v · ∇n(r)

n(r)
dv̂

dt
= v∇n(r)− v̂(vv̂ · ∇n(r))

n(r)
dv̂

dt
= v(1− v̂v̂·)∇n(r)

dv̂

dt
=

v

n(r)
(1− v̂v̂·)∇n(r)

(2.23)

Now, since we are working with light rays, the speed of the light rays is defined as v = c
n

, so
we define our unit as c = 1, which gives us

dv̂

dt
=

1

n(r)2
(1− v̂v̂·)∇n(r) (2.24)

Now we could keep it here, and start to find our equations of motion, but we simplify the model,
and say we propagate not in time, but in the z-direction. We can do this only if there is enough
symmetry in the models, which in the case of this report there is. The reason for doing this
means we only need to solve 4 equations of motion, instead of 6. We obtain this change by first
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applying the chain rule:

dv̂

dz
=
dv̂

dt

dt

dz

=
dv̂

dt

1

v3

=
dv̂

dt

1

vu3

=
dv̂

dt

n

u3

(2.25)

Note again, vi are the elements of the instantaneous velocity vector, and ui are the elements of
the unity velocity vector. In the last step we used that v = 1

n
. We fill this into equation (2.24).

dv̂

dz
=

1

n(r)u3
(1− v̂v̂·)∇n(r) (2.26)

Let’s now find what this equation is per element of the vector. We start by showing for the
x-element.

du1
dz

=
1

n(r)u3

(
∂n(r)

∂x
− u1

(
u1
∂n(r)

∂x
+ u2

∂n(r)

∂y
+ u3

∂n(r)

∂z

))
=

1

n(r)u3

(
(1− u21)

∂n(r)

∂x

)
− u1u2
n(r)u3

∂n(r)

∂y
− u1
n(r)

∂n(r)

∂z

=
1

n(r)u3

(
(u22 + u23)

∂n(r)

∂x

)
− u1u2
n(r)u3

∂n(r)

∂y
− u1
n(r)

∂n(r)

∂z

=
u3
n(r)

∂n(r)

∂x
+

u22
n(r)u3

∂n(r)

∂x
− u1u2
n(r)u3

∂n(r)

∂y
− u1
n(r)

∂n(r)

∂z

(2.27)

In the middle steps we used that since v̂ is the unit vector, we can write 1 = u21 + u22 + u23
We can do a similar approach for du2

dz
. Furthermore, looking at the method we used in equation

(2.25), we can find expressions for dx
dz

and dy
dz

. Lastly, we can use u3 =
√

1− u21 − u22, and we
have found our complete set of equations of motion.

u3 =
√

1− u21 − u22(
dx
dz

dy
dz

)
=

(
u1
u3

u2
u3

)
(
du1
dz

du2
dz

)
=

(
u3
n(r)

∂n(r)
∂x

+
u22

n(r)u3

∂n(r)
∂x
− u1u2

n(r)u3

∂n(r)
∂y
− u1

n(r)
∂n(r)
∂z

u3
n(r)

∂n(r)
∂y

+
u21

n(r)u3

∂n(r)
∂y
− u1u2

n(r)u3

∂n(r)
∂x
− u2

n(r)
∂n(r)
∂z

)
(2.28a)

(2.28b)

(2.28c)

Solving this system of ordinary differential equations will give us the path of the light ray.

2.2. Code
We have found the equations of motion, that can used for a ray on an atmosphere of a planet
by substitution of a refractive index of that planet’s atmosphere. Now we need to look at
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how we use these equations of motion to get the path for our light rays. There are many
numerical integrators, each with their own pro’s and cons: usually you either give up precision
and accuracy, or computing time is very long. For this project, we found that Leapfrog works
perfectly well.

2.2.1. Numerical method: Leapfrog

The numeric method we use to solve the equations of motion is called Leapfrog. Leapfrog is a
time-reversible, second order numerical integrator. The way this algorithm works is shown in
equation (2.29) [10]. Knowing the position xi, velovity vi and acceleration ai at a certain time
t, this method gives the new position and new velocity at a later time t+ ∆t.

xi+1 = xi + vi∆t+
1

2
ai∆t

2

vi+1 = vi +
1

2
(ai + ai+1) ∆t

(2.29)

Note that the velocity is computed using the average acceleration between the two points so it
should be known. This is clearly for if your ODE is just dependent on 2 variables, t and x, but
its easily changed for our variables x, y and z.

xi+1 = xi + v1,i∆z +
1

2
ax,i∆z

2

yi+1 = yi + v2,i∆z +
1

2
ax,i∆z

2

v1,i+1 = v1,i +
1

2
(ax,i + ax,i+1) ∆z

v2,i+1 = v2,i +
1

2
(ay,i + ay,i+1) ∆z

(2.30)

In this case, aj,i =
dvj,i
dz

, which of course can be given by equation 2.28c. The code for this
algorithm in Python is shown below [11] 1:

1 def LeapFrogSolve(dvdz, zspan, v0, n, a, b, c):
2

3 z0 = zspan[0]
4 zstop = zspan[1]
5 dz = ( zstop - z0 ) / n
6

7 #initializing arrays for z, and v
8 z = np.zeros( n + 1 )
9 v = np.zeros( [ n + 1, 4 ] )

10

11 for i in range ( 0, n + 1 ):
12

13 if ( i == 0 ): #filling in the initial conditions
14 z[0] = z0
15 v[0,0] = v0[0]

1All the code used in this report can be found in the following GitHub repository: https://github.com/
leeuwenella/BEP-Atmoscope
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16 v[0,1] = v0[1]
17 v[0,2] = v0[2]
18 v[0,3] = v0[3]
19 anew = dvdz( v[i,:], z[i], a,b,c )
20 else: #running leapfrog
21 z[i] = z[i-1] + dz
22 aold = anew
23 v[i,0] = v[i-1,0] + dz * ( v[i-1,2] + 0.5 * dz * aold[2] )
24 v[i,1] = v[i-1,1] + dz * ( v[i-1,3] + 0.5 * dz * aold[3] )
25 anew = dvdz ( v[i,:], z[i], a,b,c )
26 v[i,2] = v[i-1,2] + 0.5 * dz * ( aold[2] + anew[2] )
27 v[i,3] = v[i-1,3] + 0.5 * dz * ( aold[3] + anew[3] )
28

29 return v

Listing 1: The code used to propagate light rays using the Leapfrog numerical method.

The result of this code is a (n + 1) × 4 matrix v, where row i is an array of the shape
[xi, yi, u1i , u2i ] at that z-location. In this code, Leapfrog uses the following variables: dvdz,
zspan, v0, n a, b and c. Below the meaning of these variables is explained.

• dvdz: This is our system of ODE’s. This is implemented as a function of x, y, u1 and u2
and z, (and of a, b, c when working with an ellipsoidal planet, where those are the axes
of the ellipsoid), and it returns an array in the shape of [dx

dz
, dy
dz
, du1
dz
, du2
dz

]

• zspan: This is an array with the begin and end values of z over which we want to
integrate.

• v0: This is an array with our initial conditions, given in the form [x0, y0, ux0, uy0].

• n: This is the number of steps the integrator takes to calculate the path of one light ray.
This is the variable that decides how big the steps are in the propagation direction. We
found that using n = 15 gives us enough accuracy while still being low enough that the
code doesn’t take too long to run.

• a, b, c: These are the principal semi-axis used in describing the shape of the planet.
These are only used when working with an ellipsoidal planet.

This piece of code we use to calculate the path of light rays within the atmosphere, since after
they leave the atmosphere, the light rays find themselves back in vacuum, and will therefore
simply travel in a straight line. This line we parameterized in the following way:xy

z

 =

xAyA
zA

+ t

u1Au2A
u3A

 (2.31)

Here A denotes the location where we exit the atmosphere. We can then decide we want to
look at the x-y plane for a certain z, and find t from there. Then we can use this t to find the
coordinates of all light rays at this z-plane.
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2.2.2. Initial conditions: a thin band

So far we have found the general formula of the equations of motion for the light rays, and how
to integrate these. The last thing we have to do before diving into specific models is determining
the initial conditions: in which light rays’ path are we actually interested? Ideally, we would
take a homogeneous division of light rays in a plane that all travel towards the earth. This
however will take an a lot of computing power, and is quite unnecessary, since most light rays
will then either crash into the earth, or miss the detector. Therefore we decided to only look
at a single band of light rays, and we give all of them the same initial direction and velocity:
v3 = 1, as shown in figure 6 below.

Figure 6: The propagation of light rays, where the initial conditions of the rays mean they are
homogeneously divided on a thin ring away from the earth.

The way this band is constructed depends on the geometry of the planet we are propagating
our light rays towards, so these will be discussed more in their respective sections of the spher-
ical and ellipsoidal planet models (sections 3.2.2 and 4.3). A final remark: we need to consider
the effect the thickness of the band has on our final results. This we’ve shown in figure 6 below.

Figure 7: The effect of the width of the band in which we divide our light rays: the size of the
detector D is bigger than the width h.
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In figure 7 we tried to illustrate that the size of the detector that is needed to catch all the
light from a certain band in the atmosphere, is bigger than the band itself. The reasoning behind
this is as follows: say light ray A is below light ray B. Then light ray A enters the atmosphere
before B does, which means it is in the atmosphere for longer, which means that it will bend
more than B. Furthermore, A is also lower in the atmosphere than B. Lower in the atmosphere
the refractive index is higher; this also increases the bending. These two effects result in a
difference in bending angle between the two light rays, which will mean that they diverge, and
thus will the detector have to be bigger than the width h.

This is also an argument why choosing to model the band is a valid idea for our initial
conditions. Say we have a detector, with size D, placed somewhere on the z-axis. Any light
ray lower than the the lowest ray in the figure will end up below the detector, and any light ray
above the highest ray will end up above the detector, so there’s no use in using those light rays.

2.2.3. Amplification

Throughout this report we will be talking about amplification, so here we show the definition
we will be using throughout the report. Amplification is how much more light rays per unit
surface you catch when using the Atmoscope compared to if it was not there. As an equation.
First we introduce light ray density as follows:

ρ =
#light rays

surface
(2.32)

This gives us our function for amplification:

A =
ρ

ρ0
(2.33)

Here ρ is the light ray density in a pixel at the detector, and ρ0 the light ray density of our initial
conditions. To write it out even further, using that we are using a band of homogeneously
placed light rays as our initial conditions:

A =
Pr
Ap

Aring
Ptotal

(2.34)

Here Pp is the number of light rays that end in a certain pixel, Ap is the area of that pixel, and
Aring is the total area of the initial band, and Ptotal is the total number of light rays. Note that
if you make a flash map with even spaced pixels, we can rewrite this again into:

A = CampPp, (2.35)

where we call Camp the amplification factor: this factor describes the relation between the
amplification and the actual number of light rays that end in a certain pixel. This factor can be
useful to determine whether the results are viable.
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3. Amplification by the atmosphere of a spherical planet
For the first step of making a full model for the effect of light bending in the atmosphere of
a planet, we will simply be looking at a perfect spherical planet. This makes everything the
model quite a bit simpler, because there is so much symmetry. In this chapter we will first
obtain an analytical expression for the path of a light ray traveling through the atmosphere.
The refractive index is proportional to the density of the atmosphere, and since the density of
the atmosphere is exponentially decaying, the refractive index is also exponentially decaying,
which means we can use the following equation for our refractive index:

n = 1 + η0e−
r−R
H . (3.1)

Here 1+η0 is the refraction index of air at sea level with η0 > 0,R is the radius of the earth, and
H is the scale height of the atmosphere: the height from the sea level after which the density
has decreased with a factor e.

3.1. The path of a single light ray

3.1.1. Analytical calculation of the path

If we are able to find an analytical solution for the path of a light-ray, this would save us a lot
of computing time, so in this section we are looking to find such a solution.

We start our search with equation 2.5. Different from chapter 2 however, we now change
to from Cartesian to spherical coordinates. Keeping in mind that the problem is perfectly
spherically symmetric, the ray will stay in a plane through the origin, and we can work in only
2 dimensions, instead of 3. This gives us the following coordinate transformation:

y =0

z =r cos θ

x =r sin θ

(3.2)

We may now assume the path of the light ray can be described as a function of θ, hence r is
only a function of θ. This means we can rewrite ds in the following way, using the chain rule:

ds =

∣∣∣∣d(r(θ) cos θ

r(θ) sin θ

)∣∣∣∣
=

∣∣∣∣(r′ cos θ − r sin θ

r′ sin θ + r cos θ

)∣∣∣∣ dθ
=
√

(r′)2 + r2dθ

(3.3)

Here we introduced the notation r′ to mean the derivative of r with respect to θ: r′ = dr
dθ

.
Combining eqiatopm (3.3) with equation (2.1), we see:

14



S =

∫
n(r)ds

=

∫
n(r)

√
(r′)2 + r2dθ

=

∫
L(r, θ)dθ

(3.4)

So the Lagrangian of this system can be written as

L(r, θ, ṙ, ˙theta = n(r)
√

(r′)2 + r2 (3.5)

Now we will go from our Lagrangian to the Hamiltonian that fits with this system, using the
following relation between the two [12]:

H = pq̇ − L (3.6)

where normally with the Hamiltonian we work with parameters time t, coordinate q and mo-
mentum p, in our case we replace these by θ, r and dL

dr′
, respectively. Taking the derivative of

our Lagrangian with respect to r′ gives us the momentum variable

p =
dL
dr′

= n(r)
r′√

(r′)2 + r2
(3.7)

Substituting all of this into equation (3.6) we get:

H(r, θ, p) =
n(r)r′2√
(r′)2 + r2

− n(r)
√

(r′)2 + r2 = − n(r)r2√
(r′)2 + r2

= −
√
n(r)2 − p2r (3.8)

We see that when written to depend on only r, p, and θ, the Hamiltonian is not a function of θ.
Therefore the Hamiltonian of motion is constant [12]. We name this constant J .

We can now derive an expression for r′(θ).

J = − n(r)r2√
(r′)2 + r2

(3.9)

Now we square both sides, and multiply both sides by the denominator of the right hand side.(
r′2 + r2

)
J2 = (−)2n(r)2r4 (3.10)

Now we can devide by J2 to isolate r′.

r′2 =
n(r)2r4 − r2J2

J2
(3.11)

Taking the square root of both sides gives us

r′ = ±
√
r4n(r)2 − r2J2

J
(3.12)

15



Now we write down the definition of r′. and plug J back into the square root.

dr

dθ
= ±

√
r4n(r)2

J2
− r2 (3.13)

Then, we take dθ to one side, and all the others to the other side.

dθ = ± dr√
r4n(r)2

J2 − r2
(3.14)

Integrating this last equation gives us a function for θ:

θ = ±
∫

dr√
r4n(r)2

J2 − r2
(3.15)

One more thing we need to do with this formula is find an expression for J . To do that we use
the expression for J as described in equation (3.9). We know that at the minimal distance a
light ray reaches from the origin, r′ = 0. This minimal distance we can call R + h where R is
still the radius of the planet. Filling this into the expression we have for J gives us:

J = −n(R + h)(R + h)2√
0 + (R + h)2

= −(R + h)n(R + h) (3.16)

Since J is a constant (since the Hamiltonian is constant) this expression is constant through
the entire path of the light ray.

3.1.1.1 Checking the formula

In order to check if equation (3.15) could be the right formula for θ, we will check the integral
for the case where n = 1, e.g. the light traveling through space. This gives us

θ = ±
∫

dr√
r4

J2 − r2
(3.17)

We will use a substitution: u = J
r
, which gives us du = −−J

r2
dr.
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θ = ±
∫ −r2

J
du

r
√

1
u2
− 1

= ∓
∫ 1

u
du√
1
u2
− 1

= ∓
∫

du

u
√

1
u2
− 1

= ∓
∫

du√
1− u2

= ∓ arcsin (u) + C

= ∓ arcsin

(
J

r

)
+ C

(3.18)

Rewriting this and reverting to Cartesian coordinates gives us:

r sin (θ − C) = ∓J ⇒
r sin (θ) cos (C)− r cos (θ) sin (C) = ∓J ⇒
y cos (C)− x sin (C) = ∓J ⇒

y = tan (C)x∓ J

cos (C)

(3.19)

Here we recognize the equation for a straight line: y = ax+ b. This corroborates the equation
we have found for theta, since we know that in a constant medium, light travels in a straight
line.

3.1.1.2 Deflection angle

In the previous sections we found an equation for the angle θ of a light rays’ path as a function
of its distance r to a planet. In our case, obviously, the refraction index is not unity, which
makes the equation we found quite difficult to solve. So what we will try to do instead is use
this equation to find the deflection angle instead. The deflection angle ν we have defined as
described in figure 8 below.

To give a mathematical description, we say we will define ν as follows:

ν = −π + 2

∫ ∞
R+h

dr

r

√
r2

J2

(
1 + η0e−

r−R
H

)2
− 1

(3.20)

This seems quite a daunting expression, but the derivation of this is quite simple. Normally,
when going in a straight line, θ starts at π when coming from the left side into infinity. Then,
when it travels through the universe and goes into infinity on the right side, θ goes to zero.
So the difference in angle between the begin and the end is π. Now, in the case where a light
ray travels through the atmosphere, we have first that r is at minus infinity. Then the light ray
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Figure 8: The definition of the deflection angle ν

travels until r reaches its minimum, that is R + h, and then it will increase until infinity again.
The difference in angle can then be divided into two integrals, one going from minus infinity
until R + h and one going from R + h until infinity, which is what we see in equation 3.20.

Now we want to find a solution for this equation. For that we will use that we know that
J = (R + h)n(R + h) by equation 3.16. So that means that we can write J as follows:

J = (R + h)
(
1 + η0e−h/H

)
(3.21)

Now we take one more intermediate step before we fill in this definition for J into our equation
3.20; we will do a Taylor expansion in η0 in r2n2. This goes as follows:

r2n2 = r2
(

1 + η0e−
r−R
H

)2
= r2 + 2r2e−

r−R
H η0 + · · ·

= r2
(

1 + 2η0e−
r−R
H

)
+ · · ·

(3.22)

Here we neglect the terms with higher order η0, which we can do because η0 is very small. Now
combining this with the formulation we found for J , we see the following:

r2n2

J2
=

r2n(r)2

(R + h)2n(R + h)2

=
r2

(R + h)2
1 + 2η0e(r−R)/H) + · · ·

1 + 2η0e−h/H + · · ·

(3.23)

Multiplying this fraction with 1−2η0e−h/H

1−2η0e−h/H and neglecting the higher order terms we get the
following:

r2n2

J2
≈ r2

(R + h)2
[
1 + 2η0

(
e−(r−R)/H − e−h/H

)]
(3.24)
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However, in equation 3.20 we see that we have this in the denominator, inside a square. So that
is what we’ll do next.

(
r2n2

J2
− 1

)− 1
2

=

(
r2

(R + h)2
[
1 + 2η0e−(r−R)/H + 2η0e−h/H

]
− 1

)− 1
2

(3.25)

To simplify this, we’ll yet again use a Taylor expansion of this equation as a function of η0
around 0. Neglecting higher order terms we see this gives us the following equation.

(
r2n2

J2
− 1

)− 1
2

=

(
r2

(R + h)2
− 1

)− 1
2

−1

2

(
r2

(R + h)2
− 1

)− 3
2 2η0r

2

(R + h)2
[
e−(r−R)/H − e−h/H

]
(3.26)

Now we will fill this quite monstrous equation into our formula for ν (equation (3.20)).

ν =
2η0

(R + h)2

∫ ∞
R+h

rdr
(
−e−(r−R)/H + e−h/H

)(
r2

(R+h)2
− 1
) 3

2

(3.27)

Here we will introduce a change of variables to make this integral a little easier to grasp. We
say:

x =
r

R + h

dr = (R + h)dx

r −R = x(R + h)−R = R(x− 1) + hx

(3.28)

Using this we see we get:

ν =
2η0

(R + h)2

∫ ∞
1

(R + h)2dx
(
−e−R(x−1)−hx + e−h/H

)
(x2 − 1)

3
2

(3.29)

Simplifying this gives us our final integral from for the deflection angle.

ν = 2η0

∫ ∞
1

e−h/H
(

1− e−(x−1)
(R+h)

H

)
x

(x2 − 1)
3
2

dx (3.30)

To get a solution for this integral we used Wolfram Mathematica to give us our deflection angle
in terms of the minimal height the light ray reaches.

ν = 2η0e
R
H
R + h

H
K0

(
R + h

H

)
(3.31)

Here K0 is the modified Bessel function of the second type, which is given by:

K0(x) =

∫ ∞
0

cos (xt)dt√
t2 + 1

(3.32)

We will however, not use this expression for the Bessel function, but the following approxima-
tion [13]:
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K0(x) ≈
√

π

2x
e−x (3.33)

This gives us the following equation for the deflection angle:

ν ≈ 2η0eR/H
R + h

H

√
π

2
(
R+h
H

)e−
R+h
H = 2η0e−h/H

√
π(R + h)

2H
(3.34)

This is a simple enough function that Python is very easily able to plot the deflection angle
ν as a function of h, the minimal distance of a light ray from the origin. This is shown in figure
9. The values we used for the constants in equation 3.34 are shown in table 1.

R 6.371× 106 m
H 8.5× 103 m
η0 2.73× 10−4

Table 1: The values for the radius of the Earth , the height of the atmosphere and the refractive
index of air at sea level minus 1 [14]

.

Figure 9: The deflection angle ν as a function of the minimal height h reached by a light ray
travelling through the earth’s atmosphere.

Now that we have formula 3.34 for the deflection angle, we can start to find equations for
the incoming and outgoing asymptote of the lightray. We had already seen in section 3.1.1.1
that in the vacuum in space the path of a lightray is a straigth line described by equation 3.19.
The way we choose our incoming lightray, we will say that y is a constant and therefore does
not depend on x, so tan(C) = 0 ⇒ C = 0. This means that our incoming asymptote can be
given by:

y = ±J (3.35)
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Where J = (R + h)n(R + h), with h the minimal height reached.
Then for the outgoing asymptote, we know that the deflection angle is equal to ν, so the

outgoing asymptote can be written as follows.

y = tan(ν)x− J

cos(ν)
(3.36)

3.1.2. Numerical calculation of the path

Unfortunately, we haven’t been able to find a complete analytical solution for the path of a light
ray through the atmosphere. So we will look for a numerical solution instead. In order to do
this we won’t start with minimizing the optical path length as we did in section 3.1.1. Instead
we’re going to look at the Euler-Lagrange equations of motion.

We will use the form of these equations of motion as described below [12].

∂L
∂r

=
d

dθ

∂L
∂r′

(3.37)

Then we can use the formulation of the Lagrangian we found in section 3.1.1, namely
equation 3.5. Filling this into equation gives us the equation of motion in terms of r, r′ and θ,

∂n(r)
√
ṙ2 + r2

∂r
=

d

dθ

∂n(r)
√
ṙ2 + r2

∂ṙ
(3.38)

Using the product rule on the left side, and noticing that n(r) does not depend on theta or
ṙ we see that this is equal to the following.

√
ṙ2 + r2

∂n(r)

∂r
+ n(r)

r√
ṙ2 + r2

= n(r)
d

dθ

ṙ√
ṙ2 + r2

(3.39)

Then dividing both sides by n(r) and using first the product rule, and afterwards the chain
rule on the right side we see that this then becomes

√
ṙ2 + r2

∂ log(n(r))

∂r
+

r√
ṙ2 + r2

=
r̈√

ṙ2 + r2
− ṙ2(r̈ + r)

(ṙ2 + r2)3/2
(3.40)

Then we multiply both sides of the equation by (ṙ2 + r2)3/2, and take all the loose terms to
the right and we find a second order differential equation:

(
ṙ2 + r2

)2 ∂ log(n(r))

∂r
= r2r̈ − 2ṙr − r3 (3.41)

Now we try to find an expression for the derivative of log(n(r)). This is quite trivial, with
just using the chain rule. For n(r) we use equation 3.1 We find:

∂ log(n(r))

∂r
= −η0

H

e(R−r)/H

1 + η0e(R−r)/H
(3.42)

Plugging this into equation 3.41 we find our second order differential equation.
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3.1.2.1 Initial conditions

The last thing we need to find a numeric path of our lightray is our initial conditions. We need
an initial distance r0 and an inital ’velocity’ ṙ where ṙ = dr

dθ
. We want our ray to come from

a star, which is very far away. For the sake of simplicity in the code, we are going to ray start
somewhere the positive x direction. We want the ray to make a horizontal line towards the
earth until it hits the atmosphere. So we say that y′ = 0. Filling in the definition of y in polar
coordinates gives us:

y′ = r′ sin θ + r cos θ = 0 (3.43)

We want to find r′0, so we rewrite this, and we see:

r′(θ0) =
−r(θ0)
tan θ0

(3.44)

Then our θ0 is defined as follows from the figure 10.

R+h

r0

θ0

y

x

Figure 10: Diagram of θ with r0 the initial distance, and R + h the initial height

Clearly now we can see that θ0 = arcsin
(
R+h
r0

)
. Filling this in gives us our initial condi-

tions: 
r(θ0) = r0

ṙ(θ0) = r0
tan (θ0))

θ0 = arcsin(R+h
r0

)
(3.45)

Now we have all the information to solve the ODE for the path of the light ray.

3.1.3. Comparing numeric and analytic methods

The results of our code can be seen in the following few figures. We made a figure of the
deflection angle, both calculated analytically and by solving equation 3.41 in figure 11.

22



0 2000 4000 6000 8000
Minimal height h (m)

0.4

0.6

0.8

1.0

1.2

De
fle

ct
io

n 
an

gl
e 

 (d
eg

re
es

)

Numerical calculation
Analytic calculation

Figure 11: The deflection angle calculated both analytically (the same as figure 9) and numer-
ically.

Clearly there is a difference between the two methods. This is probably due to the approxi-
mations used in the analytical way, such as the approximation for the Bessel function, and the
Taylor expansion where the higher order terms were neglected. Unfortunately this difference
is significant, and therefore the analytical way is not usable for the model of the Atmoscope.

3.2. Modeling many light rays
In this section we will be looking at many light rays, instead of just one like the previous
section. We will model these light rays in the way described in section 2.

3.2.1. Equation of motion

To adapt the method described in section 2, we need to plug in our refractive index, equation
(3.1), into our equations of motion. equations (2.28a)-(2.28c). We see we need the derivatives
of the refractive index with respect to all coordinates. First we will look at taking the derivative
with respect to x. This is simply using the chain rule twice.

∂n(r)

∂x
= η0

d exp
(
− r−R

H

)
dr

∂r

∂x

= −η0
H

exp

(
−r −R

H

)
d
√
x2 + y2 + z2

dx

= − η0x

H
√
x2 + y2 + z2

exp−(r −R)

H

= −η0x
Hr

exp−(r −R)

H

(3.46)

And similarly we can get results for the partial derivatives to y and z. Filling these into our
general equations of motion we obtain our final equations of motion for a spherical earth.
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u3 =
√

1− u21 − u22 (3.47)

(
dx
dz

dy
dz

)
=

(
u1
u3

u2
u3

)
(3.48)

(
du1
dz

du2
dz

)
=

−η0
n(x, y, z)Hr

u3x− u1z +
u22x

v3
− u1u2y

u3

u3y − u2z +
u21y

v3
− u1u2x

u3

 exp
−(r −R)

H
(3.49)

With r =
√
x2 + y2 + z2.

These equations we have implemented into a function in our code, which in listing 1, is
called dvdz, but in the code below is called TotalFunction. which is shown below. The
function depends on v and z, where v is an array in the shape of [x, y, u1, u2]. The result is an
array in the shape

[
dx
dz
, dy
dz
, du1
dz
, du2
dz

]
1 def TotalFunction(v,z): #this is the differential equation for the

propagation in z-direction of photons
2 r1=sqrt(v[0]**2+v[1]**2+z**2)
3 n1= 1+eta*exp(-(r1-R)/H)
4

5 x=v[0]
6 y=v[1]
7 v1=v[2]
8 v2=v[3]
9 v3= sqrt(1-v1**2-v2**2)

10

11 dv11= -eta / H / r1 /n1 * exp(-(r1-R)/H)*(v3*x - v1*z + v2**2*x/v3 - v1

*v2*y/v3)
12 dv22 = -eta / H / r1 /n1 * exp(-(r1-R)/H)*(v3*y - v2*z + v1**2*y/v3 -

v1*v2*x/v3)
13 result = [v[2],v[3], dv11,dv22]
14 return result

Listing 2: The equations of motion written in such a way that they work with the propagating
code from section 2.2.1

3.2.2. Initial conditions

In this section we will shortly describe specifically which initial conditions we will use for our
spherical planet model. In section 2.2.2, we said we wanted to model the propagation of a thin
band. The light rays on this thin band we describe by the following equation:xy

z

 =

 r cos(θ)
r sin(θ)

−(R + 10H)

 (3.50)

Where θ ∈ [0, 2π] and r ∈ [Rband − 0.5k,Rband + 0.5k] Where the band is k m thick, and has
an average radius of Rband m above the surface of the planet if there were no atmosphere.
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3.2.3. Results

Now that we have all the necessary ingredients to run our model, lets do exactly that. The
variables we used are shown in table 2, and the flash map is shown in figure 12.

R 6.371× 106 m
H 8.5× 104 m
η0 2.73× 10−4

zspan [−(R + 10H), R + 10H]
Rband 1.5× 104 m
k 2 m
r-steps 2780
θ-steps 720
total #light rays 2001600

Table 2: All the variables we used in our model for the spherical planet [14]
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Figure 12: The amplification map of light rays passing through the atmosphere of a spherical
earth. In this particular picture we used a planet with a radius R = 6.371× 106 m, and an
atmosphere with scale height H = 8.5× 104 m. The initial conditions of the light rays was a
band with a width of 2 meter and a radius of 1.5× 104 m. To make this figure we used 2780
steps in the r-direction, and 720 steps in the θ-direction. Each pixel in this figure is 1 meter
squared, which gives us an amplification factor Camp = 40.09.
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We see in this picture that all light rays converge to the center, which is exactly as we
expected. A check for our code is that for pixels of 1x1 m, our amplification factor is about 40,
which means that in the 4 brightest center pixels we have a little over 1400 light rays that end
up in each pixel, which seems reasonable, since each concentric band of light rays in our thin
band has about 720 rays. Furthermore we see the maximum amplification is about 50000 for
pixels of 1 m2, which is also about the same as Kipping found in his paper.

It is interesting to see the effect of pixelsize on our maximum amplification, which is what
we have done graphically in the figure below.
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Figure 13: The difference in amplification from the same model with varying pixelsizes. a), b),
c) and d) have pixel-width 1, 2, 5 and 10 meter respectively.

We investigate the relation between maximum amplification and pixelsize further in figure
14. We fit a curve through the data, which is a A = a

D
+ b fit, where D is the pixel width. The

fit resulted in the parameters a = 52099 and b = −272.
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Figure 14: Maximum amplification as a function over pixelsize, the dots are our datapoints,
and the blue line is a A = a

D
+ b curve fit, where D is the pixel width, plotted over the points,

and parameters a = 52099 and b = −272.
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4. Amplification by the atmosphere of an ellipsoidal planet
The next step in making the model more realistic is realizing that nearly no planet is a perfect
spherical object. Therefore, it might be of great value to look at the effect of the oblateness
of the planet. Important to note is that in the equations of motion, the only part of the shape
of the planet that we use is in the refractive index function. We see that the refractive index
is a function of distance from the planet’s surface. For a spherical planet, this is simple; it’s
just the distance from the origin minus the planet’s radius. For an ellipsoidal earth however,
distance from the surface is not as easily available. Thus, we need to find a way to express
distance from the surface of an ellipsoid, which we can then insert into the already known
equations of motion. In this chapter we start by doing this, and then we take a intermezzo by
looking at a geometric explanation of what will happen when light bends towards the surface
of an ellipsoid, after which we will look at the results and compare this to what we found in the
previous section. In figure 15 we show graphically what we mean with an ellipsoid.

Figure 15: An ellipsoid with principal semi-axes a, b, and c [15]

4.1. Distance from an ellipsoid

4.1.1. Method 1

In order to apply the equations of motion found in section 2.1 to an ellipsoidal planet, we need
to find a way to express the height above an ellipsoid, since the refractive index is a function of
height. We look for the length of a line normal to the surface of the ellipse through the point
we want to know the height of. In this section we’re looking at two different ways to find this
distance, and showing how they are similar to the first order.

We start our search by looking at how we write an ellipsoid:
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x2

a2
+
y2

b2
+
z2

c2
= 1 (4.1)

Lets take a point A = (x0, y0, z0) somewhere in the atmosphere above our ellipsoid. We want
to see how far above the ellipsoid it is. We get the normal vector N to the surface as follows:

N =


2x0
a2

2y0
b2

2z0
c2

 (4.2)

Using this we can find the parametrization of a line that goes through our point A and is per-
pendicular to the surface of the planet:

~r(t) =


x0

y0

z0

+ t


2x0
a2

2y0
b2

2z0
c2

 (4.3)

Now we want to find the point on this line that is on the ellipsoid, so we substitute this
parametrization into our equation for the ellipsoid.(

x0 + 2tx0
a2

)2
a2

+

(
y0 + 2ty0

b2

)2
b2

+

(
z0 + 2t z0

c2

)2
c2

= 1 (4.4)

We want to solve this for t, so first we take out the x0, y0 and z0:

x20
a2

(
1 +

4t

a2
+

4t2

a4

)
+
y20
b2

(
1 +

4t

b2
+

4t2

b4

)
+
z20
a2

(
1 +

4t

c2
+

4t2

c4

)
= 1 (4.5)

Since a, b, c are very big compared to the height above the surface, we will neglect the highest
order terms in this equation and we get:

x20
a2

(
1 +

4t

a2

)
+
y20
b2

(
1 +

4t

b2

)
+
z20
c2

(
1 +

4t

c2

)
= 1 (4.6)

Now we factor out t, and we get

4t

(
x20
a4

+
y20
b4

+
z20
c4

)
= 1− x20

a2
− y20
b2
− z20
c2

(4.7)

Which we then solve for t and we get:

t =
1

4x20
a4

+
4y20
b4

+
z20
c4

(
1− x20

a2
− y20
b2
− z20
c2

)
< 0 (4.8)

The distance between A and the surface of the planet is given by:

h(x0, y0, z0) = (−t)

√(
2x20
a2

)2

+

(
2y20
b2

)2

+

(
2z20
c2

)2

(4.9)
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Then filling in the value for t we found we get

h(x0, y0, z0) =

x20
a2

+
y20
b2

+
z20
c2
− 1

2

√
x20
a4

+
y20
b4

+
z20
c4

(4.10)

So finally we have a new formula for the refractive index:

n(x, y, z) = 1 + η0 exp
−h(x, y, z)

H
, (4.11)

where h(x, y, z) is as defined in equation (4.10).
Now we still need to fill this in into our equations of motion, which means we need the

partial derivatives for the refractive index.

∂n

∂x
= η0

−x
H

exp
−h
H

∂h(x, y, z)

∂x
(4.12)

These partial derivatives of h are quite gruesome to get, and therefore it might be worth looking
into a simpler way to get the height, which is what we’ll do in the next paragraph. We’ll also
show that this different, simpler way, is a first order approximation of the method described in
this paragraph.

4.1.2. Method 2

At a place close to the surface of the planet, you can suppose that in a point (x, y, z) at a height
h you are in another ellipsoid:

x2

a2(1 + h/a)2
+

y2

b2(1 + h/a)2
+

z2

c2(1 + h/a)2
= 1 (4.13)

Solving this for h gives:

h(x, y, z) =

(√
x2

a2
+
y2

b2
+
z2

c2
− 1

)
· a (4.14)

This only works if a, b and c are close in size, which for Earth they are. At Earth a and c are
equal, which is what we will assume for the rest of the equations as well. Hence

h(x, y, z) =

(√
x2

a2
+
y2

b2
+
z2

a2
− 1

)
· a (4.15)

4.1.3. Comparing the methods

In this paragraph we will compare the two different methods found to calculate the distance h
from an ellipsoid. Let us first look at our first equation, here we have only assumed a, b and c
are big. In the second method however, we have also assumed a ≈ b ≈ c, and that our chosen
x, y and z are on an ellipsoid as well. Lets also add these assumptions to our first model. That
means we can make the following approximations:
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x2

a4
+
y2

b4
+
z2

c4
≈ 1

a2

(
x2

a2
+
y2

b2
+
z2

c2

)
≈ 1

a2
(4.16)

This gives us the following approximation for the height.

h1(x, y, z) ≈
x2

a2
+ y2

b2
+ z2

c2
− 1

2
√

1
a2

=

(
x2

a2
+
y2

b2
+
z2

c2
− 1

)
a

2
(4.17)

Now we look at our second method. We work from the approximation we found for our first
method, and show it is also an approximation for the second method.

(
x2

a2
+
y2

b2
+
z2

c2
− 1

)
a

2
=

(√
x2

a2
+
y2

b2
+
z2

c2
+ 1

)(√
x2

a2
+
y2

b2
+
z2

c2
− 1

)
a

2

≈

(√
x2

a2
+
y2

b2
+
z2

c2
− 1

)
a = h2(x, y, z)

(4.18)

In the last step here we have used that the first term of the right hand side is approximately 2.
So now we’ve shown that the two methods are the same up to the first order. So, we will use
method 1 to describe the height in our model.

4.2. Equations of motion
Just like in section 3.2.1, we need to fill in our refractive index into the general equations of
motion: equation (2.28a)-(2.28c). We have for our refractive index the following formula:

n(x, y, z) = 1 + η0 exp
−h(x, y, z)

H
(4.19)

Where for h(x, y, z) we use the expression we found in the second method: equation (4.15).
The partial derivatives of this refractive index are quite simple to obtain with the equation for h
from the second model:

∂n

∂x
= − x

aH

n(x, y, z)− 1√
x2

a2
+ y2

b2
+ z2

a2

(4.20)

∂n

∂y
= − ya

b2H

n(x, y, z)− 1√
x2

a2
+ y2

b2
+ z2

a2

(4.21)

∂n

∂z
= − z

aH

n(x, y, z)− 1√
x2

a2
+ y2

b2
+ z2

a2

(4.22)

Now that we have these derivatives, we fill this into equation (2.28c), which, together with
equations (2.28a) and (2.28b) gives us the equations of motion for an ellipsoidal planet.

u3 =
√

1− u21 − u22 (4.23)
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(
dx
dz

dy
dz

)
=

(
u1
u3

u2
u3

)
(4.24)

(
du1
dz

du2
dz

)
=

−η0
n(x, y, z)h(x, y, z)H

 u3x
a
− u1z

a
+

u22x

v3a
− u1u2y

u3b2

u3y
b2
− u2z

a
+

u21y

u3b2
− u1u2x

v3a

 exp−h(x, y, z)

H
(4.25)

We can now use these equations to slightly adjust the code from section 3.2.1, which is shown
in the listing below.

1 def TotalFunction(v,z):
2 r1 = sqrt( v[0]**2 / a**2 + v[1]**2 / b**2 + z**2 /c**2)
3 x = v[0]
4 y = v[1]
5 h1 = (sqrt( x**2 /a**2 + y**2 /b**2 + z**2 / c**2) - 1) * a
6 n1 = 1+eta*exp(-(h1)/H)
7 v1 = v[2]
8 v2 = v[3]
9 v3 = sqrt( 1 - v1**2 - v2**2)

10 dv11 = -eta / H / r1 /n1 * exp(-(h1)/H)*(v3*x/a - v1*z/a + v2**2*x/v3/a
- v1*v2*y*a/v3/b**2)

11 dv22 = -eta / H / r1 /n1 * exp(-(h1)/H)*(v3*y*a/b**2 - v2*z/a + v1**2*y

*a/v3/b**2 - v1*v2*x/v3/a)
12 result = [v[2],v[3], dv11,dv22]
13 return result

Listing 3: The equations of motion for an ellipsoidal planet written in such a way that they
work with the propagating code from section 2.2.1

4.3. Initial conditions
Now that we have the full equations of motion for our ellipsoidal system, we only need to
describe the initial conditions for our system. As described in section 2.2.2, we want to divide
the light rays homogeneously onto a thin band just outside of the atmosphere. The way we’ve
described this band is as follows:xy

z

 =

a cos (θ)
(
1 + r

a

)
b sin (θ)

(
1 + r

a

)
−R + 10H

 (4.26)

We take θ ∈ [0, 2π], and r ∈ [Rband − 0.5k,Rband + 0.5k], where Rband is the average radius
of the thin band, and k is the width of the band. We choose how many light rays we want to
model, and take the appropriate amount of steps in the r - and θ-direction.

4.4. Caustics in the flash map: Evolute of an ellipse
For both the spherical case and the ellipsoidal case, it is helpful to think geometrically about
what is actually happening when we run our model. This is why we take this quick detour
about the evolute of an ellipse. An evolute can be described as the envelope of the normals to
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a curve. So why is this useful? When we are looking at our model, the light rays bend in the
direction perpendicular to the surface of the planet. We are also mainly interested in the points
to where these light rays converge, since that is where the intensity and amplification is the
highest. This is translated to geometry with the evolute. The evolute of a circle is a point: all
normals cross through the center of the circle. This is what we see when we look at the flash
map of the results of a spherical earth as well; we only see a small point with high intensity.

For an ellipse, finding the evolute is a bit more work. Let’s look at what we’re expecting to
find. The figure below shows what we’re trying to find.

(a) Quarter ellipse (b) Full ellipse

Figure 16: Showing the evolute of the ellipse, by drawing lines that are perpendicular to the
ellipse and seeing where they intersect the line next to it. In figure (a) we see only a quarter of
the ellipse, to show for clarity what actually happens when you do this. In figure (b) this has
been done throughout the whole ellipse, which results in a diamond shape appearing, this is
the evolute.

We want to find an equation for this diamond shape, and see how it depends on the shape
of the ellipse, so we know what to expect for different shaped planets. First, we look at the
equation we have for an ellipse:

x2

a2
+
y2

b2
= 1 (4.27)

The gradient for this function is given by (
2x
a2

2y
b2

)
(4.28)

So we can take the normal to be (
x
a2

y
b2

)
(4.29)

Now we will use a parametrization of the ellipse:(
x(θ)
y(θ)

)
=

(
a cos θ
b sin θ

)
(4.30)
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We want to find lines that cross the ellipse, and are parallel to the normal, so we fill in the
parametrization into the normal. These lines we’ll denote by:

r̄θ(t) =

(
a cos θ
b sin θ

)
+ t

(
cos θ
a

sin θ
b

)
(4.31)

Since the evolute is the envelope of these lines we just created, we want to find an expression
of where these lines cross each other. Let’s therefore find the intersection between two of these
lines r̄θ1(t) and r̄θ2(s). (

a cos θ1 + t cos θ1
a

b sin θ1 + t sin θ1
b

)
=

(
a cos θ2 + s cos θ2

a

b sin θ2 + s sin θ2
b

)
(4.32)

We have two unknowns, t and s, so lets rewrite this a little bit to pull those out, while also
moving the a’s and b’s to one side:(

cos θ1 − cos θ2
sin θ1 − sin θ2

)(
t
s

)
=

(
a2(cos θ2 − cos θ1)
b2(sin θ2 − sin θ1)

)
(4.33)

To find expressions for t and δ, we find the inverse of the leftmost matrix. To do that we use
that for a 2 by 2 matrix the inverse can be given by:

A−1 =

(
a b
c d

)−1
=

1

det(A)

(
d −b
−c a

)
(4.34)

Using this, we get:(
t
s

)
=

1

cos θ1 sin θ2 − cos θ2 sin θ1

(
− sin θ2 cos θ2
− sin θ1 cos θ1

)(
a2(cos θ2 − cos θ1)
b2(sin θ2 − sin θ1)

)
(4.35)

Using goniometric formula’s and multiplying the matrix with the vector we get:(
t
s

)
= − 1

sin (θ2 − θ1)

(
−a2 sin θ2(cos θ2 − cos θ1) + b2 cos θ2(sin θ2 − sin θ1)
−a2 sin θ1(cos θ2 − cos θ1) + b2 cos θ1(sin θ2 − sin θ1)

)
(4.36)

Now we say θ2 = θ1 + dθ, where dθ is small. We do this, since we want to know where two
lines that start closest to each other intersect. This gives us:(

t
s

)
= − 1

dθ

(
−a2 sin θ2(cos θ2 − cos θ1) + b2 cos θ2(sin θ2 − sin θ1)
−a2 sin θ1(cos θ2 − cos θ1) + b2 cos θ1(sin θ2 − sin θ1)

)
(4.37)

Now using sum to product goniometric identities we can rewrite everything between brackets.(
t
s

)
= − 1

dθ

(
a2 sin θ2(sin θ1dθ) + b2 cos θ2(cos θ1dθ)
a2 sin θ1(sin θ1dθ) + b2 cos θ1(cos θ1dθ)

)
(4.38)

Since θd is small, we can say that sin θ2 ≈ sin θ1 and similarly for the cosines. This gives us
our final equation for t and s (which have become equal, like we would have hoped).(

t
s

)
=

(
−a2 sin2 θ1 − b2 cos2 θ1
−a2 sin2 θ1 − b2 cos2 θ1

)
(4.39)
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Now we can fill this value for t we found into the r̄θ(t), which now becomes only dependent on
θ.

r̄θ(t) =

(
a cos θ − (a2 sin2 θ + b2 cos2 θ) cos θ

a

b sin θ − (a2 sin2 θ + b2 cos2 θ) sin θ
b

)
(4.40)

Now we want to simplify this, so we expand the brackets, and we get:

r̄θ(t) =

(
a cos θ − a sin2 θ cos θ − b2

a
cos3 θ

b sin θ − b cos2 θ sin θ − a2

b
cos3 θ

)
(4.41)

Factoring out a cos θ and b sin θ in the top and bottom equation respectively, we get:

r̄θ(t) =

(
a cos θ(1− sin2 θ)− b2

a
cos3 θ

b sin θ(1− cos2 θ)− a2

b
cos3 θ

)
(4.42)

Now very clearly we know that cos2 θ + sin2 θ = 1 so we finally get:

r̄(θ) =

(
a2−b2
a

cos3 θ
b2−a2
b

sin3 θ

)
(4.43)

We can compare this with our ’idea’ of the evolute in figure 16, which we’ve shown in the
figure below.

Figure 17: The evolute of an ellipse, which is drawn in blue over the drawing from the previous
figure. Here the evolute is described by equation 4.43

.

As you can see, this fits perfectly. Now, it might be nice to know more about the specifics
of this curve, like how wide and high is it? This we can find out very simply by plugging in the
right θ in equation 4.43. When we plug in θ = 0, we get the right point of the curve, and for
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θ = π/2, we get the bottom point of the curve.

r̄(0) =

(
a2−b2
a

0

)
r̄
(π

2

)
=

(
0

b2−a2
b

) (4.44)

So the diamond will be 2(a2 − b2)/a wide, and 2(a2 − b2)/b high (assuming a > b). For our
actual model we will assume that a and b are very similar, so this then will simplify to that the
diameter of the diamond will be 2(a− b).

4.5. Results
Firstly we will show you the flash map of a planet that we modeled as closely to the earth as
possible, which you can see in the graph below. Next to it is the exact same graph, but with an
overlay of the shape and size we would expect this diamond to be according to section 4.4. As
you can see these overlap as good as perfectly, so these results are right as expected.

(a) Without overlay (b) With overlay

Figure 18: The amplification map of light rays passing through the atmosphere of an ellipsoidal
earth. In these particular pictures we used a planet with 2 semi-major exes of 6.278× 106 m
and a semi-minor axis of 6.356× 106 m. The atmosphere has a scale height H of 8.5× 103 m.
The initial conditions of the light rays was a band with a width of 110 m and a height of
1.5× 104 m. To make this figure, we divided 2001600 photons homogeneously onto this band:
2780 steps in the r-direction, and 720 steps in the θ-direction. The pixels in this figure are 450 m
wide and 450 m tall. The amplification factor is 0.0217. In figure (b) we drew the evolute: the
curve follows the caustics of the flash map.

Just as in section 3.2.3, we can look at the effect of the pixel size on the maximum amplifi-
cation, which we have shown in the figure below.
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Figure 19: The difference in amplification from the same model with varying pixelsizes. a), b),
c) and d) have pixel-width 450, 900, 1250 and 1500 respectively.

Just as in the spherical case we see that the maximum amplification goes down when the
size of the pixels increases. However, contrary to the spherical case, in these figures you can
see that the arches connecting the four corner points of the diamond shape, have roughly the
same amplification: around 3.

4.6. Comparing spherical and ellipsoidal planets
An interesting question is to compare the behavior of spherical and ellipsoidal planets. To
do that, we simply look at planets with different eccentricities. Eccentricity is a measure of
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oblateness, defined as

ε =

√
1− b2

a2
, (4.45)

where b < a.
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Figure 20: 4 different flash maps, for planets with different eccentricities. For a), d) the eccen-
tricities are 0.021, 0.041, 0.062, 0.083 respectively. Note different colorbars on each plot; the
maximum amplification is different for each. This plot was made with running the model with
20 million light rays per each figure.

As expected, the diamond becomes smaller when the eccentricities of the planet becomes
smaller. A more in-depth look is shown in the plot below.
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Figure 21: The maximum amplification as a function of the pixelsize, for various values of
the eccentricity of the planet. For each eccentricity we have modeled a band of 2001600 light
rays, with a width 110 m. The lines plotted in this double log plot through the points are fitted,
from lowest eccentricity to highest, and have slopes −1.025, −0.6109, −0.6577, −0.6650 and
−0.6776
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5. Modeling turbulence in the atmosphere: Diffusion
So far we have only looked at a planet where the atmosphere is perfectly described by equation
(3.1) or equation (4.19). This is clearly just an approximation, as there are many things that
can change the refraction index in the atmosphere, such as turbulence, temperature, etc. To
account for this, we will add a diffusion term to he propagation in the atmosphere. We’re using
Ito diffusion.

We’re using velocity diffusion inside the atmosphere to account for turbulence. To recap,
without diffusion we have seen that we could get the following expression.

d

dt
v̂ =

1

n(r)2
(∇n(r)− v̂v̂ · ∇n(r)) (5.1)

Now we take out the factor ∇n(r) and see that ∇n(r)
n(r)

can be written as ∇ log n, where for
ease’s sake, we leave out the dependency on r when writing (it is of course still implied). We
also multiply both by dt to obtain the following expression for the change in direction of the
velocity:

dv̂ = (1− v̂v̂·)∇n
n2

dt (5.2)

This is the point where we will be adding in the diffusion term, since the diffusion creates
a difference in the direction of the velocity. We will use the following equation for our ito
diffusion:

dv̂ = (1− v̂v̂·)∇n
n2

dt+ (1− v̂v̂·)n− 1

n2

∇n
|∇n|

√
Ddtξ (5.3)

Let me take you through everything we have in this added diffusion term. We have a term
(1 − v̂v̂·). This term is added so that the diffusion is always perpendicular to the original
velocity. The term n−1

n2 we have added, because we expect there to be more diffusion the lower
we are in the atmosphere, since we both travel through the atmosphere more, and the lower
you are in the atmosphere, the higher the refraction index, and we expect there to be greater
differences at lower heights. The ∇n|∇n| term is there to make sure we take the vertical diffusion. ξ
is the random factor in this diffusion model. Important to note is that the mean of it, 〈ξ〉 = 0: we
expect diffusion to happen in both up or down with the same probability. Another prerequisite
of this random variable is that 〈ξ2〉 = 1 [16]. The term D is called the diffusion coefficient, and
this is the one that determines how much diffusion actually happens. The calculation of D will
follow later. For now, we want to rewrite this equation in such a way that we can implement it
into our model. To do that, first note that since we have taken the scale of c = 1 where c is the
speed of light, and the correlation between velocity and the refractive index is given by

n =
c

v
=

1

v
(5.4)

In our model, we are not integrating with respect to time, but w.r.t z. So we need to replace
the dt’s in equation 5.3. To do so, we see that

dz

dt
= vu3 =

u3
n

(5.5)
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So multiplying both sides by dt and taking all none-dt terms to one side, we see:

dt =
ndz

u3
(5.6)

We can fill this into our equation 5.3, and we get

dv̂ = (1− v̂v̂·)∇n
n2

ndz

u3
+ (1− v̂v̂·)n− 1

n2

∇n
|∇n|

√
D
ndz

u3
ξ (5.7)

Here we can simplify the first tirm, since we have by factoring out and if we also factor out the
(1− v̂v̂·)∇n

n

dv̂ = (1− v̂v̂·)∇n
n

(
dz

v3
+
n− 1

n

1

|∇n|

√
D
ndz

u3
ξ

)
(5.8)

Now we start by looking at the x-component of dv̂:

du1 =

∂n
∂x
− u1

u1u2
u3

 ·
∂n

∂x
∂n
∂y
∂n
∂z


 dz

nu3
+
n− 1

n2

√
Dndz

u3
ξ√(

∂n
∂x

)2
+
(
∂n
∂y

)2
+
(
∂n
∂z

)2
 (5.9)

Taking the inner product of the two vectors we get

du1 =

(
∂n

∂x
− u1

(
u1
∂n

∂x
+ u2

∂n

∂y
+ u3

∂n

∂z

)) dz

nu3
+
n− 1

n2

√
Dndz

u3
ξ√(

∂n
∂x

)2
+
(
∂n
∂y

)2
+
(
∂n
∂z

)2


(5.10)
To obtain du2, we follow the exact same steps, so that will not explicitly be written down here.
The next step is to fill in all the partial derivatives. We start by looking at the spherical case.

5.1. Spherical planet
Recall that for the spherical planet we have

n(r) = 1 + η0 exp(−r −R
H

), (5.11)

where r =
√
x2 + y2 + z2. The partial derivatives are also shown in section 3.2.1, but for

comprehension’s sake we write them down here again.

∂n

∂x
=
−η0 exp −(r−R)

H
x

Hr
=

(1− n)x

Hr
(5.12)

With diffusion present, we see we also need the partial derivatives squared:(
∂n

∂x

)2

=
η20 exp(−2(r−R)

H
)x2

H2r2
(5.13)
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Adding up all the squared partial derivatives and taking the square root of these, while realizing
the definition of r gives us:√(

∂n

∂x

)2

+

(
∂n

∂y

)2

+

(
∂n

∂z

)2

=

√
η20 exp(−2(r−R)

H
)

H2(x2 + y2 + z2)
(x2 + y2 + z2)

=
η0 exp(− r−R

H
)

H
=
n− 1

H

(5.14)

This we can fill in what we found into equation 5.10. This gives us:

du1 =
1− n
nHr

(x− u1 (u1x+ v2y + u3z))

dz
u3

+
n− 1

n

√
Dndz

u3
ξH

n− 1

 (5.15)

Crossing out the n− 1 term gives us finally:

du1 =
1− n
nHr

(x− u1 (u1x+ u2y + v3z))

dz
u3

+

√
Dndz

u3
ξH

n

 (5.16)

And similarly we for du2 we get:

du2 =
1− n
nHr

(y − u2 (u1x+ u2y + u3z))

dz
u3

+

√
Dndz

u3
ξH

n

 (5.17)

5.2. Ellipsoidal planet
For an ellipsoidal planet, the partial derivatives of n are different, as we have seen in section 4.2.
This means that we also get different resulting equations of motion for the case with diffusion
incorporated. Again, as a recap, below we show the partial derivatives (these are directly copies
of equations 4.20 - 4.22), where for ease’s sake we did not write out the dependency on x, y
and z, but it still is implied.

∂n

∂x
= − x

aH

n− 1√
x2

a2
+ y2

b2
+ z2

a2

(5.18)

∂n

∂y
= − ya

b2H

n− 1√
x2

a2
+ y2

b2
+ z2

a2

(5.19)

∂n

∂z
= − z

aH

n− 1√
x2

a2
+ y2

b2
+ z2

a2

(5.20)

We also need the square root of the sum of the squares of these partial derivatives.√(
∂n

x

)2

+

(
∂n

y

)2

+

(
∂n

z

)2

=
n− 1

H
√

x2

a2
+ y2

b2
+ z2

a2

√
x2

a2
+
y2a2

b4
+
z2

a2
(5.21)
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Filling all this into equation 5.10, we get the following equation for du1 in the ellipsoidal case.

du1 =
1− n

H
√

x2

a2
+ y2

b2
+ z2

a2

(x
a
− u1

(u1x
a

+
u2ay

b2
+
u3z

a

))dz
u3

+
H
√
Dndz

u3
ξ
√

x2

a2
+ y2

b2
+ z2

a2

n
√

x2

a2
+ y2a2

b4
+ z2

a2


(5.22)

We take into account the assumption that a ≈ b, which means that the two square root terms in
the last term cancel out. This gives us our expression for du1

du1 =
1− n

u3nH
√

x2

a2
+ y2

b2
+ z2

a2

(x
a
− u1

(u1x
a

+
u2ay

b2
+
u3z

a

))(
dz +

H
√
Dndzu3ξ

n

)
(5.23)

Similarly, we find for du2

du2 =
1− n

u3nH
√

x2

a2
+ y2

b2
+ z2

a2

(ya
b2
− u2

(u1x
a

+
v2ay

b2
+
u3z

a

))(
dz +

H
√
Dndzu3ξ

n

)
(5.24)

We see the change in direction of the instantaneous velocity is now a function of dz and of√
dz.

5.3. Diffusion coefficient
Before the equations of motion found in the previous section can be implemented into the
model, first the diffusion coefficient D needs to be determined. The definition used for this
constant is given in formula (5.25) [16].

D = lim
dt→0

〈
(v(t+ dt)− v(t))2

〉
dt

(5.25)

This results for the spherical system in the following diffusion constant:

D =
9

20

C0

H2
L

5
3
0 (5.26)

Here C0 is an approximation for the refractive index structure parameter C2
n at height 0, which

is a parameter that describes the effect of turbulence on electromagnetic waves [17], where the
value C0 = 9.0× 10−17 m−

2
3 is used in the model. The constant L0 is called the integral length

scale. It is the size of the longest eddy current in the atmosphere. We will show the results for
a few different values of L0.

5.4. Implementation in the code
In the previous sections of the report we used Leapfrog as a numerical integrator, but Leapfrog
uses acceleration at a certain time to compute the velocity. This was implemented before, when
the equations of motion expressed the acceleration dv̂

dz
. However, now there is no expression for

dv̂
dz

: in equations (5.23) and (5.24) there is also a dependency on
√
dz, so dz cannot simply be

divided out of the equation. So there is no z-independent expression for acceleration. Therefore
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an adaptation of Leapfrog is required. This adaptation is shown in equation (5.27). Knowing
the position xi, velocity vi, z-independent part of acceleration ai and z-dependent part of ac-
celeration bi at a certain position z, this method gives the new position and new velocity at a
later time z + ∆z.

xi+1 = xi + v1,i∆z +
1

2
ax,i∆z

2

yi+1 = yi + v2,i∆z +
1

2
ax,i∆z

2

v1,i+1 = v1,i +
1

2
(ax,i + ax,i+1) ∆z +

1

2
(bx,i + bx,i+1)

√
∆z

v2,i+1 = v2,i +
1

2
(ay,i + ay,i+1) ∆z +

1

2
(bx,i + bx,i+1)

√
∆z

(5.27)

This is implemented in the code in the following way:
1 def LeapFrogSolve(dvdz, zspan, v0, n): # adapted leapfrog integration

method
2 z0 = zspan[0]
3 zstop = zspan[1]
4 dz = ( zstop - z0 ) / n
5

6 z = np.zeros( n + 1 )
7 v = np.zeros( [ n + 1, 4 ] )
8

9 for i in range ( 0, n + 1 ):
10 if ( i == 0 ): #setting initial values
11 z[0] = z0
12 v[0,0] = v0[0]
13 v[0,1] = v0[1]
14 v[0,2] = v0[2]
15 v[0,3] = v0[3]
16 anew = dvdz( v[i,:], z[i] )[0]
17 v3new = dvdz( v[i,:], z[i] )[1]
18 nnew = dvdz ( v[i,:], z[i] )[2]
19 else: #updating all values using the adapted leapfrog
20 z[i] = z[i-1] + dz
21 aold = anew
22 v3old = v3new
23 nold = nnew
24

25 #defining b_i
26 scalar = *(1/nold *sqrt(D*nold*v3old) * np.random.normal()*H)
27 bold = [aold[2]*scalar, aold[3]*scalar]
28 #updating position
29 v[i,0] = v[i-1,0] + dz * ( v[i-1,2] + 0.5 * dz * aold[2] )
30 v[i,1] = v[i-1,1] + dz * ( v[i-1,3] + 0.5 * dz * aold[3] )
31

32 anew = dvdz ( v[i,:], z[i] )[0]
33 v3new = dvdz ( v[i,:], z[i] )[1]
34 nnew = dvdz ( v[i,:], z[i] )[2]
35

36 #defining b_i+1
37 scalar = (1/nnew *sqrt(Diff*nnew*v3new)*np.random.normal()*H)
38 bnew = [anew[2]*scalar, anew[3]*scalar]
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39

40 #updating velocities
41 v[i,2] = v[i-1,2] + 0.5 * ( aold[2] + anew[2] )* dz \
42 + 0.5 * (bold[0] + bnew[0]) *sqrt(dz)
43 v[i,3] = v[i-1,3] + 0.5 * ( aold[3] + anew[3] )* dz \
44 + 0.5 * (bold[1] + bnew[1]) *sqrt(dz)
45 return v

Listing 4: The code used to propagate light rays using the adapted Leapfrog numerical method,
to include diffusion.

The result of this code is a (n + 1) × 4 matrix v, where row i is an array of the shape
[xi, yi, u1i , u2i ] at that z-location. This code is very similar to listing 1, where all the variables
used are defined. One may note that here dvdz is now callable: this function has changed to
also return u3 and the refractive index at the given location, since these are needed to adapt the
diffusion.

5.5. Results
We show in this section the results for implementing diffusion into the models for both a spher-
ical and an ellipsoidal planet. In figure 22 the flash map of implementing diffusion for the
spherical case is shown, and in figure 23 the flash maps of diffusion is shown for the ellipsoidal
case.

In figure 22 we looked at 2 different values of L0: 1× 108 m and 1× 109 m. We see for
L0 the maximum amplification is about 5.8 × 104. This is higher than without diffusion. A
possible explanation for this would be that fluctuations get compensated: say a ray that without
diffusion would end up in the middle gets deflected slightly due to diffusion and no longer is in
the center, but rays that would not end up in the middle get deflected just so that it does end up
in the middle. For L0 = 1× 109 m this apparently does not hold up. Here the diffusion is so
great that everything spreads away from the center, and in this thin band not enough light rays
get deflected back to the center. This points us to conclude that for higher diffusion constants
we need to look at a thicker ring of light rays: when the diffusion is greater, light rays from
further out from the band might be deflected towards the center.

In figure 23 we looked at the same values for L0 for ellipsoidal planets. On this scale, the
effect of the diffusion is not obvious. One would need to zoom into one of the corner points of
the diamond to see on a small scale how the diffusion influences the maximum amplification.
However, even without doing that, we do see a small effect: the maximum amplification varies
slightly.
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Figure 22: Flash maps a spherical planet with diffusion in the atmosphere implemented. Figure
(a) and (b) are the flash maps of a spherical planet with radius R = 6.371× 106 m, with
L0 = 1× 108 m, and 1× 109 m respectively.
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Figure 23: Figure (a) and (b) are flash maps with diffusion incorporated of an ellipsoidal earth
with semi-major axis a = 6.378× 106 m and semi-minor axis b = 6.356× 106 m. Figure (a)
has L0 = 1× 105 m and figure (b) has L0 = 1× 107 m.
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6. Discussion
In the model for a spherical earth, without diffusion implemented, we found that the Atmo-
scope yields a maximum amplification of about 50,000: celestial objects would look 50,000
times brighter when using a detector placed 1.8× 109 m away from Earth, than if they would
be observed without the Atmoscope. This lines up with Kippings conclusions: he found an
amplification of 55,000. We also found that the amplification for this system is inversely pro-
portional to the pixelsize: A ∝ 1

D
.

When implementing the oblateness of a planet into the model, the biggest difference found
was the spreading of the focus: in the spherical case all the rays converge to a single point,
yet for an ellipsoid caustics are formed. These caustics now have 4 main points where the
amplification is the highest. The relation between amplification and pixel size is no longer 1/D
but rather approximately A ∝ 1

D0.65 . For a pixel size of 100 m by 100 m, we see that a planet
with Earths eccentricity has a maximum amplification of order 101, while a spherical planet
has a maximum amplification of order 103. This means the loss of amplification due to the
oblateness of planets is significant. We made a few approximations to obtain the expression
for the height, and these might cause errors in the results for the ellipsoidal planets. However,
since the shape for the caustics we calculated analytically, and these match perfectly with the
caustics we found, we may assume these errors are small.

The final implementation to the model is adding diffusion to model fluctuations in air. For
the spherical case we looked at four possible values for the diffusion constant. For the smallest
of these, we saw very little difference with the model without diffusion. We expected to see a
decrease in maximum amplification when diffusion was implemented, since we imagine that
the rays do not get focused as neatly, but instead for one of the values for L0 we found the
opposite. This could be explained by realizing that for every ray that gets deflected out of the
center, there might be rays that used to be further out from the center that now deflect inwards
towards the center. For the other value of L0 there was a decrease in amplification: instead
of 5× 104 , it now had a maximum amplification of about 2 × 104. This would be what we
expected initially, but after the different result for lower L0 we must also consider that now
perhaps using the thin band is not an adequate way to observe the effect of the Atmoscope.
When the deflections in the direction of the light rays are large enough, there will be light rays
that we did not program that would get deflected enough to end up in the center. To test this out
we recommend running more tests, and varying the band width to see whether with a thicker
band the amplification returns to around 5× 104.

For the ellipsoidal planet diffusion has also been implemented, however the effect of this
is even for the largest chosen L0 relatively small. Where without diffusion the maximum am-
plification was around 10.5 for a pixel-size of 450 m, with the two chosen values of L0 the
maximum amplification goes down to 10.38 for the smaller L0, but then up to 10.60 for the
larger L0. A possible explanation for this small difference is the same concept of compensation
as we posed for the spherical case. We recommend researching this effect further, and zooming
in on the corner points of the diamond shapes, and see how those are effected by the diffusion.

All the results obtained were if the detector was placed at 1.9× 109 m, which is outside of
the Hill Radius of Earth. This could have been prevented by making the radius of the thin band
smaller, which due to time has unfortunately not been done. However, when not accounting for
physical effects inside the atmosphere, this does not truly affect the results. Light that enters
the atmosphere higher, refracts less, but it still refracts.
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7. Conclusion

7.1. Is the Atmoscope feasible?
The aim of this thesis was to further research whether the Atmoscope can be a useful telescope.
This meant for this report specifically looking at the effect of the geometry of the planet used
for the Atmoscope, and implementing diffusion to account for any physical effects inside the
atmosphere such as turbulence. In chapter 2 of this report we developed the ray tracing model
for gradient-index media. This means the path of light rays was determined using the way
each ray interacts with the atmosphere via the refractive index. We found a set of ordinary
differential equations that describe the path of a light ray, which we call the equations of motion.
Leapfrog was used as the numerical integrator for these equations, and for the results we used
a thin band model. Most code used in the report used the method described in this chapter,
except for the code to describe diffusion due to turbulence, which is explained in chapter 5.

In chapter 3 we applied the established code to a spherical planet. The data found in this
chapter was in agreement with previous results by Kipping. This was reason to assume the
model used was a good option to continue with.

In chapter 4 we applied the model to an ellipsoidal planet. Here we had to describe the
height above the surface of an ellipsoid in order to use the equations of motion, and we found
an expression for the caustics that appear due to the ellipsoidal shape of the planet. We saw
that the ’radius’ of the spread of light rays is 2(a − b) where a − b is the difference between
the semi-major and semi-minor axes of the ellipsoid. The difference between ellipsoidal and
spherical planets is also discussed in this chapter, where we concluded that the relation between
maximum amplification and pixel size was A ∝ 1/D for spherical planets and A ∝ D−0.66 for
ellipsoidal planets. We postulate that the theoretical exponent is −2

3
.

In chapter 5 we looked at the effect of physical effects within the atmosphere such as tur-
bulence, and incorporated this with a diffusion model. This model was then applied to both
spherical planets and ellipsoidal planets. Unlike our expectation for the diffusion, the amplifi-
cation did not decrease for all cases: in 1 case for the spherical planet and for both the cases
of the ellipsoidal planet the amplification stayed roughly the same or even increased slightly.
This result we might be able to explain by imagining that even when a light ray that lands in the
center without diffusion gets deflected out of the center, other light rays might get deflected into
the center. For the remaining case of the spherical planet where the maximum amplification
did decrease significantly, we should investigate further that this is not only due to that the set
of initial light rays might be in a band that is too thin: if the diffusion coefficient gets very big,
light rays that would be just outside of the thin band could get deflected into the band, and in-
crease the maximum amplification that way. From the results we obtained we cannot conclude
that fluctuations in the refractive index have a significant effect on the maximum amplification.

Thus, only the oblateness of Earth is an effect that hinders the usefulness of the Atmoscope.

7.2. Future work
There are still many aspects of the Atmoscope that require more research before any true mis-
sions can start. In this report, light was treated as a purely geometric effect. We did not look
at specific wavelengths and what their effect on the results are, which Kipping has done. Com-
bining this with the research in this report might lead to valuable insights.
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Effects of the atmosphere have been touched upon in this report, but there is room to inves-
tigate this further. One could make a map of the refractive index throughout the atmosphere,
and find the fluctuation of the light rays by using this non-homogeneous refractive index. Fur-
thermore, more research on the diffusion model used in this report is in order, especially the
idea of using a thicker band in which the initial light rays are placed should be looked at.

In this report the main focus for all the results we model that come as close to Earth as
possible. For future work it is interesting to look at different celestial objects and different
atmospheres, where we recommend a planet or moon that is as close to a sphere as possible,
since the effect of the oblateness of a planet is so significant.

Another interesting question is to research what happens when the propagation direction of
the light rays is not along the z-axis, or what happens if the detector is not placed on the same
axis as on which the star and the planet are aligned. This latter question has been discussed in
Kippings paper, but only for a spherically symmetric Earth.

Lastly, we would recommend researching the Atmoscope not per se as a way to observe
and research star light, but to use it to observe atmospheres of celestial objects: from the cen-
tral flash of a planet or moon we can learn a lot about its atmosphere, and by understanding
the Atmoscope, we can interpret the signal in central flash maps to extract information about
turbulent motion in upper atmospheres of Solar System objects.
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