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Abstract

This work proposes a new Modelling-to-Generate Alternatives (MGA) method for Energy System Optimisa-
tion Models (ESOMs) using a Genetic Algorithm (GA). Instead of generating each alternative one by one, the
GA aims to optimise for a diverse set of alternatives, meaning they cover the space of possible alternatives as
evenly as possible. Such a diverse set of alternatives has the potential to improve the decision-making process
by accelerating the extraction of stakeholder requirements and finding more agreeable compromises. Before
designing the algorithm, we investigate what diversity metric is most suitable to optimise. The components
of the GA are designed to exploit useful properties of ESOMs to increase efficiency. The performance of the
GA is tested in terms of output quality and scalability for increasingly large ESOMs, showing promising per-
formance in terms of output quality for a similar computational burden as state-of-the-art MGA methods. A
potential issue caused by the curse of dimensionality is formulated, requiring further investigation on its im-
pact on the quality of the method’s output. We show the generated output of applying the proposed method
to the European power system, which encourages further testing of the method on increasingly large ESOMs.
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1
Introduction

Index terms– Genetic Algorithms, Expansion planning, Modelling-to-Generate Alternatives, Near-optimal in-
vestments

1.1. Background and motivation
To aid in the energy transition, sectors with high energy demand — such as transport, production, and heat-
ing — are becoming increasingly electrified. As this demand is only expected to increase, it is vital to in-
vest in the energy system’s generation, storage and transmission capacities. The untimely development of
these projects due to a slow decision-making process can result in network congestion or generation inad-
equacy, slowing down the electrification of high-polluting sectors and the energy transition itself. Deciding
what investments to make in the energy generation and transmission infrastructure to meet the demand with
minimal total cost is called an expansion planning problem. One of the factors complicating the process is
the non-transparent nature of the preferences of the potentially many stakeholders, making it harder to find
compromises considering these preferences [21].

Energy System Optimisation Models (ESOMs) help in this process to optimise for a minimum cost invest-
ment plan. They model the technical constraints of the energy infrastructure using historic and/or forecasted
data on renewable resource availability, energy demands and network topology. However, as the optimised
investment plan only minimises the system cost, alternative plans with a slight increase in cost might be pre-
ferred for some objectives not included in the ESOM. For example, public acceptance of large infrastructure
investment, ease of implementation and international inequality.

In an iterative decision-making process, the minimum-cost investment plan then helps to partially iden-
tify stakeholder preferences in terms of secondary objectives, after which the ESOM can be updated accord-
ing to those preferences to obtain an alternative investment plan. This iterative process then repeats until an
agreeable alternative is found for all stakeholders.

Instead of manually updating the ESOM to obtain new alternative investment plans, the Modelling-to-
Generate Alternatives (MGA) method can help by automatically generating alternative investment plans with-
out manually modifying the ESOM. All the generated alternatives lie within a predefined cost range of the
minimum cost investment plan, making them near-optimal alternatives in terms of cost. These alterna-
tive plans potentially aid in uncovering stakeholders’ preferences and finding compromises, also considering
unmodelled objectives. Also, analysis of alternative plans can identify common and absent characteristics,
resulting in must haves and must avoids [14]. We want the generated alternatives to evenly cover the near-
optimal space Sε of possible alternatives, serving as realistic options and examples of compromises between
technologies and investment decisions [27].

1.2. Research gap
There are many different MGA methods, most of which modify the ESOM by adding a constraint, after which
the objective function is modified to find different alternatives every time the ESOM is solved. Each of these
methods differs in how the objective function is modified after finding each alternative [25]. Since optimising
the ESOM always results in extremes between investment decisions, the usefulness of the alternatives found
by the algorithm is limited. Other MGA approaches that attempt to find these non-extreme alternatives only

1



1.3. Report structure 1. Introduction

support a relatively low number of investment variables [27]. Because of this, their applicability is limited to
ESOMs of minimal size or using aggregated variables — such as total capacity expansion for each technology
— for bigger ESOMs.

Often, these methods employ heuristics to determine the coefficients of the objective function, attempt-
ing to find alternatives that are maximally different. Instead, directly optimising the even coverage of Sε by the
generated alternatives, covering extreme regions and regions between them. The field of diversity optimisa-
tion aims to achieve this even coverage, often through the employment of Genetic Algorithm (GA) approaches
[41].

This work proposes a novel Genetic Algorithm (GA) as an MGA method that focuses on finding alterna-
tives that evenly cover the space of possible alternatives and includes non-extreme alternatives. Its novelty
compared to other MGA methods, which are based on a GA, lies in the optimisation of even coverage of a
subset of the decision variables and its operators being tailored to exploit the mathematical properties of ES-
OMs to improve efficiency. When compared to standard GAs [43], the GA will differ by optimising a measure
of even coverage of a set of solutions, in contrast to optimising an objective value defined for a single solu-
tion. For each solution, only the investment decision variables are considered in the GA, using the ESOM to
optimise the operational variables given the investment decision variables to calculate the cost. Compared to
other MGA methods, our approach will not be limited in the number of included investment variables while
generating both extreme and non-extreme alternatives.

As the GA is tailored to ESOMs and only needs to optimise the ESOM for the operational variables, the GA
can generate at least as many alternatives as the state-of-the-art MGA method with the same computational
budget. When also considering all the alternatives the algorithm found throughout the optimisation process,
it can even generate more alternatives. However, the set of all alternatives found throughout the search is not
optimised to evenly cover Sε.

The performance of the proposed GA is tested by comparison with the Modelling-All-Alternatives [27]
method in terms of output quality, and its scalability is contrasted against a weighted sum MGA method
[25]. Finally, to showcase the relevance of our contribution, our approach will be applied to the Europe-wide
model used in the SECURES project [39].

1.3. Report structure
The rest of the report is structured as follows. Chapter 2 will explain ESOMs and MGA methods, explaining
their mathematical definition and the context in which they are used. Also, the chapter explains the basic
concepts of GAs and the challenges when designing such algorithms. Next, Chapter 3 will discuss the state-of-
the-art MGA methods and identify their gaps for improvement. Then, it highlights relevant work in the field
of diversity optimisation and other GA approaches for MGA methods to establish the intended contribution
of this work. Chapter 4 explains the design process of the proposed GA, first formulating the optimisation
model that the GA is solving, followed by the explanation of how the most suitable metric to measure diversity
is chosen, after which potential challenges of using the GA with a high number of investment variables are
identified. Consequently, all components of the GA are specified, which leads to the experiment definition
and experiment hypotheses. The experiments are designed to (1) test the GA’s performance on an artificial
and real-life ESOM. (2) the result quality and computational cost compared to other MGA methods. Chapter
5 sets out the results of the experiments and establishes insights by reflecting on the hypotheses with the
derived outcomes. Chapter 6 reflects on the research, discussing unexpected results and stating potential
future work. Finally, Chapter 7 concludes the work, summarising the most relevant decisions and findings.
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2
Theoretical background

Before highlighting relevant works in literature, this chapter provides the appropriate background knowl-
edge. First, we discuss what Energy System Optimisation Models (ESOMs) are, the ESOM used in this work
and the motivation for finding alternative solutions. Then, we formulate the optimisation problem of the
MGA method and how it is generally solved. Finally, we explain general information regarding GAs and their
relevant modelling challenges.

2.1. Energy System Optimisation Models
The problem of deciding what investments to make in the energy infrastructure to meet the demand with
minimal total cost is called an expansion planning problem. Such problems can be formulated as a Linear
Program (LP) or Mixed-Integer Linear Program (MILP) to find the optimal investments concerning a prede-
fined objective. The resulting ESOMs aim to determine capacities at given locations of generation, trans-
mission, and distribution to satisfy the projected power demand within a set of technical and economic
constraints [6, 13] over multiple years, and play a crucial role in planning energy transition pathways and
understanding their impacts [4]. Decision variables include invested generation, storage and transmission
capacities and their operation at each timestamp in the considered period.

Generally, ESOMs are defined as shown in Equations 2.1–2.3. Here, f (x) is the objective function — most
generally signifying cost — of a solution x and the cost coefficients c. The solution x consists of investment
decisions and values for the operational variables that need to satisfy the constraints of Equations 2.2 and 2.3,
which include energy demand, unit commitment and other technical requirements on the system.

min f (x) = c ·x (2.1)

s.t . C x ≤ d (2.2)

Ax = b (2.3)

2.1.1. Limitations of ESOMs in decision-making
The investment plans output by the model serve as a basis for decision-making. More specifically, the output
can either be a single plan optimising a single objective — such as cost — or multiple plans resulting from a
Pareto-front in a multi-objective setting — e.g. minimising cost while also minimising emissions [6]. These
investment plans are often accompanied by a sensitivity analysis, giving insight into the uncertainty of the
output based on uncertainty in the input data — e.g. weather data — and model design — e.g. temporal reso-
lution [34]. Such an analysis helps reduce the technical knowledge gap between stakeholders and modellers,
improving the stakeholders’ trust in the validity of the result.

Besides, the stakeholders might also have requirements which are not directly included in or optimised
by the ESOM. For instance, while a minimum-cost investment plan may be economically optimal, it may
fall short in terms of social acceptance or national self-sufficiency, resulting in a plan that does not fully
satisfy all stakeholders. Therefore, such a single solution could partially identify stakeholder requirements,
which can be used to modify the ESOM such that more agreeable plans can be found. Each new alternative
plan resulting from updating the model can serve as a compromise between stakeholders’ requirements,
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potentially improving on some requirements with an acceptable cost increase. The reviewing process can
then be repeated until a plan is found that satisfies all stakeholders. However, such a process can be very
slow, especially when many stakeholders are involved — e.g. having one stakeholder for each country in
Europe — and having to manually update the model to obtain alternative plans.

Instead of only the minimum cost investment plan, knowing multiple alternative investment plans with
an acceptable increase in cost would enable stakeholders to then analyse the alternative plans based on their
requirements and order them according to preference [21]. This more informed basis of decision-making
could reduce the number of iterations needed to come to a compromise. However, when these alternative
plans are in-diverse, promising compromises may be poorly represented, which can prolong the process of
identifying an agreeable plan to all stakeholders. The problem of generating these alternative plans given an
ESOM is what MGA aims to solve, which will be detailed in Section 2.2.

2.1.2. The SECURES project ESOM
This work will apply the proposed approach to the ESOM used in the SECURES project [39]. This ESOM
is used to optimise the investment plans for different weather and climate change scenarios, highlighting
challenges and opportunities for the energy system of tomorrow to ensure a reliable, sustainable and cost-
efficient power supply under climate change.

Their work analyses each scenario with reference years 2030 and 2050, where 2030 only considers the
’typical’ years. The analysis is done with an hourly resolution and spatial resolution of one node per country
in the EU, resulting in a total of 27 nodes, as can be seen in Figure 2.1.

Figure 2.1: Map of countries included in the SECURES model.

The SECURES model is implemented in IESopt, an easy-to-use modelling tool used to define the compo-
nents of an energy system on a high level, without compromising on performance [38].

2.2. Modelling to Generate Alternatives
Even though secondary objectives like reduced emissions and social acceptance cannot always be directly
included in the model, policymakers and investors still need to incorporate them in the decision-making
process. Therefore, the optimal investment decision resulting from the ESOMs, which disregards these ob-
jectives, is of little aid in the decision-making process. Rather, it represents a theoretical least-cost scenario
optimised according to a modelled version of reality.

One way to mitigate this is to analyse the near-optimal space Sε to allow human decision-makers to pick
a better alternative resulting from a trade-off between a higher total cost while improving other factors not
directly optimised in the model. Additionally, these alternative solutions can help identify must-haves and
must-avoids as investment decisions that are part of all or no alternative solutions, respectively.

The technique to generate solutions within Sε is called Modelling to Generate Alternatives (MGA), which
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uses the optimal solution as an anchor point to explore the surrounding decision space for maximally differ-
ent solutions [10].

.

2.3. Genetic Algorithms
The relevant basic principles of Genetic Algorithms (GAs) are explained in this section. For extensive details,
we refer to the work of Watanabe et al. [43].

Most generally, GAs serve as heuristic optimisation algorithms. Compared to conventional, exact optimisa-
tion like (MI)LPs or gradient-based methods, they require less problem-specific knowledge while still achiev-
ing satisfactory results. In their simplest forms, they only require knowing the potential solution space —
either continuous, discrete or a mix — and a way to evaluate how ’good’ a solution to a problem is, also
known as its fitness. This flexibility comes at a cost of guarantees on the quality of the resulting solution
and the solving time. The problems where GAs are favoured over exact optimisation methods are often com-
putationally intractable — e.g. NP-Hard problems — or lack gradient information. The quality of problems
without gradient information is often not defined in equations but relies on simulation results.

GAs come in many variants, which, in essence, all keep track of a set number of solutions, called a popula-
tion of individuals. The algorithm iteratively updates the population by switching between the variation and
selection phases, where the updated population is called the next generation. During the variation phase,
the algorithm generates new, potentially better, individuals (exploration) while the selection phase makes
sure the next generation contains, on average, slightly better individuals (exploitation). All the alternatives
generated by an MGA method can be considered a population, where the minimum cost solution is the best
individual, and the other individuals are near-optimal alternatives [15].

2.3.1. Components
GAs in their simplest form consist of three phases, being the initialisation, variation and selection phases.
This section will explain the general goal of these phases and how they are to be interpreted.

2.3.1.1. Initialisation
In the initialisation phase, the first population is created at the start of the optimisation process. The goal is
to create individuals evenly divided over the space of possible solutions to require less exploration by the GA.

Generally, the individuals of this population are generated by some random procedure, dependent on the
type of values an individual consists of. The simplest way is to draw from a uniform distribution for each
continuous or discrete value defining an individual. However, note that this requires some problem-specific
knowledge about the minimum and maximum value of each value. As a rule of thumb, the more problem-
specific knowledge that can be included to more accurately generate individuals from the space of possible
solutions, the less the GA needs to explore.

2.3.1.2. Variation phase
The variation phase first aims to mix information from two or more parent individuals p to create one or
more offspring individuals o using a crossover operator. Typically, two parents create two offspring. Dif-
ferent crossover operators can be used depending on how individuals are represented. Often, the choice of
the crossover operator depends on the representation of the individuals and is often designed to preserve
problem-specific structures that improve the fitness of an individual.

After crossover, new information can be added to each offspring o by applying a mutation operator. The
operator applies a random modification, such as flipping a bit in a binary variable or adding a value drawn
from a zero-centred Gaussian to a continuous variable of an individual.

The variation phase may use both the crossover and mutation operators, but their application is not strictly
required. There is no consensus among researchers on which operator is more important, but some argue
that crossover might be "simulated" by mutation.

However, when both operators are used, the GA generally uses a predefined probability of applying the
operators. The crossover operator generally has a high probability– often in the range of 0.8-0.9– of being ap-
plied to increase the odds of offspring with high fitness. Parent individuals are copied as offspring when the
crossover operator is not applied. The mutation operator has a low probability– often in the range of 0.05-0.2–
such that it does not disrupt individuals with high fitness too often.
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All the parents and offspring combined form the candidate population. In essence, the variation phase is
a heuristic search for individuals with higher fitness without discarding the current solutions.

2.3.1.3. Selection phase
During the selection phase, individuals from the candidate population are selected to create the population
for the next generation. The general principle is that individuals with higher fitness have a higher probability
of being part of the next generation. This means that the average fitness of the population increases over the
generations.

The most common selection operator is tournament selection. Here, a random uniform sample of a cer-
tain size is taken from the candidate population, where the individual with the highest fitness is selected to
survive for the next generation. This process is then repeated until we obtain a population with the same size
as the population of parent individuals. Figure 2.2 shows an example of how the Selection phase selects the
blue individuals from the candidate population as the next generation.

(a) Candidate population before selection (b) Next generation’s population after selection

Figure 2.2: Example of the selection phase of a GA

2.3.2. Exploration vs. exploitation
As mentioned above, the population maintained by GAs aims to both explore the search space and exploit
the best found solutions to eventually find the global optimum. However, an inherent challenge in GAs is the
trade-off between exploration and exploitation. Not enough exploration might lead the search to converge
to a local optimum, where too much exploration can slow down the convergence to the optimum solution,
negatively impacting the required computation time. This trade-off is partially caused by the fact that it is
impossible to know whether the best solution found so far is the global optimum. And since the most compu-
tationally intense part of a GA is generally the evaluation of the fitness of an individual, too much exploration
can greatly increase the computational cost of each generation, reducing the amount of generations the GA
can perform given a computational budget.

2.3.2.1. When to stop a GA?
Since it is not known when the GA has found the global optimum, it remains a challenge to decide when a
GA has finished its search. A simple approach to this challenge is to set a number of generations for which
the algorithm will run. This number can then be updated using trial and error in an attempt to get more
satisfactory results in a parameter optimisation fashion. Unfortunately, GAs often have multiple parameters
to optimise, which can influence their convergence speed and computational cost, like the size of the main-
tained population and crossover and mutation probabilities, making the number of generations needed to
sufficiently explore the search space a problem-specific parameter.

Another way to decide when to stop a GA is to use a stopping criterion. These generally aim to use some
measure of how well the value of the best found solution has converged as an indicator of a sufficient trade-
off between exploration and exploitation. Defining a criterion of convergence essentially aims to measure
when the quality of the best individual barely improves throughout the generations. It’s often used in combi-
nation with a high number of maximum generations or a computation budget, stopping the algorithm when
it is already ’done’ to prevent unnecessary computation. Unfortunately, this only works as an indicator for
convergence, so there are no guarantees that the global optimum has been found.
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2.3.3. Using multiple populations
Some population-based methods guide their evolution using multiple populations concurrently. These al-
ternative populations can be used to improve the exploration and/or exploitation abilities of GA approaches.
Generally, they are created and updated either separately from each other or are extracted from a main pop-
ulation. The following sections will discuss research using these types of concurrent populations.

2.3.3.1. Separate populations
The work of [41] makes use of two separate populations, each maximising their respective objective func-
tion. These populations can be mixed during variation before each population selects individuals using the
population’s objective, aiming to improve the exploration and exploitation trade-off.

2.3.3.2. Extracted populations
The work of [42] uses a total of four populations, of which three are extracted from the single main popula-
tion and are used to determine the next generation of this main population. The first alternative population
consists of the k best individuals of the main population with respect to the optimisation problem’s objec-
tive function, which affects the entire main population as the main functioning of the Gravitational Search
Algorithm employed in this work. The next one consists of the historical personal-best locations of the k best
individuals of the main population, which only influences these k individuals in the main population, aiming
to prevent convergence of these individuals to local optima. The final population consists only of the histor-
ical global best individual, affecting all individuals in the main population, aiming to prevent stagnation of
the population in the late search process, improving the exploitation ability of the algorithm.
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3
Literature review

As we now have the necessary background of the relevant concepts of this work, this chapter will discuss the
most relevant literature. Firstly, we explain the problem MGA aims to solve in more detail, the main strategies
used for solving and the limitations of state-of-the-art methods.. Next, the field of diversity optimisation is
introduced, specifying the different types of diversity metrics which are commonly used and the reasons for
using them. Afterwards, other GA approaches of MGA methods are reviewed. Finally, we give an overview of
the contribution of this work compared to other work.

3.1. MGA approaches
In literature, several implementations of MGA methods as introduced in Section 2.2 exist, varying in how they
generate near-optimal alternatives. In general, the different methods try to systematically find maximally
different alternatives which satisfy a near-optimality constraint. A way to do so is by employing the Hop-Skip-
Jump (HSJ) algorithm, which iteratively reformulates the objective function to minimise the sum of decision
variables that appeared in the previous solutions, which results in a new alternative after solving the adjusted
optimisation model of Equations 3.1–3.4 where K ∈ {1, .., v} represent the indices of the decision variables
present in the previously found alternatives [10].

min
∑

k∈K
wk xk (3.1)

s.t . C x ≤ d (3.2)

Ax = b (3.3)

f (x) ≤ (1+ε) f (x*) (3.4)

Different weighted sum MGA methods can be used to steer the next search iterations in different direc-
tions, for example, to favour investments in technologies at locations where they have not been fully utilised
in previous iterations, compared to the fully utilised ones [19], or to improve the algorithm’s ability to find
extremes of the multi-dimensional decision space [20].

Note that all weighted sum methods require the MGA algorithm to solve the complete optimisation model
from scratch for every alternative it generates. This means the more complex the model, e.g. with higher
spatial and/or temporal resolutions, the more time it takes to generate each alternative, while intuitively
more alternatives would be needed to sufficiently explore the trade-offs when the decision space of these
models is defined by an increased number of variables.

Alternatively, the MGA objective functions directly maximise some notion of distance between new alter-
natives and all previously found alternatives [29] or variously minimise and maximise sums of pre-defined
groups of investment variables — like subsets of generation, storage and transmission capacities — which
can also be formed by region and technology — i.e. minimising the sum of onshore wind capacity in a spe-
cific country when the model consists of multiple countries or the total volume of transmission expansion
[25]. Weights can also be generated randomly [2, 5], optimising in random directions without considering the
alternatives found so far.
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However, there are limitations to the weighted sum methods. For instance, the resulting alternatives do not
span the solution space evenly [20]. This conclusion follows from the fact that every constraint defining the
feasible space (Equations 3.2 and 3.3) and the near-optimality constraint (Equation 3.4) is linear, meaning
the near-optimal feasible space is a convex polyhedron. Therefore, we know this space is closed, such that
the optimal solution to any objective function will lie on the boundary of this space [27]. This shows that the
weighted sum methods will find no alternatives within this space, while points within this boundary could
prove useful to speed up the decision-making process, as explained in Section 2.1.1.

Next to that, since the near-optimality bound ε is an input parameter of MGA, the resulting alternatives
can vary greatly given different values of this parameter, meaning bias is introduced based on this parameter
input. As this input bound is manually defined, it should serve as some upper limit of the allowed total cost,
such that producing more alternatives with this exact cost deviation than those with a lower deviation does
not make sense.

3.1.1. Sampling alternatives inside the near-optimal space
Other work aims to sample points inside the near-optimal space Sε, relying on the estimation of the boundary
of Sε.

Firstly, an extension of MGA called Modelling-All-Alternatives (MAA) [27] aims to improve upon the weighted
sum methods by covering the Sε uniformly after approximating the convex shape of the space from which so-
lutions are sampled uniformly. A uniform coverage of Sε would allow for correlation analysis between (groups
of) variables, some notion of the probability density of certain values of variables throughout the space, and
provide robustness of the extracted insights. To approximate the polyhedron containing Sε, the MAA method
requires optimising the ESOM 244 times, while Neumann’s weighted sum MGA method [25], used as a com-
parison of the output of the MAA method, required solving the same ESOM only 12 times. Due to compu-
tational limitations, the method studies only the total capacity of individual technologies instead of all the
investment decision variables to limit the dimensionality of the problem, allowing the use of the Quickhull
algorithm [1]. This aggregation limits the guarantee of uniformly sampling the near-optimal space of the ac-
tual variables since some alternative solutions can be achieved with more system configurations than others.

The work of Schricker et al. [33] extends the MAA approach to support discrete variables, using the as-
sumption that all alternatives within the approximated convex polyhedron are feasible and near-optimal.
First, they discretise the continuous capacity variables by limiting them to discrete capacity steps. Then, af-
ter the continuously relaxed Sε is approximated in the same way as the MAA method, the method creates
hyperrectangles encapsulating the relaxed Sε. All vertices of the hyperrectangle are checked to satisfy the
constraints. If all or none of the vertices satisfy the constraints, we know all the alternatives contained by
the hyperrectangle are feasible or infeasible, respectively. If at least one vertex is feasible, the hyperrectangle
is subdivided into smaller hyperrectangles, and the process repeats until all hyperrectangles are feasible or
infeasible. Finally, discrete solutions within each feasible hyperrectangle can be enumerated to create the
resulting alternatives. However, this method excludes some edge cases, potentially failing to identify some
alternatives compared to a brute-force approach. The authors justify this by stating that their approach dras-
tically decreases the required computation time and RAM, especially for high-dimensional solution spaces,
since they do not rely on the Quickhull algorithm.

The idea of first identifying the boundary of the near-optimal space can also be applied to reduce parametric
uncertainty by finding a robust near-optimal space [12]. However, they approximate the hull for each op-
timisation year separately, after which they compute the intersection of the near-optimal spaces of all the
years considered to find the most ’robust’ near-optimal space. This is done using fewer aggregated variables
to make the approach computationally feasible. From the single resulting near-optimal space, they extract
a solution from the interior of this space, which is as far away from the boundary as possible, representing
the most robust solution. The resulting space could also be used to sample alternatives similar to the other
methods described in this section. But again, its ability to evenly cover the full decision space of investment
variables is limited due to the usage of aggregated variables.

3.2. Diversity as a goal
Another way to look at generating an even coverage of a space, is to think of it as finding some set of solu-
tions P maximising a measure of diversity D(P ) such that every solution s ∈ P satisfies the constraints of the
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(MI)LP model, and are near-optimal. Intuitively, this diversity measure should be better for solution sets that
cover the same space more evenly, and ones that cover a bigger space in a similarly even fashion. In general,
the concept of diversity is defined by three properties of a set of species that are classified into types. These
properties are (1) the number of types used, (2) the distribution of species into types, and (3) how different
types are between them [31, 37]. Since this notion of classes does not work when species are defined in terms
of a point in d-dimensional space instead of classes, only the third property could be applied, where each
unique point is treated as a different type, and the diversity measure refers to how different each type is from
one another. We will use the population of individuals as terminology for a set of species, as this is customary
in the field of GA.

Diversity when dealing with the numerical concept of individuals is usually quantified in three different ways:
as a distance measure between individuals, as a measurable attribute of the individuals (individual diversity)
or as a characteristic of the population as a whole (population diversity) [36]. The work of Solow and Polasky
[35] quantifies the measure of diversity from a biological point of view based on a set of pairwise distances
between all individuals in a population and introduces the Solow-Polasky measure for it, aiming to quan-
tify the dissimilarity between individuals. Additionally, they define the following requirements for a diversity
measure:

1. Monotonicity in species. The diversity of the population should not decrease when adding an individ-
ual i that is not yet in the population of solutions P . That is, D(P ∪ i ) ≥ D(P ) for some i ∉ P .

2. Twinning. The diversity should not increase when adding an individual i that is already in the popula-
tion P . This means D(P ∪ i ) = D(P ) for some i ∉ P .

3. Monotonicity in distance. The diversity should not be decreased when the distance between individ-
uals in the population strictly increases. When considering a one-to-one mapping f (x) of population
P to P ′ having d(i , j ) ≤ d( f (i ), f ( j )),∀i , j ∈ P , meaning D(P ) ≤ D(P ′).

When using a diversity measure to compare two populations of equal size, the first two properties are
irrelevant. Similar properties are also defined in the context of diversity in chemical space [44]. Their property
of dissimilarity is also relevant when only considering populations of equal size, which states that D({i , j }) ≥
D({i ,k}) if di j ≥ di k for any individuals i , j ,k.

The work of Mironov et al. [22] proposes different criteria of diversity metrics when only considering the
comparison of equally large populations:

1. Monotonicity. If one or several pairwise distances increase while keeping all other distances fixed,
the diversity must increase. In contrast to the Monotonicity in distance property, it states that the
diversity must increase. Meaning D(P ) < D(P ′) instead of D(P ) ≤ D(P ′). Figure 3.1 shows two different
populations of equal size where each pair of individuals in P can be mapped one-to-one to a pair in P ′,
serving as an example when the monotonicity property applies, such that we expect D(P ′) > D(P ).

Intuitively, the goal of this property is to make the diversity metric favour populations that include the
more extreme regions of Sε.

(a) Population P (b) Population P ′

Figure 3.1: Example populations of when the monotonicity property applies.
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2. Uniqueness. Considering two equally sized populations where P ′ only differs from P by one individual,
which is unique in P ′ but a duplicate in P as shown in Figure 3.2. In this case, we expect D(P ) < D(P ′).
Figure 3.2 shows an example of when this property applies: two different populations of equal size that
only differ in one individual, which is a duplicate in P — represented by the large dot in the middle of
Figure 3.2a — and unique in P ′. The uniqueness property then states D(P ) < D(P ′).

(a) Population P (b) Population P ′

Figure 3.2: Example populations of when the uniqueness property applies.

3. Continuity. A diversity function must be continuous.

Note that these properties do not require all individuals of a population to be unique, as the authors aim
to be able to compare the diversity of populations even if they have duplicates.

After defining these axioms, the authors prove none of the diversity measures used in literature satisfy
these properties and define new diversity measures which do satisfy them, but which are NP-hard to com-
pute, leaving open the problem of defining a polynomial-time measure that satisfies all the properties.

3.2.1. Measuring diversity
In the literature, several different diversity measures are introduced. They are generally defined in terms of
a sum of pairwise distances 3.5 and fractional pairwise distances 3.6 used in [3]), discrepancy [48], or size of
the space covered by the points in terms of inter-quartile ranges, diameter or volume for a distance measure
di j between points i and j and some γ > 0. A complete overview of the metrics considered can be found in
Appendix A.1.

∑
i< j

dγ

i j γ> 0 (3.5)

∑
i< j

1

dγ

i j

γ> 0 (3.6)

When using diversity measures based on distance metrics, the distance metric puts requirements on the
space in which the points are defined. The work of Ulrich et al. [41] use the properties of a diversity measure
by Solow and Polasky [35] stated above, and specify that the solution space X is not required to be Euclidean
or that the triangle inequality is satisfied. Instead, they require X to be a semi-metric space, ensuring the fol-
lowing properties of the distance between any two points i , j ∈ X to be non-negative d(a,b) ≥ 0, symmetric
d(a,b) = d(b, a) and to have the identity of indiscernibles d(a, a) = 0.

A different field of research related to evenly filling a space with points is the generation of low-discrepancy
sets of points. The intuition behind low-discrepancy populations is to think about the population with op-
timal diversity within a square space to have the number of individuals of a population that lie within a box
within the square space be proportional to the volume of the box. In other words, we would like the difference
Vol([a,b])− 1

n |X ∩ [a,b]| to be minimal, for all possible boxes [a,b] within the square space [23]. From this
follows the definition of discrepancy in Equation 3.7 to be the largest of such a deviation after transforming
the square space to the unit square space.

D(X ) = sup

{
Vol([a,b])− 1

n
|X ∩ [a,b]| | a ≤ b ∈ [0,1]d

}
(3.7)
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Generating a population with low-discrepancy in higher dimensions is an optimisation problem that
proved challenging by itself, where GAs have also been employed to create such populations, as it is an opti-
misation problem not admissible by traditional analytical approaches [23]. Several different notions of com-
puting the discrepancy of a given population exist, where they generally differ in the strategy of selecting
boxes within the unit square anchored to individuals and/or boundaries of the square space [48].

However, there are some complications when using this metric for convex spaces, since this metric is de-
fined for square spaces. When trying to solve this by taking the minimum axis-parallel square containing the
convex space, either with or without normalizing each dimension, there would be an issue that the box with
the maximum deviation as defined in Equation 3.7 would be between the convex space and the square space
around it when the points within the convex space have a sufficiently low discrepancy. Next to that, the exact
convex shape of the space is not known beforehand in the context of applying MGA, where approximating
this shape can come at a big computational cost as discussed in Section 3.1.1.

3.2.2. Diversity optimisation
Closely related to MGA, other research has aimed to find a set of solutions that maximise the diversity of the
set with a minimum quality threshold (e.g. such that the solutions are near-optimal) [24, 40]. For this purpose,
GAs can be used in a single- [11, 40] and multi- [24] objective optimisation setting, where the next population
is created from a candidate population by iteratively removing the individual that least contributes to the
diversity. These approaches are further reviewed in section 3.3.2.

The concept of novelty search is related to diversity optimisation. Its goal is to generate individuals that
are significantly different from previously found individuals to escape deceptive traps in GAs, which can be
interpreted as overcoming local optima. However, it is generally used to find different individuals in terms
of behaviour (i.e. objective space) as opposed to genotype (i.e. decision space). It does so by neglecting the
original objective function and maximising a novelty measure [32], or considering both in a multi-objective
setting [18].

3.2.3. Comparing metrics
There have been works to compare these diversity metrics in terms of their ability to lead to diverse sets of
solutions [24]. The work demonstrates how a few diversity measures can be used as an out-of-the-box tool to
explore a space.

The work that considered properties of diversity measures when comparing equally sized populations in
Section 3.2 [22], also compares several diversity measures, showing some undesirable behaviour for using
them to compare two different populations and as an optimisation goal. They show that using metrics based
on averages of pairwise distances (e.g. ones defined as a sum of distances) pushes individuals to the boundary
of the space, leaving central areas empty. Using a diversity measure based on population diameter has a
similar result. When using a diversity measure based on energy, the optimisation behaviour enforces a more
uniform distribution by pushing away the closest elements. The only flaw of such a measure is that it doesn’t
work well for comparing two populations when duplicates are present, as those will result in a value of −∞.

3.3. GA for MGA
This section will first discuss GA methods in the literature that incorporate diversity without optimising it,
and ones that optimise diversity. Then, we will discuss how other work handles constraints to ensure the
resulting population is feasible and near-optimal.

3.3.1. Using diversity
The work of Squillero et al. [36] survey different GA methods that promote diversity to avoid premature con-
vergence on a sub-optimal solution. Some approaches make use of subpopulations that are treated sepa-
rately during selection, introduce diversifiers located inside relatively empty parts of the space [17] or add an
additional diversity-related objective function of an individual to use in a multi-objective GA [9].

However, these methods do not aim to optimise the diversity of the total population but rather employ
GAs to find a single optimal point, or multiple non-dominated points in a multi-objective setting, such that
no other point is objectively better according to the given objective function of the optimisation problem.
In the MGA scenario, this objective comparison between points is much harder when the objective function
is a diversity measure defined over the entire population instead of a single individual. This means no two
individuals can be compared without considering the rest of the points.
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3.3.2. Optimising diversity
When using a GA to optimise diversity, the commonly used parts of GAs, as discussed in Section 2.3, require
changes. One approach applying a GA as an MGA method consists of multiple separate subpopulations,
as introduced in Section 2.3.3.1, to be maximally different from each other [16, 45–47]. Even though these
methods can have a larger number of individuals in total, they produce a similar number of alternatives as
previously mentioned MGA methods, since each subpopulation results in a single alternative. These meth-
ods use a distance metric intending to generate maximally different solutions, by incorporating the distance
of an individual to the centroid of all other subpopulations in the objective function. This objective function
pushes away subpopulations from one another in a way similar to the weighted sum methods, aiming to find
alternatives that are maximally different from each other. However, it does not indicate how well the resulting
alternatives cover the (near-optimal) space, even though one could argue that the alternatives resulting from
these methods cover the solution space more evenly since the subpopulations are optimised concurrently
instead of generating the alternatives one by one.

Another approach uses a single population to optimise both a single objective value and the population di-
versity by iteratively switching between these optimisation goals [40]. This means they iteratively optimise
an individual- and population-level objective, which they call a ’mixed multiobjective problem’. Again, the
Solow-Polasky measure is used to measure the diversity of a population.

To ensure the resulting population is sufficiently performing in terms of the objective value, a near-
optimal bound ε is provided, and the initial bound is tightened every iteration until it reaches ε. After creating
a candidate population using variation, the individuals that contribute least to the diversity are sequentially
discarded until a new population of a specified size is obtained that maximises diversity. Since computing
the diversity of all possible subsets of the specified size is infeasible, this approach serves as a greedy strategy
for a maximally diverse population, optimising a surrogate measure of diversity.

Other work introduces a framework to concurrently optimise the diversity in the objective and decision space
in a multi-objective setting [41]. They do so by optimising two populations in parallel, where one approxi-
mates the Pareto front of the original multi-objective problem and the other maximises the diversity of the
population within a given bound ε of distance to the Pareto front. As a measure of the diversity of both
populations, they use the Solow-Polasky diversity measure. However, since this measure is costly to com-
pute due to needing matrix inverses, they approximate how much an individual contributes to the diversity
D(P ∪ i)−D(P ) with mins∈P\i d(i, s). So the distance to the closest other individual in the population is used
to approximate how much that individual contributes to the overall diversity.

Finally, a simple GA can be modified such that all near-optimal individuals have the optimal objective
value, and use fitness sharing to promote diversity of solutions.

3.4. Contribution
This work aims to improve the diversity of the resulting set compared to the weighted sum MGA approaches,
resulting in increased confidence that the trade-offs in the near-optimal space are sufficiently represented in
the resulting solutions and removing introduced bias by choice of the near-optimality constraint. To create
the alternatives, it will not require approximating the shape of the near-optimal space, which is a required
precomputation of the MGA approaches that can generate alternatives within the near-optimal space, pre-
venting the need to use aggregated variables for a reduced dimensionality to ensure a feasible computational
cost.

There are multiple differences between the state-of-the-art MGA methods and the method proposed in
this work. First of all, the weighted sum MGA methods modify the ESOM and solve it to obtain each alterna-
tive individually, which are guaranteed to lie on the boundary of the near-optimal space Sε, while this work
optimises the diversity of a set of alternatives, being able to find points within Sε and only needing the ESOM
to solve for unit commitment. The MAA method is also able to find alternatives within Sε. However, it re-
quires an approximation of the boundary of Sε, which greatly limits the number of investment variables of
the ESOM. This precomputation is not required by the GA approach this work proposes.

Finally, it explores whether the usage of a GA has computational benefits as it does not require solving the
optimisation problem for each generated alternative, potentially allowing for the generation of more alterna-
tives with similar computational cost compared to other approaches applied to ESOMs.
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4
Methodology

This chapter explains the steps taken to design the GA used to perform MGA on ESOMs. First of all, we
formulate the optimisation solved by the GA in Section 4.1, introducing new properties for the diversity metric
optimised by the GA. Then, we define how we will compare different diversity metrics in Section 4.2 using
example populations to test whether the metrics can order the populations similarly to our expectations in
terms of diversity. Afterwards, the challenge of finding inner points in high-dimensional spaces is explained
in Section 4.4. Then, we define all the components of the GA in Section 4.5 and describe how its performance
is evaluated in Section 4.6. Finally, in Section 4.7, we describe how the GA is applied to the SECURES model,
an ESOM used to optimise investments for the whole of Europe.

4.1. Formulating diversity optimisation for MGA
In Section 3.2, we discussed how doing MGA can be seen as optimising the diversity of a population in a
near-optimal space and discussed some properties of measuring this diversity. This section formulates the
problem of optimising the diversity metric with a GA and introduces new properties tailored to our goals,
which guide the choice of the metric to be optimised.

To rewrite the problem formulation, we start with the adjusted optimisation model for MGA in Equations
3.1–3.4. Our formulation changes the objective function in Equation 4.1 to maximise the diversity metrics
over the investment variables of all alternatives x, consisting of investment variables xi nv and operational

variables xop and forming the population P , such that x =
(

xi nv

xop

)
∈ P . Then, each alternative x is constrained

to be feasible according to the original ESOM (Equations 4.2 and 4.3) and near-optimal (Equation 4.4).

max
xi nv

D({xi nv |x ∈ P }) (4.1)

s.t . C x ≤ d (4.2)

Ax = b (4.3)

f (x) ≤ (1+ε) f (x*) (4.4)

In our formulation, we want the population that maximises the diversity metric D to cover the near-
optimal space Sε as uniformly as possible, including individuals located at and between the most extreme
regions of Sε. We aim for the diversity metric to differentiate between various populations P based on their
uniform coverage of a space, enabling our GA to optimise for this metric to obtain an even coverage of Sε.
To formalise our intuition on more diverse populations, we introduce the following properties of a diversity
metric :

• Covering radius distribution. When considering the mean µr
P and standard deviation σr

P of the mini-
mum Euclidean distances of all individuals to any other individual (Equation 4.5) of some population
P . If some other population P ′ with the same number of non-duplicate individuals has µr

P ′ ≥ µr
P and

σr
P ′ ≤ σr

P , where at least one of the conditions is strictly greater or smaller, we want D(P ) < D(P ′). An
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example of two populations where these conditions apply is shown in Figure 4.1 shows an example of
two different populations of equal size where the covering radius distribution property applies, such
that we expect D(P ′) > D(P ).

Another way to interpret this property is that populations for which the maximum distance from any in-
dividual in the space to any individual in the population — e.g.maxx∈Sε mini∈P d(x, i) — is lower, should
be more diverse. Intuitively, this property attempts to prevent the diversity metric from favouring indi-
viduals that lie on the boundary, as is often the result when maximising average pairwise distance, as
shown by Mironov et al. [22].

µr
P = 1

|P |
∑
i∈P

min
j∈P,i ̸= j

d(i , j )

σr
P =

√√√√ 1

|P |
∑
i∈P

((
min

j∈P,i ̸= j
d(i , j )

)
−µP

)2
(4.5)

Covering circle
Individuals

(a) Population P

Covering circle
Individuals

(b) Population P ′

Figure 4.1: Example populations of when the covering radius distribution property applies.

• Rotation invariance. Transforming a population P by rotating all the individuals in P around a set
point to obtain P ′ — as exemplified in Figure 4.2 — should not change its diversity such that D(P ) =
D(P ′). Figure 4.2 shows P and the transformed population P ′ obtained by rotating P around the centre
of the space by 45°clockwise. Serving as an example of the rotation invariance property such that
D(P ) = D(P ′).

This property essentially states our goal of using a diversity metric that is not axis-aligned, as we are
interested in covering Sε and not independently covering each investment variable.

(a) Population P (b) Population P ′

Figure 4.2: Example populations of when the rotation invariance property applies.

The properties discussed above serve as an addition to the ones from the literature — as discussed in Section
3.2 — which are relevant to our use case. This excludes the twinning and monotonicity in species properties,
as we do not change the size of the population for which we want to optimise the diversity.
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4.2. Selection of diversity metric
To motivate the choice of diversity metric, we begin by explaining the types of metrics considered. Afterwards,
several test populations are constructed and ordered relative to each other. The metrics will be assessed on
how they distinguish between more and less diverse populations, of which the results are presented in Section
5.1

4.2.1. Types of diversity metrics
We consider many different diversity metrics from the literature, which can generally be categorised as fol-
lows:

• Sum of distances. The measure is a function of the sum of distances
∑

a,b∈P d(a,b)r with positive con-
stant c.

• Sum of fractional distances. The measure is a function of the fractional distances
∑

a,b∈P
1

d(a,b)r with
some positive constant c.

• Discrepancy. Some approximation of the largest difference between the volume of a square subspace
and the fraction of the total number of individuals in that space, as defined in Equation 3.7. See Section
3.2.1 for further explanation.

• Other. Other metrics found in literature relate to some population volume or radius, dimensional inter-
quartile range or variance of distance to the average individual.

Note that the discrepancy is only defined for axis-aligned square spaces, making it unsuitable for our GA
approach. However, as low-discrepancy populations serve as a good example that uniformly cover the space,
we still consider these measures to check whether our preferences between populations make sense. For the
full overview of all considered diversity metrics, see Appendix A.1.

4.2.2. Testing properties of diversity metrics
Properties from the literature (Section 3.2) and the ones we defined (Section 4.1) are tested using the example
populations from Figures 3.1, 3.2, 4.1 and 4.2. An overview of what properties the different types of diversity
metrics generally have is given in Table 4.1.

The reason why the metrics based on the sum of distances do not satisfy the covering radius distribution
property is that increasingµr

P and decreasingσr
P can result in a lower sum of distances, as is the case in Figure

4.1. The sum of fractional distances does not adhere to the uniqueness property as we cannot divide by a
distance of zero. Discrepancy-based metrics do not satisfy the rotation invariance property as it is defined
by the axis-aligned box with the largest difference in its relative volume and the relative number of points it
contains. The same definition is the reason the discrepancy-based metrics do not satisfy the covering radius
distribution property, as there can be a population where a modification to a point does not change this
axis-aligned box while increasing µr

P and decreasing σr
P .

Property
Metric type Sum of

Distances
Sum of

Fractional distances
Discrepancy

Monotonicity ✓ ✓ ✓
Uniqueness ✓ - ✓
Continuity ✓ ✓ ✓
Covering radius distribution - ✓ -
Rotation invariance ✓ ✓ -

Table 4.1: The properties which each type of diversity metric generally has.

4.2.3. Testing populations in Unit Square space
In the experiments defined in the next subsections, we consider the different types of diversity metrics found
in literature as discussed in Section 3.2.1 We test different interpretations of uniform coverages, how modify-
ing the concentration of individuals changes the diversity, whether diversity metrics are biased towards the
boundary and whether a suboptimal population arising during the optimisation process is less preferred.
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4.2.3.1. Uniform coverages
We use a Sobol sequence, uniform grid, and a multivariate uniform sample to test whether a diversity metric
prefers a specific uniform distribution, as shown in Figure 4.3.

0 1

0

1

(a) Sobol sequence Ps

0 1

0

1

(b) Uniform grid Pg

0 1

0

1

(c) Multivariate uniform sample Pmv.u

Figure 4.3: Three different uniformly covering populations of 256 individuals in unit square space.

We consider both the Sobol sequence and the uniform grid as the most uniform coverage in our experi-
ment. The reason we do not prefer one of these coverages over the other is that the Sobol sequence is better
in terms of discrepancy — as explained in Section 3.2.1 — as it is a quasi-random sequence specifically de-
signed to be low-discrepancy [23]. The uniform grid, on the contrary, is worse in terms of diversity, but is
better according to the covering radius distribution property discussed in Section 4.1. The multivariate uni-
form sample serves as a comparison to check whether a diversity metric considers the Sobol sequence and
uniform grid more diverse compared to a population we would obtain if we could randomly sample individ-
uals within the space.

4.2.3.2. Coverages with modified concentration
Alternative populations are included, which should be worse than the uniform populations and are tested for
some desirable preferences between them. These alternative populations highlight how sensitive the diver-
sity metrics are to having more and less concentrated parts of the space.

Firstly, the Sobol sequence population is modified to include non-overlapping areas with a relatively high
and low concentration of individuals as shown in Figure 4.4. The population is modified by creating ’blind
spots’ or concentrated spots. A concentrated spot is created by defining a circle centred at c with radius r
such that every individual i within the circle is modified to create ic by moving it towards c centre such that
the distance towards the centre is halved, as defined in Equation 4.6.

ic = c+ 1

2
(i−c) ∀i ∈ P : d(c, i) < r (4.6)

A ’blind spot’ is created similarly, halving the distance to the closest point on the border of the circle g (i,c,r )
— as defined in Equation 4.7a — instead of the centre c to create ib . See the definition in Equation 4.7b.

g (x,c,r ) = c+ r

d(c,x)
(x−c) (4.7a)

ib = g (i,c,r )+ 1

2
(i− g (i,c,r )) ∀i ∈ P : d(c, i) < r (4.7b)

We hypothesise that both of the newly introduced populations are less diverse than the Multivariate uniform
sample from Figure 4.3c, as they leave relatively large areas uncovered. However, since µr

Pmv.u
< µr

Ps.b
< µr

Ps.c

andσr
Pmv.u

<σr
Ps.b

<σr
Ps.c

we expect D(Pmv.u) < D(Ps.b) < D(Ps.c ) according to the covering radius distribution
property. The differences between the value of the diversity metric of the Multivariate uniform sample, the
Sobol sequence with blind spots and the Sobol sequence with concentrated spots population will highlight
how sensitive the metric is to individuals that lie relatively close to each other.
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0 1

0

1

(a) Sobol sequence with blind spots Ps.b

0 1

0

1

(b) Sobol sequence with concentrated spots Ps.c

Figure 4.4: Modified Sobol sequence populations in unit square space with spots of relatively high and low concentration of individuals.

4.2.3.3. Testing bias of diversity metrics towards the border of the space
Next, we define populations to test whether diversity metrics are biased towards the border of the space. We
again modify the Sobol sequence to create a population that leaves the middle of the vertical axis empty, and
one that covers a smaller square inside the unit square.

The population Pp.sep that splits the vertical y-axis by applying the mapping fsep (y) on the y value of
individuals i = (x, y) to obtain is.sep = (x, g (y)). As defined in Equation 4.8, the mapping changes the y-value
for individuals in the top half of the space, e.g. y ∈ [0.5,1], to a value in [0.75,1] while keeping the relative
distance to the upper and lower value of the range the same. The y-value of the individuals in the bottom half
is mapped to a value in [0,0.25] in a similar manner.

To create the population that covers the smaller square Ps.cen , we generate a Sobol sequence and rescale
each individual to fit in the smaller square defined by diagonal points at (0.25,0.25) and (0.75,0.75) by ap-
plying the mapping mapping fcen(a) — defined in Equation 4.9 — to each i = (x, y) to obtain individual
is.cen = ( fcen(x), fcen(y)).

fsep (y) =
{

y−0.5
2 +0.75 y ∈ [0.5,1]

y
2 y ∈ [0,0.5)

(4.8)

fcen(a) = a

2
+0.25 (4.9)

Since Ps.cen covers a quarter of the unit square, and Ps.sep half of it, we expect that D(Ps.cen) < D(Ps.sep ).
As both new populations are a modification of the Sobol sequence Ps with less coverage, we expect to have
D(Ps.cen) < D(Ps ) and D(Ps.sep ) < D(Ps ).

0 1

0

1

(a) Sobol sequence with vertical separation Ps.sep

0 1

0

1

(b) Sobol sequence in center square Ps.cen

Figure 4.5: Modified Sobol sequence populations in unit square space used to test bias of diversity metrics to the boundary of the space.

4.2.3.4. Suboptimal coverage
Finally, we use a Multivariate normal sample Pmv.n — as shown in Figure 4.6 — as a baseline for a suboptimal
uniform coverage. The sample can be interpreted as one of the populations generated by a GA before con-
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verging to a population with optimal diversity. When the initial population of the GA is initialised close to the
centre of the unit square, we would expect subsequent populations to get closer towards the boundary of the
space, eventually creating a similar population as in Figure 4.6.

Each individual i is drawn from a multivariate normal distribution N (µ,Σ) having mean vectorµ= (
0.5 0.5

)T

and covariance matrix Σ=
(
0.05 0

0 0.05

)
. Every sampled i which does not lie within the unit square is redrawn

until the population consists of 256 individuals.
We expect the diversity D(Pmv.n) to be worse than all the uniform populations of Figure 4.3. The Sobol

sequence with blind or concentrated spots Ps.b and Ps.c and with vertical separation Ps.sep are also expected
to be more diverse following the covering radius distribution property. However, when the diversity of the
Sobol sequence with vertical separation is significantly higher than that of the population with uniformly
sampled multivariate individuals, according to a diversity metric, it indicates a potential bias towards the
border of the space.

0 1

0

1

Figure 4.6: Multivariate normal sample population Pmv.n

Table 4.2 provides an overview of all pairwise orders of diversity of the test populations. In the table,
’>’ indicates D(Pr ow ) > D(Pcolumn), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow
from the covering radius distribution property. Additional populations considered, but not included in this
comparison, are listed in Appendix A.2.

Type Population Ps Pg Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Uniform
Ps = (<) (>) > > > > >
Pg (>) = (>) (>) (>) (>) (>) >
Pmv.u (<) (<) = (<) (<) - - >

Concentration
Ps.b < (<) (>) = (<) - - (>)
Ps.c < (<) (>) (>) = - - (>)

Bias to border
Ps.sep < (<) - - - = > (>)
Ps.cen < (<) - - - < = -

Suboptimal Pmv.n < < < (<) (<) (<) - =

Table 4.2: Overview of expected order of diversity between test populations in unit square space.

4.2.4. Testing populations in convex space
To make sure the diversity metrics work similarly in a convex space that is not axis-aligned, we use variants
of the populations mentioned in Section 4.2.3 in a convex subspace of the unit square. We test whether each
diversity metric ranks the populations in convex space in the same order as their counterparts in unit square
space.

The populations generated by a Sobol sequence or sampling from a distribution are modified to cover the
convex subspace in Figure 4.7 in the following way: First, each individual is created by the Sobol sequence
and then transformed to fit in the square space containing the convex space defined by diagonal points at
(0.2,0) and (1,0.8) following from the minimum and maximum values of each dimension of all the space’s
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vertices, as defined in Equation 4.10.

g (a) = 4a

5
+0.20 (4.10)

0 1

0

1

Figure 4.7: The convex space in which each population is transformed to.

The individuals from the multivariate uniform and normal distributions are respectively sampled from

U[0.2,1]×[0,0.8] and N (µ,Σ) with µ= (
0.6 0.4

)T
and Σ=

(
0.04 0

0 0.04

)
.

Then, any modifications are applied where blind or concentrated spots are applied using the same circles
defined in the unit square spaces and the vertical separation and centre square with respect to the square
containing the convex space. Finally, all individuals that lie outside the space’s boundary are removed, and the
procedure is repeated until the population contains 256 individuals. The uniform grid population is excluded
as it is non-trivial to make it fit in the convex space. These populations are visualised in Appendix A.2.2.

Considering the populations modified to fit in the convex space, two expectations of Table 4.2 change
according to the covering radius distribution property. First, the order of the Sobol sequence with blind spots
Ps.b and the Sobol sequence with concentrated spots Ps.c is flipped such that D(Ps.b) < D(Ps.c ). Next to that,
the comparison of the Sobol sequence with vertical separation Ps.sep and the multivariate normal sample
Pmv.n is inconclusive.

Type Population Ps Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Uniform
Ps = (>) > > > > >
Pmv.u (<) = (<) (<) - - >

Concentration
Ps.b < (>) = (>) - - (>)
Ps.c < (>) (<) = - - (>)

Bias to border
Ps.sep < - - - = > -
Ps.cen < - - - < = -

Suboptimal Pmv.n < < (<) (<) - - =

Table 4.3: The expectations of how each pair of test populations performs against each other in terms of diversity in unit square space.
’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the covering radius

distribution property.

4.3. The near-optimal investment space
Now that we have specified how we will compare different diversity metrics, we will further detail the space
covered by a population. As shown in Equation 4.1, we only care about the diversity of the investment vari-
ables of each xi nv . However, given some investment as part of an individual xi nv , we need to solve the original
ESOM as given in Equations 2.1–2.3 for unit commitment to make sure the alternative is feasible and within
our cost slack ε.

Fortunately, solving the model for unit commitment reduces the ESOM’s complexity, meaning we can
perform more solves for unit commitment only compared to the full ESOM for the same computational bud-
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get. This difference in solving time will be further explored in the scalability experiment discussed in Section
4.6.4.

Since the feasible space of an LP is always convex, the near-optimal space Sε of investment variables is
also convex. This property is used in the operators of our GA to reduce the number of times the ESOM needs
to be solved for unit commitment, as will be explained in Section 4.5.

4.4. Covering high-dimensional spaces
According to the monotonicity property, we expect the diversity of populations consisting only of individuals
that lie on the boundary of Sε to be preferred to those that do not for certain combinations of population size
|P | and number of investment variables v , e.g. the dimensionality, considered in the ESOM. This section will
substantiate the following expectations:

• When |P | ≤ 2v , we always expect the most diverse population to only consist of individuals on the
boundary of Sε.

• When 2v < |P | ≤ 2v , it depends on the convex shape of Sε whether the most diverse population consists
of only boundary individuals.

• When 2v < |P |, we always expect the most diverse population to include at least a single individual that
does not lie on the boundary of Sε.

4.4.1. Covering high-dimensional hypercubes
To illustrate the intuition behind this relation between the population size and number of investment vari-
ables, we consider a population to cover Sh , defined as a v-dimensional hypercube with C as the set of all its
2v corners. If |P | = |C |, a population P = C is optimal, because substituting any individual with some i ̸∈ C
will only result in pairwise distances being decreased, making the population P = C more diverse according
to the monotonicity property.

If |P | < |C |, replacing any individual i ∈ P on the boundary of the minimum convex hull containing P
and not on the boundary of Sh by any individual i′ ∈ Sh on the line passing through i and the centroid of the
convex hull ī such that i′ = i+a(i− ī) with a > 0 to create P ′. Then D(P ′) > D(P ) according to the monotonicity
property as some pairwise distances will only increase.

When i is not on the boundary of the minimum convex hull, it is inside this hull. In that case, there
exists a individual i′ on the boundary of the hypercube which can replace i, such that the distance to all
other individuals increases, to create a population P ′ having D(P ′) > D(P ) according to the monotonicity
property. This process of replacing individuals can then be repeated until a population P∗ is created where
all individuals lie on the boundary of Sh . This means, if we have n ≤ 2v , we expect the most diverse population
only to contain individuals on the boundary of Sh .

4.4.2. Covering high-dimensional convex spaces
The near-optimal space Sε is not necessarily a hypercube, but can be of any convex shape as mentioned in
Section 4.3. Then, suppose we normalise Sε using the minimum and maximum value of each dimension. In
that case, we can define an axis-aligned hypercube based on the minimum and maximum value of each di-
mension within Sε, such that each side of the hypercube intersects with Sε in at least a single point and Sε is a
subspace of the hypercube. Next, we assume there are no redundant dimensions in which the minimum and
maximum value are equal, and Sε is some diamond shape defined by the set |C | consisting of 2v vertices, such
that every vertex intersects with exactly one side of the hypercube. For such a space Sε, the same intuition
when |P | ≤ |C | when Sε is a hypercube holds, meaning we expect the population with maximum diversity to
only contain individuals on the boundary of Sε when |P | ≤ 2v .

When one or more vertices defining Sε intersect with more than one side of the minimum hypercube
containing Sε, this intuition does not hold as well, such that there are examples where the most diverse pop-
ulation contains individuals not on the boundary of Sε. However, we assume the number of those spaces is
limited due to the normalisation of the dimensions of Sε.

4.5. GA setup
The GA proposed in this work is based on the standard GA procedure of using the initialisation, crossover,
mutation and selection operators. It modifies these operators to perform diversity optimisation for ESOMs
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and incorporates the feasibility checking and normalisation of individuals. See an overview of the GA loop in
Algorithm 1.

Algorithm 1 The main loop. Update population by performing crossover, mutation and selection until the
maximum number of generations or the stopping criteria is reached.

1: function CHECKFEASIBILITY(P )
2: F ← {b1, ...,b|P |}
3: for j ← 1, |P | do
4: x ← SOLVE(i j ) ▷ Retrieve the full solution of the ESOM given investment variables
5: b j ← x.feasible and f (x) ≤ (1+ε) f (x∗) ▷ Individual is feasible if solution is feasible and

near-optimal
6: end for
7: return F
8: end function

9: function GALOOP(ni nd , #g enmax , pc , α, pm.i nd , pm.var , β, #g enconv )
10: P ← INITIALISE(ni nd )
11: FP ← CHECKFEASIBILITY(P )
12: dmax ←−∞
13: counter ← 0 ▷ Number of generations without improvements
14: for g en ← 1,#g enmax do
15: P ← NORMALISE(P )
16: O ← CROSSOVER(P ; pc , α) ▷ Generate ni nd offspring
17: O ← MUTATE(O; pm.i nd , pm.var , β)
18: FO ← CHECKFEASIBILITY(O)
19: P ← SELECT(P ∪O,FP ∪FO ; ni nd )

20: d ← D(P )
21: if d > dmax then
22: dmax ← d
23: counter ← 0
24: else
25: counter ← counter +1
26: if counter = #g enconv then
27: return P
28: end if
29: end if
30: end for
31: return P
32: end function

4.5.1. Parameters
An overview of the parameters used in the GA loop is shown in Table 4.4.

4.5.2. Initialisation
Some of the GAs that optimise diversity — as discussed in Section 3.3.2 — assume the initial population all
adhere to the minimum quality requirement, i.e. being near-optimal [11, 24]. At the same time, we want the
initial population to have as much variation as possible to aid in the exploration and exploitation trade-off as
mentioned in Section 2.3.2.

As stated in Section 2.3.1.1, the more problem-specific knowledge we can use, the less the GA needs to
explore. However, for our problem, we have limited knowledge about the size and bounds of the near-optimal
space Sε. The only useful information we could use is the minimum cost investment plan, as we know it is
within Sε, and the coefficients of the investment decision variables ci nv of the ESOM’s objective function in
Equation 2.1.
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Parameter Description

ni nd Population size

#g enmax The maximum number of generations the GA runs for

#g enconv The number of generations without improvement of the diversity after which the algo-
rithm is stopped early

pc Crossover probability for each pair of individuals

α Factor to increase the range where offspring can be randomly generated in crossover.

p i nd
m Mutation probability of each individual

pvar
m Mutation probability of each variable during the mutation of an individual

β Extrapolation factor in mutation operator

Table 4.5: Overview of parameters used in the GA.

Given this knowledge, we want to find some initial individuals that are as far away from the minimum
cost investment plan, but are still near-optimal. Fortunately, ci nv can be useful to find such individuals.
Equation 4.11 shows how we calculate the individual x′i nv by increasing one or more investment decisions of
the minimum cost individual x∗i nv such that the increase in the investment cost is equal to the allowed slack
from the near optimality constraint (Equation 4.4). If the investment variables have an upper bound xmax

i nv , we
set each investment variable to its maximum value if it exceeds it.

cT
i nv (x′i nv −x∗i nv ) = ε f (x∗) (4.11)

We are certain that the resulting individual is feasible and near-optimal, as the investment variables are
a capacity acting as an upper bound for the operational variables in the constraints in Equations 4.2 and 4.3.

Therefore the alternative x′ =
(

x′i nv
x∗op

)
will be a feasible individual with f (x′) = (1+ε) f (x∗). Note that the values

of operational decision variables x∗op might not be the operational variables with minimal cost for the given

investment decisions x′i nv . E.g. there might exist an x′op ̸= x∗op such that f

((
x′i nv
x′op

))
≤ (1+ε) f (x∗).

The x′i nv of each of the ni nd individuals of the initial population is created in the following way: The first
individual is the minimum cost investment decision x∗i nv , the remaining n = ni nd −1 are then created as fol-
lows. We first create v directions d by increasing one of the investment variables for each individual. When
v > n, we pick n of such directions at random. When v < n, we additionally generate n − v random direction
vectors d of length v such that all the elements are positive. Each direction is then used to generate a x′i nv
by increasing the investment variables x∗i nv as shown in Equation 4.12. The direction is scaled by r , which
uses up the remaining cost slack, before being added to x∗i nv , with r calculated as in Equation 4.13. This way,
an initial population of feasible individuals is created without needing to solve the original ESOM for unit
commitment of each individual.

x′i nv = x∗i nv + r d (4.12)

r = ε f (x∗)

dT ci nv
(4.13)

Note that the investment variables of all the individuals of the initial population are greater than the ones
of the minimum cost individual x∗i nv . Since individuals with investment variables smaller than the minimum
cost individual might exist, we rely on the crossover and mutation operators to fill this space.

4.5.3. Normalisation
When considering the near-optimal space Sε, the ranges where there are near-optimal individuals might
differ between investment decision variables. One of the reasons this occurs might be the differences in
the cost per capacity of different technologies. When a diversity metric is defined in terms of the distance
between individuals , these differences can result in favouring variance for some investment variables over
others, meaning possible alternatives of some investment variables are explored more than others.
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This problem can be prevented by normalising the investment space. However, we do not know the min-
imum and maximum values for each investment variable within Sε. Therefore, we keep track of the bounds
throughout generations and update the bounds when a new near-optimal individual is found outside the
bounds.

4.5.4. Crossover
Our GA approach uses the Blend-α crossover operator from literature [30]. To generate two offspring from
two parents p1 and p2, we pick a random value uniformly in the interval r ∈ [−α,1+α] for each offspring o,
which is defined as a linear combination of the parents as such that o = r ·p1 + (1− r ) ·p2.

Having r < 0 or r > 1 can be interpreted as performing exploration of a potentially unexplored area. When
0 ≤ r ≤ 1, the algorithm exploits already covered area, such that the offspring is a convex combination of
the parents. In that case, we are certain that the offspring is feasible if both parents are feasible, due to the
convexity of the near-optimal space Sε, as can be seen in Figure 4.8a. When at least one of the parents is not
feasible, we are uncertain whether the offspring is feasible, as illustrated in Figure 4.8b. The ESOM needs to
be solved for unit commitment using the individual’s investment decision to check its feasibility.

Known parent Potential offspring

Feasible Unkown

(a) Blend crossover with two feasible parents

Infeasible

Known parent Potential offspring

Feasible Unkown

(b) Blend crossover with a single infeasible parent

Figure 4.8: How blend crossover can create feasible offspring

4.5.5. Mutation
The mutation operator is applied with probability p i nd

m to each of the individuals in the offspring generated
by the crossover operator. This operator aims to add more variation to the population. It does so by pushing
the individuals away from the middle of the normalised space by multiplying the difference vector ∆ of the
normalised individual i ∈Rd with respect to the middle of the normalised space [0.5]v as defined in Equation
4.14. The multiplication factor g (x) depends on the Euclidean distance to the centre ∥∆∥.

We want individuals with an equal distance to the centre as the corners of the normalised space not to
be moved (Equation 4.15) and individuals with a distance equal to individuals positioned on the boundary,
closest to the centre, to be moved away from the middle with a factor of 1+β (Equation 4.16) as illustrated
in Figure 4.9. Since we want individuals close to the centre to be pushed outwards relatively more, the factor
is defined as an inverse of the distance of the individual to the centre, fit to the above-mentioned individuals
(Equation 4.17). Using the factor g (∥∆∥), the mutated individual i∗ is calculated as shown in Equation 4.18.
As a final step, each variable of the individual ik ,k ∈ 1...d is set to the updated variable i∗k with probability
pvar

m .
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Mutation range
Individual before
mutation

Figure 4.9: How individuals are modified by the mutation operator.

∆= i− [0.5]v (4.14)

g (x) = 1 : x = ∥∆∥ =
p

0.25d (4.15)

g (x) = 1+β : x = ∥∆∥ = 0.5 (4.16)

g (x) = 1+ a

x
+b

a = −βp0.25d

−pd +1

b = β

−pd +1

(4.17)

i∗ = [0.5]v + g (∥∆∥) ·∆ (4.18)

Finally, we want to make sure the mutation operator does not change the relative order of individuals
such that ∥k− [0.5]v∥ < ∥l− [0.5]v∥ → ∥k∗ − [0.5]v∥ < ∥l∗ − [0.5]v∥∀k, l. This condition is satisfied if we can
make sure ∥g (∥∆∥)∆∥ is increasing for an increasing ∥∆∥. Thus, we need to pick β such that

[∥g (∥∆∥)∆∥]′ > 0.

Picking β<p
d −1 ensures such that f ′(∥∆∥) > 0 following the derivation in Equation 4.19.[∥g (∥∆∥)∆∥]′ = [

g (∥∆∥)∥∆∥]′ > 0 ∀∆ : ∥∆∥ > 0[
g (x)x

]′ = [
(1+ a

x
+b)x

]′
= [x +a +bx]′ = b +1

b +1 > 0

β

−pd +1
+1 < 0 ∀d > 1

β<
p

d −1 ∀d > 1

(4.19)

Note that the offspring generated by the crossover operator can still be outside of the normalised space, since
our definition results in g (∥∆∥) < 1 for ∥∆∥ >p

0.25d , individuals which are further away from the centre than
the corners of the normalised space are moved closer towards the centre.

The crossover and mutation operators are crucial for exploring the space outside of the convex hull of the
current population. Each of the mutated individuals needs to be checked for feasibility, even if the offspring
before mutation is known to be feasible due to the convex combination of the crossover operator.

4.5.6. Selection
During selection, we want to select the subpopulation P ′ of size ni nd out of the candidate population C with
maximum diversity as the new population. However, as the fitness of an individual is defined as how much
it contributes to the diversity of the population, such that the fitness of an individual cannot be evaluated in
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isolation, a simple selection operator — like tournament selection as explained in Section 2.3.1.3 — will not
work.

Due to the combinatorial explosion, testing every possible subset of size ni nd and picking the one with
maximum diversity is computationally infeasible. Therefore, the greedy strategy is used to iteratively remove
the individual i ∈ C that contributes least to the overall diversity, i.e. with the lowest D(C )−D(C /{i}) as ex-
plained in Section 3.3.2. After removing an individual, how much each remaining individual contributes to
the overall diversity needs to be recomputed.

To mitigate the issue of duplicates, as explained in Section 4.2.4, we remove duplicates from the candidate
population before performing selection. Since we then never have any duplicates, we do not care whether
the diversity metric satisfies the uniqueness property as there will never be any duplicates.

Algorithm 2 The greedy selection operator

1: function SELECT(C ,F ; ni nd )
2: while |C | > ni nd do
3: C ←C − (mini∈C D(C )−D(C − {i})) ▷ Remove least diverse feasible individual
4: end while
5: return C
6: end function

4.5.6.1. Prioritizing feasible individuals
If we were to perform the selection procedure described above directly on the candidate populations, some-
times individuals that lie outside of the near-optimal space Sε are preferred over some near-optimal individ-
uals. For example, if we consider a population P with only near-optimal individuals and take any individual i
on the boundary of Sε, moving i further away from the middle of Sε can only improve the diversity according
to the monotonicity property following the same argument as explained in Section 4.4.1.

To ensure each population contains as many near-optimal individuals as possible, we prioritise these
individuals over ones outside the near-optimal space. Considering feasible set F ⊆C and infeasible set I ⊆C
such that |F |+ |I | = |C | = 2n and F ∩ I =∅, the selection procedure works as follows:

• If |F | > n, discard individuals in I and continue with selection as described above.

• If |F | ≤ n, add all feasible individuals to P ′ and iteratively add infeasible individuals that least contribute
to the diversity of the selected set so far P ′ = mini∈I D(P ′∪ {i})−D(P ′).

The reason the infeasible individuals, which contribute least to the diversity, are selected when |F | ≤ n
is that we want to select the ones closest to being feasible. However, this can only happen in the first few
generations if not all individuals of the initial population are feasible. Since the previous population is always
part of the candidate population, this never occurs once a population consists of only feasible individuals.
The updated selection operator is defined in Algorithm 3.

4.5.6.2. Evaluation speedup
To select the new population P ′ out of 2n individuals in C , we need to iteratively remove n individuals that
contribute least to the overall diversity. Since diversity is defined over the full population, we must recompute
each individual’s contribution to the diversity after each removal.

Considering the diversity metrics that sum over all (fractional) pairwise distances, computing D(P ) would
be O(n2). Recomputing the diversity D(C /{i}) — in line 3 of Algorithm 2 and 8 of Algorithm 3 — at least n times
for all remaining individuals i results in O(n3). However, since the removal of an individual only affects the
sum of pairwise (fractional) distances considering the removed individual, we can reduce the complexity of
recomputing D(C /{i}).

Comparing D(C )−D(C /{i}) for each individual can be reduced to comparing the sum of the (fractional)
pairwise distances to all other individuals — as shown in the derivation of Equations 4.20–4.25 for the mean
distance and harmonic mean distance diversity metrics. Therefore, we keep track of the sum of the (frac-
tional) distances to all the other individuals and subtract the (fractional) distance of the removed individual.
This reduces the calculation of D(C /{i}) after each update to O(n) for every remaining individual, resulting in
a complexity of O(n2) for every update. Finally, as n individuals need to be removed from C , the time com-
plexity of the full selection procedure is O(n3) in time and O(n2) in space since we need to keep track of all
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Algorithm 3 The selection operator

1: function SELECT(C ,F ; ni nd )
2: F := {b1, ...,b|C |}
3: b j ∈ {T RU E ,F ALSE }
4: P ← {i j |i j ∈C , b j }
5: I ←C −P ▷ All infeasible candidate individuals
6: if |P | > ni nd then
7: while |P | > ni nd do
8: P ← P − (mini∈P D(P )−D(P − {i})) ▷ Remove least diverse feasible individual
9: end while

10: else
11: while |P | < ni nd do
12: i ← mini∈I D(P + {i})−D(P )
13: P ← P ∪ {i} ▷ Add least diverse infeasible individual
14: I ← I − {i}
15: end while
16: end if
17: return P
18: end function

the pairwise distances.

min
i∈C

D(C )−D(C /{i}) (4.20)

= max
i∈C

D(C /{i}) (4.21)

= max
i∈C

(|C |−1)(|C |−2)/2∑
k,l∈C :k ̸=l ̸=i

1
d(k,l )

= max
i∈C

∑
k,l∈C :k ̸=l ̸=i d(k, l )

(|C |−1)(|C |−2)/2
(4.22)

= min
i∈C

∑
k,l∈C /{i}:k ̸=l

1

d(k, l )
= max

i∈C

∑
k,l∈C :k ̸=l ̸=i

d(k, l ) (4.23)

= min
i∈C

∑
k,l∈C :k ̸=l

1

d(k, l )
− ∑

k∈C :k ̸=i

1

d(k, i )
= max

i∈C

∑
k,l∈C :k ̸=l

d(k, l )− ∑
k∈C :k ̸=i

d(k, i ) (4.24)

= max
i∈C

∑
k∈C :k ̸=i

1

d(k, i )
= min

i∈C

∑
k∈C :k ̸=i

d(k, i ) (4.25)

4.5.7. Early stopping
When diversity stops improving over generations, we would like to stop our GA loop. However, due to the
random nature of GAs, it is possible that the diversity slightly worsens between generations. Therefore, we
use a convergence criterion, tracking the number of subsequent generations that have not improved the
diversity. The GA loop is exited if the number of generations exceeds a set parameter #g enconv . Generally,
the value of #g enconv is chosen based on a maximum computational budget to avoid stopping the GA before
it converges.

When the normalisation bounds increase by a newly found individual, the space in which we aim to find
the most diverse population changes. In this increased space, a population which had a lower diversity than
the most diverse one found so far before updating the normalisation bounds may be more diverse. Therefore,
we reset the best diversity found so far and the count of generations without diversity improvement. This reset
aims to give the GA sufficient attempts to optimise the diversity in the updated space.

4.5.8. Component comparison
To make sure the GA components described above improve the performance of the GA, we start with a base
case and include each component one by one in the GA setup and test whether the performance of the GA
improves. The base case is a GA as simple as possible that could solve the problem given sufficient time. Then,
the components listed in Table 4.6 are added from top to bottom, resulting in five setups to compare, where
the final one includes all the components. All setups use the harmonic mean distance metric and assume the
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minimum cost individual is known.
The base case is a GA that initialises the population using a Gaussian distribution centred around the

minimum cost individual with σ = 0.1 for each investment variable. For creating offspring, it copies the
population and mutates each copy with a Gaussian distribution centred around the point with σ = 1. The
choices of σ are relatively low, as there is no information available on the size of the near-optimal space Sε.
We prefer to be conservative to make sure we gradually improve the diversity of each generation.

4.5.8.1. ESOM showcase
Each approach will be run using an ESOM showcase designed to easily scale the dimensionality of the prob-
lem. The model includes the three technologies for electricity generation at every node, being wind, PV and
gas. To compare the components, we will use the ESOM showcase with a single node, resulting in a total of
three investment variables. However, the number of nodes can easily be varied up to seven nodes, which will
be used in the performance evaluation of the GA described in Section 4.6.

The load factors of wind and PV at each node are calculated using data from the year 2022 of Austria,
Belgium, Germany, the Netherlands, France, Spain and Italy with time steps of one hour. The load factor is
calculated as the fraction of the total generation capacity being generated at each timestep.

As the ESOM does not include transmission line capacities, the model can be scaled up to 21 investment
variables, one for each combination of technology and country.

Component
Setup

Base Tailored component

Crossover None Blend crossover
Normalisation None Near-optimal min/max
Initialisation Gaussian around optimum Slack increments
Mutation Gaussian permutation Push outwards

Table 4.6: How adding each component modifies the base case.

Name Value

ni nd 100
#g enmax 1000
#g enconv 10
pc 0.9
α 0.5
pm.i nd 0.1
pm.var 0.9
β 0.5

Table 4.7: The parameter values used in the component comparison

To compare the performance of each setup, we keep track of the following criteria:

• The generation where the population’s diversity is equal to the diversity of the output of other MGA
methods, being the Modelling-All-Alternatives (MAA) method and a weighted sum MGA method that
first iteratively optimises in the minimum and maximum direction of each investment variable inde-
pendently — generating 2v alternatives — after which it searches in random directions until it found
the desired amount of alternatives.

We expect that the final GA setup, including all the components, will reach a higher diversity than the
other MGA methods. Therefore, we expect that adding each component should not result in the diver-
sity of the other methods being reached at a later generation.

• We track the convergence speed using three convergence criteria measured in normalised space, ex-
plained here from most lenient to strictest. The first criterion tracks the first generation where the
diversity increase is lower than some tolerance ∆ = 10−4. The second criterion tracks the first genera-
tion with a diversity increase lower than the same tolerance compared to ten generations earlier. The
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final criterion is the early stopping criterion used in the GA loop as explained in Section 4.5.7, being
that the diversity has not improved for ten generations.

Keeping track of these different convergence criteria allows us to track how fast the different setups
reach certain stages of convergence, where reaching the lenient criterion indicates faster exploration
early on in the optimisation process, and the strict criteria indicate how long it takes to reach optimal
diversity. We expect that adding each component will not reduce the speed of convergence, meaning
the generation of convergence will not increase.

• For each of the convergence criteria, we track the diversity of the first generation satisfying the criteria.
This allows for comparison of the diversity of different setups at different stages of convergence.

We expect adding each component will not reduce the diversity at each stage of convergence. However,
it could be that for a convergence criterion, adding a component increases the convergence speed, but
reduces the diversity at the moment of convergence. We expect such a situation to be more likely to
occur for the lenient convergence criteria, since adding a component could improve the early explo-
ration capabilities of the GA, reducing the number of generations needed to reach a point after which
the diversity increases at a lower rate, potentially meeting one of the convergence criteria earlier.

When the diversity differs a lot between different convergence criteria for a single setup, it shows that
the more lenient criterion is less suited for that specific setup in practice. However, when the difference
is low, using the stricter convergence criteria would mean more computational resources are used for
relatively little improvement in diversity.

• To compare the distribution of the population to the distribution of the alternatives found by the MAA
method and the convex hull of Sε used by the MAA method, we estimate the KL-divergence of the
population and the MAA output and of the population and the aforementioned convex hull according
to [28].

The difference between the KL-divergence values at different convergence criteria helps us to rea-
son whether a setup has sufficiently converged. As the population manages to find all borders of Sε
throughout the optimisation process, we expect the difference in the KL-divergence to the convex
hull to reduce more than the KL-divergence to the output alternatives, meaning the difference in KL-
divergences is expected to reduce as the population becomes more diverse.

Comparing the two values of the KL-divergence serves as an indicator of when the dimensionality of
the ESOM is too high with the population size, as we then expect the population to be biased towards
the border of Sε and therefore have a lower KL-divergence to the convex hull used by the MAA method.

• Finally, we keep track of how many individuals need to be solved for unit commitment to check whether
they are near-optimal. How many individuals turn out not near-optimal is also tracked, such that we
can calculate what percentage of all generated individuals need to be checked and turn out not near-
optimal.

Assuming a parent population of only near-optimal individuals, we would expect a fraction of 0.55
of the offspring created by the crossover to be near-optimal, as shown in Equation 4.26 using the pa-
rameters in Table 4.7. Therefore, we expect the setups with only crossover to need to check about
100%−55% = 45% of the individuals for near-optimality.

(1−pc )+pc ∗ 1

1+2α
= 0.1+0.9∗ 1

2
= 0.55 (4.26)

Of these individuals, a fraction of pm.i nd are mutated and need to be checked for near-optimality,
meaning a fraction of 0.55∗ (1−pm.i nd ) = 0.495 are expected to be near-optimal, meaning we expect
setups with the mutation operator to need to check 100%−49.5% = 50.5% of the individuals for near-
optimality.

These percentages again give insight into the exploration and exploitation trade-off of the GA and com-
putational cost of the method. A higher percentage of non-near-optimal individuals indicates more
exploration, which in our application means more effort is being put into the exploration of the bound-
ary of Sε. A lower percentage of individuals needed to be checked indicates more exploitation — which
means more individuals are created as a convex combination of feasible parents in the crossover opera-
tor — indicating more effort is being put in improving diversity within the already explored boundaries.
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Approach Initialisation
Inner point
generation

Assumptions
Optimum
known

Boundary
optimisation

Convex
hull

MAA sampling MGA MAA ✓ ✓ ✓
Weighted sum MGA MGA - ✓ ✓ -
Boundary
initialisation

MGA GA ✓ ✓ -

Blind GA Heuristic GA ✓ - -

Table 4.9: Overview of approaches for generating alternatives compared in performance evaluation.

Each of the criteria is measured considering the population in the unnormalised space and normalised
with respect to the minimum and maximum values found for each investment variable of the hull used in the
MAA method. Keeping track of both allows us to gain insights into the impact of the normalisation compo-
nent. Finally, we run each setup five times with different seeds to avoid the impact of the inherent random-
ness of the GA method.

4.6. Performance evaluation
To evaluate the performance of the approach defined above, it is compared to the MAA and a weighted sum
MGA method from the literature.

4.6.1. Baseline methods
Four different approaches of MGA methods, stated in Table 4.9, will be used. Each approach differs in its
initialisation (or pre-processing) and individual generation method. For the initialisation method, they are
either able to compute boundary points using the random weighted sum MGA method, or can only use in-
formation from the ESOM in a heuristic fashion, without optimisation. Regarding the inner point generation,
the approaches either use the sampling method defined in the MAA approach or optimise the diversity of the
inner points using the GA approach discussed above.

The four approaches have different computational requirements. The MAA sampling approach requires
being able to compute the convex hull, which greatly limits the dimensionality of the problem, as described
in Section 3.1.1. The ’weighted sum MGA’ and ’boundary initialisation’ approach require the ability to find
boundary points of the near-optimal space using the random weighted sum MGA method. This is the same
pre-computation used in the ’MAA sampling’ approach to find the convex hull. Finally, the ’Blind GA’ ap-
proach only optimises the full ESOM to find the minimum cost individual. The approach then only uses the
ESOM to optimise for unit commitment, given the investment variables, to check satisfiability of an individ-
ual, and not to generate new individuals.

Intuitively, the ’MAA sampling’ approach serves as a baseline for the quality of the results, as this approach
uniformly samples from the near-optimal space. Then, the ’boundary initialisation’ approach enables us
to compare diversity optimisation to the sampling done in the ’MAA sampling’ approach, given the same
information from the boundary points, but without being limited in dimensionality by relying on computing
the convex hull. The approach represents the exploitation ability of the GA to maximise diversity, having all
initial points on the boundary of the near-optimal space.

Finally, the ’blind GA’ approach serves as an example to show how well the new approach considered in
this work can cover all parts of the near-optimal space without knowing any boundary points beforehand.
Compared to the ’boundary initialisation’ approach, the ’blind GA’ approach will have a less diverse initial
population as it uses less information about the near-optimal space.

4.6.2. Experiment 1: Comparing result quality throughout execution
The first experiment will measure the diversity of the considered population. For the ’MAA sampling’ ap-
proach, this means that the diversity of the population is measured after adding a newly sampled point to it.
For the ’Boundary initialisation’ and ’Blind GA’ approaches, the diversity of the population is measured after
every feasibility check, and the diversity of all feasible individuals found so far is measured after adding a new
near-optimal individual. As the ’MAA sampling’ approach is limited in the number of investment variables of
the ESOM, this experiment’s comparison aims to show how similar the individual quality of our approach’s

30



4.6. Performance evaluation 4. Methodology

output is to the uniformly sampled MAA output, when applicable.
We expect this experiment to show that the diversity of the current population is higher than the value of

the ’MAA sampling’ approach for the same population size. This follows the reasoning from Section 4.2.3.1,
stating that the Sobol sequence and uniform grid in unit square space are expected to be more diverse than
the multivariate uniform sample. Intuitively, this results from the random nature of the sampling that some-
times produces individuals that are relatively close to each other. This means, for increasing population
size and sample size, we expect the difference between the diversity of the final population and the sam-
pled population of the same size to converge towards zero. Furthermore, the diversity of the final population
of the ’Blind GA’ approach should have a worse initial diversity and converge later compared to the diver-
sity of the population of the ’Boundary initialisation’ approach. In addition, the measures of any of the ap-
proaches should not improve the diversity compared to the ’MAA sampling’ approach. In this experiment,
the ’weighted sum MGA’ approach is not relevant to compare, as the resulting population is the same as the
initial population of the ’Boundary initialisation’ approach.

4.6.3. Experiment 2: Comparing result quality for different dimensionality
The next experiment aims to show how the problem’s dimensionality influences the output quality. For every
approach, the diversity of the population after initialisation and at the three convergence criteria discussed
in Section 4.5.8 is measured for a population of 50, 100 and 300 individuals in normalised space, varying the
dimensionality of the problem on which it is being applied. As the ’MAA sampling’ approach has only been
applied up to 10 dimensions due to computational limitations [27], it will not show the expected change in
result quality for higher dimensions.

When the dimensionality of a normalised space increases, we expect the maximum diversity to improve
following the monotonicity property since we expect the pairwise distances to be larger when considering the
same number of points. Therefore, for any approach and output size, the result quality should improve when
the problem’s dimensionality increases. For a similar reason, the maximum diversity of a higher number of
points within the same dimensionality is expected to be lower for a given approach. Generally, the output
diversity of different approaches with the same output size should have similar values, where the diversity of
the ’Blind GA’ approach is at most as high as that of the ’Boundary initialisation’ approach.

4.6.4. Experiment 3: Comparing scalability
To show how well our approach scales compared to weighted sum MGA methods, we will track the com-
putational cost per generated individual. This will be done by running both approaches using models of
increasing dimensions. The GA approaches will then be run, measuring the time they take to reach the three
convergence criteria as mentioned above. For the GA approaches, we will consider the computational cost
per individual of the population at the different moments of convergence and the computational cost per
all individuals found throughout the generations until the moment of convergence. Finally, the spatial and
temporal resolution of the model will be independently varied and separately compared.

This experiment is aimed at showing how the computational benefit of only solving the ESOM for unit com-
mitment relates to the higher number of solves needed by the GA approaches compared to the ’weighted sum
MGA’ approach. Overall, we expect the computational cost of the GA approaches to be in the same order of
magnitude as the ’weighted sum MGA’ approach. We expect that the extra computational cost of a higher
number of model solves required by the GA approaches is sufficiently mitigated by each solve having a lower
computational cost as they solve the model with given investment variables. Finally, the computational cost
per alternative when considering all the alternatives found throughout the generations is expected to always
be lower than the cost per alternative of the MGA method.

When the population size is relatively low compared to the number of investment variables of the ESOM — as
described in Section 4.4 — we expect all the individuals of the most diverse population to lie on the boundary
of the near-optimal space. In this case, we expect the diversity of the ’weighted sum MGA’ approach to be
reached quickly by the GA model and to improve relatively little over it, meaning the convergence criteria
are satisfied earlier in the optimisation process. Then, the lower number of generations would mean a lower
computation cost per alternative.
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4.7. Generating alternatives of the SECURES model
After testing this work’s GA on the ESOM showcase in previous experiments, we also test it on the ESOM of
the SECURES model discussed in Section 2.1.2. Due to time limits, we only run our GA on six connected
countries — as shown in Figure 4.10 — resulting in a total of 51 investment variables.

To give insights into how well the resulting alternatives cover different options in the investment plans,
the capacities per technology are summed for all the countries. Then, we compare the range of values of the
alternatives to the minimum cost investment plan to get an idea of how well the space is covered.

Figure 4.10: Map of countries used in SECURES experiment. Red dots indicate the included countries.
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5
Results

This chapter first discusses the results of the process to pick the most suitable diversity metric, resulting in
a choice of diversity metric used in the remainder of this work. Then, the results of testing the components
of our GA approach are discussed, showing whether the components improve the performance of the GA.
Next, we discuss the performance evaluation of our proposed GA approach compared to other MGA methods
in terms of output quality and scalability. Finally, we show the output of applying the GA approach to the
European power system and how it relates to our expectations.

5.1. Selecting the diversity metric
The hypotheses of the preferred populations discussed in Section 4.2 are tested using one diversity metric
from each type of diversity metric. The results for the three diversity metrics are presented in Table 5.1. Re-
sults for all diversity metrics considered are shown in Table A.2.

5.1.1. Testing populations in unit square spaces
The first experiment compares how different types of diversity metrics distinguish more and less diverse pop-
ulations in unit square space.

5.1.1.1. Sum of distances metrics
Considering the uniform populations, we see that the multivariate uniform population Pmv.u is more diverse
than the Sobol sequence population Ps . Even though the difference is small, we want the metric to prefer Ps

as it contains fewer individuals that are relatively close to each other.
The expectations regarding the Sobol sequence populations with modified concentration were inconsis-

tent, where the Sobol sequence with blind spots Ps.b improved over Ps . Combined with the fact that the Sobol
sequence with vertical separation Ps.sep is more diverse than all the other populations, it indicates that the
diversity metric prefers populations with individuals closer to the boundary of the space, even if it results in
less uniform coverage of the space. This preference will result in a bias towards the boundary of the space
when used in the optimisation process of the GA.

5.1.1.2. Sum of fractional distances
Overall, the harmonic mean distance metric agrees very well with our expectations. Only the expectations
of the Sobol sequence with concentrated spots population Ps.c show some inconsistencies with the covering
radius distribution property. Intuitively, this inconsistency comes from the fact that the harmonic mean has
more weight on low values compared to the mean. This means that relatively closer-together individuals have
a higher impact on diversity.

Such an increased impact of small distances between points will result in the optimisation process favour-
ing populations with individuals that are farther apart, hopefully preventing a bias towards the boundary of
the space. The comparison of the Ps.sep shows how a more even coverage throughout the space is preferred
to individuals closer to the boundary of the space.
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5.1.1.3. Discrepancy metric
As the Sobol sequence is designed to minimise discrepancy, it turns out to be the most diverse population
according to the metric. The reason why the metric is inconsistent with the expectations of the uniform grid
population Pg is that the regular spaces between the individuals align with the axes such that the discrepancy
is large in those areas (see Section 3.2.1 for clarification on the discrepancy metric). The same reasoning can
be used for the inconsistency with the expectation of comparing Ps.sep to the multivariate normal sample
population Pmv.n .

Type Population D(P ) Ps Pg Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Sum of distances – Mean distance

Uniform
Ps 0.523 = (<) (>) > > > > >
Pg 0.557 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.524 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.528 < (<) (>) = (<) < > (>)
Ps.c 0.514 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.605 < (<) > > > = > (>)
Ps.cen 0.262 < (<) < < < < = <

Suboptimal Pmv.n 0.369 < < < (<) (<) (<) > =
Sum of fractional distances – Harmonic mean distance 1

Uniform
Ps 0.360 = (<) (>) > > > > >
Pg 0.388 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.339 (<) (<) = (<) (<) > > >

Concentration
Ps.b 0.358 < (<) (>) = (<) > > (>)
Ps.c 0.331 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.335 < (<) < < > = > (>)
Ps.cen 0.180 < (<) < < < < = <

Suboptimal Pmv.n 0.234 < < < (<) (<) (<) > =
Discrepancy – Wrap-around discrepancy1

Uniform
Ps 0.000 = (<) (>) > > > > >
Pg 0.004 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.002 (<) (<) = (<) (<) > > >

Concentration
Ps.b 0.001 < (<) (>) = (<) > > (>)
Ps.c 0.002 < (<) (>) (>) = > > (>)

Bias to border
Ps.sep 0.056 < (<) < < < = > (>)
Ps.cen 0.113 < (<) < < < < = <

Suboptimal Pmv.n 0.045 < < < (<) (<) (<) > =

Table 5.1: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in unit square
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

5.1.2. Convex space
Testing the populations modified to be in a convex subspace of the unit square space — as shown in Appendix
A.2.2 — showed the same results for the diversity metrics based on Table 4.3.

5.1.3. Takeaways
The diversity metrics based on the sum of fractional distances are the best fit for optimisation and will there-
fore be used in further experiments. Even though multiple options of diversity metrics based on the sum of
fractional distances would be viable to be used for optimisation, the remainder of this work uses the harmonic
mean distance. This comes from the fact that the metric has been shown to be one of the metrics resulting
in the least biased optimisation when used in optimisation, is more sensitive to changes in populations due

1A lower value of this metric signifies a more diverse population
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to not using minimum or maximum distance, and is easy to understand as its value can be understood as a
distance itself.

This is in line with the work of [22], which mentions that the Energy metric — which is based on a sum of
fractional distances — can be safely used as a target for optimisation.

5.2. GA approach setup
Results of the experiments explained in Section 4.5.8 are listed and discussed next.

5.2.1. Speed of convergence
Firstly, the generations at which each diversity comparison or convergence criteria explained in Section 4.5.8
is satisfied are listed in Table 5.2. Each column corresponds to reaching the diversity of the MAA method, the
weighted sum MGA method — either in the investment (unnormalised) space or normalised space — or one
of the convergence criteria.

Convergence generation of diversity comparison or covergence criteria

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA

diversity

MGA

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 337±6.9 466±8.0 256±6.6 467±6.5 469±155.0 807±0.0 1000±0.0

Crossover 46±2.3 50±2.9 46±1.7 79±38.3 1±±±0.0 116±±±25.2 237±±±45.6

Normalisation 48±2.4 53±1.3 48±2.0 60±1.3 1±±±0.0 178±36.2 266±21.6

Initialisation 8±0.5 12±1.5 3±0.5 11±0.7 47±7.3 137±±±37.9 208±±±35.3

Mutation 5±±±0.5 9±±±0.4 2±±±0.4 8±±±0.8 45±5.0 152±±±28.0 220±±±57.1

Table 5.2: Overview of the first generations where each diversity comparison or convergence criteria is satisfied. The results are
averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.

In Table 5.2, we see that adding components lowers the number of generations needed to reach the diver-
sity of the MAA method and the weighted sum MGA method. The same does not hold for the convergence
criteria, as it remains inconclusive whether they are satisfied earlier.

Without the initialisation component, the lenient convergence criterion is already satisfied after the first
generation. As the initial population is sampled from a Gaussian distribution around the minimum cost indi-
vidual, each pair of individuals might not be close enough for the crossover operator to generate an individual
outside of the tight convex hull containing the current population. Therefore, the diversity increases very little
in the first generations, as the space is already covered quite uniformly, and its size increases slowly.

Next to that, adding the normalisation component slowed down the convergence to the moderate and
strict convergence criteria. A possible explanation could be that without normalisation, the diversity in nor-
malised space fluctuates more, such that the moderate convergence criterion is met too early. Figures 5.1
and 5.2 confirm this suspicion, as Figure 5.1b shows more fluctuations around the moments of convergence
of the moderate and strict criteria.

5.2.2. Diversity at convergence
Table 5.4 shows the diversity of the population at the points where the diversity comparison is satisfied, or
the convergence criterion is met, similarly to Table 5.2.
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(a) Diversity over generation in unnormalised investment space.
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(b) Diversity over generations in normalised space.

Figure 5.1: The diversity over generation of the crossover setup of Table 4.6 averaged over 5 runs with distinct seeds.
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(a) Diversity over generation in unnormalised investment space.
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(b) Diversity over generations in normalised space.

Figure 5.2: The diversity over generation of the normalisation setup of Table 4.6 averaged over 5 runs with distinct seeds.

Diversity at convergence generation

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 132.4±0.1 170.7±0.1 104.5±1.5 170.9±1.5 163.9±45.6 212.1±0.0 228.1±1.0

Crossover 136.7±±±4.5 176.8±±±2.9 138.2±±±10.6 217.3±±±21.4 0.1±0.0 247.4±±±12.1 256.4±±±1.3

Normalisation 135.1±±±2.5 175.3±±±3.3 137.9±±±5.4 204.6±±±5.7 0.2±0.0 248.9±±±1.9 250.4±0.6

Initialisation 139.4±±±2.2 173.7±±±2.1 89.8±1.3 165.6±3.7 236.9±±±2.4 247.6±±±2.1 249.6±0.7

Mutation 141.2±±±7.2 174.2±±±2.8 97.6±5.4 169.0±6.4 239.7±±±2.7 248.6±±±1.4 249.7±1.7

Diversity measured in normalised space

Base 0.29±0.00 0.37±0.00 0.23±0.00 0.37±0.00 0.35±0.10 0.45±0.00 0.48±0.00

Crossover 0.24±0.02 0.30±0.03 0.24±±±0.01 0.37±0.00 0.00±0.00 0.46±0.06 0.50±0.00

Normalisation 0.24±0.01 0.31±0.01 0.24±±±0.01 0.38±0.01 0.00±0.00 0.52±±±0.00 0.52±±±0.00

Initialisation 0.33±±±0.00 0.39±±±0.00 0.24±±±0.00 0.38±0.01 0.50±±±0.00 0.52±±±0.00 0.52±±±0.00

Mutation 0.33±±±0.01 0.39±±±0.00 0.25±±±0.01 0.38±0.01 0.50±±±0.00 0.52±±±0.00 0.52±±±0.00

Table 5.4: Overview of the diversity of the population at the first generations where each diversity comparison or convergence criteria is
satisfied. The results are averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.
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Space
Method Investment Normalised

MAA 170.6 0.36
MGA 132.2 0.23

Table 5.5: Diversity of the MAA and weighted sum MGA output used in component comparison.

In the investment space, the diversity is close to the diversity of the output of both the MAA and weighted
sum MGA method, which are listed in Table 5.5. Considering the normalised diversity, adding the initialisa-
tion component helps to improve the normalised diversity when the unnormalised diversity of the other MGA
methods is reached. At the same time, when the normalised diversity of the other MGA methods is reached,
we notice that adding the initialisation component resulted in a lower unnormalised diversity. A possible
explanation could be the fact that the initial population is much more diverse in terms of unnormalised di-
versity, which, combined with the fact that the diversity is reached early on, results in a lower unnormalised
diversity.

When looking at the convergence criteria, adding a component only reduced the diversity for the strict con-
vergence criterion, which can again be attributed to faster convergence. However, after the normalisation
component is added, we see that the difference in unnormalised diversity for different convergence criteria
is low, indicating the stricter criteria to be less useful in practice.

5.2.3. KL-divergence at convergence
Table 5.6 and 5.7 report the KL-divergence to the MAA method’s output and the convex hull used by the MAA
method. The ’Strict convergence all’ column was added to Table 5.7, stating the KL-divergences of all the
alternatives found throughout the optimisation process.
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KL-divergence at convergence generation

Investment space Normalised space

Setup
KL

divergence

MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Base
MAA result 0.68±±±0.06 0.26±±±0.16 1.44±±±0.10 0.26±±±0.17

MAA hull 7.51±0.11 6.10±0.08 8.26±0.05 6.09±0.08

Crossover
MAA result 1.16±±±0.27 0.63±±±0.28 1.16±±±0.26 0.70±±±0.37

MAA hull 6.84±0.40 5.30±0.45 6.80±0.50 3.49±1.35

Normalisation
MAA result 1.08±±±0.30 0.67±±±0.27 1.02±±±0.21 0.39±±±0.23

MAA hull 6.55±0.43 5.44±0.49 6.48±0.54 4.38±0.59

Initialisation
MAA result 0.72±±±0.15 0.29±±±0.21 1.65±±±0.03 0.38±±±0.23

MAA hull 5.71±0.21 4.53±0.18 7.02±0.06 4.75±0.20

Mutation
MAA result 0.32±±±0.27 −−−0.07±±±0.14 1.22±±±0.15 −−−0.09±±±0.14

MAA hull 5.74±0.42 4.40±0.39 6.83±0.15 4.57±0.29

Normalised space

Base
MAA result 0.99±±±0.08 1.08±±±0.08 1.63±±±0.12 1.09±±±0.07

MAA hull 7.57±0.13 6.04±0.12 8.36±0.03 6.02±0.14

Crossover
MAA result 2.71±±±0.66 2.27±±±0.86 2.71±±±0.51 1.90±±±0.76

MAA hull 7.24±0.46 5.95±0.37 7.18±0.53 4.37±1.15

Normalisation
MAA result 2.70±±±0.37 2.00±±±0.52 2.68±±±0.35 1.36±±±0.47

MAA hull 7.09±0.28 6.16±0.48 7.02±0.40 5.18±0.61

Initialisation
MAA result 1.27±±±0.11 0.73±±±0.19 2.03±±±0.07 0.85±±±0.28

MAA hull 5.88±0.16 4.83±0.29 6.92±0.04 5.03±0.17

Mutation
MAA result 0.88±±±0.19 0.43±±±0.04 1.72±±±0.14 0.49±±±0.07

MAA hull 5.99±0.39 4.75±0.38 6.83±0.04 4.90±0.32

Table 5.6: Overview of the KL-divergence of the population to the output and hull of the MAA method at the first generations where each
diversity comparison is satisfied. The results are averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.

In general, we see that the KL-divergence to the MAA result is generally higher at the generations when
the diversity surpasses the diversity of the other MGA methods. This is as expected, since we discussed that
the diversity of the other MGA methods is reached quite fast in Section 5.2.1, which means borders of the
space are relatively unexplored, resulting in a higher KL-divergence to the hull.

As components are added, we do see a lower KL-divergence to the MAA result. However, as it gets lower
for reaching both the diversity of the MAA method and the weighted MGA method, it shows that comparing
when the optimisation surpasses the diversity of the output of other MGA methods, it is not a very useful
indication of whether the population is biased towards the boundary.
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KL-divergence at convergence generation

Normalised space

Setup
KL

divergence

Lenient

convergence

Moderate

convergence

Strict

convergence

Strict

convergence

all

Base
MAA result 0.66±±±0.83 0.35±±±0.00 0.29±±±0.07 3.67±±±0.07

MAA hull 6.19±1.44 3.99±0.00 2.91±0.27 8.49±0.32

Crossover
MAA result 4.51±±±0.00 0.70±±±0.20 0.62±0.07 0.40±±±0.18

MAA hull 9.99±0.00 1.68±0.69 0.84±0.44 4.10±0.61

Normalisation
MAA result 4.51±±±0.00 0.73±±±0.07 0.71±±±0.10 0.06±±±0.15

MAA hull 9.99±0.00 1.45±0.24 1.18±0.29 4.28±0.38

Initialisation
MAA result 0.47±±±0.14 0.73±0.06 0.71±0.10 −−−0.21±±±0.11

MAA hull 1.76±0.14 0.54±0.26 0.24±±±0.09 3.20±0.11

Mutation
MAA result 0.47±±±0.13 0.69±0.08 0.68±0.09 −−−0.22±±±0.09

MAA hull 1.69±0.69 0.55±0.44 0.31±0.52 3.07±0.25

KL-divergence measured in normalised space

Base
MAA result 1.47±±±0.57 1.42±±±0.00 1.36±±±0.03 4.49±±±0.19

MAA hull 6.14±1.54 3.92±0.00 2.89±0.30 8.55±0.33

Crossover
MAA result 5.19±±±0.00 1.69±0.61 1.49±0.02 1.07±±±0.04

MAA hull 10.16±0.00 2.24±1.06 1.20±0.56 4.68±0.69

Normalisation
MAA result 5.19±±±0.00 1.39±0.11 1.44±0.05 0.74±±±0.09

MAA hull 10.16±0.00 1.53±0.24 1.24±0.28 4.62±0.35

Initialisation
MAA result 1.16±±±0.06 1.43±0.06 1.45±0.08 0.47±±±0.08

MAA hull 2.24±0.19 0.67±0.32 0.28±0.13 3.50±0.13

Mutation
MAA result 1.21±0.14 1.39±0.10 1.43±0.05 0.58±±±0.17

MAA hull 1.99±0.75 0.66±±±0.47 0.46±±±0.58 3.39±0.31

Table 5.7: Overview of the KL-divergence of the population to the output and hull of the MAA method at the first generations where each
convergence criteria is satisfied. The results are averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.

After adding the initialisation component, we see the KL-divergence to the MAA result increases instead
of decreases for stricter convergence criteria, while the KL-divergence to the hull still increases. This indicates
a possible bias towards the border of the near-optimal space Sε. A possible reason why this did not show up
before the initialisation component is added is that the initialisation and mutation components improve the
GA’s exploration ability, such that no boundary remains unexplored.

Measuring the KL-divergences considering all the alternatives found throughout optimisation generally
shows the KL-divergence to both the MAA result and hull to reduce when adding components. This can be
interpreted as the alternatives to better cover both the inner space and the boundary of Sε.
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5.2.4. Average number of feasibility checks on non-near-optimal individuals at conver-
gence

Mean percentage of individuals checked for near-optimality per generation at convergence generation

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 100% 100% 100% 100% 100% 100% 100%

Crossover 45.3%±0.5% 45.4%±0.6% 45.4%±0.5% 45.4%±0.4% 72.8%±6.1% 45.0%±0.4% 45.1%±0.2%

Normalisation 45.8%±0.7% 45.7%±0.8% 45.8%±0.7% 45.6%±0.7% 81.0%±3.5% 45.1%±0.3% 45.0%±±±0.3%

Initialisation 31.6%±±±1.7% 36.4%±±±2.2% 3.3%±±±9.2% 35.4%±±±1.5% 42.4%±±±1.1% 44.2%±±±0.2% 44.5%±±±0.2%

Mutation 31.2%±±±4.1% 38.5%±±±2.2% 4.7%±±±8.5% 37.6%±±±2.6% 48.4%±0.8% 50.0%±0.5% 50.1%±0.2%

Table 5.8: Percentage of the offspring needing to be checked for near-optimality on average at each generation for different points of
measurement and setups. The results are averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.

In Table 5.8, the percentage of the offspring that needs to be checked for near-optimality, averaged over
each generation, is listed. The percentage is given for each of the setups explained in Table 4.6 at the dif-
ferent points of measurement, as listed in Table 5.2. Note that the base case always needs to check for near-
optimality, because it exploits no properties of the ESOM to know when offspring must be near-optimal.

Generally, the more components are added, the fewer individuals need to be checked for near-optimality,
as can be seen in Table 5.8 at the moments where the diversity of the population passes the diversity of other
MGA methods, even below the expected 45% as explained in Section 4.5.8. The main reason is that diversity is
achieved so early in the optimisation that the advantage of not checking the initial population for optimality
significantly reduces the average number of checks required per generation.

Considering the three convergence criteria, the expected values of 45% and 50.5% are reached for most
setups. For setups without the initialisation component, we observe a significantly higher percentage, as
convergence occurs early in the optimisation process, and the full initial population must be checked for
near-optimality.

Table 5.9 shows the percentage of offspring individuals which is non-near-optimal, averaged over each gen-
eration.

Mean percentage of non-near-optimal individuals per generation at convergence generation

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 12.9%±0.4% 14.3%±0.3% 12.7%±0.4% 14.3%±0.2% 15.4%±±±1.9% 22.9%±±±0.0% 27.1%±±±0.4%

Crossover 9.0%±±±1.6% 9.7%±±±1.7% 9.0%±±±1.5% 14.3%±±±3.8% 47.6%±4.5% 21.8%±±±4.0% 30.3%±2.3%

Normalisation 10.0%±±±0.9% 11.1%±±±0.7% 10.0%±±±0.8% 12.8%±±±0.4% 48.8%±10.4% 29.7%±2.1% 34.0%±0.5%

Initialisation 12.4%±±±2.3% 15.3%±2.5% 8.2%±±±2.0% 14.4%±±±2.0% 28.7%±1.6% 36.7%±1.4% 38.6%±0.7%

Mutation 15.1%±2.7% 18.7%±1.8% 10.7%±±±3.1% 18.0%±2.3% 36.2%±1.0% 43.4%±1.0% 44.6%±0.7%

Table 5.9: Percentage of the offspring individuals that are non-near-optimal on average at each generation for different points of
measurement and setups. The results are averaged over 5 runs with distinct seeds, in the format of mean ± standard deviation.

The results show that adding the mutation component consistently increases the percentage of non-near-
optimal individuals, indicating an improvement in the GA’s exploration ability. Again, because of the im-
mediate convergence of the lenient convergence criteria results in a higher percentage of non-near-optimal
individuals for the setups without the initialisation component.
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As the convergence criteria become stricter, the percentage of non-near-optimal individuals increases.
This is as expected, since the algorithm continues to explore even after it has found the boundary of Sε.

For reference, the total number of individuals checked for and infeasible individuals can be found in Ap-
pendix B.

5.3. Performance evaluation
The following sections discuss the results from the experiments described in Section 4.6 to test the perfor-
mance of the GA compared to the baselines discussed in Section 4.6.1.

5.3.1. Experiment 1: Diversity throughout optimisation
This section discusses how the diversity changes throughout the optimisation process for the different ap-
proaches. Figures 5.3 and 5.4 show the diversity of the population and all the near-optimal alternatives found
so far for the different approaches, excluding the weighted sum MGA approach, as it does not generate points
inside the near-optimal space Sε. Each column of plots corresponds to a different approach, and each row
corresponds to a node being added to the ESOM showcase discussed in Section 4.5.8.1, increasing the dimen-
sionality by three for each added node. The colour of the lines indicates how many alternatives are generated
by the MAA approach or the population size for the GA-based approaches. For the MAA approach in the first
column, the The dashed lines measure the diversity of the current population at the number of individuals
generated in total, meaning the diversity is measured after selection is performed. The solid line shows the
diversity of all the near-optimal alternatives found so far after adding each alternative. Figure 5.3 shows the
dimensions 3 to 9 where the MAA method can still be applied, while Figure 5.4 shows the dimensions 12 to
21 where MAA cannot be applied.
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Figure 5.3: The diversity of the set of alternatives found so far throughout execution of the approaches. Each column represents one of
the methods on a problem, with the rows corresponding to the number of investment variables from 3 to 9 of the ESOM showcase. The

different sizes of the alternative set or population are indicated by different colours in the graph. Data is averaged over 5 runs with
distinct seeds.
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Figure 5.4: The diversity of the set of alternatives found so far throughout execution of the approaches. Each column represents one of
the methods on a problem, with the rows corresponding to the number of investment variables from 3 to 9 of the ESOM showcase. The

different sizes of the alternative set or population are indicated by different colours in the graph. Data is averaged over 5 runs with
distinct seeds.
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In the figures, we see that the GA based approach consistently achieves a higher diversity than the MAA
approach, as expected. Our expectations of the ’border GA’ to converge faster than the ’blind GA’ approach
also hold.

For higher dimensions, the ’border GA’ converges to a higher diversity than its respective ’blind GA’ line,
either indicating the ’blind GA’ would need more time to converge to a similar diversity, or that it’s not suffi-
ciently capable to fully explore the near-optimal space. This observation will be further discussed in Section
6.3.1.

5.3.2. Experiment 2: Diversity for increasing dimensionality
The following section will discuss the results of the experiment to track the diversity while increasing the
number of investment variables of the ESOM showcase. Figure 5.5 shows how the diversity changes for the
different approaches. Every column corresponds to a different convergence criterion. Each approach has a
different line colour, while the difference in line style shows the different number of alternatives generated or
the population sizes.
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Figure 5.5: The diversity of the populations at the start of the optimisation and different moments of convergence for different
dimensionalities of the ESOM showcase. The approaches and population sizes or number of alternatives are varied with line styling.

For each plot that is more to the right, stricter convergence criteria are used. Data is averaged over 5 runs with distinct seeds.

From the figure, we conclude that our expectations regarding the diversity to increase when the number
of investment variables increases, and that larger populations have lower diversity, are correct.

Similar to the results discussed in the previous section, the diversity of the ’border GA’ approach is higher
than that of the ’blind GA’ approach. This observation will be further discussed in Section 6.3.1.

5.3.3. Experiment 3: Scalability
The next section discusses the result of the scalability experiment. The line colours correspond to the differ-
ent approaches, and the line style indicates which convergence criterion is met. Figure 5.6 shows the compu-
tational cost per alternative in seconds for the different approaches for an increasing number of investment
variables of the ESOM showcase. The columns correspond to whether to total number of alternatives found
so far or the population size is considered to calculate the cost per alternative. In every row, the number of
alternatives generated or the population size is altered.
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Figure 5.6: The cost per alternative for diversity of the populations at the start of the optimisation and different moments of
convergence for different approaches and population sizes or number of alternatives. For each plot that is more to the right, stricter

convergence criteria are used. Data is averaged over 5 runs with distinct seeds.

The figure confirms our expectations of the cost per alternative of the GA method to be in the same order
of magnitude as the weighted MGA method. Also, the computational cost per alternative when considering all
alternatives found throughout the optimisation process is much lower compared to the cost of the weighted
sum MGA method, as expected. Note that the line for a population size of 300 for the ’blind GA’ approach is
cut short, as the convergence criteria were not met for a dimensionality higher than 6.

When the population size is relatively low compared to the dimensionality of the ESOM showcase — as de-
scribed in Section 4.4 — we expect the computational cost per alternative to reduce when the dimensionality
increases for each of the convergence criteria. For the smallest population — having a size of 50 — the issue
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5.4. Alternatives of the SECURES model 5. Results

is the most visible, as the cost per alternative of the population slightly decreases for the ’blind GA’ approach
when the dimensionality increases. Since the initial population of the ’border GA’ contains only individuals,
this bias to the boundary is expected to result in a lower cost per alternative. However, we only clearly see
this lower cost for the strictest convergence criterion, possibly indicating the bias towards the border of the
near-optimal space. We further reflect on whether this bias is occurring in Section 6.4.

5.4. Alternatives of the SECURES model
Figure 5.7 shows the alternatives found by the GA method applied to the SECURES model. For each technol-
ogy, the capacities invested in the different countries are summed to a total for each alternative. Therefore,
every alternative is represented by a marker in every category. The green line shows the summed capacities
for the minimum cost investment plan.

Note that the capacities shown are the increase in the capacities. In other words, the ESOM already con-
tains installed capacities, and the investments decide how much these capacities are increased. Also, the
logarithmic scale may give the impression of a hard ’cutoff value’ with many alternatives clustered for some
technologies, while in reality, these alternatives may still be well distributed.
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Figure 5.7: Distribution of total capacity per technology for the alternatives found in the SECURES model.

The plot shows that many alternatives lead to higher invested capacities than the minimum-cost solution.
This may indicate that the GA is not sufficiently covering regions of the near-optimal space Sε where capac-
ities are reduced compared to the minimum cost investment plan, or because these regions are relatively
small, causing aggregated capacities per technology to appear consistently higher.
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6
Discussion

As the results have been reported, this chapter will discuss some of the insights from these results. First,
we reflect on the choice of the diversity metric. Then, we discuss some of the unexpected insights from
comparing the components of the GA.

6.1. Diversity metrics
In the results of testing populations in Section 5.1.1, we have seen that a lot of diversity metrics are inconsis-
tent with the covering radius distribution property. As the property comes from our intuition regarding even
space coverage, we lack proof that the property holds for any two populations following the condition on the
distribution of mean and standard deviation of the minimum distances.

To illustrate this point, we give the following example. Considering the populations in Figure 6.1, the cov-
ering radius distribution property states that D(P1) > D(P3) while giving no preference between P1 and P2

caused by the insensitivity of using minimum distances. However, one could argue that intuitively D(P1) <
D(P3) as the tightest convex hull containing the individuals of P ′ has a larger volume than the one containing
individuals of P . This situation highlights the trade-off between filling a larger volume of space and achiev-
ing even distribution within the covered space. The monotonicity property states that D(P2) > D(P1) and
D(P2) > D(P3), showing more sensitivity when a population covers a larger space. Therefore, the covering
radius distribution property is treated as an indicator mainly used when the convex hulls of the compared
populations are close to the same volume. However, as almost none of the considered diversity metrics agree
with the property when comparing the Sobol sequence with modified concentration populations — as can
be seen in Table A.2 — it shows this property is not to be followed too strictly.

Covering circle
Individuals

(a) Population P1

Covering circle
Individuals

(b) Population P2

Covering circle
Individuals

(c) Population P3

Figure 6.1: Example of when we are uncertain about the conclusion of the covering radius distribution property.

As different diversity metrics result in different preferences in the comparison of P1 and P3, the choice of
diversity metric then also implicitly defines the preferences in the trade-off between filling a larger volume of
space and achieving even distribution within the covered space.
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6.2. GA components 6. Discussion

6.1.1. Choice of metric
As discussed in Section 5.1.3, the harmonic mean distance diversity metric was chosen to be used in the other
experiments and the final GA.

6.2. GA components
The results of comparing the components suggest that all components should be used in the GA to achieve
the best results. However, as we have seen that adding the mutation component greatly improves the ex-
ploration speed of the GA, it could be beneficial to disable this component, to allow finding more feasible
alternatives close to the minimum cost investment plan. In essence, this would favour exploitation in the
first part of the optimisation process and could reduce the bias towards the border of the near-optimal space
for ESOMs with a relatively high number of investment variables.

6.2.1. Diversity at convergence
The little difference in diversity convergence criteria after the normalisation component is added, as ex-
plained in Section 5.2.2, raises the question whether the most lenient criterion is most useful in practice
as an early stopping criterion.

In practice, convergence criteria are useful as indicators of how well the execution of the GA converged.
However, it is in general better to give the GA as much time as possible, leading often to the usage of a maxi-
mum computational budget as a stopping criterion.

6.3. Performance evaluation experiments
6.3.1. Lower diversity at convergence without knowledge of boundary at initialisation
In the results of the performance evaluation, Sections 5.3.1 and 5.3.2 highlighted the diversity of the ’blind
GA’ approach to be lower than the ’border GA’ approach. A possible explanation would be that increasing
the dimension would make it harder for the ’blind GA’ approach to explore all regions. As the initialisa-
tion operator produces individuals where the investment decisions only increase compared to the minimum
cost investment plan, the other regions of the near-optimal space Sε, where some capacities decrease, could
get relatively larger when the number of investment variables increases. Therefore, further experiments are
needed to determine whether this is truly the case or the GA only needs more time to converge to a similar
diversity.

6.3.2. Computational advantage of GA approach with relatively high temporal resolution
Section 5.3.3 shows how the computational cost of the GA approach does not exceed the cost of a weighted
sum MGA method. This is a result of the lower solving time for solving the ESOM for unit commitment,
compared to also solving it for the investment variables, which compensates for the higher number of solves
required by the GA.

However, when the temporal resolution increases, the number of operational variables increases, which
could reduce the benefit of only solving for unit commitment. Further experiments would be necessary to
clarify how increasing the temporal resolution impacts this trade-off. Ideally, some relation between the num-
ber of investment variables and the number of operational variables could be found for which the benefit of
only solving for unit commitment is sufficiently large, such that the computational burden of the GA method
does not exceed the cost of a weighted sum MGA method.

6.4. Bias towards the border of the near-optimal space for a high number
of investment variables

In the results of the experiments, we noticed several indications of a bias towards the boundary of the near-
optimal space Sε. This Section will analyse those situations and relate them to the expected relation between
population size and number of investment variables of the ESOM discussed in Section 4.4.

6.4.1. KL-divergence in component comparison
The results of comparing the KL-divergence in the component comparison experiment indicated a possible
bias towards the border of Sε (see Section 5.2.3). As expected relation between the number of investment
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6.5. Hyperparameter tuning 6. Discussion

variables v and population size |P | states that we expect no bias towards the boundary when 2v ≤ |P |, we
would not expect the bias to occur when v = 3 and |P | = 100.

This observation raises questions about whether comparing KL-divergences is a useful indicator of when
the bias towards the boundary occurs.

6.4.2. Scalability performance evaluation
The results of the scalability experiment of the performance evaluation of the GA in Section 5.3.3 indicated
a possible bias towards the border of Sε. When considering the smallest population |P | = 50 and the largest
number of investment variables v = 21, we notice that |P | is close to 2v , where we would be confident that
the GA is biased towards the boundary when |P | ≤ 2v |. However, since 2v < |P | ≤ 2v still holds for all the pop-
ulation sizes considered in the experiment, we are uncertain whether the GA is biased towards the boundary
of the space.

To conclude, further experiments would be needed to better grasp the impact of a bias towards the bound-
ary on the quality of the output, and in what situations the GA is biased. We also suggest identifying better
indicators of when the bias occurs, to be more certain of its presence.

6.5. Hyperparameter tuning
6.5.1. Population size
6.5.2. Component parameters

6.6. Further testing on the European power system
Within this work, no actual analysis of the alternatives generated for the European power system was done
in terms of secondary objectives. Such an analysis would be a useful example to highlight how alternatives
that uniformly cover the space of alternatives can improve the decision-making process when doing a similar
analysis using alternatives generated by other MGA methods.

Also, applying the GA to different sizes of the European power system by including a different number of
countries can verify the conclusions on the ESOM showcase for a more realistic ESOM.

Finally, analysing the distribution of the costs of the produced alternatives would show how well the GA
method is able to find points inside the near-optimal space.

6.7. Future work
Besides investigating whether the ’blind GA’ approach can reach the same diversity as the ’border GA’ ap-
proach (Section 6.3.1), the GA has worse computational performance compared to other MGA methods for
an increased temporal resolution of the ESOM (Section 6.3.2), when the GA is biased towards the border of
the near-optimal space due to the curse of dimensionality (Section 6.4) and doing futher analysis on a realis-
tic model like the European power system (Section 6.6), we propose the following potential improvements of
the GA.

6.7.1. Handling discrete variables
Since the computational burden of the GA lies in solving the individuals for unit commitment, the investment
variables could be defined as discrete variables without greatly reducing the computational performance.
However, the current operators need to be modified to support doing so, where the crossover operator loses
the ability to produce offspring, which is certain to be feasible without needing to solve for unit commitment.

Potentially, it can be assumed that the convex combinations of feasible parents that are rounded to the
nearest discrete solution are feasible. This could potentially ’lose’ a few alternatives when post-processing
them for unit commitment before analysis of secondary objectives.

6.7.2. Hyperparameter tuning
This work only used different population sizes in some of the experiments. The performance in terms of
convergence speed and computational cost could be impacted by tuning parameters stated in Table 4.4 to
increase or decrease the number of unit commitment solves needed, exploration speed of the GA.
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6.7.3. Computational improvements
The main computational bottleneck of the GA lies in solving individuals for unit commitment. Reducing the
cost of such solves would improve the GA’s performance, allowing the GA to run more generations for the
same computational cost.

Surrogate modelling offers a promising way to reduce the computational cost of individual solves. Alter-
natively, solving only those individuals that cover unexplored regions of the near-optimal space could lower
the number of unit commitment solves required.
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7
Conclusion

In this work, we have suggested an alternative MGA that uses diversity optimisation to find alternatives that
evenly cover the near-optimal space.

Firstly, we defined how the quality of the MGA method’s output can be measured in terms of how well it
covers the near-optimal space Sε. Several diversity metrics have been compared and evaluated to pick the
most suitable one to be used in an optimisation setting. This resulted in the usage of the ’harmonic mean of
pairwise distances’ diversity metric (see A.1) as it is not inherently biased towards the border of Sε, satisfies
the properties we want the metric to have and is most in line with our ordering of example populations from
least to most diverse.

Then, a GA was designed to optimise the diversity metric. The algorithm’s components are specifically
tailored to generate alternatives for ESOMs efficiently. Each component’s improvement of the algorithm’s
performance has been iteratively tested on an ESOM showcase that can easily be modified to change the
number of investment decisions. The tests generally showed that adding the components improved the rate
of convergence of the GA, without limiting the diversity of the output.

After designing the GA, it was compared to state-of-the-art methods from the literature in terms of result
quality and scalability on an ESOM showcase. This has shown us that the proposed GA method can generate
more diverse alternatives without increasing the computational burden per generated alternative. It also
showed that the GA could benefit from obtaining more knowledge about the boundary of Sε and more time
to converge.

Finally, the GA method was applied to a scaled-down version of a model of the European power system,
giving an example output of all the alternatives.

Analysing the output indicates a potential benefit of generating alternatives evenly throughout the near-
optimal space. Using these alternatives in the decision-making process can accelerate the extraction of stake-
holder requirements and the identification of more agreeable compromises. However, further tests are re-
quired to verify the potential benefit by comparing the resulting alternatives with alternatives generated by
other state-of-the-art MGA methods.

Applying the GA to the European power system has shown promising results considering a larger number
of investment variables, encouraging further testing on larger-scale ESOMs.
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A
Diversity measures

A.1. Overview of considered diversity measures
Table A.1 gives an overview of all diversity metrics considered in this work. Note that more metrics were found
in literature, but were not considered due to computational infeasibility or being ill-defined for measuring
diversity of a population in some convex space for which the boundaries are considered unknown.

Table A.1: Overview of diversity metrics considered in the experiments. The metrics in bold are discussed in the report.

Name D(P ) = Type Reference

Mean distance 2

|P |(|P |−1)

∑
k,l∈P

d(k, l)
Sum of distances [7]

Harmonic energy ∑
k,l∈P

d(k, l)2 Sum of distances [3]

Minimum spacing
min

k,l∈P : k̸=l
d(k, l)

Sum of distances [3]

Population radius
max

i∈P
d(i, ī)

Sum of distances [7]

Distance to average
point

1

N

∑
i∈P

d(i, ī)
Sum of distances [7]

Harmonic mean dis-
tance

|P |(|P |−1)/2∑
k,l∈P : k̸=l

1
d(k,l)

Sum of fractional dis-
tances

[2]

Harmonic mean
minimal distances

|P |∑
k∈P maxl∈P : l̸=k

1
d(k,l)

Sum of fractional dis-
tances

Coulomb potential ∑
k,l∈P : k̸=l

1

d(k, l)

Sum of fractional dis-
tances

[3]

Riesz s-energy ∑
k,l∈P : k̸=l

1

d(k, l)s

Sum of fractional dis-
tances

[3]

Logarithmic energy ∑
k,l∈P : k̸=l

log
1

d(k, l)

Sum of fractional dis-
tances

[3]

Wrap-around L2-
discrepancy −

(
4

3

)v

− 1

|P |2
∑

k,l∈P

v∏
j=1

(
3

2
|k j − l j |+ |k j − l j |2

) Discrepancy [48]
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nVol √
Vpop /Vl i m

Vpop =
√√√√ v∏

j=1
2 · i qr ({i j |i ∈ P })

Vl i m =
√√√√ v∏

j=1
|u j − l j |

Other [26]

Moment of inertia ∑
i∈P

v∑
j=1

(i j − ī j )2
Other [7]

True diversity
1

|P |

√√√√ v∑
j=1

(
ī2

j − (ī j )2
)

ī2
k = 1

|P |
∑
i∈P

i2
j

Other [7]

Mean normalised
standard deviation

1

v

v∑
j=1

σ j (P )

|ī j |

σ j (P ) = 1

|P |
∑
i∈P

(
i j − ī j

)2

Other [8]

Other methods use some measure of empty space [17]
“The best known algorithm for the star discrepancy computation has a running time of order n1+d/2 [7],

which is exponential in the dimension d.” ([Neumann et al., 2018, p. 5])

A.2. Populations used to compare diversity measures
A.2.1. Populations in unit square space
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Table A.2: How our expectations of how the diversity of each pair of populations in unit square space are ordered relative to each other
are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the covering

radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the relations
defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pg Pmv.u Ps .b Ps .c Ps.sep Ps.cen Pmv.n

Sum of distances – Mean distance

Uniform
Ps 0.523 = (<) (>) > > > > >
Pg 0.557 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.524 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.528 < (<) (>) = (<) < > (>)
Ps.c 0.514 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.605 < (<) > > > = > (>)
Ps.cen 0.262 < (<) < < < < = <

Suboptimal Pmv.n 0.369 < < < (<) (<) (<) > =
Sum of distances – Harmonic energy

Uniform
Ps 10923 = (<) (>) > > > > >
Pg 12379 (>) = (>) (>) (>) (>) (>) >
Pmv.u 11001 (<) (<) = (<) (<) < > >

Concentration
Ps.b 11135 < (<) (>) = (<) < > (>)
Ps.c 10568 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 15019 < (<) > > > = > (>)
Ps.cen 2731 < (<) < < < < = <

Suboptimal Pmv.n 5585 < < < (<) (<) (<) > =
Sum of distances – Population radius

Uniform
Ps 0.498 = (<) (>) > > > > >
Pg 0.500 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.532 (<) (<) = (<) (<) > > >

Concentration
Ps.b 0.499 < (<) (>) = (<) < > (>)
Ps.c 0.499 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.499 < (<) < > > = > (>)
Ps.cen 0.249 < (<) < < < < = <

Suboptimal Pmv.n 0.503 < < < (<) (<) (<) > =
Sum of distances – Distance to average point

Uniform
Ps 0.383 = (<) (>) > > > > >
Pg 0.408 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.382 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.386 < (<) (>) = (<) < > (>)
Ps.c 0.377 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.469 < (<) > > > = > (>)
Ps.cen 0.191 < (<) < < < < = <

Suboptimal Pmv.n 0.261 < < < (<) (<) (<) > =
Sum of fractional distances – Harmonic mean distance

Uniform
Ps 0.360 = (<) (>) > > > > >
Pg 0.388 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.339 (<) (<) = (<) (<) > > >

Concentration
Ps.b 0.358 < (<) (>) = (<) > > (>)
Ps.c 0.331 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.335 < (<) < < > = > (>)
Ps.cen 0.180 < (<) < < < < = <

Suboptimal Pmv.n 0.234 < < < (<) (<) (<) > =
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Table A.2: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in unit square
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pg Pmv.u Ps .b Ps .c Ps.sep Ps.cen Pmv.n

Sum of fractional distances – Harmonic mean minimal distances

Uniform
Ps 0.040 = (<) (>) > > > > >
Pg 0.067 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.021 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.036 < (<) (>) = (<) > > (>)
Ps.c 0.031 < (<) (>) (>) = > > (>)

Bias to border
Ps.sep 0.028 < (<) > < < = > (>)
Ps.cen 0.020 < (<) < < < < = >

Suboptimal Pmv.n 0.014 < < < (<) (<) (<) < =
Sum of fractional distances – Coulomb potential1

Uniform
Ps 90559 = (<) (>) > > > > >
Pg 84166 (>) = (>) (>) (>) (>) (>) >
Pmv.u 96418 (<) (<) = (<) (<) > > >

Concentration
Ps.b 91081 < (<) (>) = (<) > > (>)
Ps.c 98658 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 97511 < (<) < < > = > (>)
Ps.cen 181118 < (<) < < < < = <

Suboptimal Pmv.n 139556 < < < (<) (<) (<) > =
Sum of fractional distances – Riesz 2-energy 2

Uniform
Ps 490254 = (<) (>) > > > > >
Pg 385999 (>) = (>) (>) (>) (>) (>) >
Pmv.u 1117532 (<) (<) = (<) (<) < > >

Concentration
Ps.b 534624 < (<) (>) = (<) > > (>)
Ps.c 750360 < (<) (>) (>) = > > (>)

Bias to border
Ps.sep 798071 < (<) > < < = > (>)
Ps.cen 1961014 < (<) < < < < = >

Suboptimal Pmv.n 3258653 < < < (<) (<) (<) < =
Sum of fractional distances – Logarithmic energy2

Uniform
Ps 25897 = (<) (>) > > > > >
Pg 23819 (>) = (>) (>) (>) (>) (>) >
Pmv.u 26159 (<) (<) = (<) (<) < > >

Concentration
Ps.b 25666 < (<) (>) = (<) < > (>)
Ps.c 26923 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 23283 < (<) > > > = > (>)
Ps.cen 48521 < (<) < < < < = <

Suboptimal Pmv.n 37892 < < < (<) (<) (<) > =
Discrepancy – Wrap-around discrepancy2

Uniform
Ps 0.000 = (<) (>) > > > > >
Pg 0.004 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.002 (<) (<) = (<) (<) > > >

Concentration
Ps.b 0.001 < (<) (>) = (<) > > (>)
Ps.c 0.002 < (<) (>) (>) = > > (>)

Bias to border
Ps.sep 0.056 < (<) < < < = > (>)
Ps.cen 0.113 < (<) < < < < = <

Suboptimal Pmv.n 0.045 < < < (<) (<) (<) > =

1A lower value of this metric signifies a more diverse population
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Table A.2: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in unit square
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pg Pmv.u Ps .b Ps .c Ps.sep Ps.cen Pmv.n

Other – nVol

Uniform
Ps 0.994 = (<) (>) > > > > >
Pg 1.000 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.991 (<) (<) = (<) (<) < > >

Concentration
Ps.b 1.017 < (<) (>) = (<) < > (>)
Ps.c 0.938 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 1.493 < (<) > > > = > (>)
Ps.cen 0.248 < (<) < < < < = <

Suboptimal Pmv.n 0.327 < < < (<) (<) (<) > =
Other – Moment of inertia

Uniform
Ps 42.7 = (<) (>) > > > > >
Pg 48.4 (>) = (>) (>) (>) (>) (>) >
Pmv.u 43.0 (<) (<) = (<) (<) < > >

Concentration
Ps.b 43.5 < (<) (>) = (<) < > (>)
Ps.c 41.3 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 58.7 < (<) > > > = > (>)
Ps.cen 10.7 < (<) < < < < = <

Suboptimal Pmv.n 21.8 < < < (<) (<) (<) > =
Other – True diversity

Uniform
Ps 0.083 = (<) (>) > > > > >
Pg 0.094 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.084 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.085 < (<) (>) = (<) < > (>)
Ps.c 0.081 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.115 < (<) > > > = > (>)
Ps.cen 0.021 < (<) < < < < = <

Suboptimal Pmv.n 0.043 < < < (<) (<) (<) > =
Other – Mean normalised standard deviation

Uniform
Ps 0.577 = (<) (>) > > > > >
Pg 0.615 (>) = (>) (>) (>) (>) (>) >
Pmv.u 0.545 (<) (<) = (<) (<) < > >

Concentration
Ps.b 0.583 < (<) (>) = (<) < > (>)
Ps.c 0.568 < (<) (>) (>) = < > (>)

Bias to border
Ps.sep 0.671 < (<) > > > = > (>)
Ps.cen 0.289 < (<) < < < < = <

Suboptimal Pmv.n 0.420 < < < (<) (<) (<) > =
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(a) Cropped hexagonal tiling Phex.c
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(b) Filled hexagonal tiling Phex. f

0 1
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1

(c) Discretised Sobol sequence Ps.d

Figure A.1: Two hexagonal populations created by fitting a hexagonal tiling in unit square space and one by discretising a single
dimension of the Sobol sequence population Ps . All populations consist of 256 individuals.
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A.2.2. Populations in convex space
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(c) Multivariate normal sample in convex
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(d) Sobol sequence with blind spots in convex
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1

(e) Sobol sequence with concentrated spots in
convex space P c
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1

(f) Discretised Sobol sequence in convex
space P c

s.d

0 1
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1

(g) Sobol sequence with vertical separation in convex space P c
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0 1

0

1

(h) Sobol sequence in centre square in convex space P c
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Figure A.2: The variants of the test populations defined in convex space consisting of 256 individuals.

59



A.2. Populations used to compare diversity measures A. Diversity measures

Table A.3: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in convex
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Sum of distances – Mean distance

Uniform
Ps 0.370 = (>) > > > > >
Pmv.u 0.366 (<) = (<) (<) < > >

Concentration
Ps.b 0.384 < (>) = (>) < > (>)
Ps.c 0.337 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.432 < > > > = > >
Ps.cen 0.209 < < < < < = <

Suboptimal Pmv.n 0.286 < < (<) (<) < > =
Sum of distances – Harmonic energy

Uniform
Ps 5614 = (>) > > > > >
Pmv.u 5549 (<) = (<) (<) < > >

Concentration
Ps.b 6026 < (>) = (>) < > (>)
Ps.c 4870 < (>) (<) = < > (>)

Bias to border
Ps.sep 8274 < > > > = > >
Ps.cen 1748 < < < < < = <

Suboptimal Pmv.n 3324 < < (<) (<) < > =
Sum of distances – Population radius

Uniform
Ps 0.412 = (>) > > > > >
Pmv.u 0.417 (<) = (<) (<) < > >

Concentration
Ps.b 0.411 < (>) = (>) < > (>)
Ps.c 0.412 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.441 < > > > = > >
Ps.cen 0.199 < < < < < = <

Suboptimal Pmv.n 0.393 < < (<) (<) < > =
Sum of distances – Distance to average point

Uniform
Ps 0.271 = (>) > > > > >
Pmv.u 0.268 (<) = (<) (<) < > >

Concentration
Ps.b 0.285 < (>) = (>) < > (>)
Ps.c 0.245 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.343 < > > > = > >
Ps.cen 0.153 < < < < < = <

Suboptimal Pmv.n 0.207 < < (<) (<) < > =
Sum of fractional distances – Harmonic mean distance

Uniform
Ps 0.248 = (>) > > > > >
Pmv.u 0.228 (<) = (<) (<) > > >

Concentration
Ps.b 0.245 < (>) = (>) > > (>)
Ps.c 0.191 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.209 < < < > = > >
Ps.cen 0.144 < < < < < = <

Suboptimal Pmv.n 0.186 < < (<) (<) < > =
Sum of fractional distances – Harmonic mean minimal distances

Uniform
Ps 0.027 = (>) > > > > >
Pmv.u 0.014 (<) = (<) (<) < < >

Concentration
Ps.b 0.022 < (>) = (>) > > (>)
Ps.c 0.017 < (>) (<) = > > (>)

Bias to border
Ps.sep 0.017 < > < < = > >
Ps.cen 0.016 < > < < < = >

Suboptimal Pmv.n 0.012 < < (<) (<) < < =
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Table A.3: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in convex
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Sum of fractional distances – Coulomb potential2

Uniform
Ps 131804 = (>) > > > > >
Pmv.u 143219 (<) = (<) (<) > > >

Concentration
Ps.b 133080 < (>) = (>) > > (>)
Ps.c 170617 < (>) (<) = < > (>)

Bias to border
Ps.sep 155857 < < < > = > >
Ps.cen 226398 < < < < < = <

Suboptimal Pmv.n 175378 < < (<) (<) < > =
Sum of fractional distances – Riesz 2-energy 2

Uniform
Ps 1065661 = (>) > > > > >
Pmv.u 2454885 (<) = (<) (<) < > >

Concentration
Ps.b 1282503 < (>) = (>) > > (>)
Ps.c 2407077 < (>) (<) = < > (>)

Bias to border
Ps.sep 2229101 < > < > = > >
Ps.cen 3064085 < < < < < = >

Suboptimal Pmv.n 3570866 < < (<) (<) < < =
Sum of fractional distances – Logarithmic energy2

Uniform
Ps 37688 = (>) > > > > >
Pmv.u 38399 (<) = (<) (<) < > >

Concentration
Ps.b 36737 < (>) = (>) < > (>)
Ps.c 42357 < (>) (<) = < > (>)

Bias to border
Ps.sep 36406 < > > > = > >
Ps.cen 55805 < < < < < = <

Suboptimal Pmv.n 45916 < < (<) (<) < > =
Discrepancy – Wrap-around discrepancy2

Uniform
Ps 0.007 = (>) > > > > >
Pmv.u 0.008 (<) = (<) (<) > > >

Concentration
Ps.b 0.005 < (>) = (>) > > (>)
Ps.c 0.025 < (>) (<) = > > (>)

Bias to border
Ps.sep 0.053 < < < < = > <
Ps.cen 0.113 < < < < < = <

Suboptimal Pmv.n 0.050 < < (<) (<) > > =

2A lower value of this metric signifies a more diverse population
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Table A.3: Whether our expectations of how each pair of test populations perform against each other in terms of diversity in convex
space are correct. ’>’ indicates D(Pr ow ) > D(Pcolumn ), and ’<’ indicates the reverse. Entries marked with ’(>)’ or ’(<)’ follow from the

covering radius distribution property. The green coloured cells are correct, the red ones are incorrect, and the yellow ones are the
relations defined using the output diversities. The bold diversity value indicates the highest value.

Type Population D(P ) Ps Pmv.u Ps.b Ps.c Ps.sep Ps.cen Pmv.n

Other – nVol

Uniform
Ps 0.480 = (>) > > > > >
Pmv.u 0.522 (<) = (<) (<) < > >

Concentration
Ps.b 0.531 < (>) = (>) < > (>)
Ps.c 0.448 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.770 < > > > = > >
Ps.cen 0.178 < < < < < = <

Suboptimal Pmv.n 0.253 < < (<) (<) < > =
Other – Moment of inertia

Uniform
Ps 21.9 = (>) > > > > >
Pmv.u 21.7 (<) = (<) (<) < > >

Concentration
Ps.b 23.5 < (>) = (>) < > (>)
Ps.c 19.0 < (>) (<) = < > (>)

Bias to border
Ps.sep 32.3 < > > > = > >
Ps.cen 6.8 < < < < < = <

Suboptimal Pmv.n 13.0 < < (<) (<) < > =
Other – True diversity

Uniform
Ps 0.043 = (>) > > > > >
Pmv.u 0.042 (<) = (<) (<) < > >

Concentration
Ps.b 0.046 < (>) = (>) < > (>)
Ps.c 0.037 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.063 < > > > = > >
Ps.cen 0.013 < < < < < = <

Suboptimal Pmv.n 0.025 < < (<) (<) < > =
Other – Mean normalised standard deviation

Uniform
Ps 0.445 = (>) > > > > >
Pmv.u 0.437 (<) = (<) (<) < > >

Concentration
Ps.b 0.461 < (>) = (>) < > (>)
Ps.c 0.414 < (>) (<) = < > (>)

Bias to border
Ps.sep 0.593 < > > > = > >
Ps.cen 0.241 < < < < < = <

Suboptimal Pmv.n 0.332 < < (<) (<) < > =
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B
GA component comparison results

Total number of individuals checked for near-optimality per generation at convergence generation

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 33740±695 46580±801 25560±658 46680±650 46900±15500 80700±0 100000±0

Crossover 2065±120 2260±138 2069±93 3589±1723 73±6 5225±1111 10687±2069

Normalisation 2179±101 2431±76 2197±92 2745±82 81±4 8007±1666 11976±1034

Initialisation 241±27 454±80 12±24 390±35 2004±336 6073±1687 9270±1585

Mutation 170±39 339±30 13±24 309±45 2191±256 7613±1439 11053±2871

Table B.1: Number of the offspring needing to be checked for near-optmality on average at each generation for different points of
measurement and setups.

Total number of non-near-optimal individuals per generation at convergence generation

Investment space Normalised space

Setup
MAA

diversity

MGA

diversity

MAA norm.

diversity

MGA norm.

diversity

Lenient

convergence

Moderate

convergence

Strict

convergence

Base 4366±203 6640±218 3240±149 6662±127 7463±2952 18462±0 27067±385

Crossover 413±94 487±109 413±83 1251±1037 48±5 2604±912 7234±1658

Normalisation 474±55 590±43 482±48 773±25 49±10 5333±1475 9036±869

Initialisation 94±21 193±50 21±7 160±30 1365±284 5080±1593 8059±1508

Mutation 83±23 165±21 24±9 149±31 1638±222 6631±1344 9866±2686

Table B.2: Test

63



Bibliography

[1] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. Qhull: Quickhull algorithm for computing
the convex hull. Astrophysics Source Code Library, page ascl:1304.016, April 2013.

[2] Philip B. Berntsen and Evelina Trutnevyte. Ensuring diversity of national energy scenarios: Bottom-up
energy system model with Modeling to Generate Alternatives. Energy, 126:886–898, May 2017. ISSN
0360-5442. doi: 10.1016/j.energy.2017.03.043.

[3] Luca Maria Del Bono, Flavio Nicoletti, and Federico Ricci-Tersenghi. The most uniform distribution of
points on the sphere, July 2024.

[4] Miguel Chang, Jakob Zink Thellufsen, Behnam Zakeri, Bryn Pickering, Stefan Pfenninger, Henrik Lund,
and Poul Alberg Østergaard. Trends in tools and approaches for modelling the energy transition. Applied
Energy, 290:116731, May 2021. ISSN 0306-2619. doi: 10.1016/j.apenergy.2021.116731.

[5] Shoou-Yuh Chang, E. Downey Brill Jr., and Lewis D. Hopkins. Efficient Random Generation of Feasible
Alternatives: A Land Use Example. Journal of Regional Science, 22(3):303–314, 1982. ISSN 1467-9787.
doi: 10.1111/j.1467-9787.1982.tb00754.x.

[6] Seolhee Cho, Can Li, and Ignacio E. Grossmann. Recent advances and challenges in optimization models
for expansion planning of power systems and reliability optimization. Computers & Chemical Engineer-
ing, 165:107924, September 2022. ISSN 0098-1354. doi: 10.1016/j.compchemeng.2022.107924.

[7] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin. Review and study of genotypic diversity measures
for real-coded representations. IEEE Transactions on Evolutionary Computation, 16(5):695–710, 2012.
doi: 10.1109/TEVC.2011.2170075.

[8] Emilie Danna and David L. Woodruff. How to select a small set of diverse solutions to mixed integer
programming problems. Operations Research Letters, 37(4):255–260, July 2009. ISSN 0167-6377. doi:
10.1016/j.orl.2009.03.004.

[9] Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat and promoting diversity
using multi-objective methods. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, GECCO’01, pages 11–18, San Francisco, CA, USA, July 2001. Morgan Kaufmann Publishers
Inc. ISBN 978-1-55860-774-3.

[10] J. F. DeCarolis, S. Babaee, B. Li, and S. Kanungo. Modelling to generate alternatives with an energy system
optimization model. Environmental Modelling & Software, 79:300–310, May 2016. ISSN 1364-8152. doi:
10.1016/j.envsoft.2015.11.019.

[11] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. Feature-Based Diversity Optimization for
Problem Instance Classification, May 2020.

[12] Aleksander Grochowicz, Koen van Greevenbroek, Fred Espen Benth, and Marianne Zeyringer. Intersect-
ing near-optimal spaces: European power systems with more resilience to weather variability. Energy
Economics, 118:106496, February 2023. ISSN 0140-9883. doi: 10.1016/j.eneco.2022.106496.

[13] Reza Hemmati, Rahmat-Allah Hooshmand, and Amin Khodabakhshian. Comprehensive review of gen-
eration and transmission expansion planning. IET Generation, Transmission & Distribution, 7(9):955–
964, 2013. ISSN 1751-8695. doi: 10.1049/iet-gtd.2013.0031.

[14] Maike Hennen, Matthias Lampe, Philip Voll, and André Bardow. SPREAD – Exploring the decision space
in energy systems synthesis. Computers & Chemical Engineering, 106:297–308, November 2017. ISSN
0098-1354. doi: 10.1016/j.compchemeng.2017.06.002.

64



Bibliography Bibliography

[15] Gordon H. Huang, Jonathan D. Linton, Julian Scott Yeomans, and Reena Yoogalingam. Policy planning
under uncertainty: Efficient starting populations for simulation-optimization methods applied to mu-
nicipal solid waste management. Journal of Environmental Management, 77(1):22–34, October 2005.
ISSN 0301-4797. doi: 10.1016/j.jenvman.2005.02.008.

[16] Raha Imanirad, Xin-She Yang, and J. Yeomans. Modelling-to-generate-alternatives via the firefly algo-
rithm. 2014.

[17] R Keller and Wolfgang Banzhaf. Explicit maintenance of genetic diversity on genospaces. Unpublished
manuscript. Available online at Citeseer, 1994.

[18] Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual creatures through novelty search and
local competition. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’11, pages 211–218, New York, NY, USA, July 2011. Association for Computing Machinery.
ISBN 978-1-4503-0557-0. doi: 10.1145/2001576.2001606.

[19] F. Lombardi, B. Pickering, E. Colombo, and S. Pfenninger. Policy Decision Support for Renewables De-
ployment through Spatially Explicit Practically Optimal Alternatives. Joule, 4(10):2185–2207, 2020. doi:
10.1016/j.joule.2020.08.002.

[20] F. Lombardi, B. Pickering, and S. Pfenninger. What is redundant and what is not? Computational trade-
offs in modelling to generate alternatives for energy infrastructure deployment. Applied Energy, 339,
2023. doi: 10.1016/j.apenergy.2023.121002.

[21] Francesco Lombardi and Stefan Pfenninger. Human-in-the-loop MGA to generate energy system design
options matching stakeholder needs. PLOS Climate, 4(2):e0000560, February 2025. ISSN 2767-3200. doi:
10.1371/journal.pclm.0000560.

[22] Mikhail Mironov and Liudmila Prokhorenkova. Measuring Diversity: Axioms and Challenges. October
2024.

[23] Aneta Neumann, Wanru Gao, Carola Doerr, Frank Neumann, and Markus Wagner. Discrepancy-based
evolutionary diversity optimization. In GECCO ’18 - Genetic and Evolutionary Computation Conference,
pages 991–998, Kyoto, France, July 2018. ACM Press. doi: 10.1145/3205455.3205532.

[24] Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. Evolutionary diversity optimization
using multi-objective indicators. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO ’19, pages 837–845, New York, NY, USA, July 2019. Association for Computing Machinery.
ISBN 978-1-4503-6111-8. doi: 10.1145/3321707.3321796.

[25] Fabian Neumann and Tom Brown. The near-optimal feasible space of a renewable power system model.
Electric Power Systems Research, 190:106690, January 2021. ISSN 0378-7796. doi: 10.1016/j.epsr.2020.
106690.

[26] Valentín Osuna-Enciso, Erik Cuevas, and Bernardo Morales Castañeda. A diversity metric for
population-based metaheuristic algorithms. Information Sciences, 586:192–208, March 2022. ISSN 0020-
0255. doi: 10.1016/j.ins.2021.11.073.

[27] Tim T. Pedersen, Marta Victoria, Morten G. Rasmussen, and Gorm B. Andresen. Modeling all alternative
solutions for highly renewable energy systems. Energy, 234:121294, November 2021. ISSN 0360-5442.
doi: 10.1016/j.energy.2021.121294.

[28] Fernando Perez-Cruz. Kullback-Leibler divergence estimation of continuous distributions. In 2008 IEEE
International Symposium on Information Theory, pages 1666–1670, July 2008. doi: 10.1109/ISIT.2008.
4595271.

[29] James Price and Ilkka Keppo. Modelling to generate alternatives: A technique to explore uncertainty in
energy-environment-economy models. Applied Energy, 195:356–369, June 2017. ISSN 0306-2619. doi:
10.1016/j.apenergy.2017.03.065.

[30] Matthias Rainer. A Genetic Algorithm for Mixed-integer Multicriteria Optimization Problems and its
Application to Engines in order to Optimize Fuel Consumption and Driving Performance. 2012.

65



Bibliography Bibliography

[31] Pedro Ramaciotti Morales, Robin Lamarche-Perrin, Raphaël Fournier-S’niehotta, Rémy Poulain, Lionel
Tabourier, and Fabien Tarissan. Measuring diversity in heterogeneous information networks. Theoreti-
cal Computer Science, 859:80–115, March 2021. ISSN 0304-3975. doi: 10.1016/j.tcs.2021.01.013.

[32] Sebastian Risi, Sandy D. Vanderbleek, Charles E. Hughes, and Kenneth O. Stanley. How novelty search
escapes the deceptive trap of learning to learn. In Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’09, pages 153–160, New York, NY, USA, July 2009. Association
for Computing Machinery. ISBN 978-1-60558-325-9. doi: 10.1145/1569901.1569923.

[33] Hendrik Schricker, Benedikt Schuler, Christiane Reinert, and Niklas von der Aßen. Gotta catch ’em all:
Modeling All Discrete Alternatives for Industrial Energy System Transitions, July 2023.

[34] Bruno U. Schyska, Alexander Kies, Markus Schlott, Lueder von Bremen, and Wided Medjroubi. The
sensitivity of power system expansion models. Joule, 5(10):2606–2624, October 2021. ISSN 2542-4351.
doi: 10.1016/j.joule.2021.07.017.

[35] Andrew R. Solow and Stephen Polasky. Measuring biological diversity. Environmental and Ecological
Statistics, 1(2):95–103, June 1994. ISSN 1573-3009. doi: 10.1007/BF02426650.

[36] Giovanni Squillero and Alberto Tonda. Divergence of character and premature convergence: A survey of
methodologies for promoting diversity in evolutionary optimization. Information Sciences, 329:782–799,
February 2016. ISSN 0020-0255. doi: 10.1016/j.ins.2015.09.056.

[37] Andy Stirling. A general framework for analysing diversity in science, technology and society. Journal of
The Royal Society Interface, 4(15):707–719, February 2007. doi: 10.1098/rsif.2007.0213.

[38] Stefan Strömer and Klara Maggauer. IESopt: A Modular Framework for High-Performance Energy Sys-
tem Optimization. In 2024 Open Source Modelling and Simulation of Energy Systems (OSMSES), pages
1–6, September 2024. doi: 10.1109/OSMSES62085.2024.10668965.

[39] Demet Suna, Gustav Resch, Franziska Schniger, Florian Hasengst, Gerhard Totschnig, Peter Widhalm,
Herbert Formayer, Philipp Maier, David Leidinger, and Imran Nadeem. Securing Austria’s Electricity
Supply in Times of Climate Change. Climate.Changes.Security., 2, June 2024.

[40] Tamara Ulrich and Lothar Thiele. Maximizing population diversity in single-objective optimization. In
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pages
641–648, New York, NY, USA, July 2011. Association for Computing Machinery. ISBN 978-1-4503-0557-0.
doi: 10.1145/2001576.2001665.

[41] Tamara Ulrich, Johannes Bader, and Lothar Thiele. Defining and Optimizing Indicator-Based Diversity
Measures in Multiobjective Search. In Parallel Problem Solving from Nature, PPSN XI, pages 707–717.
Springer, Berlin, Heidelberg, 2010. ISBN 978-3-642-15844-5. doi: 10.1007/978-3-642-15844-5_71.

[42] Yirui Wang, Shangce Gao, Mengchu Zhou, and Yang Yu. A multi-layered gravitational search algorithm
for function optimization and real-world problems. IEEE/CAA Journal of Automatica Sinica, 8(1):94–109,
January 2021. ISSN 2329-9274. doi: 10.1109/JAS.2020.1003462.

[43] Keigo Watanabe and M. M. A. Hashem. Evolutionary Computations, volume 147 of Studies in Fuzziness
and Soft Computing. Springer, Berlin, Heidelberg, 2004. ISBN 978-3-642-05887-5 978-3-540-39883-7.
doi: 10.1007/978-3-540-39883-7.

[44] Yutong Xie, Ziqiao Xu, Jiaqi Ma, and Qiaozhu Mei. How Much Space Has Been Explored? Measuring the
Chemical Space Covered by Databases and Machine-Generated Molecules, March 2023.

[45] Julian Scott Yeomans. Efficient generation of alternative perspectives in public environmental policy
formulation: Applying co-evolutionary simulation–optimization to municipal solid waste management.
Central European Journal of Operations Research, 19(4):391–413, December 2011. ISSN 1435-246X, 1613-
9178. doi: 10.1007/s10100-011-0190-y.

[46] Emily M. Zechman and S. Ranji Ranjithan. An evolutionary algorithm to generate alternatives (EAGA)
for engineering optimization problems. Engineering Optimization, 36(5):539–553, October 2004. ISSN
0305-215X. doi: 10.1080/03052150410001704863.

66



Bibliography Bibliography

[47] Emily M Zechman, S Ranji Ranjithan, and Li Liu. Niched Co-Evolution Strategies to Address Non-
uniqueness in Engineering Design. 2006.

[48] Yong-Dao Zhou, Kai-Tai Fang, and Jian-Hui Ning. Mixture discrepancy for quasi-random point sets.
Journal of Complexity, 29(3):283–301, June 2013. ISSN 0885-064X. doi: 10.1016/j.jco.2012.11.006.

67


	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Research gap
	Report structure

	Theoretical background
	Energy System Optimisation Models
	Limitations of ESOMs in decision-making
	The SECURES project ESOM

	Modelling to Generate Alternatives
	Genetic Algorithms
	Components
	Exploration vs. exploitation
	Using multiple populations


	Literature review
	MGA approaches
	Sampling alternatives inside the near-optimal space

	Diversity as a goal
	Measuring diversity
	Diversity optimisation
	Comparing metrics

	GA for MGA
	Using diversity
	Optimising diversity

	Contribution

	Methodology
	Formulating diversity optimisation for MGA
	Selection of diversity metric
	Types of diversity metrics
	Testing properties of diversity metrics
	Testing populations in Unit Square space
	Testing populations in convex space

	The near-optimal investment space
	Covering high-dimensional spaces
	Covering high-dimensional hypercubes
	Covering high-dimensional convex spaces

	GA setup
	Parameters
	Initialisation
	Normalisation
	Crossover
	Mutation
	Selection
	Early stopping
	Component comparison

	Performance evaluation
	Baseline methods
	Experiment 1: Comparing result quality throughout execution
	Experiment 2: Comparing result quality for different dimensionality
	Experiment 3: Comparing scalability

	Generating alternatives of the SECURES model

	Results
	Selecting the diversity metric
	Testing populations in unit square spaces
	Convex space
	Takeaways

	GA approach setup
	Speed of convergence
	Diversity at convergence
	KL-divergence at convergence
	Average number of feasibility checks on non-near-optimal individuals at convergence

	Performance evaluation
	Experiment 1: Diversity throughout optimisation
	Experiment 2: Diversity for increasing dimensionality
	Experiment 3: Scalability

	Alternatives of the SECURES model

	Discussion
	Diversity metrics
	Choice of metric

	GA components
	Diversity at convergence

	Performance evaluation experiments
	Lower diversity at convergence without knowledge of boundary at initialisation
	Computational advantage of GA approach with relatively high temporal resolution

	Bias towards the border of the near-optimal space for a high number of investment variables
	KL-divergence in component comparison
	Scalability performance evaluation

	Hyperparameter tuning
	Population size
	Component parameters

	Further testing on the European power system
	Future work
	Handling discrete variables
	Hyperparameter tuning
	Computational improvements


	Conclusion
	Acknowledgements

	Appendices
	Diversity measures
	Overview of considered diversity measures
	Populations used to compare diversity measures
	Populations in unit square space
	Populations in convex space


	GA component comparison results
	Bibliography

