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Abstract

The availability of genomes for many species has advanced our understanding of the non-

protein-coding fraction of the genome. Comparative genomics has proven itself to be an

invaluable approach for the systematic, genome-wide identification of conserved non-pro-

tein-coding elements (CNEs). However, for many non-mammalian model species, including

chicken, our capability to interpret the functional importance of variants overlapping CNEs

has been limited by current genomic annotations, which rely on a single information type

(e.g. conservation). We here studied CNEs in chicken using a combination of population

genomics and comparative genomics. To investigate the functional importance of variants

found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion

(chCADD) model, a variant effect prediction tool first introduced for humans and later on for

mouse and pig. We show that 73 Mb of the chicken genome has been conserved across

more than 280 million years of vertebrate evolution. The vast majority of the conserved ele-

ments are in non-protein-coding regions, which display SNP densities and allele frequency

distributions characteristic of genomic regions constrained by purifying selection. By anno-

tating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs

to be of higher functional importance, as supported by SNPs found in these subregions are

associated with known disease genes in humans, mice, and rats. Taken together, our find-

ings indicate that CNEs harbor variants of functional significance that should be object of fur-

ther investigation along with protein-coding mutations. We therefore anticipate chCADD to

be of great use to the scientific community and breeding companies in future functional stud-

ies in chicken.

Author summary

Chickens are raised worldwide as a livestock species to provide us with their eggs and

meat, but besides their huge economical impact their genome remains poorly understood.
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Here we introduce a variant prioritization tool modeled after the Combined Annotation

Dependent Depletion (CADD). CADD is a well-established approach to prioritize vari-

ants with respect to their deleteriousness for the interpretation of genetic variation that

can substantially impact human phenotypes, such as diseases. We applied the CADD

approach to chicken (chCADD) to investigate the functional importance of conserved

non-protein-coding elements. The chCADD model assigns a score to all possible variation

in the chicken genome, which can be used to prioritize genetic variants to be used in for

breedings strategies. We used these scores to identify subregions within conserved non-

protein-coding elements of relative higher importance. The chCADD score and the iden-

tified subregions are expected to support our efforts to pinpoint causal genomic variation

throughout the chicken genome.

Introduction

The rapidly increasing availability of genomes has considerably advanced our understanding

of the non-protein-coding fraction of the genome. With the sequencing of the human genome

[1] and the first ENCODE project [2, 3] it was soon realized that protein-coding genes consti-

tute a small fraction of a species functional genome and that the remaining non-protein-cod-

ing DNA is not simply ´junk´ DNA as initially thought. Nevertheless, the functional

importance of these non-protein-coding regions remained for long time unknown, as deter-

mining (molecular) function was far more difficult than for protein-coding genes [4]. A better

understanding of the functional importance of these non-protein-coding regions comes from

comparative genomics, which has allowed the systematic, genome-wide identification of con-

served non-protein-coding elements (CNEs) [5, 6].

Comparative genomics relies on the genome comparison of a group of species related by a

narrow or wide time-scale (i.e. phylogenetic scope). Regions in the genome that share some

minimum sequence similarity across two or more species are an indication of a selection con-

straint. Moreover, conservation often implies a biological function [7]. Based on this principle,

CNEs can be identified in any species included in the alignment, as reported in recent studies

in the collared flycatcher [8], fruit flies [9], and plants [6]. However, the phylogenetic scope

[10] and species included in the alignment [11] can have important implications for the identi-

fication of CNEs. For instance, by including the spotted gar genome in their alignment,

Braasch et al. (2016) were able to identify numerous CNEs previously undetectable in direct

human-teleost comparisons, supporting the importance of a bridging species in the alignment

[11].

CNEs have been the subject of intense recent interest. The identification of CNEs has had

important implications in enhancing genome annotation [12], investigating signatures of

adaptive evolution [13–15], and identifying putative trait loci [16]. CNEs and sequence conser-

vation have also proven crucial in studying the genetic basis of phenotypic diversity. In fact,

non-protein-coding SNPs have been linked to traits and diseases in genome-wide association

studies [17, 18].

Although the methodological advantages of a comparative genomic approach are well rec-

ognized, the functional interpretation of CNEs is incomplete if based on conservation alone, as

conservation provides information on restrictions, but not on functionality. A possible solu-

tion is combining conservation with other complementary types of data that characterize the

biological role of genetic sequences at a genome-wide scale [7]. Such data include, for instance,

RNA sequencing (RNA-seq) for the identification of transcriptionally active regions and
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chromatin immunoprecipitation followed by sequencing (ChIP-seq) for regulatory-factor-

binding regions (RFBRs) [19]. In human genetics, integrative annotations such as Combined

Annotation-Dependent Depletion (CADD) [20] have been developed. The main advantage of

such frameworks is the combination, into a unique score, of diverse genomic features derived

from, among others, gene model annotations, evolutionary constraints, epigenetic measure-

ments, and functional predictions [21].

Compared to humans, for many non-mammalian model species, including chicken (Gallus
gallus), the situation is quite different. First, comparative genomic studies that made use of the

very first genome assemblies [22–24] may have provided an incomplete and biased picture of

avian CNEs and avian genome evolution, as recently pointed out by Bornelov et al. (2017)

[25]. Second, the lack of species-specific methods that can identify and score functional non-

protein-coding mutations throughout the genome has restricted most of the research interest

to protein-coding genes. In fact, in the context of protein-coding genes generic predictors such

as SIFT [26], PolyPhen2 [27], and Provean [28] can be used.

We here addressed these limitations using a combination of comparative genomic and pop-

ulation genomic approaches to accurately predict CNEs in the chicken genome. Furthermore,

we used machine learning to develop a ch(icken) Combined Annotation-Dependent Depletion

(chCADD) model, in the tradition of previous CADD models for non-human species, includ-

ing mouse (mCADD) [29] and pig (pCADD) [30]. As we show, chCADD has the potential of

providing new insights into the functional role of non-protein-coding regions of the chicken

genome at a single base pair resolution.

Even though deciphering the function of the non-protein-coding portion of a species

genome has been a challenging task, we expect our study to provide a new framework for

decoding the still largely unknown function of CNEs and their relative variants in chicken, an

ideal non-mammalian model and anchor species in evolutionary studies.

Materials and methods

Chicken genomic data

We used a dataset by Bortoluzzi and colleagues available at the European Nucleotide Archive

(http://www.ebi.ac.uk/ena/) under accession number PRJEB34245 [31] and PRJEB36674 [18].

The dataset comprised a total of 169 individuals sampled from 88 traditional chicken breeds of

divergent demographic and selection history. The 169 chicken samples were sequenced at the

French Institute of Agricultural Research (INRAe), France, on an Illumina HiSeq 3000. Reads

were processed following standard bioinformatics pipelines. Reads were aligned to the chicken

GRCg6a reference genome (GenBank Accession: GCA_000002315.5) with the Burrows-

Wheeler alignment (BWA-mem) algorithm v0.7.17 [32]. After removal of duplicate reads with

the markdup option in sambamba v0.6.3 [33], we performed population-based variant calling

in Freebayes [34] using the following settings: (1) mapping quality > 20, (2) base quality > 20,

(3) at least 20% of observations and 2 reads supporting an alternative allele within an individ-

ual, and (4) coverage at SNP position > 4 and< 2.5�average individual genome-wide cover-

age. We reduced the false discovery rate by additional filtering using BCFtools v1.4.1 [32]. The

settings were: (1) a phred quality score> 30, (2) an allele count supporting the alternative

allele> 2, (3) maximum number of 10 alleles, (4) variants located within 3 bp of an indel.

Multiple whole-genome sequence alignment

Conserved elements (CE) were identified using the 23 sauropsids multiple whole-genome

sequence alignment (MSA) generated using Progressive Cactus (https://github.com/

glennhickey/progressiveCactus) [35] by Green et al. (2014) [36]. The MSA downloaded in the
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hierarchical alignment format (HAL) was converted into multiple alignment format (MAF)

using the HAL tools command hal2maf [37] with the following parameters: -refGenome

galGal4 (GenBank Accession: GCA_000002315.2) to extract alignments referenced to the

chicken genome assembly, -noAncestors to exclude any ancestral sequence reconstruction,

-onlyOrthologs to include only sequences orthologous to chicken, and -noDupes to ignore

paralogy edges. During reformatting, only blocks of sequences where chicken aligned to at

least two other species were considered for a total chicken genome alignability of 90.88%.

Genomic coordinates were converted to the GRCg6a genome assembly using the pyliftover

library in python v3.6.3.

Prediction of evolutionarily conserved elements

Conserved elements were predicted from the whole-genome alignment using PhastCons [38].

We chose PhastCons because this approach does not use a fixed-size window approach, but

can take advantage of the fact that most functional regions involve several consecutive sites

[39]. We first generated a neutral evolutionary model from the 114,709 four-fold degenerate

(4D) sites previously extracted from the alignment by Green et al. (2014). The topology of the

phylogeny was also identical to that derived by Green et al. (2014). PhastCons was run using

the set of parameters used by the UCSC genome browser to produce the ‘most conserved’

tracks (top 5% of the conserved genome): expected length = 45, target coverage = 0.3, and

rho = 0.31 [40]. Conserved elements were subsequently excluded if falling in or overlapping

assembly gaps and/or if their size was < 4 bp.

Annotation of conserved elements by genomic feature

We use the Ensembl (release 95) chicken genome annotation files to extract sequence coor-

dinates of CDS, exons, 5’ and 3’ UTRs, pseudogenes, and lncRNAs. Sequence information

was extracted from 14,828 genes (out of the 15,636 genes found in the Ensembl annotation),

as transcripts of these genes had a properly annotated start and stop codon. For protein-

coding genes with an annotated 5’ UTR of at least 15 bp, the promoter was defined as the

2-kb region upstream of the transcription start site (TSS) [8]. Sequence coordinates of miR-

NAs, rRNAs, snoRNAs, snRNAs, ncRNAs, tRNAs, and scRNAs were also extracted from

the annotation file. For the identification of intergenic regions we considered all annotated

protein-coding genes and defined intergenic regions as DNA regions located between genes

that did not overlap any protein-coding genes in either of the DNA strands. The intersection

between CEs and the various annotated genomic features was found following the approach

of Lindblad-Toh et al. (2011) of assigning a CE overlapping two or more genomic features

to a single one in a hierarchical format: CDS, 5’ UTR, 3’ UTR, promoter, RNA genes,

lncRNA, intronic, and intergenic region [12]. Conserved non-protein-coding elements

(CNEs) were defined as CEs without any overlap with exon-associated features (CDS, 5’

UTR, 3’ UTR, promoter, and RNA genes) and include lncRNAs, introns, and intergenic

regions.

Gene ontology analysis

Genes in conserved regions overlapping CDS, 5’ UTR, 3’ UTR, and introns were separately

used to perform a Gene Ontology analysis in g:Profiler [41] using Gallus gallus as organism.

We only considered annotated genes that passed Bonferroni correction for multiple testing

with a threshold < 0.05.
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Genome-wide distribution and density of conserved non-protein-coding

regions

Polymorphic, bi-allelic SNPs belonging to all functional classes predicted by the Variant Effect

Predictor (VEP) [42] were considered. However, to improve the reliability of the set of anno-

tated variants, we applied additional filtering steps. SNPs were discarded if they overlapped

repetitive elements or if their call rate was < 70%. The rationale for excluding variants found

in repetitive elements was to reduce erroneous functional predictions as a result of mapping

issues, as regions enriched for repetitive elements are usually difficult to assemble. For intronic

and intergenic SNPs, SNPs in exons or that fell within any spliced EST from the UCSC

chrN_intronEST tables were discarded [43].

Ancestral allele and derived allele frequency

The sequence of the inferred ancestor between chicken and turkey (Meleagris gallopavo; Tur-

key_2.01) [44] reconstructed from the Ensembl EPO 4 sauropsids alignment (release 95) was

used to determine the ancestral and derived state of an allele, along with its derived allele fre-

quency. We considered only SNPs for which either the reference or alternative allele matched

the ancestral allele. Ancestral alleles that did not match either chicken allele were discarded.

We generated derived allele frequency (DAF) distributions for sets of SNPs based on func-

tional class and whether they were within or outside of CNEs. A derived allele frequency cutoff

of 10% was used to distinguish rare from common SNPs.

Chicken Combined Annotation Dependent Depletion (chCADD)

The chicken CADD score is the -10 log relative rank of all possible alternative alleles of all

autosomes and Z chromosome of the chicken GRCg6a reference genome, according to the fol-

lowing formula:

chCADDi ¼ � 10log10

ni
N

ð1Þ

where N represents the number of all possible alternative alleles (3,073,805,640) on the investi-

gated chromosomes and n is the rank of the ith SNP. The rank is based on the model posteriors

of a ridge penalized logistic regression model trained to classify simulated and derived SNPs.

Chicken derived SNPs were defined as those sites where the chicken reference genome dif-

fers from the chicken-turkey ancestral genome inferred from the Ensembl EPO 4 taxa align-

ment containing chicken, turkey, zebra finch (Taeniopygia guttata; taeGut3.2.4) [45] and

green anole lizard (Anolis carolinensis; AnoCar2.0) [46]. Sites for which the ancestral allele

occurs at a minor allele frequency greater than 5% were excluded. In addition, derived SNPs

that are observed with frequency above 90% in our population of 169 individuals were

included. In total we identified 17,237,778 SNPs.

The dataset of simulated variants was simulated based on derived nucleotide substitution

rates between the different inferred ancestors of the 4 species in the EPO 4 taxa sauropsids

alignment. These derived nucleotide substitution rates were obtained for windows of 100 kb

and used to simulate de novo variants which have a larger probability to have a deleterious

effect than the set of derived variants. All SNPs which have a known ancestral site are retained

in the dataset. In total 17,233,727 SNPs were simulated in this way. 17,233,722 SNPs of each

dataset were joined and randomly assigned to train and test sets of sizes 15,667,020 and

1,566,702, respectively.

The datasets were annotated with various genomic annotations: among others, PhyloP and

PhastCons conservation scores based on three differently deep phylogenies (i.e. 4 sauropsids,
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37 amniote/mammalia, 77 vertebrate, all excluding the chicken genome), secondary DNA

structure predictions [47], Ensembl Consequence predictions, amino acid substitution scores

such as Grantham [48], and amino acid substitution deleterious scores such as SIFT [49]. Fur-

ther, we utilized RNA expression, ATAC-seq and Hi-C [50] data to annotate our data set. An

overview is given in S1 Table.

Annotations for which values were missing were imputed (S1 Table) and categorical values

were one hot-encoded [51]. In the one hot-encoding process, an annotation is a series of

binary annotations, each indicating the presence of a specific category for a given variant. For

scores that are by definition not available for certain parts of the genome, such as SIFT which

is found only for missense mutations, columns indicating their availability were introduced.

Combinations of annotations were created of Ensembl Variant Effect Predictor conse-

quences and other annotations, such as distance to transcription start site and conservation

scores. The total number of all features used in training was 874. An extensive list of all annota-

tions, combinations of annotations and their learned model weights is shown in S1 File.

Finally, each feature column is scaled by its standard deviation. The logistic regression is

trained via the Python Graphlab module. We selected a penalization term of 1 based on results

on the test set (S1 Fig).

Investigation of likely causal SNPs from the OMIA database

We downloaded the likely causal variants of phenotype changes from the Online Mendelian

Inheritance in Animals (OMIA) [52] database (last accessed 25.11.2019). SNPs whose location

was reported for older genome assemblies such as Galgal4 and Galgal5 were mapped to the

chicken GRCg6a reference genome via CrossMap [53]. We only considered bi-allelic SNPs

whose genomic position was successfully mapped to GRCg6a and whose substitution

remained the same. In total, 15 SNPs were left and annotated with chCADD.

Change point analysis

To identify subregions of particular importance within each CE, we annotated all CEs with the

maximum chCADD score found at each site or the 23 sauropsids PhastCons scores that were

used to identify conserved elements in the first place. Our basic assumption was that highly

important subregions within a CE are preceded and succeeded by less important sites which

would result in a relatively higher score region surrounded by two lower scored regions. Each

CE was treated similarly to time series data by conducting an offline change point analysis,

once based on maximum chCADD scores and once based on 23 sauropsids PhastCons scores.

To this end, we used the Python ruptures module [54] and applied a binary segmentation algo-

rithm with radial basis function (RBF). The algorithm first identifies a single change point.

Furthermore, if a change point is detected, the algorithm investigates each sub-sequence inde-

pendently to identify the next change point We were looking particularly for 2 change points,

which would divide the CE into three subregions, numbered from 1 to 3, starting at the 5’ end

of the sequence. We added 5 bp upstream and downstream of each CE to allow that the bor-

ders of the 2nd region coincide with the borders of the CE (Fig 1). After computing the change

points, we conducted t-tests between the scores of the 1st and 2nd, as well as 3rd and 2nd sub-

regions, to identify CEs that have a significantly different score in the 2nd section than in the

other two. We applied a p-value cutoff of 0.05. We sorted CNEs with respect to the largest dif-

ference between the mean chCADD score of the inner and the two outer subregions and

selected those with a higher scored 2nd section than either of the other two outer ones.
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SNP density distribution within conserved non-protein-coding regions

SNP density was calculated as the number of SNPs identified in the 169 chicken individuals

divided by the number of bases found in the sequence. SNP density was computed for con-

served coding (CC) and conserved non-protein-coding (CNE) regions, as well as for the subre-

gions identified in the change point analysis of CNEs overlapping lncRNAs, introns, and

intergenic regions. We repeated this analysis once for the change points identified using

chCADD scores and once for the 23 sauropsids PhastCons based change points.

Homologous phenotypes

We obtained phenotypes from the Ensembl database (release 95) for genes associated with the

lncRNA and intronic CNEs. Beside chicken, these phenotypes encompass the observed pheno-

types for orthologous genes associated with disease studies in humans (Homo sapiens) and

gene-knockout studies in mouse (Mus musculus) and rat (Rattus norvegicus).

Results

Conserved non-protein-coding elements cover a large fraction of the

chicken genome

To define CNEs, we first identified conserved elements (CEs) using the UCSC PhastCons

most conserved track approach [40]. PhastCons predicted in the 23 sauropsids multiple

sequence alignment (MSA) 1.14 million CEs encompassing 8% of the chicken genome for a

total of 73 Mb. In line with the density of genes and regulatory features characteristic of the

chicken genome [55], we found that most of the predicted CEs are on micro-chromosomes

(GGA11-GGA33), followed by intermediate (GGA6-GGA10) and macro-chromosomes

(GGA1-GGA5) (S2 Fig). Even though the length of predicted CEs ranged from 4 bp to a maxi-

mum of 2,000 bp, the vast majority was short (< 100 bp) (S3 Fig). Therefore, we do not expect

any length bias in our final set of CEs.

We annotated CEs by genomic features, considering only genes for which the transcript

had a proper annotated start and stop codon, as defined by the Ensembl´s annotation files

(n = 14,828 genes). Overall, we found that 23% of the predicted CEs were associated with

exonic sequences (i.e. CDS, 5’ UTR, 3’ UTR, promoter, and RNA genes) spanning 17.14 Mb of

the chicken genome (Table 1). The majority of the exon-associated CEs overlapped known

coding regions (85% of total exon-associated CEs), followed by 3’ UTRs (8% of total), and

Fig 1. Approach used to identify subregions within CNEs via change point analysis. The scores used to annotate the CE region are displayed on the y-axis. The

position in the investigated CE region is shown on the x-axis. In total there are five sections, 5 bp up and downstream, 1st, 2nd and 3rd subregions. The transitions

from blue to red background indicate the position of the two identified change points. The up and downstream scores are shown as dots while the scores in the CE

region are a continuous blue line.

https://doi.org/10.1371/journal.pgen.1009027.g001
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promoter regions (4% of total). Although we observed conservation in exon sequences, most

CEs overlapped non-protein-coding sequences, including lncRNA (15% of total non-exon

associated CEs), intronic (36% of total), and intergenic regions (49% of total). We further

examined the biological processes and molecular functions of known genes overlapped by CEs

in coding regions, 5’ UTRs, 3’ UTRs, and introns. These genes are associated with basic func-

tions, including cell differentiation and development, anatomical structure development, mor-

phogenesis, and growth (S2 Table). Most of these GO categories have also been previously

associated with mammalian and vertebrate ultraconserved elements (UCEs) [55, 56].

In total we identified 259,688 CEs in protein-coding regions, leaving 850,920 CNEs span-

ning over 51 Mb of the chicken genome (Table 1), with a genome-wide distribution of 92.10

CNEs/100-kb. We further observed noticeable differences in the length distribution of CEs

associated with different types of annotations. Among the conserved exon-associated CEs,

those found in CDSs are, on average, the longest (68 bp), followed by 3’ UTRs (61 bp), RNA

genes (52 bp), promoters (47 bp), and 5’ UTRs (38 bp) (S4 Fig). On the contrary, CEs found in

non-protein-coding regions show a homogenous length distribution, ranging from 56 bp in

introns to 63 bp in lncRNAs (S5 Fig).

CNEs are less common in gene dense regions

We further investigated the genomic location of CNEs as this might provide important clues

to their functional role. We found that the distribution of CNEs in windows of 100 kb is signif-

icantly negatively correlated (r = -0.22; p-value:< 2.2x10-16) with the distribution of exons

(Fig 2a). The correlation between CNEs and exons remained negative even after scaling the

CNE count within each window to the remaining sequence length after substracting the cod-

ing sequences (Fig 2b). We subsequently analyzed chicken polymorphism data to address the

mutational or evolutionary forces shaping CNEs, following previous studies in humans [43]

and Drosophila [9, 57]. We used polymorphism densities to investigate whether these forces

could still be acting on the chicken genome or they could have acted in other species and may

no longer be relevant for chicken. SNP density, which reflects events within the chicken line-

age, was calculated in the genomes of 169 chickens from different traditional breeds of diver-

gent demographic and selection history. Specifically, we compared the SNP density found in

CNEs with that in non-protein-coding elements that were identified not to be conserved (non-

CNEs; i.e. not conserved intronic, lncRNA and intergenic regions), following [43, 57]. Overall,

we found that the SNP density in non-CNEs (= 0.02) is two-fold higher than CNEs (= 0.01).

Table 1. Statistics of predicted conserved elements (CEs) based on genomic feature. The fraction of CEs per sites class is presented, for protein-coding gene annotations,

in percentages of the exonic CEs (17,148,879 bp). For non-protein-coding gene annotations, the fraction is relative to the non-exonic CEs (51,224,645 bp). Abbreviations:

CC, conserved coding; CNE, conserved non-protein-coding elements.

Genomic feature No. overlapping CEs Total overlap (bp) Genome coverage (%) Fraction of site class conserved (%)

CDS 213,787 14,683,183 1.38 85.62

5’UTRs 5,457 207,320 0.02 1.21

3’UTRs 23,721 1,460,144 0.15 8.51

Promoters 16,022 761,504 0.08 4.44

RNA genes 701 36,728 0.00 0.21

lncRNAs 121,840 7,696,557 0.80 15.03

Introns 328,579 18,520,675 1.93 36.16

Intergenic 400,501 25,007,413 2.60 48.82

Total CC 259,688 17,148,879 1.78 100.00

Total CNE 850,920 51,224,645 5.33 100.00

https://doi.org/10.1371/journal.pgen.1009027.t001
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CNEs are selectively constrained in chicken

To test whether low local mutation rates in CNEs or purifying selection is responsible for the

observed low SNP density, we looked at the derived allele frequency (DAF) distribution in

CNEs and non-CNEs. This is because mutation rate differences are not expected to affect the

allele frequency spectra. On the contrary, selective constraint is responsible for the shift in

allele frequency distribution of constrained alleles towards lower values. Allele frequencies for

derived (new) alleles were compiled using the sequence of the inferred ancestor between

chicken and turkey. The ancestral allele was determined for a total of 9 million SNPs that

passed several filtering criteria (see Methods). We observed an excess of rare (� 10%) derived

alleles of SNPs within CNEs in all chicken populations (Fig 2c). Overall, 57% of SNPs within

CNEs had a DAF� 10%, compared to only 48% in non-CNEs (the same pattern was observed

for each SNP functional class; see also Table 2). Non-CNEs displayed on the contrary a higher

proportion of common SNPs (DAF> 10%) (52% versus 43% within CNEs) independently of

their functional class (Fig 2c; Table 2). Therefore, the lower proportion of derived alleles in

CNEs indicates that evolutionary pressure has suppressed CNE-derived allele frequencies.

Fig 2. Conserved non-protein-coding elements are less common in gene dense regions and are selectively constrained. Correlation between exons and CNEs

along the chicken genome when considering (a.) and excluding (b.) coding sequences. CNEs and exon density was calculated in windows of 100 kb. The Pearson

correlation coefficient r and corresponding p-value are shown in the top left corner. c. Derived allele frequency (DAF) distribution of SNPs in CNEs and non-

CNEs.

https://doi.org/10.1371/journal.pgen.1009027.g002

Table 2. Derived allele frequency distribution for SNPs in CNEs and non-CNEs. The derived allele frequency was compiled using the sequence of the inferred ancestor

between chicken and turkey. A derived allele frequency of 10% is used as a cut-off to define rare versus common variants. Information are reported for each genomic fea-

ture that make up CNEs and non-CNEs.

Genomic feature DAF Within CNEs Outside CNEs chCADD within CNEs chCADD outside CNEs

Number of SNPs (%) Number of SNPs (%) Average (± sd) Average (± sd)

All �0.10 137,871 (57%) 482,685 (48.4%) 9.78 (4.18) 3.21 (3.18)

> 0.10 103,726 (43%) 513,935 (51.5%) 8.81 (4.25) 2.74 (2.83)

lncRNA �0.10 24,364 (57.4%) 26,429 (47.6%) 10.02 (4.00) 3.49 (3.33)

> 0.10 18,081 (42.5%) 29,014 (52.4%) 9.10 (4.13) 3.03 (2.99)

Intron �0.10 43,790 (56.8%) 159,203 (47.4%) 9.81 (4.46) 3.00 (3.11)

> 0.10 33,171 (43.2%) 176,650 (52.6%) 8.71 (4.53) 2.46 (2.74)

Intergenic �0.10 69,717 (57%) 297,053 (44.6%) 9.68 (4.05) 3.31 (3.20)

> 0.10 52,474 (43%) 308,271 (55,4%) 8.78 (4.11) 2.87 (2.86)

https://doi.org/10.1371/journal.pgen.1009027.t002
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chCADD scores for the investigation of CNE and SNP evaluation

To investigate CNEs further, we developed a model that can evaluate individual SNPs or entire

sequences based on a per-base score, with respect to its putative deleteriousness. This model is

based on the CADD approach, hence it is labeled ch(icken) CADD. chCADD is a linear logis-

tic model that is trained to differentiate between two classes of variants, one being relatively

more enriched in potentially deleterious variants than the other. To obtain these two classes,

one class is generated from derived variants, alleles that have accumulated since the last ances-

tor with turkey and became fixed or almost fixed (allele frequency> 90%) in our chicken pop-

ulations. These are depleted in deleterious variants and can be assumed to be benign or at least

neutral in their nature. The set of putative deleterious variants contains simulated de novo vari-

ants that are not depleted of deleterious variants. The feature weights obtained during training

are shown in S1 File. Performance on a held out test set to determine an optimal penalization

term are shown in S1 Fig.

chCADD distinguishes between potentially causal and non-causal variants

We evaluated the performance and applicability of chCADD on two different sets of variants

before we annotated non-coding SNPs. First, we assigned a chCADD score to all SNPs found

in the genomes of the 169 chickens previously used in the SNP density and DAF analysis and

compared these to functional predictions as annotated by the Ensembl VEP (Fig 3). To this

end, we categorized VEP predictions into 14 categories (S3 Table) and joined them to two sets,

indicating if they are located in coding or non coding region. The purpose of this was to test

whether chCADD correctly scores SNPs with respect to their potential to cause a deleterious

or phenotype-changing effect, as indicated (mostly for protein-coding mutations) by the VEP

Fig 3. chCADD score distribution of SNPs per Variant Effect Predictor (VEP) cateogy. SNPs from the 169 chickens are categorized based on

the VEP categories reported in S2 Table. In addition, we joined them based on if they are located within a coding or non-coding region.

Abbreviations: SG: Stop-Gained; CS: Canonical Splice; NS: Non-Synonymous; SN: Synonymous; SL: Stop-Lost; S: Splice Site; U5: 5’-UTR; U3: 3’-

UTR; IG: Intergenic; NC: Noncoding-Change; I: Intronic; UP: Upstream; DN: Downstream; O: Other. Coding: the joined set of CS, NS, S, SG, SL,

SN; NonCoding: DN, I, IG, NC, U3, U5, UP. The label indicates the category and the number of SNPs falling into that category.

https://doi.org/10.1371/journal.pgen.1009027.g003
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functional predictions. We observed that mutations with a relatively large deleterious poten-

tial, such as stop-gained mutations and splice-site altering mutations, were scored higher than

regular missense and synonymous mutations (Fig 3). SNPs in potentially regulatory active

regions were also evaluated to be potentially more deleterious than synonymous SNPs (Fig 3).

We performed a similar analysis considering only protein-coding and regulatory mutations

found in the Online Mendelian Inheritance in Animals (OMIA) database (Table 3). We anno-

tated only SNPs whose genomic positions were uniquely mapped to the chicken GRCg6a ref-

erence genome and the reference/alternative allele matched that in the genome assembly. Of

the 15 annotated SNPs associated with a change of phenotype, 5 were reported to cause a dele-

terious phenotype change in thex affected individual, and an average chCADD score of 27.1.

These 5 variants (3 stop-gained, 2 missense) have a chCADD score above 20 and are putatively

responsible for dwarfism, scaleless, analphalipoproteinaemia, muscular dystrophy, and wing-

less phenotypes (Table 3). All these phenotypes display a strong severity and may lead to an

early death in uncontrolled environments.

chCADD detects evolutionary constraints within CNEs

As we showed, chCADD can score functionally important protein-coding variants. We there-

fore decided to take a step further by annotating SNPs found in CNEs with chCADD to predict

their deleteriousness and function (Table 2). We assume that highly scored SNPs can help us

to identify truly functionally active regions among CNEs. We observed that rare non-protein-

coding variants located within CNEs (DAF� 10%) have an overall higher chCADD score

compared to rare variants found in non-CNEs (Table 2). This result supports our previous

conclusion based on the derived allele frequency spectrum that evolutionarily conserved non-

protein-coding variants are likely functional. As expected, this trend was most pronounced in

lncRNAs, followed by introns and intergenic regions.

We further used the chCADD score to identify specific subregions of potentially higher

functional importance within each CNE, assuming that the high scoring SNPs would indicate

that. We applied a change point analysis to search for a center region that has high chCADD

scores as opposed to the two outer regions (see Methods). We ranked CNEs based on positive

Table 3. Annotation of known causative variants with the chCADD score. SNPs were obtained from the Online Mendelian Inheritance in Animals (OMIA) and their

genomic position was lifted over to the GRCg6a reference genome.

OMIA ID(s) Variant Phenotype Gene Type of Variant Deleterious? g. or m. chCADD

OMIA 0016229031 Resistance to avian sarcoma and leukosis viruses, subgroup C BTN1A1 stop-gain no 28:g.903289G>T 17.8

OMIA 0008899031 Scaleless FGF20 stop-gain yes 4:g.63270401A>T 33.0

OMIA 0015349031 Resistance to myxovirus MX1 missense no 1:g.110260061G>A 14.2

OMIA 0009159031 Feather colour, silver SLC45A2 missense no Z:g.10336596G>T 21.2

OMIA 0009159031 Feather colour, silver SLC45A2 missense no Z:g.10340909T>C 15.7

OMIA 0006799031 Muscular dystrophy WWP1 missense yes 2:g.123014353G>A 26.3

OMIA 0003039031 Dwarfism, autosomal C1H12ORF23 stop-gain yes 1:g.53638233C>T 35.3

OMIA 0013029031 Resistance to avian sarcoma and leukosis viruses, subgroup B TNFRSF10B stop-gain no 22:g.1418711C>T 17.6

OMIA 0008109031 Polydactyly LMBR1 regulatory yes 2:g.8553470G>T 17.4

OMIA 0009139031 Silky/Silkie feathering PDSS2 regulatory unknown 3:g.67850419C>G 3.9

OMIA 0015479031 Wingless-2 RAF1 stop-gain yes 12:g.5374854G>A 23.4

OMIA 0003749031 Feather colour, extended black MC1R missense no 11:g.18840857T>C 18.0

OMIA 0003749031 Feather colour, extended black MC1R missense no 11:g.18840919G>A 18.9

OMIA 0003749031 Feather colour, buttercup MC1R missense no 11:g.18841289A>C 17.4

OMIA 0003749031 Feather colour, extended black MC1R regulatory no 11:g.18840609C>T 6.7

https://doi.org/10.1371/journal.pgen.1009027.t003
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chCADD score differences between the center region and the outer regions and filtered for sig-

nificant difference (p-value� 0.05, t-test). The top 3 ranked CNEs that overlap with lncRNAs,

intronic and intergenic regions, respectively, are shown in Fig 4a.1, 4b.1 and 4c.1.

Analogous to this subregion analysis based on chCADD score, we performed a subregion

analysis based on the 23 sauropsids PhastCons scores. Fig 4a.2–4c.2 show the identified

regions for the PhastCons score for the same CNEs as Fig 4a.1 and 4c.1, respectively. These fig-

ures indicate that chCADD generates more discriminative subregions than PhastCons. Partic-

ularly interesting are the chCADD scores for the top intergenic regions Fig 4c.1). The

chCADD score increased from 5 to 15 at the subregion change point. This is equal to an

increase of predicted deleteriousness by one magnitude, from the top 33% highest scored sites

in the entire genome to the top 3%.

To further investigate the subregion partitioning of the CNEs, we computed the SNP den-

sity in each region for CNEs for which we can assume that our assumption of three subregions

holds. We did this for both the chCADD induced regions (Fig 5, blue bars) as well as the 23

sauropsids PhastCons induced regions (Fig 5, orange bars). All CNE subregions display an

intriguiging difference in SNP density between the upstream and downstream 5bp of the

CNE, for which, however, we did not find any explanation (e.g. there is no difference in GC,

CpG or open chromatin distributions).

Conserved non-protein-coding subregions are detected on the basis of a

limited number of genomic annotations

As part of the investigation into subregions we identified two change points, splitting each CE

into three subregions, starting from 5’ to 3’, 1st-, 2nd- and 3rd subregion (Fig 1). Next we were

interested how genomic annotations that were used in the creation of chCADD, differ between

the three subregions. The model coefficients with the largest weights (S4 Table) point to the

importance of the PhastCons conservation scores calculated on the 4 sauropsids alignment.

Other important model features are secondary structure predictions and combinations with

the intronic identifier from VEP. Over all CNEs, we compared the chCADD model features,

especially the conservation scores that are based on different phylogenies, excluding the

chicken reference sequence in their computation. For all genomic annotations, we computed

absolute Cohen’s D values (standardized mean difference) [58]. We observed that the conser-

vation scores based on the largest 77 vertebrate alignments cannot properly distinguish

between the 1st-,2nd- and 3rd subregions. Conservation scores based on smaller phylogenies

(4 sauropsids and 37 amniote/mammalia) are more discriminative between these (S5 Table);

see columns 1st-2nd, 2nd-3rd).

Considering the three PhastCons scores, based on differently large phylogenies, the average

absolute Cohen’s D between the 1st- and 2nd- and the 2nd- to the 3rd- subregions differ less

between different genomic features (intergenic, lncRNA and introns) than between genomic

annotations (S5 Table; see columns 1st-2nd, 2nd-3rd). The average absolute Cohen’s D

between the three subregions of a CNE ranges from 0.259 to 0.276. In comparison, the average

absolute Cohen’s D between the same subregions, taking the three conservation scores individ-

ually, range from 0.137 to 0.338. The effect sizes between the different multiple sequence align-

ment PhastCons score (i.e. 4 sauropsids, 37 amniote/mammalia, 77 vertebrates) differ by more

than 2-fold.

Intronic CNEs overlap functionally important genes

Intronic CNEs were associated with genes for which we obtained phenotype annotations of

their orthologs in human, mouse, and rat. We investigated the top 10 CNEs that are located in
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Fig 4. Change point analysis of the top 3 CNEs for each genomic feature, respectively (lncRNA, intronic, intergenic). CNEs are sorted based on the

largest difference between the 2nd section and 1st or 3rd section for each of the three CNE classes respectively (lncRNA, intronic, intergenic). Change

points were once computed based on maximum chADD score per site (a.1,b.1,c.1) and once on 23 sauropsids PhastCons scores (a.2,b.2,c.2). The dots in

each plot display the scores for the 5 bp up- and downstream regions. The transition from blue to red background indicates the identified change points.

a.1) lncRNA—maximum chCADD a.2) lncRNA—PhastCons scores. b.1) intronic—maximum chCADD. b.2) intronic—PhastCons. c.1) intergenic—

maximum chCADD. c2) intergenic—PhastCons.

https://doi.org/10.1371/journal.pgen.1009027.g004
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Fig 5. SNP densities computed for each section of the three different CNEs (lncRNA, intronic, intergenic). The

orange bars represent the SNP densities for that section based on change points derived from the 23 sauropsids

alignment PhastCons scores, the blue bars represent the SNP densities based on change points identified via chCADD.

https://doi.org/10.1371/journal.pgen.1009027.g005
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introns, with the largest p-value differences between the 1st and 3rd to the 2nd section. In

total, 6 CNEs were associated with homologous genes that have annotated phenotypes in other

species. Among the phenotypes found for human genes are mental retardation and non-syn-

dromic male infertility. For mouse, these included neuronal issues and abnormal shape of

heart and limbs (S2 File). The link to highly severe phenotypes in other species highlights the

potential importance of regulatory features for orthologous genes in chicken.

Discussion

The prediction of CNEs depend on the phylogenetic scope

Non-protein-coding elements are typically identified by sequence-level similarity across spe-

cies, which is a generally applicable criterion of conservation and biological function [10].

However, when predicting CEs, and subsequently CNEs, the evolutionary distance among spe-

cies included in the alignment (or phylogenetic scope) is an important parameter that can con-

siderably affect the prediction and resolution of CEs. If the evolutionary distance among

species is too narrow, the specificity of constraint is reduced, but if it is too broad, the number

of CEs rapidly declines and lineage-specific conservation is lost [10, 59].

One of the first studies to address the impact of the phylogenetic scope on CEs prediction

was that of Lindblad-Toh et al. (2011). In their study on the 29 mammalian multiple sequence

alignment, the authors identified 3.6 million conserved elements spanning 4.2% of the genome

at a resolution of 12 bp [12]. When comparing these results to a 5 vertebrate alignment, Lind-

blad-Toh and colleagues observed that only 45% of the 5 taxa CEs were covered by the 29 taxa

alignment. The partial overlap indicates that most of the CEs derived from the 29 taxa align-

ment were mammalian-specific [12]. The issue resulting from a broad phylogenetic scope on

CNEs has also recently been reported by Babarinde and Saitou (2016), where authors identi-

fied CNEs between chicken and four mammalian species, including human, mouse, dog, and

cattle [60]. By applying a minimum length of 100 bp, Babarinde and Saitou (2016) identified

21,584 CNEs in chicken, a small number as expected from the divergence time between

human and chicken occurred approximately 310 million years ago [55]. Therefore, CNEs

detected among distant species are better predictions of ultraconserved CNEs than CNEs

between closely related species (i.e. human-mouse) [61], as they were already present in the

ancient common ancestor of the considered species.

In this study we chose the 23 sauropsids multiple sequence alignment for two reasons. First,

the phylogenetic distance between crocodilian and bird species (240 million years ago) [36] is

large enough to detect likely functional CNEs. Second, the alignment is reference free allowing

the identification of lineage-specific CEs. Reference-free alignments should always be pre-

ferred over reference-based ones [62]. In fact, genomic regions shared within a certain clade,

which would be missed in a reference-based alignment (e.g. MULTIZ), can also be detected.

As a result, reference free alignments better enable the study of genome evolution along all

phylogenetic branches equally.

Avian genomes have similar genomic characteristics

According to our study, 8% of the chicken genome is covered by CEs for a total of 1.14 million

CEs. These results are comparable to those on the collared flycatcher genome (Ficedula albicol-
lis) [8]. By means of the same alignment, Craig et al. (2018) identified 1.28 million CEs cover-

ing 7% of the flycatcher genome. The genome of many bird species is highly compact and thus

small in size. Small genomes are thought to require fewer regulatory sequences involved in the

organization of chromatin structure [8]. However, the similarity in genome size between, for
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example, chicken (i.e. GRCg6a: 1.13 Gb) and flycatcher (i.e. FicAlb1.5: 1.11 Gb), reflects the lit-

tle cross-species variation characteristic of birds [63].

The limited number of CEs often identified in birds relative to mammals has repeatedly

been linked to gene loss [22, 24, 64]. However, the role of gene loss in avian evolution, genome

size, and prediction of CEs has recently been questioned. According to Bornelov et al. (2017),

gene loss was incorrectly hypothesized from the absence of genes clustering in GC-rich regions

in the earlier chicken genome assemblies [25]. In fact, these regions are often difficult to

sequence and assemble. The issue is particularly prominent in the GC-rich micro-chromo-

somes, which, as we show, contribute disproportionately to the total density of functional

sequence (S2 Fig). We therefore recommend future comparative genomics studies in chicken

to make use of the most recent and complete genome assembly to avoid any erroneous link of

CEs to gene loss in chicken.

Conserved non-protein-coding elements are maintained by purifying

selection

A fundamental question in the study of CNEs is the role of purifying selection. Purifying selec-

tion can be discriminated from a low mutation rate by comparing the derived allele frequency

(DAF) spectra in constrained regions (i.e. CNEs) with that of neutral regions (i.e. non-CNEs)

[9, 43]. The rationale is that new mutations are unlikely to increase in frequency in constrained

regions. Although CNEs are identified using an interspecific comparative genomic approach,

the evolution and dynamics of these regions are generally analyzed at an intraspecific scale by

looking at polymorphism data [43, 65]. In this study, we showed that the evolutionary con-

straint acting on the 23 sauropsids is correlated with constraint within the chicken popula-

tions, as assessed from chicken polymorphism data. Consistent with studies in humans [12,

43], plants [6], and Drosophila [9, 57], the derived allele frequency spectra of our chicken pop-

ulations is shifted towards an excess of rare variants in CNEs. These results indicate that the

conservation of CNEs in the chicken genome is mainly driven by selective constraints, and not

by local variation in mutation rate. The role of purifying selection was also confirmed by the

reduced SNP density in CNEs compared to non-CNEs and by the reduced SNP density in spe-

cific conserved non-protein-coding subregions. The concordance in SNP density is a clear

indication of reduced levels of population diversity and functional roles of CNEs as confirmed

by the association of subregions within CNEs to highly severe phenotypes in humans, mouse,

and rat. However, future population diversity comparisons in terms of nucleotide diversity (π)

[66] or Watterson’s estimator (θw) [67] between outbred and inbred populations would fur-

ther elucidate our understanding of purifying selection in CNEs.

Integrating comparative and functional genomics into a single score

We developed a ch(icken) Combined Annotation-Dependent Depletion (chCADD) approach

that provides scores for all SNPs throughout the chicken genome. These scores are indicative

of putative SNP deleteriousness and can be used to prioritize variants. The annotation of

chCADD relies on the combination of a diverse set of genomic features, including evolution-

ary constraints and functional data [20, 21]. Multiple sequence alignments of distantly related

species are better suited to differentiate conserved sites that can reliably be used to identify

functionally important regions. However, these regions are often large enough to question the

functional role of the entire region. Our findings show that chCADD outperforms any conser-

vation-based method alone (e.g. PhastCons) in the identification of functionally important

subregions within CNEs. Therefore, methods, such as chCADD, are required to fine-tune in
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one step CNEs to identify subregions directly linked to—in some cases deleterious—

phenotypes.

According to the authors of the original human CADD [20], SNPs with a score above 20

(i.e. the SNP is among the top 1% highest scored potential SNPs in the genome) could be

considered deleterious. This means that the higher the score, the higher the chance the vari-

ant has a functional effect or may even be deleterious. When annotating protein-coding and

regulatory mutations found in OMIA, we observed that SNPs with a chCADD score of 15

can already be considered functional. Therefore, our findings indicate that by setting an

arbitrary threshold of 20 may underestimate the fraction of the genome that is actually func-

tional. This is particularly pronounced when the variants in question are located outside

protein-coding regions. Therefore we recommend future chCADD users to evaluate the var-

iants identified in their populations to see if they are particularly highly scored compared to

other variants in the same genomic region. Further, the signal to order SNPs of interest is

obtained over evolutionary timescale, which means that mutations that would have been del-

eterious for chicken in the past may not be deleterious for chicken in a commercial environ-

ment and vice versa. chCADD supports the ordering of SNPs with respect to their potential

interest but for final economical evaluations, further information about each investigated

SNP may be required.

Future uses of chCADD

The high scoring of non-protein-coding variants in subregions of CNEs has important impli-

cations for future functional and genome-wide association studies (GWAS) in chicken. A very

large fraction of trait- or disease-associated loci identified in GWAS are intronic or intergenic.

This is expected considering the preponderance of non-protein-coding SNPs on genotyping

arrays [5] or along the genome. However, because of a lack of understanding of the function of

non-protein-coding mutations, most of the causal mutations reported in the OMIA database

are coding. Moreover, in the presence of non-protein-coding mutations, many studies stop at

the general locus or—understandably—assume that the closest neighboring gene is affected.

However, these assumptions on genomic distance are simplistic. Our findings in chicken dem-

onstrate that chCADD can accurately pinpoint non-protein and protein-coding variants asso-

ciated with important phenotypes in chicken. Therefore, we expect future genome-wide

association studies combined with chCADD to identify novel causal mutations or substantially

narrow down the list of potential causal variants in large quantitative trait loci (QTLs). We also

expect chCADD to accelerate the discovery and understanding of the biology and genetic basis

of phenotypes.

Conclusion

Deciphering the function of the non-coding portion of a species genome has been a challeng-

ing task. However, the availability of genomes from a great variety of species, along with the

development of new computational approaches at the interface of machine learning and bioin-

formatics, has made this task possible in model and non-model organisms. Our findings indi-

cate that an accurate assessment of selective pressure at individual sites becomes an achievable

goal. We have also shown that chCADD is a reliable score for the analysis of non-protein-cod-

ing SNPs, which should be targeted along with protein-coding mutations in future genome-

wide association studies. We therefore anticipate chCADD to be of great use to the scientific

community and breeding companies in future functional studies in chicken.
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S1 Fig. Model performances measured in Receiver Operator Area under the Curve

(ROC-AUC) and log-loss for three different ridge penalization terms (0.1, 1.0, 10.0). The

scale is adjusted to make the differences between the models visible. Penalization of 1 was

selected due to the lowest log-loss and largest ROC-AUC.

(PDF)

S2 Fig. Distribution of conserved elements (CEs) along the chicken genome. The barplot

displays the fraction of the genome per chromosome covered by conserved elements.
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S3 Fig. Frequency size distribution of predicted conserved elements. The y-axis shows the

frequency, while the x-axis the size in base pairs (bp) of the predicted conserved elements.

(PDF)

S4 Fig. Frequency size distribution of predicted conserved elements overlapping exonic-

associated gene annotations. The exonic-associated conserved elements include CDS, 5’UTR,

3’UTR, and promoter regions.

(PDF)

S5 Fig. Frequency size distribution of predicted conserved elements overlapping non-pro-

tein-coding gene annotations. The non-protein-coding gene annotations include introns,

lncRNA, and intergenic regions.
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S1 Table. List of annotations which form the set of descriptive features for which model

weights are learned. Missing values are imputed via the specified values. Annotations of the

type (factor) are OneHotEncoded and combinations between annotations form the final fea-

ture set.

(PDF)

S2 Table. GO term enrichment analysis of exonic-associated CE and intronic CEs.

(PDF)

S3 Table. VEP consequences summarized in 14 categories. If multiple annotations exist for

the same variant, the consequence is selected according to the displayed hierarchy, starting at 1

and ending at 14.

(PDF)

S4 Table. Top 10 model features with the largest assigned weight and their explanations.

(PDF)

S5 Table. Differences between genomic annotations utilized for the chCADD model. Dif-

ferences are measured in absolute Cohen’s D between the different subregions in which each

CNEs was subdivided in the change point analysis.

(PDF)

S1 File. Model coefficients of the trained logistic regression model which is used to score

the SNPs with respect to their putative deleteriousness.

(XLSX)

S2 File. Phenotypes of homologous genes of the top 10 intronic CNEs. The top 10 intronic

CNEs were selected based on the largest differences between the 1st and 3rd to the 2nd section
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