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1
Executive Summary

Automation has come knocking at the door of the world of aircraft maintenance. The general trend shows
that the total aircraft fleet size of the world increases in contrast to the number of technicians, which de-
creases. With the outbreak of the coronavirus disease more technicians left the sector, further triggering the
demand of automation of frequent aircraft inspections. Therefore, the Royal Netherlands Aerospace Center
(NLR) launched a project and setup called Leading Edge Scanner (LES) to automate technician performed
inspections on aircraft for partial or total replacement of this service. The LES will automatically detect and
classify anomalies on aircraft components.

Automated three-dimensional (3D) reconstruction of known or unknown objects requires robots and sen-
sors. As several images from different viewpoints are needed to reconstruct a 3D computerized object, a view
planning strategy is required to find the Next-Best-View (NBV). This is necessary to automate the view plan-
ning process for where to look next after an initial scan is taken of an object for reconstruction and further
processing. The sensor system needs to be located at the desired location. Afterwards, raw images must be
processed to eventually come to a fully reconstructed 3D model of the inspected object. The challenging
problem of finding the NBV has been studied since the 1980s.

The LES is a five Degrees of Freedom (DOF) system. It consists of a robotic arm with two sensors attached to
its end-effector. The sensor payload consists of a monochrome stereoscopic 3D sensor and a two-dimensional
(2D) Red Green Blue (RGB) sensor. The robotic arm is placed on a linear slider. This system can position the
sensors to a desired location and thereby viewpoint, which is relative to the object. The 3D sensor produces
a point cloud, which after post-processing and scans from different poses is stitched together to obtain the
3D model of an object. Other general data structures are the triangle mesh and voxels. The reconstruction
workflow consists of robot positioning, scanning, registration and update and planning the NBV. This process
continues until a termination criterion is met.

This report explains the theory behind NBV, compares NBV algorithms and strategies and simulates the scan-
ning of several objects with the constraints of LES. The research question is about which NBV algorithm is
applicable to the LES to be used in real scenarios. Answers on the sub questions how the imaging pipeline
is set up for image acquisition and object registration (1), which kind of sensor systems are required for un-
known object reconstruction (2) and which prominent view planning algorithms are available (3) have lead
to the final answer to the presented research question.

The principles of the algorithm Surface Edge Explorer (SEE) is used for this simulation. It is surface based,
uses point clouds and their boundaries for NBV calculation. It outperforms volumetric approaches in more
surface coverage in less number of scans. Volumetric methods also come with relatively more computational
costs due to large memory usage.

Six NBV selection methods are simulated in order to find the most optimum NBV strategy for LES. The hy-
brid option, which is selecting the candidate points with the minimum distance to the sensor and minimum
curvature resulted in full coverage of the scanned model. The proposed NBV algorithm for the LES is the SEE
with the hybrid NBV selection method. The basis of SEE is border detection and normal vector calculation.
The hybrid method uses the ranking method of minimum distance and minimum curvature combined and
ensures full surface coverage at an acceptable computational time and total sensor movement distance. It
also terminates more stable than the other only distance and curvature methods, which most of them not
being capable of realising full surface coverage.
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2
Introduction

In order to automatically reconstruct a three-dimensional (3D) model of unknown objects, a view strategy
or planning is required. Automatically finding the next viewpoints, called the Next-Best-View (NBV), can
partially or totally replace the manual work that is needed during scanning of objects with sensors, eventually
reducing workloads, costs and time. Another possible benefit is the improvement of the model quality.

The Royal Netherlands Aerospace Center (NLR) intends to automate visual inspections performed on aircraft.
To reach this goal, several research projects are being conducted, one of them being for object reconstruction
in a computerized 3D environment. This reconstruction needs a sensor system, which acquires a set of mul-
tiple images, and a positioning system to position the sensors.

Another NLR research project led to the current experimental setup called the Leading Edge Scanner (LES): a
robotic arm with two sensors, mounted on the end-effector. This five Degrees of Freedom (DOF) positioning
system also consists of a linear module to move the robotic arm with attached sensors. It can position the
sensor system to a desired location and thereby viewpoint, which is relative to the object.

Multiple images from different viewpoints are necessary to reconstruct an object in 3D. These images are
merged to form the desired 3D model. These images are taken by sensors, which collect depth data of point
clouds from various viewpoints. Currently, the image acquisition is done manually where the LES requires
viewpoint coordinates for moving the sensors to the desired location.

As part of the desired automation and quality, the LES needs an algorithm to predict the next camera pose
without human intervention after starting the reconstruction process. The latter will be the scope of this
thesis assignment, in this case for unknown objects. The so called view planning algorithm, or NBV, is about
finding the optimal view sequence to automatically reconstruct an object by focusing on the best model qual-
ity and fewer robot movements. Beside the desired automation, this improves the efficiency of the system in
terms of runtime, quality and computational costs.

The ultimate goal of the LES is to automate visual anomaly detection and classification to increase damage
assessment on the leading edge of wings. This requires the automation of image acquisition. The project
stage of view planning for 3D reconstruction of unknown objects is reached after previous research projects
at NLR. These were on the field of investigating hardware and software for robotic solutions, hardware and
sensor systems for inspection purposes, software and algorithms for 3D image acquisition and processing
like noise filtering, downsampling and merging of images. Also research on software and algorithms for two-
dimensional (2D) and 3D defect detection and classification is currently researched.

The area of interests of this academic research are the theory and the reasoning behind NBV algorithms,
including relevant constraints and requirements. The output of this research is a MATLAB model describing
the most applicable NBV algorithm for the LES. The simulation visualizes the calculated new viewpoints and
the results of the NBV algorithm being the surface coverage, total number of scans, computation time and
distance traveled by the robotic arm. The chosen algorithm will be used by the LES to further automate the
system.

The NBV strategy is based on boundary detection, data segmentation, normal and curvature calculations
and NBV ranking. As many new sensor positions are possible, ranking of NBV’s is a crucial step. The chosen
method and algorithm needs to self-terminate. Several methods and objects are simulated and compared
to arrive at an applicable strategy for LES. These are the minimum distance, maximum distance, the latter
two combined, minimum curvature(s) and a hybrid method which is the minimum distance and minimum
curvature combined. The simulated objects are a sphere, cone, cube and plate, which are represented by a
point cloud.

Chapter 3 describes the hardware required for object reconstruction. Chapter 4 contains the theory behind
NBV and a comparison of common NBV algorithms. Chapter 5 presents the NBV strategy, ranking and sim-
ulation. The results are given and discussed in Chapter 6. Chapter 7 contains recommendations for future
work. The final Chapter, 8, concludes this thesis. Appendices A, B and C contain the codes of the complete
simulation. Appendix D presents the NBV results of the simulated objects.
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3
Hardware: Sensors and Robots

This Chapter starts with an introduction to automated 3D object reconstruction (3.1) and describes the types
of sensors (3.2) used. Section 3.3 is about robots used for sensor positioning. Section 3.4 presents the available
experimental setup at NLR, the LES. The summary can be found in Section 3.5.

3.1. Introduction to automated 3D object reconstruction
3D object reconstruction requires scans from multiple viewpoints of an object. A single view can contain
insufficient information or inadequate coordinate data about the scanned object. This leads to the necessity
of planning robot movement based on visual information and algorithms. View planning is crucial to achieve
specific goals in the best way, in this case to be able to predict the best next view pose and also to reach that
position. Then it is required to reconstruct an object in the most optimal manner considering model quality,
runtime and computation costs. Active vision tasks are generally fulfilled by sensors and robots [1].

3.2. Sensors
Cameras for shape measurement or visual sensing, called sensors, are mainly divided in two groups, being
passive or active devices [2]. These type of sensors obtain 2.5D information about a scanned object and
calculate the depth and thereby the distance of the scanned object surface in view to the sensing system.

Passive range sensors need an external light source and are thereby independent of the hardware [1]. Sensing
of passive sensors is based on stereo vision, obtaining depth information just like the human eye. According
to Zeng et al., passive measuring has two main disadvantages. Firstly, the scanned object needs to have
texture on it to be able to obtain qualitative data. The second disadvantage is the reduced measurement
performance when changes in lighting occurs. Active sensors use their own light source and therefore are
less affected by external light factors. Time-of-Flight (ToF) and structured light sensors are active sensors
and obtain depth information by projecting light onto an object. The reflected light is captured and used for
calculating the distance [1].

Zeng et al. compared the three above described widely used measurement techniques and types of range
sensors [1]. Table 3.1 shows the compared three sensor types based on distance performance, accuracy, in-
fluence of light, depth measurement, resolution and cost.

It is important to note that all scanners have their optimal working distance [3]. A sensor can not be placed
too far to the object, nor too close. The Object Bounding Box (OBB) is related to the furthest working distance
of the sensor.

Table 3.1: Comparison of depth sensors [1]

Type Technique Distance Accuracy
Influence
of light

Depth Resolution Cost

Stereo vision Passive Short High Strong Sparse High Low
ToF Active Long Low Little Dense Low High
Structured
light

Active Short High Little Dense Low High

Zeng et al. states that, for relatively short distances to the object, stereo vision [4] can be used. In the project
of NLR and considering the current set-up, the scanning of aircraft components take place at relatively short
distances, varying from 0.5 m to 1.5 m. Stereo vision has high accuracy and is strongly affected by a change
in lighting conditions. Zeng et al. conclude that the depth measurement is sparse, meaning that the obtained
point density is lower than the other ones and that data points are relatively further away from each other.
The resolution is high at low cost.

The ToF sensor [2], using a laser, is used for medium to long ranges, as stated by Zeng et al. via Scott and Roth.
As for the active sensors, ToF can have low accuracy. This is the opposite for structured light sensors: short
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distance and high accuracy. Both active sensors can handle lighting changes, their depth measurements are
dense (many points in a scanned area), resolution is, according to Zeng et al., relatively low compared to
stereo vision and cost is high. ToF sensors suffer from reflection of bright surfaces. The measurement can be
distorted when multiple reflections enter the sensor due to concave shapes.

Structured light is a projection of light patterns on a surface [5]. The patterns will deform when touching
the curvature of an object. The shape of the object is determined based on this bending or distortion. A
stereoscopic sensor is needed to sense the 3D shape. Also the thickness of the line can be used for the distance
measurement. The performance of this method also highly degrades in the case of highly reflective surfaces.

Figure 3.1 shows a reconstruction setup with a range sensor and its field of view. Also the different types
of areas can be observed, being the scanned surface, empty area, occluded area and occlusion plane. The
obtained resolution varies with the surface angle to the sensor. Low angles result in better results.

In the case of scanning aircraft components for maintenance purposes, the distance is relatively short and
high to very high resolution is desired [6]. The components can be very reflective and are texture-less. There-
fore, stereo vision can be a candidate for application in the industry. However, it is strongly affected by light
and depends on texture on the surface of the object. These problems can be solved by using a structured
light scanner combined with a projector. To resolve the absence of texture of the surface, a projector with the
ability of projecting texture can be used. The LES, explained in Section 3.4, has a similar texture projector.

Figure 3.1: Reconstruction scene [8]

3.3. Robots
As the aim is automation of processes, robots come to the table, sometimes even literally. Using robots for
scanning and reconstructing objects for computer models needs active decisions taken manually via a con-
troller or by the system itself. As more and more automation is preferred and required, the definition active
vision comes into play. Robots needs to move autonomously in order to achieve the automation goal.

From literature, two types of robots come to the foreground for 3D reconstruction of objects. These are
robotic arms and mobile robots. Robotic arms have a fixed base and an arm to move the sensors to particular
poses. In the case of the LES, which includes a robot arm, the base is attached to a linear module which can
translate in a vertical direction (or horizontal direction if the setup is rotated). These kind of robots are used
for tasks where relatively small movements are required. The sensors are attached to the last part of the arm,
called the end-effector. The position of the end-effector is also the position of the sensors. Robot arms usu-
ally have several DOFs and rotation capabilities. Being partially static limits the working area of robotic arms,
also that of the LES.

In the case when more flexibility is needed and the workspace is large, mobile robots are used. These robots
also move sensors, which are placed in their robotic hand or are mounted on top of the head. This type of
robots also need path planning to avert collisions with the object or their surroundings. They are prone to
accumulating position errors leading to more uncertainty.

In case of very large objects, vehicles or buildings, the usage of drones is also an option. However, deploying
flying vehicles can lead to high positioning errors which can accumulate. This will require an additional
positioning system.
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3.4. LES
The LES consist of a robotic arm (Robolink RL-DC) mounted on a linear sliding module. Two sensors are
mounted on the robotic arm which are a stereoscopic 3D depth sensor and a 2D Red Green Blue (RGB) sen-
sor. Parallel to the measurement setup, a wing component of a civil aircraft (Boeing 737) is attached as test
specimen. This component is the leading edge slat which is used for increasing the aerodynamic perfor-
mance of the aircraft.

The current vertical experimental setup has five DOF, four from the robot itself, namely in the x-, y-, z-
direction and rotation and one from the linear sliding module, again in the y-direction. Figure 3.2 shows
the setup with the robot arm. The user can manually give location inputs to move the robot to a location on
the wing.

The monochrome 3D depth sensor is an Ensenso N35 and consists of a left and right camera, both 1.3
Megapixel (MP), for stereoscopic vision to calculate the depth of an object. This provides the distance. The
structured light scanner produces a height map with location values. The resolution is 1280 x 1024 pixels. The
maximum working distance is 3 m. The optimal working distance of the sensor (ρ) is around 0.4 m and 0.8
m, obtained by tests of objects with different sizes. When the optimal ρ is set to 0.6 m for an object with a
volume of 0.6 m width (x-axis) by 0.4 m height (z-axis), the sensed depth in y-direction is 0.3 m (factory speci-
fications). It is expected that defects around 1 mm should will be detected with this parameters. Between the
stereoscopic lenses, a blue light projector ensures the illumination of structured light on the surface. The 3D
depth sensor also uses its own licensed texture projection to be able to predict the depth from high-reflective
surfaces like an aircraft wing. The output of this camera is a point cloud for the 3D model. A second RGB
sensor of 5 MP is mounted above the 3D sensor to colorize the point clouds.

Both cameras (Figure 3.3) result in a 3D model after several images which can be analysed by the available
industrial computer. The image acquisition is done by software of the camera combined with a custom code
written by a former NLR researcher.

Figure 3.2: The LES set-up Figure 3.3: The sensors of LES

The robotic arm has, when fully unfolded, a length of 0.71 m. This is higher than the distance between the
base of the robotic arm and the current test object in the frame (0.47 m), meaning it can not fully unfold at an
initial scan. This constraint also restricts the full azimuth angle (φ) of +90°(full right) and -90°(full left) on the
xy-plane to not be achievable when maintaining a ρ of 0.6 m. Therefore, the angles are limited to +45°(right)
and -45°(left) leading to the fact that only the the front part of the object can be scanned, hence the name
LES. The current test object also limits the φ at +45 °and -45 °to ensure the working distance ρ. Also, only the
front surface of objects are considered for research as the back side of the test object is not reachable.

The NBV algorithm is tested in a computerized model of the LES set-up. The main reason is that the experi-
mental set-up has no collision avoidance at this stage. Without this, the LES is prone to accidents.
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3.5. Summary of Chapter 3
Reconstructing an object in 3D requires images from multiple viewpoints. These are then merged to build a
complete 3D model. This Chapter described three types of sensor types for scanning the surface of an object.
These methods are called stereo vision, ToF and structured light. In order to automatically position the sensor
to the desired location, a mobile robot or robotic arm can be used. The experimental setup of NLR consists
of a five DOF robotic arm with two sensors on board: a monochrome stereo vision 3D sensor, which is a
structured light scanner with a projector, and a RGB sensor. The working distance of the LES is 0.6 m, which
is the distance where the scan quality is sufficient. The sensor can make azimuth and elevation angles of plus
and minus 90°, however due to the fixed test setup and relative short arms, these angles are limited to plus
and minus 45°, in order to satisfy the working distance of 0.6 m.
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4
Concept of NBV and Algorithms

This Chapter describes the concept of NBV by first introducing the term in Section 4.1. The following Section
(4.2) is about the classification of NBV algorithms. Section 4.3 dives into the constraints and requirements of
typical NBV algorithms. The next Section (4.4) explains the methods of data acquisition, where the concepts
voxel space (4.4.1), triangle meshes (4.4.2) and point clouds come into play (4.4.3). Section 4.5 contains an
overview of the applicable algorithms for LES to predict the NBV. Section 4.6 is an evaluation of the applicable
NBV algorithms. Section 4.7 summarizes this Chapter.

4.1. Introduction to NBV
Reconstructing an object in a computer environment requires several images taken from different locations,
also called viewpoints, to obtain a complete model [7]. The objective is to determine where to look next,
meaning where to position the sensor system, after an first initial image of an object is taken. To date, finding
an optimal set of viewpoints for 3D object reconstruction by sensors on robots still remains a challenging
topic due limitations like occlusion and positioning as well as sensor performance. According to Zeng et
al. [1], there were until 2008 more than two hundred research papers predominantly focusing on sensor
positioning and view planning.

View planning for 3D object reconstruction has been a problem which has been studied since the 1980s. The
common applications of view planning are for object reconstruction, scene modeling, object recognition and
pose estimation. This thesis focuses on object reconstruction.

As the to-be-scanned object is unknown, planning the viewpoint beforehand is not possible. Researchers
around the world try to find the best solution and are aiming at the most optimum automation of sensor
positioning and reasoning where to look next after the first initial scan. This lead to the term NBV, which is
widely used in literature. NBV depends on an algorithm, which produces a new best viewpoint in the working
space of a sensor system. Chen et al. in their book [8] state that a system without view planning may need
as many as seventy different images to completely reconstruct a standard 3D object. Optimal view planning
strategy can reduce this number to less than ten.

The reconstruction process consists of the following workflow: positioning, scanning, registration and plan-
ning of the NBV [9]. Figure 4.1 summarizes this process. The sensor produces a range image and, from the
initial position, a partial model.

Figure 4.1: Reconstruction workflow [8]

The four key challenges in view planning are uncertainty about the working environment, variability of con-
straints and requirements, positioning error and underperformance of sensing devices [7]. Occlusion hard-
ens data collection as some surfaces are unseen due to shadows, test setup or other elements that block the
view. Also the surface material, abrupt changes in shape and texture affect the data acquisition process. NBV
requires knowledge about three spaces: the surface space, viewpoint environment and work space [2].

The performance of a view planning strategy and algorithm is mainly measured in the amount of required
scans compared to manual operation, surface coverage, quality, digitization time and total travelled distance
by the robot. The NBV algorithm should stick to several constraints, which are explained in Section 3.3, and
must ensure that all surfaces scanned are reconstructed, even of relatively complex objects.
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4.2. Classification of NBV algorithms
NBV algorithms are divided into two categories: model-based and non-model-based. Knowing the dimen-
sions and the object itself beforehand falls under model-based. From [10], it was found that the least number
of viewpoints in case of prior knowledge about objects is a nondeterministic polynomial problem, meaning
that there is no global optimal solution for most reconstruction tasks. The view planning algorithm should
generate a near optimal solution within tolerable time. The non-model-based method does not have infor-
mation about the object, only a rough estimation of the dimensions.

The two classifications search-based and volumetric, or synthetic, also further divide approaches for finding
the optimal NBV algorithm [11]. Search-based approaches make use of large numbers of candidate view-
points which are then selected under defined constraints. Algorithms are distinguished based on these se-
lections. The goal of search-based approaches is Information Gain (IG) ([12], [13]) and thus obtaining the
most amount of new information at the next view. Also the quality of the output ([14], [3]) and cost of robot
movement [15] can be taken into account.

Non-model based methods mainly use volumetric or surface reproductions [16]. Volumetric approaches in
advance discretize the to-be-scanned field to voxels, being small cubes, and do not depend on the object
geometry. The surface method on the other hand analyses the local geometry during the scanning process
and is dependent on the geometry.

4.3. Constraints and requirements
It is crucial to know on what bases the algorithms are compared and what the main strategy is in view plan-
ning. Early NBV algorithms do not take occlusions into account and also do not have termination criteria
based on quality. Later, the quality and running time were also considered.

Many papers have discussed constraints and requirements for realistic NBV strategies. Scott et al. [2] catego-
rized them as general, object, sensor and positioning constraints, summarized in Table 4.1.

From general constraints the requirement of a model quality specification arose. With that the question can
be answered as to whether the view planning algorithm should focus on maximum possible quality, precision
and complete reconstruction instead of runtime. For other purposes like inspection of particular surfaces,
reconstruction of the complete object may not always be needed.

The view planning strategy or algorithm should also be applicable to different sensors, objects and position-
ing systems. Also sensor parameters like laser intensity or scan distance should be planned through general-
ized viewpoints. So, it is desired that the NBV algorithm is generalizable for any other similar sensor.

As 3D image acquisition requires multiple viewpoints, obtained images should be merged together. This can
only be realized by view or data overlap. The NBV algorithm needs to foresee the amount of image overlap
along the edges of adjacent images to be able to integrate the obtained scans from different poses.

The NBV algorithm also needs to be robust to be able to handle system failures, needs to be efficient to com-
pete with the case of manual operation and should stop, self-terminate itself, when the mission is accom-
plished or even failed in the meantime.

Object constraints are the limited knowledge beforehand about object shapes and material. The view plan-
ning algorithm does not have a model database to compare objects and must function for all reasonable
geometry as well as materials.

As for the sensor constraints, the performance is limited by the frustum, shadow effect and reflections. [2]
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Table 4.1: View planning constraints [2]

Category Requirement/constraint
General Model quality
General Generalizable algorithm
General Generalized viewpoints
General View overlap
General Robust
General Efficient
General Self-terminating
Object Minimal a priori knowledge
Object Shape constraints
Object Material constraints
Sensor Frustum
Sensor Shadow effect
Sensor Measurement performance
Positioning system DOF
Positioning system Pose constraints
Positioning system Positioning performance

The position system is restricted by the DOF and range. These constraints are evaluated for the feasibility
of a viewpoint, meaning can the sensor reach the desired location. Also here performance comes into play:
repositioning should happen with minimal pose error and within relatively little time.

The authors of [8] dive further into sensor constraints and describes ten limitations of these sensing de-
vices, being the visibility, resolution, viewing distance (depth), field of view, overlap, viewing angle, occlusion,
reachability of the viewpoint, collision and runtime.

According to Pito [17], using a full model of the sensor and its sampling pattern contributes to the effective-
ness of the NBV algorithm. This also results in an universal algorithm for other sensors.

4.4. Data acquisition
View planning is based on detection of an object, especially a surface, in a predefined bounding box in 3D
space. The NBV is determined during operation of the system and not beforehand. Obtained data from the
initial scan is used for determination of the next viewpoint. The view planning strategy is therefore depen-
dent on the method of data acquisition. The leading methods are voxel representation, triangle meshes and
point clouds, illustrated in Figure 4.2 [1]. The first two are also called structured representations, the latter
unstructured [18]. Mesh triangles are for surface representations and voxel space is for volumetric structures.
Ray casting is used for structured methods whereby occlusion and scene coverage can be detected.

Figure 4.2: Triangle mesh, point cloud and voxel representations [1]
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4.4.1. Voxel space

One of the strategies to determine the NBV is the division and discretization of the 3D environment by a
occupancy map (grid) or an octree [1]. In case of uniform division, the grid is called a voxel map, which is a 3D
matrix of voxels [19]. When hierarchical division is executed, the grid becomes an octree [20]. The occupancy
map is used to store data about the reconstructed 3D object [21]. The author of the latter reference uses an
octomap, which is an probabilistic octree, to deal with imperfect sensor readings. The majority of the view
planning methods use the generate-and-test method. This implies that the viewpoint space is discretized
and selection of the NBV is done by an optimization algorithm. Representation by voxels is seen a simpler
than other representations.

Connolly [22] was one of the first to find a way to digitize an object in a predefined space for reconstruction.
He introduced the voxel space and came up with the idea of an octree structure, basically a tree which re-
cursively divides a cube into eight smaller cubes. This structure contains four nodes, divided in a parent and
their children. The leaves of this tree are categorized as empty, occupied and unseen. Empty is describing
empty space which is visible from at least one of the viewpoints used to create the octree. Occupied nodes are
detected points on a surface of an object and unseen nodes are not (yet) sensed. During initialization of the
process the root of the (oc)tree is set to unseen. View selection is based on the coverage of the most unknown
voxels.

The major disadvantage of voxel representation is memory consumption as it processes the complete work-
ing environment leading to increased computation costs and time. A standard object only occupies a relative
small part of an environment, a surface even smaller. As multiple scans are required to reconstruct an 3D
model and voxelization or an update after every scan, the computation load and time increases even more.

4.4.2. Triangle mesh

One of the common techniques to reconstruct the surface of an object is by triangle meshes. These triangles
are attached to each other by their edges or corners. Triangle meshes provide fine details of surfaces. A
shortcoming of this method is that the empty or unknown space is not processed, which voxel representation
does.

4.4.3. Point cloud

Most range sensors use the point density, or cloud, method to collect data and obtain surface details. Con-
sider a point pi in 3D, given by the coordinates xi , yi and zi . These points are spatial coordinates and the
values could represent the surface reflectivity and, when an RGB sensor is present, the colour. Although the
point cloud method is similar to the triangle mesh and also cannot process empty and unknown spaces, the
data of point cloud is seen more easy to use. The point cloud method can restore more surface details com-
pared to the voxel strategy. However, occlusion detection is not possible with point clouds without additional
strategies as it excludes the usage of ray casting.

The point cloud representation does not require a pre-discretization of the scene. Also this unstructured
method is linked to the number of scans instead of the scene size, which voxels are. Therefore, this data
method also can be used for large scale objects.

4.5. Overview of NBV algorithms
In order to gain a knowledge of NBV methods and their properties, fifteen algorithms are theoretically ex-
plained in chronological order.

Some of the earliest algorithms are that of Connolly in 1985 [22], where he describes his determination of
NBVs. The researcher explains two algorithms, the planetarium algorithm and the normal algorithm, which
is being referred to and seen as a first basis in many papers afterwards. The planetarium algorithm, which
sets up an evenly sampled sphere around the object (Figure 4.3), provides the NBV based on testing of a set
of views around the object. The number of the so called empty nodes, seen from a viewpoint, is determined
by ray casting. The direction with the largest amount of empty nodes is chosen as the NBV. The center of the
object is matched with the center of the sphere. The normal algorithm uses the sum of the areas of all six faces
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of the cube and determines the NBV via the normals of unknown voxels, which can be seen in Figure 4.4. In
more detail, the best next location is found by determining the cube vertex whose three adjoining faces, with
the tag unseen or empty, have the highest values. Figure 4.5 contains a part of his normal algorithm. This
algorithm has only eight possible NBV positions.

Figure 4.3: Spherical representation of Connolly [21]

Figure 4.4: Unseen nodes and empty neighbours [21]

Figure 4.5: Description of the normal algorithm [21]

Maver and Bajcsy [23] used a range scanner and a rotating table in 1991 as the basis for the object to solve
the NBV problem. As the difficulty of finding the NBV lies in the unseen sides of the to be modelled object,
their suggestion was to model them as two-and-a-half-dimensional (2.5D) polygons. They gave each edge
of a polygon a height value which corresponds to the median of the height of the used pixels. The proposed
method is to scan these polygons from unoccluded viewpoints. As the table used as a basis could rotate,
angles with clear sights into unknown parts in the view space were summed up in a histogram. The decision
of the NBV is related to the largest angle.

In 1995, Yuan proposed a NBV algorithm [24] using a set of represented surfaces to estimate the visible direc-
tion of unseen surfaces. The obtained image from the sensor was segmented to form patches of the surface.
The author used the proven knowledge that the total Gaussian mass of surfaces of a convex object must be
zero. Also the usage of a total mass vector chain is emphasized, which is a sum of all mass vectors. Mass
vectors which form a closed chain, that is when the mass vector sum is a zero vector, indicate that a surface
boundary is closed. The NBV is calculated in opposite direction of the mass vector. This is visualized by Scott
in his paper [2] in Figure 4.6. The Gaussian sphere can also be used for concave surfaces. However, concave
surfaces most of the time do not form a closed Mass Vector Chain (MVC). A virtual surface patch is needed to
represent a cutting plane.
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Figure 4.6: Visualization of the mass vector chain (MVC) [2]

A quite unique setup for his time was of Papadopoulos-Orfanos and Schmitt in 1997 [25]. They used a
turntable for the object and three linear sliders for the sensor. The authors explained the relationship between
the intrinsic properties of an object, obtained by mathematical morphological operations, to its digitization
by using shapes or slices. The proposed algorithm is based on voxel representation. The workspace contain-
ing the object is labelled as unknown. The used laser rangefinder as the triangulation sensor has a small field
of view and a working distance between 5 cm and 10 cm. Due to these relative small distances between the
object and the sensor, the authors also taught about collision avoidance. The hierarchical algorithm takes
into account occlusion and is divided in two parts: path planning and sensor planning.

The algorithm of Papadopoulos-Orfanos and Schmitt starts, at low level, with the digitization of a single view.
A so called z-buffer is used for representation of the scene. Calculations for path planning are in 2.5D. The
unknown space is explored layer after layer in a zigzag pattern, described in Figure 4.7. In case of a surface
voxel, the system avoids collision by changing the movement direction. The second stage of the algorithm is
at high stage for choosing the NBV. The object on the turntable is rotated around the vertical axes in steps of
2/n, where n is a chosen parameter for digitizing views (n), for digitizing n views.

Figure 4.7: Workspace exploration by layers [25]

Pito [17] came up with an algorithm which is often referred to in literature. He in 1999 further advanced
the work of Connolly by considering several constraints, requirements and self-termination. His algorithm
based om triangular meshes did take into account occlusions and output quality. Merging a set of range
images was considered by Pito by using an overlap constraint. He emphasized that algorithms which do
not address an overlap constraint can produce unreliable results unusable for further reconstruction and
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processing. Pito calls his algorithm the PS Algorithm and divides the viewing volume in seen and unseen
areas by using Ranging Ray (RR). Areas that are not sampled are tagged as the void volume. The term void
surface is used for the separation of the void volume from the rest (Figure 4.8).

Figure 4.8: Viewing volume described by Pito [17]

Pito determines the next position by patches, which run from the edges of an object. An analysis of the
neighbourhood decides which patch belongs to a hole in the model or is an edge of the object. Each edge
has a local coordinate system. The determination of the NBV relies on maximizing an objective function. A
workspace of 30 cm by 30 cm is mentioned.

The method of Reed and Allen [26] is nearly similar to the algorithm of Maver and Bajcsy and has a more gen-
eral solution. The surfaces in the viewing volumes are divided in empty areas and unknown regions. These
surfaces, also called targets by the author, were determined by volumetric representations of each image.
Each surface triangle was transformed into a prism. Solids were created thanks to the obtained 2.5D data.
The solids cross each other and form groups of triangles (mesh), tagged measured or occluded. Occluded
surfaces are used for calculating the next view. The view vector is placed perpendicular to these surfaces.

In the same year, Banta et al. [27] tried to solve the NBV problem by using a voxel space representation. He
based his work on the planetarium algorithm of Connolly [22], which means that he also placed a sphere
around an object on a self-determined distance. Each voxel of same size is named surface or occluded. Three
methods are proposed to determine the NBV. The first effort is by detecting the edges of the object, second
being finding unknown areas in the working space and third by combining voxels which are unknown. The
iteration of the observation angle is linked to occlusion detection. A self-termination criterion is present.

In 2004, Callieri et al. [28] presented a NBV algorithm consisting of two phases. Firstly, an initial and unfin-
ished model of the object is obtained via a fixed set of view positions. The second step is detecting discontinu-
ities on the rough model, which are then filled up. This method was then seen as novel as the 3D digitization
used different colours for the surfaces and background. The discontinuities are identified counting pixels
with deviant colours.

Chen and Li [29] also analysed a partially obtained model. The best next viewpoint is acquired by searching
for the object side with the least contour change by calculating the surface trend. The surface order correlates
to the smoothness of a surface. The exploration direction is obtained from the area with the lowest surface
order for gaining most information about unknown areas. According to Chen and Li, it is only required to
compute the surface order near the boundary of the known region.

The predictive trend curve for a tea cup on its side is depicted in Figure 4.9. The algorithm searches for a
viewpoint where the area of the surface can be maximized. This can be done accurately when the surface
of the model has first and second order curves and surfaces. The modeling process of Chen and Li is shown
in Figure 4.10 in and consists of the acquisition of the view (S1), reconstruction of the local 3D model (S2),
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registration and merging with the global model (S3), an analysis part of the model and checking of termina-
tion criteria (S4), ranking of the directions (S5), trend surface computation and NBV determination (S6) and
robot movement (S7). Self-termination is achieved based on a completion criterion after estimating the sizes
of uncertain areas via another algorithm.

Figure 4.9: Predictive trend curve [29]

Figure 4.10: The modeling process of Chen [29]

The algorithm of Chen and Li has issues at surface edges and boundaries, where the curvature change abruptly
resulting in computation errors.

Figure 4.11: Detection of a left boundary in the
mesh [30] Figure 4.12: Predicted NBV based on quadratic patch [30]

In 2011, Kriegel et al. [30] based their algorithm on the detection of unmatched edges in a partially digitized
model. The author used triangle meshes and classified the edges of these triangles as normal or border edges.
Groups of border edges are classified further as left, right, bottom and top. Figure 4.11 shows the detection of
a left boundary in the mesh. The observation angle (α) is between the scan direction (s) and an edge and its
component (ei ). It is calculated by Equation 4.1:

α= ar ccos(
sei

|s| |ei |
) (4.1)

The surface trend is calculated quadratically for the point with coordinates x, y and z (pi , xi , yi , zi ):

pi = [xpi , ypi , zpi ]

by the equation, including the constants of the quadratic function (a,b,c,d ,e, f ):
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zpi = f (xpi , ypi ) = ax2
pi +bxpi ypi + c y2

pi +d xpi +e ypi + f

(4.2)

Equation 4.2 is of low order which reveals if the curvature at the boundary is curved inward of outward to-
wards the unknown region.

The normal vector (Equation 4.3) arises from the derivative of the surface trend and is used for the observation
angle.

ni =
xni

yni

zni

=


δ f
δxpi
δ f
δypi

−1

=
2axpi +bypi +d

bxpi +2c ypi +e
−1

 (4.3)

The z-component is set to -1 as it is pointing towards the sensor, which is opposite to this vector component.
The predicted NBV is depicted in Figure 4.12, d being the sensor distance.

The algorithm of Kriegel et al. contains an overlap constraint where the size of the overlaps is changeable.
Self-termination is available when there are no border edges left in the mesh. Kriegel claims that his universal
algorithm can be used with any range sensor. Two years later, in 2013, Kriegel selected his NBV based on the
two 3D models probabilistic voxel space and triangle mesh, so by combining the surface and volumetric
representation. The modeling process is shown in Figure 4.13.

Figure 4.13: The modeling process of Kriegel et al. [30]

Another algorithm based on border detection is that of Karaszewski et al. in 2012 [31]. He identifies those
regions by best fitting a plane. The centre of this plane along its normal vector is the direction where the
sensor is positioned to.

A NBV algorithm which identifies the borders of a partially scanned object is that of Khalfaoui et al. [32]. He
in 2013 separated each directional measurement and analysed the angle between the normal of the scanned
surface and the vector in the observation direction. Large areas are tagged as barely visible and are cumulated.
The sensor is placed perpendicularly to these areas. There is no occlusion handling or self-termination.

Ahmadabadian et al. in 2014 [33] presented a two stage view planning strategy based on triangle meshes. The
first one is for acquiring the first mesh from the initial view. In the second stage, positions and orientations of
a head model are calculated. The object is enclosed by an (calculated) ellipsoid instead of a sphere, as can be
seen in Figure 4.14. The NBV is selected as a set of similarly oriented views for getting the observation angle
parallel to the normal vector of the surface.
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Figure 4.14: Elliptical enclosure of an object [33]

Figure 4.15: Ray tracing methods [8]

In the same year, Vasquez-Gomez et al. [9] based his volumetric and search-based algorithm on an improved
version of the planetarium algorithm of Connolly. He deviated from the sphere into a shape more similar to an
icosahedron, a polyhedron with twenty faces. Vasquez-Gomez used voxels instead of triangle meshes or point
clouds. He divided the voxels into five: unknown, used, empty, occluded and a ’occplane’, an occluded plane.
Each voxel features a normal vector and has a quality characteristic. This quality condition is calculated by
taking the maximum cosine of the observation points inside the voxel.

Vasquez-Gomez et al. added knowledge of the so called ray tracing algorithm of Bresenham [34] in his
method. Overlaps, the varying distance of the sensor to the object and the observation angle are taken into
account. In comparison to Kriegel et al. [30], who proposed the use of IG, Vasquez-Gomez et al. used mea-
sured unknown surfaces to evaluate the views. The views are selected with five characteristics, being new
information, a positioning, sensing and registration constraint and cost of the robot movement. Candidate
views are evaluated by a visibility computation over the octree, using Uniform Ray Tracing (URT), after which
they are ranked by an utility function. The use of a probabilistic octree is stressed in [35] to cope with sensor
noise. Hierarchical Ray Tracing (HRT), where resolution is locally increased when rays touch voxels, is used
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to speed up processing. Figure 4.15 clarifies the comparison between URT and HRT. Views are generated
directly and each iteration is a set of random and uniformly generated samples. Latter are filtered to obtain
useful views. The researcher generated 10.000 random samples per iteration and used only a few hundred for
further processing. Rays from the sensor which do not intersect the sphere around the object, are discarded.

The NBV algorithm of one of the works of Vasquez-Gomez et al. [21] generates set of candidate views (V ).
The viewpoint (v) is denoted as V . Each v is a data structure containing the robot configuration (q), the
workspace of the sensor (x), a homogeneous transformation matrix (H) and the utility function (u) of the
view. This tuple can be written as vi = (qi , xi , Hi ,u). The goal is to select v ∈ V . The candidate views are
ranked using u, given by equation 4.4:

u(v) = pos(v)·r eg (v)· sur (v)·di st (v) (4.4)

The positioning constraint (pos) has the value 1 when all voxels in the Robot Bounding Box (RBB) are free.
If not, this value is 0. The registration constraint (r eg ) is 1 when a minimum overlap is present, otherwise
0. surface information (sur ) is for the new surface information and depends on how much unknown voxels
from a view are present. The unknown voxel can also represent an occluded surface. sur is obtained from
equation 4.5 using the amount of unknown voxels (un0) inside the OBB:

sur (v) = un0 (4.5)

The position constraint (di st ) are candidate views which are evaluated based on their distance to the current
view. Equation 4.6 describes di st , where the node distance (ρnod ) is used between nodes of the current robot
position (v.q) and candidate position candidate position (p.q).

di st (v) = 1

1+ r honod (v.q·p.q)
(4.6)

Figure 4.16: NBV algorithm of Vasquez-Gomez et al. [21]

Figure 4.17: HRT used for algorithm of Vasquez-Gomez et al.
[21]
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Figure 4.16 contains the algorithm of of Vasquez-Gomez et al. in one of their work [21]. The input is the initial
position and the output is the object model M . The robot is moved to a position (p), a range image (z) is
taken, the model (M) is updated using z and candidate views V are generated.

Figure 4.17 is the second part of the algorithm. Now, the candidate view, octree, ray-tree and initial depth are
the inputs. The algorithm produces ‘VoxelAmounts’, which describes the amount of each voxel type. Finer
ray tracing is applied if a voxel is hit.

In 2016, Karaszweski et al. compared thirteen NBV algorithms with various 3D scanners and manipula-
tors. His work is one of the most well explained and detailed demonstrations. The thirteen algorithms that
Karaszewski et al. compared are that of Connolly [22], Yuan [24], Papadopoulos-Orfanos and Schmitt [25],
Pito [17], Reed and Allen [26], Banta et al. [27], Callieri et al. [28], Chen and Li [29], Kriegel et al. [30],
Karaszewski et al (own work) [31], Khalfaoui et al. [32], Ahmadabadian et al. [33], and Vasquez-Gomez et
al. [9].

Karaszewski et al. compared the algorithms based on the four criteria: number of scans, reconstruction time,
total travelled distance and surface coverage. Also, three types of sensors are used, one with low resolution
Microsoft Kinect range camera (MK), a middle version Middle Resolution Sensor (SL1) and the last being a
high resolution sensor High Resolution Sensor (SL2). The MK has a large working volume of 87 cm by 63 cm
at a distance of 80 cm. SL1 is a structured light 3D scanner using two 2 MP PointGrey cameras and a portable
Toshiba DLP projector with a medium combined work volume of 18 cm by 12 cm by 11 cm at a minimum
working distance of 40 cm. SL2 is also a structured light scanner using a Canon 60D DSLR-camera and a
Casio projector. SL2 has a small working volume of 5 cm by 5 cm by 12 cm at a minimum working distance
of 50 cm.

Karaszewski et al. divided their experiment in three parts where the term OSWV comes into the foreground.
The three cases are for 3D models with an OSWV of lower than 1, around 1 and larger than 1. He bases
his conclusion on simulations of all the NBV algorithms tested on five test objects with different occlusions,
cavities and sharpness of the edges.

Karaszweski et al. used two sensor models, one Simple Model (SM) and one Advanced Model (AM). SM is
described by the working volume, working distance and maximum observation angle. For more accurate
modeling, AM is used where two sensors, separated by a distance called base, are described by a combined
working volume, working distance and two observation angles.

Table 4.2 summarizes all algorithms and their properties, varying from the method used to the type of data
representation.

Table 4.2: Overview of NBV algorithms

Year Researcher Property
1985 Connolly [22] One of first, planetarium and normal algorithm
1991 Maver and Bajcsy [23] Rotating tables – 2.5D polygons
1995 Yuan [24] Mass vector chains

1997
Papadopoulos-Orfanos
and Schmitt [25]

Small working volume, two staged and turntable

1999 Pito [17] Occlusion reckoning, quality and self-termination
2000 Reed and Allen [26] More general volumetric representations
2000 Banta et al. [27] Voxel space representation, based on Connolly
2004 Callieri et al. [28] Discontinuities, counting pixels with deviant colours
2004 Chen and Li[8] Surface trend analysis, contour change
2011 Kriegel et al. [36] Unmatched edges, triangle meshes, edge qualification, IG
2012 Karaszewski et al. [37] Border detection, best fitting plane
2013 Khalfaoui et al. [32] Border detection, separated process, angle between normal and vector

2014
Ahmadabadian et al.
[33]

Two stage, triangle meshes, ellipsoid instead of sphere

2014
Vasquez-Gomez et al.
[9]

Volumetric ray tracing, HRT, observation angle, CU vs IG
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One of the most recent NBV algorithms is that of Border et al. [16]. It is called Surface Edge Explorer (SEE) and
plans the NBVs directly from 3D observations. The algorithm uses the surface approach and represents the
data as a unstructured density, meaning it uses points instead of voxels or a mesh. SEE observes the scene by
searching for frontier points, which are on the boundary. Core points are inside a defined region and outliers
are outside that region. The local surface is estimated from the frontier points and its neighboring points.
This is illustrated in Figure 4.18. The number of neighbor points (k), the minimum number of neighbor
points (kmi n) radius (r ) and desired point density (R) are used in Equation 4.7:

kmi n = 4

3
Rπr 3 (4.7)

The frontier points result in the orthogonal boundary vector (eb), frontier vector (e f ) and normal vector (en).
The normal component is oriented normal to the frontier point (outside this page) and is also in the sensor
direction, the boundary vector follows the frontier line, thus the boundary, and the frontier vector is perpen-
dicular to the frontier line (Figure 4.18). From now on the term boundary point will be used for frontier point.

Figure 4.18: SEE - classification of points and vectors [16]

4.6. Evaluation of NBV algorithms
Connolly [22] claims that the normal algorithm is faster than the planetarium version. However, the second
algorithm has problems dealing with occlusion. The first one is affected less by this problem. Both algorithms
do not take into account sensor position constraints, which are present in real experiments. Also there is no
information about object size compared to viewpoint distance.

The algorithm of Yuan [24] is applicable to simple objects and is able to make adjustments for occlusion. A
major disadvantage of this NBV method is that the sensor positioning system should relocate itself in opposite
directions, increasing the travel distance and runtime. Also not all robotic arms are capable of moving to
opposite directions.

The solutions produced by the algorithm of Papadopoulos-Orfanos and Schmitt [25] are seen as very simple
and triggered comments if they are applicable to objects in real life [37]. Nevertheless, it can be seen as a basis
for sensors with a small working volume.

The algorithm of Pito [17] theoretically self-terminates. Projecting a Observation Ray (OR) through the view-
ing volume takes a long time. The algorithm is generalizable to any range scanner.

The paper of Callieri et al. [28] is unclear about how the view candidates are calculated, leading to the as-
sumption that the new viewpoints are generated randomly.

The method of Chen and Li [29] works for slowly changing surfaces. When strong curvatures or sharp edges
are present, this method is too simple. As for the result, the number of automatic scans is larger than a manual
operation. There is no information about occlusion handling. However, the researcher of [37] implemented
a occlusion detection method from another algorithm.

Kriegel et al. [30] claims that their algorithm is universal and is applicable to any 3D sensor. However, it
remains a question if he accounts for occlusion. Their self-terminating Next-Best-Scan (NBS) is considering
surface quality. In their experiment, they compares their own older IG method with a new method called
IG/Quality. Their conclusion is that his robot was 11 times faster than manual, by hand, scanning. They
acquired high-quality models of nine objects between 1 and 10 minutes.
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The results of Karaszewski et al. are summarized in Table 4.3 [37], where two plus signs stand for good per-
formance, one plus sign for sufficient, one minus sign for underperforming and two minus signs for very low
performance. The performance of thirteen algorithms are compared for different Ratio of object size to scan-
ner working volume (OSWV) values. The evaluation is based on number of scans, runtime, distance travelled
and surface coverage.

Table 4.3: Performance of NBV algorithms based on surface coverage and runtime [37]. Performance is ranked from - - to + + (very poor to
very good)

Algorithm OSWV«1 OSWV = 1 OSWV»1
Connolly (1985) [22] + - –
Yuan et al. (1995) [24] ++ - –
Papadopoulos-Orfanos et al. (1997) [25] ++ ++ +
Pito (1999) [17] + - –
Reed (2000) [26] + + +
Banta (2000) [27] ++ - –
Callieri et al.(2004) [28] ++ + +
Chen et al.(2005) [29] ++ ++ ++
Kriegel et al.(2011) [30] + ++ ++
Karaszewski et al.(2012) [37] ++ + +
Khalfaoui et al.(2013) [32] ++ ++ +
Ahmadabadian et al. (2014) [33] ++ + –
Vasquez-Gomez et al. (2014) [9] ++ - –

Karaszewski et al. underlined that the simple methods of Connolly, Pito and Banta et al. failed in obtaining
full 3D models of the self-occluding objects and objects with deep cavities. The mass-vector-chain of Yuan
used more sensor movements than the other methods. The algorithm of Papadopoulos-Orfanos and Schmitt
yielded good surface coverage. Algorithms which use border detection methods produced successful results,
meaning less scans and good coverage compared to simple algorithms. Due to the low resolution of MK,
many models had discontinuities. This cannot be attributed to the algorithm and can be solved with sensors
with a better resolution, the researcher emphasized.

As for the OSWV around 1 case and sensor MK, all algorithms made use of a complicated set of sensor po-
sitions in the sphere. As some parts of the object fell outside the working range of the sensor as the sensor
was directed to the center of the object and at no other point, so all algorithms had problems constructing
full models. The differences between the 3D models mostly occurred due to the different placement of the
objects. Newer models of after 2000 performed better, except that of Banta et al. and Vasquez-Gomez and
Schmitt. The latter two are based on the viewing sphere method. All algorithms also had problems with
sharp edges calculating faulty viewpoints and resulting in holes in the 3D model. This is partially solved by
other scans. The results of Papadopoulos-Orfanos is acceptable at a cost of more required scans, underscored
Karaszewski et al.

In the case where the OSWV is larger than 1, some algorithms completely failed. The four algorithms Con-
nolly, Pito, Banta et al and Vasquez-Gomez et al. did not produce acceptable results for any of the five objects.
This poor performance is related to the unchangeable distance between the sensor and center of the objects
in combination with the shallow working volume of the sensor. The algorithm of Yuan, the mass-vector-
chain, also failed due to the wrong selection of the NBV. All algorithms that analyze borders succeeded in
producing acceptably results and complete models.

The number of required scans and total travelled distance between the succeeding algorithms for especially
complicated objects was quite different. The algorithm of Khalfaoui et al. was in comparison with its oppo-
nents little underperforming due to its selection of NBV based on the angle between the surface normal and
observation vector. Also at the case of an OSWV of larger than 1 and high resolution sensors, all algorithms
were affected by sharp edges. It remains extremely difficult to accurately predict the direction of the surface
when there is a sharp edge meaning a major change in direction. In the situations that the algorithm did
not self-terminate as it should be, which can be attributed to the used setup, the algorithms were stopped
manually.
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Karaszewski at al. summarizes their work that there are no NBV algorithms which perform outstanding for
all test cases. However, the algorithm of Chen et al. and Kriegel et al. are performing very well in terms of
coverage and number of scans for all cases. The third good performing algorithm is that of Karaszewski et al.
Although their algorithm required more scans than average in their tests, the coverage and fitting of holes is
acceptable. The algorithm of Kriegel et al. and Karaszewski et al. have problems with occlusions, producing
invalid new viewpoints. The early and constrained algorithms, that of Connolly and Pito, tend to produces
less complete models in the case of complicated and self-occluding objects. The mass-vector-chain method
of Yuan does not work very well for OSWV values of 1 and more than 1. The method of Papadopoulos-Orfanos
and Schmitt (1997) often misses details, however, it works for all cases. The two-stage method of Callieri et al.
and Ahmadabadian et al. resulted in more scans and results of poor quality.

In their own experiment, Vasquez-Gomez et al. used a utility function to account for the quality of the re-
constructed model. Using a ray tracing algorithm, they take observation angles and overlaps into account.
They also claim to have one of the first methods that determines the NBV directly in the configuration space.
Their experiment was compared with other works and the result is that he qualitatively measures unknown
surfaces, overlap and movement costs and also efficiently evaluates candidate views. They conclude that,
quantitatively, his algorithm achieves same coverage in less time compared to other relevant works. The al-
gorithm self-terminates.

Border et al. [16] emphasized that SEE outperforms most of the state-of-the-art volumetric approaches,
among which that of Vasquez-Gomez et al. and Kriegel et al. They simulated seven volumetric approaches
and SEE for different objects of the two sizes 1 m and 40 m (4.19). As a result, it became clear that SEE re-
quires less computational time for view planning and result in better surface coverage in less views. SEE also
obtain high surface coverage for complex objects, also that of large scales. Their algorithm is a also occlusion-
friendly, meaning SEE also can adjust its views in case of occlusion. Border et al. claim from their simulation
that the volumetric approaches performed worse in case of multiple self-occlusions as they can not adjust
their views to account for occlusion. The computational complexity of volumetric approaches lies in its ray
tracing of a voxel grid from every view on a sphere. Also volumetric approaches are limited in scene size and
do not size well.
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Figure 4.19: Comparison of SEE with different volumetric methods [16]
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4.7. Research- and sub-questions
The required algorithm for the automation of LES, obtained knowledge about NBV algorithms and results of
relevant experiments described in previous Sections lead to the research question:

What is the optimal NBV algorithm for 3D reconstruction of unknown objects with the LES?

This research question is answered with the aid of answers to the following three sub-questions:

(1) How is the imaging pipeline set up for image acquisition and object registration?

(2) What sensor systems are required for unknown object reconstruction?

(3) What are the prominent view planning algorithms?

Also, answers on all above questions support the reasoning behind the choice of a NBV algorithm with the
reasoning behind ranking and choosing the candidate points as the NBV. The demonstration of the effective-
ness of the optimal NBV algorithm for the LES is performed by a simulation in MATLAB.

4.8. Summary of Chapter 4
NBV algorithms are divided into two categories: model-based and non-model-based. The two classifica-
tions search-based and volumetric also further divide approaches for finding the optimal NBV algorithm.
Search-based approaches make use of large numbers of candidate viewpoints which are then selected under
defined constraints. Volumetric approaches voxelize the working area and perform raycasting. Their mem-
ory consumption is relatively high. A NBV algorithm has general, object, sensor and positioning constraints.
The commonly used representations for data acquisition are voxel representation, triangle meshes and point
clouds. Several prominent NBV algorithms are theoretically compared in order to gain knowledge about the
available methods. Connolly was one of the first describing his method of predicting the NBV by a spheri-
cal enclosure of the object. He introduced the two algorithms planetarium and normal. One of the modern
works are that of Vasquez-Gomes et al. and Kriegel et al. The first researchers use a technique called voxeliza-
tion and ray casting. The quality of the model is determined by a utility function. The work of Kriegel et al. is
based on the methods probabilistic voxel space and triangle mesh. Their modern work is challenged by Bor-
der, which outperformed their results with its NBV algorithm called SEE. The research question supported by
relevant sub-questions are presented in Section 4.8.
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5
NBV Simulation for LES

The objective is to find the most optimum NBV algorithm for the LES by focusing on the strategy (Section
5.1), consisting of the simulation setup (5.1.1), NBV algorithm code outline (5.1.2), boundary detection via
triangulation (5.1.3), normal vector determination (5.1.4), candidate point calculation (5.1.5) and the termi-
nation criteria (5.1.6). Section 5.2 explains the six NBV selection methods and Section 5.3 presents the NBV
simulation. Section 5.5 is a summary of this Chapter.

5.1. NBV strategy
The NBV algorithm SEE focuses on the boundary of a point cloud to perform a NBV analysis. This algorithm
is used as a basis for the simulation of the LES. The SEE produces candidate points and selects the point
with the minimum distance to the sensor as the NBV. Five more selection methods are added in this thesis
to compare the mutual scan performance. The computer used for calculation has a the Central Processing
Unit (CPU) i5-10400 2.90 G H z and 16 GB of Random Access Memory (RAM).

5.1.1. Simulation setup

The output of the sensor of LES is a set of discrete points, being a point cloud. The simulated objects are a
sphere (5.150 points), a cone (10.000 points), a cube (23.205 points) and a plate (1.681 points). The major
difference between the objects is that a sphere has a depth and different curvature values. It is also possible
to obtain depth values from a cone, however the distance and curvature values can be similar. A cube and
plate has no depth at initial scan nor a curvature value. Also obtaining the normal at the edges of a cube and
plate and simulating this without activating the points at the side require a new method and algorithm.

The sensor is simulated as a point with a working distance of 0.6 m and a depth range of 0.3 m. All the points
which are within 0.9 m distance, will be captured. This is illustrated in Figure 5.1 for the sphere and in Figure
5.2 for the cone.

Figure 5.1: Sensor position for initial scan - sphere

The real sensor has a scan width of 0.4 m, however the simulation uses the value 0.9 m. This difference
will not affect the comparison between the NBV selection methods and will result in uncluttered figures.

24



Compensating for this difference can be by changing the working distance of the sensor to higher values.
Simulating the real scan width (0.4 m) and the working distance of the sensor (0.6 m) is a current limitation
of MATLAB, which cause modification of the MATLAB built-in function for pairwise distance between two
observed point sets (pdist2).

From NBV literature, the sensor is pointing towards the center of the object and an OBB is set, in this case
2 m wide and 2 m high, so the object is 1 m wide in the positive x direction and 1 m wide in the negative
x direction. The same holds for the direction aligned with the z-axis. The object is sliced in half. so it only
occupies 1 m in the negative y-direction. The simulated sensor is placed 0.6 m from the center (negative
y-direction), making the initial lens position [0,−1.6, 0].

Figure 5.2: Sensor position for initial scan - cone

In order to ensure that the normal vector (Section 5.1.4) is always pointing to the correct direction, that is in
the direction of the sensor, the environment is partitioned into four quadrants (5.3, being Q1 (upper right),
Q2 (upper left), Q3 (lower left) and Q4 (lower right). That corresponds to the fact that all positive x- and
positive z-values are in Q1, negative x- and positive z-values are in Q2, negative x- and negative z-values are
in Q3 and positive x- and negative z-values are in Q4. This partitioning makes certain that the calculated and
chosen NBVs, which are connected to normal vectors, are always outside the object, and not inside, which is
incorrect and unreachable.
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Figure 5.3: Quadrants

In order to make the NBV algorithm tunable for different methods and more important different objects,
several simulation parameters are implemented (Table 5.1). The rho and sensed depth (sense) affects the
number of activated points and thereby the scanned area. The number of neighboring points (ng b) is ad-
justable and is beneficial to use in the case of unstructured large point clouds. The ng b is for normal and
curvature detection and will be adjustable to different kind of structured and unstructured point clouds. The
correct Point of View (POV) is essential for the NBV determination process. The quality factor (Q) can count
for quality by selecting more NBVs and increasing the chance of more surface coverage or many scans of a
particular area. The max point to point distance (dmax) is used for triangulation. The distance between
NBVs at multiple curvatures (di st a) is a tuning factor mainly used at the curvature methods.

Table 5.1: Simulation parameters

Parameter Value
ρ 0.6
sense 0.3
ng b 10
POV [0, -1.6,0]
Q (sphere) 0 or 1
Q (cone) 5.511

dmax 1
di st a (sphere) 0.1 [m]
di st a (cone) 0.01597 [m]

5.1.2. NBV algorithm code outline

The simulated NBV algorithm consists of several steps. After initial scanning, the processes of partitioning in
quadrants, boundary detection and normal and curvature calculation is performed, NBV selection and POV
calculation starts. The three main codes are presented in the Appendices A, B and C.
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Figure 5.4: NBV algorithm outline

5.1.3. Boundary detection via triangulation

In order to select the NBV after the initial scan of an unknown object, the retrieved density of points needs to
be analyzed. Local surface analysis is a crucial step in retrieving information about the obtained cloud, es-
pecially the boundary (frontier) points. These points are found by boundary detection and contain the edges
and contour of the scanned segment. The boundary of a scanned segment is found by Delaunay triangulation
[38]. The points, or in the discrete world named as vertices, are triangulated to check if an edge is a boundary.
If this edge does not contain two different triangles in its surrounding, then it belongs to a boundary. Figure
5.5 is an illustration of the boundary detection of the front part of a sphere obtained by triangulation figure
5.25 illustrates the inner connection between the bounrdary points. Figure 5.7 further zooms in the edge area
of the sphere to see the distinction between edge points and inner points based on neighbouring triangles.
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Figure 5.5: Triangulation after first scan of the front part of a
sphere

Figure 5.6: Triangulation after first scan - interconnected
boundary points

Figure 5.7: Triangulation after first scan of the front part of a sphere - zoomed in [33]
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Figure 5.8: Data segmentation of boundary points

5.1.4. Normal vector determination

The frontier points can be separated and highlighted by the obtained data to perform calculations on them
(Figure 5.8). These points are used for estimating the NBV by analyzing their normal vectors and their three
components in the x-, y- and z-direction. For this, a nearest neighbor search method is performed to use the
adjoining, or all the points within a distance, points for analysis of a particular area. The Kd-Tree structures
data with space partitioning which is used to organize points in 3D. The number of neighboring points of the
NBV algorithm in this thesis is set to nine om this thesis and is changeable. The normals are calculated by
using a covariance matrix (C ), where the p indicate the difference in position from neighboring points, being
pi −pk .

The C is given by:

C =
p11 p12 p13

p12 p22 p23

p13 p23 p33



An eigenvalue analysis results in the eigenvalue (ψ) and elevation angle (θ). The normals are the eigenvectors,
Ψ= {ψ1,ψ2,ψ3}, at the minimum eigenvector λmi n , solved by the eigenequation 5.1:

Cψi =λiψi (5.1)

The normals on the frontier points of the front part of a cone are depicted in Figure 5.9.
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Figure 5.9: The normals on the frontier points

It is crucial to check if the normals are tangential to the frontier points (Figure 5.10).

Figure 5.10: Tangent check of the normals
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5.1.5. Candidate point calculation

To obtain the coordinates, the φ and θ are needed. The azimuth angle (Equation 5.2) and elevation angles
(Equation 5.3) are calculated by using the normal vector component (ni ) at a point:

φ= arctan(
ny

nx
) (5.2)

θ = arccos(
nz√

n2
x +n2

y +n2
z

) (5.3)

These angles are used for obtaining the coordinates (Equations 5.4, 5.5 and 5.6) via the formula giving the
relationship between Cartesian and spherical coordinates, including ρ:

x = ρ sinφcosθ (5.4)

y = ρ sinφsinθ (5.5)

z = ρ sinφ (5.6)

The frontier points lead to the coordinates and angles of candidate points. A selection step (ranking) will
determine the NBV(s). (Figure 5.11)

Figure 5.11: Candidate points based on the normals at the boundary

Another possibility is the estimation of the curvature at the frontier point, to be able to gain the most new
information about the unscanned area.

The minimum eigenvalue corresponds to the least surface variance. The normal vector direction is set oppo-
site to the sensor direction.

As for the curvature (κ) two widely used methods, being the Gaussian curvature (κ= k1k2) or mean curvature
(Hκ) (Hκ = k1+k2

2 ), where the principal curvatures, the first principal curvature (k1) and second principal

31



curvature (k2), are avoided as they are sensitive to sensor noise and are unable to calculate the curvature
from a group of points and consequently require meshes [6].

Therefore, the curvature change is obtained by calculating the ratio between the minimum eigenvalue and
the sum of the eigenvalues [39], given by Equation 5.7:

κ= λmi n∑
λn

(5.7)

The surface coverage (S) is determined by dividing the total number of points of loaded object (Ptot ) by the
number of observed points (Pobs ) during the simulation (Equation 5.8).

S = Ptot

Pobs
(5.8)

5.1.6. Termination criteria

The algorithm needs to stop sending the robots to other positions when a termination criterion is reached to
stop the iterative calculation and sensor movement process. This condition is linked to the OBB and ρ. The
algorithm is finished when a NBV location in x or z is reached which is the working sensor distance added to
the boundary value. For stability, 0.01 m is deducted from this value. At a OBB of 1 and ρ of 0.6, this value
becomes 1.59. If the exact value of 1.6 is chosen, the algorithm is not be able to stop when a NBV has the
value 1.59999, which is often the case. For the constrained case the termination criterion is set to 0.8 (in the
x- and z-direction). Also, in order to prevent that the algorithm falls in an endless loop, a maximum scan
round count of seven is set. This is also to acquire the maximum results from the NBV selection methods.
The algorithm self-terminates when one of these termination values are reached.

5.2. NBV selection
Ranking of the candidate viewpoints is the essential step in determining the NBV. Six NBV selections methods
are described: (1) minimum distance, (2) maximum distance, (3) minimum and maximum distance, lowest
curvature (4), lowest curvatures (5), which is tunable, and a hybrid version (6). The methods hold for objects
with a depth, which a sphere and cone are. For a cube, which is a plate at initial scan, the selection of the
maximum and minimum x- and z-coordinates is presented.

5.2.1. Minimum and maximum distance

Boundary points are used for generating NBV candidates. NBVs are selected based on their cumulative and
origin distances [18]. The cumulative distance of a NBV is given by the difference between the current view
position xi and the new view position. The difference between the initial viewpoint x0 and the new view
position is the original distance. NBV selection is based on the minimization of the global distance from the
set of candidate viewpoints (Equation 5.9).

vi+1 = argmi n(| |x −x0| |) (5.9)

In case of the absence of a new viewpoint, the NBV is selected which minimizes the local distance, Equation
5.10:

vi+1 = argmi n(| |x −xi | |) (5.10)

The ranking of NBVs based on minimum distance and their corresponding graph (distance over point/index
number) is shown in Figure 5.12. An offset of ten percent is added to the minimum distance value in order to
capture other minimum values which are the same or nearby. The mean of these value is selected in the case
when there are four candidates on the right and four on the left (green diamonds). The red point is the NBV
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including its azimuth and elevation angle. The light blue points is the point cloud segment obtained from
that NBV.

Figure 5.12: Minimum distance detection

The same process is done for the maximum distance from the sensor to determine the difference with the pre-
vious method. The third method is the combination of the minimum and maximum distances to determine
the difference in total amount of scans, surface coverage, computation time and distance.

5.2.2. Lowest curvature(s)

Another method to rank the NBVs is by analyzing the points with lowest curvature, called a seed point [6].
For every seed point, neighboring points are found. The normal of every neighbor point is compared to the
normal of the seed point. A threshold angle value αth determines if the seed point, after the working distance
in the correct direction, can be used as NBV. The minimum curvature value is selected. An offset is added to
find the NBVs which have similar values or are nearny. In Figure 5.13 one NBV is detected with the help of the
minimum value in the graph in Figure 5.14.

Figure 5.13: Minimum curvature detection
Figure 5.14: Curvature graph

As for the fifth NBV selection method, using the Q results in multiple lower curvature values. In Figure 5.15
and Figure 5.16 more (eight) NBVs are found and from that the partially build model is shown after scanning
from these eight selected new coordinates, including their φ and θ. Setting Q to a very high value activates
all the boundary points as the NBV, resulting in ultra high scan quality at the cost of a great many number of
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scans. This is illustrated in Figure 5.17 and 5.18. For optimization, di st a can be set to a value to define the
distance difference between NBVs.

Figure 5.15: Minimum curvature detection with offset value Figure 5.16: Minimum curvature detection with offset value (clean
view)

Figure 5.17: Selection of all border points as NBVs (angled view)
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Figure 5.18: Selection of all border points as NBVs (front view)

5.2.3. Hybrid version

A hybrid version consisting of the single minimum distance and minimum curvature value is also tested to
determine the difference and performance of the methods.

5.2.4. NBV for cubical objects or plates

After obtaining the first segment of a point cloud after an initial scan, the outmost coordinates can be selected
in the x- and z-direction by using the max and min function of MATLAB. This gives, going anticlockwise, the
most right, upper, left and lower point. These four points are the edges. It is not possible to obtain a curvature
values as a cube and plate does not have any curvature at the front side, except at the corner where the other
side starts.

5.3. NBV simulation
This Section explains the NBV calculations and selections for the first two siumulated scan rounds. The hy-
brid method for the sphere is described in detail.

After the initial scan, border detection is performed to extract the border points for further NBV evaluation.
This is visualized in Figure 5.19 and is also used to check if the triangulation step is performed correctly and
no different points except the border ones are selected. The triangulation figures were presented previously
in Section 5.1.3.
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Figure 5.19: Border detection per quadrant - initial scan

In the following step, NBV determination is performed based on the chosen selection method. The hybrid
version selects the minimum value of the calculated distances and curvatures. The graphs of these calcula-
tions are given in Figure 5.20 and 5.21. The index number corresponds with the location of the border points.
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Figure 5.20: Distances from sensor location per quadrant after initial scan

Figure 5.21: Curvatures per quadrant after initial scan

The minimum values results in the selection of the following NBVs (Figure 5.22), where the green diamonds
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are the selected NBV borders and the blue diamonds are the NBV coordinates. The red arrows are the normal
vectors and their direction. The red square is the initial sensor position. The same procedure continues for
Q2, Q3 and Q4. The result of NBV determination from the first scan round is depicted in Figure 5.23.

Figure 5.22: NBV selection at Q1

Figure 5.23: Scan result first NBVs
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The algorithm continues with the new obtained coordinates. Again the border points (Figure 5.24) are deter-
mined via triangulation (Figure 5.25), as also their normals. The minimum distance and curvature values are
calculated and the NBVs are selected (Figure 5.26) corresponding to these minimum values.

Figure 5.24: Border detection per quadrant - second scan

Figure 5.25: Triangulation during second scan
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Figure 5.26: NBV selection at Q1 - second scan

The result of NBV determination from the second scan round is depicted in Figure 5.27.

Figure 5.27: Scan result second set of NBVs

This process continues until one of the termination criteria is met. The total distance covered by the robotic
arm is calculated via the Euclidean length between the first POV, the first NBV and all the successive NBVs.
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5.4. Summary of Chapter 5
This Chapter explained the NBV strategy, ranking methods and the simulated LES setup. The boundary de-
tection of an obtained point cloud is done by Delaunay triangulation. The boundary points are used for nor-
mal and curvature calculations. NBV ranking is done by the methods of minimum and maximum distances,
lowest curvature, multiple low curvatures and a hybrid version. The NBV algorithm has two termination cri-
teria. The NBV simulation takes place in several scan rounds, where the obtained NBV locations are ordered
anti-clockwise.
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6
Results and Discussion

This Chapter presents the results of the simulated six NBV selection methods for the two objects sphere (Sec-
tion 6.1) and cone (Section 6.2) for the unconstrained case. The distance (between the POV and candidate
points) and curvature are the two main comparison methods. The cube or plate has, due the absence of cur-
vature, only one NBV selection method, being the coordinate information, and is prone to future research
(Section 6.3). The following Section, 6.4, is a second simulation for the constrained case. Also, the results are
discussed in this Chapter.

6.1. NBV results for a spherical object in unconstrained case
The simulation resulted in different solutions. These are presented in Table 6.1. The minimum and maxi-
mum distance combined method and the hybrid method resulted in full surface coverage. The first method
required four more scans (34) and more robot movement distance (46.6 m) than the hybrid version (100 per-
cent in 30 scans and 75.4 s), however the computational time was slightly less (73.6 s). The hybrid method
terminated more optimally (in 2 scan rounds after the initial scan). The combined minimum and maximum
distance method needed one more scan round (3 in total). The minimum distance method also resulted
in nearly full coverage (99.96 percent), however the computation time was very high (130.9 s) as it did not
terminate in the first scan round and waited to reach the predefined maximum allowable scan rounds. The
lowest surface coverage is obtained with the minimum curvature method (69.9 percent). The lowest curva-
tures method required only 12 scans, however the surface coverage stayed around 80 percent. The minimum
distance and less sensor movement distance (41 m) than the hybrid method. The hybrid method covered the
object in 30 scans and took 83.5 seconds to calculate and needed to move the robotic arm 44.8 m in total. The
maximum distance method has the lowest computational time and sensor movement distance, however it
only scans 74.2 percent of the sphere. The minimum curvature method results in the lowest surface coverage
of 69.9 percent.

Table 6.1: NBV results for the sphere

Method Scans [-] Coverage [%] Time [s]
Total
distance
[m]

Termination
round

Minimum Distance 28 99.96 130.9 43.1 7
Maximum Distance 20 93.8 83.8 33.2 4
Min+Max Distance 34 100 73.6 46.6 3
Minimum Curvature 14 69.9 44.7 19 2
Minimum Curvatures 12 80 113.6 14.8 7
Hybrid 30 100 75.4 44.8 2

Figure 6.1 illustrates the model build up plotted against the number of scans. The hybrid method covers,
compared to minimum and maximum distance method, more area in fewer scans. The minimum distance
method requires several scan rounds to achieve nearly full coverage. (Figures 6.2 and 6.3).
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Figure 6.1: NBV comparison - sphere

The minimum distance method for NBV selection resulted in a surface coverage of 99,96 percent in a total of
28 scans, however it results in small holes at the both sides of the object, which is the missing 0.04 percent
of coverage. This is depicted from two different angles in Figure 6.2 and Figure 6.3, where the blue diamonds
are the NBV locations.

Figure 6.2: Simulation result - minimum distance - sphere - angled
view

Figure 6.3: Simulation result - minimum distance - sphere - front
view
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The maximum distance method results in unacceptable holes in the upper and lower side of the object. Also
part of the left and right side of the object remain unscanned. Figures 6.4 illustrates this from an angled view
and Figure 6.5 is a front view.

Figure 6.4: Simulation result - maximum distance - sphere -
angled view

Figure 6.5: Simulation result - maximum distance - sphere - front
view

The minimum and maximum distance method covers the entire object. There are NBV positions which are
near each other (Figures 6.6 and 6.7).

Figure 6.6: Simulation result - minimum and maximum distance -
sphere - angled view

Figure 6.7: Simulation result - minimum and maximum distance -
sphere - front view

The minimum curvature method dominantly moves in the z-direction. Therefore the x-axis is not visited and
remains unscanned. Final NBV locations are close to each other (Figures 6.8 and 6.9).
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Figure 6.8: Simulation result - minimum curvature - sphere - angled
view

Figure 6.9: Simulation result - minimum curvature - sphere -
front view

The multiple curvatures method also dominantly moves in the z-direction. Therefore large parts of the x-axis
remain unvisited. (Figures 6.10 and 6.11).

Figure 6.10: Simulation result - multiple curvatures - sphere -
angled view Figure 6.11: Simulation result - multiple curvatures - sphere - front

view

It is possible to activate all the border points which will result in a major amount of scans (544 in total),
however still not full coverage is achieved with this method and two percent (at the sides) of coverage is
missed. (Figure 6.12 and Figure 6.13).
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Figure 6.12: Simulation result - all curvatures - sphere - angled
view Figure 6.13: Simulation result - all curvatures - sphere - front view

The hybrid method covers the entire object. Except for the final scan round, the NBVs are located at accept-
able distances and are not close too each other, pointing to more stable results (Figures 6.14 and 6.15).

Figure 6.14: Simulation result - hybrid - sphere - angled view
Figure 6.15: Simulation result - hybrid - sphere - front view

The NBV coordinates, the angles φ and θ and the scan sequence from the hybrid method for the sphere are
tabulated in Table 6.2. The scanning takes place in rounds and NBV positions are selected anti-clockwise
(from Q1 to Q2, Q2 to Q3 and Q3 to Q4). The NBV results of the other five methods are given in Appendix D.
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Table 6.2: NBV coordinates and angles - hybrid method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.2605 -1.3777 0.7708 10.5564 28.8000
2 0.7453 -1.4153 0.0000 26.0538 0
3 -0.2605 -1.3777 0.7708 -10.5564 28.8000
4 -0.7449 -1.4146 0.0503 -26.0543 1.8000
5 -0.2605 -1.3777 -0.7708 -10.5564 -28.8000
6 -0.7453 -1.4153 0.0000 -26.0538 0
7 0.2605 -1.3777 -0.7708 10.5564 -28.8000
8 0.7449 -1.4146 -0.0503 26.0543 -1.8000
9 0.3551 -0.7802 1.3509 23.2660 57.6000
10 0.9396 -1.0401 0.7708 40.2527 28.8000
11 -0.1137 -0.8063 1.3772 -9.4033 59.4000
12 -0.9227 -1.0218 0.8145 -40.2130 30.6000
13 -0.1137 -0.8063 -1.3772 -9.4033 -59.4000
14 -0.9396 -1.0401 -0.7708 -40.2527 -28.8000
15 0.3551 -0.7802 -1.3509 23.2660 -57.6000
16 0.9227 -1.0218 -0.8145 40.2130 -30.6000
17 0.0885 -0.0369 1.5968 90.0000 86.4000
18 1.4322 -0.6845 0.2005 63.8809 7.2000
19 -0.0197 -0.0553 1.5929 90.0000 84.6000
20 -1.4258 -0.6815 0.2503 -63.8763 9.0000
21 -0.0066 -0.0185 -1.5992 90.0000 -88.2000
22 -1.4322 -0.6845 -0.2005 -63.8809 -7.2000
23 0.0443 -0.0185 -1.5992 90.0000 -88.2000
24 1.4258 -0.6815 -0.2503 63.8763 -9.0000
25 0.0907 -0.0336 1.5968 90.0000 86.4000
26 1.0698 -0.3673 1.1314 69.4766 45.0000
27 -1.0001 -0.3446 1.2002 -69.2946 48.6000
28 -0.9433 -0.3874 -1.2328 -66.4633 -50.4000
29 0.1326 -0.0553 -1.5929 90.0000 -84.6000
30 1.2227 -0.3213 -0.9807 74.7402 -37.8000

6.2. NBV results for a conical object in unconstrained case
The six NBV methods also resulted in different solutions for the cone (Table 6.3). Now, the minimum distance
method, together with maximum distance combined method and the hybrid method, resulted in full surface
coverage (23 scans versus 30 scans versus 21 scans). The hybrid method required far less computation time
(68.8 s) than the minimum distance and minimum and maximum distanec method and reached the termi-
nation criterion in two scan rounds (after the initial scan). The minimum curvatures method has the lowest
computational time and sensor movement distance, however it only scans 76.4 percent of the cone. The max-
imum distance method asked for the most time (169.8 s) and gave back 96.1 percent. The minimum distance,
maximum distance, minimum and maximum distance and minimum curvatures methods terminated at the
predefined maximum allowable scan round, which is undesirable.
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Table 6.3: NBV results for the cone

Method Scans [-] Coverage [%] Time [s]
Total
distance
[m]

Termination
round

Minimum Distance 23 100 157.2 32.4 7
Maximum Distance 19 96.1 169.8 31.4 7
Min+Max Distance 30 100 154.8 32.3 7
Minimum Curvature 15 90.9 57 18 2
Minimum Curvatures 13 76.4 45.4 7.5 7
Hybrid 21 100 68.8 32.1 2

Figure 6.16 illustrates the model build up plotted against the number of scans. Although the minimum dis-
tance and minimum and maximum distance methods appear to perform better, the hybrid method also per-
forms well in terms of surface coverage and outperform the two methods in terms of total number of scans,
computational time and termination.

Figure 6.16: NBV comparison - cone

The minimum distance method covered the entire object and has nearly symmetrical NBV distribution. This
is depicted from two different angles in Figure 6.17 and Figure 6.18.
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Figure 6.17: Simulation result - minimum distance - cone - angled
view Figure 6.18: Simulation result - minimum distance - cone - front

view

The maximum distance method also for the cone dominantly moves in the z-direction and remains there,
leaving the last parts of the x-direction unscanned. This is illustrated in the Figures 6.19 and 6.20). There is
also a unscanned area in the upper part of the cone.

Figure 6.19: Simulation result - maximum distance - cone - angled
view Figure 6.20: Simulation result - maximum distance - cone - front

view

The minimum and maximum distance method covers the entire cone. There are NBV positions which are
near to each other (Figures 6.21 and 6.22).
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Figure 6.21: Simulation result - minimum and maximum distance
- cone - angled view

Figure 6.22: Simulation result - minimum and maximum distance
- cone - front view

Also for the cone, the minimum curvature method also dominantly moves in the z-direction. Therefore the
x-axis is not completely visited and remains partially unscanned. Final NBV locations are close to each other
(Figures 6.23 and 6.24). The assymetry in the distribution of the NBVs is can be attributed to the fact that
there is also asymmetry in the loaded point cloud data. This is visualized in Figure 6.25, so there is not an
equal division of the amount of points during partitioning.

Figure 6.23: Simulation result - minimum curvature - cone -
angled view Figure 6.24: Simulation result - minimum curvature - cone - front

view
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Figure 6.25: Asymmetric point cloud distribution - cone

The multiple curvatures method produces leaves the sides unscanned and produces NBvs which are unde-
sirable close to each other. It requires extensive tuning as the curvature values are very small. (Figures 6.26
and 6.27).

Figure 6.26: Simulation result - multiple curvatures - cone - angled
view Figure 6.27: Simulation result - multiple curvatures - cone - front

view
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Figure 6.28: Simulation result - hybrid - cone - angled view
Figure 6.29: Simulation result - hybrid - cone - front view

The hybrid method also covers the entire cone. Except for the final scan round, the NBVs are located at
acceptable distances and are not close too each other, pointing out to more stable results (Figures 6.28 and
6.29).

The NBV coordinates, the angles φ and θ and the scan order from the hybrid method for the cone are tabu-
lated in Table 6.4.

Table 6.4: NBV results - hybrid method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 1.0202 -0.8283 0.0000 45.0000 0
2 0.2796 -0.7923 1.0110 16.4503 50.2417
3 -1.0195 -0.8285 0.0347 -44.9567 1.5048
4 -0.1298 -0.7836 1.0480 -7.5919 52.8314
5 -1.0195 -0.8285 -0.0347 -44.9567 -1.5048
6 -0.1298 -0.7836 -1.0480 -7.5919 -52.8314
7 0.0556 -0.7798 -1.0576 4.5335 -53.5277
8 0.1605 -0.7849 -1.0427 9.5281 -52.4503
9 0.8266 -0.3236 1.2418 31.2123 50.9091
10 1.2235 -0.4500 0.6656 42.5074 25.4161
11 -1.1280 -0.4689 0.7792 -41.1629 30.7774
12 -0.0163 -0.0095 -1.5998 -2.7256 -89.0909
13 -1.1280 -0.4689 -0.7792 -41.1629 -30.7774
14 1.1521 -0.4731 -0.7375 41.6462 -28.9685
15 0.0498 -0.0285 1.5982 4.5335 87.2727
16 1.3362 -0.4194 0.4993 42.6362 18.1818
17 -0.0163 -0.0095 1.5998 -2.7256 89.0909
18 -1.3515 -0.4216 0.4508 -42.9181 16.3636
19 -0.3864 -0.1871 -1.5120 -17.5866 -70.9091
20 1.4243 -0.4243 -0.0000 45.0000 -0.0000
21 0.6712 -0.2817 -1.3596 27.0641 -58.1818

6.3. NBV results for a cubical object
Simulating the cube and the plate resulted in a limitation of the simulation. The pdist2-function of MATLAB
activates also the the points of the other sides after the corners, which is not desired. The absence of the nor-
mal vector determination, which requires a more detailed new point cloud algorithm which detects corners,
and the absence of curvature values, resulted in the use of the maximum and minimum x- and z-values for
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NBV selection. The cube and plate needs more research as they differ a lot from a sphere and cube. As also
triangulation of a cube and plate is not possible with the current triangulation code, the border points are
selected manually.

Figures 6.30 and 6.31 show the simulation result for the cube. Coverage has been omitted as the points at
the left, upper, right and lower points are also activated and therefore not add valuable information. It is also
possible to cover the four outmost corners of the front side by adding the boundary point which lay in the
middle between the maximun x- and z-value.

Figure 6.30: Simulation result of a cube (angled view)
Figure 6.31: Simulation result of a cube (front view view)

For the plate, the same conditions hold (Figures 6.32 and 6.33). The plate is largely scanned in four scans. The
outer corners can be activated manually and add up another four scans. The NBV determination methods
stays the same: selecting the minimum and maximum x- and z-values after the initial scan.

Figure 6.32: Simulation result of a plate (angled view)
Figure 6.33: Simulation result of a plate (front view view)

6.4. NBV results for a spherical object in constrained case
As the LES has several constraints, the following extra simulation has been performed to compare the NBV
methods. The ρ is set to 0.58 m and the sensing depth to 0.09 m. This realizes the real LES scan height of
0.4 m in the z-direction (Figure 6.34 and Figure 6.35 - NBV method: minimum distance). The scan width is
also 0.4 m instead of the 0.6 m in the real case. This is due to circular working principle of pdist2. Also the
maximum φ is set under 45 °in the left and right direction. Only the front part of the sphere is scanned, hence
the name leading edge in LES. The number of points is, from 5.150 points, brought back to 1.059 points. The
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simulation parameters are given in Table 6.5.

Figure 6.34: Constrained simulation - NBV selection Figure 6.35: Constrained simulation - NBV selection (detailed)

Table 6.5: Simulation parameters - constrained

Parameter Value
ρ 0.58
sense 0.09
ng b 10
POV [0, -1.6,0]
Q (sphere) 0 or 5
dmax 1
di st a (sphere) 0.06 [m]

The result from the first scan round after the initial scan of the NBV method minimum distance for the sphere
is illustrated in Figure 6.36.
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Figure 6.36: First scan round - sphere - constrained

The simulation result for the constrained case also resulted in different performances (Table 6.6). None of the
NBV methods produce full surface coverage, however the minimum and maximum distance method (99.1
percent) and the tuned hybrid method (99.7 percent) come close. All the methods are terminating well (in 2
or 3 scan rounds). The model build-up is illustrated in Figure 6.37. The minimum and maximum distance
method performs well, however the tuned hybrid methods has slight more surface coverage at the end.

Table 6.6: Constrained NBV results for the sphere

Method Scans [-] Coverage [%] Time [s]
Total
distance
[m]

Termination
round

Minimum Distance 20 87.7 13.1 12.2 3
Maximum Distance 18 69.4 18.2 18.7 3
Min+Max Distance 32 99.1 16.1 25.2 2
Minimum Curvature 14 78.9 15.9 11.2 2
Minimum Curvatures 34 83.9 11.5 20.5 2
Hybrid 23 98.4 15.2 19.5 2
Hybrid (tuned, Q=2) 24 99.7 16 23 2
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Figure 6.37: NBV comparison - constrained

The minimum distance method for NBV selection from constrained scanning leaves the outer portions of the
object unscanned. This is depicted from two different angles in Figure 6.38 and Figure 6.39.

Figure 6.38: Simulation result - minimum distance - constrained -
angled view Figure 6.39: Simulation result - minimum distance - constrained -

front view

The maximum distance method dominantly moves in the diagonals and remains there, leaving large parts of
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the object unscanned, hence the low surface coverage of 69.4 percent. This is illustrated in the the Figures
6.40 and 6.41.

Figure 6.40: Simulation result - maximum distance - constrained -
angled view Figure 6.41: Simulation result - maximum distance - constrained -

front view

The minimum and maximum distance method covers the entire cone. The NBV distribution is symmetrical.
Only one percent remains unscanned. (Figures 6.42 and 6.43).

Figure 6.42: Simulation result - minimum and maximum distance
- constrained - angled view Figure 6.43: Simulation result - minimum and maximum distance

- constrained - front view

The minimum curvature method moves in z-direction and to the left. The right part remains unscanned.
Final NBV locations are close to each other (Figures 6.44 and 6.45).
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Figure 6.44: Simulation result - minimum curvature - constrained
- angled view Figure 6.45: Simulation result - minimum curvature - constrained

- front view

The multiple curvatures method produces a lot on NBVs with low information gain. Major parts remain
unscanned. (Figures 6.46 and 6.47).

Figure 6.46: Simulation result - multiple curvatures - constrained -
angled view

Figure 6.47: Simulation result - multiple curvatures - constrained -
front view

The hybrid method misses 1.6 percent of the coverage (Figures 6.48 and 6.49). The benefit of the hybrid
method is that it is tunable, which is done in the next method.
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Figure 6.48: Simulation result - hybrid - constrained - angled view
Figure 6.49: Simulation result - hybrid - constrained - front view

The tuned hybrid method results in the most surface coverage (Figures 6.50 and 6.51. Mainly all the NBVs are
distributed evenly. There is more optimization possible.

Figure 6.50: Simulation result - hybrid 2 - constrained - angled
view Figure 6.51: Simulation result - hybrid 2 - constrained - front view

The NBV coordinates, the angles φ and θ and the scan sequence from the hybrid method for the sphere are
tabulated in Table 6.7. The scanning takes place in rounds and NBV positions are selected anti-clockwise
(from Q1 to Q2, Q2 to Q3 and Q3 to Q4).
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Table 6.7: NBV coordinates and angles - hybrid method - constrained

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.2656 -1.4231 0.6812 10.1951 25.2000
2 0.5620 -1.4976 0.0000 18.8538 0
3 -0.5597 -1.4950 0.1005 -18.7319 3.6000
4 -0.5617 -1.4968 0.0503 -18.8543 1.8000
5 -0.3595 -1.4237 -0.6354 -13.7939 -23.4000
6 -0.5620 -1.4976 0.0000 -18.8538 0
7 0.0913 -1.4227 -0.7264 3.7913 -27.0000
8 0.5617 -1.4968 -0.0503 18.8543 -1.8000
9 0.3749 -1.2072 0.9807 16.0014 37.8000
10 0.7287 -1.3806 0.3490 26.2027 12.6000
11 -0.9079 -1.3127 0.1005 -32.4522 3.6000
12 -0.3595 -1.4237 0.6354 -13.7939 23.4000
13 -0.3740 -1.2075 -0.9807 -15.8888 -37.8000
14 -0.8205 -1.3581 -0.2005 -29.0358 -7.2000
15 0.8141 -1.3437 -0.2998 29.2304 -10.8000
16 0.7387 -1.3623 -0.3979 27.9138 -14.4000
17 0.0793 -1.1285 1.1314 4.7150 45.0000
18 0.8375 -1.1807 0.6812 34.2672 25.2000
19 -0.9680 -1.1741 0.4944 -39.3505 18.0000
20 -0.6367 -1.2206 0.8145 -25.4609 30.6000
21 -0.6955 -1.1574 -0.8573 -28.6718 -32.4000
22 -1.0738 -1.1855 0.0000 -40.4538 0
23 1.0708 -1.1840 -0.1005 40.3319 -3.6000
24 0.3703 -1.2397 -0.9405 14.3457 -36.0000

6.5. Optimal NBV algorithm for LES
This Chapter presented the results of the NBV selection methods. The hybrid method results in the better
numbers at scanning a sphere and cone in an unconstrained and constrained case. The hybrid methods re-
quires less scans and therefore causes less robot movement, requires less computational time and terminates
more stable. The additional benefit of the hybrid method is that it is tunable thanks to the Q, which activates
more detected curvature values. This will form a basis for scanning complex and large objects. The main NBV
strategy is based on the SEE where border points are detected and normal vectors are calculated.
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7
Future Work

The next step after selection of the most optimum NBV strategy and ranking method is the implementation
of it in real life. This strategy needs to be coded to the software environment (Beckhoff) of LES to be able to
automatically scan objects.

As the current LES setup does not have collision avoidance, the chosen algorithm and method should be
extended with an extensive path planning strategy to avoid collision at any cost to prevent damage to both
sides. The robot arm does not know that there is an object in the way when it, for example, needs to move
from its rightmost point to the left side.

In order to scan complex objects, or other aircraft parts, with self-occlusion, the SEE algorithm could be
extended with occlusion detection methods and an extra view adjustment step. This will also help to be able
to calculate the right NBVs in case of discontinued surfaces. The additional benefit of SEE with the hybrid
NBV selection method is that it can be tuned further. This will form a basis for scanning complex and large
objects.

If the scanning and moving time becomes less dominant, scan quality will be even more of importance and if
more computation power is added, the point cloud can be voxelized at every step to see if it results in better
NBV predictions for defect detection.

The LES can, as its name says, only scan a portion of the front part of an object. The robotic arm is in the
current setting, due to its relative short arms, not able to make azimuth angles larger than 45 degrees (to the
right and left) to ensure the working distance of 0.6 m. This decreases at larger angles, lowering the quality of
the scan or even detoriates it. A new study on the feasibility of adding joints and arms can be made to always
ensure the wanted working distance at larger azimuth angles.
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8
Conclusion

This thesis describes the concept of view planning based on algorithms for 3D reconstruction of unknown
objects. The LES of NLR, a five DOF robotic arm equipped with a monochrome 3D depth sensor and a RGB
sensor, is able to scan objects and reconstruct 3D models for maintenance purposes. A 3D model requires
several images from different viewpoints. However, currently the selection of the next viewpoints is done
manually, especially the positioning of the robot arm and thereby also the sensor pose. It is expected that
the LES automatically positions the sensors to the next views to further automate the image acquisition pro-
cess. Further automating the LES will lead to the final goal of automatically detection an classification of
anomalies.

In order to reconstruct a model in 3D, knowledge about the required hardware and data acquisition is needed.
Robots and sensors are used to automatically build a model in 3D. Obtained data about the environment is
mainly based on three representations: voxels, triangle meshes and point clouds.

To achieve the goal of automated positioning of the LES to new locations in its workspace in order to fully
reconstruct a 3D model, an algorithm is needed. Therefore, relevant NBV approaches and selection methods
in literature, which should be applicable to the LES, are compared in order to find the most suitable algorithm
for the LES.

Finding the NBV remains a challenging problem, which has been being studied since the 1980s. NBV algo-
rithms are divided into two groups: model based or non-model based. Latter does not have a priori infor-
mation about the object nor its geometry is known. Algorithms are also further divided in the two classifica-
tions search-based and volumetric. Search-based approaches firstly produce a large numbers of candidate
viewpoints which are then filtered or selected under defined constraints. It makes use of measurements. Vol-
umetric methods use the workspace as a basis for analysis and is mainly about the so called voxelization of
occupied and empty areas. The computer memory consumption is high. Surface methods aim at surfaces of
objects where edges are sought-after to compute occluded area. Basic volumetric NBV algorithms are inac-
curate and unreliable in case of complex occlusion and uncertainty about positions.

The obtained knowledge about NBV algorithms and results of relevant simulations and experiments lead to
the research question what the optimal NBV algorithm for 3D reconstruction of unknown objects with the
five DOF LES of NLR will be. This research question is answered with the aid of answers to the following
three sub-questions: (1) ‘How is the imaging pipeline set up for image acquisition and object registration?’,
(2) ‘What sensor systems are required for unknown object reconstruction?’ and (3) ‘What are the prominent
view planning algorithms?’ Also, answers on all above questions supported the reasoning behind the choice
of the NBV algorithm, which is explained below.

A 3D model can be acquired by point clouds, which are stitched together after scan rounds. Other data struc-
tures are the triangle mesh and voxels. The reconstruction workflow consists of robot positioning, scanning,
registration and update and planning the NBV. This process continues until a termination criterion is met.

Automatic image acquisition is done by robots and sensors. The three main sensor types are stereo vision. ToF
and structured light. Robots can be robotic arms or independent moving full-size robots. The LES consists of
a robotic arm using a 3D depth sensor combined with a 2D RGB camera.

Many NBV algorithms with different constraints exists. Connolly was one of the first to calculate the NBVs
via an evenly sampled sphere around the object. Pito further advanced the work of Connolly by considering
several constraints, requirements and output quality. Banta et al. used a voxel representation. Chen and Li
focused on the surface trend. Vasquez-Gomez et al. and Kriegel et al. researched the IG. The conclusion of
Border et al. was that their algorithm called SEE outperformed state-of-the-art volumetric methods.

The applicable algorithm for LES is researched to be the SEE, where the basis is border detection and normal
vector calculation, and using the ranking method of minimum distance and minimum curvature combined
(hybrid version). It ensures full surface coverage at an acceptable computational time and total sensor move-
ment distance. It also terminates more stable than the other only distance and curvature methods, which
most of them not being capable of scanning an entire object.
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A
Appendix A

This Appendix presents the main MATLAB code where the outline can be found in Section 5.1.2. Only the
calculations of Q1 are shown as Q2, Q3 and Q4 are using the same principle.

c lear a l l ; c l c ; close a l l

t i c

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% CHOOSE INPUT: 1) Cone or 2) Sphere %%

coor = load ( ’ sphere_100 . txt ’ ) ; % Uncomment t h i s for the SPHERE ( Unconstrained )

% coor = load ( ’ cone . txt ’ ) ; % Uncomment t h i s for the CONE ( Unconstrained )

% coor = load ( ’ sphere_front . txt ’ ) ; % Uncomment t h i s for the SPHERE ( constrained )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% PARAMETERS %%

rho = 0 . 6 ; % Working distance of sensor [ Unconstrained ]
sense = 0 . 3 ; % Sensing depth [ Unconstrained ]

% rho = 0 . 5 8 ; % Working distance of sensor [ Constrained ]
% sense = 0 . 0 9 ; % Sensing depth [ Constrained ]

Q = 0 . 0 ; % Tune value for curvature ( s )
% [0= one minimum curvature value , higher number for more NBVs]

% Q = 5.5 e11 ; % Q voor cone

d i s t a = 0 . 1 ; % SPHERE: Distance between NBVs [m] ( for optimization ) ,
% set 0 for a c t i v a t i n g a l l points

% d i s t a = 0.01597; % CONE
% d i s t a = 0 . 0 6 ; % UNCONSTRAINED CASE

neighbors = 10; % Number of neighbors for l o c a l geometry analysis
dmax = 1 ; % Max point −to −point distance for boundary detection [1= standard ]

boundx = 1 ; % Object Boundary Box (OBB) in +x direction
boundz = 1 ; % Object Boundary Box (OBB) in +z direction

boundx_constrained = 0 . 8 ; % CONSTRAINED: Object Boundary Box (OBB) in +x direction
boundz_constrained = 0 . 8 ; % CONSTRAINED: Object Boundary Box (OBB) in +z direction

POV = [0 −1.6 0 ] ; % I n i t i a l scan location , default = [0 −1.6 0]
POV_Q1 = [1 −1.6 1 ] ; % Normal vector sensor direction Q1, default = [1 −1.6 1]
POV_Q2 = [ −1 −1.6 1 ] ; % Normal vector sensor direction Q2, default = [ −1 −1.6 1]
POV_Q3 = [ −1 −1.6 −1];% Normal vector sensor direction Q3, default = [ −1 −1.6 −1]
POV_Q4 = [1 −1.6 −1]; % Normal vector sensor direction Q4, default = [1 −1.6 −1]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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coor = coor (~ a l l ( coor == 0 , 2 ) , : ) ;
coor = unique ( coor , ’ rows ’ , ’ stable ’ ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Matrix i n i t i a l i z a t i o n %%

ALL_coor = [ ] ;
ALL_POV_F = [ ] ;
ALL_POV_Fold = [ ] ;

POVQ1 = [ ] ;
POVQ2 = [ ] ;
POVQ3 = [ ] ;
POVQ4 = [ ] ;
coorQ1 = [ ] ;
coorQ2 = [ ] ;
coorQ3 = [ ] ;
coorQ4 = [ ] ;

ALL_coor_np = [ ] ;

r e s u l t = pdist2 ( coor ( : , : ) , POV) ;
f l t = result <=rho+sense ; %% 0.6 m working distance + 0.3 m diepte
coor2 = coor ( f l t , : ) ;

x = coor2 ( : , 1 ) ; y = coor2 ( : , 2 ) ; z = coor2 ( : , 3 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Matrix pa r t i t i o n i ng in the quadrants Q1, Q2, Q3 and Q %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q1 = coor2 ( : ,3) >=0 & coor2 ( : , 1 ) > = 0 ;
Q1 = Q1. * coor2 ;
Q1 = Q1(~ a l l (Q1 == 0 , 2 ) , : ) ;
xQ1=Q1 ( : , 1 ) ; yQ1=Q1 ( : , 2 ) ; zQ1=Q1 ( : , 3 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q2 = coor2 ( : , 3 ) > 0 & coor2 ( : , 1 ) < 0 ;
Q2 = Q2. * coor2 ;
Q2 = Q2(~ a l l (Q2 == 0 , 2 ) , : ) ;
xQ2=Q2 ( : , 1 ) ; yQ2=Q2 ( : , 2 ) ; zQ2=Q2 ( : , 3 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q3 = coor2 ( : ,3) <=0 & coor2 ( : , 1 ) < = 0 ;
Q3 = Q3. * coor2 ;
Q3 = Q3(~ a l l (Q3 == 0 , 2 ) , : ) ;
xQ3=Q3 ( : , 1 ) ; yQ3=Q3 ( : , 2 ) ; zQ3=Q3 ( : , 3 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q4 = coor2 ( : , 3 ) < 0 & coor2 ( : , 1 ) > 0 ;
Q4 = Q4. * coor2 ;
Q4 = Q4(~ a l l (Q4 == 0 , 2 ) , : ) ;
xQ4=Q4 ( : , 1 ) ; yQ4=Q4 ( : , 2 ) ; zQ4=Q4 ( : , 3 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%% Normal vector and curvature calculat ions %%

[ normals , curvature ] = findPointNormals (Q1, neighbors ,
% [POV_Q1( : , 1 ) POV_Q1( : , 2 ) POV_Q1 ( : , 3 ) ] , f a l s e ) ; % NORMAL VECTOR DIRECTION ! ! !
angles_azimuth = atan2 ( normals ( : , 2 ) , normals ( : , 1 ) ) ;
Punt = sqrt (xQ1.^2+yQ1.^2+zQ1 . ^ 2 ) ;
angle_gamma = acos (zQ1 . / Punt ) ; %% ELEVATION !
matrix = [xQ1 , yQ1 , zQ1 , angles_azimuth , angle_gamma
% normals ( : , 1 ) , normals ( : , 2 ) , normals ( : , 3 ) , curvature ] ;

%% Border point detection via tr iangulat ion %%

XA = [ x , z ] ;
rect1 = [min( x ) ,min( z ) ; max( x ) ,min( z ) ; max( x ) ,max( z ) ; min( x ) ,max( z ) ; min( x ) ,min( z ) ] ;
IN1 = inpolygon (XA ( : , 1 ) , XA ( : , 2 ) , rect1 ( : , 1 ) , rect1 ( : , 2 ) ) ;
XA1 = XA( IN1 , : ) ;

[ bids1 E Ne] = find_delaunay_boundary03_fig1 (XA,dmax ) ;

i f bids1 { 1 } ( 1 , 1 ) == bids1 { 1 } ( end , 1 )
bids1 { 1 } = bids1 { 1 } ( 1 : end − 1 , : ) ;

end

bs1 = XA1( bids1 { 1 } , : ) ;
bsp = [ bs1 ] ;
[ bids E Ne] = find_delaunay_boundary03_fig1 ( bsp ,dmax ) ;

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% Matrix Matching − Border points with coordinates %%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

coor_swapQ1 = [Q1( : , 1 ) ,Q1( : , 3 ) ,Q1 ( : , 2 ) ] ; % Change column order from x , y , z to x , z , y

A = coor_swapQ1 ;
B = bsp ;

Border_test = ismember (A ( : , 1 : 2 ) , B, ’ rows ’ ) ;
Border = Border_test . * coor_swapQ1 ;

Border = Border (~ a l l ( Border == 0 , 2 ) , : ) ;
Border = unique ( Border , ’ rows ’ , ’ stable ’ ) ;
Border = Border (~ a l l ( Border == 0 , 2 ) , : ) ;

Border = [ Border ( : , 1 ) , Border ( : , 3 ) , Border ( : , 2 ) ] ;
% Return back to column order x , y , z ( instead of x , z , y )

%%

C = Border ( : , 1 : 3 ) ;
D = matrix ( : , 1 : 3 ) ;
Border9 = ismember (D, C, ’ rows ’ ) ;
Border9 = Border9 . * matrix ( : , : ) ;
Border9 = Border9 (~ a l l ( Border9 == 0 , 2 ) , : ) ;
Border9 = Border9 ( l o g i c a l ( Border9 ( : , 2 ) ) , : ) ;
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f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
s ca tt e r 3 ( x , y , z )
hold on
s ca tt e r 3 ( Border ( : , 1 ) , Border ( : , 2 ) , Border ( : , 3 ) , ’ k * ’ , ’ LineWidth ’ , 5 )
t i t l e ( ’ Border detection Q1 − i n i t i a l scan ’ )
x label ( ’ x [m] ’ )
ylabel ( ’ y [m] ’ )
z label ( ’ z [m] ’ )
view ( [ 0 0 ] )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MIN CURVATURE Q1

[ min_curv , curvature_I ] = min( Border9 ( : , 9 ) ) ;
min_curvature = Border9 ( curvature_I , : ) ;

min_curv_all = min_curv+(min_curv*Q) ; % TUNE
Min_curv_test= Border9 ( : ,9) <= min_curv_all ; % TUNE
All_min_curv = Min_curv_test . * Border9 ( : , : ) ;
All_min_curv = All_min_curv (~ a l l ( All_min_curv == 0 , 2 ) , : ) ;

%% MIN DISTANCE Q1

Border9_distance = [ Border9 ( : , 1 ) , Border9 ( : , 2 ) , Border9 ( : , 3 ) ] ;
[ distances ] = pdist2 ( Border9_distance ( : , : ) , POV) ;
My_matrix = [ Border9 , distances ] ;

[ distance_min , I_min ] = min( My_matrix ( : , 1 0 ) ) ;
Matrix_mindistance = My_matrix ( I_min , : ) ;

distance_min_all = distance_min ;
Min_dist_test= My_matrix ( : ,10) <= distance_min_all ;
All_min_dist = Min_dist_test . * My_matrix ( : , : ) ;
All_min_dist = All_min_dist (~ a l l ( All_min_dist == 0 , 2 ) , : ) ;
All_min_dist = All_min_dist ( round (end / 2 ) , : ) ;

All_hybrid = [ All_min_curv ; All_min_dist ( : , 1 : 9 ) ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
min_curvature = All_hybrid ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
plot ( distances ( : , 1 ) , ’ LineWidth ’ , 2 )
grid on
t i t l e ( ’ Distances Q1’ )
x label ( ’ Index nr . [ − ] ’ )
y label ( ’ Distance [m] ’ )

f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
plot ( My_matrix ( : , 9 ) , ’ LineWidth ’ , 2 )
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grid on
t i t l e ( ’ Curvatures Q1’ )
x label ( ’ Index nr . [ − ] ’ )
y label ( ’ Curvature [ − ] ’ )

f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
s ca tt e r 3 ( Border ( : , 1 ) , Border ( : , 2 ) , Border ( : , 3 ) , ’ k * ’ , ’ LineWidth ’ , 5 )
hold on
s ca tt e r 3 (POV( : , 1 ) ,POV( : , 2 ) ,POV( : , 3 ) , ’ rs ’ , ’ LineWidth ’ , 1 0 )
quiver3 ( Border9 ( : , 1 ) , Border9 ( : , 2 ) , Border9 ( : , 3 ) ,
Border9 ( : , 6 ) , Border9 ( : , 7 ) , Border9 ( : , 8 ) , ’ r ’ , ’ LineWidth ’ , 3 )
s ca tt e r 3 ( min_curvature ( : , 1 ) , min_curvature ( : , 2 ) , min_curvature ( : , 3 ) , ’ gd ’ , ’ LineWidth ’ , 2 0 )
t i t l e ( ’ Hybrid method Q1’ )
x label ( ’ x [m] ’ )
ylabel ( ’ y [m] ’ )
z label ( ’ z [m] ’ )

%% NBV − New POV calculat ion %%

n=1;

while n<= s i z e ( min_curvature , 1 )

POV2 = [ min_curvature ( : , 1 ) + rho . * sin ( min_curvature ( : , 5 ) ) . * cos ( min_curvature ( : , 4 ) ) . . .
min_curvature ( : , 2 ) + rho . * sin ( min_curvature ( : , 5 ) ) . * sin ( min_curvature ( : , 4 ) ) . . .
min_curvature ( : , 3 ) + rho . * cos ( min_curvature ( : , 5 ) ) ] ;

POVQ1 = [POV2,90 −rad2deg ( min_curvature ( : ,4)* −1) ,90 − rad2deg ( min_curvature ( : , 5 ) ) ] ;

r e s u l t 2 = pdist2 ( coor ( : , : ) , POV2(n , : ) ) ;
f l t 2 = result2 <= rho+sense ; %% 0.6 m working distance + 0.3 m diepte
coor3 = coor ( f l t 2 , : ) ;

coorQ1 = [ coorQ1 ; coor3 ] ;

hold on
s ca t te r 3 ( coor ( : , 1 ) , coor ( : , 2 ) , coor ( : , 3 ) , ’ y . ’ )
s ca t te r 3 (POV( : , 1 ) ,POV( : , 2 ) ,POV( : , 3 ) , ’ rs ’ , ’ f i l l e d ’ )
s ca t te r 3 (POV2( : , 1 ) ,POV2( : , 2 ) ,POV2( : , 3 ) , ’ bd ’ , ’ LineWidth ’ , 2 0 )
s ca t te r 3 ( coor2 ( : , 1 ) , coor2 ( : , 2 ) , coor2 ( : , 3 ) )
s ca t te r 3 ( coor3 ( : , 1 ) , coor3 ( : , 2 ) , coor3 ( : , 3 ) )

n=n+1;

end

POVd = [POV, 0 , 0 ] ;
ALL_POV = [POVd;POVQ1 ] ;

ALL_coor = [ coor2 ; coorQ1 ] ;
ALL_coor = unique ( ALL_coor , ’ rows ’ , ’ stable ’ ) ;

f i g u r e

70



set ( gcf , ’ color ’ , ’w’ ) ;
s ca tt e r 3 ( coor ( : , 1 ) , coor ( : , 2 ) , coor ( : , 3 ) , ’ r . ’ )
hold on
s ca tt e r 3 ( ALL_coor ( : , 1 ) , ALL_coor ( : , 2 ) , ALL_coor ( : , 3 ) , ’ g . ’ )
s ca tt e r 3 (ALL_POV ( : , 1 ) , ALL_POV ( : , 2 ) , ALL_POV ( : , 3 ) , ’ bd ’ , ’ LineWidth ’ , 2 0 )

f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
s ca tt e r 3 ( ALL_coor ( : , 1 ) , ALL_coor ( : , 2 ) , ALL_coor ( : , 3 ) )

%% Final r e s u l t s %%

close a l l %% Comment t h i s for opening f i g u r e s at every step !

ALL_coor = [ ALL_coor ; AAA2 ] ;
ALL_coor = unique ( ALL_coor , ’ rows ’ , ’ stable ’ ) ;

ALL_POV_F = [NBV_Round1 ; ALL_POV_Fold ; ALL_POV_F] ;
ALL_POV_F = unique (ALL_POV_F , ’ rows ’ , ’ stable ’ ) ;

NBV = ALL_POV_F ;
writematrix (NBV) ; % This step i s needed for dodging a Matlab issue
% ( not clearing duplicate values )
NBV = load ( ’NBV. txt ’ ) ;
NBV = unique (NBV, ’ rows ’ , ’ stable ’ ) % Duplicate values are now cleared

NBV_FINAL = s i z e (NBV, 1 )

f i g u r e
set ( gcf , ’ color ’ , ’w’ ) ;
s ca tt e r 3 (NBV( : , 1 ) ,NBV( : , 2 ) ,NBV( : , 3 ) , ’ bd ’ , ’ LineWidth ’ , 1 0 )

hold on
s ca tt e r 3 ( coor ( : , 1 ) , coor ( : , 2 ) , coor ( : , 3 ) , ’ r . ’ )
s ca tt e r 3 ( ALL_coor ( : , 1 ) , ALL_coor ( : , 2 ) , ALL_coor ( : , 3 ) , ’ g . ’ )
t i t l e ( [ ’ Total NBV = ’ , num2str (NBV_FINAL) , ’ | | Coverage = ’ , num2str ( coverage ) , ’% ’ ] )

x label ( ’ x [m] ’ )
ylabel ( ’ y [m] ’ )
z label ( ’ z [m] ’ )
view ( [ 0 0 ] )

toc
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B
Appendix B

This appendix contains the Delaunay triangulation code from reference [38] and is the work of M. Awrangjeb.
He used this code in his own work in [40]. It is slightly adjusted for this thesis.

function [ bids , E , Ne] = find_delaunay_boundary03_fig1 (X , Fd)
%inputs :
%X = n by 3 array ( Easting , Northing , Height ) or (X , Y , Z)
%Fd = dmax (max point to point distance
%outputs
%bids : IDs to X that presents the sequence of points in the extracted
%boundary
%Please r e f e r the paper : M. Awrangjeb , "Using point cloud data to identi fy ,
%trace , and re gu lar i ze the outl ines of buildings " International Journal
% of Remote Sensing , Volume 37 , Issue 3 , February 2016 , pages 551−579
%Open access at : http : / /www. tandfonline .com/ doi /pdf /10.1080/01431161.2015.1131868

aThresh = 2 2 . 5 ; %standard 45 degree
dFd = 2*Fd ;
msd = dFd*dFd ;
msd1 = Fd*Fd ;
TRI = delaunay (X ( : , 1 ) , X ( : , 2 ) ) ;
TRI = sort ( TRI , 2 ) ;
%draw
f i g u r e ;
t r i p l o t ( TRI , X ( : , 1 ) , X( : , 2 ) , ’ − c ’ ) ; hold on ;
xlim ( [ − 3 0 , − 9 . 5 ] ) ; ylim ([ −32 ,+32]);% for A−shape

%for X
mnX = min(X ( : , 1 ) ) ;
mxX = max(X ( : , 1 ) ) ;
mnY = min(X ( : , 2 ) ) ;
mxY = max(X ( : , 2 ) ) ;
bb = 0 . 5 ; xlim ( [mnX−bb ,mxX+bb ] ) ; ylim ( [mnY−bb ,mxY+bb]) ;% for noisy shape

nP = s i z e (X , 1 ) ;
E = zeros (nP , nP) == 1 ;
Ne = zeros (nP , nP);%number of times an edge i s shared by t r i a n g l e s (max 2 , min 0)
Xr = [] ;%removed edges
for i = 1 : s i z e ( TRI , 1 )

T = TRI ( i , : ) ;
Ne(T( 1 , 1 ) ,T( 1 , 2 ) ) = Ne(T( 1 , 1 ) ,T( 1 , 2 ) ) + 1 ;
Ne(T( 1 , 2 ) ,T( 1 , 3 ) ) = Ne(T( 1 , 2 ) ,T( 1 , 3 ) ) + 1 ;
Ne(T( 1 , 1 ) ,T( 1 , 3 ) ) = Ne(T( 1 , 1 ) ,T( 1 , 3 ) ) + 1 ;

E(T( 1 , 1 ) ,T( 1 , 2 ) ) = 1 ;
E(T( 1 , 2 ) ,T( 1 , 1 ) ) = 1 ;
E(T( 1 , 2 ) ,T( 1 , 3 ) ) = 1 ;
E(T( 1 , 3 ) ,T( 1 , 2 ) ) = 1 ;
E(T( 1 , 1 ) ,T( 1 , 3 ) ) = 1 ;
E(T( 1 , 3 ) ,T( 1 , 1 ) ) = 1 ;

end

%show boundary edges
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for i = 1 :nP
for j = 1 :nP

i f Ne( i , j ) == 1
plot ( [ X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’ −m’ ) ; hold on ;

end
end

end
plot (X ( : , 1 ) , X ( : , 2 ) , ’ . k ’ , ’ markersize ’ , 1 0 ) ; hold on ;
tv = [ 2 9 4 ; 295; 326; 3 2 7 ] ;
Q = [ ] ;
for i = 1 :nP

for j = 1 :nP
i f ( i < j && E( i , j ) == 1 && Ne( i , j ) == 1)% && ~V( i , j ) )

% check only the upper t r i a n g l e ; E( i , j ) = 1 indicates t h i s i s an outside edge
sd = (X( i ,1) −X( j , 1 ) ) * ( X( i ,1) −X( j , 1 ) ) + (X( i ,2) −X( j , 2 ) ) * ( X( i ,2) −X( j , 2 ) ) ;

i f sd > msd
out1 = [ i j ]
i f i == 2986 | | j == 2986

here = 1 ;
end
%remove t h i s
plot ( [ X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’ − r ’ ) ; hold on ;
Xr = [ Xr ; [X( i , 1 : 2 ) , X( j , 1 : 2 ) ] ] ;
E( i , j ) = 0 ;
E( j , i ) = 0 ;
Ne( i , j ) = 0 ;

i f sum( i == tv ) == 1 | | sum( j == tv ) == 1
here = 1 ;

end
%find other vertex k of t r i a n g l e i j k and add edge ik and j k
%as suspects
k = find (E( i , : ) & E( j , : ) == 1 ) ;
i f s i z e ( k ,2) >1

here = 1 ;
P1 = X( i , : ) ;
P2 = X( j , : ) ;
i f ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) == 0

P1 ( 1 , 1 ) = P1 ( 1 , 1 ) + 0 . 0 0 1 ;
X( i , 1 ) = P1 ( 1 , 1 ) ;

end
m = ( P2 ( 1 , 2 ) − P1 ( 1 , 2 ) ) / ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) ;
c = P1 ( 1 , 2 ) − m*P1 ( 1 , 1 ) ;
Pks = X( k ’ , : ) ;
num = sqrt (1 + m*m) ;
den = m* Pks ( : , 1 ) − Pks ( : , 2 ) + c ;
dks = abs (den/num) ;
[mn id ] = min( dks ) ;
k = k ( 1 , id ) ;

end
i f s i z e ( k , 2 ) == 1%found

%for edge ( i , k )
i f i < k

Ne( i , k ) = Ne( i , k ) −1;
Q = [Q; [ i k ] ] ;

e lse
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Ne( k , i ) = Ne( k , i ) −1;
Q = [Q; [ k i ] ] ;

end
%for edge ( j , k )
i f j < k

Ne( j , k ) = Ne( j , k ) −1;
Q = [Q; [ j k ] ] ;

e lse
Ne( k , j ) = Ne( k , j ) −1;
Q = [Q; [ k j ] ] ;

end
else%not found , error ! check i f happen
end

else

end
end

end
end

while s i z e (Q,1) >0
i = Q( 1 , 1 ) ; j = Q( 1 , 2 ) ;
i f E( i , j ) == 1

%plot ( [ X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’ − y ’ ) ; hold on ;
sd = (X( i ,1) −X( j , 1 ) ) * ( X( i ,1) −X( j , 1 ) ) + (X( i ,2) −X( j , 2 ) ) * ( X( i ,2) −X( j , 2 ) ) ;
i f sd > msd

out2 = [ i j ]
i f i == 2986 | | j == 2986

here = 1 ;
end
%remove t h i s
plot ( [ X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’ − r ’ ) ; hold on ;
Xr = [ Xr ; [X( i , 1 : 2 ) , X( j , 1 : 2 ) ] ] ;
E( i , j ) = 0 ;
E( j , i ) = 0 ;
Ne( i , j ) = 0 ;
%find other vertex k of t r i a n g l e i j k and add edge ik and j k
%as suspects
i f sum( i == tv ) == 1 | | sum( j == tv ) == 1

here = 1 ;
end
k = find (E( i , : ) & E( j , : ) == 1 ) ;
i f s i z e ( k ,2) >1

here = 1 ;
P1 = X( i , : ) ;
P2 = X( j , : ) ;
i f ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) == 0

P1 ( 1 , 1 ) = P1 ( 1 , 1 ) + 0 . 0 0 1 ;
X( i , 1 ) = P1 ( 1 , 1 ) ;

end
m = ( P2 ( 1 , 2 ) − P1 ( 1 , 2 ) ) / ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) ;
c = P1 ( 1 , 2 ) − m*P1 ( 1 , 1 ) ;
Pks = X( k ’ , : ) ;
num = sqrt (1 + m*m) ;
den = m* Pks ( : , 1 ) − Pks ( : , 2 ) + c ;
dks = abs (den/num) ;
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[mn id ] = min( dks ) ;
k = k ( 1 , id ) ;

end
i f s i z e ( k , 2 ) == 1%found

%for edge ( i , k )
i f i < k

Ne( i , k ) = Ne( i , k ) −1;
Q = [Q; [ i k ] ] ;

e lse
Ne( k , i ) = Ne( k , i ) −1;
Q = [Q; [ k i ] ] ;

end
%for edge ( j , k )
i f j < k

Ne( j , k ) = Ne( j , k ) −1;
Q = [Q; [ j k ] ] ;

e lse
Ne( k , j ) = Ne( k , j ) −1;
Q = [Q; [ k j ] ] ;

end
else%not found , error ! check i f happen
end

else

end
end
%else%t h i s edge alreday marked unused in an i t e r a t i o n of the above code

i f s i z e (Q,1) >1
Q = Q( 2 : end , : ) ;

e lse
Q = [ ] ;

end
%end

end

The remaining part of the code can be found at [38].
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C
Appendix C

This appendix contains the normal vector and curvature calculation code from the reference [41].

function [ normals , curvature ] = findPointNormals ( points , numNeighbours ,
viewPoint , dirLargest )
%FINDPOINTNORMALS Estimates the normals of a sparse set of n 3d points by
% using a set of the c l o s e s t neighbours to approximate a plane .
%
% Required Inputs :
% points − nx3 set of 3d points ( x , y , z )
%
% Optional Inputs : ( w i l l give default values on empty array [ ] )
% numNeighbours− number of neighbouring points to use in plane f i t t i n g
% ( default 9)
% viewPoint − location a l l normals w i l l point towards ( default [ 0 , 0 , 0 ] )
% dirLargest − use only the l a r g e s t component of the normal in determining
% i t s direction wrt the viewPoint ( general ly provides a more stable
% estimation of planes near the viewPoint , default true )
%
% Outputs :
% normals− nx3 set of normals ( nx , ny , nz )
% curvature − nx1 set giving the curvature
%
% References −
% The implementation c l o s e l y follows the method given at
% http : / / pointclouds . org /documentation/ t u t o r i a l s / normal_estimation . php
% This code was used in generating the r e s u l t s for the journal paper
% Multi −modal sensor c a l i b r a t i o n using a gradient orientation measure
% http : / /www. z j t a y l o r .com/welcome/download_pdf ? pdf=JFR2013 . pdf
%
% This code was written by Zachary Taylor
% zacharyjeremytaylor@gmail .com
% http : / /www. z j t a y l o r .com

%% check inputs
v a l i d a t e a t t r i b u t e s ( points , { ’ numeric ’ } , { ’ ncols ’ , 3 } ) ;

i f ( nargin < 2)
numNeighbours = [ ] ;

end
i f ( isempty (numNeighbours ) )

numNeighbours = 9 ;
e lse

v a l i d a t e a t t r i b u t e s (numNeighbours , { ’ numeric ’ } , { ’ scalar ’ , ’ posit ive ’ } ) ;
i f (numNeighbours > 100)

warning ([ ’% i neighbouring points w i l l be used in plane ’ . . .
’ estimation , expect long run times , large ram usage and ’ . . .
’ poor r e s u l t s near edges ’ ] , numNeighbours ) ;

end
end

i f ( nargin < 3)
viewPoint = [ ] ;

end
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i f ( isempty ( viewPoint ) )
viewPoint = [ 0 , 0 , 0 ] ;

e lse
v a l i d a t e a t t r i b u t e s ( viewPoint , { ’ numeric ’ } , { ’ size ’ , [ 1 , 3 ] } ) ;

end

i f ( nargin < 4)
dirLargest = [ ] ;

end
i f ( isempty ( dirLargest ) )

dirLargest = true ;
e lse

v a l i d a t e a t t r i b u t e s ( dirLargest , { ’ l o g i c a l ’ } , { ’ scalar ’ } ) ;
end

%% setup

%ensure inputs of correct type
points = double ( points ) ;
viewPoint = double ( viewPoint ) ;

%create kdtree
kdtreeobj = KDTreeSearcher ( points , ’ distance ’ , ’ euclidean ’ ) ;

%get nearest neighbours
n = knnsearch ( kdtreeobj , points , ’ k ’ , ( numNeighbours + 1 ) ) ;

%remove s e l f
n = n ( : , 2 : end ) ;

%find dif ference in position from neighbouring points
p = repmat ( points ( : , 1 : 3 ) , numNeighbours , 1 ) − points (n ( : ) , 1 : 3 ) ;
p = reshape (p , s i z e ( points , 1 ) , numNeighbours , 3 ) ;

%calculate values for covariance matrix
C = zeros ( s i z e ( points , 1 ) , 6 ) ;
C( : , 1 ) = sum(p ( : , : , 1 ) . * p ( : , : , 1 ) , 2 ) ;
C( : , 2 ) = sum(p ( : , : , 1 ) . * p ( : , : , 2 ) , 2 ) ;
C( : , 3 ) = sum(p ( : , : , 1 ) . * p ( : , : , 3 ) , 2 ) ;
C( : , 4 ) = sum(p ( : , : , 2 ) . * p ( : , : , 2 ) , 2 ) ;
C( : , 5 ) = sum(p ( : , : , 2 ) . * p ( : , : , 3 ) , 2 ) ;
C( : , 6 ) = sum(p ( : , : , 3 ) . * p ( : , : , 3 ) , 2 ) ;
C = C . / numNeighbours ;

%% normals and curvature calculat ion

normals = zeros ( s i z e ( points ) ) ;
curvature = zeros ( s i z e ( points , 1 ) , 1 ) ;
for i = 1 : ( s i z e ( points , 1 ) )

%form covariance matrix
Cmat = [C( i , 1 ) C( i , 2 ) C( i , 3 ) ; . . .

C( i , 2 ) C( i , 4 ) C( i , 5 ) ; . . .
C( i , 3 ) C( i , 5 ) C( i , 6 ) ] ;

%get eigen values and vectors
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[ v , d] = eig (Cmat ) ;
d = diag (d ) ;
[ lambda , k ] = min(d ) ;

%store normals
normals ( i , : ) = v ( : , k ) ’ ;

%store curvature
curvature ( i ) = lambda / sum(d ) ;

end

%% f l i p p i n g normals

%ensure normals point towards viewPoint
points = points − repmat ( viewPoint , s i z e ( points , 1 ) , 1 ) ;
i f ( dirLargest )

[~ , idx ] = max( abs ( normals ) , [ ] , 2 ) ;
idx = ( 1 : s i z e ( normals , 1 ) ) ’ + ( idx −1)* s i z e ( normals , 1 ) ;
dir = normals ( idx ) . * points ( idx ) > 0 ;

e lse
dir = sum( normals . * points , 2 ) > 0 ;

end

normals ( dir , : ) = −normals ( dir , : ) ;

end

‘
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D
Appendix D

The NBV results for the minimum distance method for the sphere are given in Table D.1.

Table D.1: NBV results - minimum distance method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.7453 -1.4153 0.0000 26.0538 0
2 -0.7449 -1.4146 0.0503 -26.0543 1.8000
3 -0.7453 -1.4153 0.0000 -26.0538 0
4 0.7449 -1.4146 -0.0503 26.0543 -1.8000
5 0.1775 -1.3908 0.7708 7.3963 28.8000
6 -0.4381 -1.3055 0.8145 -19.4721 30.6000
7 -0.1775 -1.3908 -0.7708 -7.3963 -28.8000
8 0.0220 -1.3767 -0.8145 2.4448 -30.6000
9 0.8395 -1.0578 0.8573 36.4985 32.4000
10 -1.2368 -0.9331 0.3979 -51.2486 14.4000
11 -0.8395 -1.0578 -0.8573 -36.4985 -32.4000
12 0.7213 -1.0377 -0.9807 32.8030 -37.8000
13 1.3349 -0.8812 0.0000 54.8538 0
14 -0.0711 -0.8109 1.3772 -7.3657 59.4000
15 -0.1449 -0.8014 -1.3772 -9.3328 -59.4000
16 1.3343 -0.8808 -0.0503 54.8543 -1.8000
17 1.3706 -0.4656 0.6812 69.9668 25.2000
18 -1.0483 -0.5109 1.0953 -62.7175 43.2000
19 -1.3997 -0.5950 -0.4944 -64.5820 -18.0000
20 1.3513 -0.4538 -0.7264 70.4975 -27.0000
21 0.6784 -0.4502 1.3772 54.4912 59.4000
22 -1.5720 -0.2186 0.2005 -80.8861 7.2000
23 -0.9044 -0.3784 -1.2642 -65.4564 -52.2000
24 0.5670 -0.3771 -1.4477 54.3265 -64.8000
25 0.3245 -0.1285 1.5615 68.4000 77.4000
26 -0.3245 -0.1285 1.5615 -68.4000 77.4000
27 -0.3245 -0.1285 -1.5615 -68.4000 -77.4000
28 0.3245 -0.1285 -1.5615 68.4000 -77.4000

The NBV results for the maximum distance method for the sphere are given in Table D.2.
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Table D.2: NBV results - maximum distance method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.6186 -1.3896 0.4944 21.9942 18.0000
2 -0.7237 -1.3943 0.2998 -25.1471 10.8000
3 -0.7237 -1.3943 -0.2998 -25.1471 -10.8000
4 0.6186 -1.3896 -0.4944 21.9942 -18.0000
5 1.0929 -0.8368 0.8145 50.1648 30.6000
6 -1.1773 -0.8773 0.6354 -52.1536 23.4000
7 -1.1773 -0.8773 -0.6354 -52.1536 -23.4000
8 1.0929 -0.8368 -0.8145 50.1648 -30.6000
9 1.1953 -0.1026 1.0581 82.9110 41.4000
10 -1.3711 -0.1209 0.8145 -82.5648 30.6000
11 -1.3711 -0.1209 -0.8145 -82.5648 -30.6000
12 1.1953 -0.1026 -1.0581 82.9110 -41.4000
13 0.5377 -0.0679 1.5054 82.8000 70.2000
14 -0.7687 -0.0560 1.4021 -84.8974 61.2000
15 -0.7687 -0.0560 -1.4021 -84.8974 -61.2000
16 0.5377 -0.0679 -1.5054 82.8000 -70.2000
17 0.1468 -0.0329 1.5929 74.2860 84.6000
18 -0.1468 -0.0329 1.5929 -74.2860 84.6000
19 -0.1483 -0.0247 -1.5929 -76.7680 -84.6000
20 0.1468 -0.0329 -1.5929 74.2860 -84.6000

The NBV results for the minimum and maximum distance method for the sphere are given in Table D.3.
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Table D.3: NBV results - minimum and maximum distance method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.7453 -1.4153 0.0000 26.0538 0
2 0.4394 -1.3794 0.6812 17.1168 25.2000
3 -0.7449 -1.4146 0.0503 -26.0543 1.8000
4 -0.6186 -1.3896 0.4944 -21.9942 18.0000
5 -0.7453 -1.4153 0.0000 -26.0538 0
6 -0.6186 -1.3896 -0.4944 -21.9942 -18.0000
7 0.7449 -1.4146 -0.0503 26.0543 -1.8000
8 0.4394 -1.3794 -0.6812 17.1168 -25.2000
9 0.0228 -0.9799 1.2642 3.5574 52.2000
10 0.8066 -0.7927 1.1314 43.3310 45.0000
11 -0.0779 -1.0167 1.2328 -5.6781 50.4000
12 -1.0723 -0.8205 0.8573 -50.2102 32.4000
13 -0.0779 -1.0167 -1.2328 -5.6781 -50.4000
14 -1.0723 -0.8205 -0.8573 -50.2102 -32.4000
15 0.0228 -0.9799 -1.2642 3.5574 -52.2000
16 0.8066 -0.7927 -1.1314 43.3310 -45.0000
17 1.3349 -0.8812 0.0000 54.8538 0
18 0.6321 -0.0596 1.4684 81.6473 66.6000
19 -1.5198 -0.4001 0.2998 -74.6714 10.8000
20 -1.0153 -0.0903 1.2328 -82.4449 50.4000
21 -1.5198 -0.4001 -0.2998 -74.6714 -10.8000
22 -1.0153 -0.0903 -1.2328 -82.4449 -50.4000
23 1.3343 -0.8808 -0.0503 54.8543 -1.8000
24 0.6321 -0.0596 -1.4684 81.6473 -66.6000
25 1.4372 -0.3838 0.5890 74.1300 21.6000
26 0.0502 -0.0020 1.5992 90.0000 88.2000
27 -0.3245 -0.1285 1.5615 -68.4000 77.4000
28 -0.0125 -0.0020 1.5992 90.0000 88.2000
29 -0.3245 -0.1285 -1.5615 -68.4000 -77.4000
30 -0.0125 -0.0020 -1.5992 90.0000 -88.2000
31 1.4171 -0.3838 -0.6354 73.5877 -23.4000
32 0.0502 -0.0020 -1.5992 90.0000 -88.2000
33 0.3245 -0.1285 1.5615 68.4000 77.4000
34 0.3245 -0.1285 -1.5615 68.4000 -77.4000

The NBV results for the minimum curvature method for the sphere are given in Table D.4.
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Table D.4: NBV results - minimum curvature method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.2605 -1.3777 0.7708 10.5564 28.8000
2 -0.2605 -1.3777 0.7708 -10.5564 28.8000
3 -0.2605 -1.3777 -0.7708 -10.5564 -28.8000
4 0.2605 -1.3777 -0.7708 10.5564 -28.8000
5 0.3551 -0.7802 1.3509 23.2660 57.6000
6 -0.1137 -0.8063 1.3772 -9.4033 59.4000
7 -0.1137 -0.8063 -1.3772 -9.4033 -59.4000
8 0.3551 -0.7802 -1.3509 23.2660 -57.6000
9 0.0497 -0.0059 1.5992 90.0000 88.2000
10 -0.0123 -0.0039 1.5992 90.0000 88.2000
11 -0.0123 -0.0039 -1.5992 90.0000 -88.2000
12 0.0497 -0.0059 -1.5992 90.0000 -88.2000
13 0.0500 -0.0039 1.5992 90.0000 88.2000
14 0.0500 -0.0039 -1.5992 90.0000 -88.2000

The NBV results for the multiple curvatures method for the sphere are are given in Table D.5.

Table D.5: NBV results - multiple curvatures method - sphere

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.1775 -1.3908 0.7708 7.3963 28.8000
2 0.6186 -1.3896 0.4944 21.9942 18.0000
3 -0.4394 -1.3794 0.6812 -17.1168 25.2000
4 -0.4394 -1.3794 -0.6812 -17.1168 -25.2000
5 0.1775 -1.3908 -0.7708 7.3963 -28.8000
6 0.6186 -1.3896 -0.4944 21.9942 -18.0000
7 0.7870 -0.8606 1.0953 41.1802 43.2000
8 -0.3262 -0.8381 1.3233 -20.7145 55.8000
9 -0.3262 -0.8381 -1.3233 -20.7145 -55.8000
10 0.7870 -0.8606 -1.0953 41.1802 -43.2000
11 0.2262 -0.2650 1.5615 35.9569 77.4000
12 0.2262 -0.2650 -1.5615 35.9569 -77.4000
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The NBV results for the minimum distance method for the cone are given in Table D.6.

Table D.6: NBV results - minimum distance method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.4939 -1.2333 0.3266 33.5859 13.5986
2 -0.4795 -1.2376 0.3360 -32.6558 13.9981
3 -0.4795 -1.2376 -0.3360 -32.6558 -13.9981
4 0.4645 -1.2421 -0.3450 31.6792 -14.3839
5 0.1074 -0.8771 0.9644 6.9689 47.5021
6 -0.0784 -0.8769 0.9673 -5.2240 47.6923
7 -0.0784 -0.8769 -0.9673 -5.2240 -47.6923
8 0.1074 -0.8582 -0.9824 6.9647 -48.6394
9 1.0202 -0.8283 0.0000 45.0000 0
10 -1.0195 -0.8285 0.0347 -44.9567 1.5048
11 -1.0195 -0.8285 -0.0347 -44.9567 -1.5048
12 1.0069 -0.8320 -0.1383 44.1683 -6.0146
13 0.6276 -0.3665 1.2889 26.5766 57.8288
14 -0.6501 -0.4101 1.2357 -27.8112 55.7043
15 -0.6501 -0.4101 -1.2357 -27.8112 -55.7043
16 0.6922 -0.4091 -1.2180 28.9952 -54.0454
17 1.2912 -0.4260 0.5871 43.2336 21.8133
18 -1.2717 -0.4230 0.6333 -42.8870 23.6310
19 -1.2717 -0.4230 -0.6333 -42.8870 -23.6310
20 0.6712 -0.2817 -1.3596 27.0641 -58.1818
21 1.3362 -0.4194 0.4993 42.6362 18.1818
22 -1.3515 -0.4216 0.4508 -42.9181 16.3636
23 -0.4676 -0.2171 -1.4758 -20.5263 -67.2727

The NBV results for the maximum distance method for the cone are given in Table D.7.

Table D.7: NBV results - maximum distance method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.5210 -1.2250 0.3068 35.3101 12.7602
2 -0.5078 -1.2291 0.3168 -34.4704 13.1858
3 -0.5078 -1.2291 -0.3168 -34.4704 -13.1858
4 0.4939 -1.2333 -0.3266 33.5859 -13.5986
5 0.7497 -0.7308 0.8200 35.3202 37.6964
6 -0.8218 -0.7416 0.7345 -37.5232 33.2128
7 -0.7749 -0.7343 -0.7923 -36.1487 -36.2154
8 0.6954 -0.7337 -0.8616 34.0389 -40.1289
9 0.9022 -0.3402 1.1753 33.3267 47.2727
10 -1.0071 -0.3625 1.0668 -35.8382 41.8182
11 -0.9381 -0.3481 -1.1403 -34.2079 -45.4545
12 0.8278 -0.3228 -1.2418 31.4278 -50.9091
13 0.8278 -0.3228 1.2418 31.4278 50.9091
14 -0.9381 -0.3481 1.1403 -34.2079 45.4545
15 -0.8654 -0.3317 -1.2092 -32.4003 -49.0909
16 0.7506 -0.3034 -1.3033 29.3418 -54.5455
17 0.7506 -0.3034 1.3033 29.3418 54.5455
18 -0.7895 -0.3134 -1.2732 -30.4085 -52.7273
19 -0.8654 -0.3317 1.2092 -32.4003 49.0909

The NBV results for the minimum and maximum distance method for the cone are given in Table D.8.
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Table D.8: NBV results - minimum and maximum distance method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.4939 -1.2333 0.3266 33.5859 13.5986
2 0.2789 -1.2880 0.4153 19.2532 17.3969
3 -0.4795 -1.2376 0.3360 -32.6558 13.9981
4 -0.5972 -1.2007 0.2284 -40.0199 9.4630
5 -0.4795 -1.2376 -0.3360 -32.6558 -13.9981
6 -0.6773 -1.1710 -0.0141 -45.0911 -0.5819
7 0.4645 -1.2421 -0.3450 31.6792 -14.3839
8 0.5881 -1.2037 -0.2403 39.4653 -9.9647
9 0.0561 -0.8187 1.0229 4.5335 51.2591
10 0.7991 -0.7378 0.7638 36.9023 34.7205
11 -0.0343 -0.8379 1.0063 -3.8348 50.1858
12 -1.1309 -0.7110 0.1212 -44.2408 5.0732
13 -0.0784 -0.8769 -0.9673 -5.2240 -47.6923
14 -1.1507 -0.6971 -0.0409 -44.9567 -1.7024
15 0.1074 -0.8582 -0.9824 6.9647 -48.6394
16 1.0175 -0.7309 -0.4582 42.2739 -19.7659
17 1.3506 -0.4392 0.3967 43.8302 14.5423
18 0.5902 -0.2577 1.4103 24.5925 61.8182
19 -0.5245 -0.2979 1.3876 -22.5690 63.4736
20 -0.3845 -0.1877 1.5120 -17.0113 70.9091
21 -0.5892 -0.3552 -1.3137 -25.2912 -59.6209
22 -1.3515 -0.4216 -0.4508 -42.9181 -16.3636
23 0.5686 -0.3002 -1.3742 23.9551 -61.7237
24 1.3881 -0.4268 -0.3028 43.5790 -10.9091
25 1.3362 -0.4194 0.4993 42.6362 18.1818
26 -1.3515 -0.4216 0.4508 -42.9181 16.3636
27 -0.7895 -0.3134 1.2732 -30.4085 52.7273
28 -0.4676 -0.2171 -1.4758 -20.5263 -67.2727
29 -1.2369 -0.4041 -0.7332 -40.7407 -27.2727
30 0.6712 -0.2817 -1.3596 27.0641 -58.1818
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The NBV results for the minimum curvature method for the cone are given in Table D.9.

Table D.9: NBV results - minimum curvature method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.0723 -1.3128 0.4441 6.0828 18.6450
2 -0.0464 -1.3143 0.4445 -4.2739 18.6645
3 -0.0464 -1.3143 -0.4445 -4.2739 -18.6645
4 0.0723 -1.3128 -0.4441 6.0828 -18.6450
5 0.0556 -0.7798 1.0576 4.5335 53.5277
6 -0.8212 -1.0243 0.0704 -44.3664 3.0577
7 -0.8212 -1.0243 -0.0704 -44.3664 -3.0577
8 0.0556 -0.7798 -1.0576 4.5335 -53.5277
9 0.7783 -0.5429 1.0224 33.2324 45.6195
10 -0.5846 -0.3662 1.3043 -25.2912 59.5111
11 -0.0163 -0.0095 -1.5998 -2.7256 -89.0909
12 0.6478 -0.3240 -1.3248 26.5766 -58.1002
13 1.3118 -0.4456 0.4897 43.2336 18.1726
14 -0.0163 -0.0095 1.5998 -2.7256 89.0909
15 0.0498 -0.0285 -1.5982 4.5335 -87.2727

The NBV results for the multiple curvatures method for the cone are given in Table D.10.
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Table D.10: NBV results - multiple curvatures method - cone

Scan [-] x [m] y [m] z [m] φ [°] θ [°]
1 0.1079 -1.3107 0.4418 8.0737 18.5477
2 -0.0464 -1.3143 0.4445 -4.2739 18.6645
3 -0.0464 -1.3143 -0.4445 -4.2739 -18.6645
4 0.1079 -1.3107 -0.4418 8.0737 -18.5477
5 0.3904 -0.8038 0.9631 21.7174 47.0799
6 0.4987 -0.8297 0.8850 26.8948 42.3734
7 0.5983 -0.8522 0.7948 31.3034 37.3058
8 0.8476 -0.9948 0.1012 44.1595 4.4218
9 -0.6093 -0.8948 0.7334 -32.2866 34.1022
10 -0.5651 -0.8793 0.7866 -30.1480 36.9397
11 -0.5193 -0.8614 0.8379 -28.0926 39.7618
12 -0.4678 -0.8578 0.8716 -25.8182 41.7053
13 -0.4135 -0.8394 0.9176 -22.8937 44.3992
14 -0.3606 -0.8180 0.9607 -20.3186 47.0178
15 -0.3050 -0.8130 0.9843 -17.5825 48.5495
16 -0.2474 -0.8089 1.0039 -14.4698 49.8600
17 -0.1880 -0.8056 1.0195 -11.0036 50.9264
18 -0.1298 -0.7836 1.0480 -7.5919 52.8314
19 -0.0747 -0.7810 1.0555 -4.6565 53.3718
20 -0.6093 -0.8948 -0.7334 -32.2866 -34.1022
21 -0.5657 -0.8790 -0.7866 -30.2392 -36.9397
22 -0.5193 -0.8614 -0.8379 -28.0926 -39.7618
23 -0.4678 -0.8578 -0.8716 -25.8182 -41.7053
24 -0.4138 -0.8392 -0.9176 -22.9472 -44.3992
25 -0.3606 -0.8180 -0.9607 -20.3186 -47.0178
26 -0.3050 -0.8130 -0.9843 -17.5825 -48.5495
27 -0.2478 -0.8088 -1.0039 -14.5338 -49.8600
28 -0.1880 -0.8056 -1.0195 -11.0036 -50.9264
29 -0.1298 -0.7836 -1.0480 -7.5919 -52.8314
30 -0.0747 -0.7810 -1.0555 -4.6565 -53.3718
31 0.8476 -0.9948 -0.1012 44.1595 -4.4218
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