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INTRODUCTION

In many engineering applications, it is desirable to eliminate or reduce the effect of grav-
ity on a particular part of a mechanism to reduce the required operating power [4]. The
compensation of the effects of gravity is referred to as gravity balancing or static balanc-
ing. The overall goal of this thesis is to supply an overview of different mechanisms that
can supply static balance and to investigate the implementation of these mechanisms in
applications in which the payload varies, especially in exoskeletons and robotic manip-
ulators.

Two basic options for static balancing can be distinguished: active and passive ap-
proaches. The former approach incorporates active actuators, such as motors, and con-
trol systems which require energy to operate. The latter approach incorporates non-
powered devices, such as springs, to compensate the gravity effects. Generally, active so-
lutions are easier to control compared to the passive solutions, but rely on power sources
to operate. The passive solutions are relatively simple and therefore more reliable com-
pared to active solutions. Generally, when both active and passive balancing technolo-
gies meet the system’s requirements, passive balancing technologies are preferred over
active ones [21].

Passive balancers can be categorized into mass-to-mass and spring-to-mass balancers
[1, 9]. Mass-to-mass balancers incorporate counterweights to keep the center of mass of
the system stationary and thereby balance the mass. Applications include drawbridges,
elevators, cranes, rehabilitation devices [5, 32] (Figure 1.1a) and robotic manipulators
[28, 34, 33]. A disadvantage of mass-to-mass balancing is the relatively large inertia and
mass of the system, which makes it less suitable to be applied in mobile applications.

Spring-to-mass balancers incorporate one or multiple springs to balance the mass.
In spring-to-mass balancers, the total potential energy is constant by exchanging energy
between the spring and mass. They are applied in robotic manipulators [11, 22, 23],
exoskeletons and rehabilitation devices [15, 10, 25] (Figure 1.1b) to reduce the operating
power. Spring-to-mass balancers are generally more lightweight than mass-to-mass bal-
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ancers [9], making them interesting for mobile applications. However, a transmission is
required to transform the potential energy curve of the spring, which makes spring-to-
mass balancers generally more complex than mass-to-mass balancers.

(a) (b)

Figure 1.1: Example of (a) a mass-to-mass balancer in a rehabilitation device [5] and (b) a spring-to-mass
balancer in an exoskeleton [16]

A classification that identifies new design opportunities can be a valuable tool in the
design process [6]. Existing classifications of spring-to-mass balancers (on basis of their
structure [15], applications [21], inertia force and performance [20, 31] and type of trans-
mission [26]) are top-down structured. Top-down structured classifications focus on the
existing designs, and therefore supply very limited guidance in the design of innovative
solutions. Bottom-up structured classifications, however, start with a systematic iden-
tification of the complete design space. By doing so, all possible design opportunities
become clear, which then can be compared to the existing designs to identify novel de-
sign opportunities.

Generally, a balancer is designed to balance a specific payload [9]. When another
payload is to be balanced, the balancer needs to be adjusted. This can be the case in
balancers applied in exoskeletons and robotic manipulators. The load on the balancer
in those application varies (e.g. when an object is picked up) and for optimal support
quick adjustment is required at any instance. Besides, the amount of energy involved in
the adjustment should be limited to enable the use of lightweight and compact actua-
tors. Various methods to adjust a balancer have been proposed [2], but the amount of
energy that is involved in the adjustment has not been discussed. In addition, so called
energy-free adjustment methods, in which no external energy is involved, have been in-
troduced [3, 8, 9, 15]. However, in these methods, the balancer can be adjusted in one
balancer position only and therefore do not meet the above mentioned requirements.
Besides, balancers without a transmission that can supply perfect balance over the com-
plete range of motion incorporate custom springs [2] which increases their complexity.
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THESIS OUTLINE
This thesis consists of five chapters. Chapter 2 and 3 each present an independent paper.

In Chapter 2, the focus is on the classification of force generators, which is the family
of mechanisms to which balancers belong to [19]. The goal of this chapter is to introduce
a bottom-up classification method to identify the complete solutions space of transmis-
sions in force generators based on their transfer function. Using this method, spring-to-
mass balancers with one non-auxiliary revolute joint will be classified to identify their
working principles and find new design opportunities.

In Chapter 3, the focus is on balancers applied in exoskeletons and robotic manip-
ulators. The goal of this chapter is twofold. The first goal is to introduce the optimal
balancer adjustment types for application in exoskeletons and robotic manipulators.
The second goal is to compare their performance based on the balancing quality, en-
ergy involved in adjustment and dimensions through an analytical MATLAB model. The
introduced adjustment types incorporate a commercial available spring with realistic
properties and their performance is considered in their complete range of motion.

The results of the complete thesis research are discussed in Chapter 4, and in Chapter
5, the main conclusions are highlighted. This thesis ends with additional information
about the performed research, which can be found in Appendices A to H.
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Abstract— Since a force generator is not unique, optimal design
is difficult. Current classifications of force generators solely
classify existing mechanisms. Since the complete solution space
is not identified, these classifications provide limited guidance
in optimal design.
A classification is proposed in which the complete solution space
is systematically identified by exploring all possible combina-
tions of mechanism parameters for which the desired force-
displacement behaviour is exhibited by the force generator.
Firstly, desired output of the force generator (load function)
is determined. Secondly, the motor parameters (determined by
the type of motor) are identified which form the motor function.
Thirdly, all possible combinations of the motor parameters
for which the motor function equals the load function are
identified. From these combinations, the working principle of
the force generators is deduced. Lastly, the combinations can
be compared to existing force generators to find new design
opportunities.
The classification is applied to planar spring-to-mass perfect
static balancers with one non-auxiliary revolute joint. Five
out of 27 possible parameter combinations are found in
existing balancers. Considering linear springs only, five out
of seven combinations are found in existing mechanisms; the
two remaining combinations are considered as new design
possibilities. The working principles of the balancers found in
literature include the use of:

• ideal springs,
• trigonometric identities,
• cam mechanisms,
• cancellation of (undesired) terms and
• phase shifted trigonometric functions.

NOMENCLATURE

F Force [N]
i, j,k Unit vectors in x, y, z direction
M Moment [Nm]
r Moment arm [m]
u Deformation [m]
ϕi Degree of freedom i
aq Motor parameter q
g Gravity acceleration [m/s2]
hk Height of mass k [m]
k Stiffness [N/m]
L, l Length [m]
l0 Free length [m]
mk Mass k [kg]

I. INTRODUCTION

A force generator is a mechanism that exhibits a specific
force-deflection behaviour. Generally, a force generator is not
unique: different mechanisms with identical behaviour exist,
which makes optimal design difficult. The goal of this study
is to simplify optimal design of force generators by proposing
a systematic classification method, based on combination of
actuator parameters by which the desired force-deflection
behaviour is obtained.
The classification is applied to force generators that exert
a force to statically balance a mass (hereinafter referred to
as balancers). The balancers that are considered meet the
following criteria. The balancers:

• are perfectly balanced,
• use springs to generate force,
• work in two-dimensional space and
• have one revolute joint.

Herder [1] developed a classification of one-degree-of-
freedom balancers based on the adjustability to changing
payload in an energy-free manner. Van Drunen [2] used
a similar approach to classify adjustable one-degree-of-
freedom balancers and also considered energy-costly adjust-
ment. Although the adjustability follows from the mechanism
principle, the mechanism principles are not discussed and
classified. Rijff [3] classified vertical translating gravity
balancers using the number of springs and the number of
mechanisms. Rijff identifies distinct mechanisms, but focuses
on the number of mechanisms instead of the nature of the
mechanisms. Baradat [4] classified both one and two degree
of freedom-balancers based on the force-generating element
and the transmission between the balancing force and the
load. However, Baradat did not investigate why specific
transmission ratios are used.
All of the above classifications are top-down structured:
starting at the existing balancers, an overview is created.
Top-down classifications do not facilitate optimal design,
since existing mechanisms are considered only, whereas the
optimal design could be yet non-existing. The proposed
classification has a bottom-up structure: the complete design
space is systematically described and compared to the mech-
anisms found in literature. Furthermore, the use of specific
mechanism principles can be explained by the desired load-
displacement behaviour.



II. METHOD
A. Literature search

The balancers that are considered in this study meet the
requirements described in the Section I and are published
in scientific articles, found on Google Scholar and Scopus.
Combinations of the search terms that are listed in Table I
are used. The following terms are excluded: active, control,
motor and *electr*. The cited references of the found articles
are reviewed to find other relevant articles. Relevant patents
are reviewed but not considered in the classification because
correct functioning of the patented mechanisms cannot be
guaranteed.

TABLE I: Keywords used in literature search

AND AND AND
static balancing device

gravity counterbalance mechanism
spring ”constant force” compensation

”constant load” equilibrator
equipoising

support

B. Classification

The motor-load framework
The motor-load framework is used to classify the force
generators. The load can be either prescribed by a physical
system (e.g. a mass) or by the designer (e.g. a custom load-
displacement curve). The behaviour of the force or moment
exerted by the load is described by the load function, which
is a function of the degrees of freedom (ϕ1, ..., ϕN ):

Gload ≡ f(ϕ1, ..., ϕN ) (1)

The motor is formed by one or multiple mechanical (ac-
tuator) elements. The behaviour of the force or moment
exerted by the motor is described by the motor function
and is dependent on the degrees of freedom and the motor
parameters (a1, ..., aq):

Gmotor ≡ g(ϕ1, ..., ϕN , a1, ..., aq) (2)

The motor parameters, which follow from the type of motor,
are combined so that the motor function equals the load
function:

Gmotor = Gload (3)

g(ϕ1, ..., ϕN , a1, ..., aq) = f(ϕ1, ..., ϕN ) (4)

Force generators can be classified by performing the follow-
ing steps:

1) Determination of the load function
2) Identification of the motor parameters
3) Identification of the set of possible combinations of the

motor parameters to form the load function
4) Allocation of existing mechanisms to the combinations

of motor parameters

Fig. 1: One degree of freedom-balancer

Combinations of motor parameters that are not found in
existing mechanisms are considered as new design oppor-
tunities.

C. Classification of one degree of freedom-balancers

Load function
Consider a two-dimensional balancer consisting of one non-
auxiliary revolute joint, a massless link and a concentrated
mass (Figure 1). The mass describes a circular path about the
joint and the load function can be described by the moment
of the mass about the revolute joint (J1):

Gload = Mmass

= −mgk× (l1 sin(−ϕ1)j + l1 cos(−ϕ1)k)

= −mgl1 sin(ϕ1)i (5)

in which m, g, l1 and ϕ1 represent the mass, gravity
acceleration, distance between the pivot and the mass and
the angle between the vertical and the line between the
mass and the pivot respectively.

Motor function
Supposing the motor is formed by n springs between the link
and the external world, the motor function can be described
by the moment of the spring force(s) about the revolute joint
and is equal to:

Gmotor = M springs =

n∑

i=1

Fsi × ri =

n∑

i=1

kiui × ri (6)

in which Fsi, ki, ui and ri represent the force, stiffness,
deformation and moment arm of spring i respectively. The
latter three are considered as the motor parameters of the
system.
In the case of a balancer consisting of one spring, the (cross)
product of the motor parameters k1, u1 and r1 has to equal
the load function:

k1u1 × r1 = −mgl1 sin(ϕ1)i (7)

The motor function of a balancer consisting of multiple
springs is formed by the summation of the motor functions



corresponding to the individual springs. In the case of a two-
spring balancer, this results in:

k1u1 × r1 + k2u2 × r2 = −mgl1 sin(ϕ1)i (8)

III. RESULTS

Mechanisms that incorporate either one or two springs are
found in literature. The combinations of motor parameters
that form the load function of one-degree-of-freedom bal-
ancers are listed in Table II. In the second last column, the
principle that is used to construct the load function by the
motor parameters is listed. The principles are further dis-
cussed in Section IV. The existing balancers are represented
by the name of the author of the article in which they are
found.

IV. DISCUSSION

As shown in Table II, the balancers found in literature rely
on one or two of the following mechanism principles: the
use of an ideal spring, a trigonometric identity, a cam,
the cancellation of terms or phase shifted trigonometric
functions in the motor function. The mechanism principles
are explained by means of discussing the balancers found in
literature.

A. One-spring balancers

The set of balancers that incorporate one spring is formed
by the balancers of Wisse [5], Hung [10], Shieh [11] and
Lee [12].

Ideal springs (Wisse [5])
In the balancer of Wisse (Figure 2), the moment arm of the
spring force can be written as:

r1 =
C sin(ϕ1)

Lspring(ϕ1)
=

C sin(ϕ1)

l01 + u1(ϕ1)
(9)

in which Lspring(ϕ1), l01 and u1(ϕ1) represent the length,
free-length and deformation of the spring respectively. This
balancer, in contrast to the other balancers, uses an ideal
spring. An ideal spring is characterized by exerting a force
which is proportional to the length of the ideal spring rather
than the elongation. Furthermore, the free length is equal to
zero in an unloaded configuration [6]. Since the free length
of the spring is zero, the deformation of the spring cancels
out in the motor function, resulting in the desired load
function. Consequently, the balancer only provides perfect
balance when an ideal spring is incorporated. In practice,
ideal springs are difficult to manufacture and often limit the
working range of the mechanism [7]. Therefore, in most
designs, the properties of an ideal spring are emulated by
wire-pulley arrangements [8] [9].

Trigonometric identities (Hung [10], Shieh [11])
Interestingly, trigonometric identities can be used to obtain
the load function. The balancers by Hung (Figure 3) and
Shieh (Figure 4) both use the double-angle identity:

2 sin(ϕ) sin(ϕ) = sin(2ϕ) (10)

A transmission is required to obtain the desired angular
transmission ratio of 1 : 2. In the balancers of Hung, this
transmission is formed by a combination of a cardan-gear
and a planetary gear whereas in the balancer of Shieh an
adaption of the Scotch yoke mechanism is used.

Cam mechanisms (Lee [12])
The balancer of Lee (Figure 7) incorporates an interior cam
and a compression spring. The deformation of the spring
and the moment arm of the spring force are determined
by the shape of the cam. In the balancer of Lee, both the
spring deformation and the moment arm are a function of√

sin(ϕ), so that multiplication of those parameters in the
motor function equals the desired load function. Although the
design of the cam profile is limited by various parameters
[13] [14] [15], a great variety of profiles can be constructed
[16]. Furthermore, Schroeder [17] showed that a combination
of multiple cams can be used. Although an additional cam
increases the mechanism complexity, the radius of the cams
can be small compared to the radius of a single cam.

B. Two-spring balancers
In mechanisms that incorporate two springs, the moments
exerted by the two springs about the revolute joint are
summed to obtain the motor function. The summation
enables the cancellation of undesired terms in the motor
function. Consequently, phase shifted trigonometric
functions can be combined to obtain the desired motor
function. The balancers that incorporate two springs include
the balancers of Takesue [18] and te Riele [19].

Cancellation of terms (Takesue [18])
The balancer of Takesue (Figure 5) incorporates a pair
of orthogonal springs: a horizontal and a vertical spring.
The moment about the joint created by the horizontal
spring cancels out a (undesired) part of the moment exerted
by the vertical spring, resulting in the desired motor function.

Phase shifted trigonometric functions (Te Riele [19])
The balancer of Te Riele (Figure 6) incorporates a left and
a right spring and relies on the cancellation of terms in the
motor function and phase shifted trigonometric functions.
The right spring cancels out an undesired part of the moment
about the joint of the left spring (or vice versa). The two
springs are connected to a 45-45-90 triangle, which results
in the a relation between the angular degree of freedom
of the mass (ϕ) and the angle of left (ψ1) and the right
(ψ2) spring (measured counterclockwise from the vertical,
symbols according to [19]):

ψ1 =
π

4
− ϕ (11)



ψ2 =
π

4
+ ϕ (12)

The angles of the two springs (which are phase shifted with
respect to the angle of the mass) are used to obtain the
desired motor function according to:

cos
(π
4
− ϕ

)
− cos

(π
4
+ ϕ

)
=
√
2 sin(ϕ) (13)

C. Spring linearity

Table II lists the possible combinations of parameters with
which the desired motor function of one degree of freedom-
balancers can be obtained. As can be seen in the Table, only
five of the 27 parameter combinations are found in literature.
All balancers found in literature use linear springs (k 6=
f(ϕ)). In fact, the general purpose of the force generators
found in literature is to convert the linear behavior of the
spring to a nonlinear behavior using a transmission. For this
reason, the mechanisms with a non-constant stiffness can
be excluded from Table II, resulting in Table III. As seen
in the latter Table, five out of the seven parameter combi-
nations are found in existing mechanisms. The mechanisms
corresponding to the two remaining combinations are not
found in literature yet and might be constructed by altering
the mechanisms of Wisse or Hung and Shieh respectively.
Herder [6] described modification operations that may be
used to accomplish this.
Recently, various mechanisms are developed with which
nonlinear spring behaviour can be obtained [20]. Moreover,
the upcoming field of compliant mechanisms offers a solu-
tion. De Jong [16] identified various compliant mechanisms
that can exert a nonlinear force. In the case of balancers,
constructing a full range sinusoidal force-displacement curve
may be not feasible (yet), but it can be approximated for a
specific part of the range using compliant mechanisms.

D. Extension of the motor-load framework

The motor-load framework is applied on balancers by using
moment equilibrium as balancing condition. For a perfect
balanced mechanism, it also holds that the total potential
energy of the system is constant [6]. In this case, the load
and motor function are equal to the potential energy of the p
masses and the potential energy of the n springs respectively:

Gload =

p∑

j=1

mjghj (14)

Gmotor =

n∑

i=1

0.5kiu
2
i (15)

in which hj represents the vertical height of mass j. Con-
sequently, instead of adding up to zero (as in Equation 3),
the motor and load function need to add up to any constant
value.
In this study, the motor-load framework is used to classify
balancers with one non-auxiliary revolute joint. However,
balancers with any number of non-auxiliary joints can be

classified. It is expected that the number of load and motor
functions is equal to the number of degrees of freedom of
the system.
Furthermore, the framework can be used to classify mecha-
nisms with any kind of prescribed force-displacement curve.
Applications include angular and translational gravity bal-
ancing, orthoses and prostheses. Besides, three-dimensional
mechanisms can be classified using this framework. In this
case, the load and motor function are defined in three-
dimensional space.

E. Further development

In further development, the use of trigonometric identities
as a basis to design a gravity balancer can be interesting.
Besides, the extension of the classification to two or multiple
degree of freedom mechanisms will provide insight in the
working principles and can therefore decrease the mechanism
complexity.

V. CONCLUSION

A method by which force generators can systematically
be classified, by identifying all possible combinations of
actuator and mechanism parameters that lead to the desired
output function, is introduced. Since the complete set of
design possibilities is identified, the optimal mechanism
design can be selected from this set.
Regarding one degree of freedom planar perfect balancers,
27 design principles are identified of which five are found in
literature. Considering springs with a linear stiffness only,
five out of seven possible design principles are found in
existing mechanisms. The found balancers and especially
the distinct working principles are discussed. The working
principles include the use of:

• ideal springs,
• trigonometric identities,
• cam mechanisms,
• cancellation of (undesired) terms and
• phase shifted trigonometric functions.
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TABLE II: Results one degree of freedom-balancers
Abbreviations: ideal spring (is), trigonometric identity (tri), cam mechanism (cm), cancellation of terms (cl), phase shifted
function (ps)

k1 u1 r1 k2 u2 r2 Principle Author
1 C1 sin(ϕ) C2 C3 - - - is
2 C1 C2 sin(ϕ) C3 - - - is
3 C1 C2 C3 sin(ϕ) - - - is Wisse [5]
4 C1 C2 sin(0.5ϕ) C3 cos(0.5ϕ) - - - tri Hung [10], Shieh [11]
5 C1 C2 cos(0.5ϕ) C3 sin(0.5ϕ) - - - tri
6 C1 sin(0.5ϕ) C2 C3 cos(0.5ϕ) - - - tri
7 C1 cos(0.5ϕ) C2 C3 sin(0.5ϕ) - - - tri
8 C1 sin(0.5ϕ) C2 cos(0.5ϕ) C3 - - - tri
9 C1 cos(0.5ϕ) C2 sin(0.5ϕ) C3 - - - tri

10 C1 C2

√
sin(ϕ) C3

√
sin(ϕ) - - - cm Lee [12]

11 C1

√
sin(ϕ) C2 C3

√
sin(ϕ) - - - cm

12 C1

√
sin(ϕ) C2

√
sin(ϕ) C3 - - - cm

13 C1 sin(ϕ) cos(ϕ) C4 C5-cos(ϕ) sin(ϕ) cl Takesue [18]
14 cos(ϕ) C2 sin(ϕ) C4 C5-cos(ϕ) sin(ϕ) cl
15 sin(ϕ) cos(ϕ) C3 C4 C5-cos(ϕ) sin(ϕ) cl
16 C1 sin(ϕ) cos(ϕ) C4-cos(ϕ) C5 sin(ϕ) cl
17 cos(ϕ) C2 sin(ϕ) C4-cos(ϕ) C5 sin(ϕ) cl
18 sin(ϕ) cos(ϕ) C3 C4-cos(ϕ) C5 sin(ϕ) cl
19 C1 C2+sin(π/4-ϕ) cos(π/4-ϕ) C4 C5+sin(π/4+ϕ) cos(π/4+ϕ) cl, ps Te Riele [19]
20 cos(π/4-ϕ) C2 C3+sin(π/4-ϕ) C4 C5+sin(π/4+ϕ) cos(π/4+ϕ) cl, ps
21 C1+sin(π/4-ϕ) cos(π/4-ϕ) C3 C4 C5+sin(π/4+ϕ) cos(π/4+ϕ) cl, ps
22 C1 C2+sin(π/4-ϕ) cos(π/4-ϕ) cos(π/4+ϕ) C5 C6+sin(π/4+ϕ) cl, ps
23 cos(π/4-ϕ) C2 C3+sin(π/4-ϕ) cos(π/4+ϕ) C5 C6+sin(π/4+ϕ) cl, ps
24 C1+sin(π/4-ϕ) cos(π/4-ϕ) C3 cos(π/4+ϕ) C5 C6+sin(π/4+ϕ) cl, ps
25 C1 C2+sin(π/4-ϕ) cos(π/4-ϕ) C4+sin(π/4+ϕ) cos(π/4+ϕ) C6 cl, ps
26 cos(π/4-ϕ) C2 C3+sin(π/4-ϕ) C4+sin(π/4+ϕ) cos(π/4+ϕ) C6 cl, ps
27 C1+sin(π/4-ϕ) cos(π/4-ϕ) C3 C4+sin(π/4+ϕ) cos(π/4+ϕ) C6 cl, ps

TABLE III: Results one degree of freedom-balancers with linear springs
Abbreviations: ideal spring (is), trigonometric identity (tri), cam mechanism (cm), cancellation of terms (cl), phase shifted
function (ps)

k1 u1 r1 k2 u2 r2 Principle Author
2 C1 C2 sin(ϕ) C3 - - - is
3 C1 C2 C3 sin(ϕ) - - - is Wisse [5]
4 C1 C2 sin(0.5ϕ) C3 cos(0.5ϕ) - - - tri Hung [10], Shieh [11]
5 C1 C2 cos(0.5ϕ) C3 sin(0.5ϕ) - - - tri

10 C1 C2

√
sin(ϕ) C3

√
sin(ϕ) - - - cm Lee [12]

13 C1 sin(ϕ) cos(ϕ) C4 C5-cos(ϕ) sin(ϕ) cl Takesue [18]
19 C1 C2+sin(π/4-ϕ) cos(π/4-ϕ) C4 C5+sin(π/4+ϕ) cos(π/4+ϕ) cl, ps Te Riele [19]



Fig. 2: Adapted from Wisse [5]

Fig. 3: Hung [10]

Fig. 4: Shieh [11]

Fig. 5: Takesue [18]

Fig. 6: te Riele [19]

Fig. 7: Lee [12]
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Abstract— Exoskeletons and robotic manipulators incorporate
static balancers to reduce the required operating power. Since
the payload of the balancer varies (e.g. when an object is
picked up), quick adjustment at any instance is required for
optimal power reduction. It is important to limit the energy
involved in the adjustment, to minimize the size and mass of the
energy storage and actuators. Multiple methods to adjust these
balancers have been introduced in literature, but the amount
of energy involved in the adjustment in the complete range
of motion has not been investigated yet. Furthermore, existing
balancers either incorporate springs with special behavior or
cannot balance over their complete range of motion. The
goal of this study is twofold. The first goal is to introduce
balancer adjustment types that are suitable for application in
exoskeletons and robotics and incorporate commercial available
springs. The second goal is to compare their performance in the
complete range of motion based on the balancing quality, energy
involved in adjustment and dimensions through an analytical
MATLAB model. The results show clear differences between the
performance of the considered adjustment types. Perfect static
balance in the complete range of motion cannot be obtained by
the adjustment types due to the initial tension, null-length and
maximum energy storage of the spring. However, the balancing
quality of two adjustment types is close to perfect (within 5%
error). The minimum amount of energy involved in adjustment
is equal to the difference between the potential energy of the two
balanced masses. Two adjustment types approach this minimum
(within an error of 10%) and the third adjustment type is the
most compact. However, its balancing quality is poor for large
differences between the moments of the balanced masses and
its adjustment energy is typically forty times larger compared
to the other adjustment types.

NOMENCLATURE

ϕ Radial position of the mass [rad]
a Vertical distance between the pivot and the spring

attachment point to the fixed world [m]
g Gravity acceleration [m/s2]
k Stiffness [N/m]
L Length of lever arm [m]
L0 Spring null-length [m]
m Mass [kg]
r Distance between the pivot and the spring attach-

ment point to the lever arm [m]
T Torque or moment [Nm]
U Potential energy [J]
u0 Initial elongation [m]

I. INTRODUCTION

Static balancers are applied in robotic manipulators [1,
2, 3, 4], orthoses and exoskeletons [5, 6, 7, 8] to reduce the
required operating power that is supplied by motors or mus-
cles. The balancers support the system’s constant payload:
the mass of the robotic arm or human limbs. The operating
power can be further reduced by balancing the variable
payload as well. The variable payload is not constantly part
of the system, e.g. the mass of an object that is picked up by
the robotic arm or user of the exoskeleton. One or multiple
properties of the balancer need to be adjusted to balance the
varying payload. The adjustment should be possible in any
position in the range of motion to enable picking up and
releasing the object at any instance. Furthermore, the closer
the balancing quality of the balancer is to perfect balance,
the greater the reduction of the operating power.

The total potential energy of a balancer with perfect
balancing quality is constant over its range of motion [9] and
a transmission is required to transform the potential energy
curve of the spring. These transmissions have been classified
by Wagemaker [10] on basis of their transfer functions. The
simplest method to obtain the desired transfer function is
to select the right location of the spring attachment points.
Existing balancers based on this method use the ideal spring
principle [10]. This principle assumes a spring with a free-
length equal to zero (zero-free-length spring (ZFLS)) [11].
The manufacturing of such springs is complex and therefore
the properties of a ZFLS are often emulated using a string-
pulley arrangement. At least three pulleys are required to
obtain constant potential energy over the range of motion of
the balancer [11], although this can be closely approximated
by optimizing the position of a single pulley [12]. Besides
perfect ZFLS principle balancers, imperfect balancers based
on the normal spring (NS) principle exist. In this principle,
the null-length of the spring is taken into account in the
design of the balancer. This evades the necessity of a pulley
arrangement to emulate a ZFLS. The NS balancers maintain
approximately constant total potential energy over a limited
part of its range of motion [11, 13]. In the current balancer
designs, only the spring stiffness [5, 11, 12, 14, 15, 16]
and null-length [11, 13] have been taken into account and
important spring properties such as the maximum energy
storage and the initial tension have not been considered.

1



Multiple methods to adjust a ZFLS balancer to accom-
modate a new payload have been introduced by Herder [11].
Additionally, adjustment methods that do not involve external
energy (energy-free adjustment) have been developed [5, 14,
15, 16]. Energy-free adjustment is possible in one position
only (see Appendix I) and is therefore not considered in this
study. However, it is crucial to limit the energy involved in
the adjustment, to enable slim and lightweight design and fast
adjustment when the payload is altered. This study focuses
on the performance of two classes of balancers. The first
class incorporates a pulley at point A in Figure 1 to emulate
a ZFLS (pulley balancer). The second class is based on the
NS principle which evades the necessity of a pulley (non-
pulley balancer). Balancers incorporating an actual ZFLS or
three pulleys to emulate a ZFLS are not considered to limit
the complexity of the balancer.

The goal of this study is twofold. The first goal is to in-
troduce the optimal balancer adjustment types for application
in exoskeletons and robotics. The second goal is to compare
their performance based on the balancing quality, energy
involved in adjustment and dimensions through an analytical
MATLAB model. The analytical approach gives insight in
the relations between performance metrics and spring prop-
erties. The introduced adjustment types incorporate a com-
mercial available spring with realistic properties and their
performance is considered in their complete range of motion.
The paper starts with the definition of a reference balancer
and the minimum energy involved in adjustment. Next,
optimal adjustment types for application in exoskeletons and
robotics are determined and their balancing conditions are
derived. Subsequently, performance measures are defined
and the spring selection method is explained. Then, the
model of the selected adjustment types is described. This is
followed by the results of the evaluation of the model for the
selected adjustment types. In the discussion, general trends
in the performance of the types are discussed. The paper
concludes with the most important findings of this study. In
the appendices, support material can be found.

II. METHOD
The basic balancer

The basic balancer (bb) is described in detail in litera-
ture and it will be used as reference to which the performance
of the introduced adjustment types is compared. The basic
balancer is based on the ideal spring principle [11]. One end
of the spring is mounted to the lever arm at distance r from
the pivot, the other end is fixed at distance a vertically above
the pivot (Figure 1). The radial position of the mass (balancer
position) is described by the angle ϕ between the vertical and
the lever arm. The balancing condition which needs to be
fulfilled to obtain perfect balance is described in equation 1,
in which k, m, g and L represent the spring stiffness, balanced
mass, gravity acceleration and lever arm length respectively
[14]. The latter three parameters are assumed to be prescribed
by the application and can therefore not be altered.

akr = mgL (1)

Fig. 1: The basic balancer that balances mass m and incorporates a
zero-free-length spring (L0 = 0) between point A and R. Adapted from

[12].

The potential energy curve of the spring and mass
(Figure 2) have two important characteristics: a slope and
a magnitude (or vertical position). The mass-curve is com-
pletely defined by the mass, the length of the lever arm
and the gravity acceleration. The slope of the spring-curve
is determined by the transmission. In a perfectly balanced
system, the slope of the spring curve is opposite to the slope
of the mass curve to obtain constant total potential energy.
The vertical position of the spring curve is determined by
the elongation of the spring at ϕ = 0 (initial elongation).
The initial elongation causes the spring-curve to start at a
nonzero value and is determined by distances a and r. An
initial elongation equal to zero corresponds to the condition
r = a.

Adjustment energy

By altering the payload on the balancer, i.e. replacing
mass mA (situation A) by a larger mass mB (situation B),
the slope of the mass-curve is scaled. The slope of the spring-
curve needs to be scaled as well to maintain constant total
potential energy. Theoretically, this means that the transfer
function of the transmission is multiplied by a constant
factor. In practice, the balancer is adjusted by altering certain
balancer properties. If the length of the spring is altered in
the adjustment, energy is involved in the adjustment process.
Since the spring length is altered, its initial elongation is
modified. Consequently, besides scaling the slope of the
spring-curve, the adjustment alters the vertical position of
the spring curve as well (Figure 3). The energy involved in
the adjustment (adjustment energy) is equal to the difference
between the energy contained by the spring in situation A
and B (equation 2, Figure 3).

UAB
adj (ϕ) = UB

spring(ϕ)− UA
spring(ϕ) (2)

UBA
adj (ϕ) = −UAB

adj (ϕ) (3)
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Fig. 2: Potential energy curves of a perfectly balanced system

The adjustment energy is a function of the balancer
position and the energy involved in adjusting from situation
A to B is equal but opposite to the energy involved in
adjusting from situation B to A (equation 3). A positive
value of adjustment energy implies that external energy is
required in the adjustment, a negative value implies that
energy is released by the spring.

Minimum adjustment energy
The minimum adjustment energy of the basic balancer

is derived to determine to what extend the proposed balancer
adjustment types can approach this optimum. The minimum
adjustment energy corresponds to the minimal difference
between the two spring curves over the complete range of
motion (Figure 3). The amount of energy stored in the spring
of the basic balancer can be calculated using equation 4 [14].
In case distance a is altered in the adjustment process, by
finding an expression for a from equation 1 and substituting
it into equation 4, a modified expression for the energy stored
in the spring (equation 5) is obtained. The adjustment energy
of the basic balancer (equation 6) can be obtained by deriving
the expressions of the energy stored in the spring in situation
A and B using equation 5, and substituting these expressions
into equation 2.

U bb
spring =

1

2
k
(
a2 + r2 − 2ra cosϕ

)
(4)

U bb
spring =

1

2
k
(m2g2L2

k2r2
+ r2 − 2

mgL

k
cosϕ

)
(5)

UAB
adj (ϕ) =

1

2

g2L2

kr2
(m2

B−m2
A)− gL cosϕ(mB−mA) (6)

Considering equation 6, a constant part and a variable
part with respect to the balancer position can be distin-
guished. The variable part is equal to the difference be-
tween the potential energy of the two masses, is completely

Fig. 3: Graphical representation of the adjustment energy

determined by the prescribed variables and can therefore
not be minimized. The constant part can be minimized by
selecting a relatively large value of k or r. Assuming that
the constant part can be reduced until it approaches zero,
the theoretical minimum adjustment energy is equal to the
difference between the potential energy of mass mB and mA

(equation 7, Figure 4). As shown in Figure 4, the adjustment
energy can be equal to zero at a certain balancer position.
This corresponds to the adjustment in which the spring is
consecutively lengthened and shortened by the same amount
(or vice versa). Consequently, the net energy involved in the
adjustment is equal to zero.

UAB
adj,min(ϕ) = −gL cosϕ(mB −mA) (7)

Alternatively, in case distance r is adjusted, an expres-
sion for r can be derived from equation 1, and can be
substituted into equation 4. The adjustment energy is then
equal to equation 8. As seen in this equation, the constant
part can be minimized by selecting a relatively large value
of k or a and the minimum adjustment energy is identical to
equation 7. This illustrates the fact that the basic balancer is
symmetric with respect to parameters r and a and that these
parameters can be interchanged without altering the behavior
of the balancer.

UAB
adj (ϕ) =

1

2

g2L2

ka2
(m2

B−m2
A)− gL cosϕ(mB−mA) (8)

Adjustment type selection
The pulley and non-pulley balancer can be adjusted by

altering distance a (a-type), r (r-type) or spring stiffness k
(k-type) [11, 12]. Additionally, the pulley balancer can be
adjusted by introducing an additional spring elongation u0,
without altering the direction of the spring force exerted on
the lever arm [12]. In fact, the free-length of the spring is
modified and therefore this adjustment type is referred to
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Fig. 4: Minimal and non-minimal adjustment energy of a balancer. The
lines are a cosine-function with amplitude gL(mB −mA). The baseline of
the minimum adjustment energy is equal to zero, the baseline of the non-
minimum adjustment energy is equal to the constant part of the adjustment
energy (CP). The point at which the minimum adjustment energy is equal to
zero corresponds to the balancer position in which the spring length before
adjustment is equal to the spring length after adjustment.

as free-length adjustment (FL-type). In all the adjustment
methods described above, the position of the lever arm is
locked before adjustment is performed.

In exoskeletons and robotics, it is important to limit the
mass and inertia of the mechanism, especially of moving
parts. Locating the adjustment mechanism on the lever arm
increases the mass of lever arm, which excludes r-type
adjustment. Furthermore, the adjustment should be possible
in every balancer position, which excludes k-type adjustment
[14]. Consequently, the optimal adjustment types for appli-
cation in exoskeletons and robotics include:

1) Pulley balancer a-type adjustment (AP-type, Figure 5a)
2) Pulley balancer FL-type adjustment (FL-type, Figure 5c)
3) Non-pulley balancer a-type adjustment (ANP-type, Fig-

ure 5c)
In each adjustment type, one variable is altered (adjusted
variable) to adjust the balancer while all other variables
remain constant (non-adjusted variables). A design of each
adjustment type is defined by a set of three variables (design
variables). The adjusted, non-adjusted and design variables
per adjustment type are shown in Table I.

Balancing conditions of adjustment types
A balancing condition enables simple calculation of the

balancer parameters that correspond to the optimal balancing
quality. Since the total potential energy of the AP-type,
ANP-type and FL-type cannot be constant over the range of
motion, perfect balance over the complete range of motion
is not possible. Consequently, the balancing conditions of
the adjustment types correspond to optimal balancing quality,
rather than perfect balancing quality as is the case in the basic
balancer. To obtain optimal balancing quality, two conditions

TABLE I: Adjusted variables, non-adjusted variables and variables that
define a balancer design per adjustment type

Adjustment type Adjusted
variable

Non-adjusted
variables Design variables

AP-type a r aA, aB , r
ANP-type a r aA, aB , r
FL-type u0 a, r a, r, u0

are found in which the dependency of the total potential
energy on the balancer position is minimal: r >> a and
r << a. Two balancing conditions per adjustment type are
derived: one corresponding to each condition. The balanc-
ing conditions of the AP-type, ANP-type and FL-type are
presented in equations 9, 10 and 11 respectively (complete
derivation in Appendix III). The balancing conditions of the
FL-type correspond to situation B, since in this situation
an additional spring elongation is introduced. The balancing
conditions of the FL-type in situation A are identical to the
balancing conditions of the AP-type.

r << a =⇒ a =
mgL

kr
− F0

k
(9a)

r >> a =⇒ a =
mgL

kr + F0
(9b)

r << a =⇒ a =
mgL

kr
− F0

k
+ L0 (10a)

r >> a =⇒ a =
mgL

kr − kL0 + F0
(10b)

r << a =⇒ u0 =
mBgL

kr
− F0

k
− a (11a)

r >> a =⇒ u0 =
mBgL

ka
− F0

k
− r (11b)

Performance metrics
The performance of the proposed adjustment types is

compared on (1) balancing quality, (2) adjustment energy and
(3) balancer dimensions and is described by three metrics.
In these metrics, the performance of the adjustment type is
compared to the (optimal) performance of the basic balancer.

Balancing quality
The balancing quality (BQ) is an important property

because it determines to the reduction of the operating power.
The BQ is defined as the percentage by which the resultant
moment (Tres) about the pivot is reduced with respect to an
unbalanced system (equation 12). The balancing quality is a
function of the balancer position. To convert the balancing
quality to a single value, the root mean square error (RMSE)
of the difference between the actual and perfect balancing
quality (balancing error (BQe), equation 13) is calculated.
A balancing error equal to zero implies perfect balance. Since
the balancing quality in both situation A and B is important,
the balancing error in situation A (BQeA) and B (BQeB)
is considered.
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(a) AP-type adjustment, adapted from
Figure 45 in [12]

(b) ANP-type adjustment (c) FL-type adjustment, adapted from
Figure 46 in [12]

Fig. 5: Selected methods to adjust the balancer

BQ(ϕ) =
Tmass(ϕ)− Tres(ϕ)

Tmass(ϕ)
∗ 100% (12)

BQe = RMSE
(
BQ(ϕ)− 100%

)
(13)

Adjustment energy
The lower the adjustment energy, the smaller and more

lightweight the required actuators and energy storage can
be. The adjustment energy metric (AEm) is defined as the
relative difference between the maximum value of the actual
adjustment energy and the minimum adjustment energy
(equation 14). The maximum value over the range of motion
is considered since this is the maximum amount of energy
that could possibly be involved in the adjustment. An AEm

equal to 50% indicates that the maximum value of the actual
adjustment energy is 50% larger than the maximum value of
the minimum adjustment energy.

AEm =
max

(
UAB
adj (ϕ)

)
− (mB −mA)gL

(mB −mA)gL
∗ 100% (14)

Balancer dimensions
The dimensions of the balancer are important since a

compact system is favored. The dimension metric (DMm)
is defined by the area of the triangle OAR (SOAR) at
ϕ = 90deg in situation B. Situation B is considered because
the balancer dimensions are the largest in this situation, and
therefore it determines the amount of available space required
to implement the balancer. The dimension metric is equal to
relative difference between the area of triangle OAR of the
considered adjustment type and the basic balancer (equation
15). The area of triangle OAR of the basic balancer can be
described by equation 16. A DMm equal to 50% indicates
that the area of the triangle in the actual balancer is 50%
larger than the area of the basic balancer.

DMm =
SOAR − Sbasic

OAR

Sbasic
OAR

∗ 100% (15)

Sbasic
OAR =

ra

2
=
r

2

mBgL

kr
=
mBgL

2k
(16)

Spring selection
A database consisting of 4280 commercial available

springs [17] is used to select a suitable spring. The minimum
amount of energy that should be stored in the spring to bal-
ance the mass is equal to the difference between the potential
energy of the mass in its lowest and highest position. To
increase the life time of the spring, the minimum amount of
energy that should be stored in the spring is multiplied by a
safety factor equal to two. The springs that cannot store this
amount of energy are discarded. In practice, this filters out
the most lightweight springs, since the energy that can be
stored in the spring can be estimated by its energy density
times the spring mass. From the set of remaining springs, a
spring with desired properties can be selected.

Modelling
The balancing conditions do not take the maximum

energy storage of the spring into account, which implies that
the optimal balancing quality can correspond to plastic defor-
mation of the spring. Therefore, to compare the performance
of the adjustment types, an analytical MATLAB model which
includes the maximum energy storage is developed. The
variables that correspond to optimal balancing quality that
are obtained using the model will be graphically compared
to the parameters calculated by the balancing conditions.
The input of the model includes the amplitude of the mass
moment that is balanced in situation A and B and the spring
choice from the database. Since the moment of the mass
has a sinusoidal profile, it can be completely defined by its
amplitude.
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Fig. 6: Example of the balancing quality error in situation A (BQeA) of
the AP-type as function of the variable grid (step 1 to 5 of the model).
The grid size is reduced to 25x25 for purposes of clarity and the range of
distances a (adjusted variable) and r (non-adjusted variable) is selected as
example. Filled circle: grid point, red dashed line: variable grid boundary,
black contoured circles: grid points corresponding to minimum BQe per
non-adjusted variable, filled black squares on vertical axis: distances aA
corresponding to the minimum adjustment energy per r.

The model consists of seven steps and will be explained
based upon an example of the AP-type, which is illustrated
in Figure 6.
Step 1. The variable boundaries are determined. The lower
boundary of the variable space is equal to zero. The upper
boundary is derived by expressing the maximum allowable
spring elongation (dLmax

spring) in terms of the maximum en-
ergy storage of the spring (Umax

spring) and the spring stiffness.
The maximum spring elongation is determined by a, r, u0
and L0 at ϕ = 180deg and should be smaller than the
maximum allowable spring elongation. The maximum spring
elongation and variable boundaries are listed in Table II.
Step 2. The triangular variable grid (base and height consist
of 200 grid points) is constructed. Step 3 to 5 are performed
for situation A and B.
Step 3. The BQe is evaluated in each grid point.
Step 4. The minimum balancing error per non-adjusted
variable is selected. For the AP-type, this means that the
minimum balancing error per distance r is selected.
Step 5. The adjusted variable that corresponds to the mini-
mum balancing error per non-adjusted variable is determined.
In case of the AP-type, this means that the optimal distances
aA and aB are determined per distance r. These three
variables define a balancer design.
Step 6. To select the optimal balancer designs, the twenty de-
signs with the smallest cumulative balancing error (BQeA+
BQeB) are selected. In case of the AP-type, this means

TABLE II: Maximum spring elongation and variable boundaries for each
adjustment type

Adjustment
type

Maximum
spring
deflection

Variable boundaries

AP-type aB + r 0 < aB + r <
√

2Umax
spring/k

ANP-type aB + r − L0 0 < aB + r <
√

2Umax
spring/k + L0

FL-type a+ r + u0 0 < aB + r + u0 <
√

2Umax
spring/k

TABLE III: Maximum moment of mass, spring selection criterion and
relative difference between mass moments in each comparison case

Case Situation A Situation B Spring Relative
difference

1 2 Nm 4 Nm Lightest 100%
2 4 Nm 24 Nm Lightest 500%
3 80 Nm 100 Nm Lightest 25%
4 80 Nm 140 Nm Lightest 43%

that twenty sets of variables r, aA and aB are selected.
The designs with the smallest cumulative balancer error
are selected since the balancing quality is considered as
the most important balancer characteristic. The main reason
for this is that the balancing quality determines to what
extend the operating power is reduced, which is the primary
goal of the balancer’s implementation. An iterative approach
showed that by selecting considerably less than twenty
designs, limited insight is obtained in the trade offs between
the performance metrics. Besides, by selecting considerably
more than twenty designs, balancers with a poorer balancing
quality are included. This counteracts the balancer’s primary
goal to optimally reduce the operation power.
Step 7. The AEm and DMm are evaluated for the selected
designs.

Comparison cases
The performance of the three adjustment types is com-

pared in four use cases (Table III). The four cases are
derived from the application in robotics and exoskeletons.
The specification of the selected values and reasons why
these cases are selected are described in Appendix II.

III. RESULTS

The scores of the three balancers on the four metrics
are shown in Figures 7 to 10 and explained in the following
paragraphs. The properties of the spring selected in each
comparison case are listed in Table IV.

Balancing quality error
The adjustment types cannot obtain perfect balance in

their complete range of motion, because, in contrast to the
basic balancer, the null-length, initial tension and maximum
energy storage of the spring are taken into account. In Figures
11 to 18, the balancing quality of the basic balancer, AP-
type, ANP-type and FL-type is shown as function of the
variable grid. In Figure 11 to 17, the balancing conditions are
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TABLE IV: Properties of the selected spring in each comparison case

Case Serial
number

Mass
[kg]

Stiffness
[N/m]

Null-
length
[m]

Initial
tension
[N]

1 Z-130K-01I 0.0760 275 0.145 6.88
2 Z-181I 0.603 876 0.249 24.5
3 Z-305I 3.12 1010 0.486 45.0
4 Z-336I 4.972 905 0.600 70.0

represented by the dashed lines. As shown in these Figures,
the variable grid is bounded to prevent plastic deformation
of the spring. The variable grid is bounded by zero and
a diagonal line between the maximum value of a and the
maximum value of r. The lines that represent the balancing
conditions cross this diagonal boundary because they do
not take the maximum energy storage in the spring into
account. The balancing condition of the FL-type in situation
B (Figure 18) is out of the scope of the graph, because
the optimal initial elongation calculated by the balancing
conditions corresponds to plastic deformation of the spring.

As seen in Figures 14, 16 and 18, generally, in situation
B, a small balancing error is possible for a certain set of
points in the grid. However, since only one parameter is
adjusted in each adjustment type (either a, r, or u0), this
set of grid points is often not within reach. For example, in
situation A of the AP-type (Figure 13), a small balancing
error can be obtained for (r; a) = (0.2; 0.025)m. Since a-
type adjustment is used, distance a is altered while distance
r remains constant. Since r = 0.2m, the smallest balancing
error in situation B (Figure 14) cannot be reached and a
larger balancing error is present. This illustrates the trade-
off between the balancing quality situation A and B: a
good balancing quality in one situation can result in a poor
balancing quality in the other.

Regarding the AP-type and FL-type, the initial tension
of the spring causes a peak in the balancing error around
the line a = r (Figure 13, 14, 17 and 18). Regarding the
ANP-type, the initial tension and null-length of the spring
cause a peak in the balancing error at the same location
(Figure 15 and 16). Due to this peak, the best balancing
quality corresponds to r >> a and r << a. This is in
accordance with the two conditions that are found in the
derivation of the balancing conditions. The BQe of the FL-
type is the smallest in case 3, followed by case 4, 1 and 2.
This sequence corresponds with ascending relative difference
between the moments of the two masses that are balanced
(last column of Table III).

Adjustment energy
The adjustment energy of the FL-type is 400% to 500%

larger than the adjustment energy of the AP-type and ANP-
type. This is because in the FL-type, only the magnitude of
the spring force is adjusted. This proves to be less efficient
than adjusting the magnitude and direction of the spring force
as is the case in the AP-type and ANP-type.

In case 1, 2 and 4, the adjustment energy of the AP-
type and ANP-type are clustered around 10%. In case 3, the

adjustment energy of the AP-type and ANP-type seems to be
spread over a wide range. However, actually, the adjustment
energy consists of two groups: most of the results (18) are
clustered around 10% and a small number of them (2) are
clustered around 500%. The first group corresponds to r >>
a, since the adjustment energy can be minimized by selecting
a relatively large distance r. The 500%-group corresponds to
a relatively small r (r << a).

Dimensions

The dimension metric of the AP-type is typically 10%
smaller than the basic balancer, because, in contrast to the
basic balancer, the initial tension of the spring is taken
into account. The energy storage per unit elongation of a
spring with initial tension is larger with respect to a spring
without initial tension. Since a smaller spring elongation is
required to store the energy, the dimensions of the AP-type
are smaller than the dimensions of the basic balancer. This
reasoning is supported by the negative sign of the initial
tension-term in equation 9a and the initial tension-term in
the denominator in equation 9b. The dimensions of the ANP-
type are approximately 50% larger than the dimensions of
the basic balancer. The reason for this is that, in contrast
to the basic balancer, the null-length of the spring cannot
be hidden behind a pulley. This can be seen by the positive
sign of the null-length in equation 10a and the negative sign
of the null-length in the denominator in equation 10b. The
dimensions of the FL-type are the smallest, but the variation
between the cases is the largest. This is because adjusting
the free-length of the spring does not alter the dimensions of
the triangle OAR. Therefore, the area is determined by the
dimensions corresponding to situation A. These dimensions
are smaller than in situation B.

IV. DISCUSSION

The results of this study enable the selection of the
optimal adjustment type depending on the application’s re-
quirements. In case perfect balance is strictly required, the
considered adjustment types cannot be used, since none of
them can supply perfect balance over the complete range of
motion. In case a small balancing error (<5%) is allowed,
the AP-type and ANP-type can be considered. The balancing
error of the FL-type is comparable to the AP-type and ANP-
type if the relative difference between the moments of the
two masses is small (<20%). In case limiting the adjustment
energy is important, the AP-type and ANP-type can be
considered, since their adjustment energy is typically only
10% larger than the minimum adjustment energy. A practical
difference in the adjustment of those types is that in the
adjustment of the AP-type, the complete spring and pulley
need to be displaced, whereas in the ANP-type only the
location of the spring attachment point needs to be altered.
The adjustment energy of the FL-type is typically four to
six times larger than the minimum adjustment energy and is
therefore suitable in case the amount of adjustment energy
does not have to be minimized.
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Fig. 7: Results of the BQeA metric

Fig. 8: Results of the BQeB metric

Fig. 9: Results of the AEm metric

Fig. 10: Results of the DMm metric

Fig. 11: Balancing error of the basic balancer as function of the variable
grid. The dashed line represents the balancing condition. Tmass=6Nm;
k=1120N/m; L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 12: Balancing error of the basic balancer as function of the variable
grid. The dashed line represents the balancing condition. Tmass=12Nm;
k=1120N/m; L0=0.1m, F0=10N, Umax

spring=30J.
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Fig. 13: Balancing error of the AP-type as function of the variable grid. The
dashed lines represent the balancing conditions. Tmass=6Nm; k=1120N/m;
L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 14: Balancing error of the AP-type as function of the variable
grid. The dashed lines represent the balancing conditions. Tmass=12Nm;
k=1120N/m; L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 15: Balancing error of the ANP-type as function of the variable
grid. The dashed lines represent the balancing conditions. Tmass=6Nm;
k=1120N/m; L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 16: Balancing error of the ANP-type as function of the variable
grid. The dashed lines represent the balancing conditions. Tmass=12Nm;
k=1120N/m; L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 17: Balancing error of the FL-type as function of the variable grid. The
dashed lines represent the balancing conditions. Tmass=6Nm; k=1120N/m;
L0=0.1m, F0=10N, Umax

spring=30J.

Fig. 18: Balancing error of the FL-type as function of the variable grid. The
balancing conditions are located out of the scope of the graph since they
correspond to plastic deformation of the spring. Tmass=12Nm; k=1120N/m;
L0=0.1m, F0=10N, Umax

spring=30J.
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In case a compact design is preferred, the FL-type,
since its dimensions are determined by the mass balanced in
situation A, and the AP-type, since it is typically 10% smaller
than the basic balancer, can be considered. The dimensions
of the ANP-type are determined by the null-length of the
spring and are typically 50% larger than the basic balancer.
Therefore, the ANP-type is suitable in case a compact design
is not favored or a spring with a small null-length can be
used.

The minimum adjustment energy as presented in equa-
tions 6 and 8 is a theoretical optimum. To obtain this min-
imum adjustment energy, the product kr2 or ka2 should be
equal to infinite, which is practically not possible. Therefore,
the typical adjustment energy of the AP-type and ANP-type
(10% larger than the minimum adjustment energy) can be
considered as close to the practical minimum adjustment
energy. The adjustment energy is defined as the net energy
involved in the adjustment. Regarding the AP-type and
ANP-type, if point A (Figure 1) intersects the horizontal
line through point R during the adjustment, the spring is
consecutively lengthened and shortened (or vice versa). This
is primarily the case for a large distance r and when the
adjustment takes place at the beginning of the range of
motion. In those cases, energy is consecutively required
and released (or vice versa) and to calculate the adjustment
energy, these energies are summed. This implies that the
released energy is stored and supplied to adjust the balancer
at perfect efficiency, which is practically not possible. In
further research, this practical effect could be taken into
account by multiplying the released energy by an efficiency
factor or by assuming complete dissipation. This would
lead to another situation in which the adjustment energy is
minimum. In case of the FL-type, since only the magnitude
of the spring force is altered during the adjustment process,
the spring cannot be consecutively lengthened and shortened
in one adjustment process and the above described effect do
not occur.

The larger the difference between distance r and a, the
smaller the effects of the peak in the balancing error. In other
words, a maximum initial elongation of the spring is required
to obtain the best balancing quality. This means that the
energy storage capacity of the spring is completely utilized.
This can deteriorate the life time of the spring and justifies
the used safety factor in the maximum energy storage of the
spring.

The model is based on a grid search to find the value
the variables (r, a and u0) that correspond to the optimal
balancing quality. Since the grid search uses a finite step size,
the exact optimal is typically not found. However, the model
is based on continuous analytical equations and the solution
space is continuous as well, the found optimum is close to
the actual optimum. Regarding the ANP-type, an alternative
optimization method is considered, which was introduced by
Herder [11]. Although this optimization method enables an
intuitive and graphical solution, the solutions found by this
optimization method are less optimal than the solutions of
the grid search. For this reason and to equalize the methods

used in all adjustment types, the grid search is used in the
model.

The use of one pulley in the AP-type and FL-type
introduces a balancing quality error due to the variable
amount of string that is wrapped around the pulley. This error
is not taken into account in this study. The wrapping error
can be minimized by minimizing the radius of the pulley or
by optimization the location of the pulley [12]. Friction in
the pivot and pulley is not considered, just as the hysteresis
in the spring. The effects of the friction can be minimized
by using bearings and the typical hysteresis in spiral springs
is respectively small.

The balancing conditions of the basic balancer, AP-type,
ANP-type and FL-type do not take the maximum energy
storage of the spring into account. Therefore those conditions
should be used with caution. Especially regarding the FL-
type, the optimal additional elongation often corresponds
to a large amount of energy that should be stored in the
spring, since this type of adjustment proved to be inefficient
in terms of energy. An advantage of the balancing conditions,
however, is that the influence of a certain variable on the
performance of the balancer can be simply determined.
Further research is required to quantitatively validate the
balancing conditions, to derive an expression to calculate
the balancing error corresponding to the optimal balancing
quality and to take the variable boundaries into account in
the balancing conditions.

The fact that the best balancing quality corresponds
to r >> a or r << a implies that one dimension of the
balancer is typically an order of magnitude larger than the
others. This effect is not captured in the dimension metric,
since the area of the triangle is not affected. In future work, to
design more compact solutions, the performance of balancers
incorporating an additional transmission can be considered.

The performance of the adjustment types may be im-
proved by optimizing the spring selection. However, se-
lecting the optimal spring is complex, since the spring
properties cannot be varied independently of each other. In
the comparison cases, the most lightweight spring is selected
from the set of suitable springs to minimize the mass of the
system. An exploratory evaluation of the performance met-
rics for springs from the database with a slightly larger mass
yielded to results comparable to the results presented in this
paper. However, further research is required to investigate the
effect of the implementation of springs with very different
properties on the performance of the adjustment types to
eventually enable optimal spring selection.

V. CONCLUSION

The goal of this study was twofold. The first goal
was to introduce the optimal balancer adjustment types, that
incorporate realistic springs, for application in exoskeletons
and robotics. This study showed that the optimal adjustment
types include the adjustment of a balancer (1) with pulley,
adjusted by altering the location of the spring attachment
point (AP-type), (2) without pulley, adjusted by altering the
location of the spring attachment point (ANP-type) and (3)

10



with pulley, adjusted by altering the free length of the spring
(FL-type).

The second goal was to compare their performance
based on the balancing quality; energy involved in adjust-
ment; and overall dimensions, through an analytical MAT-
LAB model. The results show clear differences between
the performance of the considered adjustment types. Due
to the initial tension and null-length of the spring, perfect
balance in the complete range of motion cannot be obtained
by the adjustment types. In case the balancing quality is
critical, AP-type adjustment is the best choice (error within
3%), closely followed by ANP-type (error within 5%). An
advantage of the ANP-type over the AP-type is that no pulley
is required, which simplifies the mechanism and increases its
robustness. However, the dimensions of the ANP-type are
larger than the dimensions of the AP-type. The theoretically
minimum amount of energy involved in adjustment (1) is
equal to the difference between the potential energy of the
two balanced masses, (2) is dependent on the position of the
mass and (3) can be practically obtained by introducing a
maximum initial spring elongation. The adjustment energy of
both the AP-type and ANP-type is approximately 10% larger
than the minimum adjustment energy. The FL-type should
only be considered when the relative difference between
the two masses is smaller than 20%, since the balancing
quality deteriorates for larger differences. Furthermore, its
adjustment energy is generally four to six times larger
than the theoretical minimum adjustment energy. Regarding
the implementation of the adjustment types in exoskeletons
and robotic manipulators, the FL-type is suitable in case
the difference between the mass moments is small, for
example when the exoskeleton is adjusted to another user.
The AP-type and ANP-type require a considerable amount
of installation space, since for optimal balancing quality,
either r or a needs to be large with respect to the other
parameter. The AP-type and ANP-type can be suitable for
implementation in exoskeletons and robotic manipulators if
sufficient installation space is available. However, especially
in exoskeletons, the available space is often limited and more
compact solutions, for example cam-balancers, are preferred.
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APPENDIX I
ENERGY-FREE ADJUSTMENT

Two types of adjustment principles in which no energy is involved can be distinguished. In the first type, the spring
length is kept constant and therefore no energy is involved in the adjustment. This type includes simultaneous displacement
[5], altering the spring stiffness by altering the number of active spring coils [14] and the use of a virtual spring [15].
The second type includes spring-to-spring balancing [16]. In this type, the spring length is altered which involves energy.
However, this energy is stored or supplied by a second spring and consequently no external energy is involved.

Energy-free adjustment without loss of energy in the system is possible in one balancer position only. This can be
illustrated by a thought experiment1.

Suppose a balancer is used as an elevator, in which a mass can be lifted from a zero to a larger height and that both
heights correspond to positions at which the balancer can be adjusted in an energy-free manner. Starting at zero height, the
balancer is adjusted from supporting no payload to supporting the mass, without involving energy since this is an energy-
free adjustment position. Secondly, the mass is lifted to the higher level which does neither involve energy (neglecting the
acceleration and deceleration) since the mass is perfectly balanced. Thirdly, the mass is removed from the balancer and
simultaneously the balancer is adjusted to a zero payload in an energy-free manner since, again, this is an energy-free
adjustment position. Lastly, the balancer is brought to the starting position without involving energy since the system is
perfectly balanced and the procedure can be performed again.

Considering this thought experiment, an infinite number of masses can be lifted without requiring energy. However,
since the height of the masses is increased, the potential energy of the masses is increased. In other words, potential energy is
created at the cost of zero energy. This violates the first law of thermodynamics, which states that energy cannot be created
nor destroyed. Consequently, energy-free adjustment between two masses can be performed in maximum one balancer
position. To perform the adjustment in various balancer positions, energy is involved. The thought experiment supports the
fact that the minimum adjustment energy is equal to the potential energy difference of the masses, since then no energy is
created. Another perspective is proposed by [5], who suggests that as long as on average the mass that is lifted is equal to
the mass that is lowered, the system can operate continuously.

1As discussed with ir. R. Barents
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APPENDIX II
COMPARISON CASES

The comparison cases are derived from applications of exoskeletons and illustrate the extremes of each application.
During the study, cases in between the extremes are considered as well. The results of these cases are in line with the results
of the extremes and therefore not elaborated upon.

Case 1 and 2 are based on an upper extremity exoskeleton (comparable to [18]). It is assumed that the lever arm of
the balancer is parallel to the upper arm. Furthermore, it is assumed that one end of the lever arm is located at the center
of mass of the upper arm and tits length (L) is equal to 0.3m. In the calculations, it is assumed that 50% of the mass of the
upper arm is supported.

In case 1, the exoskeleton is adjusted to fit a new user. The mass of the arm of the first user (mA) is assumed
to be equal to 1.4kg (corresponding to the 5th female percentile [19]) of which 0.7kg is supported. The mass of the
arm of the second user (mB) is assumed to be equal to 2.8kg (corresponding to the 95th male percentile [19]), of
which 1.4kg is supported. This results in maximum moments equal to TA

mass = mAgL = 0.7 ∗ 9.81 ∗ 0.3 ≈ 2Nm and
TB
mass = mBgL = 1.4 ∗ 9.81 ∗ 0.3 ≈ 4 Nm.

In case 2, the exoskeleton is adjusted to pick up an object of 20kg using two hands. Before the adjustment, only the upper
arm is supported. Similar to case 1, the mass of the arm of the user (mA) is assumed to be equal to 2.8kg of which 50% is
supported. This results in a maximum moment equal to TA

mass = mAgL = 1.4 ∗ 9.81 ∗ 0.3 ≈ 4Nm. It is assumed that the
mass of the carried object is equal to 13kg and that half of this mass is supported per balancer since the object is carried
in both hands. The total supported mass (half of the upper arm mass plus half of the object mass (mB)) is then equal to
8kg. This results in a maximum moment equal to TB

mass = mBgL = 8 ∗ 9.81 ∗ 0.3 ≈ 24Nm.

Case 3 and 4 are based on a back exoskeleton (comparable to [20]). It is assumed that the lever arm of the balancer is
parallel to the human back. The length of the lever arm is assumed to be equal to 0.4m and that the exoskeleton supports
half of the mass of the human trunk.

In case 3, the exoskeleton is adjusted to fit a new user. The mass of the trunk of the first user (mA) is assumed to
be equal to 40kg (approximately equal to the male 50th percentile [19]), of which 20kg is supported. The mass of the
trunk of the second user (mB) is assumed to be equal to 50kg (approximately equal to the male 95th percentile [19]), of
which 25kg is supported. This results in maximum moments equal to TA

mass = mAgL = 20 ∗ 9.81 ∗ 0.4 ≈ 80Nm and
TB
mass = mBgL = 25 ∗ 9.81 ∗ 0.4 ≈ 100Nm.

In case 4, the exoskeleton is adjusted to pick up an object with a mass equal to 15kg using two hands. It is assumed that
the complete mass of the object is supported by the balancer. Similar to case 3, the mass of the trunk of the first user (mA)
is assumed to be equal to 40kg, of which 20kg is supported. The mass of the trunk plus half of the mass of the object that is
picked up (mB) is then equal to 35kg. This results in maximum moments equal to TA

mass = mAgL = 20∗9.81∗0.4 ≈ 80Nm
and TB

mass = mBgL = 35 ∗ 9.81 ∗ 0.4 ≈ 140Nm.
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APPENDIX III
ANALYTICAL DERIVATION OF BALANCING CONDITIONS

The fact that the best balancing quality is obtained by selecting r >> a or r << a is analytically proved in this section.
The proof is based on the fact that for an optimal balancing quality, the variation of the total potential energy of the system
over the range of motion should be as small as possible. Firstly, the total potential energy of the system (Up) is derived.
Secondly, the derivative of the total potential energy with respect to the range of motion is calculated. The derivative of
the total potential energy is equal to the resultant moment about the pivot and should be zero to obtain perfect balance. A
term that is dependent on the balancer position remains present in the resultant moment, making it impossible to equalize
it to zero for every balancer position. Therefore, thirdly, the conditions for which the influence of this dependent term are
minimized are derived. Fourthly, using these conditions, the dependent term can be approximately made constant, and the
balancing condition can be solved. This results in the location of the spring attachment point that corresponds to the optimal
balancing quality. Please note that:

1) The location of the spring attachment point corresponds to the optimal balancing quality, not to perfect balance as in
the basic balancer.

2) The derivation does not take the maximum energy storage of the spring into account, so the optimal spring attachment
point can correspond to plastic deformation of the spring.

AP-type

Step 1: total potential energy of the system

Up = Umass + Uspring = mgLcosϕ+
1

2
k ∗ dL2

spring + F0 ∗ dLspring (17)

Up = mgL cosϕ+
1

2
k
(√

a2 + r2 − 2ar cosϕ
)2

+ F0

√
a2 + r2 − 2ar cosϕ (18)

Up = mgL cosϕ+
1

2
ka2 +

1

2
kr2 − kar cosϕ+ F0

√
a2 + r2 − 2ar cosϕ (19)

Step 2: constant total potential energy
Perfectly balanced: Up 6= f(ϕ) = constant =⇒ dUp

dϕ = TT = 0

TT =
dUp

dϕ
= −mgL sinϕ+ kar sinϕ+

F0rasinϕ√
a2 + r2 − 2ar cosϕ

(20)

TT = −mgL+ kar +
F0ar√

a2 + r2 − 2ar cosϕ
= 0 (21)

Step 3: conditions to make the potential energy approximately constant
To fulfill equation 21 =⇒ make it independent of ϕ =⇒

√
a2 + r2 − 2ar cosϕ 6= f(ϕ).

Cond. 1: r << a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
a2 + 02 − 2a ∗ 0 ∗ cosϕ =

√
a2 = a

Cond. 2: r >> a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
02 + r2 − 2r ∗ 0 ∗ cosϕ =

√
r2 = r

Step 4: optimal location of spring attachment point
Cond. 1:

r << a =⇒ −mgL+ kar +
F0ar

a
= 0 =⇒ a =

mgL

kr
− F0

k
(22)

Cond. 2:

r >> a =⇒ −mgL+ kar +
F0ar

r
= 0 =⇒ a =

mgL

kr + F0
(23)
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ANP-type
Step 1: total potential energy of the system

Up = Umass + Uspring = mgLcosϕ+
1

2
k ∗ dL2

spring + F0 ∗ dLspring (24)

Up = mgL cosϕ+
1

2
k
(√

a2 + r2 − 2ar cosϕ− L0

)2
+ F0

√
a2 + r2 − 2ar cosϕ (25)

Up = mgL cosϕ+
1

2
k
(
a2 + r2 − 2ar cosϕ− 2L0

√
a2 + r2 − 2ar cosϕ+ L2

0

)
+ F0

√
a2 + r2 − 2ar cosϕ (26)

Up = mgL cosϕ+
1

2
ka2 +

1

2
kr2 − kar cosϕ− kL0

√
a2 + r2 − 2ar cosϕ+

1

2
kL2

0 + F0

√
a2 + r2 − 2ar cosϕ (27)

Step 2: constant total potential energy
Perfectly balanced: Up 6= f(ϕ) = constant =⇒ dUp

dϕ = TT = 0

TT =
dUp

dϕ
= −mgL sinϕ+ kar sinϕ− L0akrsinϕ√

a2 + r2 − 2ar cosϕ
+

F0rasinϕ√
a2 + r2 − 2ar cosϕ

(28)

TT = −mgL+ kar − ar(kL0 − F0)√
a2 + r2 − 2ar cosϕ

= 0 (29)

Step 3: conditions to make the potential energy approximately constant
To fulfill equation 29 =⇒ make it independent of ϕ =⇒

√
a2 + r2 − 2ar cosϕ 6= f(ϕ).

Cond. 1: r << a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
a2 + 02 − 2a ∗ 0 ∗ cosϕ =

√
a2 = a

Cond. 2: r >> a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
02 + r2 − 2r ∗ 0 ∗ cosϕ =

√
r2 = r

Step 4: optimal location of spring attachment point
Cond. 1:

r << a =⇒ −mgL+ kar − ar(kL0 − F0)

a
= 0 =⇒ a =

mgL

kr
− F0

k
+ L0 (30)

Cond. 2:
r >> a =⇒ −mgL+ kar − ar(kL0 − F0)

r
= 0 =⇒ a =

mgL

kr − kL0 + F0
(31)
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FL-type
Step 1: total potential energy of the system

Up = Umass + Uspring = mgLcosϕ+
1

2
k ∗ dL2

spring + F0 ∗ dLspring (32)

Up = mBgL cosϕ+
1

2
k
(√

a2 + r2 − 2ar cosϕ+ u0

)2
+ F0

(√
a2 + r2 − 2ar cosϕ+ u0

)
(33)

Up = mBgL cosϕ+
1

2
k
(
a2 + r2− 2ar cosϕ+2u0

√
a2 + r2 − 2ar cosϕ+ u20

)
+F0

(√
a2 + r2 − 2ar cosϕ+ u0

)
(34)

Up = mBgL cosϕ+
1

2
ka2+

1

2
kr2−kar cosϕ+ku0

√
a2 + r2 − 2ar cosϕ+

1

2
ku20+F0

√
a2 + r2 − 2ar cosϕ+F0u0 (35)

Step 2: constant total potential energy
Perfectly balanced: Up 6= f(ϕ) = constant =⇒ dUp

dϕ = TT = 0

TT =
dUp

dϕ
= −mBgL sinϕ+ kar sinϕ+

u0akrsinϕ√
a2 + r2 − 2ar cosϕ

+
F0rasinϕ√

a2 + r2 − 2ar cosϕ
(36)

TT = −mBgL+ kar +
ar(ku0 + F0)√

a2 + r2 − 2ar cosϕ
= 0 (37)

Step 3: conditions to make the potential energy approximately constant
To fulfill equation 37 =⇒ make it independent of ϕ =⇒

√
a2 + r2 − 2ar cosϕ 6= f(ϕ).

Cond. 1: r << a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
a2 + 02 − 2a ∗ 0 ∗ cosϕ =

√
a2 = a

Cond. 2: r >> a =⇒
√
a2 + r2 − 2ar cosϕ ≈

√
02 + r2 − 2r ∗ 0 ∗ cosϕ =

√
r2 = r

Step 4: optimal location of spring attachment point
Cond. 1:

r << a =⇒ −mBgL+ kar +
ar(ku0 + F0)

a
= 0 =⇒ u0 =

mBgL

kr
− a− F0

k
= (mB −mA)

gL

kr
− F0

k
(38)

Cond. 2:
r >> a =⇒ −mBgL+ kar +

ar(ku0 + F0)

r
= 0 =⇒ u0 =

mBgL

ka
− F0

k
− r (39)
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4
DISCUSSION

The classification method presented in Chapter 2 can be used to classify force generators
with other force-displacement curves than the sinusoidal one of the balancer. In further
research, the possible methods to adjust a force generator can be deduced by determin-
ing the parameters that scale the transfer function independently of the force generator’s
degrees of freedom. Moreover, the load and motor function can be formed by the energy-
displacement curve as well. For the balancer, this would mean that the sine-function is
replaced by a cosine-function. In further research, the classification can be used to de-
sign innovative mechanisms. The results show that, in case of a balancer incorporating a
linear spring, two novel combinations of motor parameters have been found which can
be used to design a new type of balancer. Furthermore, the classification method can
be used to classify multiple degree of freedom systems, such as robotic manipulators or
exoskeletons. One motor function per degree of freedom can be derived. These motor
functions should together form the desired load function. The complete set of combi-
nations of possible motor functions that together form the desired behavior and novel
design opportunities can be identified.

In the paper presented in Chapter 3, three adjustment types are proposed and com-
pared on basis of their balancing quality, adjustment energy and dimensions by an an-
alytical model. The results of this study enable the selection of the optimal adjustment
type depending on the application’s requirements. The practical validity of the results of
this study can be improved by incorporating an efficiency in the adjustment energy stor-
age and supply (for more information, see Appendix G). The MATLAB code of the grid-
optimization of the adjustment types can be found in Appendix H. Regarding the ANP-
type, an alternative optimization method has been considered (Appendix F), but the re-
sults proved to be less optimal than the results of the currently implemented grid search.
Regarding the implementation of the adjustment types in exoskeletons and robotic ma-
nipulators, the FL-type could be suitable in case the difference between the mass mo-
ments is small, for example when the exoskeleton is adjusted to another user. The AP-
type and ANP-type require a considerable amount of installation space, since for opti-
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mal balancing quality, either r or a needs to be large with respect to the other parameter.
The AP-type and ANP-type could be suitable for implementation in exoskeletons and
robotic manipulators if sufficient installation space is available. However, especially in
exoskeletons, the available space is often limited and more compact solutions, for exam-
ple cam-balancers, seem to be more convenient.

In the proposed adjustment types, springs with realistic properties are selected from
a database. The properties of all springs from the database are discussed in Appendix
E. To optimize the performance of the adjustment types, a better understanding of the
relations between the spring properties could be help full. For example, when the op-
timal balancing quality is obtained for a spring with a very large spring stiffness but a
small null-length, a relation between those properties enables the selection of the op-
timal spring. An iterative attempt was made to obtain a relation between the maxi-
mum energy storage of the spring and the spring stiffness. As seen in Figure E.2, a line
(U max

spr i ng = 2.5e6 ·1/k) can be drawn through the points that correspond to the springs

with the largest energy storage. This relation may be used to estimate the maximum en-
ergy storage for a given spring stiffness, but a detailed study is required for validation.
The points that represent the springs seem to form a part of a conical shape (Figure E.5).
Therefore, a relation between the spring stiffness, null-length and initial tension could
exist. However, further research is required to obtain and validate these relations.

The balancer is adjusted when its payload is altered, for example by picking up or
releasing an object, which alters the payload of the balancer instantaneously. Theoret-
ically, to optimally reduce the operation power of the system, the adjustment should
be performed instantaneously as well. Since energy is involved in the adjustment, in-
stantaneous adjustment implies an infinite amount of involved power (since power =
ener g y/t i me), which is practically impossible. For practical implementation, the ad-
justment can be performed in a short period of time. This period of time should in the
other magnitude of 10−1 seconds to not delay the working pace of the exoskeleton user
or robotic manipulator. However, the shorter this period, the larger the involved power
and the heavier the required actuators. Furthermore, especially in exoskeletons, quick
adjustment introduces safety and comfort concerns. In Appendix B, the functional re-
quirements of an adjustment mechanism applied in an exoskeleton can be found. The
importance of the human factors in the design is confirmed by the fact that one of the
two functional requirements is about user comfort. The functional requirements can be
translated to mechanical functions (Appendix A). The adjustment process needs to be
initiated by a trigger. After this initiation, different time strategies can be implemented
in the adjustment of the exoskeleton to ensure the user comfort (see Appendix D). If
the increase of support takes longer than the decrease, the greatest part of the available
adjusting time can be used to increase the support. Further research is required to inves-
tigate the optimal time strategy and to practically implement an adjustment mechanism
in an exoskeleton or robotic manipulator.
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CONCLUSION

The overall goal of this thesis was to supply an overview of different mechanism that
can supply static balance and to investigate the implementation of these mechanisms in
applications in which the payload varies, especially in exoskeletons and robotic manip-
ulators.

In Chapter 2, a method to systematically identify the complete solution space of force
generators is introduced. The method is based on the transfer function of the transmis-
sion in the force generator and gives insight in the working principle and new design
opportunities. The method is applied on perfect static balancers with one non-auxiliary
revolute joint to obtain an overview of their working principles. Five distinctive working
principles are identified: (1) ideal springs, (2) trigonometric identities, (3) cam mecha-
nisms, (4) cancellation of terms and (5) phase shifted functions. A total of 27 possible
transfer functions is determined, of which 22 incorporate a non-linear spring and five
are found in existing balancers.

In Chapter 3, the focus was on the application of balancers in exoskeletons and robotic
manipulators. Three adjustment types suitable for these applications are selected and
the theoretically minimum amount of energy involved in the adjustment is derived. Fur-
thermore, their balancing conditions are determined and a method to select a spring
with realistic spring properties is introduced. Convenient metrics are proposed with the
theoretically perfect basic balancer as reference. The metrics are used to compare the
three adjustment types using an analytical MATLAB model on basis of their degree of
perfect balance, energy involved in adjustment and dimensions in four cases deduced
from the applications. The selected adjustment types include a balancer (1) with pulley
adjusted by altering the location of the spring attachment point (AP-type), (2) without
pulley adjusted by altering the location of the spring attachment point (ANP-type) and
(3) with pulley adjusted by altering the free length of the spring (FL-type). The theoretical
minimum amount of energy involved in adjustment is equal to the difference between
the potential energy of the two balanced masses and is dependent on the position of
the mass. Due to the initial tension and null-length of the spring, the adjustment types
cannot obtain perfect balance over the complete range of motion. The results show that
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there are clear differences in the performance of the different adjustment types. In case
the balancing quality is critical, AP-type adjustment is the best choice (error within 3%),
closely followed by ANP-type (error within 5%). An advantage of the ANP-type over the
AP-type is that no pulley is required, which simplifies the mechanism and increases its
robustness. However, the dimensions of the ANP-type are larger than the dimensions of
the AP-type. The adjustment energy of both the AP-type and ANP-type is approximately
10% larger than the minimum adjustment energy. The FL-type should only be consid-
ered when the percentage difference between the two masses is smaller than 20%, since
the balancing quality deteriorates significantly for larger differences. Furthermore, its
adjustment energy is generally four to six times larger than the theoretical minimum
adjustment energy. Regarding their implementation in exoskeletons and robotic ma-
nipulators, the FL-type is suitable when the difference between the moments of the bal-
anced masses is small. The AP-type and ANP-type are suitable when sufficient instal-
lation space, at least in one direction, is available. The amount of required installation
space is dependent on the balanced masses. However, more compact solutions could be
obtained by incorporating an transmission mechanism in the balancer, but further re-
search is required to investigate their performance on adjustment energy and balancing
quality.

In Appendices A to H, additional information about the complete research is dis-
cussed. Although the mechanical considerations are important in the design of bal-
ancers applied in exoskeletons, the human aspects cannot be neglected. Functional
requirements and general functions of the adjustment mechanism are identified to en-
sure the comfort and safety of the user. The functional requirements include ensuring
user comfort and altering the energy contained in the system. The general functions
comprise of (1) locking and unlocking the spring attachment point, (2) supplying and
retrieving/dissipating the adjustment energy and (3) guiding the displacement of the
spring attachment point. The first function can optimally be performed by a locking
mechanism based on singularity. Regarding the second function, important character-
istics of the energy storage device are (1) energy density, which describes how much en-
ergy can be stored per unit mass (2) power density, which describes how fast the energy
can be retrieved from the storage and (3) energy storage duration, which indicates for
what period of time the energy can be stored in the energy storage device. No energy
storage device that fulfills all the requirements was found, and therefore a combination
of a spring (to quickly supply energy) and a battery (to store a large amount of energy)
was proposed. Considering the third function, the path of the spring attachment point
determines the behavior of the device during the adjustment. Two aspects need to be
taken into account in selecting the path, (1) the mechanical possibilities and (2) the user
experience. The performance of the adjustment types could be improved by optimizing
the spring selection. Expressions that describe the relations between the spring prop-
erties could be help full in this optimizing. The relation between the spring stiffness,
null-length and initial tension of the springs from the database was investigated using a
graphical representation, which indicated that those relations exist. However, more re-
search is required to obtain the mathematical relations between those properties.
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In conclusion, this study showed that, by classifying static balancers (or force gen-
erators in general), a systematic overview of all design opportunities is created. Fur-
thermore, the results indicate that certain adjustment types of static balancers can be
implemented in applications in which their payload varies regularly, taking in consid-
eration the balancing quality, energy involved in adjustment and overall dimensions of
the balancer. However, since especially in exoskeletons the amount of available space is
limited, more compact balancers could be more suitable for this application.
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APPENDIX A: FUNCTIONS OF AN

ADJUSTMENT MECHANISM IN AN

EXOSKELETON

In Figure A.1, the general actions involved in adjusting a balancer in an upper extremity
exoskeleton are shown. From the general actions, functions of the adjustment mecha-
nism are derived and described in Figure A.2 and illustrated in Figure A.3. The part of
the adjustment mechanism that determines when the adjustment is required is consid-
ered to be out of scope of this study. This part of the mechanism should recognise the
intention of the user and act upon this.

Starting in situation A, the spring attachment point is locked in position A (Figure
A.3a). To perform the adjustment, the position of the mass needs to be locked. This can
be done by holding the human arm still. Next, if a mechanical stop is implemented to
prevent the spring attachment point from moving in a direction other than to point B,
the spring attachment point can be unlocked (Figure A.3b1). When no stop is imple-
mented, the actuator force needs to increase until at least static equilibrium is obtained
(Figure A.3b2), before it can be unlocked, to prevent movement in opposite direction
than point B. The actuator force needs to be increased until at least static equilibrium
in position B is obtained (Figure A.3c1 and A.3c2), so that the spring attachment point
reaches position B (Figure A.3d). The spring attachment point can now be locked again
at position B and the adjustment from situation A to B is finished (Figure A.3e).

To perform the adjustment from situation B to A, the spring attachment point can
be unlocked while the actuator force ensures that the resulting force on the spring at-
tachment point is in the direction of B to A (Figure A.3f). The resultant force should be
such that position A is reached (figure A.3g) in which the spring attachment point can be
locked again (Figure A.3g).
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Figure A.2: Functions of adjustment mechanism applied in an exoskeleton



A

45



A

46 A. APPENDIX A: FUNCTIONS OF AN ADJUSTMENT MECHANISM IN AN EXOSKELETON



A

47

Figure A.3: Illustration of functions of adjustment mechanism applied in
an exoskeleton
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B. APPENDIX B: FUNCTIONAL REQUIREMENTS AND STRATEGIES OF AN ADJUSTMENT

MECHANISM IN AN EXOSKELETON
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C
APPENDIX C: DESIGN OF AN

ADJUSTMENT MECHANISM APPLIED

IN AN UPPER EXTREMITY

EXOSKELETON

In this Section, the mechanical parts of the adjustment mechanism are discussed. The
focus is on the adjustment of a balancer applied in an upper extremity exoskeleton.
Therefore, the two masses that are supported are the mass of the human arm (situation
A) and the mass of the human arm plus (part of) the mass of a carried object (situation
B). Furthermore, for comfort reasons, the mechanism should be as lightweight and lean
as possible.

C.1. PATH OF SPRING ATTACHMENT POINT
The spring attachment point is displaced to adjust the balancer. The path over which
this point is displaced determines the behaviour of the balancer during the adjustment.
Two important aspects need to be considered in the determination of the adjustment
path.

The first aspect is about the mechanical possibilities. Since the adjustment has to
be performed quickly, it is important to consider which path can be travelled quickly. A
circular path can be preferable when an rotational motor with lever arm is used. Other
options include a straight path using a linear guide or a custom path using for example
a four-bar mechanism. The second aspect is about the user experience. Since the bal-
ancer is locked by holding still the arm of the user, the balancer exerts a force on the arm
during adjustment. If a gradual increase of the support is preferred during adjustment,
the optimal adjustment path is a straight line between the spring attachment points cor-
responding to situation A and B.
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EXTREMITY EXOSKELETON

C.2. LOCKING AND UNLOCKING THE SPRING ATTACHMENT POINT
During operation of the exoskeleton, the spring attachment point should be fixed at a
certain location. During adjustment, however, the spring attachment point is displaced.
Therefore, it is required that the spring attachment point can be unlocked. Furthermore,
the unlocking should be possible when a force is exerted on the spring attachment point
by the spring.

A locking device based on singularity is particularly suitable in for this application,
since it requires no continuous power consumption, can be unlocked under load and
requires a small amount of power to be unlocked [24]. A locking device based on sin-
gularity is designed, inspired by the design of ir. M. Hölscher 1. Hölscher developed a
locking device for a rotational joint based on singularity (Figure C.1).
A schematic diagram of the locking device can be found in Figure C.2a. The rotational
joint that is to be locked consists of two rigid links (L1 and L2) which are connected by a
rotational degree of freedom (J1). The rotation of the links is locked by a third link (L3),
which is connected to link 1 by a revolute joint (J2). One end of L3 can fit in a slot on L2,
which locks the degree of freedom of J1. To unlock, the end of L3 is rotated out of the slot
by rotating L3 about J2. In Figure C.2b, the relevant forces working on the locking device
are shown. The surface of the slot in L2 is shaped such that the force exerted by L2 on
the end of L3 intersects J2. The moment of this force about J2 is zero since its moment
arm is zero. Therefore, the moment exerted by L2 on L1 does not influence the moment
required to unlock J1 by rotating L3. In fact, the moment required to unlock J1 is only
dependent on the friction between the surface of L2 and L3.

Figure C.1: Locking device of Hölscher

1Contact: mike@laevo.nl

mike@laevo.nl
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(a) Schematic representation (b) Forces in locking device

Figure C.2: Schematic representation of locking device of Hölscher

To enable the use of a linear guide to define the path of the spring attachment point,
a locking device is designed for a carriage on a linear guide (Figure C.3). The principle
is identical to that of the locking device of Hölscher: the force working on the lever arm
intersects its revolute joint. Therefore, this force does not exert a moment on the lever
arm and only the friction between in the ball bearing and needs to be overcome to unlock
the device.
The front of the carriage is shaped such that when it reaches the lever arm, the lever arm
is lifted upwards and falls into the slot. In future design, a spring can be incorporated to
push the lever arm on the carriage to enable more secure locking.

Figure C.3: Locking device based on singularity

C.3. ENERGY STORAGE
As explained in Chapter 3, the energy involved in adjusting from situation A to B in a
specific balancer position is equal but opposite to the energy involved in adjusting from
situation B to A in that same balancer position. In other words, if the energy can be re-
trieved and stored at perfect efficiency and on average the number of adjustments from
situation A to B is equal to the number of adjustment from situation B to A in one bal-
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EXTREMITY EXOSKELETON

ancer position, no external energy is involved in the adjustment. However, practically,
storing and retrieving energy at perfect efficiency is not possible. Furthermore, it is un-
likely that the number and positions of adjustments from situation A to B and vice versa
is equal. Therefore, external energy needs to be stored in the exoskeleton before using it.
This energy can then be used in the adjustment 2.

The energy that is involved in the adjustment needs to be stored in an energy storage
device (ESD). Three important characteristics of the energy storage device are consid-
ered:

1. Energy density: how much energy [J] can be stored per unit mass [kg] of the ESD?

2. Power density: how much power [W] can be stored per unit mass [kg] of the ESD?

3. Storage duration: for what period of time can the energy and power be stored in
the ESD?

The three characteristics of different storage devices are listed in Table C.1. The dif-
ference between the energy density and power density is that the latter characteristic
tells something about the speed with which the energy can be retrieved from the ESD.

The required mass of the different ESDs is calculated on basis of comparison case
2 (see Chapter 3). In this case, the (worst case) adjustment energy is equal to 20J and
it is assumed that the adjustment takes place in 0.1 seconds. The results are shown in
Table C.2. As seen in this Table, for the electrical ESDs and the flywheel, the required
mass is determined by the amount of power that needs to be stored. The steel spring
and compressed air ESDs can release their energy (almost) instantaneously and there-
fore the power requirement has no effect on the required mass. Please note that in the
two Tables, only one adjustment action is considered. In reality, the adjustment is per-
formed multiple times, which increases the mass of the ESD.

Table C.1: Characteristics of different energy storage devices

Device
Lithium
ion
battery

Sodium
sulfur
battery

Lead
acid
battery

Redox
flow
battery

Super
capacitor

Spring
(steel
coiled)

Spring
(CNT
yarn)

Spring
(CNT
twisted)

Gas
spring 3 Flywheel

Energy
density
[kJ/kg]

540 [7] 540 [7] 140 [7] 90 [7] 10 [7] 0.14 [27] 4.2 [27] 8.3 [27] 0.8 4 150 [27]

Power
density
[W/kg]

400 [18] 400 [18] 400 [18] 400 [18] 3000 [7] Inf 5 - 6 - 6 Inf 5 12000 [27]

Storage
duration

Min-Day
[35, 17]

Min-Day
[35]

Min-Day
[35, 17]

Min-Day
[35, 17]

Sec-Hour
[35, 17]

Hour-Day 7 - 6 - 6 Hour-Month 8 Sec-Min
[35, 17]

2Please note that this does not imply that storing the energy that is released during adjustment is not necessary.
The more energy that can be retrieved, the less energy needs to be stored in advance in the exoskeleton.

3The characteristics of compressed air are more favourable, but give a distorted view because the mass of the
housing and sealing is not taken into account

4The energy density is calculated from a gas spring data sheet [30]
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Table C.2: Required mass per energy storage device based on energy and power density

Device
Lithium
ion
battery

Sodium
sulfur
battery

Lead
acid
battery

Redox
flow
battery

Super
capacitor

Spring
(steel
coiled)

Spring
(CNT
yarn)

Spring
(CNT
twisted)

Gas
spring

Flywheel

Energy
mass [g]

0.037 0.037 0.14 0.22 2.0 143 4.8 2.4 25 0.13

Power
mass [g]

500 500 500 500 67 0 - - 0 17

The energy needs to be stored for at least a day, to avoid charging during a work shift.
This excludes super capacitors and the flywheel. None of the ESDs can store a suffi-
ciently large amount of energy and power in a reasonable mass. For example, to store
sufficient energy to perform fifty adjustments 9, a 7kg steel spring is required. Similarly,
to store sufficient power to preform fifty adjustments 9, a 25kg battery is required. In
addition, in the latter case, an actuator that transforms the electrical energy into me-
chanical energy is required.

A combination of different ESDs is considered to solve this issue. One ESD can be
used as an energy reservoir to store the energy required for multiple adjustments. A sec-
ond ESD can be used to quickly supply the energy during the adjustment. Lithium Ion
batteries or Sodium Sulfur batteries are suitable as energy reservoir because of their large
energy density. A steel spring or gas spring can deliver energy in a short period of time.
The energy stored in the battery can than be used to ’charge’ the spring in between ad-
justments. To store the energy required for fifty adjustments, a battery of a few grams is
required. However, the power required to charge the spring determines the mass of the
battery. Assuming that there is a two second time window between two adjustments, the
maximum required power to charge the spring is equal to 10W. To perform fifty adjust-
ments, a 1.25kg battery is required. The spring only needs to store the power required
for one adjustment and a 150g steel spring or a 25g gas spring suffices.

C.3.1. LIMITATIONS AND FURTHER RESEARCH
A disadvantage of combining a battery and a spring is that an additional actuator is re-
quired that can transform the electrical energy from the battery into mechanical energy
in the spring. A DC-motor seems to be a feasible option. However, the mass of the DC-
motor will most likely be a order of magnitude larger than the mass of the ESDs. The
DC-motor should be placed in series with the spring, so that the motor can ’charge’
the spring in between adjustments. The larger the time between the adjustments, the
smaller the power that is required to charge the spring.

In the above calculations, the efficiency of the ESDs and the durability is not taken
into account. Furthermore, to extend the life time of a battery, complete discharge should
be avoided. Therefore, a ESD with a larger energy and power density than presented in
the previous section is required.

5The energy can be released (almost) instantaneously, which implies an infinite power density
6The power density and storage duration of Carbon NanoTube springs could not be found in literature
7After 100 hours, 10% of the force in the spring is lost due to stress relaxation [12]
8The losses are minimal, although thermodynamic losses can affect the energy storage duration [29]
9Assumed that no energy is retrieved during adjustment and that all the energy in the ESD can be used.
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EXTREMITY EXOSKELETON

Although the mass of the battery in the solution that combines a battery and spring
(1.25kg) is significantly smaller than the mass of a completely electric system (25kg), it is
still large in an exoskeleton perspective. By retrieving (part of) the released energy, the
required energy storage capacity of the battery can be decreased. A option to make this
possible is to use the DC-motor as a generator as well. However, an additional electrical
circuit is required to enable storing the retrieved energy in the battery.

A second option could be to incorporate an additional spring that stores the released
energy. If the energy is not retrieved, it should be dissipated safely and some form of
damping should be incorporated in the adjustment mechanism.

Another option would be to duplicate the combined system, and alternately use each
system to perform the adjustment. This doubles the time that is available to charge the
spring, and therefore cuts the required power and number of adjustments per battery in
half (5W and 25 adjustments respectively). In this case, two 0.31kg batteries are required,
which add up to mass of 0.63kg. Also, two springs are required that can to store the power
required for one adjustment, which results in a mass of 0.30kg. The total combined mass
of the ESDs in the original system (one battery and spring) adds up to 1.4kg. The total
mass of the ESDs in the split system (two batteries and two springs) is equal to 0.93kg.
However, in the split systems, a transmission that switches between the two springs or
two DC-motors are required.

C.4. DESIGN CHOICES
A morphological chart (Figure C.4) is set up including all possible solutions to fulfill the
functions of the adjustment mechanism (see Appendix A).
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APPENDIX D: TIME STRATEGIES OF

AN ADJUSTMENT MECHANISM IN AN

EXOSKELETON

In one displacement motion, the exoskeleton should be adjusted at two instances: from
a low to high level of support when grabbing the object and from a high to low level when
releasing the object. It is assumed that after grabbing the object, the box held for a pe-
riod of time (box in hands) after which it is released. Sequentially, the hands are moved
towards the next box (returning) and the cycle starts again (see D.1). The returning pe-
riod can be used to prepare the actuator to adjust from the low level to the high level of
support.
Three basic strategies regarding the distribution of the adjustment actions in the avail-
able period of time are distinguished (Figure D.2). In all strategies, the support starts at
the low level of support (just before the object is grabbed) and is at the low level again
just after the object is released. In the first strategy (denoted as 1 in Figure D.2), the sup-
port is quickly build up to the high level and then gradually decreased until the low level
is reached when the box is released. In the second strategy (2 in Figure D.2), the level
of support is gradually increased until the high level of support is reached and quickly
decreased to the low level of support when the box is released. In the third strategy (3 in
Figure D.2), the support is increased and afterwards decreased at a similar rate.

Since the support is gradually decreased in strategy 1 and 3, the moment in time
at which the object is released needs to be estimated so that the support is decreased
at a sufficiently large rate to prevent overbalancing after the object is released and the
support is not decreased too quick while the user still carries the object. In strategy 2,
the support is decreased quickly, which decreases the time in which overbalancing is
possibly present and in which the user has to support the object. Furthermore, adjusting
from a low level to a high level requires energy and to limit the required power, a large
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time window in which the adjustment can be performed is advantageous. Adjusting
from a high to a low level releases energy, which can be dissipated or stored more quickly.

Figure D.1: Time cycle

Figure D.2: Time strategies
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APPENDIX E: PROPERTIES OF

SPRINGS FROM DATABASE

A database consisting of commercial available springs [13] is used to select a spring in
the design of the adjustment types. Since all spring properties are known, interesting
relations between them can be found.

In Figure E.1, it can be seen that the maximum energy storage in the spring is cor-
related with the spring mass. The maximum energy storage can be calculated by multi-
plying the spring mass by the energy density of mechanical springs. The energy density
can be derived from the data by fitting a linear line and determining its slope and is
equal to 111 J/kg for this data set. In Figure E.2 the maximum energy storage (U max

spr i ng ) is

plotted against the spring stiffness (k). It can clearly be seen that the largest amount of
energy can be stored in springs with a small stiffness. The maximum energy storage for a
given spring stiffness has a clear outer boundary (red line). The red line equals the equa-
tion U max

spr i ng = 2.5e6∗1/k. Using this equation, the maximum energy storage for a given

spring stiffness can be estimated. In Figure E.3 the maximum energy storage is plotted
against the null-length of the spring. It can clearly be seen that the largest amount of en-
ergy can be stored in a spring with a large null-length. In Figure E.4 the maximum energy
storage is plotted against the initial tension in the spring. Two observations stand out.
Firstly, there is no clear relation between the maximum energy storage and the initial
tension. Secondly, the springs are clustered around certain values for the initial tension.
This could show the strategy that is used to design the springs: first the initial tension is
determined after which the other spring properties are obtained.

The above described spring properties are combined in Figure E.5. In this Figure, it
can be seen that a conical shape is formed by the point corresponding to the individual
springs.
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Figure E.1: Maximum energy storage in the spring plotted against the mass
of the spring. Data retrieved from [13].

Figure E.2: Maximum energy storage in the spring plotted against the
stiffness of the spring. Data retrieved from [13].
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Figure E.3: Maximum energy storage in the spring plotted against the
null-length of the spring. Data retrieved from [13].

Figure E.4: Maximum energy storage in the spring plotted against the
initial tension of the spring. Data retrieved from [13].
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Figure E.5: Null-length, spring stiffness, initial tension and maximum
energy storage. Data retrieved from [13].
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APPENDIX F: CIRCLE

OPTIMIZATION

The circle optimization method is introduced by [14] as the Field Fitting method. In
the optimization, the location of the attachment point of a regular spring to the fixed
world is optimized. This evades the necessity of one or multiple pulleys to emulate an
ideal spring. The optimization objective is to obtain an optimal balancing quality in the
complete range of motion of the balancer. The optimization is based on the fact that in
a perfectly balanced system, the total potential energy is constant (equation F.1).

Uspr i ng (ϕ)+Umass (ϕ) =CB (F.1)

The energy contained by the spring and mass are given by equation F.2 and F.3 respec-
tively, in which dL(ϕ) represents the spring elongation.

Uspr i ng (ϕ) = 1

2
k ∗dL(ϕ)2 (F.2)

Umass (ϕ) = mg L cosϕ (F.3)

Substituting equation F.2 and F.3 into F.1 and rewriting leads to the expression of the
required spring elongation (equation F.4).

dL(ϕ) =
√

2(CB −mg L cosϕ)

k
(F.4)

The total spring length is then equal to the sum of the null-length (L0) and the required
elongation (equations F.5 and F.6).

Lspr i ng (ϕ) = L0 +dL(ϕ) (F.5)

Lspr i ng (ϕ) = L0 +
√

2(CB −mg L cosϕ)

k
(F.6)
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Using equation F.6, at every balancer position, the required spring length to store the
energy to perfectly balance the mass can be calculated. A circle with its radius equal
to the total spring length (Lspr i ng ) and midpoint located at the attachment point of the
spring at the lever arm can be plotted at each balancer position (see Figure F.1). The
radius of the circles is increased by increasing the constant CB until the circle perimeters
intersect in one point. In case no point exists at which all circle perimeters intersect, the
point with the smallest distance to all circle parameters is selected as optimal point (red
dot in Figure F.1). The (optimal) intersection point represents the location of point the
spring attachment point for which the balancing quality is optimal.

The adjustment principle is obtained by preforming the above procedure for two sit-
uations, in which mass mA and mB are supported respectively. Consequently, two op-
timal intersection points corresponding to mass mA and mB are found. By displacing
the spring attachment point from one of those locations to the other, the balancer is
adjusted.

Figure F.1: Visualisation of the circle optimization
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APPENDIX G: NET ADJUSTMENT

ENERGY

The adjustment energy as presented in chapter 3 is defined as the net energy involved
during adjustment. This means that, when both energy is required (positive sign) and
released (negative sign) by the spring during the adjustment, the net adjustment energy
is equal to equation G.1. Regarding the AP-type and ANP-type, this is the case if point
A intersects the horizontal line through point R (Figure 1 of chapter 3) during the ad-
justment. Consequently, the spring is consecutively lengthened and shortened (or vice
versa) in which energy is required and released. This is primarily the case for designs
with a relatively large distance r and when the adjustment takes place at the beginning
of the range of motion. The net adjustment energy can thus be divided in required and
released energy, as shown in Figure G.1. As seen in this Figure, in part of the range of
motion (40-70deg), both energy is required and released during the adjustment.

Uad j (ϕ) =U r equi r ed
ad j (ϕ)+U r eleased

ad j (ϕ) (G.1)

To obtain a situation in which the actual energy that is involved in the adjustment is
equal to the net adjustment energy, the released energy should be stored and then sup-
plied at perfect efficiency. In practice, the energy will be stored and supplied with an
imperfect efficiency. Therefore, an efficiency factor (ε) can be implemented in the cal-
culation of the net adjustment energy (equation G.2). In Figure G.2, the net adjustment
energy is shown calculated with an efficiency of 50% (ε=0.5). As shown in this Figure, the
curve of the net adjustment energy is shifted towards the curve of the required adjust-
ment energy. Furthermore, the energy involved in the adjustment from situation A to
B is not longer equal to the energy involved in adjustment from situation B to A (Figure
G.3) and the angle at which the net adjustment energy is equal to zero is smaller. If the
released energy is completely dissipated (ε=0), the net adjustment energy is equal to the
required adjustment energy. The minimum adjustment energy in this case is shown in
Figure G.4. In this case, a method should be found to safely dissipate the energy.
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Uad j (ϕ) =U r equi r ed
ad j (ϕ)+εU r eleased

ad j (ϕ) (G.2)

In case of the FL-type, since only the magnitude of the spring force is altered during
the adjustment process, the spring cannot be consecutively lengthened and shortened
in one adjustment process. The energy that is released during an adjustment in which
the spring is shortened can be stored to be supplied in an next adjustment in which
the spring is lengthened. Thus, the efficiency of the energy storage and supply plays a
similar role as described for the AP-type and ANP-type, however, the energy should be
stored until the next adjustment.

Figure G.1: Example of the AP-type adjustment from situation A to B. Net adjustment energy
(continuous line), required adjustment energy (dashed line) and released adjustment energy

(dotted line) as function of the range of motion. The net adjustment energy is equal to the
sum of the required and released adjustment energy. T A

mass =6Nm, T B
mass =20Nm,

k=500N/m, L0=0.1m, F0=10N, r=0.22m, aA =0.054m, aB =0.19m.
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Figure G.2: Example of the AP-type adjustment from situation A to B. Net adjustment energy
with an energy storage and supply efficiency of 50% (ε=0.5) (continuous line), required

adjustment energy (dashed line) and released adjustment energy (dotted line) as function of
the range of motion. T A

mass =6Nm, T B
mass =20Nm, k=500N/m, L0=0.1m, F0=10N, r=0.22m,

aA =0.054m, aB =0.19m.

Figure G.3: Example of the AP-type adjustment from situation B to A. Net adjustment energy
with an energy storage and supply efficiency of 50% (ε=0.5) (continuous line), required

adjustment energy (dashed line) and released adjustment energy (dotted line) as function of
the range of motion. T A

mass =6Nm, T B
mass =20Nm, k=500N/m, L0=0.1m, F0=10N, r=0.22m,

aA =0.054m, aB =0.19m.
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(a) Adjustment from situation A to B (b) Adjustment from situation B to A

Figure G.4: Example of the AP-type adjustment. Minimum net adjustment energy with an
energy storage and supply efficiency of 0% (ε=0) (continuous line), required adjustment

energy (dashed line) and released adjustment energy (dotted line) as function of the range of
motion. T A

mass =6Nm, T B
mass =20Nm, k=500N/m, L0=0.1m, F0=10N, r=0.22m, aA =0.054m,

aB =0.19m.
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APPENDIX H: MATLAB CODE OF

MODELS

MAIN SCRIPT TO COMPARE DIFFERENT ADJUSTMENT TYPES

%% Bas Wagemaker , September 2019
% Part of Master Thesis for Mechanical Engineering .
% This file calculates the performance of three

adjustment types of a
% balancer (AP , ANP , FL -type). The performance regarding

the degree of
% perfect balance , energy involved in adjustment and

dimensions is
% compared .
% A spring is selected from a spring database (data from

www. gutekunst .nl).

clc
clear all
close all

% Looping for all four comparison cases
for comparisonCase =1:4

display ([ 'Case: ' num2str ( comparisonCase )])

%% Selecting right properties for each case
switch comparisonCase

case 1
TspringAmax =2; % [Nm] peak moment in

situation A
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TspringBmax =4; % [Nm] peak moment in
situation B

case 2
TspringAmax =4; % [Nm] peak moment in

situation A
TspringBmax =24; % [Nm] peak moment in

situation B
case 3

TspringAmax =80; % [Nm] peak moment in
situation A

TspringBmax =100; % [Nm] peak moment in
situation B

case 4
TspringAmax =80; % [Nm] peak moment in

situation A
TspringBmax =140; % [Nm] peak moment in

situation B
end

%% Properties of balancer
L=0.2; % [m] lever arm length
g =9.81; % [m/s^2] gravity acceleration
mA= TspringAmax /(g*L); % [kg] balanced mass situation

A
mB= TspringBmax /(g*L); % [kg] balanced mass situation

A
Phi= linspace (0,pi ,100); % [rad] range of motion
SF =2; % [-] safety factor for energy in spring

%% Grid steps
Na =200; % number of a's
Nr =200; % number of r's
Nu0 =200; % number of u0 's

%% Loading spring data
T = readtable ('spring_data .csv ');
T = sortrows (T ,19);
% Spring properties
mSpring =T {: ,19}/1000; % spring mass
mSpring (2224) =0.0789/1000; % filtering out a mistake

in the data
kSpring =T {: ,18}*1000; % spring stiffness
L0Spring =T {: ,14}/1000; % spring null - length
dLmaxSpring =T {: ,16}/1000; % maximum elongation spring
SerialNumber =T{: ,1}; % serial number spring
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diameterSpring =T {: ,9}/1000; % diameter spring
UmaxSpring =1/2* kSpring .* dLmaxSpring .^2; % maximum

storable energy spring
F0Spring =T{: ,10}; % initial tensions spring

%% Determing the minimum required energy storage of
the spring

UmassMax =2* mB*g*L; % maximum potential energy of mass
UspringLim =SF* UmassMax ; % minimum required potential

energy storage of spring

%% Filtering springs
% Filtering out the springs that cannot store

sufficient energy
indices =find(UmaxSpring > UspringLim ); % indices of

suitable springs

mSpringFiltered = mSpring ( indices ); % spring mass
kSpringFiltered = kSpring ( indices ); % spring stiffness
L0SpringFiltered = L0Spring ( indices ); % spring null -

length
dLmaxSpringFiltered = dLmaxSpring ( indices ); % maximum

elongation of spring
SerialNumberFiltered = SerialNumber { indices }; % serial

number spring
UmaxSpringFiltered = UmaxSpring ( indices ); % maximum

storable energy spring
diameterSpringFiltered = diameterSpring ( indices ); %

diameter spring
F0SpringFiltered = F0Spring ( indices ); % initial tension

spring
% F0SpringFiltered =zeros(size( mSpringFiltered )); %

initial tension spring

if F0SpringFiltered (1 ,1) ==0
display ('The initial tension is set to zero ')

elseif F0SpringFiltered (1 ,1) ~=0
display ('The initial tension is taken into

account ')
end

%% Selecting a spring
[mspringMin , indexSpring ]= min( mSpringFiltered ); %

selecting spring with smallest mass
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% [L0spring , indexSpring ]= min( L0SpringFiltered ); %
selecting spring with smallest null - length

% [mspring , indexSpring ]= max( mSpringFiltered ); %
selecting spring with largest mass

% [k, indexSpring ]= min( kSpringFiltered ); % selecting
spring with smallest stiffness

% [k, indexSpring ]= max( kSpringFiltered ); % selecting
spring with largest stiffness

% [UspringMax , indexSpring ]= max( UmaxSpringFiltered ); %
selecting spring with largest energy storage

% indexSpring = indexSpring ;

% Properties of selected spring
mspring = mSpringFiltered ( indexSpring ); % spring mass
k= kSpringFiltered ( indexSpring ); % spring stiffness
L0spring = L0SpringFiltered ( indexSpring ); % spring null

length
UspringMax = UmaxSpringFiltered ( indexSpring ); % maximum

storable energy spring
F0spring = F0SpringFiltered ( indexSpring ); % initial

tension spring

% Safety factor to asure that the spring is not
loaded to its maximum

UspringMax = UspringMax /SF;

%% Calculating performance of balancer types

% AP -type
[ performanceAPtype ]= APtype (mA , mB , g, L, Phi , k,

L0spring , F0spring , UspringLim , Na , Nr);
% performance = [rVec , aAVec , aBVec , BQAABerror ,

BQBABerror , AEmetric , BQerrormetric , Compactmetric
]

% FL -type
[ performanceFLtype ]= FLtype (mA , mB , g, L, Phi , k,

L0spring , F0spring , UspringLim , Na , Nr , Nu0);
% performance = [rVec , aAVec , u0Vec , BQAABerror ,

BQBABerror , AEmetric , BQerrormetric , Compactmetric
]

% ANP -type
[ performanceANPtype ]= ANPtype (mA , mB , g, L, Phi , k

, L0spring , F0spring , UspringLim , Na , Nr);
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% performance = [rVec , aAVec , aBVec , BQAABerror ,
BQBABerror , AEmetric , BQerrormetric , Compactmetric
]

%% Calculating plot information
% Number of non - adjusted variables that are

considered in the plots
Nplot =20;

% Balancing quality in situaion A
BQeAmedian (1, comparisonCase )= median ( performanceAPtype

(1: Nplot , 4)); % AP
BQeAmedian (2, comparisonCase )= median (

performanceANPtype (1: Nplot , 4)); % ANP
BQeAmedian (3, comparisonCase )= median ( performanceFLtype

(1: Nplot , 4)); % FL

BQeAmin (1, comparisonCase )=min( performanceAPtype (1:
Nplot , 4)); % AP

BQeAmin (2, comparisonCase )=min( performanceANPtype (1:
Nplot , 4)); % ANP

BQeAmin (3, comparisonCase )=min( performanceFLtype (1:
Nplot , 4)); % FL

BQeAmax (1, comparisonCase )=max( performanceAPtype (1:
Nplot , 4)); % AP

BQeAmax (2, comparisonCase )=max( performanceANPtype (1:
Nplot , 4)); % ANP

BQeAmax (3, comparisonCase )=max( performanceFLtype (1:
Nplot , 4)); % FL

% Balancing quality in situaion B
BQeBmedian (1, comparisonCase )= median ( performanceAPtype

(1: Nplot , 5)); % AP
BQeBmedian (2, comparisonCase )= median (

performanceANPtype (1: Nplot , 5)); % ANP
BQeBmedian (3, comparisonCase )= median ( performanceFLtype

(1: Nplot , 5)); % FL

BQeBmin (1, comparisonCase )=min( performanceAPtype (1:
Nplot , 5)); % AP

BQeBmin (2, comparisonCase )=min( performanceANPtype (1:
Nplot , 5)); % ANP

BQeBmin (3, comparisonCase )=min( performanceFLtype (1:
Nplot , 5)); % FL
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BQeBmax (1, comparisonCase )=max( performanceAPtype (1:
Nplot , 5)); % AP

BQeBmax (2, comparisonCase )=max( performanceANPtype (1:
Nplot , 5)); % ANP

BQeBmax (3, comparisonCase )=max( performanceFLtype (1:
Nplot , 5)); % FL

BQeBmin (1, comparisonCase )=min( performanceAPtype (1:
Nplot , 5)); % AP

BQeBmin (2, comparisonCase )=min( performanceANPtype (1:
Nplot , 5)); % ANP

BQeBmin (3, comparisonCase )=min( performanceFLtype (1:
Nplot , 5)); % FL

% Adjustment energy
AEmedian (1, comparisonCase )= median ( performanceAPtype

(1: Nplot , 6)); % AP
AEmedian (2, comparisonCase )= median ( performanceANPtype

(1: Nplot , 6)); % ANP
AEmedian (3, comparisonCase )= median ( performanceFLtype

(1: Nplot , 6)); % FL

AEmin (1, comparisonCase )=min( performanceAPtype (1: Nplot
, 6)); % AP

AEmin (2, comparisonCase )=min( performanceANPtype (1:
Nplot , 6)); % ANP

AEmin (3, comparisonCase )=min( performanceFLtype (1: Nplot
, 6)); % FL

AEmax (1, comparisonCase )=max( performanceAPtype (1: Nplot
, 6)); % AP

AEmax (2, comparisonCase )=max( performanceANPtype (1:
Nplot , 6)); % ANP

AEmax (3, comparisonCase )=max( performanceFLtype (1: Nplot
, 6)); % FL

% Dimensions
DMmedian (1, comparisonCase )= median ( performanceAPtype

(1: Nplot , 8)); % AP
DMmedian (2, comparisonCase )= median ( performanceANPtype

(1: Nplot , 8)); % ANP
DMmedian (3, comparisonCase )= median ( performanceFLtype

(1: Nplot , 8)); % FL
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DMmin (1, comparisonCase )=min( performanceAPtype (1: Nplot
, 8)); % AP

DMmin (2, comparisonCase )=min( performanceANPtype (1:
Nplot , 8)); % ANP

DMmin (3, comparisonCase )=min( performanceFLtype (1: Nplot
, 8)); % FL

DMmax (1, comparisonCase )=max( performanceAPtype (1: Nplot
, 8)); % AP

DMmax (2, comparisonCase )=max( performanceANPtype (1:
Nplot , 8)); % ANP

DMmax (3, comparisonCase )=max( performanceFLtype (1: Nplot
, 8)); % FL

display ('Modelling finished ')
end

%% Colors for plotting
blue =[0 0.4470 0.7410];
red =[0.8500 , 0.3250 , 0.0980];
orange =[0.9290 , 0.6940 , 0.1250];

%% Plotting BQeA for all cases
dataavg = BQeAmedian ;
datamin = BQeAmin ;
datamax = BQeAmax ;
figure
for caseDummy =1:4

% AP
subplot (4,1, caseDummy )
h(1)=plot( dataavg (1, caseDummy ), 1, 'x', 'color ', red ,

'Markersize ', 10, 'Linewidth ', 3);
hold on
plot ([ datamin (1, caseDummy ), datamax (1, caseDummy )],

[1 1], 'color ', red , 'Linewidth ', 3)
% ANP
h(2)=plot( dataavg (2, caseDummy ), 2, 'x', 'color ',

blue , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (2, caseDummy ), datamax (2, caseDummy )],

[2 2],'color ', blue , 'Linewidth ', 3)
% FL
h(3)=plot( dataavg (3, caseDummy ), 3, 'x', 'color ',

orange , 'Markersize ', 10, 'Linewidth ', 3);
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plot ([ datamin (3, caseDummy ), datamax (3, caseDummy )],
[3 3],'color ', orange , 'Linewidth ', 3);

% Plotting dummies for legend
d(1)=plot(NaN , NaN , '-','color ', red ,'Linewidth ', 2);
d(2)=plot(NaN , NaN , '-', 'color ', blue ,'Linewidth ',

2);
d(3)=plot(NaN , NaN , '-','color ', orange , 'Linewidth ',

2);
d(4)=plot(NaN , NaN , 'kx ', 'Linewidth ' ,2);
% Properties of plot
set(gca , 'YTickLabel ', [])
ylabel ([ 'Case ' num2str ( caseDummy )])
xlim ([0 17.5])
ylim ([0.5 3.5])
grid on
set(gca ,'FontSize ' ,12)

switch caseDummy
case 1

title ({'Balancing quality error situation A'
})

legend (d, 'AP -type ', 'ANP -type ', 'FL -type ', '
median ')

set(gca , 'XTickLabel ', [])
case 2

set(gca , 'XTickLabel ', [])
case 3

set(gca , 'XTickLabel ', [])
case 4

xlabel ('BQe_A [%] ')
end

end

%% Plotting BQeB for all cases
dataavg = BQeBmedian ;
datamin = BQeBmin ;
datamax = BQeBmax ;
figure
for caseDummy =1:4

% AP
subplot (4,1, caseDummy )
h(1)=plot( dataavg (1, caseDummy ), 1, 'x', 'color ', red ,

'Markersize ', 10, 'Linewidth ', 3);
hold on
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plot ([ datamin (1, caseDummy ), datamax (1, caseDummy )],
[1 1], 'color ', red , 'Linewidth ', 3)

% ANP
h(2)=plot( dataavg (2, caseDummy ), 2, 'x', 'color ',

blue , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (2, caseDummy ), datamax (2, caseDummy )],

[2 2],'color ', blue , 'Linewidth ', 3);
% FL
h(3)=plot( dataavg (3, caseDummy ), 3, 'x', 'color ',

orange , 'Markersize ', 10, 'Linewidth ', 3);
% Plotting dummies for legend
d(1)=plot(NaN , NaN , '-','color ', red ,'Linewidth ', 2);
d(2)=plot(NaN , NaN , '-', 'color ', blue ,'Linewidth ',

2);
d(3)=plot(NaN , NaN , '-','color ', orange , 'Linewidth ',

2);
d(4)=plot(NaN , NaN , 'kx ', 'Linewidth ' ,2);
% Properties of plot
set(gca , 'YTickLabel ', [])
ylabel ([ 'Case ' num2str ( caseDummy )])
xlim ([0 45])
ylim ([0.5 3.5])
grid on
set(gca ,'FontSize ' ,12)

switch caseDummy
case 1

title ({'Balancing quality error situation B'
})

legend (d, 'AP -type ', 'ANP -type ', 'FL -type ', '
median ')

set(gca , 'XTickLabel ', [])
case 2

set(gca , 'XTickLabel ', [])
case 3

set(gca , 'XTickLabel ', [])
case 4

xlabel ('BQe_B [%] ')
end

end

%% Plotting AEm for all cases
dataavg = AEmedian ;
datamin =AEmin;
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datamax =AEmax;
figure
for caseDummy =1:4

% AP
subplot (4,1, caseDummy )
h(1)=plot( dataavg (1, caseDummy ), 1, 'x', 'color ', red ,

'Markersize ', 10, 'Linewidth ', 3);
hold on
plot ([ datamin (1, caseDummy ), datamax (1, caseDummy )],

[1 1], 'color ', red , 'Linewidth ', 3)
% ANP
h(2)=plot( dataavg (2, caseDummy ), 2, 'x', 'color ',

blue , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (2, caseDummy ), datamax (2, caseDummy )],

[2 2],'color ', blue , 'Linewidth ', 3)
% FL
h(3)=plot( dataavg (3, caseDummy ), 3, 'x', 'color ',

orange , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (3, caseDummy ), datamax (3, caseDummy )],

[3 3],'color ', orange , 'Linewidth ', 3)
% Plotting dummies for legend
d(1)=plot(NaN , NaN , '-','color ', red ,'Linewidth ', 2);
d(2)=plot(NaN , NaN , '-', 'color ', blue ,'Linewidth ',

2);
d(3)=plot(NaN , NaN , '-','color ', orange , 'Linewidth ',

2);
d(4)=plot(NaN , NaN , 'kx ', 'Linewidth ' ,2);
% Properties of plot
set(gca , 'YTickLabel ', [])
ylabel ([ 'Case ' num2str ( caseDummy )])
xlim ([ -15 700])
ylim ([0.5 3.5])
grid on
set(gca ,'FontSize ' ,12)

switch caseDummy
case 1

title ({'Adjustment energy metric '})
legend (d, 'AP -type ', 'ANP -type ', 'FL -type ', '

median ')
set(gca , 'XTickLabel ', [])

case 2
set(gca , 'XTickLabel ', [])

case 3
set(gca , 'XTickLabel ', [])
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case 4
xlabel ('AE_m [%] ')

end

end

%% Plotting DMm for all cases
dataavg = DMmedian ;
datamin =DMmin;
datamax =DMmax;
figure
for caseDummy =1:4

% AP
subplot (4,1, caseDummy )
h(1)=plot( dataavg (1, caseDummy ), 1, 'x', 'color ', red ,

'Markersize ', 10, 'Linewidth ', 3);
hold on
plot ([ datamin (1, caseDummy ), datamax (1, caseDummy )],

[1 1], 'color ', red , 'Linewidth ', 3)
% ANP
h(2)=plot( dataavg (2, caseDummy ), 2, 'x', 'color ',

blue , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (2, caseDummy ), datamax (2, caseDummy )],

[2 2],'color ', blue , 'Linewidth ', 3)
% FL
h(3)=plot( dataavg (3, caseDummy ), 3, 'x', 'color ',

orange , 'Markersize ', 10, 'Linewidth ', 3);
plot ([ datamin (3, caseDummy ), datamax (3, caseDummy )],

[3 3],'color ', orange , 'Linewidth ', 3)
% Plotting dummies for legend
d(1)=plot(NaN , NaN , '-','color ', red ,'Linewidth ', 2);
d(2)=plot(NaN , NaN , '-', 'color ', blue ,'Linewidth ',

2);
d(3)=plot(NaN , NaN , '-','color ', orange , 'Linewidth ',

2);
d(4)=plot(NaN , NaN , 'kx ', 'Linewidth ' ,2);
% Properties of plot
set(gca , 'YTickLabel ', [])
ylabel ([ 'Case ' num2str ( caseDummy )])
xlim ([ -100 80])
ylim ([0.5 3.5])
grid on
set(gca ,'FontSize ' ,12)

switch caseDummy
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case 1
title ({'Dimensions metric '})
legend (d, 'AP -type ', 'ANP -type ', 'FL -type ', '

median ')
set(gca , 'XTickLabel ', [])

case 2
set(gca , 'XTickLabel ', [])

case 3
set(gca , 'XTickLabel ', [])

case 4
xlabel ('DM_m [%] ')

end

end

MAIN SCRIPT TO DETERMINE SENSITIVITY OF ADJUSTMENT TYPES TO DIF-
FERENT SPRINGS

%% Bas Wagemaker , September 2019
% Part of Master Thesis for Mechanical Engineering .
% This file calculates the performance of three

adjustment types of a
% balancer (AP , ANP , FL -type). This is done for different

springs with
% different properties , to see whether a performance

improvement can be
% obtained by selecting a differenr spring .
% A spring is selected from a spring database (data from

www. gutekunst .nl).

% clc
clear all
close all

%% Inputs
% Comparison case that is considered
comparisonCase =3;
NdifferentSprings =10; % number of springs that are

compared

%% Selecting right properties for each case
switch comparisonCase

case 1
TspringAmax =2; % [Nm] peak moment in situation A
TspringBmax =4; % [Nm] peak moment in situation B
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case 2
TspringAmax =4; % [Nm] peak moment in situation A
TspringBmax =24; % [Nm] peak moment in situation B

case 3
TspringAmax =80; % [Nm] peak moment in situation A
TspringBmax =100; % [Nm] peak moment in situation

B
case 4

TspringAmax =80; % [Nm] peak moment in situation A
TspringBmax =140; % [Nm] peak moment in situation

B
end

%% Properties of balancer
L=0.2; % [m] lever arm length
g =9.81; % [m/s^2] gravity acceleration
mA= TspringAmax /(g*L); % [kg] balanced mass situation A
mB= TspringBmax /(g*L); % [kg] balanced mass situation A
Phi= linspace (0,pi ,100); % [rad] range of motion
SF =2; % [-] safety factor for energy in spring

%% Grid steps
Na =200; % number of a's
Nr =200; % number of r's
Nu0 =200; % number of u0 's

%% Loading spring data
T = readtable ('spring_data .csv ');
T = sortrows (T ,19);
% Spring properties
mSpring =T {: ,19}/1000; % spring mass
mSpring (2224) =0.0789/1000; % filtering out a mistake in

the data
kSpring =T {: ,18}*1000; % spring stiffness
L0Spring =T {: ,14}/1000; % spring null - length
dLmaxSpring =T {: ,16}/1000; % maximum elongation spring
SerialNumber =T{: ,1}; % serial number spring
diameterSpring =T {: ,9}/1000; % diameter spring
UmaxSpring =1/2* kSpring .* dLmaxSpring .^2; % maximum

storable energy spring
F0Spring =T{: ,10}; % initial tensions spring

%% Determing the minimum required energy storage of the
spring

UmassMax =2* mB*g*L; % maximum potential energy of mass
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UspringLim =SF* UmassMax ; % minimum required potential
energy storage of spring

%% Filtering springs
% Filtering out the springs that cannot store sufficient

energy
indices =find(UmaxSpring > UspringLim ); % indices of

suitable springs

mSpringFiltered = mSpring ( indices ); % spring mass
kSpringFiltered = kSpring ( indices ); % spring stiffness
L0SpringFiltered = L0Spring ( indices ); % spring null - length
dLmaxSpringFiltered = dLmaxSpring ( indices ); % maximum

elongation of spring
SerialNumberFiltered = SerialNumber ( indices ); % serial

number spring
UmaxSpringFiltered = UmaxSpring ( indices ); % maximum

storable energy spring
diameterSpringFiltered = diameterSpring ( indices ); %

diameter spring
F0SpringFiltered = F0Spring ( indices ); % initial tension

spring
% F0SpringFiltered =zeros(size( mSpringFiltered )); %

initial tension spring

if F0SpringFiltered (1 ,1) ==0
display ('The initial tension is set to zero ')

elseif F0SpringFiltered (1 ,1) ~=0
display ('The initial tension is taken into account ')

end

%% Selecting a spring
[mspring , indexSpring ]= min( mSpringFiltered ); % selecting

spring with smallest mass
% [L0spring , indexSpring ]= min( L0SpringFiltered ); %

selecting spring with smallest null - length
% [mspring , indexSpring ]= max( mSpringFiltered ); %

selecting spring with largest mass
% [k, indexSpring ]= min( kSpringFiltered ); % selecting

spring with smallest stiffness
% [k, indexSpring ]= max( kSpringFiltered ); % selecting

spring with largest stiffness
% [UspringMax , indexSpring ]= max( UmaxSpringFiltered ); %

selecting spring with largest energy storage
% indexSpring = indexSpring ;
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Nsprings =size( mSpringFiltered ,1); % number of possible
springs

isprings =round( linspace (1, NdifferentSprings ,
NdifferentSprings )); % indices of springs that are
compared

for icase =1: NdifferentSprings
indexSpring = isprings (icase);
display ([ 'Spring ' num2str (icase) ' out of ' num2str (

NdifferentSprings )])

% Properties of selected spring
mspring = mSpringFiltered ( indexSpring ); % spring mass
k= kSpringFiltered ( indexSpring ); % spring stiffness
L0spring = L0SpringFiltered ( indexSpring ); % spring null

length
UspringMax = UmaxSpringFiltered ( indexSpring ); % maximum

storable energy spring
F0spring = F0SpringFiltered ( indexSpring ); % initial

tension spring
SerialNumber = SerialNumberFiltered ( indexSpring ); %

serial number spring

% Safety factor to asure that the spring is not
loaded to its maximum

UspringMax = UspringMax /SF;

springSelection (icase ,:) =[ mspring k L0spring F0spring
SerialNumber ];

%% Calculating performance of balancer types

%% AP -type
[ performanceAPtype ]= APtype (mA , mB , g, L, Phi , k,

L0spring , F0spring , UspringLim , Na , Nr);
% [rVec , aAVec , aBVec , BQAABerror , BQBABerror ,

AEmetric , BQerrormetric , Compactmetric ]

%% FL -type
[ performanceFLtype ]= FLtype (mA , mB , g, L, Phi , k,

L0spring , F0spring , UspringLim , Na , Nr , Nu0);
% [rVec , aAVec , aBVec , BQAABerror , BQBABerror ,

AEmetric , BQerrormetric , Compactmetric ]
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%% ANP -type
[ performanceANPtype ]= ANPtype (mA , mB , g, L, Phi , k

, L0spring , F0spring , UspringLim , Na , Nr);
% [rVec , aAVec , aBVec , BQAABerror , BQBABerror ,

AEmetric , BQerrormetric , Compactmetric ]

%% Comparing different springs
Ncompare =1; % number of the best scoring balancer

configurations on the cumulative BQe that are
averaged in the next step

%% Metrics of Ncompare best performers
% Balancing quality error in situation A
BQeAavg (icase , 1)=sum( performanceAPtype (1: Ncompare ,4)

)/ Ncompare ;
BQeAavg (icase , 2)=sum( performanceANPtype (1: Ncompare

,4))/ Ncompare ;
BQeAavg (icase , 3)=sum( performanceFLtype (1: Ncompare ,4)

)/ Ncompare ;
% Balancing quality error in situation B
BQeBavg (icase , 1)=sum( performanceAPtype (1: Ncompare ,5)

)/ Ncompare ;
BQeBavg (icase , 3)=sum( performanceFLtype (1: Ncompare ,5)

)/ Ncompare ;
BQeBavg (icase , 2)=sum( performanceANPtype (1: Ncompare

,5))/ Ncompare ;
% Adjustment energy metric
AEavg(icase , 1)=sum( performanceAPtype (1: Ncompare ,6))/

Ncompare ;
AEavg(icase , 3)=sum( performanceFLtype (1: Ncompare ,6))/

Ncompare ;
AEavg(icase , 2)=sum( performanceANPtype (1: Ncompare ,6))

/ Ncompare ;
% Compact metric
CTavg(icase , 1)=sum( performanceAPtype (1: Ncompare ,8))/

Ncompare ;
CTavg(icase , 3)=sum( performanceFLtype (1: Ncompare ,8))/

Ncompare ;
CTavg(icase , 2)=sum( performanceANPtype (1: Ncompare ,8))

/ Ncompare ;

end

%% Releative difference
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BQeArel (: ,1) =( BQeAavg (: ,1) -BQeAavg (1 ,1))./ BQeAavg (1 ,1)
*100;

BQeArel (: ,2) =( BQeAavg (: ,2) -BQeAavg (1 ,2))./ BQeAavg (1 ,2)
*100;

BQeArel (: ,3) =( BQeAavg (: ,3) -BQeAavg (1 ,3))./ BQeAavg (1 ,3)
*100;

BQeAmin =min(BQeArel ,[] ,1);

BQeBrel (: ,1) =( BQeBavg (: ,1) -BQeBavg (1 ,1))./ BQeBavg (1 ,1)
*100;

BQeBrel (: ,2) =( BQeBavg (: ,2) -BQeBavg (1 ,2))./ BQeBavg (1 ,2)
*100;

BQeBrel (: ,3) =( BQeBavg (: ,3) -BQeBavg (1 ,3))./ BQeBavg (1 ,3)
*100;

BQeBmin =min(BQeBrel ,[] ,1);

AErel (: ,1) =( AEavg (: ,1) -AEavg (1 ,1))./ AEavg (1 ,1) *100;
AErel (: ,2) =( AEavg (: ,2) -AEavg (1 ,2))./ AEavg (1 ,2) *100;
AErel (: ,3) =( AEavg (: ,3) -AEavg (1 ,3))./ AEavg (1 ,3) *100;
AEmin=min(AErel ,[] ,1);

CTrel (: ,1) =( CTavg (: ,1) -CTavg (1 ,1))./ CTavg (1 ,1) *100;
CTrel (: ,2) =( CTavg (: ,2) -CTavg (1 ,2))./ CTavg (1 ,2) *100;
CTrel (: ,3) =( CTavg (: ,3) -CTavg (1 ,3))./ CTavg (1 ,3) *100;
CTmin=min(CTrel ,[] ,1);

%% Evaluation of metrics
% Standard deviation
stdBQeAavg = nanstd ( BQeAavg );
stdBQeBavg = nanstd ( BQeBavg );
stdAEavg = nanstd (AEavg);
stdCTavg = nanstd (CTavg);

% Mean absolute deviation
meanBQeAavg = nanmean ( BQeAavg );
meanBQeBavg = nanmean ( BQeBavg );
meanAEavg = nanmean (AEavg);
meanCTavg = nanmean (CTavg);

% Mean absolute deviation
madBQeAavg =mad( BQeAavg );
madBQeBavg =mad( BQeBavg );
madAEavg =mad(AEavg);
madCTavg =mad(CTavg);
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% Coefficient of variation
covBQeA = stdBQeAavg ./ meanBQeAavg *100;
covBQeB = stdBQeBavg ./ meanBQeBavg *100;
covAE= stdAEavg ./ meanAEavg *100;
covCT= stdCTavg ./ meanCTavg *100;

% Coefficient of variation
covModBQeA = madBQeAavg ./ meanBQeAavg *100;
covModBQeB = madBQeBavg ./ meanBQeBavg *100;
covModAE = madAEavg ./ meanAEavg *100;
covModCT = madCTavg ./ meanCTavg *100;

display ('Modelling finished ')

%% Tables
% types ={'AP ', 'ANP ', 'FL '};
% varNames ={'Type ', 'BQeA ', 'BQeB ', 'AE ', 'CT '};
% Tstd=table(types ', stdBQeAavg ', stdBQeBavg ', stdAEavg ',

stdCTavg ', 'VariableNames ', varNames )
%
% types ={'AP ', 'ANP ', 'FL '};
% varNames ={'Type ', 'BQeA ', 'BQeB ', 'AE ', 'CT '};
% Tcov=table(types ', covBQeA ', covBQeB ', covAE ', covCT ',

'VariableNames ', varNames )
%
% types ={'AP ', 'ANP ', 'FL '};
% varNames ={'Type ', 'BQeA ', 'BQeB ', 'AE ', 'CT '};
% TcovMod =table(types ', covModBQeA ', covModBQeB ',

covModAE ', covModCT ', 'VariableNames ', varNames )
%
% types ={'AP ', 'ANP ', 'FL '};
% varNames ={'Type ', 'BQeAmean ', 'BQeAstd ', 'BQeBmean ', '

BQeBstd ', 'AEmean ', 'AEstd ', 'CTmean ', 'CTstd '};
% TcovMod =table(types ', meanBQeAavg ', stdBQeAavg ',

meanBQeBavg ',stdBQeBavg ', meanAEavg ', stdAEavg ',
meanCTavg ', stdCTavg ', 'VariableNames ', varNames )

types ={'AP ', 'ANP ', 'FL '};
varNames ={'Type ', 'BQeA ', 'BQeB ', 'AE ', 'DM '};
Treldif =table(types ', BQeAmin ', BQeBmin ', AEmin ',CTmin ',

'VariableNames ',varNames )

%% Plotting
figure
plot(BQeAavg , '.', 'Markersize ', 20)
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grid on
title ({'BQeA '; ['Case ' num2str ( comparisonCase ) ',

Torque_A =' num2str ( TspringAmax ) 'Nm , Torque_B ='
num2str ( TspringBmax ) 'Nm ']})

legend ('AP -type ', 'ANP -type ', 'FL -type ')

figure
plot(BQeBavg , '.', 'Markersize ', 20)
grid on
title ({'BQeB '; ['Case ' num2str ( comparisonCase ) ',

Torque_A =' num2str ( TspringAmax ) 'Nm , Torque_B ='
num2str ( TspringBmax ) 'Nm ']})

legend ('AP -type ', 'ANP -type ', 'FL -type ')

figure
plot(AEavg , '.', 'Markersize ', 20)
grid on
title ({'AE '; ['Case ' num2str ( comparisonCase ) ', Torque_A

=' num2str ( TspringAmax ) 'Nm , Torque_B =' num2str (
TspringBmax ) 'Nm ']})

legend ('AP -type ', 'ANP -type ', 'FL -type ')

figure
plot(CTavg , '.', 'Markersize ', 20)
grid on
title ({'DM '; ['Case ' num2str ( comparisonCase ) ', Torque_A

=' num2str ( TspringAmax ) 'Nm , Torque_B =' num2str (
TspringBmax ) 'Nm ']})

legend ('AP -type ', 'ANP -type ', 'FL -type ')

MODEL OF EACH ADJUSTMENT TYPE

AP-TYPE

function [ solABsorted ]= APtype (mA , mB , g, L, Phi , k,
L0spring , F0spring , UspringMax , Na , Nr)

%% Potential energy and torque of mass
UMassA =mA*g*L*cos(Phi); % potential energy mass A
UMassB =mB*g*L*cos(Phi); % potential energy mass B
TMassA = gradient (UMassA , Phi); % torque mass A
TMassB = gradient (UMassB , Phi); % torque mass B

%% Maximum value of minimum adjustment energy
AEmin =(mB -mA)*g*L;
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%% Minimum value of area between r, a and spring
Areamin =1/2*( mB*g*L)/k;

%% Constructing ar -grid
% ar grid is bounded by the fact that a spring can store

a finite amount of
% energy , depending on its stiffness and null - length
arbound =sqrt (2* UspringMax /k); % boundary of ar grid !!!
aVec= linspace (0, arbound ,Na);
rVec= linspace (0, arbound ,Nr);

%% Calculating balancing quality error
% For each pair or (a,r) the BQerror is calculated
BQAerror =zeros(Nr , Na);
BQBerror =zeros(Nr , Na);
for jr =1: Nr

r=rVec(jr);
for ja =1: Na

a=aVec(ja);
distanceAR =sqrt(a^2+r^2 -2*a*r*cos(Phi));
dLSpring = distanceAR ;
USpring =1/2*k*( dLSpring ).^2+ F0spring *( dLSpring );
TSpring = gradient (USpring ,Phi);
BQA=- TSpring ./ TMassA *100;
BQB=- TSpring ./ TMassB *100;
BQAerror (jr ,ja)=sqrt(sum(abs(BQA -100) .^2)/ length (

Phi));
BQBerror (jr ,ja)=sqrt(sum(abs(BQB -100) .^2)/ length (

Phi));
end

end

%% Filtering solutions that lay outside the boundaries of
the ar grid

[R,A]= meshgrid (rVec ,aVec); % meshgrid of a and r
% The maximum elongation of the spring is equal to a+r,

which cannot be
% larger than the boundary calculated earlier
z=R+A; % maximum spring elongation
BQAerror (z> arbound )=NaN; % setting all values outside the

ar grid equal to NaN
BQBerror (z> arbound )=NaN; % setting all values outside the

ar grid equal to NaN
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%% Finding the a for each r for which the BQA error is
minimal in situation A

% For one r, multiple a's can exist for which the BQ
requirement is met ,

% therefore , the a with the smallest BQAerror is selected
[ BQAerrorMinRow , iaA ]= min(BQAerror , [] ,2);
solA =[rVec ' aVec(iaA)' BQAerrorMinRow ];
solA= sortrows (solA ,1); % sort the solutions in order of

increasing r
% solA=solA(rVec ./ aVec(iaA) >1,:); % delete symmetric

solutions
NsolA=size(solA ,1); % number of solutions for situation A
aAVec=solA (: ,2); % a's in situation A
BQAerrorOptA =solA (: ,3); % BQAerror in situation A

%% Finding the a for each r for which the BQA error is
minimal in situation B

% For one r, multiple a's can exist for which the BQ
requirement is met ,

% therefore , the a with the smallest BQAerror is selected
[ BQBerrorMinRow , iaB ]= min(BQBerror , [] ,2);
solB =[rVec ' aVec(iaB)' BQBerrorMinRow ];
solB= sortrows (solB ,1); % sort the solutions in order of

increasing r
% solA=solA(rVec ./ aVec(iaB) >1,:); % delete symmetric

solutions
NsolB=size(solB ,1); % number of solutions for situation A
aBVec=solB (: ,2); % a's in situation A
BQBerrorOptB =solB (: ,3); % BQAerror in situation A

%% Adjustment energy
UAdjust =zeros( length (Phi), Nr);
UAdjustmax =zeros(Nr ,1);
for jsolAB =1: Nr

r=rVec( jsolAB );
aA=aAVec( jsolAB );
aB=aBVec( jsolAB );
distanceARA =sqrt(aA ^2+r^2 -2* aA*r*cos(Phi));
distanceARB =sqrt(aB ^2+r^2 -2* aB*r*cos(Phi));
dLSpringA = distanceARA ;
dLSpringB = distanceARB ;
USpringA =1/2*k* dLSpringA .^2+ F0spring *( dLSpringA );
USpringB =1/2*k* dLSpringB .^2+ F0spring *( dLSpringB );
UAdjust (:, jsolAB )=USpringB - USpringA ;
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UAdjustmax (jsolAB ,1)=max( UAdjust (:, jsolAB )); %
maximum adjustment energy over the range of motion

end

%% Area between r, a and spring
Area =1/2.* rVec '.* aBVec;

%% Evaluation of metrics
AEmetric =( UAdjustmax -AEmin)./ AEmin *100; % ratio of

minimum maximum adjustment energy and actual maximum
adjustment energy

Compactmetric =(Area - Areamin )./ Areamin *100;
BQerrormetric = BQAerrorOptA + BQBerrorOptB ;

solAB =[rVec ' aAVec aBVec BQAerrorOptA BQBerrorOptB
AEmetric BQerrormetric Compactmetric ];

solABsorted = sortrows (solAB ,7,'ascend ');
NsolAB =size(solAB ,1); % number of solutions for situation

A

%% Filtering out BQerrors larger than the mass difference
massDifference =abs ((mA -mB)/mB *100);
solABsorted ( solABsorted (: ,4) >massDifference /2 ,:) =[];
solABsorted ( solABsorted (: ,5) >massDifference /2 ,:) =[];

end

ANP-TYPE

function [ solABsorted ]= ANPtype (mA , mB , g, L, Phi , k,
L0spring , F0spring , UspringMax , Na , Nr)

%% Potential energy and torque of mass
UMassA =mA*g*L*cos(Phi); % potential energy mass A
UMassB =mB*g*L*cos(Phi); % potential energy mass B
TMassA = gradient (UMassA , Phi); % torque mass A
TMassB = gradient (UMassB , Phi); % torque mass B

%% Maximum value of minimum adjustment energy
AEmin =(mB -mA)*g*L;

%% Minimum value of area between r, a and spring
Areamin =1/2*( mB*g*L)/k;

%% Constructing ar -grid
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% ar grid is bounded by the fact that a spring can store
a finite amount of

% energy , depending on its stiffness and null - length
arbound =sqrt (2* UspringMax /k)+ L0spring ; % boundary of ar

grid
aVec= linspace (0.01 , arbound ,Na);
rVec= linspace (0.01 , arbound ,Nr);

%% Calculating balancing quality error
% For each pair or (a,r) the BQerror is calculated
BQAerror =zeros(Nr , Na);
BQBerror =zeros(Nr , Na);
for jr =1: Nr

r=rVec(jr);
for ja =1: Na

a=aVec(ja);
distanceAR =sqrt(a^2+r^2 -2*a*r*cos(Phi));
dLSpring =distanceAR - L0spring ;
USpring =1/2*k*( dLSpring ).^2+ F0spring *( dLSpring );
TSpring = gradient (USpring ,Phi);
BQA=- TSpring ./ TMassA *100;
BQB=- TSpring ./ TMassB *100;
BQAerror (jr ,ja)=sqrt(sum(abs(BQA -100) .^2)/ length (

Phi));
BQBerror (jr ,ja)=sqrt(sum(abs(BQB -100) .^2)/ length (

Phi));
end

end

%% Filtering solutions that lay outside the boundaries of
the ar grid

[R,A]= meshgrid (rVec ,aVec); % meshgrid of a and r
% The maximum elongation of the spring is equal to a+r,

which cannot be
% larger than the boundary calculated earlier
z=R+A; % maximum spring elongation
BQAerror (z> arbound )=NaN; % setting all values outside the

ar grid equal to NaN
BQBerror (z> arbound )=NaN; % setting all values outside the

ar grid equal to NaN

%% Finding the a for each r for which the BQA error is
minimal in situation A

% For one r, multiple a's can exist for which the BQ
requirement is met ,
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% therefore , the a with the smallest BQAerror is selected
[ BQAerrorMinRow , iaA ]= min(BQAerror ,[] ,2);
solA =[rVec ' aVec(iaA)' BQAerrorMinRow ];
solA= sortrows (solA ,1); % sort the solutions in order of

increasing r
% solA=solA(rVec ./ aVec(iaA) >1,:); % delete symmetric

solutions
NsolA=size(solA ,1); % number of solutions for situation A
aAVec=solA (: ,2); % a's in situation A
BQAerrorOptA =solA (: ,3); % BQAerror in situation A

%% Finding the a for each r for which the BQA error is
minimal in situation B

% For one r, multiple a's can exist for which the BQ
requirement is met ,

% therefore , the a with the smallest BQAerror is selected
[ BQBerrorMinRow , iaB ]= min(BQBerror , [] ,2);
solB =[rVec ' aVec(iaB)' BQBerrorMinRow ];
solB= sortrows (solB ,1); % sort the solutions in order of

increasing r
NsolB=size(solB ,1); % number of solutions for situation A
aBVec=solB (: ,2); % a's in situation A
BQBerrorOptB =solB (: ,3); % BQAerror in situation A

%% Adjustment energy
UAdjust =zeros( length (Phi), Nr);
UAdjustmax =zeros(Nr ,1);
for jsolAB =1: Nr

r=rVec( jsolAB );
aA=aAVec( jsolAB );
aB=aBVec( jsolAB );
distanceARA =sqrt(aA ^2+r^2 -2* aA*r*cos(Phi));
distanceARB =sqrt(aB ^2+r^2 -2* aB*r*cos(Phi));
dLSpringA = distanceARA - L0spring ;
dLSpringB = distanceARB - L0spring ;
USpringA =1/2*k* dLSpringA .^2+ F0spring *( dLSpringA );
USpringB =1/2*k* dLSpringB .^2+ F0spring *( dLSpringB );
UAdjust (:, jsolAB )=USpringB - USpringA ;
UAdjustmax (jsolAB ,1)=max( UAdjust (:, jsolAB )); %

maximum adjustment energy over the range of motion
end

%% Area between r, a and spring
Area =1/2.* rVec '.* aBVec;
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%% Evaluation of metrics
AEmetric =( UAdjustmax -AEmin)./ AEmin *100; % ratio of

minimum maximum adjustment energy and actual maximum
adjustment energy

Compactmetric =(Area - Areamin )./ Areamin *100;
BQerrormetric = BQAerrorOptA + BQBerrorOptB ;

solAB =[rVec ' aAVec aBVec BQAerrorOptA BQBerrorOptB
AEmetric BQerrormetric Compactmetric ];

solABsorted = sortrows (solAB ,7,'ascend ');
NsolAB =size( solABsorted ,1); % number of solutions for

situation A

%% Filtering out BQerrors larger than the mass difference
massDifference =abs ((mA -mB)/mB *100);
solABsorted ( solABsorted (: ,4) >massDifference /2 ,:) =[];
solABsorted ( solABsorted (: ,5) >massDifference /2 ,:) =[];

end

FL-TYPE

function [ solABsorted ]= FLtype (mA , mB , g, L, Phi , k,
L0spring , F0spring , UspringMax , Na , Nr , Nu0)

%% Potential energy and torque of mass
UMassA =mA*g*L*cos(Phi); % potential energy mass A
UMassB =mB*g*L*cos(Phi); % potential energy mass B
TMassA = gradient (UMassA , Phi); % torque mass A
TMassB = gradient (UMassB , Phi); % torque mass B

%% Maximum value of minimum adjustment energy
AEmin =(mB -mA)*g*L;

%% Minimum value of area between r, a and spring
Areamin =1/2*( mB*g*L)/k;

%% SITUATION A

%% Constructing boundary for ar -grid in situation A
% ar grid is bounded by the fact that a spring can store

a finite amount of
% energy , depending on its stiffness and null - length
arbound =sqrt (2* UspringMax /k); % boundary of ar grid
aVec= linspace (0, arbound ,Na);
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rVec= linspace (0, arbound ,Nr);

%% Compute the (a,r)'s that fullfill the BQ requirement
in situation A

BQAerror =zeros(Nr , Na);
for jr =1: Nr

r=rVec(jr);
for ja =1: Na

a=aVec(ja);
distanceAR =sqrt(a^2+r^2 -2*a*r*cos(Phi));
dLSpring = distanceAR ;
USpring =1/2*k*( dLSpring ).^2+ F0spring * dLSpring ;
TSpring = gradient (USpring ,Phi);
BQA=- TSpring ./ TMassA *100;
BQAerror (jr ,ja)=sqrt(sum(abs(BQA -100) .^2)/ length (

Phi));
end

end

%% Filtering solutions that lay outside the boundaries of
the ar grid

[R,A]= meshgrid (rVec ,aVec); % meshgrid of a and r
% The maximum elongation of the spring is equal to a+r,

which cannot be
% larger than the boundary calculated earlier
z=R+A; % maximum spring elongation
BQAerror (z> arbound )=NaN; % setting all values outside the

ar grid equal to NaN

%% Filtering the soltuions that do not meet the desired
balancing quality

% For one r, multiple a's can exist for which the BQ
requirement is met ,

% therefore , the a with the smallest BQAerror is selected
[ BQAerrorMinRow , iaA ]= min(BQAerror , [] ,2);
solA =[rVec ' aVec(iaA)' BQAerrorMinRow ];
solA= sortrows (solA ,1); % sort the solutions in order of

increasing r
% solA=solA(rVec ./ aVec(iaA) >=1,:); % delete symmetric

solutions
NsolA=size(solA ,1); % number of solutions for situation A
rAVec=solA (: ,1);
aAVec=solA (: ,2); % a's in situation A
BQAerrorOptA =solA (: ,3); % BQAerror in situation A
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%% SITUATION B

%% Calculating the maximum allowable u0 for each (a,r)
u0maxVec =sqrt (2* UspringMax /k)-aAVec -rAVec;

%% Checking whether the total energy stored in the spring
does not exceed the maximum spring storage

UspringLimcheck =1/2*k*( rAVec+aAVec+ u0maxVec ).^2;
margin =0.001;

if UspringLimcheck > UspringMax + margin
error('The energy stored in the spring exceeds the

maximum storable energy ')
end

%% Calculating BQBerror for each (a,r) pair and each u0
within the u0max limit

u0Vec=zeros(NsolA , Nu0);
BQBerror =zeros(NsolA , Nu0);
for jsolA =1: NsolA

r=rAVec(jsolA);
a=aAVec(jsolA);
u0max= u0maxVec (jsolA);
u0Vec(jsolA ,:)= linspace (0, u0max , Nu0);
for ju0 =1: Nu0

distanceAR =sqrt(a^2+r^2 -2*a*r*cos(Phi));
dLSpring = distanceAR +u0Vec(jsolA , ju0);
USpring =1/2*k* dLSpring .^2+ F0spring * dLSpring ;
TSpring = gradient (USpring ,Phi);
BQB=- TSpring ./ TMassB *100;
BQBerror (jsolA ,ju0)=sqrt(sum(abs(BQB -100) .^2)/

length (Phi));
end

end

%% Filtering the soltuions that do not meet the desired
balancing quality

[ BQBerrorMinRow , iu0B ]= min(BQBerror ,[] ,2);
% BQBerrorRowMin : minimum BQBerror per row
% iu0B: index of column of BQBerror in which minimum

value is located
iu0BLinear = sub2ind (size(u0Vec) ,[1: NsolA]', iu0B); %

linear index of u0Vec for which the minimum BQBerror
is below the limit
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u0BVec =u0Vec( iu0BLinear ); % u0 's for which BQAerror and
BQB error are below the set limit

solB =[ rAVec u0BVec BQBerrorMinRow ];
NsolB=size(solB ,1); % number of solutions for situation A
rBVec=solB (: ,1);
u0BVec =solB (: ,2); % a's in situation A
BQBerrorOptB =solB (: ,3); % BQAerror in situation A

%% Adjustment energy
UAdjust =zeros( length (Phi), NsolA);
UAdjustmax =zeros(NsolA ,1);
for jSolAB =1: NsolA

r=rAVec( jSolAB );
a=aAVec( jSolAB );
u0= u0BVec ( jSolAB );
distanceARA =sqrt(a^2+r^2 -2*a*r*cos(Phi));
distanceARB =sqrt(a^2+r^2 -2*a*r*cos(Phi));
dLSpringA = distanceARA ;
dLSpringB = distanceARB +u0;
USpringA =1/2*k*( dLSpringA ).^2+ F0spring * dLSpringA ;
USpringB =1/2*k*( dLSpringB ).^2+ F0spring * dLSpringB ;
UAdjust (:, jSolAB )=USpringB - USpringA ;
UAdjustmax (jSolAB ,1)=max( UAdjust (:, jSolAB )); %

maximum adjustment energy over the range of motion
end

%% Area between r, a and spring
Area =1/2.* rVec '.* aAVec;

%% Evaluation of metrics
AEmetric =( UAdjustmax -AEmin)./ AEmin *100; % ratio of

minimum maximum adjustment energy and actual maximum
adjustment energy

Compactmetric =(Area - Areamin )./ Areamin *100;
BQerrormetric = BQAerrorOptA + BQBerrorOptB ;

solAB =[ rAVec aAVec u0BVec BQAerrorOptA BQBerrorOptB
AEmetric BQerrormetric Compactmetric ]; % Pairs of (r,a
) for which the BQAerror is smaller than the set limit

solABsorted = sortrows (solAB ,7,'ascend ');

%% Filtering out BQerrors larger than the mass difference
massDifference =abs ((mA -mB)/mB *100);
solABsorted ( solABsorted (: ,4) >massDifference /2 ,:) =[];
solABsorted ( solABsorted (: ,5) >massDifference /2 ,:) =[];
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end
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