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Abstract

Symmetric and nonsymmetric Macdonald polynomials associated to root sys-
tems are very general families of orthogonal polynomials in multiple variables.
Their definition is quite complex, but in certain cases one can define so-called
interpolation polynomials that have a surprisingly simple definition and are
related to the Macdonald polynomials by a binomial formula. In this thesis
we will discuss such formulas for two kinds of root systems: type A and type
(C∨,C). For the latter case, there are still some open questions that remain
unanswered.
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Voorwoord

In september 2015 ben ik begonnen met de master Applied Mathematics
aan de TU Delft. Dit na een dubbele bachelor wis- en natuurkunde aan de
UvA te hebben afgerond in 2014. Altijd ben ik zoekende geweest naar mijn
vervolgpad. Wat is de volgende stap? In eerste instantie heb ik na mijn
bachelor gekozen voor een master Mathematical Physics aan de UvA, maar
ik merkte dat ik hier heel weinig motivatie voor had en dat dit me veel stress
opleverde. Dit koppelde ik aan het feit dat ik deze master zo abstract vond en
dat de link met de ’echte wereld’ voor mij heel ver te zoeken was. Daarom ging
ik op zoek naar iets meer toegepasts. Zo kwam ik terecht op een open dag van
de TU Delft bij een voorlichting van de master Applied Mathematics. In alle
eerlijkheid was ik niet laaiend enthousiast, maar samen met het vooruitzicht
dat ik in een andere omgeving kwam en voor het eerst op mezelf ging wonen
(en niet meer bij mijn ouders), vond ik het toch aantrekkelijk.

Van mijn voornemen om wiskunde te doen die meer ’toegepast’ is, is weinig
terechtgekomen. Het dichtste bij kwam ik bij de vakken over optimalizatie
en het vak Computational Fluid Dynamics. Dit laatste vak heeft weinig
te maken met de rest van mijn studieprogramma, maar juist daarom was
het interessant om te volgen. Los van deze meer toegepaste vakken, merkte
ik dat ik toch weer werd aangetrokken tot abstractere wiskunde, en in het
bijzonder tot analyse, waar ik nog steeds een soort haat-liefdeverhouding mee
heb. Sommige vakken kan ik heel inspirerend vinden, maar zodra ik echt zelf
iets moet doen, zoals een scriptie schrijven, dan heb ik het idee dat ik het
alleen moet doen. Dit was overigens ook al het geval bij mijn profielwerkstuk
op de middelbare school en bij mijn bachelorscriptie aan de UvA. In deze
momenten komt aan het licht dat (abstracte) wiskunde misschien niet mijn
toekomst is, omdat ik merk dat er weinig intrinsieke motivatie is, terwijl ik
andere dingen in het leven heb ontdekt waar ik die motivatie wel heel sterk
voor heb. Daarom heb ik serieus getwijfeld over het afmaken van mijn studie.
Iedereen raadde me af om te stoppen. Dit bracht veel spanningen met zich
mee, want wat als ik wel zou stoppen? Ik had het gevoel dat ik dan niet meer
geaccepteerd zou worden en minder kans meer had op een mooie toekomst.

2



In zekere zin klopt dit natuurlijk en daarom ben ik blij dat ik het toch heb
afgemaakt.

Wat ik na mijn studie ga doen, weet ik nog niet. Er zijn veel ideen, veel
mogelijkheden, om de wereld een mooiere plek te maken. ’Verbeter de wereld,
begin bij jezelf’, dat is een van mijn favoriete uitspraken. Ik ben dankbaar
voor de vele lessen die ik heb geleerd tijdens mijn tijd in Delft, hoe moeilijk
ze soms ook waren.
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Introduction

In this thesis, we will give an overview of the theory of binomial formulas
related to Macdonald polynomials. Classically, Macdonald polynomials have
been defined by orthogonality conditions, but we will define them as eigen-
functions of certain difference operators1. These operators are the so-called
Y-operators of the Cherednik representation of the (affine) Hecke algebra
related to a root system. This procedure, for general root systems, is explained
in chapter 2. We will treat the polynomials related to root systems of type A
and (C∨,C) explicitly. The former are studied in chapter 1, and the latter
(called Koornwinder polynomials) in chapter 3.

The number of parameters in the polynomials is equal to the number
of orbits in the root system under the action of the Weyl group. It is the
highest for the root system of type (C∨,C) (namely 5), so in a sense this
case is the most complex. Taking limits of parameters or specializing to
the one-dimensional case, the polynomials become other well-known families
of orthogonal polynomials. For example, the one-dimensional Koornwinder
polynomials are the well-known Askey-Wilson polynomials.

It turns out to be possible to define certain polynomials that are related to
the Macdonald polynomials and are defined by certain interpolation properties.
The main results of this thesis will be binomial type formulas relating the
Macdonald polynomials (whose definition is complex) to the interpolation
Macdonald polynomials (whose definition is very simple).

We first discuss the article of Knop [5], in which the non-symmetric and
symmetric interpolation polynomials are defined for type A. In this article,
the interpolation polynomials are defined using the interpolation points and
it is shown that they are eigenfunctions of certain non-symmetric analogues
of Cherednik operators. After that, we define a Fourier pairing and check
that the non-symmetric interpolation polynomials are orthogonal with respect
to this pairing. From this we derive a binomial formula. In the second
chapter, we discuss the general theory of root systems, Weyl groups, affine

1It can be shown that these two definitions result in the same polynomials, see for
example [8]
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Hecke algebras and Macdonald polynomials, following the approach in [8]. In
the third and last chapter, we discuss the same theory (symmetric and non-
symmetric) for type (C∨,C). In the symmetric case, we prove a binomial type
formula using the article [11]. We end with a discussion of the non-symmetric
case. A binomial formula for this case is not known in the literature. We
derive such a formula for the one-dimensional case, and discuss shortly the
case of general dimension, which was treated recently in [2].

Applications

Macdonald polynomials and their specializations appear in a lot of different
areas. To name one example, in [3] they appear in the study of the representa-
tion theory of quantum groups. More recently, they appear in mathematical
physics in the study of gauge theories (see [4]). And this is just the tip of the
iceberg when it comes to possible reasons for studying this abstract theory.
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Chapter 1

Type A Macdonald polynomials

In this chapter, we will discuss most of the results of the first four sections
of [5], and our sections (except for the last one) correspond to the sections
in this article. The main result of [5] is that the nonsymmetric Macdonald
interpolation polynomials associated to the root system of type A (that are
defined by certain interpolation properties) form a simultaneous eigenbasis of
certain inhomogeneous versions of the Cherednik operators.

First, for the sake of completeness, we introduce the notation that is used
in the article. We fix n and write Λ = (N ∪ {0})n and Λ+ ⊂ Λ the subset of
partitions (a partition is an element λ ∈ Λ with λi ≥ λj when i < j). Let
λ ∈ Λ. Then we define the weight of λ to be the sum of its elements and
denote it by |λ|. Moreover, we define the length of λ to be the number of
nonzero elements and denote it by l(λ).

We fix a field k of characteristic zero and denote the ring of polynomials
over k in n variables by P and the ring of Laurent polynomials over k in n
variables by P ′. We will need two parameters, so we will fix q, t ∈ k. The group
W = Sn has a natural action on Λ (by permuting the elements) and on P and
P ′ (by permuting the variables). For λ ∈ Λ, we denote by wλ ∈ W the shortest
permutation σ that satisfies σ(λ+) = λ, where λ+ is the unique partition in
the W -orbit of λ. Furthermore, we define ρ = (1, t−1, t−2, . . . , t−n+1).

For λ ∈ Λ, we define λ̄ = wλ(q
λ+ρ). More explicitly, we have

λ̄i = qλit−ki ,

where ki is given by

ki = ki(λ) = #{j = 1, . . . , i− 1 | λj ≥ λi}+ #{j = i+ 1, . . . , n | λj < λi}.

These will be our interpolation points. The reason for this choice is that these
are the eigenvalues of the Cherednik operators (we will prove this later).
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Example 1.1. Let n = 5 and λ = (3, 0, 2, 5, 2). Then λ is not a partition.
We have |λ| = 12, l(λ) = 4 and wλ = (1452) ∈ Sn. Finally, we have
λ̄ = (q3t−1, t−4, q2t−2, q5, q2t−3).

1.1 The vanishing condition

With all the notations in place, we can prove the first lemma of the paper.

Lemma 1.2 (2.1). Let λ ∈ Λ and define λ∗ = (λn − 1, λ1, . . . , λn−1). Then
λ∗ = (λn/q, λ1, . . . λn−1).

Proof. In the equality that we want to prove, the powers of q clearly coincide.
To see that the powers of t also coincide, define µ = (λ1, . . . , λn−1). Then if
λi ≥ λn and i 6= n, we have ki(λ) = ki(µ) = ki+1(λ

∗) and if λi < λn, we have
ki(λ) = ki(µ) + 1 = ki+1(λ

∗). Finally k1(λ
∗) = kn(λ).

The following theorem tells us that we can construct interpolation poly-
nomials for arbitrary values at the interpolation points.

Theorem 1.3 (2.2). For d ∈ N let S(n, d) be the set of all λ where λ ∈ Λ
and |λ| ≤ d. Let f : S(n, d)→ F be a mapping. Then there exists a unique
polynomial f ∈ P of degree at most d such that f(z) = f(z) for all z ∈ S(n, d).

Proof. See [5]. In this proof it is used that the cardinality of S(n, d) is equal
to the cardinality of the space of polynomials of degree at most d. We remark
that in order for this to be true, we need conditions on q and t, otherwise
points in S(n, d) can coincide. In [5], it is assumed that qatb 6= 1 for all
a, b ∈ N. However, only this condition is not sufficient, as can be seen from
the example n = 2, d = 4, q = 1, t = 0.5, λ = (3, 1) and µ = (2, 1). It
turns out that in order to ensure the stated property, we need the additional
condition that q is not a root of unity (it is not immediately clear that these
conditions together are sufficient, but we leave the proof to the reader, since
the conditions will not play a role in the rest of the thesis).

The above theorem also has a symmetric version. Since the proof in [5] is
quite condensed, we will give a more elaborate proof below. In the proof, we
will denote by mλ the mononial symmetric polynomial associated to λ, defined
by the orbit sum under W of

∏
i x

λi . It is immediate from the definition that
the polynomials mλ form a basis for the space of symmetric polynomials.

Theorem 1.4 (2.3). For d ∈ N let S+(n, d) be the set of all λ = qλρ where
λ ∈ Λ+ and |λ| ≤ d. Let f : S+(n, d)→ F be a mapping. Then there exists a
unique symmetric polynomial f ∈ P of degree at most d such that f(z) = f(z)
for all z ∈ S+(n, d).
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Proof. If we write f =
∑
|λ|≤d cλmλ, then we see that f(z) = f(z) for

z ∈ S+(n, d) is a square system of equations for the coefficients cλ. So
existence for every f will imply uniqueness. It remains to prove existence.
Because mλ(z1 − t−n+1, . . . , zn−1 − t−n+1) form a basis for the symmetric
polynomials on n− 1 variables (where λ runs over the partitions of n− 1),
we can define a map from symmetric polynomials in n− 1 variables to sym-
metric polynomials in n variables that sends mλ(z1− t−n+1, . . . , zn−1− t−n+1)
to mλ,0(z1 − t−n+1, . . . , zn − t−n+1). We denote the image of a function g
under this map by g+. The identity g+(z1, . . . , zn−1, t

−n+1) = g(z1, . . . , zn−1)
holds, because it holds for all elements in the basis. Let f be an arbitrary
symmetric polynomial in n variables. Then by defining g(z1, . . . , zn−1) =
f(z1, . . . , zn−1, t

−n+1) and

h(z1/q, . . . , zn/q) =
f(z1, . . . , zn)− g+(z1, . . . , zn)∏n

i=1(zi − t−n+1)
, (1.1)

we can write f in the form

f(z1, . . . , zn) = g+(z1, . . . , zn) +
n∏
i=1

(zi − t−n+1)h(z1/q, . . . , zn/q). (1.2)

So finding a function f is equivalent to finding both g and h. Now the theorem
is proved by induction on n+ d. The equation f(λ) = f(λ) for λ ∈ S+(n, d)
with λn = 0 uniquely determines g, by the induction hypothesis. For the
remaining λ ∈ S+(n, d), we get equation (1.1) with f instead of f for the
function h. Denoting the right hand side of this equation by h(z), we see that
it is equivalent to

h(z1, . . . , zn) = h(qz1, . . . , qzn)

for z ∈ S+(n, d− n). By the induction hypothesis, we can find a symmetric
function h of degree at most d − n such that these equations are satisfied.
Hence the function f defined by (1.2) satisfies the desired interpolation
properties.

Now we specify the value at the interpolation points to be zero, except at
one point. This gives us the Macdonald interpolation polynomials.

Theorem 1.5 (2.4). (i) For every λ ∈ Λ there is a unique polynomial Eλ
with Eλ(µ) = 0 for all µ ∈ Λ with |µ| ≤ |λ|, µ 6= λ and which has an
expansion Eλ =

∑
µ eλµz

µ with eλλ = 1.

(ii) For every λ ∈ Λ+ there is a unique symmetric polynomial Pλ with
Pλ(µ) = 0 for all µ ∈ Λ+ with |µ| ≤ |λ|, µ 6= λ and which has an
expansion Pλ =

∑
µ pλµmµ with pλλ = 1.
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Proof. The proof of (i) is given in [5]. Here we prove (ii). Theorem 1.4 implies
that there exists a symmetric polynomial Pλ that satisfies the vanishing
conditions with Pλ(λ) 6= 0. We only need to show that it contains mλ

with non-zero coefficient, or equivalently, that it contains zλ with non-zero
coefficient. As in the proof of theorem 1.4, we write

Pλ(z1, . . . , zn) = g+(z1, . . . , zn) +
n∏
i=1

(zi − t−n+1)h(z1/q, . . . , zn/q).

Again, we prove this by induction on n+ d. If λn = 0, then g is a multiple of
Pλ′ , where λ′ = (λ1, . . . , λn−1). By the induction hypothesis, g contains mλ,
hence it contains zλ, hence g+ contains zλ, hence Pλ contains mλ. If λn 6= 0,
then g = 0 and h is a multiple of Pλ? , where λ? = (λ1 − 1, . . . , λn − 1). By
the induction hypothesis, h contains zλ

?
, hence Pλ contains zλ, hence also

mλ.

Now we define the operators ∆ and Φ by

∆f(z1, . . . , zn) = f(zn/q, z1, . . . , zn−1)

and Φ = (zn − t−n+1)∆. The following is the symmetric analogue of corollary
2.5 in [5].

Corollary 1.6 (2.5b). For λ ∈ Λ+ with λn 6= 0, let λ? = (λ1− 1, . . . , λn− 1).
Then Pλ = (

∏n
i=1 q

λi−1)Φn(Pλ?) = q|λ|−n · Φn(Pλ?).

Proof. From the above proof, it follows that this equation holds up to a
constant. The normalization is correct, because the coefficient of zλ in
Φn(zλ

?
) is q−(|λ|−n).

For specific values of t and q the Macdonald interpolation polynomials
specialize to other known orthogonal polynomials. In [5], two examples are
given without proof. Here we will provide the proofs. We use the same
notation as in [5]. That is, we denote by [z; k]q the q-factorial polynomial
(z − 1)(z − q) . . . (z − qk−1). Also, we define the q-factorial Schur function by
sλ(z; q) := a−1 det[zi;λj+n−j]q, where a =

∏
i<j(zi−zj) is the Vandermonde

determinant.

Proposition 1.7 (2.7). Let t = 1. Then Eλ(z; q, 1) = [z1;λ1]q . . . [zn;λn]q
and Pλ(z; q, 1) is the symmetrization of it.

Proof. Let µ ∈ Λ, |µ| ≤ |λ| and µ 6= λ. Then there exists a value of i such
that µi < λi. It follows that [µi;λi]q = 0, so the vanishing conditions are
satisfied. Moreover, the coefficient of zλ is clearly 1. The symmetrization
of this polynomial gives a symmetric polynomial of the right degree, that
satisfies the right conditions.
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Proposition 1.8 (2.8). Let t = q. Then Pλ(z; q, q) = q−(n−1)|λ|sλ(q
n−1z; q).

Proof. First we note that the function is indeed a symmetric polynomial and
that it is of the right degree. Using the well known formula for expansion of
a determinant, we get

sλ(q
n−1µ; q) =

∑
σ∈Sn

(−1)σ
n∏
i=1

[qµi+n−i;λσ(i) + n− σ(i)]q.

If µ 6= λ, then for every σ ∈ Sn, there exists i such that µi−i < λσ(i)−σ(i). For
this i, the q-factorial polynomial vanishes. It follows that the given polynomial
satisfies the right vanishing conditions. Now we check the normalisation. We
use induction on n+ d. First suppose that λn 6= 0. Using corollary 2.5b, we
get

Pλ(z; q, q) = q|λ|−nq−(n−1)(|λ|−n)Φn(sλ?(qn−1z; q))

= q|λ|−n

(
n∏
i=1

(zi − t−n+1)

)
q−(n−1)(|λ|−n)sλ?(qn−1(z/q); q).

By the induction hypothesis, the coefficient of zλ
?

in the last part of this
expression is q−|λ

?| = q−(|λ|−n) (because the polynomial is evaluated in z/q
instead of z). It follows that the coefficient of zλ in Pλ is indeed equal to 1.
The case λn = 0 is left, and in this case the coefficient of zλ is equal to the
coefficient of zλ in Pλ′ , where λ′ = (λ1, . . . , λn−1) (this follows from the proof
of theorem 2.4). By the induction hypothesis, this coefficient is equal to one.
Hence the normalization is correct.

1.2 Hecke operators

A main result in the theory of Macdonald polynomials is that these poly-
nomials can be written as simultaneous eigenfunctions of a certain family
of commuting difference operators (the so-called Y-operators or Cherednik
operators). These operators are defined using the basic representation of the
affine Hecke algebra. Here we will describe the affine Hecke algebra for type
A.

Let V = Rn and V̂ = V ⊕ Rδ. The affine root system S of type An−1 is
the subset of V̂ given by

S = {εi − εj +mδ | i 6= j, m ∈ Z}.
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The associated Weyl group W0 has a cycle as its Coxeter graph. Writing
sn := s0, this means that the Braid relations are{

sisi+1si = si+1sisi+1 i = 0, . . . , n− 1

sisj = sjsi for the remaining pairs (i, j).
(1.3)

Contrary to the general case (as discussed in [8] and chapter 2), we define a
slightly different extended Weyl group by

W = W0 n t(L), (1.4)

where L is the Z-lattice spanned by the basis vectors ε1, . . . , εn and t(L) is the
corresponding group of translations. From this extended affine Weyl group,
we can define an affine Hecke algebra in the same way as in the general case
that is explained in chapter 2. We will call this algebra the affine Hecke
algebra for GLn, like in [13].

Proposition 1.9. The affine Hecke algebra for GLn, which we will denote
by Hn, is the k-algebra with generators T1, . . . , Tn−1 and Y ±11 , . . . , Y ±1n and
relations

• (Ti − τ)(Ti + τ−1) = 0 for i = 1, . . . , n− 1

• TiTi+1Ti = Ti+1TiTi+1 for i = 1, . . . , n− 2 and TiTj = TjTi if |i− j| > 1

• Yi+1 = TiYiTi for i = 1, . . . , n− 1 and TiYj = YjTi if j 6= i, i+ 1

• YiYj = YjYi and YiY
−1
i = 1 for i, j = 1, . . . , n.

These relations are called, respectively, the quadratic relations, the braid
relations, the action relations and the Laurent relations. This presentation of
the algebra is derived from the decomposition (1.4). A different presentation
of the same algebra is derived from the decomposition

W = WS n Ω

of the Weyl group and is called the Coxeter presentation of the algebra. We
give it in the following proposition.

Proposition 1.10. The algebra Hn is isomorphic to the algebra with gener-
ators T1, . . . , Tn−1 and π±1 and relations

• The quadratic and braid relations involving the elements Ti.

• πTi = Ti+1π for i = 1, . . . , n− 2.
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• πn is central in Hn, i.e. it commutes with Ti for i = 1, . . . , n− 1.

The relation between the two presentations is given by

π = T−11 · · ·T−1i−1Y
−1
i Ti · · ·Tn−1, (1.5)

which is independent of i because of the action relations. To prove proposition
1.10, one first checks that the relations are satisfied by the algebra given in
proposition 1.9. Then one defines Yi in the algebra of proposition 1.10 by
using (1.5) and checks that the action relations and Laurent relations hold.

Now we define a representation ofHn on the algebra k[L] ∼= k[z±11 , . . . , z±1n ]
in the same way as the Cherednik representation in the general case by{

Ti 7→ τsi − (τ − τ−1)zi+1Ni i = 1, . . . , n− 1,

π(zλ11 . . . zλnn ) = q−λnzλn1 zλ12 . . . zλn−1
n ,

where Ni = (zi−zi+1)
−1(1−si), as in [5] (the relations of proposition 1.10 can

be checked directly). From (1.5), we see that the inverses of the Y -operators
can be written in terms of the generators of the affine Hecke algebra given in
proposition 1.10 as

Y −1i = (Ti−1 · · ·T1)π(T−1n−1 · · ·T−1i ).

In what follows, we will adhere to Knop’s notation, i.e. we will write
H i := τ−1Ti, Hi := τ−1T−1i , ∆ = π−1 and ξi = τn−1Y −1i (here τ = t−1/2).
The main result in Knop is that a small change in this operator results
in an inhomogenous operator that has the interpolation polynomials as its
eigenfunctions. This new operator is given by

Ξi = z−1i + z−1i Hi · · ·Hn−1ΦH1 · · ·Hi−1.

After proving that these operators act on P , Knop states the main result of
his paper [5]. We will not replicate the proof here.

Theorem 1.11 (3.6). The interpolation polynomials Eλ form a simultaneous
eigenbasis for the operators Ξ1, . . . ,Ξn. More specifically, we have ΞiEλ =
λ̄−1i Eλ.

Corollary 1.12 (3.7). The operators Ξ1, . . . ,Ξn commute pairwise.

Corollary 1.13 (3.8). Let p ∈ PW . Then Ξp := p(Ξ1, . . . ,Ξn) commutes
with all Hi. Moreover, Ξp(Pλ) = p(λ̄−1)Pλ.
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Proof. We will prove the claim that Ξp acts on Pλ as scalar multiplication by
p(λ̄−1). Let w ∈ Sn and choose w′ ∈ Sn such that wλ = w′λ. Then

ΞpEwλ = p(wλ
−1

)Ewλ = p((w′λ̄)−1)Ewλ = p(w′(λ̄−1))Ewλ = p(λ̄−1)Ewλ.

The claim follows, since the Ewλ form a basis for Pλ. The claim that all Hi

commute with Ξp follows from corollary 3.2 in [5].

Now, as an exercise, we will show that the Ξi’s have a simultaneous
eigenbasis without using the existence of the interpolation polynomials. In
fact this will give a different proof of the existence of these polynomials. It
will not add anything to the results of Knop, but it is a different way of
obtaining the same results. For the proof, we will need two properties of the
operators: that they are triangular, and that they commute pairwise. We
begin with proving the triangularity.

Definition 1.14. Let λ, µ ∈ Λ+. Then we write λ ≤ µ if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi

for all i = 1, . . . , n. This is called the dominance ordering on partitions.

We can extend this partial ordering to Λ as follows. For λ ∈ Λ, we write
λ+ for the unique partition (element of Λ+) in the orbit Wλ and we write wλ
for the unique shortest element in W such that λ = wλλ

+.

Definition 1.15. Let λ, µ ∈ Λ. Then we write λ ≤ µ if either λ+ ≤ µ+ or
λ+ = µ+ and wµ ≤ wλ.

Now we can prove lemma 3.10 in [5].

Lemma 1.16. The operators Ξi are triangular with diagonal elements λ̄−1i .

Proof. We can write Ξi = ξ−1i +Ri, where

Ri = z−1i + t−n+1H i . . . Hn−1z
−1
n ∆H1 . . . Hi−1.

It is known that the operators ξ−1i are triangular with the given diagonal
elements (these are the Cherednik operators that we will discuss in chapter 2).
So it remains to show that Ri is strictly upper triangular. Since Ri decreases
the degree, definition 1.15 implies that we have to show that µ+ < λ+ for
every monomial zµ occurring in Ri(z

λ). This follows from the fact that Hi

and H i are triangular. This can be easily checked by computing Ti(z
λ), using

the explicit formula for the operator Ti.
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Lemma 1.17. The operators Ξi commute pairwise. In other words, ΞiΞj =
ΞjΞi for all i, j.

Proof. Without loss of generality, let’s assume that j > i. Using that Hiz
−1
i =

z−1i+1H i, it is an easy calculation to show that

Ri,j := [Ξi, z
−1
j ] = −(t− 1)z−1i z−1j Hi · · · Ĥj−1 · · ·Hn−1ΦH1 · · ·Hi−1,

where the hat means that this operator is omitted. It follows that

[Ξi,Ξj] = Ri,j + (t− 1)z−1j Hj · · ·Hn−1ΦH1 · · ·Hi−1H i+1 · · ·Hj−1Ξj

+Ri,jHj · · ·Hn−1ΦH1 · · ·Hj−1

= (Ri,jzj + (t− 1)z−1j Hj · · ·Hn−1ΦH1 · · ·Hi−1H i+1 · · ·Hj−1)Ξj.

To prove that this commutator equals zero, it remains to be shown that

z−1i z−1j Hi · · · Ĥj−1 · · ·Hn−1ΦH1 · · ·Hi−1zj =

z−1j Hj · · ·Hn−1ΦH1 · · ·Hi−1H i+1 · · ·Hj−1,

where we used the explicit expression of Ri,j. Moving the zj on the left hand
side of the equality to the left side of the expression, and using the relations
Φzj = zj−1Φ and Hkzk+1 = zkHk, we see that this equality is equivalent to

H i · · ·Hj−2(Hj · · ·Hn−1ΦH1 · · ·Hi−1) =

(Hj · · ·Hn−1ΦH1 · · ·Hi−1)H i+1 · · ·Hj−1.

For j = i+1, this is immediately clear (in this case, we don’t have any operators
of the form Hk and we are left with the operators between parantheses, which
are the same). If j > i + 1, then Φ is the only operator that the operators
Hk (k = i, . . . , j − 2) have a non-trivial commutation relation with, namely
HkΦ = ΦHk+1. This implies the equality and it follows that [Ξi,Ξj ] = 0.

Now we are ready to prove the following theorem.

Theorem 1.18. There exists a simultaneous eigenbasis {Gλ}|λ|≤d of the
operators Ξi, considered as operators acting on the space of polynomials of
degree at most d.

Proof. Because λ 6= µ implies that λ 6= µ, we can find a polynomial f such
that f(λ̄−1) is different for each λ ∈ S(n, d). Because the operators commute,
the operator f(Ξ1, . . . ,Ξn) is well defined. Using the triangularity property,
we see that

f(Ξ1, . . . ,Ξn)zλ = f(λ̄−1)zλ + l.o.t.

14



Hence this operator is triangular with different numbers on the diagonal. This
implies that it is diagonalizable. In other words, there exist polynomials Gλ

(|λ| ≤ d) with leading term zλ such that

f(Ξ1, . . . ,Ξn)Gλ = f(λ̄−1)Gλ.

Applying the operator Ξi to both sides and using again that the operators com-
mute, we see that ΞiGλ is also an eigenfunction of the operator f(Ξ1, . . . ,Ξn)
with the same eigenvalue. Hence it must be a multiple of Gλ. Now lemma
1.16 implies that ΞiGλ = λ̄−1i Gλ.

The existence of the interpolation polynomials Eλ was the content of the
first part of theorem 1.5. Here we give an alternative proof of this theorem
using the polynomials Gλ (these are the same polynomials, but with a different
definition).

Corollary 1.19. There exist polynomials Eλ with the interpolation properties
described in theorem 1.5.

Proof. We will give an outline of the proof and leave the details to the reader.
Let λ ∈ Λ and µ ∈ Λ with |µ| ≤ |λ| and µ 6= λ. We will prove that Gλ(µ̄) = 0
by induction on |µ| using that ΞiGλ = λ̄−1i Gλ. We use the same decomposition
of Ξi as in theorem 1.11, namely Ξi = z−1i +Xi. Now we need two facts to
finish the proof. Firstly, we need that XiGλ(µ̄) is a linear combination of
Eλ(ν̄) for elements ν with |ν| < |µ|. Secondly, we need that if µ 6= λ, then
there exists a value of i such that µ̄−1i 6= λ̄−1i .

1.3 Extra vanishing theorem

Here we discuss section 4 of [5], where it is shown that the polynomials Eλ
satisfy the so-called extra vanishing property, which is an unexpected and
non-trivial result. This section is extra: we don’t use the results anywhere
else in this thesis. Before proving the main theorem, we need some definitions
and results. For more details, we refer the reader to [5].

Definition 1.20. Let λ, µ ∈ Λ. Then we say that λ � µ if there is a
permutation π ∈ W such that λi < µπ(i) if i < π(i) and λi ≤ µπ(i) if i ≥ π(i).
Such a permutation π is called a defining permutation for λ � µ.

The following lemma makes this definition less abstract and allows us to
easily check if the relation λ � µ holds for specific λ, µ ∈ Λ.

Lemma 1.21. If λ � µ, then the π = wµw
−1
λ is a defining permutation.
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We need one additional definition and result in order to prove the extra
vanishing theorem.

Definition 1.22. A set S ⊂ Λ is called closed if λ ∈ S and λ � µ implies
µ ∈ S. For a closed set S, we denote by IS the ideal of functions that vanish
on all points λ̄ with λ ∈ Λ \ S.

Using the explicit form of the operators Ξi, Knop proves that if S is a
closed set, then Ξi(IS) ⊆ IS for all i = 1, . . . , n.

Theorem 1.23 (4.5). Let λ, µ ∈ Λ with λ � µ. Then Eλ(µ̄) = 0.

Remark 1.24. Notice that λ ≺ µ implies |λ| < |µ|, but the reverse is not true.
Hence the set of points µ̄ for which the following theorem holds is strictly
bigger than the set of points that Eλ is required to vanish on by its definition.

Proof. Fix λ and let S = {ν ∈ Λ | λ � ν}. Then S is clearly closed and
we have to prove that Eλ ∈ IS. First, we claim that there exists a function
f ∈ IS with the property that f(λ̄) 6= 0. Indeed, define

f(z) =
∏
π∈W

 ∏
i<π(i)

ϕλi+1(λ̄i
−1
zπ(i))

∏
i≥π(i)

ϕλi(qλ̄
−1
i zπ(i))

 , (1.6)

where ϕk(z) := (z− 1)(z− q−1) . . . (z− q−k+1). Then it is clear that f(λ̄) 6= 0.
Moreover, to see that f ∈ IS, let µ ∈ Λ\S. Then choosing π = wµw

−1
λ in (1.6)

and using the definition of the partial ordering, we see that indeed f(µ̄) = 0.
The existence of the function f with the stated properties together with the
Ξi-stability of IS implies that there exists Eλ′ ∈ IS with the same property:
Eλ′(λ) 6= 0. The vanishing properties of Eλ′ imply that either |λ| > |λ′| or
λ = λ′. Also, since Eλ′ ∈ IS and Eλ′(λ

′) 6= 0, we have λ′ ∈ S, so λ � λ′. This
implies |λ| ≤ |λ′|. Hence λ′ = λ, so Eλ ∈ IS.

1.4 Binomial formula

We have seen that the non-symmetric type A interpolation polynomials
can be defined as eigenfunctions of the inhomogeneous Cherednik operators
Ξi. Likewise, the nonsymmetric type A Macdonald polynomials (which are
classically defined by an orthogonality property), can also be defined as
eigenfunctions of the homogeneous Cherednik operators ξi (see for example
[7]). To show that the two definitions result in the same polynomials, one
needs an adjointness property of the operators ξi with respect to the inner
product defined by Macdonald in [7].
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In this section, we follow the same steps as in [10], but now for the non-
symmetric Macdonald polynomials, which we denote by Ēλ, λ ∈ Λ. We
want to express this polynomial as a linear combination of non-symmetric
interpolation polynomials. For this, we will use the Fourier pairing, defined as

〈g, f〉 = [ξ(g) · f ](0̄),

where ξ(g) = g(ξ1, . . . , ξn), which is well defined, because the operators ξi
commute pairwise.

Theorem 1.25. The non-symmetric interpolation polynomials Eλ are or-
thogonal with respect to this pairing.

Proof. With λ fixed, first we assume that |µ| ≤ |λ| and µ 6= λ. We denote
the set of all ν for which this holds by S(n, d), where d := |λ|. The vanishing
properties of the interpolation polynomials imply that 〈Eλ, Ēν〉 = 0 for all
ν ∈ S(n, d). Since the highest homogeneous term of Eµ is Ēµ (theorem 3.9 in
[5]), we get

〈Eλ, Eµ〉 = 〈Eλ, Ēµ〉+
∑
|ν|<|µ|

aν〈Eλ, Ēν〉 = 0.

Note that only triangularity of the polynomials Eµ would not be enough here,
because a priori it might happen, if µ > λ, that Ēλ appears with non-zero
coefficient in the expansion of Eµ.

Now let µ be such that |µ| > |λ|. Then

〈Eλ, Eµ〉 = [ξ(Eλ) · Eµ](0̄) =
∑
|ν|≤|λ|

cνλEµ(ν̄) = 0. (1.7)

Here we used that
ξif(µ̄) =

∑
|ν|=|µ|+1

. . . f(ν̄)

for any i, f and µ. This follows from the explicit formula

ξi = t−n+1H̄i−1 · · · H̄1∆
−1Hn−1 · · ·Hi.

for the operator ξi.

This orthogonality property of the interpolation polynomials with respect
to the Fourier pairing allows us to express the nonsymmetric Macdonald poly-
nomials in terms of the nonsymmetric interpolation Macdonald polynomials,
which is the main result of this chapter.
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Theorem 1.26 (Binomial formula). For all λ ∈ Λ, we have

Ēλ(x) =
∑
µ≤λ

Eµ(λ̄)Eµ(x)

〈Eµ, Eµ〉
.

Proof. Let λ ∈ Λ. Because the set {Eµ : µ ≤ λ} forms a basis for the space
of polynomials of degree at most |λ| and Ēλ is an element of this space, there
exists an expansion

Ēλ(x) =
∑
µ≤λ

cµλEµ(x)

The coefficients are determined by using theorem 1.25.

Corollary 1.27 (Label-argument symmetry for Ēλ). For all λ, µ ∈ Λ, we
have Ēλ(µ̄) = Ēµ(λ̄).

Now we calculate 〈Eµ, Eµ〉 in two ways. First, we have

〈Eµ, Eµ〉 = 〈Eµ, Ēµ〉 = Eµ(µ̄)Ēµ(0̄).

We also have
〈Eµ, Eµ〉 = [ξ(Eµ) · Eµ](0̄) = cµµEµ(µ̄),

where the number cµµ is from equation (1.7). Combining these two formulas
gives the identity Ēµ(0̄) = cµµ. So when we can make the number cµµ explicit
(using equation (1.7)) this gives us a formula for the value of the nonsymmetric
Macdonald polynomial in the point 0̄.
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Chapter 2

Intermezzo: general theory

As mentioned earlier, every affine root system has two associated families
of orthogonal polynomials (symmetric and non-symmetric). In this chapter,
we will define what an affine root system is and we will state how to define
the associated families of polynomials. This chapter is quite technical and
compact. For more details and proofs, we refer the reader to [8].

2.1 Finite root systems

Definition 2.1. Let V = Rn equipped with the standard Euclidian inner
product (·, ·). Then a finite subset R ⊂ V is called a (finite) root system if
the following properties are satisfied:

1. The vectors in R (called roots) span V .

2. For every α, β ∈ R, the vector sα(β) = β − 2(α,β)
(α,α)

α is also in R.

3. For every α, β ∈ R, the number 〈β, α〉 = 2(α,β)
(α,α)

is an integer.

One can show from these properties that if α ∈ R and c · α ∈ R, then
c ∈ {±1

2
,±1,±2}. If R is a root system where additionally R ∩ Rα = {±α}

for every α ∈ R, then it is called a reduced root system. The group W0

generated by all reflections sα (α ∈ R) is called the Weyl group of R. A
root system R is called reducible if it can be split in two sets of mutually
orthogonal vectors that are both root systems and irreducible otherwise. We
can divide R in a set of positive roots R+ and a set of negative roots R−

by choosing a dividing hyperplane that doesn’t contain a root. When a set
of positive roots is chosen, we denote by ∆ the set of positive roots that
cannot be written as a linear combination of other positive roots and we call
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this a base for R. It can be shown that ∆ is a basis for V and that every
root α ∈ R+ is a linear combination of the roots in ∆ with non-negative
coefficients.

Up to a naturally defined isomorphism, all root systems are known and
are classified by Dynkin diagrams. There are four families of root systems:
type A,B,C,D, which exist for arbitrary dimension, and then there are five
exceptional root systems, each of which only exists in a specific dimension.

2.2 Affine root systems

An affine root system is a subset of the affine linear functionals on V satisfying
certain axioms similar to the axioms of a finite root system (see for example
[8]). With each irreducible root system R we can associate a reduced affine
root system S(R) as follows. For α ∈ R and r ∈ Z, let aα,r be the affine
linear functional defined by

aα,r(x) = (α, x) + r.

Moreover, denote by R1 ⊂ R the subset of indivisible roots and let R2 = R\R1.
Then the set

{aα,r : α ∈ R1, r ∈ Z} ∪ {aα,r : α ∈ R2, r ∈ 2Z+ 1}

is a reduced affine root system and every reduced affine root system is of
this form. Every non-reduced irreducible affine root system S is of the form
S1 ∪ S2, where S1 and S2 are respectively the set of indivisible roots and the
set of inmultiplyable roots in S.

Just as in the finite non-affine case, we can define a basis ∆ of S and we
can define positive and negative roots with respect to this basis. We denote
the set of positive resp. negative roots by S+ resp. S−.

In section 1.4 and in the rest of his book [8], Macdonald distinguishes
three cases for the affine root system S and associates to each of these choices
a second affine root system S ′, a pair of finite root systems (R,R′) and a pair
of lattices (L,L′). These are given by

1. S = S(R), S ′ = S(R∨), R′ = R∨, L = P, L′ = P∨

2. S = S ′ = S(R)∨, R′ = R, L = L′ = P∨ (2.1)

3. S = S ′ is of type (C∨n , Cn), R = R′ is of type Cn, L = L′ = Q∨

Here Q,Q∨ are the lattices spanned by the roots resp. the coroots and
P, P∨ are the lattices of vectors that have an integral inner product with all
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elements in respectively R∨ and R. The lattices P and P∨ are called the
weight and coweight lattice respectively. The three choices in (2.1) don’t
include all irreducible affine root systems, but all Macdonald polynomials can
be described by these three choices, because specializing parameters in the
third case gives the Macdonald polynomials for the remaing root systems (see
section 5.1 in [8]).

2.3 Weyl group, Braid group, Hecke algebra

Let S be an irreducible affine root system corresponding to one of the three
choices above. The Weyl group of S can be decomposed as WS = W0n t(Q∨),
where W0 is the Weyl group of R and t(Q∨) is the group of translations of
the root lattice of the dual root system R∨. We can slightly extend this Weyl
group by defining W = W0n t(L′), where L′ is the lattice corresponding to S
defined in (2.1).

Remark 2.2. When studying the extended affine Weyl group W of an affine
root system S, we may assume without loss of generality that S = S(R),
where R is a finite reduced irreducible root system.

Since L′ and Q∨ are both abelian groups, and L′ contains Q∨, we can take
the quotient and we write Ω = L′/Q∨.

We can define a length function on W by defining the length of an
element w ∈ W , which we will denote by l(w) to be the cardinality of the
set S+ ∩ w−1S−. It can be shown that Ω is exactly the set with elements
of length 0, i.e. Ω permutes the affine basis. The length function is used to
define the braid group B of the extended affine Weyl group W : the group B
is defined as the group with generators T (w), w ∈ W and relations

T (v)T (w) = T (vw) if l(v) + l(w) = l(vw).

We will write Ti = T (si) and ω = T (ω). It can be shown that the Braid group
is generated by the elements Ti and ω for i = 0, . . . , n and ω ∈ Ω subject to

• the braid relations coming from the group W between the elements Ti,

• the relations T (ω1)T (ω2) = T (ω1ω2) for ω1, ω2 ∈ Ω and

• the relations ωTi = Tjω, where j is determined by ω(ai) = aj.

This is the presentation of the group B corresponding to the decomposition
W = WS nΩ of the extended affine Weyl group. There is also a presentation
corresponding to the decomposition W = W0nt(L). For the sake of simplicity,
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we take L = P∨, the dual weight lattice. Defining Y λ = T (t(λ)) when λ ∈ L
is a dominant weight (i.e. it has not only an integral, but also a positive
inner product with all roots in R). When λ ∈ L is not dominant, then
we can take µ, ν dominant such that λ = µ − ν and in this case we define
Y λ = Y µ(Y ν)−1. It is straightforward to verify that this is well-defined. Now
the other presentation of B is given as follows.

Proposition 2.3. The algebra B defined above is generated by Ti(i = 1, . . . , n)
and Y λ (λ ∈ L) subject to the braid relations for Ti and the relations{

TiY
λ = Y λTi if (λ, αi) = 0

TiY
λ−α∨i Ti = Y λ if (λ, αi) = 1

between the operators Ti and Y λ.

Now we are in a position to define the Hecke algebra of an extended affine
Weyl group W . First, let q be a real number between 0 and 1, and let τi
be positive real numbers such that τi = τj if si and sj are conjugate in W .
Defining the number e ∈ Z by (L,L′) = e−1Z, where L and L′ are the lattices
defined in (2.1), we let K be a subfield of R that contains q1/e and all numbers
τi.

Definition 2.4. The Hecke algebra H of W is the quotient of the group
algebra KB of the Braid group B by the ideal generated by the elements

(Ti − τi)(Ti + τ−1i ).

2.4 Cherednik representation and Macdonald

polynomials

Proposition 2.3 can be used to prove a fundamental relation between the T -
operators and the Y -operators that is called Lusztig’s relation. This relation
implies that the elements

T (w)Y λ′ (w ∈ W0, λ
′ ∈ L′)

form an K-basis for H. This implies that

H ∼= A′ ⊗K H0,

as K-vector spaces, where A′ = K[L′], the group algebra of the lattice L′

and H0 is the K-subalgebra of H spanned by elements T (w), w ∈ W0. This,
together with Lustzig’s relation, can be used to prove the following theorem.
For details, see [8].
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Theorem 2.5 (Cherednik’s representation). Let τi and τ ′i be parameters as
in [8]. The map β : H → EndK(A) given by

β(Ti) = τisi +
(τi − τ−1i ) + (τ ′i − (τ ′i)

−1)Xai

1− (Xai)2
(1− si),

β(ω) = ω

is a representation of H on A, where Xai is the operator of multiplication by
eai.

The non-symmetric Macdonald polynomials corresponding to the affine
root system S can be defined as eigenfunctions of the Y -operators in this
representation. An orthogonality property can then be derived by using
the self-adjointness of these operators with respect to a suitably chosen
inner product. The symmetric Macdonald polynomials can be obtained
by symmetrizing the non-symmetric ones and the corresponding operators
of which they are eigenfunctions can be obtained by symmetrizing the Y -
operators. See section 5 of Macdonald’s book [8].
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Chapter 3

Koornwinder polynomials

In this chapter, we try to imitate the theory of chapter 1, but now for root
systems of type BC. In the symmetric case a binomial formula is known,
which we will discuss in section 3.4, after introducing the symmetric Koorn-
winder polynomials and the symmetric interpolation polynomials. In the
non-symmetric case a binomial formula is not yet known in the literature.
We will end the chapter with a discussion of this case (first one-dimensional
in section 3.5 and then for higher dimensions in section 3.6).

3.1 Symmetric interpolation polynomials

In [9], Okounkov defines natural BCn-type analogues of the symmetric type
A interpolation polynomials studied in [5]. Among other things, he proves
that they are related to Koornwinder polynomials (which are the symmetric
Macdonald polynomials associated to the root system of type BC) via a
binomial formula. Moreover, he proves that they do not satisfy any q-
difference equation like in the type A case. However, Rains constructs
difference operators that act not only on the variables x1, . . . xn, but also on
the parameter s and that have the Okounkov interpolation polynomials as
eigenfunctions [11]. We will describe his approach here.

Definition 3.1. The operator D(n)(u1, u2; q, t) acts on Laurent polynomials
by

(D(n)(u1, u2; q, t)f)(x1, . . . , xn) =∑
σ∈{±1}n

∏
1≤i≤n

(1− u1xσii )(1− u2xσii )

(1− x2σii )

∏
1≤i<j≤n

(1− txσii x
σj
j )

(1− xσii x
σj
j )

f(x1q
σ1/2, . . . , xnq

σn/2).

Lemma 3.2. The operator D(n)(u1, u2; q, t) acts on the space k[x±1i ]BCn.
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Proof. Let f ∈ k[x±1i ]BCn . Then the polynomial

g(x) =
∏

1≤i≤n

(1− u1xi)(1− u2xi)
(1− x2i )

∏
1≤i<j≤n

(1− txixj)
(1− xixj)

f(x1
√
q, . . . , xn

√
q)

is in k[x±1i ]Sn . Hence the polynomial∑
σ∈{±1}n

g(xσ11 , . . . , x
σn
n )

is in k[x±1i ]BCn and this polynomial equals D(n)(u1, u2; q, t)f .

Now we introduce a parameter s and define K = k[s, 1/s]. The ring
K[x±1i ]BCn has k-basis {skmλ : k ∈ Z, λ ∈ Λ+}, where mλ is the orbit
sum of

∏
i x

λi
i . We extend the dominance ordering on partitions by defining

(k, λ) ≥ (l, µ) when λ ≥ µ and |l − k| ≤ |λ| − |µ|. Now we define a difference
operator that acts on the parameter s in addition to the x variables by

(D(n)
s (u; q, t)f)(x1, . . . , xn; s) = (D(n)(s, u/s; q, t)f)(x1, . . . , xn; s

√
q). (3.1)

Lemma 3.3. The operator D
(n)
s (u; q, t) preserves the space K[x±1i ]BCn and

acts on monomials triangularly with respect to the dominance ordering. In
particular,

D(n)
s (u; q, t)skmλ = qk/2E

(n)
λ (u; q, t)skmλ + dominated terms,

where
E

(n)
λ (u; q, t) = q−|λ|/2

∏
1≤i≤n

(1− qλitn−iu).

Proof. The factor qk/2 comes from the action of D
(n)
s on sk. Hence it suffices

to consider the case k = 0. We multiply D
(n)
s (u; q, t)mλ by the product∏

1≤i≤n

(xi − x−1i )
∏

1≤i<j≤n

(xi + x−1i − xj − x−1j ). (3.2)

This product is BCn antisymmetric, because the first product produces a
minus sign when sending xi to 1/xi and the second product produces a minus
sign when interchanging xi and xj. The resulting function is∑
σ∈{±1}n

∏
1≤i≤n

−σix−σii (1− sxσii )
(

1− u

s
xσii

) ∏
1≤i<j≤n

(1− txσii x
σj
j )(x−σii − x−σjj )·

mλ(x1q
σ1/2, . . . , xnq

σn/2).

25



By the symmetry of mλ, we can write the last part of this expression as

mλ(
√
qxσ11 , . . . ,

√
qxσnn ).

Hence we can write the expression as

(−1)n
∑

σ∈{±1}n

( ∏
1≤i≤n

σiRxi(σi)

)
F (u;x1, . . . , xn; s)mλ(

√
qx1, . . . ,

√
qxn),

(3.3)
where

F (u;x1, . . . , xn; s) =
∏

1≤i≤n

x−1i (1−sxi)
(

1− u

s
xi

) ∏
1≤i<j≤n

(1−txixj)(x−1i −x−1j )

and Rxi(σi) is the homomorphism that sends xi to xσii and doesn’t change
the other variables. We see that the leading monomial of F is xn1x

n−1
2 . . . xn

and hence the leading monomial of Fmλ is
∏

i x
λi+n−i+1
i . Since the function

F (u;x1, . . . , xn; s)mλ(
√
qx1, . . . ,

√
qxn)

is Sn-antisymmetric, it follows that (3.3) is BCn-antisymmetric. So we can
divide out again the factor (3.2) to obtain a BCn-symmetric polynomial
dominated by mλ. Now a straightforward calculation (see [11]) shows that

the leading coefficient is indeed equal to E
(n)
λ (u; q, t).

Since for generic u all diagonal elements of the operator D
(n)
s (u; q, t) with

respect to the basis {skmλ} are distinct, it follows that for each (k, λ), there
exists a unique eigenfunction dominated by skmλ. It turns out that these
eigenfunctions are independent of u and satisfy Okounkov’s interpolation
conditions, which we will prove in the following theorem. Similarly to the
notation in the type A case, we write µ̄(s) = (qµ1tn−1s, qµ2tn−2s, . . . , qµns) for
µ ∈ Λ+ and we will also write p(µ̄, s) = p(µ̄(s), s).

Theorem 3.4. For any partition λ the following three properties hold.

(a) The operators D
(n)
s (u; q, t) for different u commute on the monomials

dominated by mλ, and thus (since they are triangular by lemma 3.3)

have a common eigenfunction skP̄
(n)
µ (; s) for each leading monomial skmµ

dominated by mλ;

(b) For any partition µ, we have P̄
(n)
λ (µ̄; s) = 0 unless λ ⊂ µ;

(c) P̄
(n)
λ (λ̄; s) 6= 0.
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Proof. We will first prove that if (a) holds for a fixed partition λ, then (b)
and (c) also hold for λ. Then we will prove by induction that (a) holds for all
partitions.

So let λ be a partition and suppose that (a) holds for λ. Let µ be a
partition different from λ and choose l such that λl 6= µl. We have

0 = (D(n)
s (q−λltl−n; q, t)P̄

∗(n)
λ )(µ̄; s/

√
q) =

∑
ν

Cµ,νP̄
∗(n)
λ (ν̄; s). (3.4)

The first equality holds because the eigenvalue E
(n)
λ (u; q, t) equals zero for

this value of u. In the second equality, the sum runs over all ν such that
either νi = µi or νi = µi − 1 for all i, because of (3.1) (this depends on
σi in definition 3.1). Hence a term in this sum where ν is not a partition
appears either if µn = 0 and σn = −1 or if µi = µi+1, σi = −1 and σi+1 = 1.
In the first case, the coefficient Cµ,ν vanishes, because (1 − s′µ̄−1n (s′)) = 0,
where s′ = s/

√
q. In the second case, the coefficient also vanishes, because

(1−tµ̄(s′)i/µ̄(s′)i+1) = 0. Hence the sum runs only over partitions ν ⊆ µ. The
coefficient Cµ,µ is obtained by setting σi = 1 for every i, and a computation
of this coefficient shows that it is not zero. Hence equation (3.4) implies that

P̄
∗(n)
λ (µ̄; s) =

∑
ν(µ

C̃µ,νP̄
∗(n)
λ (ν̄; s).

Assuming that we started with a partition µ that doesn’t contain λ, induction
gives us that P̄

∗(n)
λ (µ̄; s) is a multiple of P̄

∗(n)
λ (0̄; s). Now equation (3.4) implies

that 0 = P̄
∗(n)
λ (0̄; s), so it follows that property (b) holds. Moreover, the same

induction implies that if P̄
∗(n)
λ (λ̄; s) = 0, then P̄

∗(n)
λ (µ̄; s) = 0 for every µ,

which gives a contradiction. Hence (c) holds.
Now suppose that (a) (and thus (b) and (c)) holds for all partitions µ < λ.

We want to show that (a) holds for λ and since, by the induction hypothesis,
the operators already commute on polynomials that are strictly dominated
by mλ, it suffices to show that they commute on mλ. We claim that there
exists a unique BCn-symmetric polynomial

f(x; s) = mλ(x) +
∑
µ<λ

cλµ(s)P̄ ∗(n)µ (x; s) (3.5)

such that f(µ̄; s) = 0 for all µ < λ. Indeed, using the induction hypothesis for
µ < λ, property (b) implies that we get a triangular system of equations for
the coefficients and property (c) implies that it has a nonzero diagonal. The

action of the D
(n)
s can be naturally extended to polynomials with coefficients
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in k(s). By the same argument as above, we see that

(D(n)
s (u; q, t)f)(µ̄; s) =

∑
ν⊆µ

Cµν(s)f(ν̄; s
√
q) = 0

for every µ < λ. Hence D
(n)
s f satisfies the same vanishing conditions as f

and since f is the unique BCn-symmetric polynomial (up to a constant) that

vanishes at these points, we conclude that D
(n)
s f is a multiple of f . It follows

that the operators Dn
s (u; q, t) commute on f for different values of u and we

also know, by the induction hypothesis, that they commute on the sum in
(3.5). Since mλ is the difference of these two functions, the operators also
commute on this polynomial.

3.2 Nonsymmetric Koornwinder polynomials

In this section we discuss some results in the article [14] by Stokman on
nonsymmetric Koornwinder polynomials.

Let V = Rn with the standard inner product (·, ·) and orthonormal basis
ε1, . . . , εn. Let δ be the constant function on V equal to one. We define
V̂ = V ⊕ Rδ, where we identify V with its dual using the inner product. So
we have

(v +mδ)(w) = (v, w) +m.

We extend the inner product from V to V̂ by setting (v+mδ,w+nδ) = (v, w).
Now consider the set

S =
{
εi +

m

2
δ, 2εi +mδ, ±εi ± εj +mδ | i < j, m ∈ Z

}
,

which is a subset of V̂ . It is known from the theory of root systems that this
set satisfies the properties of an irreducible affine root system (these systems
are completely classified, see [8]). The Weyl group W of this root system is
the subgroup of GLR(V̂ ) that is generated by the reflections sβ, where

sβ(α) = α− 〈α, β∨〉β = α−
〈
α,

2β

〈β, β〉

〉
β.

This group is uniquely determined by the Coxeter graph corresponding to the
root system (see [8]). It is isomorphic to the Coxeter group corresponding
to this graph (generated by si, subject to braid relations). The root system
itself is not uniquely determined by the Coxeter graph: there are several non-
isomorphic irreducible root systems with the same Coxeter graph and hence
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also the same Weyl group. However, the root system is uniquely determined
by its Dynkin diagram, which contains more information than the Coxeter
graph.

The subset R of S of inmultiplyable roots is a reduced affine root system
of type Cn and S = R ∪R∨. The roots

a0 = δ − 2ε1, ai = εi − εi+1 (i = 1, . . . , n− 1), an = 2εn

form a basis for R and the corresponding roots a∨i form a basis for R∨. These
roots without the first one form a basis for the associated non-affine root
system Σ of type Cn. We denote by Λ = Zn the weight lattice of Σ and by
Λ+ the cone of dominant weights. We write Q∨,+ for the positive Z-span of
the simple co-roots a∨i (i = 1, . . . , n).

It is straightforward to check that there are five W -oribits in S, namely

Wa0, Wa∨0 , Wai (i = 1, . . . , n− 1), Wan, Wa∨n . (3.6)

A multiplicity function is a function t : S → C, β 7→ tβ that is constant on
each orbit. So in this case, the function is determined by five values, which
we will denote respectively by t0, t

∨
0 , t, tn, t

∨
n . We will also write ti = tai for

i = 1, . . . , n− 1.
We need the affine Hecke algebra H to define the nonsymmetric Koorn-

winder polynomials. This is the algebra generated by elements Ti, i = 0, . . . , n
subject to the same relations as the si in the Weyl group, with the exception
that s2i = 1 is replaced by the quadratic relation (Ti−ti)(Ti+t−1i ) = 0. Noumi
showed that H has a representation on the field R = F[x±11 , . . . , x±1n ] given by

Ti 7→ ti + t−1i vai(x)(si − 1), (3.7)

where

vβ(x) =
(1− tβtβ/2xβ/2)(1 + tβt

−1
β/2x

β/2)

(1− xβ)
,

ti = t for i 6= 0, n and the operators si act on R by

(s0f)(x) = f(qx−11 , x2, . . . , xn)

(sif)(x) = f(x1, . . . , xi+1, xi, . . . , xn), i 6= 0, n

(snf)(x) = f(x1, . . . , xn−1, x
−1
n ).

This is called the Noumi representation in the literature and is a special case
of theorem 2.5. Notice that when all parameters ti are equal to one, the affine
Hecke algebra reduces to the group algebra of the affine Weyl group.
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The Y -operators of the affine Hecke algebra are given by

Yi = (Ti · · ·Tn−1)(Tn · · ·T0)(T−11 · · ·T−1i−1). (3.8)

In order to define the non-symmetric Koornwinder polynomials as eigenfunc-
tions of these operators, we first prove their triangularity with respect to the
partial ordering � on Λ, which we will define now.

Definition 3.5. Let λ, µ ∈ Λ.

(i) We write λ ≤ µ if µ− λ ∈ Q∨,+.

(ii) We write λ � µ if λ+ < µ+ or if λ+ = µ+ and λ ≤ µ.

Lemma 3.6. Let µ ∈ Λ and α ∈ Σ+ and write m = 〈µ, α〉.

If m ≥ 1, then µ− rα∨ ≺ µ for r ∈ [1,m] such that µ− rα∨ ∈ Λ.

If m < −1, then µ+ rα∨ ≺ µ for r ∈ [1,−m) such that µ+ rα∨ ∈ Λ.

Proof. Suppose that m ≥ 1 and let r be as in the lemma. We write µr =
µ − rα∨. Let w ∈ W be such that µ+

r = wµr. If wα∨ ∈ Q∨,+, then
µ+
r = wµ− rwα∨ < wµ ≤ µ+, since µ+ is the unique maximum in the orbit
Wµ. If wα∨ ∈ −Q∨,+, then µ+

r = wµ− rwα∨ ≤ wµ−mwα∨ = (wsα)µ ≤ µ+.
This is either a strict inequality, which immediately implies µr ≺ µ, or it is
an equality. In this case µr < µ, since α ∈ Σ+ ⊂ Q∨,+. The second statement
can be proved in the same way. Notice that it is slightly weaker, because
the last part of the previous proof (the case where µ+

r = µ+) does not hold
here.

For β ∈ R, define

R(β) = tβsβ + t−1β vβ(x)(1− sβ)

and let ε be the function that maps positive integers to 1 and strictly negative
integers to −1. Then the above lemma implies that

R(β)(xλ) = t
ε(〈λ,β〉)
β xλ + l.o.t., (3.9)

where the lower order terms are with respect to the partial ordering �. We
will denote the diagonal term of a triangular operator R corresponding to λ
by [R]λ, so that we can write this equation as

[R(β)]λ = t
ε(〈λ,β〉)
β .
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Moreover, we can write Yi as a product of operators that are of this form
together with τ(εi). To prove this, note that R(ai) = Tisi for i = 1, . . . , n
and R(w(β)) = wR(β)w−1 for all w ∈ W and all β ∈ R. Using this, together
with (3.8), we see that

Yi =R(εi − εi+1)R(εi − εi+2) · · ·R(εi − εn)R(2εi)·
R(εi + εn) · · ·R(εi + εi+1)R(εi + εi−1) · · ·R(εi + ε1)· (3.10)

R(δ + 2εi)τ(εi)R(ε1 − εi)−1 · · ·R(εi−1 − εi)−1.

This proves the triangularity of the operators Yi. Note that in formula (3.10),
for every positive root ai ∈ Σ+ in the W -orbit of ai (i = 1, . . . , n− 1) with
〈ai, εi〉 6= 0 either R(ai) or R(ai)

−1 appears (once) depending on whether
〈ai, εi〉 is positive or negative. Moreover, together with τ(εi),R(2εi) and
R(δ + 2εi) these are all the operators that appear in (3.10). Together with
formula (3.9) and the fact that there are five W -orbits (3.6) in S, this implies
that

[Yi]λ =
∏

β∈Wa1
〈β,εi〉>0

tε(〈λ,β〉) ·
∏

β∈Wa1
〈β,εi〉<0

t−ε(〈λ,β〉) · (t0tn)ε(〈λ,2εi〉) · qλi =: (γλ)i

is the diagonal term of Yi corresponding to λ. Here (γλ)i is the i’th component
of the vector γλ ∈ Cn. It is not difficult to verify (see [14]) that

λ 6= µ =⇒ γλ 6= γµ.

This property allows us to define the non-symmetric Koornwinder polynomials
as follows.

Definition 3.7. The non-symmetric Koornwinder polynomials Eλ are defined
as the unique polynomials that satisfy the properties

(i) Eλ = xλ + l.o.t.

(ii) YiEλ = (γλ)iEλ.

Here the lower order terms are of course again with respect to the par-
tial ordering �. Equivalently, instead of property (ii), we can require that
f(Y )Eλ = f(γλ)Eλ.

3.3 Symmetric Koornwinder polynomials

In [6], Koornwinder defined multiple variable generalizations of the famous
Askey-Wilson polynomials in one variable. He proved that these polynomials
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are eigenfunctions of the difference operator

D =
n∑
i=1

Φi(x)(Tq,xi − 1) +
n∑
i=1

Φi(x
−1)(T−1q,x1

− 1), (3.11)

where Tq,xi is the ring endomorphism such that Tq,xi(xj) = qδijxj and x−1 :=
(x−11 , . . . , x−1n ) and

Φi(x) =
(1− axi)(1− bxi)(1− cxi)(1− dxi)

(1− x2i )(1− qx2i )

n∏
j=1
j 6=i

(1− txix−1j )(1− txixj)
(1− xix−1j )(1− xixj)

.

(3.12)
We will show now that the operator D is equal, up to a constant, to the
operator

mε1(Y ) = Y1 + · · ·+ Yn + Y −11 + · · ·+ Y −1n .

First of all, it is well known that if f ∈ S = RW , then f(Y ) lies in the center
of H. So f(Y ) commutes with Ti for every i. It follows that [vai(x)(si −
1), f(Y )] = 0, so

vai(x)[si, f(Y )] + [vai(x), f(Y )](si − 1) = 0.

On S, the second term vanishes and it follows that f(Y ) maps S to S.
Secondly, from the formula for the Y -operators, we see that mε1(Y ) is of the
form

n∑
i=1

φi(x)(Tq,xi − 1) +
n∑
i=1

ψi(x)(T−1q,xi
− 1) + c,

where c is independent of x, because c = mε1(Y ) · 1. Thirdly, the operator
Tq,x1 only appears in Y1 and it is immediately clear from the formula that
φ1(x) = Φ1(x). Now since s1mε1(Y ) = mε1(Y ) it follows that φ2(x) = Φ2(x).
Repeating this process, we see that indeed mε1(Y ) = D + c (to arrive at
the the functions ψi, one applies sn). This explains and justifies the name
nonsymmetric and symmetric Koornwinder polynomials.

3.4 Binomial formula for Koornwinder poly-

nomials

In what follows, we reparametrize the parameters ti in order to be consistent
with Okounkov [9], Koornwinder [6] and Sahi [12]. Instead of ti, we now
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write t
1/2
i . We define the parameters a1, a2, a3, a4 and the corresponding dual

parameters a′i as in [9] and we define

qρ = (tn−1a′1, . . . , ta
′
1, a
′
1)

qρ
′
= (tn−1a1, . . . , ta1, a1).

In our previous notation, we have that qρ = γ0, where 0 = (0, . . . , 0) is the
zero partition. We define a Fourier pairing on the space of BCn-symmetric
polynomials by

〈f, g〉 = [f(Y ) · g](qρ
′
), (3.13)

where f(Y ) = f(Y1, . . . , Yn) is well defined, because the Y -operators commute.
To prove the orthogonality of Okounkov’s interpolation polynomials with
respect to this pairing, we first show that the top homogeneous terms of both
Pλ(x; q, t, s) and Eλ(x; q, t, s) is the type A symmetric Macdonald polynomial
Pλ(x; q, t). We will do this by comparing the difference operators that have
these polynomials as their eigenfunctions. We already gave the operators
corresponding to Pλ(x; q, t, s) and Eλ(x; q, t, s), and Macdonald constructed
the symmetric type A polynomials as eigenfunctions of the operators

Dr
n = Dr

n(q, t) =
∑
I

AI(x; t)
∏
i∈I

Tq,xi ,

where the sum is over all r-element subsets I of {1, . . . , n} and

AI(x; t) = tr(r−1)/2
∏
i∈I
j /∈I

txi − xj
xi − xj

.

If r = 1, we will write A{i} = Ai.

Lemma 3.8. The top homogeneous term of the Koornwinder polynomial
Pλ(x; q, t, a1, a2, a3, a4) is the type A Macdonald polynomial Pλ(x; q, t).

Proof. The operator D in (3.11) can be rewritten as D = D1 +D2, where

D1 = s2tn−1
n∑
i=1

Ai(x; t)(Tq,xi − 1) + tn−1
n∑
i=1

Ai(x; t−1)(T−1q,xi
− 1)

and D2 is an operator that decreases the degree of a polynomial. Expanding
the brackets, we get four sums (together with constants in front of the sums).
The two sums involving the difference operators are equal to D1

n(q, t) and
D1
n(q−1, t−1). Both these operators have Pλ(x; q, t) as their eigenfunction,

since
Pλ(x; q−1, t−1) = Pλ(x; q, t).
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The other two sums are
∑
Ai(x; t) and the same sum with t replaced by

t−1. These sums are constants (independent of x). We can see this using the
determinant representation of Ai, which is given by

Ai(x; t) =
Tt,xi(aδ(x))

aδ(x)
,

where aδ(x) is the Vandermonde determinant. It follows that
∑
Ai(x; t) is a

polynomial (since the numerator is divisible by each factor of the denominator).
Since the numerator and the denominator have the same degree, we see that∑

iAi(x; t) is a polynomial of degree zero, hence a constant. This proves that
Pλ(x; q, t) is an eigenfunction of D1.

Lemma 3.9. The top homogeneous term of Okounkov’s interpolation polyno-
mial P̄

∗(n)
λ (x; q, t, s) is the type A Macdonald polynomial Pλ(x; q, t).

Proof. For σ ∈ {±1}n, we define |σ| to be the number of positive ones
appearing in σ. Taking the highest homogeneous term in the eigenvalue
equation

(D(n)
s (u; q, t)P̄

∗(n)
λ )(x; q, t, s) = E

(n)
λ (u; q, t)P̄

∗(n)
λ (x; q, t, s),

we get

n∑
k=0

∑
σ∈{±1}n
|σ|=k

(−1)kuktk(k−1)/2
∏
i,j
σi=1
σj=−1

txi − xj
xi − xj

P̂λ(x1q
σ1/2, . . . , xnq

σn/2; q, t)

= cλP̂λ(x; q, t),

where P̂λ is the highest homogeneous term of P̄
∗(n)
λ and cλ is shorthand for

E
(n)
λ (u; q, t). Taking the coefficient of u1 in this equation, we find that(

n∑
i=1

Ai(x; t)Tq,xiP̂λ

)
(x; q, t) =

(
n∑
i=1

qλitn−i

)
P̂λ(x; q, t),

which is precisely the eigenvalue equation for the type A Macdonald polyno-
mials. Hence P̂λ(x; q, t) = Pλ(x; q, t).

Corollary 3.10. Okounkov’s interpolation polynomials can be written as

P ∗λ (x; q, t, a1) = Pλ(x; q, t, a1, a2, a3, a4) +
∑
|µ|<|λ|

cµλPµ(x; q, t, a1, a2, a3, a4).
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Theorem 3.11. Okounkov’s interpolation polynomials satisfy the bi-orthogonality
relation

〈P ∗λ (· ; q, t, s), P ∗µ(· ; q, t, a1)〉 = 0

for all λ 6= µ with respect to the pairing (3.13)

Proof. We will write P ∗λ = P ∗λ (· ; q, t, s), P̃ ∗λ = Pλ(· ; q, t, a1) and Pλ =
Pλ(· ; q, t, a1, a2, a3, a4). As in the type A case, we will split the proof in
two cases. First suppose that |µ| ≤ |λ| and µ 6= λ. Then, using corollary 3.10,
we have

〈P ∗λ , P̃ ∗µ〉 =

〈
P ∗λ , Pµ +

∑
|ν|<|µ|

cνµPν

〉
= 0,

because of the property of the pairing that 〈f, Pν〉 = f(qρ+ν)Pν(q
ρ′) and the

vanishing properties of the interpolation polynomials. For |µ| > |λ|, we need
a property of the operators D1, . . . , Dn defined by Van Diejen in [15]. The
operator P ∗λ (Y ) lies in the algebra generated by the operators D1, . . . , Dn.
The property we need is that if ν is a partition, then

(DkP̃
∗
µ)(qρ

′+ν) =
∑
κ

cκµP̃
∗
µ(qρ

′+κ),

where the sum is only over partitions κ. In other words, the terms in the sum
where κ is not a partition vanish. See [16]. This implies that

〈P ∗λ , P̃ ∗µ〉 = [P ∗λ (Y ) · P̃ ∗µ ](qρ
′
) =

∑
|ν|≤|λ|

cνλP̃
∗
µ(qρ

′+ν) = 0.

Corollary 3.12. Binomial formula for Koornwinder polynomials (see also
Okounkov, Rains). We have

Pλ(x; q, t, a1, . . . , a4) =∑
µ⊆λ

P ∗µ(qρ+λ; q, t, s)

P ∗µ(qρ+µ; q, t, s)
· Pλ(q

ρ′ ; q, t, a1, . . . , a4)

Pµ(qρ′ ; q, t, a1, . . . , a4)
P ∗µ(x; q, t, a1).

Proof. Since the set {P ∗µ}µ⊆λ forms a basis for the space spanned by the
monomials {mµ}µ⊆λ and since Pλ is an element of this space, there is an
expansion

Pλ(x; q, t, a1, . . . , a4) =
∑
µ⊆λ

cµλP
∗
µ(x; q, t, a1).

The coefficients cµλ can be obtained by taking the Fourier pairing on both
sides with the polynomial P ∗ν (x; q, t, s).
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We will now make this formula explicit in the one-dimensional case. In
particular, we will give an expression for the interpolation polynomials P ∗m
and we will calculate the value Pm(a), so that the binomial formula gives us
an explicit expression for the one-dimensional Koornwinder polynomials. We
will see that they are the well-known Askey-Wilson polynomials, which are
defined by a certain basic hypergeometric series.

Definition 3.13. The q-shifted factorial (a; q)n is defined by

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Lemma 3.14. In the one-dimensional case, the interpolation polynomials
P ∗m are given by

P ∗m(x; q, s) = (−1)ms−mq−m(m−1)/2 · (sx, sx−1; q)m

Proof. By theorem 3.4, the polynomial P ∗m has to vanish on the points qls for
l < m, hence it has to contain the factor (sx−1; q)m. Because the polynomials
must be BC1-symmetric, it follows that it also contains the factor (sx; q)m.
Now the statement follows from the fact that the leading monomial of P ∗m(x)
is xm + x−m.

Lemma 3.15. The value of the one dimensional Koornwinder polynomial
Pm at the point a is given by

Pm(a) =
P̃ ∗m(qma)

P ∗m(qms)
· s−m · Φ(a)Φ(qa) · · ·Φ(qm−1a),

where Φ(x) is given by equation (3.12) with n = 1, i.e.

Φ(x) =
(1− ax)(1− bx)(1− cx)(1− dx)

(1− x2)(1− qx2)
.

Proof. We will use the method described at the end of section 1.4: we will
calculate the value 〈P ∗m, P̃ ∗m〉 in two different ways. On the one hand, arguing
as in the first part of the proof of theorem 3.11, we see that

〈P ∗m, P̃ ∗m〉 = 〈P ∗m, Pm〉 = P ∗m(qms) · Pm(a). (3.14)

On the other hand, arguing as in the second part of the proof of theorem
3.11, we see that

〈P ∗m, P̃ ∗m〉 = [P ∗m(Y ) · P̃ ∗m](a) = [Y m · P̃ ∗m](a), (3.15)
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since Y m is the only term in P ∗m(Y ) that contains the operator Tmq,x. The
coefficient of this operator in Y m can be calculated by writing down the
explicit formula for Y in terms of the operators s0 and s1. This can be done
using equations (3.8) and (3.7). Since Tmq,x = (s1s0)

m, the only term in Y m

that contains this operator is(
s−1

(1− ax)(1− bx)

1− x2
◦ s1 ◦

(1− cx−1)(1− dx−1)
(1− qx−2)

◦ s0
)m

,

which is equal to
s−mΦ(a)Φ(qa) · · ·Φ(qm−1a)Tmq,x.

Together with (3.15), this implies that

〈P ∗m, P̃ ∗m〉 = s−m · Φ(a)Φ(qa) · · ·Φ(qm−1a)P̃ ∗m(qma).

Combining this with equation (3.14) gives us the desired formula.

Lastly, in order to state the following proposition succinctly, the following
definition is useful (see equation (1.4) in [1]).

Definition 3.16. The basic hypergeometric series is defined by

r+1φr+j

(
a0, . . . , ar
b1, . . . , br+j

; q, x

)
=
∞∑
n=0

(a0; q)n · · · (ar; q)n(−1)jnqj(
n
2)xn

(b1; q)n · · · (br+j; q)n(q; q)n
,

Proposition 3.17. The one-variable Koornwinder polynomials Pn are given
by

Pn(x; q, t, a1, . . . , a4) =
(ab, ac, ad; q)n
an(abcdqn−1; q)n

4φ3

(
q−n, abcdqn−1, ax, ax−1

ab, ac, ad
; q, q

)
.

Proof. Using corollary 3.12 and lemmas 3.14 and 3.15, we get

Pn(x) =
∑
m≤n

(qns2, q−n; q)ms
−m

(qns2, q−n; q)ns−n
· (qna2, q−n; q)na

−n

(qma2, q−m; q)ma−m
· sn−m·

(qn−1a2, qn−1ab, qn−1ac, qn−1ad; q−1)n−m
(q2n−1a2; q−1)2n−2m

· (ax, ax−1; q)m·

(−1)ma−mq−m(m−1)/2.

Now using that

(qn−1α; q−1)n−m =
(α; q)n
(α; q)m

for α = a2, ab, ac, ad
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and (q−m; q)m = (−1)mq−mq−m(m−1)/2(q; q)m, we obtain

Pn(x) =
(ab, ac, ad; q)n
an(abcdqn−1; q)n

·∑
m≤n

(q−n, s2qn, ax, ax−1; q)m · qm

(ab, ac, ad, q; q)m
· (qna2, a2; q)n(a2; q)2m

(qma2, a2; q)m(a2; q)2n
.

The second fraction in the sum is equal to 1, and the remaining sum is equal
to the hypergeometric function in the proposition (by definition).

Comparing this with (5.8) in [1], we see that for n = 1, the Koornwinder
polynomials coincide with the monic Askey-Wilson polynomials.

3.5 Binomial formula for 1D case

In the one-dimensional case, the partial ordering of definition 3.5 becomes

0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ . . .

and the eigenvalues of the Y -operators are γn(t) = sε(n)qn, where t is shorthand
for the parameters (t0, t

∨
0 , t1, t

∨
1 ). We can construct interpolation polynomials

explicitly by defining

E∗m(x; t) =

{
(−1)mq−

1
2
m(m−1)s−m(sx, qsx−1; q)m, m ∈ Z≥0

(−1)−m−1s1+mq−
1
2
m(m+1)x−1(sx; q)−m(qsx−1; q)−1−m, m ∈ Z<0,

(3.16)
where (x; q)m = (1− x)(1− qx) · · · (1− qm−1x) is the q-Pochhammer symbol
and (x1, . . . , xn; q)m = (x1; q)m · · · (xn; q)m. Here E∗m is the unique polynomial
(up to normalization) of the form∑

k�m

akx
k, ak ∈ F(q, s)

that vanishes at all the points γ−1k for k ≺ m. The normalization constants
are chosen in such a way that the coefficient of xm in E∗m is equal to 1.

In the same way as in in the symmetric case, we can check that the one-
dimensional non-symmetric interpolation polynomials satisfy a bi-orthogonality
relation and this allows us to also write down a very similar binomial formula
for the non-symmetric Askey-Wilson polynomials:

En =
∑
m�n

E∗m(γn)En(a)

E∗m(γm)Em(a)
Ẽ∗m.
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We can build a similar differential operator as in the type A case that has
the polynomials E∗m as its eigenfunctions. Instead of the operator ∆ that is
used in the type A case, we will use the operator

∆ : x→ x−1
√
q, s→ s

√
q.

To see the parallel with the type A case, we will call this operator ∆ and we
define Φ = (sx− 1)∆. Also, we renormalize the polynomials E∗m(x; k) so that
the constant factor in (3.16) doesn’t depend on s. Then we get

[x−1 + x−1Φ]E∗m = qmsE∗m

for m ≥ 0 and
[x+ q

1
2x−1Φ]E∗m = q−msE∗m

for m < 0. Because the operators for m ≥ 0 and m < 0 are different, it is not
clear how to generalize these operators to higher dimensions, because there
we don’t have the division between positive and negative there.

3.6 Higher dimensions

Here we will say a little bit about the possible existence of non-symmetric
interpolation Okounkov polynomials for the higher dimensional case. In [2],
Disveld, Koornwinder and Stokman proved that, like in the type A case, there
exist unique polynomials Gα of degree |α| that vanish on the set

{γ−1µ : |µ| ≤ |λ|, µ 6= λ}. (3.17)

Note that in the one-dimensional case, for m < 0 the number of interpolation
points for Gm is strictly bigger than for Em. In particular, it follows that
Gm 6= Em for m < 0 and the polynomials Gm are not triangular with respect
to the ordering �. So we cannot have both triangularity and vanishing on
the set (3.17). Also, it is not clear how to construct a binomial formula for
non-symmetric Koornwinder polynomials using the polynomials Gα, while
such a formula is crucial for the usefulness of the interpolation polynomials.
It is still an open question if there exist interpolation polynomials for this
case that can be used in a binomial type formula.
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