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DACOOP-A: Decentralized Adaptive Cooperative
Pursuit via Attention

Zheng Zhang , Dengyu Zhang , Qingrui Zhang , Member, IEEE, Wei Pan , Member, IEEE,
and Tianjiang Hu , Member, IEEE

Abstract—Integrating rule-based policies into reinforcement
learning promises to improve data efficiency and generalization
in cooperative pursuit problems. However, most implementations
do not properly distinguish the influence of neighboring robots
in observation embedding or inter-robot interaction rules, lead-
ing to information loss and inefficient cooperation. This letter
proposes a cooperative pursuit algorithm named Decentralized
Adaptive COOperative Pursuit via Attention (DACOOP-A) by
empowering reinforcement learning with artificial potential field
and attention mechanisms. An attention-based framework is de-
veloped to emphasize important neighbors by concurrently inte-
grating the learned attention scores into observation embedding
and inter-robot interaction rules. A KL divergence regularization
is introduced to alleviate the resultant learning stability issue. Im-
provements in data efficiency and generalization are demonstrated
through numerical simulations. Extensive quantitative analyses are
performed to illustrate the advantages of the proposed modules.
Real-world experiments are performed to justify the feasibility of
DACOOP-A in physical systems.

Index Terms—Attention mechanism, cooperative pursuit, multi-
robot systems, reinforcement learning.

I. INTRODUCTION

COOPERATIVE pursuit aims to coordinate multiple pur-
suers for capturing one evader in a decentralized man-

ner [1], as shown in Fig. 1. Most existing algorithms employ
manually designed rules with domain knowledge [2], [3]. For
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Fig. 1. Cooperative pursuit. E is the evader while i, j, k are pursuers. The red
arrows denote the encirclement formed by i and j. It implies j chases E from
the right side, while i cuts off the escape route of E from the left side. The green
arrow denotes the neighboring robot that i should attend to. k is not attended to
because it has less potential to cooperate.

example, the pursuit problem with collision avoidance is ad-
dressed by combining several forces in [4]. However, man-
ually designing cooperative rules in complicated scenarios is
intractable, as robots might encounter numerous environment
states. Furthermore, the performance of rule-based methods
is sensitive to problem settings and parameter configurations,
making them inapplicable in real-world tasks [5].

Compared with rule-based methods, reinforcement learning
(RL) is more promising for learning sophisticated cooperation
because it is possible to obtain various abilities to maximize
rewards [6], [7]. However, most RL methods are notorious for
the data inefficiency issue that is more severe in multi-robot envi-
ronments [8]. One of the reasons is an inherent non-stationarity
of the environment challenges that value-based RL algorithms.
At the same time, policy-based RL methods suffer from a
variance that increases as the number of robots [9]. Another
challenge for RL is the limited generalization ability. Most
RL algorithms focus on maximizing accumulated rewards in
predefined training environments. However, the implementation
environments commonly have different setups. Such differences
would degenerate the performance of the learned policies in real
applications [10].

To improve data efficiency and generalizability, our previ-
ous work, DACOOP, introduces a hybrid design that integrates
rule-based policies, artificial potential field (APF), into RL for
cooperative pursuit [11]. Though DACOOP performs better
than vanilla RL algorithms, its performance is still limited.
The first reason is that the Q network of DACOOP takes the
mean embedding of all neighboring robots as input. Since the
importance of neighboring robots varies in each state, arbitrary
average operation leads to inevitable information loss and data
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inefficiency. The second reason is that the mean embedding
results usually deviate from those in training scenarios once
the system size changes, thus deteriorating the generalization
capability of the learned policies. The third reason is that APF
is inflexible and suboptimal for multi-robot pursuit problems
because it considers all neighboring robots equally.

To tackle the aforementioned problems, a Decentralized
Adaptive COOperative Pursuit via Attention (DACOOP-A) al-
gorithm is proposed in this letter by enhancing DACOOP with
attention. Our first contribution is an attention-based framework
that concurrently integrates the learned attention scores into
observation embedding and APF. The attention module is first
synthesized with the observation encoding to distinguish impor-
tant neighboring robots. Compared with mean embedding, it can
mitigate information loss and exclude unnecessary information,
thus leading to improved generalization. Secondly, the learned
attention scores are also employed in APF to weigh the influence
of neighboring robots in evaluating inter-robot forces, resulting
in an artificial potential field with attention (APF-A) method.

The second contribution of this letter is to improve the learning
stability by augmenting standard RL loss functions with a KL
divergence regularization. Introducing attention scores in APF-
A would make the state transition probability non-stationary in
the training process. Hence, the KL divergence regularization is
used to penalize foolhardy updates in the outputs of the attention
module, which is key to alleviating the non-stationarity issue.

The third contribution is that ablation studies are conducted
to show the efficiency of different modules in the proposed algo-
rithm. Extensive quantitative analysis is thereafter performed to
illustrate the potential reasons for the advantages of those respec-
tive modules. Additionally, the learned policies are deployed
directly in physical quadrotor systems to verify the effectiveness
of DACOOP-A.

The remainder of this letter is organized as follows. Related
works and preliminaries are provided in Sections II and III.
Section IV presents the implementation details of the proposed
algorithm. Experiment results are given in Section V. Finally,
conclusions and future works are available in Section VI.

II. RELATED WORKS

Most RL methods solve multi-robot pursuit problems in an
independent manner [12], [13] or following the centralized
training decentralized execution paradigm [9], [14]. Although
their performance has been proven in various problem set-
tings, the problem of varying numbers of neighboring robots
is intractable in partially observable environments because fully
connected networks necessitate fixed-length inputs. To address
this problem, Hüttenrauch et al. proposed mean embedding that
averages the embedding of all neighboring robots firstly [15].
To the same end, Everett et al. processed the information of
neighboring robots with LSTM [16] and then fed the last hidden
state into policy networks [17]. However, both mean embedding
and LSTM compress the information of neighboring robots
regardless of their significance, usually resulting in the loss of
significant information.

Attention mechanisms aim to identify significant elements
in sequences and have witnessed exciting success in various

domains [18]. In the domain of multi-agent RL, Wen et al.
employed Transformer and multi-agent advantage decompo-
sition theorem to transform the joint policy search problem
into a sequential decision-making process [19]. Based on the
structure of MADDPG, Iqbal et al. used attention mechanisms
to synthesize observations of neighboring robots before feeding
them into centralized critics [20]. Besides, multi-robot graph
attention networks allow robots to focus on communication
channels connected to significant neighboring robots [21], [22].
However, all the aforementioned works only employ attention
mechanisms as information processing approaches. In compar-
ison, we additionally use the attention scores to improve robots’
predefined behavior rules, promising to facilitate the learning
process further.

III. PROBLEM FORMULATION

A. Multi-Robot Pursuit Problem

This letter considers the multi-robot pursuit problem for
N robots capturing one faster evader in a confined environ-
ment with obstacles. The set of pursuers is denoted by V =
{1, 2, . . . , N}, and the evader is indicated by E. The evader
is considered captured by i ∈ V if dE,i < dc, where dE,i is the
distance betweenE and i. dc is the capture range. All robots have
a safe radius of ds. Collision occurs if dj,i < 2ds or do,i < ds,
where dj,i is the distance between i and j. do,i is the distance
between i and the nearest obstacle. Overall, the objective of the
pursuers is formulated as follows.⎧⎪⎨

⎪⎩
dE,i(tmax) < dc

do,i(t) > ds

dj,i(t) > 2ds

∀i, j ∈ V, i �= j,∀t ∈ [0, tmax], (1)

where tmax is the task horizon. The environment is partially
observable. It implies that only neighboring robots within the
perception range dp can be detected by i. Denote the azimuth
angle of the evader, the nearest obstacle, the neighboring robot
j in the local frame of i as φE,i, φo,i, and φj,i, respectively. The
observations of i include the evader information, the nearest
obstacle information, and the neighboring robot information,
{dE,i, φE,i, do,i, φo,i, {dj,i, φj,i}j}, where j ∈ Ni andNi is the
set of observable pursuers of i. The first-order point-mass model
is assumed for all robots in this letter.

ṗ = v, (2)

where p is the position and v is the velocity. All robots are
assumed to move at a constant speed, which is vP for pursuers
and vE for the evader. They only change their heading angles.
To make learned policies applicable in physical systems, the
steering commands of pursuers are limited to [−30◦, 30◦].

B. Decentralized Adaptive COOperative Pursuit (DACOOP)

The multi-robot pursuit problem can be formulated as a
partially observable Markov Game (POMG) that is described
by (S,V,A,P,R, γ,Z,O), where S , V , A, P , R, γ, Z , O
are global state space, the set of agents, joint action space,
state transition probability, reward function, discount factor,
observation function, and local observation space, respectively.
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At each timestep, agent i chooses an action ai according to its
local observations oi that are sampled from the global state s,
and then receives its reward ri. The environment state transits
according to the joint action from all agents. The objective of
each agent is to learn the optimal policyπ∗(ai|oi) that maximizes
its own accumulated rewards.

Our previous work DACOOP employs APF to improve the
data efficiency and generalization ability of vanilla RL in multi-
robot pursuit problems [11]. Specifically, the APF navigates
pursuers through the combination of three predefined forces.
For each pursuer i ∈ V , the attractive force is

F a,i =
pE − pi

dE,i
. (3)

The repulsive force F r,i is

F r,i =

{
η
(

1
do,i

− 1
ρ

)
pi−po,i

d3
o,i

, if do,i ≤ ρ

0, if do,i > ρ
(4)

where η is the scale factor and ρ is the influence range of
obstacles. The inter-robot force is

F in,i =
∑
j∈Ni

(
0.5− λ

dj,i

)
pj − pi

dj,i
, (5)

where Ni is the set of observable pursuers of i. λ regulates
the compactness of the multi-robot system, which is significant
for the emergence of cooperation as demonstrated in [11]. The
resulting force F i = F a,i + F r,i + F in,i is used to specify the
expected heading of i. To alleviate the local minima issue, the
wall following rules are introduced.

DACOOP uses the classical RL algorithm D3QN [23] to
learn a shared optimal policy π∗(λ, η|s) that outputs the optimal
parameter pair (λ, η) for each pursuer in each time step. Each
pursuer calculates its resulting force and moves accordingly after
receiving (λ, η).

IV. METHODOLOGY

The proposed algorithm DACOOP-A follows the fundamen-
tal structure of DACOOP. It implies that DACOOP-A em-
ploys vanilla RL to learn the optimal parameter pair (λ, η) at
each timestep as usual. However, compared with DACOOP,
DACOOP-A introduces an attention module, an artificial poten-
tial field with attention (APF-A) method, and a KL divergence
regularization to improve the data efficiency and generalization.
This section will describe the proposed algorithm from the three
aforementioned aspects.

A. Observation Embedding With Attention

Traditional multi-robot pursuit algorithms average the em-
beddings of neighbors to form fixed-length state representations
in partially observable environments [11], [15]. However, such
mean embedding makes the information of significant neigh-
bors unrecoverable. Additionally, the resultant embeddings are
unreliable once the system size changes because the weights of
significant information deviate from those in training scenarios.
Therefore, an attention module is introduced to process the
observation information in the proposed algorithm.

For each pursuer i ∈ V , DACOOP-A embeds the information
of each observable neighboring robot first,

ej,i = fe(dj,i, φj,i), (6)

wherefe is a one-layer fully-connected network. The embedding
ej,i is then transformed into the key kj,i via another one-layer
fully-connected network fk,

kj,i = fk(ej,i). (7)

Let oloc,i = {dE,i, φE,i, do,i, φo,i}. The query consists of oloc,i

and the mean embedding em,i, where

em,i =
1

|Ni|
∑
j∈Ni

ej,i. (8)

|Ni| is the number of observable neighboring robots of i. The
attention scoreαj,i is calculated by feeding the query and the key
to a one-layer fully-connected attention network fa followed by
a softmax function,

α̂j,i = fa(oloc,i, em,i,kj,i), (9)

αj,i =
eα̂j,i∑

j∈Ni
eα̂j,i

. (10)

Finally, the information of all observable neighboring robots is
summarized by taking the weighted mean as follows.

ei =
∑
j∈Ni

αj,iej,i. (11)

After concatenated with oloc,i, ei is taken as input by a multi-
layer perception (MLP) for further inference, as shown in Fig. 2.
All the aforementioned networks fe, fk, fa are trained with the
MLP to maximize the accumulated rewards.

B. Artificial Potential Field With Attention (APF-A)

Adjustments to the inter-robot distance characterize most
cooperative behaviors. For example, encirclement requires pur-
suers to keep away from neighbors [3]. Therefore, DACOOP
learns the optimal inter-robot forces F in,i to prompt the emer-
gence of cooperation [11]. However, it is inappropriate to aver-
age the influence of all observed robots in the computation of
inter-robot forces (see (5)) as the cooperation potential of neigh-
boring robots varies. Therefore, the proposed APF-A weights
the influence of neighboring robots according to the learned
attention scores when computing inter-robot forces,

F in,i =
∑

j �=i,j∈Ni

αj,i

(
0.5− λ

dj,i

)
pj − pi

dj,i
. (12)

The intuition behind (12) is that the neighboring robots with
large attention scores usually have great potential to cooperate.
Learning to adjust the distance from them is more promising for
the emergence of cooperation.

C. KL Divergence Regularization

Since the inter-robot forces of APF-A depend on attention
scores that are updated as the training proceeds, the expected
headings of pursuers are nondeterministic under given local ob-
servations and APF-A parameters. Different expected headings
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Fig. 2. Overview of DACOOP-A. The red, yellow, and green blocks are one-layer fully-connected networks fe, fk , and fa in Section IV-A, respectively. The
information from the neighboring robots is summarized by taking the weighted mean, where the weights are the attention scores αj,i. The results ei are taken as
input by an MLP together with the information of the evader and the nearest obstacle oloc,i. The RL policy outputs parameter pairs (λ, η) for APF-A that weight
the influence of neighboring robots according to the learned attention scores in the computation of inter-robot forces F in,i. To alleviate the non-stationarity issue,
a KL divergence regularization DKL(α

−
i ||αi) is attached to standard D3QN loss function LD3QN .

lead to different observations at the next timestep. So additional
non-stationarity is introduced to the state transition probability
p(o′|o, λ, η) by APF-A, presenting dramatic learning stability
challenges. Therefore, it is significant to prevent overlarge up-
date steps of attention scores.

Denote the attention score vector of pursuer i as αi = [α1,i,
α2,i, . . . , α|Ni|,i]. It can be treated as a categorical distribution
that indicates the probability of which neighboring robot is
significant. Therefore, it is possible to regulate the update of
APF-A’s behavior rules via minimizing the KL divergence of αi

at adjacent training steps. Since calculating such KL divergence
requires additional memory to store Q networks at the previ-
ous training step, the target network, which is introduced by
DQN [24], is employed to provide the reference distribution in-
stead. Specifically, the KL divergence regularization is defined as

DKL(α
−
i ||αi) =

|Ni|∑
j=1

α−
j,i log

α−
j,i

αj,i
, (13)

whereα−
j,i is the attention score calculated by the target network.

Since the weights of the target network are updated periodically,
α−

i is constant in a period of training steps. So minimizing
the KL divergence in (13) encourages all αis during this
period to keep close to α−

i , which implicitly prevents overlarge
update steps of attention scores. Overall, the loss function of
DACOOP-A is

L = LD3QN + cKLDKL(α
−
i ||αi), (14)

where cKL is a hyperparameter and LD3QN = [Q(s, a)− (r +
γmaxa Q(s′, a))]2.

V. RESULTS

In this section, the improvement of data efficiency and gen-
eralization of DACOOP-A is demonstrated via numerical sim-
ulations.1 The feasibility of learned policies is then evaluated in
physical multi-robot systems. Besides, three research questions
are investigated in Section V-C, V-D, and V-E, respectively.
First, who is attended to in the pursuit process? Second, does

1Please refer to https://github.com/Zero8319/DACOOP-A for attached codes
and videos.

Fig. 3. Pursuit arenas. The evader E is initialized randomly in the gray
region while pursuers i, j, k in the yellow region. (a) The training arena where
o1, o2, o3, o4, o5 are obstacles. (b) The validation arena where obstacles are
removed beside the boundary. (c) The validation arena where five circular
obstacles are generated with random positions.

TABLE I
PROBLEM SETTINGS AND RL HYPERPARAMETERS

APF-A provide better behavior rules? Third, does KL divergence
regularization stabilize the learning?

A. Training Settings

The pursuit arena is shown in Fig. 3(a). The problem setting
parameters are listed in Table I. The escape policy of the evader
is adapted from [4]. It is a force-based method. Pursuers and
obstacles repulse the evader via defining multiple forces similar
to (3) and (4). The resultant force F t is employed to guide the
evader. The wall following rules are introduced to help the evader

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2024 at 12:42:31 UTC from IEEE Xplore.  Restrictions apply. 
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move along the surface of obstacles when it is in between pur-
suers and obstacles. As [4] does, a slip rule is employed to help
the evader slip through the gap between pursuers when encir-
cled. Totally, the escape policy is [F t ∨ wall_following] ∨ slip,
where ∨ denotes or.

The parameter sharing techniques [7] and the robust RL
algorithm D3QN [23] are employed to train the pursuit policies.
The action space is 24 pairs of APF-A parameters (λ, η) that
are the Cartesian product of 8 λ candidates and 3 η candidates.
Specifically, λ candidates linearly range from 0 to λmax that is
a hyperparameter, while η candidates are chosen empirically2.
The reward function consists of three terms, r = rmain + rcol +
rapp, where rmain gives a reward of 20 when the evader is
captured. rcol gives a punishment of −20 if collisions occur.
rapp is a reward shaping term that awards pursuers when they
approach the evader.

In addition to the proposed algorithm DACOOP-A, several
benchmark algorithms are trained as follows.
� ME [15]. It combines D3QN with mean embedding. The

action space is 24 discretized expected headings.
� D3QN-att. It combines D3QN with attention. The imple-

mentation details of attention are the same as DACOOP-A.
The action space is 24 discretized expected headings.

� DACOOP [11]. The action space is 24 parameter pairs
(λ, η) for vanilla APF. Mean embedding is also used.

� MAAC [20]. MAPPO is selected as the backbone [25].
The attention mechanisms are employed to synthesize the
observations of pursuers in the centralized critic.

� No-RL [4]. It is a non-learning method whose hyperpa-
rameters are tuned via the evolutionary algorithm. Since
it is difficult for this non-learning method to accomplish
the original task, the pursuit problem is simplified so that
episodes end when any pursuer captures the evader.

� No-KL. It is an ablation study by removing KL divergence
regularization from DACOOP-A.

� DACOOP-att. It is an ablation study by removing both KL
divergence regularization and APF-A from DACOOP-A. It
implies DACOOP-att is the pure combination of DACOOP
and the attention mechanisms.

All algorithms are performed with five random seeds. RL
hyperparameters and their values are listed in Table I. Note that
the basic hyperparameters, e.g., learning rate, are tuned for ME
and then employed by D3QN-att, DACOOP, and DACOOP-A
without tuning for a fair comparison. Similarly, we tune λmax

for DACOOP and then directly adopt the results in DACOOP-A.
Only cKL is tuned for DACOOP-A. The hyperparameters of
MAAC are tuned independently.

B. Data Efficiency and Generalization Ability

The learning curves are demonstrated in Fig. 4, and the relative
statistical results are listed in Table II. The area under the
learning curve (AUC), i.e. the mean success rate achieved at nine
checkpoints in Fig. 4, is used as the metric of data efficiency.

2We evaluate the value of ηmin that could turn the pursuers into the
wall following mode when they are very close to obstacles. We then choose
{ηmin, 10ηmin, 100ηmin} as η candidates.

Fig. 4. Learning curves of different algorithms. All results are averaged over
1000 validation episodes and five random seeds. The shaded areas indicate the
95% confidence interval.

TABLE II
MEAN AND STANDARD DEVIATION OF THE LEARNING RESULTS ACROSS

DIFFERENT RANDOM SEEDS

From Table II, it is observed that DACOOP-based algorithms
outperform all baselines in terms of data efficiency due to the
introduction of APF. DACOOP-A achieves the best AUC of
0.57 as it employs attention mechanisms to prompt information
processing and refine the behavior rules. The poor performance
of No-KL indicates the importance of KL regularization in
alleviating the non-stationarity issue. MAAC does not obtain a
satisfactory AUC because the underlying backbone, MAPPO, is
on-policy, which is more data inefficient than off-policy methods
in most multi-agent settings. The learned policies’ maximal suc-
cess rate (MSR) is also listed in Table II. Since the action space
of DACOOP is not complete, i.e., there may be some expected
headings unavailable no matter what value (λ, η) takes, the MSR
of DACOOP is inferior to that of ME. However, DACOOP-A
alleviates such issues by refining vanilla APF with attention
scores, resulting in competitive asymptotic performance while
maintaining better AUC. In addition, the collision rate in the
training process (CRTP) of DACOOP-based algorithms is much
lower than baselines as APF(-A) provides more knowledge in
collision avoidance, which is significant for the safety issue in
the physical systems training [26].

The generalization performance of different algorithms is
shown in Fig. 5. It is observed from 5(a) that DACOOP-A
is more robust than ME and D3QN-att when the system size
changes. To investigate the underlying reasons, we attempt to
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Fig. 5. Generalization performance of different algorithms. The relative per-
formance is defined as the ratio of the success rate in the validation scenarios
to that in the training scenarios. The error bars indicate the standard deviation
across different random seeds.

TABLE III
MEAN AND STANDARD DEVIATION OF AHD ACROSS DIFFERENT

RANDOM SEEDS

measure the variation in observation embedding results when
algorithms are deployed in validation scenarios. Firstly, we col-
lect 2× 106 environment states for each algorithm via uniformly
sampling robots’ positions and headings. Thereinto, 106 states
are 3-pursuer scenarios while the other 106 states are 10-pursuer
scenarios. The integrated embedding ei is calculated for all
pursuers at all states. Note that ei is the mean embeddings for
ME, while is calculated according to (11) for DACOOP-A and
D3QN-att. Two matrices A ∈ R3e6×128 and B ∈ R10e6×128 are
acquired for each algorithm, where A consists of all integrated
embedding results ei in 3-pursuer scenarios while B consists
of that in 10-pursuer scenarios. 128 is the length of embed-
ding vectors. Considering each matrix as a point set in a 128-
dimensional space, we use the Hausdorff distance to measure
the difference between A and each point in B. The results are
averaged over all points in B and denoted as AHD (averaged
Hausdorff distance) in Table III. It could be observed that the
integrated embeddings ei of ME change dramatically when they
are deployed in systems with different sizes. So, strange state
representations are the major impediment to generalization. In
comparison, the attention module of DACOOP-A preserves sig-
nificant information while suppressing redundant information,
making ei more invariant. Although the AHD of D3QN-att is
similar to that of DACOOP-A, its success rate is still much lower.
The reason is that the optimal policy changes when the system

TABLE IV
FREQUENCY OF CORRESPONDING EVENTS

size differs. However, similar observation embeddings result
in similar actions in D3QN-att. In comparison, the behavior
rules of APF-A depend on the system size, which is promising
to provide the desirable adaption based on invariant observa-
tion embeddings.3 Fig. 5(b) shows the generalization ability of
each algorithm in validation arenas. The Boundary-only arena
provides more free space for both pursuers and the evader,
making cooperation more significant than obstacle avoidance
for pursuers (see Fig. 3(b)). Therefore, the better generalization
of DACOOP-A in this scenario demonstrates that more sophis-
ticated and intelligent cooperative behaviors are learned due to
the direct regulation of the distance from significant neighboring
robots. The Circle arena employs different obstacles as shown in
Fig. 3(c). The better performance of DACOOP-A in this arena
verifies the contributions of wall following rules to obstacle
avoidance (see Fig. 5(b)).

C. Effects of Attention

To investigate who is attended to in the pursuit process, 3000
episodes are rolled out with policies learned by DACOOP-A. For
each pursuer i, we measure the influence of neighboring robots
on i’s state value by |V (si,−j)− V (si)| and |V (si,−k)− V (si)|,
whereV (·) is the state value function. si is the local observations
of i. si,−j denotes removing j from i’ observations, while si,−k

denotes removing k. Let E1 denote the event satisfying

(|V (si,−j)− V (si)| − |V (si,−k)− V (si)|) (αj,i − αk,i) > 0

while E2 denotes events where

(|V (si,−j)− V (si)| − |V (si,−k)− V (si)|) (αj,i − αk,i) ≤ 0.

Their frequencies are calculated over trajectories collected in
the aforementioned 3000 episodes. Since state values depend
on the policy, five critics trained by ME with different random
seeds are employed to evaluate V (·) for justice4. The results
shown in Table IV demonstrate that all critics consistently think
E1 is more frequent than E2. It implies that the neighboring
robots influential on state values are more likely to be attended
to. Given the reward function used in this letter, it could be
concluded that pursuers attend to neighboring robots mainly for
collision avoidance and cooperation.

3Note that it should not be expected that agents perform well with unseen ob-
servations. The generalization ability of DACOOP-A derives from the adaptation
of the policy (Q network + APF-A) instead of the variance of the observation
embeddings.

4The dueling network in D3QN has two streams to separately estimate the
scalar state value and the advantages for each action [23]. Therefore, we take
the output of the first stream as the state value in this work.
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Fig. 6. (a) Demonstrations of the evaluation of SAPF
i and SAPF -A

i . Here
taking |A| = 2 for example. Blue (red) circles denote the resultant positions
of pursuer i if it moves according to APF (APF-A). The formation score
Si is evaluated for each resultant position. SAPF

i is the sum of formation
scores evaluated at blue circles, while SAPF -A

i is that at red circles. (b) The
frequency of the events SAPF -A

i > SAPF
i and SAPF -A

i ≤ SAPF
i when α0

takes different values.

D. Effects of APF-A

The magnitude of inter-robot forces increases as inter-robot
distance decreases in APF. So the resultant forces F i of APF-A
are similar to that of APF if closer robots are attended to. To dis-
tinguish the effects of APF-A, the environment states satisfying
the following conditions are selected from the aforementioned
3000 episodes.
� The attention scoresαj,i > α0 whileαk,i < 1− α0, where
α0 > 0.5. It implies that i attends to j while k is neglected
by i.

� The distance between i and E is less than 5dc. It implies
that i is in a situation where cooperation is important.

� The distance between i and j is larger than that between i
and k, meaning the distant robot is attended to.

Similar to [13], the formation score is defined for pursuer i to
evaluate the potential for encirclement at a certain state,

Si =
N∑

j=1,i�=j

−(pi − pE)
T (pj − pE). (15)

As shown in Fig. 6(a), the usefulness of behavior rules at a certain
state s is measured by

SAPF
i =

|A|∑
a=1

SAPF
a,i , SAPF -A

i =

|A|∑
a=1

SAPF -A
a,i , (16)

where SAPF
a,i is the formation score Si of the state transited from

s by moving pursuer i according to APF with a-th parameter
pair. SAPF -A

a,i is that by moving according to APF-A instead.
Note that although the 24 parameter pairs (λ, η) are the same for
APF-A and APF in this letter, the expected headings differ due to
different behavior rules. Both SAPF

i and SAPF -A
i are evaluated

for all selected states. The proportion of states with SAPF -A
i >

SAPF
i is much more than that with SAPF -A

i ≤ SAPF
i no matter

what valueα0 takes as shown in Fig. 6(b). It suggests that APF-A
provides candidate headings with better quality due to the direct
regulation of the distance from significant neighbors.

Fig. 7. Example of the learning curves of DACOOP-A. The rise of KL
divergence of attention scores always induces drops in accumulated rewards.

TABLE V
STATISTIC RESULTS IN SELECTED DATA POINTS

E. Effects of KL Divergence Regularization

The non-stationarity issue derived from evolutionary behavior
rules usually induces unstable learning characterized by sudden
drops of accumulated rewards, as shown in Fig. 7. To quantify the
underlying relations, we record the KL divergence of attention
scores Dj and accumulated rewards Rj at each training step j.
The result is a list, {(Dj , Rj)}Tmax

j=1 , where Tmax is the max-

imum training step. Then, their gradients {(∇Dj ,∇Rj)}Tmax
j=1

are calculated via the first-order forward difference. To make the
result significant, we evaluate the Pearson correlation coefficient
between ∇D and ∇R over data points {(∇Dj ,∇Rj)}j that
meet ∇Dj > cgrad, where cgrad is a threshold. The results
shown in Table V show that the Pearson correlation coefficient
is less than −0.4 if cgrad is greater than 1e-5. The existence
of moderate negative correlations suggests that an increase in
KL divergence usually induces a decrease in the accumulated
rewards. Therefore, avoiding an over-large divergence of KL
attention scores in the learning process is significant. To in-
vestigate whether KL divergence regularization stabilizes the
learning process, the overlarge ∇Dj amount is evaluated for
DACOOP-A and No-KL, respectively. It can be observed from
Table V that DACOOP-A always obtains fewer data points
satisfying ∇Dj > cgrad, which explains why KL divergence
regularization enables greater data efficiency.

F. Physical Experiments

The learned policies of DACOOP-A are deployed in multi-
quadrotor systems Crazyflie5 directly. The positions and orien-
tations of quadrotors are measured by the motion capture system
OptiTrack. The key snapshots are shown in Fig. 8. In Fig. 8(a),

5https://www.bitcraze.io/products/crazyflie-2-1/
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Fig. 8. Snapshots of real-world experiments. The green arrows point from
ego-quadrotors to neighbors who are attended to. The yellow and orange arrows
denote Fin,i evaluated by APF-A and APF, respectively.

pursuers are distant from the evader. Since their main concern in
this state is approaching the evader safely, all pursuers attend to
the nearest neighboring robots for collision avoidance. Rather
than giving similar attention to j and k in Fig. 8(a), pursuer
i switches to attend to j in Fig. 8(b) because j is adjacent to
the evader and has more potential to cooperate with. Note that
the distance between i and j is similar to that between i and k
in Fig. 8(b). It implies that the inter-robot forces evaluated by
APF always align with the angular bisector because the forces
exerted by neighboring robots are symmetric (see Fig. 8(b)).
In comparison, APF-A weights the influence of neighboring
robots according to attention scores in evaluating inter-robot
forces, providing diverse candidate expected headings even if i
is just between two neighboring robots. In Fig. 8(c), pursuer k
attends to j since the encirclement they form is the necessity of
successful capture. To verify the significance of directly regu-
lating the distance between k and j, the formation scores SAPF

a,k

and SAPF -A
a,k are evaluated for 24 parameters pairs (λa, ηa) in

Fig. 8(c). The results show that only 1 out of 24 parameter pairs
satisfies SAPF

a,k > SAPF -A
a,k , proving that taking the insignificant

neighboring robots i into consider hinders the formation of
encirclement. By APF-A, pursuer k cuts off all possible escape
routes of the evader in Fig. 8(c) and then successfully captures it.

VI. CONCLUSIONS AND PERSPECTIVES

This letter proposes a multi-robot pursuit algorithm named
DACOOP-A by empowering vanilla RL with APF and attention
mechanisms. Simulation results demonstrate better data effi-
ciency, competitive asymptotic performance, and lower collision
rate in the training process of DACOOP-A. It is also verified
that DACOOP-A has greater generalization ability regarding
system size and pursuit arena. Further analysis demonstrates
that neighboring robots who influence state values are likely to
be attended to. In addition, APF-A is proven to provide evolu-
tionary behavior rules that are more promising for encirclement.
Simulation results also show that a regularization could alleviate
the non-stationarity issue by avoiding overlarge gradients of KL
divergence of attention scores in the learning process. Physical
experiments verify the feasibility of DACOOP-A in real-world
multi-robot systems. However, the action space is not complete

in DACOOP-A. Enabling robots to select all possible headings
will be considered in future work.
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