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Abstract

Reinforcement Learning (RL) has shown strong po-
tential in complex decision-making domains, but
its likelihood to distributional shifts between train-
ing and deployment environments remains a signif-
icant barrier to real-world reliability, particularly in
safety-critical contexts such as autonomous driv-
ing. This study investigates the robustness of the
Soft Actor-Critic (SAC) algorithm under such dis-
tributional shifts, with a focus on the influence
of entropy regularization. Using the HighwayEnv
simulator, SAC agents were trained with a range
of fixed entropy coefficients as well as automatic
entropy tuning. The agents were evaluated under
varying traffic densities and environmental com-
plexities. Experimental results reveal that moder-
ate fixed entropy settings (0.05 and 0.2) each per-
form well under specific conditions, while a high
entropy setting (0.9) achieves superior performance
in more challenging scenarios. Notably, automatic
entropy tuning consistently delivered the best over-
all results, achieving high average rewards and low
crash rates across all test environments. All experi-
ments were conducted on the DelftBlue supercom-
puter to ensure computational reliability and scala-
bility. These findings underscore the importance of
adaptive exploration strategies in improving policy
generalization in the face of distributional shifts.

1 Introduction
Reinforcement Learning (RL) has emerged as a powerful
framework for autonomous decision-making in complex and
dynamic environments, such as autonomous driving and fi-
nancial markets [12]. Despite achieving remarkable perfor-
mance in many benchmark tasks, RL agents often suffer from
reduced generalization when confronted with a distributional
shift mismatch between training and testing environments [6].
This challenge is particularly concerning in safety critical ap-
plications like autonomous driving, where failure can have
severe consequences [9].

A prominent class of RL algorithms used in continuous
control is the Soft Actor-Critic (SAC), which enhances ex-
ploration by optimizing for both expected return and entropy
[8]. SAC has shown strong empirical performance in envi-
ronments where training and testing distributions are stable.
However, recent work has questioned its robustness under
distributional shifts [2; 5]. In particular, the entropy regular-
ization coefficient, a hyperparameter central to SAC may play
a crucial role in either enhancing or hindering generalization
[11].

Given these concerns, this research aims to explore the fol-
lowing question:

How does the performance of SAC-trained
agents degrade under increasing distributional
shift, and how does this relate to the entropy reg-
ularization coefficient?

To explore this question, we will assess the robustness
of SAC in an autonomous driving simulation environment
(HighwayEnv), using traffic density as a source of distribu-
tional shift. The investigation evaluates the influence of var-
ious fixed entropy coefficients on the robustness of the SAC
algorithm. Furthermore, the effectiveness of automatic en-
tropy tuning is examined as a mechanism for enhancing pol-
icy generalization under distributional shifts.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work on RL robustness and entropy
regularization. Section 3 outlines our methodology, includ-
ing the experimental setup and evaluation metrics. Section 4
presents and analyzes the results. Section 5 concludes with
implications, limitations, and future directions.

2 Background
2.1 Reinforcement Learning
Reinforcement learning is a subfield of machine learning
used for decision making in complex environments. The
most widely used method for modeling reinforcement learn-
ing problems is by using the Markov Decision Process, a
method in mathematics used for sequential decision making.
The model that reinforcement learning uses is described by
(S,A, P,R, γ) where S is a set of states, A set of actions,
P (s′|s, a) is the transition probability of reaching state s′

from s if you take action a, R is the reward function and γ ∈
[0, 1]. There are various ways to solve reinforcement learn-
ing problems that are packed as Markov Decision Processes
and one of them is to learn a value function usually denoted
as Q(s, a) [7]. This function estimates the expected cumu-
lative reward that the agent will receive by taking action a
from the state s. For small environments, these values can be
stored in a table, known as a Q-table where each entry stores
a reward value for a distinct action pair. On the other hand,
if the environment has infinitely many state-action pairs, this
approach becomes slow and very likely unusable, and that is
why it is better to use approximate functions that can be mod-
eled in various ways. Popular choice for function’s model is
deep artificial neural network, known as Q-network or Deep
Q-Network. These networks take state as input and output
Q-values or each action that the environment has.

2.2 Soft Actor-Critic (SAC)
Soft Actor-Critic (SAC) is an actor critic algorithm that is
used for maximum entropy reinforcement learning. Incorpo-
rating entropy into the actor-critic algorithm makes it more
usable for environments with continuous action spaces, since
entropy can be defined as:

H(π(·|s)) = −Ea∼π(·|s) [log π(a|s)] (1)

where π(a|s) is the probability of selecting action a from
state s under policy π. In SAC, stochastic policy πθ(a | s)
represents the actor that wants to maximize the expected re-
turn of the reward and entropy of the policies, and this can be
seen from the equation:

Jπ(θ) = Est∼D, at∼πθ
[Q(st, at)− α log πθ(at | st)] (2)



where Q(s, a) is the soft Q-function that estimates the ex-
pected return of taking action a from state s and α is the en-
tropy regularization parameter, also known as temperature,
that controls how much the agent will explore and exploit.
While, the entropy coefficient α directly controls how much
stochasticity is rewarded during policy optimization, the SAC
policy remains inherently stochastic due to its parameteriza-
tion. In practice, the policy πθ(a | s) is modeled as a Gaus-
sian distribution with a learned mean and variance, and ac-
tions are sampled from this distribution.

The critic component in SAC relies on two separately pa-
rameterized Q-value networks, both essential for the learning
process. The use of two Q-functions helps reduce positive
bias in value estimation and mitigates overestimation issues
commonly seen in bootstrapped targets. The critic is trained
by minimizing the Bellman residual:

JQ(ϕi) = E(st,at,rt,st+1)∼D

[
(Qϕi

(st, at)− yt)
2
]
, i ∈ {1, 2}

(3)
where the target yt is computed as:

yt = rt+γ Eat+1∼πθ

[
min
i=1,2

Qϕ′
i
(st+1, at+1)− α log πθ(at+1|st+1)

]
(4)

In the equation above, γ is the discount factor and ϕ′
1 and ϕ′

2
are parameters of the target Q-networks.
This research will also involve automatic entropy tuning. The
formula for automatically computing the entropy coefficient
is as follows:

J(α) = Eat∼πθ
[−α (log πθ(at|st) +H)] (5)

2.3 Distributional Shift
A main challenge when RL is deployed in the real world is
when the test-time environment has some unexpected differ-
ences compared to training environment. These shifts are ex-
pected to occur in environments such as autonomous driving
or the stock market when extreme conditions occur. Since RL
agents are trained on fixed data sets, they have an exuse why
they usually do not perform well when environment experi-
ences something unusual and unexpected.

2.4 Motivation for This Research
This research questions whether changing the entropy coeffi-
cient during training can lead to improved robustness of the
final policy.

3 Related Work
Soft Actor-Critic (SAC) has established itself as a founda-
tional reinforcement learning algorithm for continuous con-
trol due to its maximum entropy formulation, which encour-
ages exploration and stabilizes training [8]. Despite these
strengths, its robustness under distributional shifts—common
in real-world applications like autonomous driving or finan-
cial markets—remains a critical challenge.

Recent studies have explored SAC’s vulnerabilities when
deployed in unseen environments. Chen et al. [2] show
that SAC can exhibit poor generalization in high-dimensional
action spaces due to its disregard for test-time distribution

shifts. Similarly, Enders et al. [5] proposed a risk-sensitive
variant of SAC, emphasizing the need to incorporate robust-
ness objectives into the policy optimization process.

Entropy regularization, a central component of SAC, has
also received targeted attention. Ortal [11] investigated how
different entropy settings influence robustness in autonomous
driving tasks, finding that overly aggressive entropy tuning
may lead to unstable behavior, while low entropy may hinder
adaptability. Expanding on this, Massiani et al. [10] argued
that entropy can be viewed as a viability-preserving mecha-
nism, helping policies retain robustness by maintaining action
diversity in uncertain scenarios.

To address robustness more formally, Cui et al. [3]
introduced DR-SAC, a distributionally robust extension of
SAC that explicitly accounts for model uncertainty. Their
method adjusts the policy and value functions to be robust
against worst-case distributions, outperforming standard SAC
in high-risk environments.

The environment used in this study—Highway-env—was
proposed by Bécsi et al. [1] and provides a suitable testbed
for evaluating policy behavior under varying traffic condi-
tions. Its configurability allows for realistic simulation of dis-
tributional shifts by altering lane counts, traffic densities, and
driver models.

In financial applications, Sun et al. [12] proposed Prudex-
Compass to evaluate RL robustness under market dynamics,
emphasizing the broader importance of assessing generaliza-
tion outside of typical benchmark settings. Fujimoto et al.
[6] further highlight that performance degradation due to dis-
tribution shift is not well captured by traditional RL metrics,
calling for robustness-aware evaluation protocols.

Lastly, Homola [9] applied uncertainty-aware RL to flight
control, demonstrating that similar robustness challenges ex-
ist in aerospace domains. These findings reinforce that the
sensitivity of SAC to entropy and environment variability is
not limited to driving, but rather a general limitation in cur-
rent deep RL algorithms.

Taken together, these works underscore the importance of
studying entropy coefficient tuning, environment variability,
and robust policy objectives—precisely the focus of our in-
vestigation.

4 Methodology
For the investigation of the Soft Actor-Critic (SAC) robust-
ness under distributional shifts, a set of controlled experi-
ments within a simulated autonomous driving environment
has been designed. The experimental environment is built
on Gymnasium, a modernized framework for OpenAI Gym
and for the implementation of Soft Actor-Critic model frame-
work, stable-baselines3 is used because it is a reliable imple-
mentation of this algorithm and possesses an API that is easy
to use.

4.1 Environment description
In order to evaluate the robustness of Soft Actor-Critic in au-
tonomous driving environment, Highway-env is used. It is
an open-source environment built with OpenAI Gym and it
can simulate a multi-lane highway environment. It can also



offer both discrete and continuous sets of actions, and since
we are estimating Soft Actor-Critic behavior we are going to
choose continuous set of actions. To describe the simulation
environment, an illustrative figure is included (Figure 1).

In this environment, the agent, represented as a green car,
receives a reward based on multiple behavioral metrics.

Figure 1: HighwayEnv

Specifically, the reward is a function of: the speed of the
vehicle (Ry), the duration the agent remains in the correct
lane (Rl), the time spent transitioning between lanes (Rv),
and the agent’s ability to maintain a safe (Rc) distance from
surrounding vehicles [1]. These performance indicators are
integrated into the reward function as follows:

R = αyRy + αlRl + αvRv + αcRc (6)

where their corresponding weighting coefficients are equal to

αy + αl + αv + αc = 1 (7)

4.2 Experimental setup
The experiment consists of a training and testing phase. In the
training phase, the model is trained with a fixed entropy coef-
ficient with a value within the range [0, 1], and it has a fixed
traffic environment. During the training phase, the SAC agent
is trained in a fixed traffic environment using a constant en-
tropy coefficient, selected from the range [0,1]. Also auto en-
tropy tuning is also used during training (see Appendix A.1).
In the testing phase, different parameters are modified in or-
der to answer the research question. The primary focus is
on altering traffic density, but other environment parameters
such as lane count and driver behavior modes are also varied
to understand their influence on agent performance and deci-
sion making. That is why two environments for testing are
going to be created, the one where all parameters except traf-
fic density are going to be the same as the one used for train-
ing, and another one where parameters besides traffic density
are going to be modified (see Appendix A.2) and the results
of those two are going to be discussed in the next section.

All tests and training sessions for this research project were
carried out on the Delft Blue supercomputer [4] and both
phases used five different seeds (see Appendix A.3 and A.4).

4.3 Steps to perform the experiment
1. Train the model with Soft Actor-Critic algorithm.

2. Test Soft Actor Critic agent on this model by modifying
various parameters from the highway-v0 model.

3. In the end, the total reward returned and the crash rate
for various parameters are calculated and compared with
other configurations.

Figure 2: Training performance

4.4 Training
To evaluate the impact of entropy regularization on learning
performance, SAC agents were trained under identical envi-
ronmental conditions using five entropy configurations: fixed
low (0.001), moderate (0.05 and 0.2), high (0.9), and adaptive
(auto-tuned).

Figure 2 shows the progression of the mean episode re-
ward during training. Among the tested configurations, the
agent with entropy 0.2 achieved the highest overall perfor-
mance and fastest convergence, suggesting that this moderate
entropy setting provided an optimal balance between explo-
ration and exploitation.

The auto-tuned entropy agent initially performed well and
closely tracked the performance of the 0.2 agent, although
it showed a late-stage dip, possibly due to over-adjustment
or instability under changing policy dynamics. Entropy 0.05
also resulted in strong learning, albeit slightly below 0.2, and
auto-settings.

The low entropy agent (0.001) demonstrated slow and
steady improvement but consistently underperformed com-
pared to other settings, indicating limited exploration. In con-
trast, the high-entropy agent (0.9) learned quickly early on
but plateaued at a lower reward level, likely due to excessive
randomness affecting convergence.

These results suggest that moderate fixed entropy values
(especially 0.2) and adaptive tuning can lead to the most ef-
fective policy learning, while extremely low or high entropy
values tend to either constrain exploration or introduce insta-
bility.

5 Discussion
This section presents a comprehensive analysis of the exper-
imental results, focusing on how different entropy regular-
ization strategies affect the robustness of Soft Actor-Critic
(SAC) agents under distributional shifts.

In the first testing environment, where only traffic density
was varied, the SAC agent trained with automatic entropy
tuning achieved the highest average episode reward across
all traffic levels, consistently outperforming all fixed entropy
settings (Table 1, Figure 3). It not only achieved the highest
rewards (e.g., 152.2 at 130 vehicles, see Appendix B.1), but
also maintained very low crash rates, never exceeding 0.04 at



any traffic level. These results suggest that adaptive entropy
tuning allows the agent to adjust its exploration dynamically,
enabling it to generalize effectively under gradually shifting
conditions without compromising safety.

Among the fixed configurations, entropy settings of 0.05
and 0.2 showed comparable performance, each outperform-
ing the other at two out of four traffic levels. Specifically,
0.05 achieved slightly higher rewards at 10 and 130 vehicles,
while 0.2 led at 30 and 70 vehicles. This indicates that both
values are generally effective, but their optimality may vary
depending on environmental complexity.

In contrast, the low-entropy agent (0.001) produced the
lowest average rewards overall. However, its reward trajec-
tory was non-monotonic—dropping significantly from 10 to
30 vehicles, recovering at 70, and falling again at 130—sug-
gesting that extremely limited exploration can lead to unsta-
ble policy generalization under changing conditions.

Despite its poor performance, the 0.001 agent maintained
a zero or near-zero crash rate across all traffic levels, with
values ranging from 0.12 at 10 vehicles to 0.21 at 130. This
implies that low entropy promotes overly cautious behavior
that is safe but ineffective.

The high-entropy agent (0.9) consistently produced mod-
erate rewards around 140 (see Appendix B.1) but was the
only fixed-entropy agent to achieve a 0.00 crash rate across
all traffic levels. This result defies the assumption that high
entropy leads to erratic or unsafe policies; in this case, greater
stochasticity likely promoted broader exploration and safer,
more adaptive driving strategies.
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Figure 3: Comparison of SAC agent rewards across traffic levels
with different entropy coefficients

Traffic Entropy (Mean ± SE)
0.001 0.05 0.2 0.9 Auto

10 0.12 ± 0.07 0.03 ± 0.01 0.02 ± 0.02 0.00 ± 0.00 0.02 ± 0.01
30 0.22 ± 0.01 0.04 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01
70 0.17 ± 0.03 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01

130 0.21 ± 0.04 0.04 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

Table 1: Crash rates across different traffic levels and entropy set-
tings with standard errors for new environment

The second testing environment introduced additional
complexity by reducing the number of lanes and modifying

driver behavior to be more aggressive, creating a harsher dis-
tributional shift. Under these conditions, the auto-entropy
agent again achieved the best performance (Figure 4) while
maintaining very low crash rates across all traffic densities
(Table 2), reinforcing its robustness in diverse scenarios.

Interestingly, the low-entropy agent (0.001), which previ-
ously had low crash rates, experienced a drastic spike in fail-
ure, with crash rates peaking at 0.71 at 70 vehicles. This
sharp decline in safety under more complex conditions con-
firms that limited exploration can severely hinder adaptability
and lead to brittle behavior.

The moderate entropy settings (0.05 and 0.2) again had
a fine balance between reward and safety. However, in this
more challenging environment, the high-entropy agent (0.9)
performed better, it did not only have very low crash rates
again, but also achieved higher rewards than 0.05 and 0.2 (see
Figure 4 and Appendix B.2). This suggests that increased
stochasticity becomes more beneficial as the unpredictability
of the environment increases, enabling more resilient policy
behavior.
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Figure 4: Comparison of SAC agent rewards across traffic levels
with different entropy coefficients.

Traffic Entropy (Mean ± SE)
0.001 0.05 0.2 0.9 Auto

10 0.64 ± 0.05 0.16 ± 0.03 0.16 ± 0.03 0.00 ± 0.00 0.03 ± 0.02
30 0.67 ± 0.06 0.11 ± 0.04 0.10 ± 0.05 0.01 ± 0.01 0.00 ± 0.00
70 0.71 ± 0.04 0.12 ± 0.03 0.12 ± 0.02 0.04 ± 0.03 0.02 ± 0.01

130 0.70 ± 0.06 0.04 ± 0.02 0.12 ± 0.02 0.01 ± 0.01 0.01 ± 0.01

Table 2: Crash rates across different traffic levels and entropy set-
tings with standard errors for second environment

6 Responsible Research
This study was conducted entirely in a simulated environment
(HighwayEnv) without involving human subjects or personal
data, eliminating direct ethical risks. However, the broader
application of RL in safety-critical domains like autonomous
driving underscores the importance of robust policy evalua-
tion under distributional shifts.

All experiments were run on the DelftBlue supercomputer
using controlled random seeds and open-source tools (stable-
baselines3 and HighwayEnv), ensuring reproducibility. Key



configurations such as entropy coefficients and traffic param-
eters are documented and can be shared upon request.

Limitations include the simplified nature of the simulation
environment, which may not fully capture real-world driv-
ing variability. Efforts were made to minimize computational
waste through efficient experiment design.

Throughout the development of this thesis, a large lan-
guage model (ChatGPT) was used as a supportive tool for
academic writing. Its assistance was limited to tasks such
as improving clarity, refining structure, generating LaTeX
code for appendices, and summarizing technical content. All
scientific contributions, experiments, and interpretations pre-
sented in this work are the result of independent research. The
use of the language model was guided by academic integrity,
with the goal of enhancing communication quality, not re-
placing original thought.

7 Conclusions and Future Work
This research investigated how different entropy regulariza-
tion strategies influence the robustness of Soft Actor-Critic
(SAC) agents under distributional shifts in autonomous driv-
ing scenarios. While entropy coefficients play a key role in
shaping exploration behavior, they are not the only mecha-
nism governing the exploration-exploitation balance. In SAC,
the stochastic nature of the Gaussian policy distribution inher-
ently contributes to exploration, and this effect can be further
influenced by action noise or other architectural factors.

Our experiments showed that while moderate entropy val-
ues (0.05 and 0.2) supported efficient learning in stable con-
ditions, they did not generalize as well when agents encoun-
tered unfamiliar or more dynamic environments. Higher en-
tropy (0.9) encouraged broader exploration and was better
suited to more challenging, shifted environments, although
this came at the cost of lower training performance. The most
effective results across both stable and shifted test settings
were achieved by the agent using automatic entropy tuning.
This approach allowed the agent to dynamically adjust its ex-
ploration strategy based on policy uncertainty, which resulted
in high average rewards and low crash rates.

The findings highlight that robustness in RL agents cannot
be attributed to entropy settings alone, but rather to how these
settings interact with the underlying policy structure and envi-
ronment variability. Exploration in SAC is composed of both
entropy regularization and stochastic policy.

Future research could explore more combinations of en-
tropy control and noise injection strategies. In addition, in-
corporating larger training sets, using more agents, or using
more realistic driving simulations would help validate these
results. Investigating robustness under not constant or adver-
sarial conditions and integrating strategies from risk-sensitive
or distributionally robust reinforcement learning, may further
improve the adaptability and reliability of SAC agents in real-
world deployment contexts.
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A Configuration
A.1 Training Environment Configuration

config = {
"lanes_count": 4,
"vehicles_count": 20,
"duration": 40,
"other_vehicles_type": "highway_env.

vehicle.behavior.IDMVehicle",
"simulation_frequency": 15,
"policy_frequency": 5,
"observation": {"type": "Kinematics", "

noise": 0.0},
"action": {"type": "ContinuousAction"},
"render_mode": None,

}

A.2 Evaluation Environment Configuration
Evaluation was performed under varying traffic levels defined
by:

TRAFFIC = [10, 30, 70, 130]

Each configuration was evaluated independently with the
corresponding ‘vehicles count‘. The base configuration is as
follows:

config = {
"action": {"type": "ContinuousAction"},
"lanes_count": 4,
"vehicles_count": <value from TRAFFIC>,
"duration": 40,
"other_vehicles_type": "highway_env.

vehicle.behavior.IDMVehicle",
"simulation_frequency": 15,
"policy_frequency": 5,
"observation": {"type": "Kinematics", "

noise": 0.0},
"render_mode": None,

}

Second environment is as follow:

config = {
"action": {"type": "ContinuousAction"},
"lanes_count": 2,
"vehicles_count": <value from TRAFFIC>,
"duration": 40,
"other_vehicles_type": "highway_env.

vehicle.behavior.Aggressive",
"simulation_frequency": 15,
"policy_frequency": 5,
"observation": {"type": "Kinematics", "

noise": 0.0},
"render_mode": None,

}

A.3 Soft Actor-Critic (SAC) Training Parameters

Policy: "MlpPolicy"
Entropy coefficient (ent_coef): [0.001, 0.05,

0.2, 0.9, auto]

Total training timesteps: 100_000
Device: "cuda"
Training over 5 fixed random seeds: [0, 1, 2,

3, 4]
Logging: TensorBoard , directory "./logs/

sac_seed_ <seed>"

A.4 Evaluation Procedure

- Ensemble of 5 SAC models trained with
different seeds.

- Actions averaged across models at each
timestep.

- Evaluation over 5 fixed random seeds: [42,
43, 44, 45, 46]

- Metrics recorded:
- Average reward (avg_reward)
- Reward standard deviation (std_reward)
- Success rate (1 - crash_rate)
- Crash rate

- Results saved to: "results/
eval_results_ensemble.csv"

B Results
B.1 Environment 1

Traffic Average Reward – Environment 1
0.001 0.05 0.2 0.9 Auto

10 105.6 135.8 134.2 140.1 143.4
30 98.7 123.4 127.5 139.0 147.2
70 112.2 128.9 130.4 141.5 150.7
130 101.3 124.6 129.1 143.3 152.2

Table 3: Average rewards across different traffic levels and entropy
settings for first environment.

B.2 Environment 2

Traffic Average Reward – Environment 2
0.001 0.05 0.2 0.9 Auto

10 94.5 120.1 121.4 135.2 141.8
30 89.7 117.3 118.8 137.5 145.5
70 85.4 116.0 117.2 139.4 148.3
130 90.6 119.2 120.7 138.6 147.6

Table 4: Average rewards across different traffic levels and entropy
settings for second environment.
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