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Abstract— Flows that have exceeded a given percentage of the
last sliding window of N packets, denoted as heavy-hitter flows,
require special handling, since they may disrupt the service of
other flows or may be indicative of malicious traffic. However,
even when equipped with a programmable switch, it is unclear
how to detect heavy hitters on a per-packet basis, while obeying
the stringent switch memory access rates. For instance, existing
solutions, such as HashPipe, cannot detect heavy hitters without
halving the line rate and do not support sliding windows.

To the best of our knowledge, this paper is the first to
present heavy-hitter detection solutions that provide per-packet
granularity at line-rate performance. We realize this by in-
troducing (1) Modulo sketching, a novel counting algorithm
that reuses counters and limits the impact of smaller flows
beyond early processing stages; and (2) Sequential Zeroing, a new
approach to extending interval-based schemes to sliding window
measurements. Our solutions are extensively evaluated, both via
simulations and experiments on a Netronome SmartNIC, and
demonstrate significant performance gains over the state-of-the-
art.

I. INTRODUCTION

This paper is about providing the ability to detect, online
and at high line-rate, whether each packet going through a
programmable switch is part of a heavy-hitter flow, which is
a flow that has exceeded a threshold number of packets in
the sliding window of the last N packets. For network oper-
ators, such an ability is of crucial importance to enable fine-
grained Denial-of-Service (DoS) mitigation, traffic anomaly
detection, flow-size-aware routing, Quality-of-Service (QoS)
management, and load balancing [4]–[6], [22].

Scope. We consider enabling per-packet heavy-hitter detection
in the data plane of programmable switches, which rely on
network programming languages such as P4 [8]–[10], [25]. P4
defines registers, i.e., stateful memory blocks that the switch
can read from, modify, and/or write to, while packets are
being processed. When deployed in a network, a P4 program
works in coordination with a control plane, which configures
the run-time rules and action variables. P4-programmable
hardware can be classified as having either (1) local memory,
as in Barefoot [24], where packets are processed through a
pipeline of several hardware stages. Each stage has its own
separate memory and processing resources. To maintain a high
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processing throughput, typically only one read-modify-write
action is allowed per register array; or (2) shared memory,
as in Netronome [1], where concurrent memory accesses to
the same register array are allowed. Since memory accesses
consume most of the processing cycles in programmable
hardware and may lead to race conditions, they should be
minimized. In this paper, we formulate our algorithms so they
could be implemented in both hardware models.

Motivation. Common heavy-hitter detection algorithms (e.g.,
Space-Saving [18], CSS [6], WCSS [6], and Memento [4])
violate programmable hardware constraints, as they are not
organized in consecutive simple stages, require too many
memory accesses per processed packet and/or use actions
not supported by programmable hardware. Simple sketching
schemes, like Count-Min (CM) [13], have no mechanism to
count over the sliding window of the last N packets, and in
fact do not even provide a clear implementation for counting
over periodic intervals, as they do not contain a mechanism
to simultaneously reset the whole data structure online [26].
Even existing data-plane solutions that were developed for
P4, such as HashPipe [22] and PRECISION [5], come with
several limitations: most significantly, (1) they also have no
mechanism to count over sliding windows; and (2) even when
counting over periodic intervals, they cannot compute online
a count estimate for each packet, unless they recirculate each
packet through the pipeline twice, thereby halving the line
rate (see Appendix). In addition, (3) they also do not provide
a simultaneous memory flushing implementation for counting
over periodic intervals; and (4) they intrinsically need flow
identifiers for each counter, thus requiring additional memory.

Contributions. We present a body of solutions for heavy-hitter
detection on programmable network hardware, in which we
aim at minimizing the false-positive and false-negative rates.

In Sec. II, we start by considering the easier problem of
detecting heavy hitters over a fixed interval of N packets.
To do so, we introduce Modulo Sketching, a new sketching
approach. Its most salient feature is that it relies on conditional
sketching, a sketching approach that uses several consecutive
stages of counter arrays and attempts to filter out the non-
heavy-hitter packets by stopping them at the first stages. As a
result, heavy-hitter packets are nearly the only ones to reach
the last stages, thus (1) reducing potential collisions between
different flows, which in turn reduces the need for a large



memory size; and also (2) reducing memory access rates,
since non-heavy-hitter packets almost never access later stages.
Therefore, this approach is particularly adapted to the common
pipeline structure of programmable switches. It stands in
contrast to previous P4-based algorithms like HashPipe and
PRECISION, which need to go through all stages in order to
evaluate the size of a packet’s flow (see Appendix for details).

Next, in Sec. III, we consider the case of heavy hitters
over sliding windows, which is our main goal. We attempt to
leverage our interval-based Modulo sketch by generalizing it to
sliding windows. Unfortunately, unlike intervals, sliding win-
dows also need deletions, which introduce additional memory
accesses. In addition, implementing a perfect sliding window
would consume a large portion of the limited switch memory,
as it would require us to remember the full packet order. We
thus suggest two different approaches to efficiently approxi-
mate a sliding window: (1) Sequential Window, which relies
on control-plane intervention, and (2) Zeroing Window, an in-
data-plane counter zeroing technique. We finally combine both
to yield the Sequential Zeroing algorithm in the data plane.

Finally, in Sec. IV, we evaluate the performance of our new
algorithms and demonstrate how they outperform existing ap-
proaches. We run our evaluations both through simulations and
through experiments on a Netronome SmartNIC. In particular,
we illustrate on CAIDA traces how our final schemes can
achieve negligible false-negative rates and low false-positive
rates while providing an estimation for each packet at line rate
using the data plane, even when assuming a small memory
consumption of 55kB.

II. INTERVAL MEASUREMENT

As a first step towards our goal of determining heavy hitters
over the last N packets, we look at the easier problem of
detecting heavy hitters over a fixed interval of N packets. In
other words, our initial goal is to determine for each incoming
packet whether its flow has exceeded a threshold number H
of packets within this interval.

We would like to obtain a heavy-hitter detection scheme
that satisfies two major criteria: (1) it should not consume too
much memory and (2) it should have a low memory access
rate. In addition, as commonly considered in the literature,
we assume that false negatives (failures to detect heavy-hitter
flows) carry a higher penalty than false positives [19], [21].

Conditional sketching. To satisfy these criteria, we introduce
the concept of conditional sketching, a sketching approach that
relies on several consecutive pipelined stages of counter arrays.
Since we want to reduce the overall memory access rate, our
key idea is to stop non-heavy-hitter packets in early stages.
Thus the overall number of operations is significantly reduced,
as heavy-hitter flows are nearly the only flows to reach the last
stages.

Modulo Sketch. We introduce the Modulo sketch algorithm
to efficiently implement the concept of conditional sketching.
As mentioned, each packet goes through several stages to
update its counters. However, following conditional sketching,
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}

Fig. 1. Modulo sketch with d = 3 stages. The flowID of an incoming packet
first hashes into a first-stage (red) counter and increments it. If the counter
value is th1 − 1 and it is incremented to th1 ≡ 0 mod th1, we reset the
counter, set its associated bit to 1, hash the flowID into a second-stage (red)
counter, and increment that counter as well. If the result is below the threshold
th2, we stop here. As the counter’s associated bit is 0, there is no need to
continue to the third stage, and we can evaluate flowID as not a heavy hitter.

most packets will stop updating counters at the early stages
of the stage pipeline. The packets may then continue over
several additional stages without any counter update simply
to estimate the packet’s flow size.

Intuitively, Modulo sketch works like a clock, as it zeroes
the counter of the seconds (first stage) when incrementing
the counter of the minutes (second stage). It proceeds in
the same way by resetting the minutes (second stage) when
incrementing the hours (third stage), and so on. Thus, Modulo
manages to increase its efficiency by both (1) stopping most
counter updates in early stages and (2) reusing the counters.

Architecture. As Fig. 1 illustrates, the Modulo sketch consists
of d successive stages of counters, where d is the depth of the
sketch. Each stage i holds widthi counters of ci bits each. We
define the threshold thi of each stage 1 ≤ i ≤ d− 1 such that

H >

d−1∏
i=1

thi, (1)

where H is the heavy-hitter threshold that was defined above.
In addition, to enable the conditional sketching, we intro-

duce a bit array at each stage but the last, i.e., each counter
in stage 1 ≤ i ≤ d− 1 is provided an additional initially-null
bit that determines whether the packet should continue to the
next stage.

Algorithm. As shown in Fig. 1, upon a packet’s arrival, its
flowID is first hashed onto a counter in the first stage. It then
increments this counter. Next, for any stage 1 ≤ i ≤ d−1 but
the last, the first time that the resulting counter value reaches
thi ≡ 0 mod thi, we set its associated bit to 1, indicating that
the threshold has been reached at least once, and therefore that
all subsequent packets hashing to this counter should continue
to the next stage i + 1 in order to estimate their flow size.
Therefore each packet goes through all stages with a set bit,
until it reaches a stage where it hashes to a counter with a null
bit, in which case it can stop. Since H >

∏d−1
i=1 thi (Eq. (1)),

any packet that stops before the last stage is considered as



a non-heavy-hitter. More generally, the flow size of a packet
that sees a counter value vi at each stage i can be estimated
as v1+ th1 · (v2 + th2 · (· · ·+ thd−1 · vd)), which needs to be
compared to H .

Threshold details. To fully utilize all the bits of all the coun-
ters, we define the threshold thi of each stage 1 ≤ i ≤ d− 1
to be thi = 2ci . We also allocate enough bits to the last-stage
counters so that they never overflow even if a single flow uses
N packets, i.e., cd =

⌈
log2

(
N+1∏d−1
i=1 thi

)⌉
bits per counter.

Properties. The main advantage of Modulo is its reduced
memory consumption at high scales. If N packets are added to
the sketch, at most N/th1 packets reach the second stage to
update it. More generally, at most N/

∏i−1
j=1 thj packets will

reach stage i. Therefore we have an exponentially decreasing
load further down the stages, yielding a particularly scalable
architecture. For instance, when doubling the window size N
and the heavy-hitter threshold H , Modulo would only need to
double a single threshold. Again, we can increase the width
of the first stages at the expense of smaller widths for the late
stages.

Note that the Modulo sketch presents the drawback of
allowing a small number of false negatives. Specifically, the
packet that resets a counter is the one that increments the next-
stage counter. For instance, a first flow F1 may increment a
first-stage counter to 63, but then the packet of another flow
F2 may arrive, reach the threshold of 64, reset this counter,
and increment its hashed second-stage counter, thus in a sense
stealing the entire counter value of 64.

III. SLIDING WINDOW MEASUREMENT

The goal of this paper is to compute online heavy hitters
over sliding windows. Since in the previous section, we consid-
ered the problem over intervals as a first step, we would now
like to provide ways to generalize interval-based sketching
schemes to sliding windows.

However, sliding windows involve both additions and dele-
tions at each packet arrival, and therefore cause many chal-
lenges to overcome: (1) we want to delete the last packet
from the counting structure without keeping in memory the
list of packets, and therefore without remembering what the
last packet is, as this would significantly increase the memory
consumption and the number of memory accesses; (2) the logic
of a conditional sketch-based structure like Modulo breaks
down with deletions: e.g., we mentioned above the example of
a flow F1 contributing 63 packets out of a counter threshold
of 64, and another flow F2 contributing the last packet and
consequently incrementing its hashed second-stage counter. If
we want to delete an F1 packet from the structure, we would
not know how to update the second-stage counters; (3) finally,
the counter increments (due to packet arrivals) and decrements
(due to packet deletions) are not allowed to occur in two
different counters of the same stage, since there is a bound
of one memory access per stage, and therefore there needs to
be some scheduling of the memory accesses.
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Fig. 2. Sequential Window algorithm with Modulo sketch, using k = 3.
The Sequential Window architecture comprises k+1 = 4 sub-intervals, each
implementing a Modulo sketch with d = 2 stages for dN/ke packets, thus
covering the entire window of N packets. An incoming packet would only
update its count in the last sketch (in red), while reading and summing its
count estimate from all 4 sketches (in green and red).

First, in Sec. III-A we generalize interval-based approaches
to support the sliding window concept. Next, in Sec. III-B
we propose a sliding window approach to reset the counting
sketches directly in the data plane, while the packets are
processed. Finally, we combine the advantages of the two
previously described approaches to create a sliding window
solution that can maintain accuracy over time without any
intervention from the control plane.

A. Sequential Window

Architecture. As Fig. 2 illustrates, given some integer param-
eter k, our Sequential window scheme periodically implements
an interval-based sketching scheme such as Modulo or Count-
Min of depth d every sub-interval of

⌈
N
k

⌉
packets. Therefore,

each window of N packets can be covered by at most k + 1
consecutive interval sketches.
Algorithm. At the first incoming packet, we start by counting
in the first counting sketch corresponding to the first sub-
interval. Then, every

⌈
N
k

⌉
packets, we keep advancing to the

next counting sketch. When we are done with the last sketch,
we can reset the first one using the control plane, since it
counts packets that were received over N packets ago. Every⌈
N
k

⌉
packets, we then keep resetting the next sketch in the

sequence to start a fresh sketch for the next sub-interval.
Finally, to estimate a count for a given packet, we simply
sum the estimates provided by all the sub-intervals (shown in
green in Fig. 2).
Threshold details. Since we scaled down the N -packet inter-
vals to

⌈
N
k

⌉
-packet sub-intervals, we want to similarly scale

down the thresholds, and therefore update Eq. (1) by using a
locally-scaled-down heavy-hitter threshold bH/kc.
Properties. The Sequential Window approach has several
advantages. First, by avoiding any deletions and including
enough sub-intervals to cover the entire sliding window of
N packets, the Sequential Window scheme does not introduce
additional false negatives.

Second, the value k helps to trade off the performance
against the total number of stages, thus targeting different



hardware platforms as well as different window sizes. For
instance, increasing k will decrease the number of packets
processed by each sub-interval, and therefore reduce the
number of unique flows and the number of hash collisions in
each stage, thus increasing accuracy. Also it will decrease the
number of packets that are counted outside the window, and
therefore further decrease the number of false positives. On the
other hand, it will also need more stages in the implementation.

Third, the Sequential Window approach is easily imple-
mentable on any type of programmable hardware. As illus-
trated in Fig. 2, it only requires up to d · (k + 1) memory
accesses per packet, i.e., d · (k + 1) − 1 reads and 1 read-
modify-write. Thus, on hardware with shared memory, e.g.
Netronome, the sketch can easily be tuned by the choice of k
and d to avoid a drop in throughput. Moreover, for other types
of hardware, it does not violate the one-access-per-stage rule.

However, there are several disadvantages to this approach.
First, the total number of consumed stages increases by a
factor of k+1 compared to any interval-based sketch: (k+1)·d
stages in total. Second, by counting over a larger window
than the actual sliding window, we introduce false positives.
Third, and most significantly, all the counters in the oldest sub-
interval need to be reset at the same time using the control
plane. Thus, this approach is not entirely done in the data
plane. This control-plane resetting may be an issue on a
fast link with a small window. For instance, Barefoot Tofino
switches can process packets at 6.5Tbps. Assuming a window
of N = 216 minimally-sized packets of 64B and k + 1 = 8,
then every 81ns the hundreds or thousands of counters of a
sub-interval would need to be reset, which at best increases
the processing resources from the control plane used by the
algorithm and at worst is simply impossible, depending on the
hardware platform.

B. Zeroing Window

Overview. We now look for an alternative way of transforming
an interval-based sketch like Modulo or Count-Min into a
sliding-window-based sketch. A significant challenge is that
we need to delete old packets that are not in the sliding window
anymore, but on the other hand we do not want to allocate
memory space to remember old packets. Instead, our first key
idea is to loop through all counters and zero them once every
N packets, thus ensuring that packets that have left the sliding
window do not influence our counts anymore. In addition, our
second key idea is to make sure that we can do it in the
data plane, and do not require the massive intervention of the
control plane anymore.

Initial algorithm. Our Zeroing Window algorithm is relatively
straightforward. Consider a given interval-based sketching
algorithm like Modulo or Count-Min. Then, for each stage i
of width widthi in the sketching algorithm, Zeroing Window
defines a zeroing period mi = bN/widthic, and essentially
resets the next counter at every mth

i packet that is added
to the sketch. Specifically, it resets counter j at packets
j · mi mod N . For instance, if N = 216 = 65, 536 and

widthi = 1, 000, it resets the first counter at packet 65 of the
window, the second counter at packet 130, and so on, until the
last counter at packet 65,000. It then resets the first counter
again at packet N + 65, etc.

Data-plane implementation. The above algorithm is simple,
but it violates our rule that each stage should be accessed at
most once per packet, since it may want to increment a counter
as well as reset another one within the same stage. Therefore,
as Fig. 3(a) illustrates, we suggest a data-plane implementation
of the Zeroing Window algorithm. We split each stage into
two equal-sized and independent sub-stages. Then, we want to
apply the same zeroing scheme to each sub-stage. Assuming
that the hashing functions are uniformly distributed, each sub-
stage is only accessed at most half the time by the inserted
packets. Therefore, whenever a counter needs to be reset, it
can simply wait for the next time its sub-stage is free. In
the worst case this waiting time is unbounded, and in the
case where all packets are independent it is a geometrically
distributed variable of expected value below 2. In practice, we
never encountered any issue with this waiting time.

Properties. The main benefit of the Zeroing Window scheme
is that it manages to operate in the data plane. However,
because it resets arbitrary counters in the sketches, its disad-
vantage is that it also significantly increases the false negative
rate, which we consider as more costly than the false positive
rate. Therefore, we also consider several ways of reducing
these false negatives for different sketching algorithms, at the
expense of increasing the false positives:

Zeroing the Count-Min sketch. When removing values from
the CM-sketch, or as in our case resetting some of the
counters to 0, one should apply the median instead of the
minimum [13]. For instance, if the d = 3 counts are 100, 110
and 120, and 120 is zeroed, the median estimate of 100 is
more accurate than the minimum estimate of 0.

Zeroing the Modulo sketch. We now do not stop at the first
time that a bit is set to 0 (Modulo sketch), but estimate the
flow size using the counts over all stages.

C. Sequential Zeroing: Zeroing the Sequential Window.

We finally introduce a last scheme, denoted Sequential
Zeroing, which combines the Zeroing approach with the
previously-described Sequential window. As Fig. 3(b) illus-
trates, Sequential Zeroing removes outdated flow counts from
the last sub-interval of Sequential Window by applying the
Zeroing Window algorithm to this sub-interval. Namely, it can
do it automatically in the data plane, without any intervention
from the control plane, by splitting its stages into sub-stages
and applying the scheduling described above.

IV. EVALUATION

A. Experiment setup

We conducted our evaluations, first using simulations in
Python, and then experiments with a Netronome Agilio CX
SmartNIC [1].
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(b) Sequential Zeroing.

Fig. 3. Illustrations of the Zeroing Window technique that resets counters in the dataplane. (a) Zeroing Window for a Modulo sketch of depth d = 3 stages.
Each stage is subdivided into 2 equal-size sub-stages (in dashed rectangles), and we are only allowed one memory access per sub-stage. In addition, assume
we want to reset the counters with blue arrows. The incoming packet checks its hashed (green) counter in the first stage, which is equal to the first-stage
threshold th1 − 1 = 63, and then resets it and increments a (red) second-stage counter. As a result, we can reset the (blue) first-stage counter in the top
sub-stage, since there is no memory access to this sub-stage. However, we cannot reset the second counter with an arrow, and therefore will wait for the next
time that this sub-stage is not accessed by a packet. (b) Sequential Zeroing scheme, which applies the Zeroing Window technique to the last sub-interval of
the Sequential Window. We use the example of Fig. 2 with k + 1 = 4 sub-intervals, each implementing a Modulo sketch of depth d = 2. Again, each stage
is subdivided into 2 equal-size sub-stages (in dashed rectangles). Assume we want to reset the last (blue) counters of both of the top sub-stages in the left
sub-interval that contains the oldest packets. We can indeed do so without violating memory constraints.

Hashing. The 5-tuple flow identifier (flowID) consists of the
source IP, destination IP, layer 4 protocol, source port, and des-
tination port. All our implementations used the CRC16 hash
function. Different hash functions were created by appending
seed values to the flow identifiers.

Traces. We classified heavy hitters as flows whose packet
counts were above a threshold H = bN/1000c, initially
considering an interval size of N = 216 packets. Packets
were obtained from (1) 40 different traces collected from an
ISP backbone link at the Equinix data-center in Chicago in
January 2016, made available by CAIDA [23], and (2) 10
different traces collected from university campus data centers
(UNI1 and UNI2 dataset), made available by [7]. We observed
similar results using both datasets, even though they have
significantly different flow-size distributions (the university
traces have more heavy hitters), and therefore only present
the CAIDA results due to space constraints. In the hardware
evaluation, all the traces were replayed at the rate of N packets
per second.

Metrics. We evaluated all schemes on the percentages of
false negatives (percentage of heavy hitter packets that are
not reported) and false positives (percentage of non-heavy
hitter packets that are reported). As previously mentioned,
following literature, we assume that the penalty of false
negatives is significantly higher than that of false positives. We
also measured the distribution of the absolute count estimation
error.

Comparison baselines. For interval-based evaluations, all
of our solutions were compared against the following base-
line solutions: (1) Count-Min (CM) sketch [13], (2) Hash-
Pipe [22], (3) HashPipeMod which implements HashPipe
using 2B flowID fingerprints rather than 13B flowIDs (see
Appendix), (4) HeavyKeeper [28], and (5) PRECISION [5].

For the sliding-window evaluations, since we are not aware
of any other P4 solution that implements sliding windows, we
considered a set of solutions that combine all interval-based
solutions with a periodic resetting of all the counting stages
every N packets. In all evaluations, we fixed a given allocated
total memory for a fair comparison.

B. Interval measurements

Memory vs. performance. Fig. 4(a) and 4(b) show the
performance of our solutions for two different memory quotas.
As expected, assigning more memory improves the accuracy
for all solutions, as the width of the counter arrays can be
increased, which reduces the number of hash collisions. We
can see how for small memory allocations, other approaches
start to break down, while the Modulo sketch manages to
achieve acceptable heavy hitter detection. The main reason
is a more efficient memory usage: the total number of coun-
ters used in our scheme is much higher than in the other
approaches, since our counters do not need to count up to N
and therefore are smaller. This memory efficiency makes our
solution uniquely suitable for programmable hardware. While
not included due to a lack of space, we found that our solutions
still outperformed the state of the art even for higher memory
allocations (e.g., 300 kB), although the outperformance is
reduced.
Tuning of Modulo. Choosing a higher value of th1 that
filters more flows and prevents them from reaching the last
stages of the pipeline improves accuracy (Fig. 4(c)). Also,
most counters should be placed in the first stages, and only
a few of them in the last stages (Fig. 4(d)). This way, due to
larger widths in early stages, the probability of collisions in the
first stages is also lowered and the number of false positives
reduced. However, this comes at a cost: the probability of
a collision between two flows reaching the last stages is
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(a) Memory 15kB.
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(b) Reducing memory to 5kB.

0 1 2 3 4 5 6
0

20

40

60

80

100

8910 131415

False Positives [%]

Fa
ls

e
N

eg
at

iv
es

[%
]

(c) Impact of thresholds. Memory 15kB.
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(d) Impact of widths. Memory 15kB.
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(e) Impact of interval size. Memory 5kB.
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Fig. 4. Interval-based simulation of all schemes using 40 different CAIDA traces. (a) False-positive vs. false-negative rates of all schemes given 15kB of
memory and an interval of N = 216 packets. HashPipe and our modified HashPipeMod with flowID fingerprints exhibit many false negatives, which we try
to avoid (note that they would also run at half the line-rate). Count-Min (CM) performs better, especially with d = 2 stages. Our Modulo scheme performs
best, especially with d = 2. (b) The smaller memory of 5kB displays comparable results, although CM begins to underperform. (Note that even with larger
memories, CM never performs better than our schemes.) (c) Varying the thresholds shows that it is better to set high thresholds at the first stages to filter out
the small flows. (d) Varying the widths of each stage shows a relatively small sensitivity; though it seems better to decrease the width in the second stage by
an order of magnitude in order to exploit the smaller number of collisions. (e) Increasing the interval size N further increases the gap in the false-positive
rate between Modulo and the other schemes, since the exponential counting of Modulo starts to play a larger role (we used the best parameters from (a) for
each algorithm). (f) Plotting the CCDF of the count estimation error, i.e., the probability that the absolute difference between the estimated flow size and the
real flow size of each packet exceeds some value, shows that Modulo may not fit alternative goals. For instance, it has a larger chance than CM of yielding
a high estimation error.
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(a) Hardware evaluation. Memory 15kB.
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(b) Hardware evaluation. Memory 5kB.

Fig. 5. Netronome SmartNIC hardware experiments for interval-based schemes using 40 different CAIDA traces. (a) and (b) correspond to the simulation
settings of Fig. 4(a) and 4(b), respectively. On Netronome SmartNICs, the speed of the control plane is the main limiting factor. Intuitively, resetting the
interval counts is not immediate. While an RPC call is initiated every second for every array, these actions are not executed instantaneously, resulting in an
increased number of false negatives. Hashpipe and PRECISION cannot provide an online count estimate (see Appendix). Similarly, as programmable hardware
does not support floating point operations, nor loops to implement fixed point math, HeavyKeeper cannot be implemented.
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Dataplane schemes:
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Sequential Zeroing: 10 Modulo(k=2, th=32, widths={1,0.1})
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(a) Control plane schemes. Memory 55kB.
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(b) Dataplane schemes. Memory 55kB.
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Fig. 6. Sliding window simulation using 40 different CAIDA traces. (a) False-positive vs. false-negative rates of schemes that need the control plane for
deletions, given 55kB of memory and a window of N = 216 packets. Simply periodically resetting interval-based schemes yields significant false negative
rates, because at the start of each interval these schemes do not take into account packets that appeared previously. The Sequential Window approach that
implements several sub-intervals of interval-based schemes yields significantly lower false negative rates, yet the false positive rates are slightly high. (b) Same
as (a) with schemes that can perform resets in the data plane and do not need the control plane. Zeroing Window, which periodically resets each counter,
attempts to reach some compromise between false positives and negatives, but still yields a non-negligible rate of false negatives. Sequential Zeroing, which
applies the Zeroing Window approach to the last sub-interval of Sequential Window, achieves a good performance with low false negative rates and reasonable
false positive rates. (c) and (d) Looking at the CCDF of the count estimation error, we find that the Sequential Zeroing schemes perform best again, even
though they do not need control-plane intervention.
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(a) Hardware evaluation. Control plane schemes. Memory 55kB.
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(b) Hardware evaluation. Dataplane schemes. Memory 55kB.

Fig. 7. Netronome SmartNIC experiments for sliding window schemes using 40 different CAIDA traces. HashPipe and PRECISION cannot provide an
online count estimate (see Appendix). And, since programmable hardware does not support floating point operations, nor loops to implement fixed point
math, HeavyKeeper cannot be implemented. (a) and (b) correspond to the simulation settings of Fig. 6(a) and Fig. 6(c), respectively. (a) On programmable
hardware, the Sequential window was able to maintain high accuracy. (b) Our Sequential Zeroing approach displays a negligible rate of false negatives. Its
slight increase in false positives when compared to simulations may be due to race conditions in hardware.

increased, leading to an increased probability of high count
over-estimation (Fig. 4(f)).
Interval sizes. Fig. 4(e) shows that Modulo performs very well
with longer interval sizes, suffering only from a small decrease
in accuracy (0.12 percentage points of false positives) given
the same memory consumption (5kB).
Count estimation error. Fig. 4(f) shows the complemen-
tary cumulative distribution function (CCDF) of the absolute

count estimation error, i.e., the probability of exceeding a
given value. HashPipe is clearly outperformed by all other
approaches, which is also reflected by its large number of
false negatives (see Fig. 4(b) and 4(a)). Count-Min has a
higher probability than Modulo of being mistaken in the flow
count estimation, but a slightly smaller probability of being
significantly mistaken (by more than 17).

Hardware experiments. Fig. 5(a) and 5(b) run experiments



on Netronome SmartNIC, using the same settings as the
simulations of Fig. 4(a) and 4(b), respectively. We assume
that the control plane takes time resetting intervals, and runs a
full reset of all counters each time in a somewhat naive way.
As expected, we find that this indeed impacts the performance
of all schemes.

C. Sliding-window measurements

Control-plane solutions. Fig. 6(a) and Fig. 6(c) show that
our Sequential Window outperforms all resetting solutions that
rely on an interval-based scheme and reset it periodically.
Sequential Window keeps a low percentage of false positives
(as low as 4.19% with just 55kB),

Data-plane solutions. Fig. 6(b) shows that our Zeroing algo-
rithm in combination with Modulo always outperforms a so-
lution that resets all counts using the control plane, by almost
halving the percentage of false negatives. Moreover, Sequen-
tial Zeroing, which combines our two window approaches,
Sequential window and Zeroing Window, outperforms all
other schemes, by dramatically lowering the percentage of
false negatives (from over 20% to 1.67%) while keeping a
reasonable false positive percentage. Packets from the extra
sub-interval are gradually removed, and the count estimation
error, as a result, is reduced (Fig. 6(d)).

Hardware experiments. Fig. 7(a) and 7(b) show the results
of our experiments on a Netronome SmartNIC, using the same
settings as the simulations of Fig. 6(a) and 6(b), respectively.
Again, our new schemes significantly outperform the others.

V. RELATED WORK

Algorithms relating to heavy-hitter detection can be divided
into three groups: (1) sampling algorithms, (2) sketch-based
algorithms, and (3) counting algorithms.
Sampling algorithms. Sampling algorithms (NetFlow [12],
Sflow [20], Sample&Hold [16]) are currently widely deployed
and used by network operators. In these algorithms, nodes
usually maintain current flow statistics that are periodically
sent to a remote point for further analysis. However, they do
not determine for each packet whether it belongs to a heavy
hitter, which is needed for fine-grained control.
Sketch-based algorithms. Sketch-based algorithms such as
ours use specialized data structures called sketches that hash
and count all packets in the switch hardware. In exchange
for some count overestimation or underestimation, this ap-
proach can achieve a considerably lower memory usage, which
makes it especially suitable for programmable hardware.
Unfortunately, existing algorithms (Count-Min Sketch [13],
UnivMon [17], Count Sketch [11], Probabilistic lossy count-
ing [14], CountMax [29], Elastic sketch [27], Cold Filter [30],
HeavyKeeper [28]) were not designed for P4-programmable
switches and often cannot be directly implemented without
modifications or loss of accuracy. For example, to estimate a
count of an item, Cold Filter calculates a minimum of d hashed
counters in each stage, violating the constraint of one memory
access per register array present on modern programmable

hardware. Moreover, other meta-algorithms, such as Elastic
sketch that relies on the Count-Min sketch, are orthogonal to
our approach and could benefit from using our sketches with
higher accuracy.
Counting algorithms. Counting algorithms (HashPipe [22],
PRECISION [5], Space-Saving Algorithm [18], CSS [6])
maintain a data structure consisting only of heavy-hitter flows
and corresponding counts. The Space-Saving algorithm re-
quires either maintaining a sorted list or finding an item with
the minimum counter value. Unfortunately, both are either not
supported by existing programmable hardware or exceed the
available processing budget. CSS uses TinyTable [15], which
also violates the available processing budget. Hashpipe [22]
is explained in the Appendix and PRECISION [5] is similar.
Both were designed for P4, but cannot operate at line-rate.
Sliding window approaches. (WCSS [6], SWAMP [2], [3],
Memento [4]) remove the oldest entries from the counting data
structure so that only information about the last N processed
packets is present at the switch. SWAMP [2], [3] maintains an
additional array with flow identifiers from the last N packets.
Every time a new packet arrives the oldest entry from the array
is removed and replaced with a new flow identifier. However,
depending on the selected window size, memory consumption
is very high. Ben-Basat et al. present two different solutions
in [4], [6] optimized for memory consumption with constant
query time. However, their use of TinyTable [15] is unsuitable
for programmable network hardware.

VI. CONCLUSION

In this paper, we introduced the first heavy-hitter detection
algorithm for programmable switches that provides per-packet
granularity at line-rate performance.

To do so, we first introduced the conditional sketching
technique that filters most small flows in early stages, and
illustrated it by developing an interval-based sketching algo-
rithm called Modulo sketch. Next, we addressed the problem
of enabling such conditional sketching to work over sliding
windows. Specifically, we started with the Sequential Window
algorithm that is based on sub-intervals and needs the control
plane. We then presented the Zeroing Window technique that
periodically resets each counter in any interval-based sketch
and which works fully in the data plane. Last, we combined
both techniques to obtain the in-data-plane Sequential Zeroing
scheme. In our evaluations, we showed how our techniques
significantly improve the accuracy of our estimation when
compared to several baseline algorithms inspired by the
literature, and implemented our schemes on a Netronome
SmartNIC.

Beyond bringing sliding-window heavy hitter detection to
the dataplane, we believe the techniques introduced in this
paper, such as (1) zeroing through ping-ponging the memo-
ries, (2) sequential windows, and (3) counter reuse through
modulo, can also benefit dataplane measurement applications
in general.
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Fig. 8. HashPipe algorithm. Based on [22].

APPENDIX A
HASHPIPE IMPLEMENTATION

HashPipe. HashPipe [22] consists of d consecutive stages,
each with its own counter array and its own hash function. In
addition to flow counts, HashPipe also stores the correspond-
ing flowIDs (see Fig. 8).

Upon a packet’s arrival, its flowID is hashed to produce an
index and compared to the flow identifier flowID1 currently
stored at that index in the first stage. If the identifiers do
not match, the flowID1 and count are evicted from the first
stage and replaced by the new flowID and count 1. If the
identifiers do match, the count is simply increased by 1. When
a flow identifier flowIDi (and count) is evicted from stage
i, HashPipe will try to store it in the next stage i + 1 by
following the same process until the last stage is reached. In
addition, to compute the count estimate, counts of all matching
pairs from each stage (flowID, ∗) need to be summed. Fig. 8
illustrates this: flow insertion uses the red counts, while the
count estimation uses the blue counts. As each array can only
be accessed once, each packet would need to go through the
pipeline twice to get an estimate for each packet, halving
the throughput. Since PRECISION is similar to HashPipe, it
suffers from the same throughput reduction.

In this paper, we have implemented two versions of Hash-
Pipe: (1) the original algorithm storing the full flow identifier
(13B for a 5-tuple); and (2) HashPipeMod, a modification of
the original algorithm that we introduce for a fairer compar-
ison. HashPipeMod stores a fingerprint of the flow identifier
(2B) instead of the full flow identifier. Thus, HashPipeMod
has lower memory consumption than HashPipe, at the cost of
introducing false positives (since a non-heavy-hitter flow may
obtain the same fingerprint as a heavy-hitter flow).
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