

Delft University of Technology

Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf Sensors
Heart Rate Analysis Software from the Taking the Fast Lane Project.
van Gent, Paul; Farah, Haneen; van Nes, Nicole; van Arem, Bart

DOI
10.5334/jors.241
Publication date
2019
Document Version
Final published version
Published in
Journal of Open Research Software

Citation (APA)
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). Analysing Noisy Driver Physiology Real-Time
Using Off-the-Shelf Sensors: Heart Rate Analysis Software from the Taking the Fast Lane Project. Journal
of Open Research Software, 7(1), 1-9. Article 32. https://doi.org/10.5334/jors.241

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5334/jors.241
https://doi.org/10.5334/jors.241

van Gent, P, et al. 2019 Analysing Noisy Driver Physiology Real-Time Using Off-the-
Shelf Sensors: Heart Rate Analysis Software from the Taking the Fast Lane Project.
Journal of Open Research Software, 7: 32. DOI: https://doi.org/10.5334/jors.241

Journal of
open research software

SOFTWARE METAPAPER

Analysing Noisy Driver Physiology Real-Time Using
Off-the-Shelf Sensors: Heart Rate Analysis Software
from the Taking the Fast Lane Project
Paul van Gent1, Haneen Farah1, Nicole van Nes2 and Bart van Arem1

1	Department of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, NL
2	Dutch Institute for Road Safety Research (SWOV), The Hague, NL
Corresponding author: Paul van Gent (P.vanGent@tudelft.nl)

This paper describes the functioning and development of HeartPy: a heart rate analysis toolkit designed for
photoplethysmogram (PPG) data. Most openly available algorithms focus on electrocardiogram (ECG) data,
which has very different signal properties and morphology, creating a problem with analysis. ECG-based
algorithms generally don’t function well on PPG data, especially noisy PPG data collected in experimental
studies. To counter this, we developed HeartPy to be a noise-resistant algorithm that handles PPG data
well. It has been implemented in Python and C. Arduino IDE sketches for popular boards (Arduino, Teensy)
are available to enable data collection as well. This provides both pc-based and wearable implementations
of the software, which allows rapid reuse by researchers looking for a validated heart rate analysis toolkit
for use in human factors studies.

Keywords: heart rate analysis; photoplethysmogram; python; arduino; PPG
Funding statement: Part of the software has been developed within the “Taking the Fast Lane” project,
funded by NWO TTW1, project number 13771.

1. Introduction
In the field of transportation research one of the main
goals is to get to a point where zero traffic fatalities
occur [1]. The rise of smart in-car systems makes reaching
this goal possible. For example, systems exist that auto
matically take over safety critical tasks of drivers when
needed, such as autonomous emergency braking systems.
When a driver fails to spot a hazard on the road in front
of the vehicle, these systems intervene to avert a collision.
However, these are reactions to outside events, whereas
another improvement to traffic safety can be made
by changing the way drivers and their cars interact.
Human error, attentional failures, or driver states that
are incongruent with the driving task (fatigue, overload)
are a major cause of traffic accidents [2]. Sensing when a
driver is underloaded, overloaded, distracted or tired can
improve safety by enabling dynamic adjustments in the
way in-car systems interact with the driver. For example, by
timing when navigational or other in-vehicle information
systems relay information to the driver, or by adapting
the content of their messages to match the current driver
state, safety can be improved [3].

Human factors research into driver states is an active
field. To estimate driver states, physiological measures
are often taken together with performance measures [4].
Heart rate data is collected in many studies, as it is sensitive

to changes in workload [5–7] and general driver state [8].
However, capturing and analysing heart rate in the -often
noisy- conditions of either a simulator or an on-road
setting can be difficult or costly [4]. The recent advances in
wearable technology and open hardware platforms, such
as the Arduino2 and Raspberry Pi,3 create new possibilities
for collecting and analysing physiological data at low
cost, given that validated algorithms exist to analyse and
process it. In this paper we describe the development of
such an algorithm named HeartPy, which we validated as
described in [9].

1.1. Overview of Project Context
Within the ‘Taking the Fast Lane’ project,4 we are working
towards lane-specific advice generation. One possible
application is the reduction of congestion by using driver
advices to distribute traffic across the available lanes more
efficiently. This means advising drivers on where to drive.
When interacting with a driver, the timing of messages
to the driver is crucial not only for safety but also for the
effectiveness of the advices [3]. Advising on those moments
that workload is low and the driver can accommodate the
advice, gives a higher chance of the driver following the
advice. However, this means the driver state needs to be
known. For this reason, a driver state monitoring system
is being developed.

https://doi.org/10.5334/jors.241
mailto:P.vanGent@tudelft.nl

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf SensorsArt. 32, page 2 of 9

To facilitate the on-line capture and analysis of physio
logical data, a noise-resistant heart rate collection and
analysis toolkit was developed. We created an easy to
use, open source analysis toolkit that could handle the
collection and analysis of data from available low-cost
photoplethysmogram (PPG) sensors, as we could not
find an openly available, robust analysis toolkit for this.
In this paper we present its development. The toolkit
has been used in two simulator studies that modelled
driver workload [10, 11], as well as in a study looking at
the cognitive effects of monitoring automated driving in
different conditions [12, 13].

1.2. Similar software
Similar heart rate analysis software exists. These can be
divided into commercial and open source variants.

Psychlab and Biopac both offer lab-based solutions
including both hardware and software for psychophysio
logical and medical research. Both offer validated devices
and algorithms that have been widely cited. These are,
however, not openly available and come at substantial cost.

Kubios offers both a paid software version for HRV
analysis, as well as a free version. The free version lacks peak
detection functionality and instead requires pre-detected
RR-intervals from which to calculate HRV measures.

Physionet [14] is a large open medical database of
Electrocardiogram (ECG) recordings. They also implement
WFDB, a software package to retrieve data from their
online database and perform waveform analysis. Python
bindings are available. WFDB is feature rich, however uses
a custom data format and can be technical to implement.
It also doesn’t handle PPG data well.

HRVAS is a heart rate analysis package for Matlab. It
offers many features and is openly available. It, however,
still requires Matlab or an older version of its runtime to
run, which is not always available. It suffers from the same
setback of not handling PPG data well.

The presently discussed heart rate analysis toolkit
aims to add to the current body of available software by
providing a toolkit for both desktop written in Python,
and for (embedded) open hardware platforms written
in C. The toolkit focuses on Photoplethysmogram (PPG)
recordings but handles ECG data as well.

2. Implementation and architecture
HeartPy has been developed to be sensor-independent,
with the use of embedded systems with low computational
resources in mind. We have tried to create a fast method
of extracting heart beats, that is resistant to types of noise
frequently occurring when recording ECG or PPG in field-
based studies with low-cost sensors. A Python version
is available for PC-based research, as well as limited
implementations for several popular Arduino and ARM-
based boards that assist in data collection, pre-processing
and offer methods of real-time analysis.

2.1. Measuring the heart rate signal
Two often used ways of measuring the heart rate are the
electrocardiogram (ECG) and the Photoplethysmogram
(PPG). The ECG measures the electrical activations that

lead to the contraction of the heart muscle, using elec
trodes attached to the body, usually at the chest. The PPG
uses a small optical sensor in conjunction with a light
source to measure the discoloration of the skin as blood
perfuses through it after each heartbeat.

Most notably in the ECG is the QRS-complex (Figure 1a,
I–III), which represents the electrical activation that leads
to the ventricles contracting, expelling blood from the
heart muscle. The R-peak is the point of largest amplitude
in the signal. When extracting heart beats, these peaks
are marked in the ECG. Advantages of the ECG are that
it provides a good signal/noise ratio, and the R-peak that
is of interest generally has a large amplitude compared
to the surrounding data points (Figure 1c). The main
disadvantage is that the measurement of the ECG is
invasive in terms of human factors studies.5 It requires
the attachment of wired electrodes to the chest of the
participant, which can interfere with experimental tasks
such as driving. This can be undesirable because it can
influence participant behaviour, or create potentially
dangerous situations for example when driving.

The PPG measures the discoloration of the skin as
blood perfuses through the capillaries and arteries after
each heartbeat. The signal consists of the systolic peak
(Figure 1-b, I), dicrotic notch (II), and the diastolic peak
(III). When extracting heart beats, the systolic peaks (I) are
used. PPG sensors offer a less invasive way of measuring
heart rate data, which is one of their main advantages.
Usually the sensors are placed at the fingertip, earlobe, or
on the wrist using a bracelet. Contactless camera-based
systems have recently been demonstrated [15–17]. These
offer non-intrusive ways of acquiring the PPG signal. PPG
signals have the disadvantages of showing more noise,
large amplitude variations, and the morphology of the
peaks displays broader variation (Figure 2b, c). This
complicates analysis of the signal, especially when using
software designed for ECG, which the available open
source tools generally are. The toolkit described in this
paper aims to provide an efficient means of analysing
noisy PPG signals.

2.2. Heart Rate and Heart Rate Variability Measures
Analysis of the heart signal is split into heart rate (HR)
and heart rate variability (HRV) measures. The heart rate
is a simple measure of the heart period, expressed in the
beats per minute and the inter-beat interval. Heart rate
variability measures describe how the heart rate signal
varies over time, and can be divided into time-domain
measures and frequency-domain measures [18, 19].

When extracting heart beats from a signal, a marker is
chosen that can reliably be detected at the same position
on all heartbeat complexes in the signal. In the ECG the
R-peak is often taken (Figure 1a-II), in the PPG signal
the maximum of the Systolic wave is usually marked
(Figure 1b-I). Common measures expressing the HR
found in the literature are the beats per minute (BPM)
and the mean inter-beat interval (IBI). HRV is expressed in
the median absolute deviation of intervals between heart
beats (MAD), the standard deviation of intervals between
heart beats (SDNN), the root mean square of successive

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf Sensors Art. 32, page 3 of 9

differences between neighbouring heart beat intervals
(RMSSD), the standard deviation of successive differences
between neighbouring heart beat intervals (SDSD), and the
proportion of differences between successive heart beats
greater than 50 ms and 20 ms (pNN50, pNN20, resp.).

HRV can also be expressed in the frequency domain, where
two frequency bands are usually included: low frequency
(LF, 0,04–0,15 Hz), which is related to short-term blood
pressure variation [20], and high frequency (HF, 0,16–
0,5 Hz), which is a reflection of breathing rate [19].

Figure 2: The ECG signal (a.) shows a strong QRS complex together with little amplitude variation. The PPG signal
measured simultaneously while the patient is at rest in a hospital bed (b.) shows some amplitude variation but
relatively stable morphology. When measuring PPG in a driving simulator using low-cost sensors (c.), strong amplitude
and waveform morphology variation is visible.

Figure 1: a. and b. display the ECG and PPG waveform morphology, respectively. The ECG is divided into distinct waves
(a, I–V), of which the R-wave (a, II) is used for heart beat extraction. With the PPG wave, the systolic peak (b, I) is
used. The plot in c. shows the relationship between ECG and PPG signals.

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf SensorsArt. 32, page 4 of 9

2.3. Analysis Overview
This section describes the architecture of the algorithm
and gives an overview of how the heart rate signal is
processed and analysed.

2.3.1. Pre-processing
The pre-processing options available are peak enhance
ment, FIR filtering, and outlier detection. The peak
enhancement function attempts to normalise the ampli
tude, then increases R-peak amplitude relative to the rest of
the signal. A Butterworth filter implementation is available
to remove high frequency noise. Outlier detection on the
raw signal is implemented based on a modified Hampel
Filter [21] with a window of half the sampling rate. By
default, only the peak enhancement is performed. Details
are discussed in the repository’s documentation [22].

2.3.2. Peak detection
The peak detection phase attempts to accommodate
amplitude variation and morphology changes of the PPG
complexes by using an adaptive peak detection threshold
(Figure 3, III), followed by outlier detection and rejection.
To identify heartbeats, a moving average is calculated
using a window of 0.75 seconds on both sides of each
data point. The first and last 0.75 seconds of the signal
are populated with the signal’s mean, no moving average
is generated for these sections. Regions of interest (ROI)
are marked between two points of intersection where
the signal amplitude is larger than the moving average
(Figure 3, I–II), which is a standard way of detecting
peaks. R-peaks are marked at the maximum of each ROI.

A special case arises when the signal clips, which can
happen for example when a sensor has constraints on the
range of the signal it can measure, or when digitising an
analog signal. The algorithm has clipping detection for

R-peaks and will attempt to reconstruct the waveform by
spline interpolation whenever an R-peak displays clipping.
To interpolate, 100 ms of data before clipping onset and
100 ms of data after clipping end is used. An example of
the process is shown in Figure 3-IV.

During the peak detection phase, the amplitude of the
calculated threshold is adjusted stepwise. To find the best
fit, the standard deviation between successive differences
(SDSD, see also 2.2) is minimised. The instantaneous heart
rate (BPM) is computed and evaluated in tandem with the
SDSD. This represents a fast method of approximating
the optimal peak detection threshold by exploiting the
relative regularity of the heart rate signal. As shown
in Figure 4, missing one R-peak (III.) already leads to a
substantial increase in SDSD compared to the optimal fit
(II.). Marking incorrect R-peaks also leads to an increase
in SDSD (I.). The lowest SDSD value that is not zero, in
combination with a likely BPM value, is selected as the
best fit. The BPM must lie within a predetermined range
(default: 40 <= BPM <= 180, range settable by user).

2.3.3. Error detection
Due to the variable PPG waveform morphology, it is possible
that after the initial peak fitting phase incorrectly marked
R-peaks remain. Motion artefacts may be another cause of
detection error. A correction is performed by thresholding
the sequence of RR-intervals. R-peaks are considered low
confidence if the interval created between two adjacent
R-peaks deviates by more than 30% of the mean RR-interval
of the analysed segment (Figure 5). The threshold is adaptive
based on the current segment with a minimum value of
300 ms. We’ve found this to be a good approximation for
incorrect detections. If any peaks are considered incorrect
detections, the array of RR-values is recomputed to only
contain intervals between two high confidence R-peaks.

Figure 3: Figure showing the process of peak extraction. A moving average is used as an intersection threshold (II).
Candidate peaks are marked at the maximum between intersections (III). The moving average is adjusted stepwise
to compensate for varying PPG waveform morphology (I). (IV). shows the detection of the onset and end of clipping,
and the result after interpolating the clipping segment.

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf Sensors Art. 32, page 5 of 9

An optional error detection pass is available. Using the
method, the signal is segmented into n-peak sections
and each segment evaluated. Segments are marked low
quality if more than a predetermined percentage of peaks
are marked low confidence (default n = 10, rejection
percentage = 30%). We found that this pattern of short

segments displaying multiple rejected peaks, are often
indicative of periods of poor signal/noise ratio or signal
loss, such as displayed in Figure 6. By eliminating these
short periods from the analysis, the output measures
remain reliable because only RR-intervals resulting from
analysable segments are used in their calculation.

Figure 4: Image showing how the dynamic threshold is fitted using SDSD. The last image (III.) shows that even missing
a single beat will lead to a large increase in SDSD compared to the optimal fitting. BPM is also taken into account
when fitting.

Figure 5: The plotted RR-intervals with thresholds (I.), and the resulting rejected peaks (II.).

Figure 6: Plot from PPG dataset with low-confidence sections marked. These are ignored in the computation of output
measures.

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf SensorsArt. 32, page 6 of 9

The heart rate analysis package was implemented
in both Python and embedded C. The following two
sections describe both implementations as well as their
requirements, dependencies and availability.

2.4. Python implementation
Python is a flexible programming language that is well
suited for scientific use [23]. During development the
reliance on external dependencies was minimised. The
package uses the following external packages:

•	 Numpy is used to handle the data, numerical compu-
tations, and the Fast Fourier Transform. For these pur-
poses Numpy is much faster than the standard Python
interpreter.

•	 Scipy is used for various filtering and interpolation
tasks.

•	 Matplotlib is included to plot the results of the analysis
if requested by the user.

The implementation of the functions had readability as
the main aim. Pep-8 conventions were followed in code
styling and function design. A quickstart and background
information can be found in the documentation [24] and
the code together with detailed Jupyter tutorial notebooks
can be found on the repository [25].

2.5. Embedded C implementations
Several C implementations have been developed to
facilitate data collection and analysis in lab-based and field-
based studies that utilise wearable technology. Hardware
interrupt timers are used to ensure a precise sampling rate
is maintained. Most implementations contain a double
switching buffer to collect the sensor data. As one of the
buffers fills up, logging switches to the secondary buffer
and the content of the first buffer is processed and stored.
This ensures logging without interruption.

The repository contains Arduino IDE sketches for several
popular boards. Wiring diagrams, and suggested PCB
(printed circuit board) design files for various (wearable)
applications are in development. The implementations
available are briefly discussed below.

2.5.1. Data Logger
A data logging application is available. Users can set the
desired sampling rate they wish to log. Adaptive input
scaling is available (on by default), which attempts to
normalise amplitude over time. This is especially useful
when measuring at locations where the PPG signal is
weaker (wrist, neck), or when measuring it on participants,
with reduced perfusion, such as those with advanced age
or a history of smoking.

2.5.2. Peak Finder
The peak finder implementation analyses the incoming
signal real-time for peaks and returns both the peak
position and RR-interval created between the current and
the previous detected peak. Error detection based on the
last 20 RR-intervals, as well as based on various settable
parameters is available. See the documentation for more
details [24].

2.5.3. Time Series Analysis
The time series analysis implementation is similar to the
peak finder implementation, except that it calculates
and outputs the time-series measurements of both heart
rate and heart rate variability. It tracks detected peaks in
time to computer RR-intervals and ignores intervals when
there is a missing or rejected peak in between.

2.5.4. Full Implementation
The full implementation contains the HR and HRV online
analysis. All the HR and HRV measures mentioned under
2.2 are derived from the signal and stored to an on-board
SD card, together with the original signal. Since a full signal
period is first collected, several pre-processing steps can
be taken to improve signal quality prior to analysis. This
makes the full implementation the most noise-resistant
of the available versions. The memory and processing
requirements, however, are also higher than of the other
versions. This makes it less suited for long-term wearable
solutions required in naturalistic studies, but very suited
for environments where power is available (in-car, driving
simulator, lab-based studies, bicycle with power bank) or
situations of shorter measurement periods.

3. Quality control
3.1. General Quality Control
The code development was centred around ease-of-use and
reusability of functions and methods. Coding best practices
were followed [26]. Throughout the development process,
cyclomatic complexity (cc) was frequently calculated for all
functions using the python Radon package and the Lizard6
package. Refactoring was applied for functions that had a
cc of over 10,7 to ensure maintainability and readability of
the code. Git was used for version control [27] throughout
the project.

Means for automatic source code validation and auto
mated testing have been implemented. In the Python
implementation, examples are available in the docstrings
that double as doctests. Automated continuous integration
(CI) testing is implemented through the Travis-CI platform.
Code coverage, build status and supported Python versions
are displayed as badges on the GitHub repository.

Several end-to-end examples are included in Jupyter
notebooks on the repository, detailing how to handle
various types of signals with HeartPy. Available examples
deal with both good and poor quality PPG and ECG signals
from various sources (sensors, electrodes, smartwatch,
smart ring). The examples are designed to familiarise
new users with the functionality of the package and to
highlight possible use cases.

A tutorial series is available [28], detailing the basics
behind the Python implementation of the algorithm. Users
seeking deeper understanding in the mechanics behind
the algorithm can follow these.

3.2. Validation
HeartPy was validated on a dataset collected by PPG sensor
from a previous experiment [29]. Heart beats in the dataset
were manually annotated to serve as a ground truth.
The validation was performed on the set and compared
to two popular available open source algorithms. Error

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf Sensors Art. 32, page 7 of 9

rates showed superior performance of our algorithm on
the noisy PPG data in the test set. The full validation is
described in [9].

4. Availability
4.1. Operating system
HeartPy has been tested to run on Python 2.7, 3.4, 3.5,
3.6 and 3.7. All updates are automatically built using
Travis-CI and tested. Results are dynamically displayed on
the repository as badges.

Several Arduino IDE sketch files have been provided
as well for different boards. These have been tested on
their respective boards, and developed in the Arduino IDE
version 1.8.5. They are designed to enable researchers low-
cost ways of collecting heart rate data as well.

4.2. Additional system requirements
The Python implementation’s data handling happens
in NumPy, which ensures efficient RAM usage and fast
execution. The size of the input data will determine
memory usage, although the requirements are low for
most datasets. As an example, we loaded the first data file
from the first participant in the PPG validation set included
on the GitHub (‘pp1_Eind_Som_C.csv’). The file represents
10:52 minutes of data sampled at 100 Hz. The loaded data
takes 261 Kb in memory. Temporary containers created
during analysis and (pre-)processing take up an additional
593 Kb. This indicates very low resource requirements for
most analyses.

Requirements of the embedded hardware conform to
RAM and CPU resources available on the SOC’s for which
the implementation has been designed. More information
and absolute values are available in the documentation
[22].

4.3. Dependencies
HeartPy is dependent on the Numpy, SciPy and Matplotlib
packages. The lowest versions we’ve tested with HeartPy
are NumPy==1.15, SciPy==1.1.0, Matplotlib==2.2.3. These
versions allow functionality on Python 2.7.

The Arduino implementations depend on standard
modules available in the Arduino IDE. The versions for
Arduino and Teensy boards depends on the SDfat module
for communication with the SD card for data storage. This
module is installed in the Arduino IDE by default.

4.4. List of contributors
Jonathan de Bruin has provided valuable advice and
suggestions during development and testing of HeartPy
and will remain active in further development.

4.4.1. Software location of Python version
�Archive (e.g. institutional repository, general repository)
(required – please see instructions on journal website
for depositing archive copy of software in a suitable
repository)

Name: Zenodo.org
�Persistent identifier: https://doi.org/10.5281/
zenodo.3407802
Licence: GNU General Public License V3.0
Publisher: Paul van Gent

Version published: V1.2.4
Date published: 13-09-2018

Code repository: GitHub
Name: Python Heart Rate Analysis Toolkit
�Identifier: https://github.com/paulvangentcom/
heartrate_analysis_python
Licence: GNU General Public License V3.0
Date published: 13-09-2018

4.4.2. Software location of C version
Code repository: GitHub

Name: Arduino Heart Rate Analysis Toolkit
�Identifier: https://github.com/paulvangentcom/
heartrate_analysis_Arduino
Licence: GNU General Public License V3.0
Date published: 31-07-2018

5. Reuse potential
HeartPy can be used by researchers, makers, and engineers
to create applications that make use of (real-time) heart
rate data. The toolkit can be used in research settings both
in the lab and ‘in the wild’. HeartPy handles noise that is
typically introduced into heart rate signals when recording
outside the lab, and contains many pre-processing options
to help clean up poor quality signals. The software has
been used in for example lab-based simulator contexts
[10, 11], real world driving contexts [12, 13], and as a
backend for a pregnancy monitoring tool [29].

Detailed examples are available on the repository and in
the documentation on handling different data types that
serve to kick-start any new project based on HeartPy. These
examples are available on the repository as Jupyter notebooks
(https://github.com/paulvangentcom/heartrate_analysis_
python/tree/master/examples). The examples cover how to
analyse PPG signals from sensors, smartwatches and smart
rings (and similar devices), as well as ECG signals ranging
from good to very poor quality.

HeartPy is designed to easily be integrated into existing
projects. All methods are documented with examples
provided, and most can be used in isolation. Throughout
the processing pipeline everything of interest is stored
in a dict{} object, which can be accessed each step of the
analysis. This facilitates integration with other projects by
allowing a fine level of control over each step.

We are currently working on incorporating a GUI for
use with HeartPy, which will expand the reuse potential
further towards researchers without coding experience.

Notes
	 1	 See https://www.nwo.nl/en/.
	 2	 See http://www.arduino.cc.
	 3	 See http://www.raspberrypi.org.
	 4	 See http://tfl.tudelft.nl/.
	 5	 Note that the definition of ‘invasive’ in human factors

studies refers to intrusion into the person’s privacy,
personal space or thoughts. It differs from the medi-
cal definition, where ‘invasive’ indicates that a foreign
object intrudes into the body.

	 6	 See https://github.com/terryyin/lizard.
	 7	 See http://radon.readthedocs.io/en/latest/api.html#​

radon.complexity.cc_rank.

http://www.Zenodo.org
https://doi.org/10.5281/zenodo.3407802
https://doi.org/10.5281/zenodo.3407802
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_Arduino
https://github.com/paulvangentcom/heartrate_analysis_Arduino
https://github.com/paulvangentcom/heartrate_analysis_python/tree/master/examples
https://github.com/paulvangentcom/heartrate_analysis_python/tree/master/examples
https://www.nwo.nl/en/
http://www.arduino.cc
http://www.raspberrypi.org
http://tfl.tudelft.nl/
https://github.com/terryyin/lizard
http://radon.readthedocs.io/en/latest/api.html#radon.complexity.cc_rank
http://radon.readthedocs.io/en/latest/api.html#radon.complexity.cc_rank

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf SensorsArt. 32, page 8 of 9

Competing Interests
The authors have no competing interests to declare.

References
1.	 Belin, M-Å, Tillgren, P and Vedung, E 2012 “Vision

Zero – a road safety policy innovation.” Int. J. Inj. Contr.
Saf. Promot., 19(2): 171–179. DOI: https://doi.org/10.
1080/17457300.2011.635213

2.	 Kaplan, S, Guvensan, M A, Yavuz, A G and
Karalurt, Y 2015 “Driver Behavior Analysis for Safe
Driving: A Survey,” IEEE Trans. Intell. Transp. Syst.,
16(6): 3017–3032. DOI: https://doi.org/10.1109/TITS.​
2015.2462084

3.	 Van Gent, P, Farah, H, Van Nes, N and Van Arem,
B 2017 “A Conceptual Model for Persuasive In-
Vehicle Technology to Influence Tactical Level Driver
Behavior.” Transp. Res. Part F Traffic Psychol. Behav.

4.	 Brookhuis, K A and de Waard, D 2010 “Monitoring
drivers’ mental workload in driving simulators
using physiological measures.” Accid. Anal. Prev.,
42(3): 898–903. DOI: https://doi.org/10.1016/j.aap.​
2009.06.001

5.	 Mehler, B, Reimer, B, Coughlin, J F and Dusek,
J A 2010 “Impact of Incremental Increases in
Cognitive Workload on Physiological Arousal and
Performance in Young Adult Drivers.” Transp. Res. Rec.
J. Transp. Res. Board, 2138(1): 6–12. DOI: https://doi.
org/10.3141/2138-02

6.	 Stuiver, A, de Waard, D, Brookhuis, K A,
Dijksterhuis, C, Lewis-Evans, B and Mulder, L J M
Aug. 2012 “Short-term cardiovascular responses to
changing task demands.” Int. J. Psychophysiol., 85(2):
153–60. DOI: https://doi.org/10.1016/j.ijpsycho.2012.​
06.003

7.	 Aasman, J, Mulder, G and Mulder, L J M 1987
“Operator effort and the measurement of heart-
rate variability.” Hum. Factors, 29(2): 161–170. DOI:
https://doi.org/10.1177/001872088702900204

8.	 Danisman, T, Bilasco, I M, Djeraba, C and
Ihaddadene, N 2010 “Drowsy driver detection system
using eye blink patterns.” 2010 Int. Conf. Mach. Web
Intell. ICMWI 2010 – Proc., pp. 230–233. DOI: https://
doi.org/10.1109/ICMWI.2010.5648121

9.	 van Gent, P, Farah, H, van Nes, N and van Arem,
B 2018 “Heart Rate Analysis for Human Factors:
Development and Validation of an Open Source Toolkit
for Noisy Naturalistic Heart Rate Data.” In: Proceedings
of the 6th HUMANIST Conference, pp. 173–178.

10.	Van Gent, P, Farah, H, Van Nes, N and Van Arem, B
2017 “Towards Real-Time, Nonintrusive Estimation of
Driver Workload: A Simulator Study.” In: Road Safety
and Simulation 2017 Conference Proceedings.

11.	van Gent, P, Melman, T, Farah, H, van Nes, N and
van Arem, B 2018 “Multi-Level Driver Workload
Prediction Using Machine Learning and Off-The-Shelf
Sensors.” Transp. Res. Rec. J. Transp. Res. Board. DOI:
https://doi.org/10.1177/0361198118790372

12.	Stapel, J, Mullakkal-Babu, F A and Happee, R
2017 “Driver Behaviour and Workload in an On-road

Automated Vehicle.” In: Proceedings of the RSS2017
Conference.

13.	Stapel, J, Mullakkal-Babu, F A and Happee, R 2018
“Attentive monitoring of automated driving requires
more effort than manual driving.” Manuscr. Submitt.
Publ.

14.	Goldberger, A L, et al. 2000 “PhysioBank, Physio
Toolkit, and PhysioNet – Components of a New
Research Resource for Complex Physiologic Signals.”
DOI: https://doi.org/10.1161/01.CIR.101.23.e215

15.	Sun, Y, Hu, S, Azorin-Peris, V, Kalawsky, R
and Greenwald, S 2012 “Noncontact imaging
photoplethysmography to effectively access pulse
rate variability.” J. Biomed. Opt., 18(6): 061205. DOI:
https://doi.org/10.1117/1.JBO.18.6.061205

16.	Lewandowska, M, Ruminsky, J, Kocejko, T and
Nowak, J 2011 January “Measuring Pulse Rate with
a Webcam – a Non-contact Method for Evaluating
Cardiac Activity.” In: Proceedings of the Federated
Conference on Computer Science and Information
Systems, pp. 405–410.

17.	Bousefsaf, F, Maaoui, C and Pruski, A 2014 “Remote
detection of mental workload changes using cardiac
parameters assessed with a low-cost webcam.” Comput.
Biol. Med., 53: 1–10. DOI: https://doi.org/10.1016/j.
compbiomed.2014.07.014

18.	Mehler, B, Reimer, B and Wang, Y 2011 “Comparison
of heart rate and heart rate variability indices in
distinguishing single task driving and driving under
secondary cognitive workload.” Proc. Sixth Int. Driv.
Symp. Hum. Factors Driv. Assessment, Training, Veh.
Des., pp. 590–597. DOI: https://doi.org/10.17077/
drivingassessment.1451

19.	Montano, N, et al. 2009 “Heart rate variability explored
in the frequency domain: A tool to investigate the
link between heart and behavior.” Neurosci. Biobehav.
Rev., 33(2): 71–80. DOI: https://doi.org/10.1016/j.
neubiorev.2008.07.006

20.	Bernardi, L, Leuzzi, S, Radaelli, A, Passino, C,
Johnston, J A and Sleight, P 1994 “Low-frequency
spontaneous fluctuations of R-R interval and blood
pressure in conscious humans: A baroreceptor
or central phenomenon?” Clin. Sci. (Lond)., 87(6):
649–654. DOI: https://doi.org/10.1042/cs0870​
649

21.	Davies, L and Gather, U 1993 “The identification of
multiple outliers,” J. Am. Stat. Assoc., 88(429): 782–
792. DOI: https://doi.org/10.1080/01621459.1993.10
476339

22.	van Gent, P 2018 “Embedded Heart Rate Analysis
Toolkit Documentation.” [Online]. Available: https://
embedded-heart-rate-analysis-toolkit.readthedocs.
io.

23.	Oliphant, T E 2007 “Python for scientific computing.”
Comput. Sci. Eng., 9(3): 10–20. DOI: https://doi.
org/10.1109/MCSE.2007.58

24.	van Gent, P 2018 “Python Heart Rate Analysis Toolkit
Documentation.” [Online]. Available: https://python-
heart-rate-analysis-toolkit.readthedocs.io.

https://doi.org/10.1080/17457300.2011.635213
https://doi.org/10.1080/17457300.2011.635213
https://doi.org/10.1109/TITS.2015.2462084
https://doi.org/10.1109/TITS.2015.2462084
https://doi.org/10.1016/j.aap.2009.06.001
https://doi.org/10.1016/j.aap.2009.06.001
https://doi.org/10.3141/2138-02
https://doi.org/10.3141/2138-02
https://doi.org/10.1016/j.ijpsycho.2012.06.003
https://doi.org/10.1016/j.ijpsycho.2012.06.003
https://doi.org/10.1177/001872088702900204
https://doi.org/10.1109/ICMWI.2010.5648121
https://doi.org/10.1109/ICMWI.2010.5648121
https://doi.org/10.1177/0361198118790372
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1117/1.JBO.18.6.061205
https://doi.org/10.1016/j.compbiomed.2014.07.014
https://doi.org/10.1016/j.compbiomed.2014.07.014
https://doi.org/10.17077/drivingassessment.1451
https://doi.org/10.17077/drivingassessment.1451
https://doi.org/10.1016/j.neubiorev.2008.07.006
https://doi.org/10.1016/j.neubiorev.2008.07.006
https://doi.org/10.1042/cs0870649
https://doi.org/10.1042/cs0870649
https://doi.org/10.1080/01621459.1993.10476339
https://doi.org/10.1080/01621459.1993.10476339
https://embedded-heart-rate-analysis-toolkit.readthedocs.io
https://embedded-heart-rate-analysis-toolkit.readthedocs.io
https://embedded-heart-rate-analysis-toolkit.readthedocs.io
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://python-heart-rate-analysis-toolkit.readthedocs.io
https://python-heart-rate-analysis-toolkit.readthedocs.io

van Gent et al: Analysing Noisy Driver Physiology Real-Time Using Off-the-Shelf Sensors Art. 32, page 9 of 9

25.	van Gent, P 2017 “Python Heart Rate Analysis Toolkit.”
GitHub Repository. [Online]. Available: https://github.
com/paulvangentcom/heartrate_analysis_python.

26.	Wilson, G, et al. 2014 “Best Practices for Scientific
Computing.” PLoS Biol., 12(1). DOI: https://doi.org/10.​
1371/journal.pbio.1001745

27.	Loeliger, J and McCullough, M 2012 Version Control
with Git: Powerful Tools and Techniques for Collaborative
Software Development.

28.	van Gent, P 2016 “Analyzing a Discrete Heart Rate
Signal Using Python.” [Online]. Available: http://www.
paulvangent.com/2016/03/15/analyzing-a-discrete-
heart-rate-signal-using-python-part-1/.

29.	Gupta, Y, Kumar, S and Mago, V 2019 “Pregnancy
Health Monitoring System based on Biosignal Analysis.”
2019 42nd Int. Conf. Telecommun. Signal Process.,
pp. 664–667. DOI: https://doi.org/10.1109/TSP.2019.​
8769074

How to cite this article: van Gent, P, Farah, H, van Nes, N and van Arem, B 2019 Analysing Noisy Driver Physiology Real-Time
Using Off-the-Shelf Sensors: Heart Rate Analysis Software from the Taking the Fast Lane Project. Journal of Open Research
Software, 7: 32. DOI: https://doi.org/10.5334/jors.241

Submitted: 01 August 2018 Accepted: 14 October 2019 Published: 29 October 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
http://www.paulvangent.com/2016/03/15/analyzing-a-discrete-heart-rate-signal-using-python-part-1/
http://www.paulvangent.com/2016/03/15/analyzing-a-discrete-heart-rate-signal-using-python-part-1/
http://www.paulvangent.com/2016/03/15/analyzing-a-discrete-heart-rate-signal-using-python-part-1/
https://doi.org/10.1109/TSP.2019.8769074
https://doi.org/10.1109/TSP.2019.8769074
https://doi.org/10.5334/jors.241
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	1.1. Overview of Project Context
	1.2. Similar software

	2. Implementation and architecture
	2.1. Measuring the heart rate signal
	2.2. Heart Rate and Heart Rate Variability Measures
	2.3. Analysis Overview
	2.3.1. Pre-processing
	2.3.2. Peak detection
	2.3.3. Error detection

	2.4. Python implementation
	2.5. Embedded C implementations
	2.5.1. Data Logger
	2.5.2. Peak Finder
	2.5.3. Time Series Analysis
	2.5.4. Full Implementation

	3. Quality control
	3.1. General Quality Control
	3.2. Validation

	4. Availability
	4.1. Operating system
	4.2. Additional system requirements
	4.3. Dependencies
	4.4. List of contributors
	4.4.1. Software location of Python version
	4.4.2. Software location of C version

	5. Reuse potential
	Notes
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

