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This paper describes the functioning and development of HeartPy: a heart rate analysis toolkit designed for 
photoplethysmogram (PPG) data. Most openly available algorithms focus on electrocardiogram (ECG) data, 
which has very different signal properties and morphology, creating a problem with analysis. ECG-based 
algorithms generally don’t function well on PPG data, especially noisy PPG data collected in experimental 
studies. To counter this, we developed HeartPy to be a noise-resistant algorithm that handles PPG data 
well. It has been implemented in Python and C. Arduino IDE sketches for popular boards (Arduino, Teensy) 
are available to enable data collection as well. This provides both pc-based and wearable implementations 
of the software, which allows rapid reuse by researchers looking for a validated heart rate analysis toolkit 
for use in human factors studies.
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1. Introduction
In the field of transportation research one of the main 
goals is to get to a point where zero traffic fatalities 
occur [1]. The rise of smart in-car systems makes reaching 
this goal possible. For example, systems exist that auto
matically take over safety critical tasks of drivers when 
needed, such as autonomous emergency braking systems. 
When a driver fails to spot a hazard on the road in front 
of the vehicle, these systems intervene to avert a collision. 
However, these are reactions to outside events, whereas 
another improvement to traffic safety can be made 
by changing the way drivers and their cars interact. 
Human error, attentional failures, or driver states that 
are incongruent with the driving task (fatigue, overload) 
are a major cause of traffic accidents [2]. Sensing when a 
driver is underloaded, overloaded, distracted or tired can 
improve safety by enabling dynamic adjustments in the 
way in-car systems interact with the driver. For example, by 
timing when navigational or other in-vehicle information 
systems relay information to the driver, or by adapting 
the content of their messages to match the current driver 
state, safety can be improved [3].

Human factors research into driver states is an active 
field. To estimate driver states, physiological measures 
are often taken together with performance measures [4]. 
Heart rate data is collected in many studies, as it is sensitive 

to changes in workload [5–7] and general driver state [8]. 
However, capturing and analysing heart rate in the -often 
noisy- conditions of either a simulator or an on-road 
setting can be difficult or costly [4]. The recent advances in 
wearable technology and open hardware platforms, such 
as the Arduino2 and Raspberry Pi,3 create new possibilities 
for collecting and analysing physiological data at low 
cost, given that validated algorithms exist to analyse and 
process it. In this paper we describe the development of 
such an algorithm named HeartPy, which we validated as 
described in [9].

1.1. Overview of Project Context
Within the ‘Taking the Fast Lane’ project,4 we are working 
towards lane-specific advice generation. One possible 
application is the reduction of congestion by using driver 
advices to distribute traffic across the available lanes more 
efficiently. This means advising drivers on where to drive. 
When interacting with a driver, the timing of messages 
to the driver is crucial not only for safety but also for the 
effectiveness of the advices [3]. Advising on those moments 
that workload is low and the driver can accommodate the 
advice, gives a higher chance of the driver following the 
advice. However, this means the driver state needs to be 
known. For this reason, a driver state monitoring system 
is being developed.

https://doi.org/10.5334/jors.241
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To facilitate the on-line capture and analysis of physio
logical data, a noise-resistant heart rate collection and 
analysis toolkit was developed. We created an easy to 
use, open source analysis toolkit that could handle the 
collection and analysis of data from available low-cost 
photoplethysmogram (PPG) sensors, as we could not 
find an openly available, robust analysis toolkit for this. 
In this paper we present its development. The toolkit 
has been used in two simulator studies that modelled 
driver workload [10, 11], as well as in a study looking at 
the cognitive effects of monitoring automated driving in 
different conditions [12, 13].

1.2. Similar software
Similar heart rate analysis software exists. These can be 
divided into commercial and open source variants.

Psychlab and Biopac both offer lab-based solutions 
including both hardware and software for psychophysio
logical and medical research. Both offer validated devices 
and algorithms that have been widely cited. These are, 
however, not openly available and come at substantial cost.

Kubios offers both a paid software version for HRV 
analysis, as well as a free version. The free version lacks peak 
detection functionality and instead requires pre-detected 
RR-intervals from which to calculate HRV measures.

Physionet [14] is a large open medical database of 
Electrocardiogram (ECG) recordings. They also implement 
WFDB, a software package to retrieve data from their 
online database and perform waveform analysis. Python 
bindings are available. WFDB is feature rich, however uses 
a custom data format and can be technical to implement. 
It also doesn’t handle PPG data well.

HRVAS is a heart rate analysis package for Matlab. It 
offers many features and is openly available. It, however, 
still requires Matlab or an older version of its runtime to 
run, which is not always available. It suffers from the same 
setback of not handling PPG data well.

The presently discussed heart rate analysis toolkit 
aims to add to the current body of available software by 
providing a toolkit for both desktop written in Python, 
and for (embedded) open hardware platforms written 
in C. The toolkit focuses on Photoplethysmogram (PPG) 
recordings but handles ECG data as well.

2. Implementation and architecture
HeartPy has been developed to be sensor-independent, 
with the use of embedded systems with low computational 
resources in mind. We have tried to create a fast method 
of extracting heart beats, that is resistant to types of noise 
frequently occurring when recording ECG or PPG in field-
based studies with low-cost sensors. A Python version 
is available for PC-based research, as well as limited 
implementations for several popular Arduino and ARM-
based boards that assist in data collection, pre-processing 
and offer methods of real-time analysis.

2.1. Measuring the heart rate signal
Two often used ways of measuring the heart rate are the 
electrocardiogram (ECG) and the Photoplethysmogram 
(PPG). The ECG measures the electrical activations that 

lead to the contraction of the heart muscle, using elec
trodes attached to the body, usually at the chest. The PPG 
uses a small optical sensor in conjunction with a light 
source to measure the discoloration of the skin as blood 
perfuses through it after each heartbeat.

Most notably in the ECG is the QRS-complex (Figure 1a, 
I–III), which represents the electrical activation that leads 
to the ventricles contracting, expelling blood from the 
heart muscle. The R-peak is the point of largest amplitude 
in the signal. When extracting heart beats, these peaks 
are marked in the ECG. Advantages of the ECG are that 
it provides a good signal/noise ratio, and the R-peak that 
is of interest generally has a large amplitude compared 
to the surrounding data points (Figure 1c). The main 
disadvantage is that the measurement of the ECG is 
invasive in terms of human factors studies.5 It requires 
the attachment of wired electrodes to the chest of the 
participant, which can interfere with experimental tasks 
such as driving. This can be undesirable because it can 
influence participant behaviour, or create potentially 
dangerous situations for example when driving.

The PPG measures the discoloration of the skin as 
blood perfuses through the capillaries and arteries after 
each heartbeat. The signal consists of the systolic peak 
(Figure 1-b, I), dicrotic notch (II), and the diastolic peak 
(III). When extracting heart beats, the systolic peaks (I) are 
used. PPG sensors offer a less invasive way of measuring 
heart rate data, which is one of their main advantages. 
Usually the sensors are placed at the fingertip, earlobe, or 
on the wrist using a bracelet. Contactless camera-based 
systems have recently been demonstrated [15–17]. These 
offer non-intrusive ways of acquiring the PPG signal. PPG 
signals have the disadvantages of showing more noise, 
large amplitude variations, and the morphology of the 
peaks displays broader variation (Figure 2b, c). This 
complicates analysis of the signal, especially when using 
software designed for ECG, which the available open 
source tools generally are. The toolkit described in this 
paper aims to provide an efficient means of analysing 
noisy PPG signals.

2.2. Heart Rate and Heart Rate Variability Measures
Analysis of the heart signal is split into heart rate (HR) 
and heart rate variability (HRV) measures. The heart rate 
is a simple measure of the heart period, expressed in the 
beats per minute and the inter-beat interval. Heart rate 
variability measures describe how the heart rate signal 
varies over time, and can be divided into time-domain 
measures and frequency-domain measures [18, 19].

When extracting heart beats from a signal, a marker is 
chosen that can reliably be detected at the same position 
on all heartbeat complexes in the signal. In the ECG the 
R-peak is often taken (Figure 1a-II), in the PPG signal 
the maximum of the Systolic wave is usually marked 
(Figure 1b-I). Common measures expressing the HR 
found in the literature are the beats per minute (BPM) 
and the mean inter-beat interval (IBI). HRV is expressed in 
the median absolute deviation of intervals between heart 
beats (MAD), the standard deviation of intervals between 
heart beats (SDNN), the root mean square of successive 
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differences between neighbouring heart beat intervals 
(RMSSD), the standard deviation of successive differences 
between neighbouring heart beat intervals (SDSD), and the 
proportion of differences between successive heart beats 
greater than 50 ms and 20 ms (pNN50, pNN20, resp.). 

HRV can also be expressed in the frequency domain, where 
two frequency bands are usually included: low frequency 
(LF, 0,04–0,15 Hz), which is related to short-term blood 
pressure variation [20], and high frequency (HF, 0,16–
0,5 Hz), which is a reflection of breathing rate [19].

Figure 2: The ECG signal (a.) shows a strong QRS complex together with little amplitude variation. The PPG signal 
measured simultaneously while the patient is at rest in a hospital bed (b.) shows some amplitude variation but 
relatively stable morphology. When measuring PPG in a driving simulator using low-cost sensors (c.), strong amplitude 
and waveform morphology variation is visible.

Figure 1: a. and b. display the ECG and PPG waveform morphology, respectively. The ECG is divided into distinct waves 
(a, I–V), of which the R-wave (a, II) is used for heart beat extraction. With the PPG wave, the systolic peak (b, I) is 
used. The plot in c. shows the relationship between ECG and PPG signals.
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2.3. Analysis Overview
This section describes the architecture of the algorithm 
and gives an overview of how the heart rate signal is 
processed and analysed.

2.3.1. Pre-processing
The pre-processing options available are peak enhance
ment, FIR filtering, and outlier detection. The peak 
enhancement function attempts to normalise the ampli
tude, then increases R-peak amplitude relative to the rest of 
the signal. A Butterworth filter implementation is available 
to remove high frequency noise. Outlier detection on the 
raw signal is implemented based on a modified Hampel 
Filter [21] with a window of half the sampling rate. By 
default, only the peak enhancement is performed. Details 
are discussed in the repository’s documentation [22].

2.3.2. Peak detection
The peak detection phase attempts to accommodate 
amplitude variation and morphology changes of the PPG 
complexes by using an adaptive peak detection threshold 
(Figure 3, III), followed by outlier detection and rejection. 
To identify heartbeats, a moving average is calculated 
using a window of 0.75 seconds on both sides of each 
data point. The first and last 0.75 seconds of the signal 
are populated with the signal’s mean, no moving average 
is generated for these sections. Regions of interest (ROI) 
are marked between two points of intersection where 
the signal amplitude is larger than the moving average 
(Figure 3, I–II), which is a standard way of detecting 
peaks. R-peaks are marked at the maximum of each ROI.

A special case arises when the signal clips, which can 
happen for example when a sensor has constraints on the 
range of the signal it can measure, or when digitising an 
analog signal. The algorithm has clipping detection for 

R-peaks and will attempt to reconstruct the waveform by 
spline interpolation whenever an R-peak displays clipping. 
To interpolate, 100 ms of data before clipping onset and 
100 ms of data after clipping end is used. An example of 
the process is shown in Figure 3-IV.

During the peak detection phase, the amplitude of the 
calculated threshold is adjusted stepwise. To find the best 
fit, the standard deviation between successive differences 
(SDSD, see also 2.2) is minimised. The instantaneous heart 
rate (BPM) is computed and evaluated in tandem with the 
SDSD. This represents a fast method of approximating 
the optimal peak detection threshold by exploiting the 
relative regularity of the heart rate signal. As shown 
in Figure 4, missing one R-peak (III.) already leads to a 
substantial increase in SDSD compared to the optimal fit 
(II.). Marking incorrect R-peaks also leads to an increase 
in SDSD (I.). The lowest SDSD value that is not zero, in 
combination with a likely BPM value, is selected as the 
best fit. The BPM must lie within a predetermined range 
(default: 40 <= BPM <= 180, range settable by user).

2.3.3. Error detection
Due to the variable PPG waveform morphology, it is possible 
that after the initial peak fitting phase incorrectly marked 
R-peaks remain. Motion artefacts may be another cause of 
detection error. A correction is performed by thresholding 
the sequence of RR-intervals. R-peaks are considered low 
confidence if the interval created between two adjacent 
R-peaks deviates by more than 30% of the mean RR-interval 
of the analysed segment (Figure 5). The threshold is adaptive 
based on the current segment with a minimum value of 
300 ms. We’ve found this to be a good approximation for 
incorrect detections. If any peaks are considered incorrect 
detections, the array of RR-values is recomputed to only 
contain intervals between two high confidence R-peaks.

Figure 3: Figure showing the process of peak extraction. A moving average is used as an intersection threshold (II). 
Candidate peaks are marked at the maximum between intersections (III). The moving average is adjusted stepwise 
to compensate for varying PPG waveform morphology (I). (IV). shows the detection of the onset and end of clipping, 
and the result after interpolating the clipping segment.
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An optional error detection pass is available. Using the 
method, the signal is segmented into n-peak sections 
and each segment evaluated. Segments are marked low 
quality if more than a predetermined percentage of peaks 
are marked low confidence (default n = 10, rejection 
percentage = 30%). We found that this pattern of short 

segments displaying multiple rejected peaks, are often 
indicative of periods of poor signal/noise ratio or signal 
loss, such as displayed in Figure 6. By eliminating these 
short periods from the analysis, the output measures 
remain reliable because only RR-intervals resulting from 
analysable segments are used in their calculation.

Figure 4: Image showing how the dynamic threshold is fitted using SDSD. The last image (III.) shows that even missing 
a single beat will lead to a large increase in SDSD compared to the optimal fitting. BPM is also taken into account 
when fitting.

Figure 5: The plotted RR-intervals with thresholds (I.), and the resulting rejected peaks (II.).

Figure 6: Plot from PPG dataset with low-confidence sections marked. These are ignored in the computation of output 
measures.
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The heart rate analysis package was implemented 
in both Python and embedded C. The following two 
sections describe both implementations as well as their 
requirements, dependencies and availability.

2.4. Python implementation
Python is a flexible programming language that is well 
suited for scientific use [23]. During development the 
reliance on external dependencies was minimised. The 
package uses the following external packages:

•	 Numpy is used to handle the data, numerical compu-
tations, and the Fast Fourier Transform. For these pur-
poses Numpy is much faster than the standard Python 
interpreter.

•	 Scipy is used for various filtering and interpolation 
tasks.

•	 Matplotlib is included to plot the results of the analysis 
if requested by the user.

The implementation of the functions had readability as 
the main aim. Pep-8 conventions were followed in code 
styling and function design. A quickstart and background 
information can be found in the documentation [24] and 
the code together with detailed Jupyter tutorial notebooks 
can be found on the repository [25].

2.5. Embedded C implementations
Several C implementations have been developed to 
facilitate data collection and analysis in lab-based and field-
based studies that utilise wearable technology. Hardware 
interrupt timers are used to ensure a precise sampling rate 
is maintained. Most implementations contain a double 
switching buffer to collect the sensor data. As one of the 
buffers fills up, logging switches to the secondary buffer 
and the content of the first buffer is processed and stored. 
This ensures logging without interruption.

The repository contains Arduino IDE sketches for several 
popular boards. Wiring diagrams, and suggested PCB 
(printed circuit board) design files for various (wearable) 
applications are in development. The implementations 
available are briefly discussed below.

2.5.1. Data Logger
A data logging application is available. Users can set the 
desired sampling rate they wish to log. Adaptive input 
scaling is available (on by default), which attempts to 
normalise amplitude over time. This is especially useful 
when measuring at locations where the PPG signal is 
weaker (wrist, neck), or when measuring it on participants, 
with reduced perfusion, such as those with advanced age 
or a history of smoking.

2.5.2. Peak Finder
The peak finder implementation analyses the incoming 
signal real-time for peaks and returns both the peak 
position and RR-interval created between the current and 
the previous detected peak. Error detection based on the 
last 20 RR-intervals, as well as based on various settable 
parameters is available. See the documentation for more 
details [24].

2.5.3. Time Series Analysis
The time series analysis implementation is similar to the 
peak finder implementation, except that it calculates 
and outputs the time-series measurements of both heart 
rate and heart rate variability. It tracks detected peaks in 
time to computer RR-intervals and ignores intervals when 
there is a missing or rejected peak in between.

2.5.4. Full Implementation
The full implementation contains the HR and HRV online 
analysis. All the HR and HRV measures mentioned under 
2.2 are derived from the signal and stored to an on-board 
SD card, together with the original signal. Since a full signal 
period is first collected, several pre-processing steps can 
be taken to improve signal quality prior to analysis. This 
makes the full implementation the most noise-resistant 
of the available versions. The memory and processing 
requirements, however, are also higher than of the other 
versions. This makes it less suited for long-term wearable 
solutions required in naturalistic studies, but very suited 
for environments where power is available (in-car, driving 
simulator, lab-based studies, bicycle with power bank) or 
situations of shorter measurement periods.

3. Quality control
3.1. General Quality Control
The code development was centred around ease-of-use and 
reusability of functions and methods. Coding best practices 
were followed [26]. Throughout the development process, 
cyclomatic complexity (cc) was frequently calculated for all 
functions using the python Radon package and the Lizard6 
package. Refactoring was applied for functions that had a 
cc of over 10,7 to ensure maintainability and readability of 
the code. Git was used for version control [27] throughout 
the project.

Means for automatic source code validation and auto
mated testing have been implemented. In the Python 
implementation, examples are available in the docstrings 
that double as doctests. Automated continuous integration 
(CI) testing is implemented through the Travis-CI platform. 
Code coverage, build status and supported Python versions 
are displayed as badges on the GitHub repository.

Several end-to-end examples are included in Jupyter 
notebooks on the repository, detailing how to handle 
various types of signals with HeartPy. Available examples 
deal with both good and poor quality PPG and ECG signals 
from various sources (sensors, electrodes, smartwatch, 
smart ring). The examples are designed to familiarise 
new users with the functionality of the package and to 
highlight possible use cases.

A tutorial series is available [28], detailing the basics 
behind the Python implementation of the algorithm. Users 
seeking deeper understanding in the mechanics behind 
the algorithm can follow these.

3.2. Validation
HeartPy was validated on a dataset collected by PPG sensor 
from a previous experiment [29]. Heart beats in the dataset 
were manually annotated to serve as a ground truth. 
The validation was performed on the set and compared 
to two popular available open source algorithms. Error 
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rates showed superior performance of our algorithm on 
the noisy PPG data in the test set. The full validation is 
described in [9].

4. Availability
4.1. Operating system
HeartPy has been tested to run on Python 2.7, 3.4, 3.5, 
3.6 and 3.7. All updates are automatically built using 
Travis-CI and tested. Results are dynamically displayed on 
the repository as badges.

Several Arduino IDE sketch files have been provided 
as well for different boards. These have been tested on 
their respective boards, and developed in the Arduino IDE 
version 1.8.5. They are designed to enable researchers low-
cost ways of collecting heart rate data as well.

4.2. Additional system requirements
The Python implementation’s data handling happens 
in NumPy, which ensures efficient RAM usage and fast 
execution. The size of the input data will determine 
memory usage, although the requirements are low for 
most datasets. As an example, we loaded the first data file 
from the first participant in the PPG validation set included 
on the GitHub (‘pp1_Eind_Som_C.csv’). The file represents 
10:52 minutes of data sampled at 100 Hz. The loaded data 
takes 261 Kb in memory. Temporary containers created 
during analysis and (pre-)processing take up an additional 
593 Kb. This indicates very low resource requirements for 
most analyses.

Requirements of the embedded hardware conform to 
RAM and CPU resources available on the SOC’s for which 
the implementation has been designed. More information 
and absolute values are available in the documentation 
[22].

4.3. Dependencies
HeartPy is dependent on the Numpy, SciPy and Matplotlib 
packages. The lowest versions we’ve tested with HeartPy 
are NumPy==1.15, SciPy==1.1.0, Matplotlib==2.2.3. These 
versions allow functionality on Python 2.7.

The Arduino implementations depend on standard 
modules available in the Arduino IDE. The versions for 
Arduino and Teensy boards depends on the SDfat module 
for communication with the SD card for data storage. This 
module is installed in the Arduino IDE by default.

4.4. List of contributors
Jonathan de Bruin has provided valuable advice and 
suggestions during development and testing of HeartPy 
and will remain active in further development.

4.4.1. Software location of Python version
�Archive (e.g. institutional repository, general repository) 
(required – please see instructions on journal website 
for depositing archive copy of software in a suitable 
repository)

Name: Zenodo.org
�Persistent identifier: https://doi.org/10.5281/
zenodo.3407802
Licence: GNU General Public License V3.0
Publisher: Paul van Gent

Version published: V1.2.4
Date published: 13-09-2018

Code repository: GitHub
Name: Python Heart Rate Analysis Toolkit
�Identifier: https://github.com/paulvangentcom/
heartrate_analysis_python
Licence: GNU General Public License V3.0
Date published: 13-09-2018

4.4.2. Software location of C version
Code repository: GitHub

Name: Arduino Heart Rate Analysis Toolkit
�Identifier: https://github.com/paulvangentcom/
heartrate_analysis_Arduino
Licence: GNU General Public License V3.0
Date published: 31-07-2018

5. Reuse potential
HeartPy can be used by researchers, makers, and engineers 
to create applications that make use of (real-time) heart 
rate data. The toolkit can be used in research settings both 
in the lab and ‘in the wild’. HeartPy handles noise that is 
typically introduced into heart rate signals when recording 
outside the lab, and contains many pre-processing options 
to help clean up poor quality signals. The software has 
been used in for example lab-based simulator contexts 
[10, 11], real world driving contexts [12, 13], and as a 
backend for a pregnancy monitoring tool [29].

Detailed examples are available on the repository and in 
the documentation on handling different data types that 
serve to kick-start any new project based on HeartPy. These 
examples are available on the repository as Jupyter notebooks 
(https://github.com/paulvangentcom/heartrate_analysis_
python/tree/master/examples). The examples cover how to 
analyse PPG signals from sensors, smartwatches and smart 
rings (and similar devices), as well as ECG signals ranging 
from good to very poor quality.

HeartPy is designed to easily be integrated into existing 
projects. All methods are documented with examples 
provided, and most can be used in isolation. Throughout 
the processing pipeline everything of interest is stored 
in a dict{} object, which can be accessed each step of the 
analysis. This facilitates integration with other projects by 
allowing a fine level of control over each step.

We are currently working on incorporating a GUI for 
use with HeartPy, which will expand the reuse potential 
further towards researchers without coding experience.

Notes
	 1	 See https://www.nwo.nl/en/.
	 2	 See http://www.arduino.cc.
	 3	 See http://www.raspberrypi.org.
	 4	 See http://tfl.tudelft.nl/.
	 5	 Note that the definition of ‘invasive’ in human factors 

studies refers to intrusion into the person’s privacy, 
personal space or thoughts. It differs from the medi-
cal definition, where ‘invasive’ indicates that a foreign 
object intrudes into the body.

	 6	 See https://github.com/terryyin/lizard.
	 7	 See http://radon.readthedocs.io/en/latest/api.html#​

radon.complexity.cc_rank.
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