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Abstract

In this work neural networks are used to approximate the solutions of multiple differential equa-
tions. Three main differential equations are investigated: the mass-spring equation, the heat
equation and the Navier-Stokes equations coupled with the continuity equation. Each of these
equations are approached differently with the current methods, therefore these equations test the
applicability of the newly proposed method on a general differential equation.

The results of various experiments performed in this work show that the method is able to
approximate to great precision the mass-spring equation as well as the heat equation. However,
the method does not perform well on the Navier-Stokes equations coupled with the continuity
equation.

The main advantage of this method is that meshes used by this method can often be very small
compared to other approximation algorithms. When a slight decrease in performance is allowed,
the method can be made completely mesh free.

A huge drawback of the method is that there is no guarantee that the method will generate
a reasonable approximation, for a given neural network configuration. This makes it necessary to
look for a good configuration of the neural network. At this moment, this can only be done using
trial and error and is therefore very time-consuming. Sometimes no good configuration is found at
all.

Another drawback is that the generated approximation does not satisfy the boundary and initial
conditions. Multiple ways are proposed in this work to tackle this problem, but they introduce
much more complexity and a performance decrease.

The neural networks used in this work are generated using software called PyTorch, which
comes with an automatic analytic differentiation tool. This part of PyTorch makes it possible to
approximate differential equations using neural networks.



ii

Contents

1 Introduction 1

2 Artificial neural networks 2

2.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Fully connected layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Mathematical model of fully connected layers . . . . . . . . . . . . . . . . . . . . . 3

2.4 Nonlinear activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Differentiable activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.7 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.8 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Implementing a neural network to solve differential equations 6

3.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Discussion on the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Probability function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 PDE loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 Boundary loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.7 Learning rate adaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Experimental results 10

4.1 Solving the mass-spring ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Solving the damped mass-spring ODE . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Solving the heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Unweighted loss and uniform sampling . . . . . . . . . . . . . . . . . . . . . 14

4.3.2 Weighted loss with fixed weights . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.3 Weighted loss with loss-dependent weights . . . . . . . . . . . . . . . . . . . 18

4.3.4 Weighted loss and loss-dependent sample distribution . . . . . . . . . . . . 20



iii

4.3.5 Discussion on the results of the heat equation . . . . . . . . . . . . . . . . . 22

4.4 Solving the Navier-Stokes and Continuity equation . . . . . . . . . . . . . . . . . . 22

4.4.1 Implementation in PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Mass-spring system 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5.1 Solving the mass spring equation and results . . . . . . . . . . . . . . . . . 25

4.5.2 Detailed problem determination . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.3 Proposed solutions and their results . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions from the experiments and further research recommendations 36

Appendices 38

A In depth description of PyTorch implementation 38

A.1 Mass-spring system 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2 Sampling points from a custom distribution . . . . . . . . . . . . . . . . . . . . . . 41

A.2.1 Mesh free solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2.2 Updating the distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



1

1 Introduction

Neural networks have made their entrance in various fields of computer science. They have proven
themself very useful in detecting objects in images [8], recognizing speech by a computer [3] and
reading and processing human typed text [4]. In this work, it is proposed to use a neural network
to approximate the solutions of a differential equation. The software used to create the neural
network, which is called PyTorch, comes with an automatic analytic differentiate tool [1], which
makes it possible to check if the output of a neural network satisfies a given differential equation.

Differential equations have proven themself to be notoriously hard to solve, while playing a
prominent role in physics. There are multiple fields of physics which are solely about solving one
differential equation, such as fluid flow analysis, structural analysis and heat flow analysis. It is
important to have algorithms which obtain approximations to the solutions of these equations,
since an exact solution to most of these problems have not been found so far.

This work connects the recent developments in computer science with the need for approxi-
mation algorithms in physics. Approximations to differential equations are searched using neural
networks. In section 2 the general working of a neural network is explained. In section 3 it is
explained how differential equations can be solved using a neural network and how the boundary
conditions of a differential equation are being satisfied using the same neural network. In section 4
the results of the performed experiments are shown and discussed. The conclusions of the experi-
ments are shown in section 5, as well as a discussion on these results. In appendix A an in-depth
explanation of the implementation in PyTorch is given as well as an in-depth explanation of the
used sampling algorithm, which was used heavily in the experiments.
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2 Artificial neural networks

In this report, artificial neural networks are used to approximate solutions to differential equations.
In this section, a short introduction is given into neural networks. Most information is available in
[6], but also less formal in the documentation of various deep learning libraries. PyTorch is used
in this work, which provides information in [1].

Standard neural networks consist of layers of neurons, called fully-connected layers. Neurons
are non-linear functions with an internal state. When a neural network is trained to give a certain
output, the internal states of the neurons are altered to match the desired output.

These architectures are a base for more sophisticated architectures. In this work the slightly
more complex convolutional layer is also used, which gave much better results during some of the
experiments.

2.1 Neurons

A neuron is a function with a vector xxx as input and a scalar y as output. It is usually graphically
illustrated as in figure 1. It has an internal state, which consists of a weights vector www and a bias
scalar b.

Figure 1: Graphical illustration of a neuron with input vector xxx, weights vector www, bias scalar b
and output scalar y.

The output of the neuron is calculated as follows: The standard inner product is taken between
the input vector xxx and the weights vector www. Then, the bias b is added and an activation function
f(x) is applied, which yields the output of the neuron: y = f(xxxTwww + b). The activation function
will be discussed in more detail in section 2.4

2.2 Fully connected layers

A fully connected layer is a layer where multiple neurons are placed next to each other. Each
neuron has the same input and activation function, so the neurons only differ in their weights and
biases. When the outputs of each neuron in the layer are placed in a vector the output vector yyy
of the layer is obtained. Note that the length of the output vector is the same as the number of
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neurons in the layer. Also note that the length of the output vector is generally not equal to the
length of the input vector.

A complete neural network is obtained when layers are stacked behind each other. That means,
the output of the first layer serves as input of the second layer, the second layer serves as input of
the third layer, and so on until the final layer. In figure 2 a graphical representation is shown of a
neural network.

Figure 2: Graphical illustration of a neural network. The black circles in the middle represent
neurons, ordered in two layers. The blue circles are the input vector components. The green
circles represent the output layer and are therefore also the output vector of the neural network.

2.3 Mathematical model of fully connected layers

The simplest type of neural network consists of fully connected layers. A fully connected layer can
be modelled by a matrix multiplication. Define matrix Wi such that all weight vectors of layer i
produce the rows of Wi: Wi =

[
www1,i www2,i · · · wwwn,i

]T , where n is the number of neurons in the
layer. Similarly, all the bias scalars can be put in a vector: bbbi =

[
b1,i b2,i · · · bn,i

]T . Then,
the output vector yyyi of layer i is given in equation 1:

yyyi = fff(Wixxxi + bbbi) (1)

In equation 1, fff(xxx) performs the activation function f to all elements of the vector xxx and xxxi is the
input of layer i.

The whole neural network can now be modelled as in equation 3, where n is the number of
layers, xxx is the input and yyy is the output:

yyy(xxx) = fff(W1fff(W2fff(W3 · · ·fff(Wnxxx+ bbbn) · · ·+ bbb3) + bbb2) + bbb1) (2)

During the training phase of a neural network, the weights are adjusted by an optimization
algorithm, which is briefly discussed in paragraph 2.8. Therefore equation 2 is only valid when the
neural network was already trained and is being evaluated. During training, equation 2 becomes
equation 3:

yyy(xxx,W1,W2, ...,Wn, bbb1, bbb2, ..., bbbn) = fff(W1fff(W2fff(W3 · · ·fff(Wnxxx+ bbbn) · · ·+ bbb3) + bbb2) + bbb1) (3)
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2.4 Nonlinear activation function

The importance of a nonlinear activation function is shown in this paragraph. Suppose a linear
activation function is used: f(x) = cx, where c is some constant. The output of the neural network
would be:

yyy = c(W1c(W2c(W3 · · · c(Wnxxx+ bbbn) · · ·+ bbb3) + bbb2) + bbb1)
= cnW1W2W3 · · ·Wnxxx+ cn−1W1W2 · · ·Wn−1bbbn + · · ·+ cW1bbb2 + b1b1b1

= Pxxx+ kkk

(4)

Where P is some matrix and kkk is some vector independent of xxx. Note that the output is a linear
function of the input, so the neural network is only able to create a linear model.

Generally, a neural network should not create a linear model since there are more efficient
methods of creating and solving linear models. Therefore, the described behaviour is not desirable
for any problem which is solved using a neural network. For this usage specifically the undesirability
is even more obvious; solutions to differential equations are in general not linear, so a linear model
would not suffice. When a nonlinear activation function is used, equation 3 cannot be reduced into
the yyy = Pxxx+ kkk form, so the output will be a nonlinear function of the input.

2.5 Differentiable activation function

From equation 3, it is clear that ∂yyy
∂xxx can only be calculated if yyy(xxx,W1,W2, ...,Wn, bbb1, bbb2, ..., bbbn) is

differentiable. Moreover, it is required that yyy is differentiable everywhere, since ∂yyy
∂xxx will be discontin-

uous if it was not differentiable. Most physical differential equations however require differentiable
solutions. In this work, ∂yyy∂xxx and ∂2yyy

∂xxx2 are calculated in order to check if yyy(xxx,W1,W2, ...,Wn, bbb1, bbb2, ..., bbbn)
is a solution of the considered differential equation, so the derivative plays a crucial role in this
work. A differentiable activation function is therefore required.

2.6 Convolutional layers

A more sophisticated form of a neural network makes use of the so-called convolutional layer.
Experimentally, it is found that these layers often perform better than fully connected layers in
image recognition problems [8].

A convolutional layer does not consist of neurons, like a fully connected layer. The whole layer
has one weights vector www and one bias vector bbb, which form the parameters of the layer. Equation
5 shows how the output of the layer is calculated, where yyy is the output of the layer, xxx is the input,
fff is the activation function and ∗ is the convolution function.

yyy = fff(bbb+www ∗ xxx) (5)

Note that www and xxx are both of finite length. The length of www is a configuration parameter of the
neural network. Like most configuration parameters, the best length ofwww is found by trial and error.
Also note that by definition of the convolution: z[n] = (f ∗ g)[n] =

∑∞
m=−∞ f [n −m]g[m]. Since

both xxx and www have finite elements, this sum reduces to z[n] = (x ∗ w)[n] =
∑L
m=1 x[n −m]w[m],

where L is the length of www. Note that this is undefined if n < L + 1 or n > p + 1, where p is the
length of xxx. Therefore, z[n] is defined for p− L+ 1 points, so the dimension of the output vector
of the convolutional layer is L− 1 less than the input vector.
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2.7 Loss function

The loss function measures the error between the output of the neural network and the desired
result. Multiple options are available for this function, but in this work the L2 norm is used:
L =

√∑
(ppp− yyy)2, where ppp is the value outputted by the neural network and yyy is the desired

value. Note that a good choice of loss function is crucial to the performance of the optimization
algorithm. It is unknown if there is a systematic way to determine the best suitable loss function.
In this work, well performing loss functions are always found by trial and error.

2.8 Optimization algorithm

The optimization algorithm adjusts the parameters of the neural network such that the loss func-
tion is minimized. The optimization algorithm is therefore directly responsible for obtaining an
approximation of the solution of the differential equation.

Choosing or creating a good optimization algorithm is a complex task, since the function to
optimize is highly non-linear. In this work, an optimization algorithm is used, which is commonly
used when training neural networks for other tasks, such as computer vision or natural language
processing. This algorithm is called Adam [7] and it is based on stochastic gradient descent.
Implementing this algorithm is relatively simple, since it comes with PyTorch.
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3 Implementing a neural network to solve differential equa-
tions

In this section, the implementation of a neural network to solve differential equations is discussed.
Implementing a neural network by itself is relatively simple when using the proper tools. The
algorithm is programmed in Python and uses a deep learning library called PyTorch.

PyTorch is very much comparable to Numpy, since it is optimized for matrix and vector algebra.
PyTorch is capable of doing its calculations on a GPU, which makes it very fast. It comes with a
lot of build-in functions and tools, making it an easy library to use.

For the first experiments, Google Colab is used as a remote server to train the neural network
on. By using the GPU available in Colab training, the neural network can be done in reasonable
time, which is not possible on a CPU only machine. Later on, a local machine with a GPU became
available which has been used ever since.

3.1 Algorithm description

The goal of this work is to approximate yyy(xxx) which is a solution to the differential equation of
interest. Let this differential equation be represented by the differential operator L, and a solution
of L satisfies L[yyy(xxx)] = 0. Now, given the neural network output ggg(xxx), the error can be calculated:
δ(xxx) = L[ggg(xxx)].

If δ(xxx) = 0 everywhere, then an exact solution to the differential equation is obtained. By
defining the loss function to be L =

√∑
δ(xxx)2, we can use an optimization algorithm to minimize

L, as described in section 2.8.

Using these tools, the algorithm consists of the following steps:

• Define the space in which the differential equation is solved and sample n random points xxxi
from this space.

• Get the neural network approximation ggg(xxxi).

• Calculate the error of the approximation δ(ggg(xxxi)) and the accompanying loss LPDE =√∑n
i=1 δ

2(ggg(xxxi)).

• Define the boundary conditions of the differential equation and sample n random points xi
from each boundary.

• Get the neural network approximation ggg(xxxi) for each of the boundary points.

• Calculate the error of the approximation at the boundaries and the accompanying losses:
LBoundary =

√∑n
i=1(ggg(xxxi)− yyy(xxxi))2, where yyy(xxx)) is the prescribed boundary condition.

• Sum all the losses: L = LPDE +
∑
Boundaries LBoundary.

• Use the optimization algorithm to change the parameters of the neural network such that L
is minimized.

• Repeat the process.

In order to have a completely mesh free algorithm, custom probability distributions can be
used to sample the input points xxxi from. Usually, a uniform distribution is used. However, if the
probability function depends on earlier found errors, as described in section 3.3, points with a high
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error can be sampled more often. This process does need a small mesh to model the probability
distribution.

Note that the loss depends on the number of sampled points n. Sometimes the loss is com-
pensated for this by putting a factor 1

n in front of the sum. In this work that is not done since
n is constant during a training session, therefore the optimization algorithm would simply see a
scaled version of the uncompensated loss. This only adds unnecessary complexity and is therefore
omitted.

3.1.1 Discussion on the algorithm

In this paragraph a few upsides and downsides of the algorithm are described.

First of all, a mesh is not required since points are randomly sampled. This is a huge advantage
over other numerical methods, which require large meshes. However, as we will see in section 4.3.4,
a small mesh used to create a custom probability density function from which the random points
xxxi are sampled will increase the performance of the neural network. This mesh is still orders of
magnitude smaller than the meshes constructed in conventional methods.

Secondly, it is not possible to determine the maximum error of the approximation, maxxxx (yyy(xxx)− ggg(xxx)).
Heuristically, it is possible to say that a lower L should give a better approximation, but as is seen
during the experiments, this is not always the case.

Thirdly, the boundary conditions cannot be fixed. From equation 3, it is clear that only the
parameters of the neural network can be varied. It would be possible to constrain the parameters
such that the boundaries are satisfied, but this would prohibit the optimization algorithm to vary
the parameters. The differential equation can therefore not be approximated if the parameters
are constrained to the boundaries. The alternative is to include the error at the boundaries in
the loss function, as is done in this work and is described in section 3.1. It is however possible to
generate a weighted loss L = wPDE · LPDE +

∑
Boundaries wb · LBoundary, where wPDE and wb

are the weights of the individual loss terms, such that wPDE +
∑
Boundaries wb = 1. Using these

weights, it possible to let the approximation only satisfy the boundaries in the beginning phase of
the training and forget about the differential equation completely.

Fourthly, it is not possible to determine in advance of the training phase whether the approx-
imation converges to the analytical solution. It is therefore possible that after a time-consuming
training session, the approximation does not even come close to the analytical solution. This is a
huge disadvantage as was seen in the experiments, since bad approximations occur at seemingly
random moments. Since there are a lot of configuration options on the neural network, it is a very
time-consuming process to try whether the configuration yields good results for all configurations.

3.2 Activation function

From section 2.4, it is clear that the activation function plays a crucial role. The activation function
is required to be nonlinear and differentiable. If Wi = I and bbbi = 000 for all 0 < i ≤ n, it is clear
from equation 3 that if the activation function changes the order of the input, the output might
be too big or too small to handle it properly.

For example, if the activation function reduces the order of magnitude of the input by 1, a 10
layer neural network will output numbers 10 order of magnitudes smaller than the input. For any
reasonable input x, this is generally undesirable.

Therefore, an activation function that does not change the order of the input is required, or an
activation function that only changes very large or very small input values.
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Examples of suitable activation functions are f(x) = tanh x, f(x) = 1
1+e−x , f(x) = arctan x

and f(x) = ln (1 + ex). Note that in image recognition, the activation f(x) = max (0, x) has shown
good results. Since this function is not differentiable at x = 0, a differentiable approximation can
be used: f(x) = ln (1 + ex). This function is however much less successful, as showed in the
experiments.

It is not required that the activation function after each layer is the same activation function. An
activation function is generally chosen by trial and error. In this work, the function f(x) = tanh (x)
performed relatively good, but the output range is only [-1, 1]. For a lot of differential equations,
the solution is expected to be non-negative and not too large, albeit larger than 1. To overcome
this problem, the activation of the last layer is often chosen as f(x) = ex − 0.5. This allows not
only for larger values than 1, but also for the range [0,1] to be reached using reasonable values.

3.3 Probability function

A bounded region must be specified for which the differential equation is solved. For each point on
that region, a probability that this point is sampled is desired. That way, points with a large error
are more often sampled than points with a low error. The optimization algorithm is then able
to focus on the errors it made rather than improving regions that are already good. Therefore, a
mesh is constructed on that region and the loss is calculated on those points. Let c(xxx) be the loss
at point xxx. This loss is used as a probability density function, after normalization. Since c(xxx) is
only known at the mesh points, a linear interpolation is used to interpolate the probability on the
whole region.

Note that the mesh is only used for probability estimation. The neural network estimation of
the solution is also optimized at points other than the mesh points. It is also possible to assume a
uniform probability distribution, which needs no mesh creation at all. The method then becomes
a truly mesh-free method, but it converges more slowly to a solution.

3.4 Sampling

When the numerical probability density function is known, points must be sampled from it. Since
the distribution might be more dimensional, up to 4 dimensions in this work, sampling is nontrivial.

A pivot dimension is chosen. The distribution is summed in all dimensions except the pivot
dimension. Remember that it is a numerical distribution, consisting of discrete points, which
allows the use of a sum instead of an integral. After summing, a one dimensional distribution is
obtained, which is transformed into a cumulative distribution. Subsequently, there is an injective
and surjective function from the pivot dimension to [a, 1], when an interpolation is used for all
points in between the known mesh points. Here, a is the probability of the first point in the pivot
dimension. The [a, 1] range is undesirable, so the first element in the pivot dimension is shifted
by a small number ε, which allows for an artificial mesh point at x = 0 with value 0, so that the
interpolation range becomes [0, 1].

In order to pick a random point from the cumulative function, a random number from the
uniform distribution between 0 and 1 is drawn. This corresponds with some point on the pivot
dimension, given by the inverse of the interpolated cumulative probability function. Now, on the
pivot dimension, a point is chosen.

All dimensions serve as pivot dimension once. All drawn points together form a random point
drawn from the numerical probability distribution.

PyTorch does not have a built-in function for this procedure, which means that it must be
implemented in the program itself. Since PyTorch functions are generally much faster than built-
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in Python functions, the procedure is implemented with PyTorch functions only. A fully detailed
explanation of the algorithm is given in appendix A.2.

3.5 PDE loss

Once a mini-batch of points has been drawn from the distribution, the loss can be calculated. For
each point xxxi, the error δ(xxxi) is calculated. Normally, the L2 norm, also called mean squared error,
is used as loss function. Since the desired value of the error is zero, calculating the PDE loss is
given by

√∑n
i=1 δ

2(xxxi).

Implementing the calculation of the function δ(xxx) is easily done using PyTorch. PyTorch
provides automatic analytic differentiation functions, which allows for quick implementation of
differential equations. This is one of the huge benefits of using PyTorch, as implementing a
differentiation function manually would require a lot of effort.

3.6 Boundary loss

Not only the differential equation should be satisfied, this also applies to the boundary conditions.
This is done by comparing the neural network value at the boundary with the known boundary
value. The L2 norm is also used here. Let xxxi be a sampled boundary point, then the unweighted
boundary loss is given by Lb =

√∑n
i=1 [g(xxxi)− y(xxxi)]2, where yyy is the boundary value and ggg is

the neural network value.

As we will see in the experiments, weighted versions of the loss often provide a performance
increase: Lb =

√∑n
i=1 wi [g(xxxi)− y(xxxi)]2 where wi represents the weight of the ith term. Note that

multiple boundaries may be defined and that the total loss is simply all the losses summed together.
If the output of the neural network has multiple dimensions the sum is over each dimension of the
input xxxi as well as the output dimensions.

3.7 Learning rate adaption

The loss is passed to the optimization algorithm. In order for the optimization algorithm to work, it
must be configured properly. One of the most important configuration options is the learning rate.
In the Adam algorithm, it is one of the factors by which the gradients of the loss with respect to
the parameters are scaled. When a optimization algorithm is used without a well-chosen learning
rate, the neural network will not converge to the desired value. It is therefore extremely important
to perform a learning rate optimization, which is usually done by trial and error.

During the beginning of training, the neural network might need a higher learning rate than
further down the training process. A learning rate adaption scheme is set up to adjust the learning
rate during training. This adaption scheme comes with its own configuration options, which in
turn requires its own trial and error optimization.
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4 Experimental results

Multiple experiments have been done using the neural network method. Four main experiments
have been performed: solving a mass-spring system (ODE), solving the heat equation (One di-
mensional PDE), solving the Navier-Stokes equations coupled with the continuity equation (Multi
dimensional PDE) and solving a mass-spring system with the Navier-Stokes solver. Inside each
main experiment, lots of sub-experiments were performed, each with a slightly different configura-
tion.

4.1 Solving the mass-spring ODE

A mass spring system is solved by the neural network. The differential equation is given by
d2u
dt2 (t)+ cu(t) = 0, where u is the distance of the mass measured from the equilibrium position and
ck > 0. In these experiments c is chosen as 1

10 .

The initial conditions where chosen as u(0) = 1 and du
dt (0) = 0. The analytical solution to this

equation is known and given by u(t) = cos
√
ct. The neural network approximation is made on the

range 0 ≤ t ≤ 30.

For the neural network, the following configuration is chosen: learning rate of 5 ·10−4, 30 mini-
batches per epoch, mini-batch size of 10 and the tanh(x) activation function. A plot of the neural
network approximation and the analytical solution is given in figure 3.

Figure 3: Neural network approximation of a mass-spring system after 1800 epochs together with
the analytical solution. The loss is 1.1 · 10−5 and the maximum difference between the approxima-
tion and the analytical solution is 1.5 · 10−3.

The method diverged for larger values of the initial conditions or larger values of c, such as
u(0) = 30 or c = 300, the method diverged. This resulted in a computer memory overflow. The
experiment was repeated multiple times and with different configurations but the method always
diverged.

Later in this work the same system is solved using a more sophisticated method, which will fail
for a large part. These two methods are extensively described in appendices A.1 and A.2, so that
a comparison can be made. Note that this experiment is repeated using the x3, ln(ex + 1) and
ex activation functions, but that these activation functions overflow the computer memory after
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some epochs. Also, sin(x) is used as activation function and the results are similar to the tanh(x)
activation function.

4.2 Solving the damped mass-spring ODE

The mass-spring system is altered by a damping term. The differential equation becomes d2u
dt2 (t) +

k · u(t) + c · dudt = 0. If c2 > 4k, the system is called over damped and the analytical solution is
given by expression 6, where u(0) = 1 and du

dt (0) = 0 are used as boundary conditions.

u(t) = e−
1
2 ct

[
(1− 4k

c2 )− 1
2 sinh(t ·

√
1
4c

2 − k) + cosh(t ·
√

1
4c

2 − k)
]

(6)

If c2 < 4k, the system is called under damped and the solution is given in equation 7, where
the same boundaries are used.

u(t) = e−
1
2 ct

[
(4k
c2 − 1)− 1

2 sin(t ·
√
k − 1

4c
2) + cos(t ·

√
k − 1

4c
2)
]

(7)

If c2 = 4k, the system is called critically damped and the solution is given by equation 8, where
the same boundaries are used again.

u(t) = e−
1
2 ct

[
1 + 1

2ct
]

(8)

Using the neural network, the damped mass-spring system is solved. Firstly, a system that is
slightly over damped is solved, so c2 > 4k. No oscillations therefore occur. The result is seen in
figure 4.

Figure 4: Neural network approximation together with the analytical solution of an over damped
mass-spring system. The analytical solution is given by equation 6. This result is achieved after
500 epochs with a loss of 1.3 · 10−4. The maximum difference between the analytical result and
the approximation is 6.4 · 10−4.
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Experiments are also performed for heavily over damped systems which yielded similar results,
some converging slightly faster. Secondly, a slightly under damped mass-spring system is solved,
so c2 < 4k and oscillations occur. The result is seen in figure 5.

Figure 5: Neural network approximation together with the analytical solution of an under damped
mass-spring system. The analytical solution is given by equation 7. This result is achieved after
2000 epochs with a loss of 1.3 · 10−5. The maximum difference between the analytical result and
the approximation is 3.4 · 10−4.

Experiments are also performed for more heavily under damped systems, for which one result
is shown in figure 6.

Figure 6: Neural network approximation together with the analytical solution of a heavily under
damped mass-spring system. The analytical solution is given by equation 7. This result is achieved
after 1200 epochs with a loss of 1.0 · 10−4. The maximum difference between the analytical result
and the approximation is 2.3 · 10−3.

Experiments were also performed for the critically damped system, so c2 = 4k. The result is
seen in figure 7.
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Figure 7: Neural network approximation together with the analytical solution of a critically damped
mass-spring system. The analytical solution is given by equation 8. This result is achieved after
850 epochs with a loss of 6.4 · 10−5. The maximum difference between the analytical result and
the approximation is 3.1 · 10−4.

Similar to the undamped mass-spring system, this experiment is repeated using the x3, ln(ex+1)
and ex activation functions, but the results do not converge. sin(x) is also used as activation
function, wherein the results are similar to the tanh(x) activation function.

4.3 Solving the heat equation

The method was also used to solve the one dimensional heat equation. The heat equation is given
by ∂u

∂t = k ∂
2u
∂x2 , where k ∈ R and k > 0. This equation can physically be interpreted as the

temperature in a one dimensional rod, where heat is only flowing in the direction parallel to the
rod. Here, u(x, t) represents the temperature at position x at time t. k represents the properties of
the material of which the rod is made, as well as the chosen units of time, distance and temperature.
To simplify calculations, this section assumes those quantities are unitless. After all, choosing some
set of units only changes k.

An analytical solution to this equation is known in the form of a Fourier-series, which is given
in equation 9. The used boundary conditions are u(0, t) = u(L, t) = 0, with L the length of the
rod, usually taken to be 50 in this work. The used initial condition is u(x, 0) = f(x), where f is
required to be piecewise continuously differentiable.

u(t) =
∞∑
n=1

Bn sin
(nπx
L

)
e−

n2π2kt
L2 (9)

Bn = 2
L

∫ L

0
sin
(nπx
L

)
f(x) dx (10)

The exact solution cannot be plotted since the integral in equation 10 and the infinite sum in
equation 9 cannot be evaluated exactly. In order to make a plot, the sum in equation 9 is truncated
and the integral in equation 10 is approximated using a finite sum. The result is a semi-exact plot
and it is shown in figure 8.
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Figure 8: Semi exact solution of the heat equation. The exact solution given in equations 9 and 10
is approximated by a truncated Fourier-series. Note that the initial condition is not continuous,
which results in a Gibbs phenomenon. The used initial and boundary conditions are:
u(x, 0) =

{
2 if 10 ≤ x ≤ 30
0 else , u(0, t) = u(50, t) = 0

4.3.1 Unweighted loss and uniform sampling

The method described in section 3.1 is used. 30 points were sampled from a uniform distribution
on each boundary and in the interior region. The individual loss terms are not weighted; they are
all equally important. A learning rate of 1, 50 mini-batches per epoch and a 100 samples per mini
batch were used as the configuration for the neural network. The tanh x activation function was
used. This configuration was found to perform relatively good after experimentation with other
configurations. The results are plotted in figure 9.

The result is not good. The method seems to satisfy the differential equation, but it has
trouble satisfying the boundaries. To address this problem, a weighted loss function is constructed
in section 4.3.2.
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Figure 9: Approximation of the heat equation using the neural network method described in section
3.1. The used initial and boundary conditions are:
u(x, 0) =

{
2 if 10 ≤ x ≤ 30
0 else , u(0, t) = u(L, t) = 0

4.3.2 Weighted loss with fixed weights

The same problem was solved as in section 4.3.1, also with the same neural network configuration.
This time, the loss function was weighted combination of the individual loss terms: L = (LPDE +
20 ·LI + 10 ·LB1 + 10 ·LB2)/41, where LPDE is the loss from the differential equation, LBi is the
loss from boundary i and LI is the loss from the initial condition. The results are shown in figure
10.
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Figure 10: Neural network approximation of the heat equation, with a weighted loss function using
fixed weights. The approximation agrees well with the exact solution, except at the discontinuities
of the initial condition. The loss of the approximation is 1.004. The approximation at t = 0 is
getting close to the initial condition. Note that the boundary at x = 50 is properly satisfied, but
the boundary at x = 0 is not exactly satisfied. The used initial and boundary conditions are:
u(x, 0) =

{
2 if 10 ≤ x ≤ 30
0 else , u(0, t) = u(50, t) = 0

The final solution gets relatively close to the exact solution. The approximation does not agree
well to the initial condition around the discontinuities. However, since the neural network is a
continuously differentiable function, it was expected that the approximation did not satisfy the
initial condition perfectly. In fact, the approximation goes almost exactly through the average of
the left and right limit of the discontinuity. Therefore this approximation of the initial condition
is seen as a fairly good result.

The absolute difference between the final approximation and the exact solution is shown in
figure 11.
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Figure 11: Absolute difference between the semi-exact solution shown in figure 8 and the final
approximation made by the neural network shown in figure 10.

As stated earlier, it is expected that there is a high error in the approximation at the discon-
tinuities of the initial condition. In figure 12, the difference between the exact solution and the
approximation is shown for t > 0.6, which does not include these discontinuities and is therefore
more interesting.
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Figure 12: Absolute difference between the semi-exact solution shown in figure 8 and the final
approximation made by the neural network shown in figure 10 for t > 0.6.

It seems like the neural network has sacrificed one of the boundaries for the initial condition.
That makes sense, since the initial condition is twice as important as the boundary. The chosen
weights do not seem to be right for fine-tuning the approximation. To address this problem, in
section 4.3.3, the weights are chosen as a function of the loss.

4.3.3 Weighted loss with loss-dependent weights

The same problem was solved as in section 4.3.2, with the same neural network configuration as
well. This time, weights of the terms in the loss function are chosen as a function of the loss itself:
wi = Li∑

i
Li
, where i can be a boundary loss, the initial loss or the PDE loss. By using these

weights, the loss term with the highest loss becomes more important than terms with lower loss.
The results are shown in figure 13.
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Figure 13: Neural network approximation of the heat equation, with a weighted loss function using
loss-dependent weights. The approximation agrees well with the exact solution, except at the
discontinuities of the initial condition. The loss of the approximation is 1.203. The approximation
at t = 0 is getting close to the initial condition. The used initial and boundary conditions are:
u(x, 0) =

{
2 if 10 ≤ x ≤ 30
0 else , u(0, t) = u(50, t) = 0

This time, both boundaries are satisfied. The initial condition is however less well-fulfilled than
in section 4.3.2. Also note that up until now, all the methods did not use a mesh.

For this method, another experiment was performed using different initial conditions to see if
the method would perform better using a continuous initial condition. The used initial condition
is u(x, 0) = sin (πxL ). The result can be seen in figure 14.



20

Figure 14: Neural network approximation of the heat equation, with a weighted loss function
using loss-dependent weights. The approximation agrees well with the exact solution. The loss
of the approximation is 0.385. The used initial and boundary conditions are: u(x, 0) = sin (πx50 ),
u(0, t) = u(50, t) = 0

The neural network almost perfectly approximates the analytical solution. Note that the loss
is not zero, so it is not an analytic solution (as expected).

4.3.4 Weighted loss and loss-dependent sample distribution

In all previous attempts to solve the heat equation, a uniform distribution was used to sample the
random input points from, as described in section 3.1. This time, a distribution is used that is
dependent on the loss. A detailed description is provided in section A.2 and a summary is provided
in section 3.3.

A small equidistant mesh is created of 250 points (10 points in the time dimension, 25 points
in the space dimension). At these points, the PDE loss is calculated. If the point happens be
on a boundary, then the boundary loss is also calculated. These losses are then transformed to
probability distributions such that points with a high loss get a high probability of being sampled.
by sampling the random points from these newly created distributions, the neural network focuses
more on points that have a high approximation error. The results are shown in figure 15.
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Figure 15: Neural network approximation of the heat equation, with a weighted loss function
using loss-dependent weights and random points sampled from a custom probability distributions.
The approximation agrees well with the exact solution, except at the discontinuities of the initial
condition. The loss of the approximation is 0.264. The used initial and boundary conditions are:
u(x, 0) =

{
2 if 10 ≤ x ≤ 30
0 else , u(0, t) = u(50, t) = 0

This method performs very well. The initial condition is almost perfectly satisfied, while the
boundary conditions and the differential equation are satisfied as well.

In figure 16 is the absolute difference between the analytical solution and the approximation
shown. Again the region 0 ≤ t ≤ 0.6 is omitted since the discontinuities in the initial condition
are not expected to be satisfied.
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Figure 16: Difference between the semi-exact solution shown in figure 8 and the final approximation
made by the neural network shown in figure 15 for t > 0.6.

4.3.5 Discussion on the results of the heat equation

The output of a neural network used here is always continuous, since all the layers discussed in
section 2 are continuous. By supplying discontinuities in the initial condition, the neural network
was therefore given an impossible task. However, these kinds of initial conditions are often used
when solving the heat equation, which makes it interesting to see whether the neural network is
able to deal with these kinds of initial conditions. In figure 15, a promising result is shown, wherein
all required boundary and initial conditions were satisfied.

4.4 Solving the Navier-Stokes and Continuity equation

Solving the Navier-Stokes equations by the described method turned out to be a challenging task.
After a lot of experimentation, a very simple model is made of an ideal gas through a pipe. The
approximation failed to converge in almost all the experiments. Only in one case reasonable values
were obtained. This case is discussed in this section. The approximation made by the neural
network for this case seems to agree with common sense, although no verification is made yet.

The Navier-Stokes equations are given by equation 11.

ρ
∂vvv

∂t
+ ρvvv · ∇vvv = µ∇2vvv − RT

M
∇ρ (11)

In this equation, vvv is the velocity of the flow vector, t is time, ρ is the density of the flow, µ is
the dynamic viscosity, T is the temperature of the flow (assumed at T = 293K), R is the ideal
gas constant (R = 8.3145 J

K·mole ) and M is the molar mass of the gas. Air is assumed to have
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an average molar mass of M = 0.0289647 kg
mole . The dynamic viscosity of air is assumed to be

µ = 18.12 · 10−6Ns
m2 . Note that gravity has been neglected.

Since mass is a conserved quantity, the continuity equation 12 must be solved at the same time:

∂ρ

∂t
= − ∂

∂x
(ρvx)− ∂

∂y
(ρvy)−

∂

∂z
(ρvz) (12)

The gas is assumed to have constant temperature and constant concentration, so no heat equation
and concentration equation is solved (although this is believed to be possible using the neural
network method).

Usually, a pressure gradient is present in the Navier-Stokes equations. This has however been
replaced by a density gradient using the ideal gas law, modified to offer a pressure gradient, given
in equation 13.

∇p = RT

M
∇ρ (13)

Where p is the pressure in N
m2 . Note that R, T and M are assumed to be constant in time and

space. By using this equation, we assume that the described flow obeys the ideal gas law.

The problem is solved for a flow through a square pipe. The entrance and exit of the pipe are
the planes x = 0 and x = Lx respectively. The boundary conditions are given in equations 14 until
20.

vvv = 000 on the walls of the pipe (14)
∇ρ = 0 on the walls of the pipe (15)

vx = 2 sin (yπ/Ly) sin (zπ/Lz)(1− et·ln 20) at the entrance of the pipe (16)
vy = vz = 0 at the entrance of the pipe (17)
ρ = 1.2047 at the entrance of the pipe (18)
∇ρ = 0 at the entrance of the pipe (19)
∂vvv

∂x
= 000 At the entrance of the pipe (20)

Please note that a more realistic scenario would entail a gas flow forced by a pressure gradient,
meaning that the pressure on one side of the pipe is higher than the pressure on the other side of the
pipe. Multiple experiments were done with this scenario, all of which resulted in the approximations
failing to converge. These scenarios are therefore not further elaborated on.

As seen in equation 20, vvv = 0 at the walls of the pipe, which should also be true near the
entrance of the pipe. Therefore vx is chosen in such a way that vx = 0 at y = 0, y = Ly, z = 0 and
z = Lz. Experiments were performed where this condition was not met, but the neural network
was not able to give a good approximation in all attempts.

An attempt is made to solve the Navier-Stokes equations with the described neural network
method and the result is shown in figure 17, where one time step is shown. When judging qualita-
tively, it seems as if this is a success. One should be however careful of course, since the boundary
condition at the entrance of the pipe highly suggests this solution. The job of the neural network
is therefore relatively simple and the success of this experiment cannot be generalized to more
realistic boundary conditions. Furthermore, no quantitative judge is made on this experiment.
The reason for this decision becomes clear in section 4.5.
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Figure 17: A result at time step t = 99. Note that the walls of the pipe are not drawn. This is the
first successful attempt to solve the Navier-Stokes equations with the neural network method

4.4.1 Implementation in PyTorch

Implementation of these equations is in concept the same as implementing the heat equation.
PyTorch is however not build for such usage, which causes a lot of unexpected problems and bugs
in PyTorch and makes implementation relatively difficult.

The loss is constructed by summing up all the individual losses. For each of the differential
equations, the loss is calculated and summed. For each boundary, the loss is calculated and added
to the PDE loss. The resultant total loss is given to the optimization algorithm.

The used neural network is a 5 layer convolutional neural network with the hyperbolic tangent
as activation function. The optimization algorithm used is the Adam algorithm, which comes with
the PyTorch library.

Usage of optimization algorithms that are based on gradient descent comes with the drawback
that they do not converge to the global minimum of a function, but rather to a local minimum. In
this case, one of the most obvious local minima is the solution where the flow is zero everywhere,
and density is equal to the in-flowing density everywhere. The differential equations are satisfied
everywhere, and most of the boundaries as well. The only contribution to the loss is therefore
the boundary loss of the in-flowing boundary, which is usually smaller than the situation where
the PDE is not satisfied correctly and multiple boundaries are not properly satisfied. However,
this local minimum is not the desired output of the neural network and some tricks are used to
circumvent this problem.

One of the advantages of PyTorch is the ability to modify the loss function during training.
In the beginning of the training process, the optimization algorithm only optimizes the boundary
loss and thereby ignores the satisfaction of the differential equation. When the model converges,
it should satisfy the boundary conditions relatively good.

Another trick is to leave out some boundaries when constructing the loss function. Since most
of the boundaries have a constant value, they are easily approximated. Other boundaries, on
the other hand, are difficult to model by the neural network. The optimization algorithm should
therefore optimize more often on difficult boundaries.
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The difficulty of a boundary is already measured by the boundary loss, which is calculated
during the creation of the probability distribution of the boundary. In order to solve more difficult
boundaries more often, boundaries are sampled with a probability proportional to their loss.

After the boundaries are satisfied, the differential equation loss is turned back on again. The
model hopefully does not lose the satisfaction of the boundary conditions when it solves the PDE
loss.

4.4.2 Convergence

For the sampling probability estimation, a mesh is used of 10×10×10×10 points, where 0 ≤ x ≤ 1,
0 ≤ y ≤ 2, 0 ≤ z ≤ 1 and 0 ≤ t ≤ 1. The PDE loss is constructed over 10 sampled points and each
boundary loss is also constructed over 10 sampled points before a parameter optimization step is
performed. After 50 of such optimizations, the sampling probability estimation is recalculated.

Without applying the tricks described in section 4.4.1 the model converged to the local minimum
where vvv = 000 and constant density. Therefore the tricks described above seems to be necessary to
get a converging solution. As stated earlier, every other experiment done on these equations failed
to converge. Event changing the boundary conditions made the method diverge. It is therefore
worth doing more research on the convergence criteria for neural networks.

4.5 Mass-spring system 2

In order to test the implementation of the Navier-Stokes solver, the script is adjusted to solve a
mass-spring system. Such a system is much easier to visualize, which makes is easier to tell if the
results of the script make sense.

The implementation is very similar to the Navier-Stokes implementation; the Navier-Stokes
equations are replaced by the mass-spring differential equation and two initial conditions are made.
For the model, initial conditions and boundary conditions are handled in the same way and are
collectively called boundaries, since they represent the state of the system at the boundary of
the region where the differential equation is solved. Multiple experiments are done with different
parameters, but all experiments resulted in the same disappointing behaviour. Only one experi-
ment is described here as an example and a qualitative judgement is made on it. Since all other
experiments resulted in the same behaviour, this judgement is generalized and a recommendation
for further research is made.

4.5.1 Solving the mass spring equation and results

The used differential equation is (d2u
dt2 (t) + ku(t) = 0, k = 1

9 ) and two boundaries are being made
(u(0) = 5 and du

dt (0) = 0). The boundary sampler is turned off since there are only two boundaries.
A learning rate of 10−3 is used. The analytical solution is given by u(t) = 5 cos( 1

3 t), which is plotted
together with the neural network approximation in figures 18, 19 and 20.
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Figure 18: Neural network approximation of the mass-spring system after 5 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). The loss of the approximation is 21.21.

Figure 19: Neural network approximation of the mass-spring system after 20 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). The loss of the approximation is 13.82.
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Figure 20: Neural network approximation of the mass-spring system after 40 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). The loss of the approximation is 56804.9.

Of course, the high loss and the odd approximation at epoch 40 immediately stand out. From
epoch 28 to 37, the order of the loss increased from 101 to 104. After epoch 40, the approximation
seems to become random. it sometimes stabilizes at a weird "spiky" solution (see, for instance figure
20), whereas at other times, it cycles to multiple bad approximations and sometimes even explodes
to extremely large numbers until they overflow the computer memory. Overall, the approximation
seems to diverge. This weird behaviour is also happening when other optimization algorithms are
used, such as stochastic gradient, and when the convolutional layers are replaced by fully connected
layers.

Since the same script is used to solve the Navier-Stokes equations, the positive result in that
experiment loses its value as that method does not work here. No quantitative analysis is therefore
made on results of the Navier-Stokes solver.

4.5.2 Detailed problem determination

An attempt has been made to determine the source of these problems. Some interesting properties
were found, which are outlined in this section. Firstly the sampler and the calculation of the loss
have been checked, and they are both correct. The calculation of the derivatives is correct as well.

Remember that the neural network consists of five layers and uses the hyperbolic tangent as
activation function. For x > 3, tanh(x) ≈ 1 and for x < −3, tanh(x) ≈ −1. Since the input of
the neural network is a range, it is expected that the output is a range as well. For most neurons,
the input of the tanh function should therefore be in the interval [−3, 3], which means that the
weights and biases of the network should be of order 10−1 or lower.

It is observed that at the beginning of the solving phase, this requirement is satisfied. The
output is a continuous range of numbers. However, after approximately 40 epochs, the weights
and biases start to grow and the output is almost always one of two numbers, regardless of the
input. This phenomenon can be seen already in figure 20, where approximation is almost always
one of 2 numbers except for the rough region around x = 25. It is observed that this spikey region
can become much smaller after more epochs.
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4.5.3 Proposed solutions and their results

An obvious solution would be to use a different activation function. Therefore, f(x) = ex,
f(x) = sin(x), f(x) = x3 and f(x) = ln(ex+1) are also tried as activation functions. The exponen-
tial function always overflows the computer memory after approximately 100 epochs. Even after
normalizing the input, scaling between layers, properly adjusting the learning rate, weights and bi-
ases initialization, this behaviour does not disappear. The exponential function is thus considered
as an unsuitable activation function.

More success is achieved with the sine function, since the approximation does not diverge. The
approximation does not however converge to the analytical solution even though it came very close.
The results are shown in figures 21, 22, 23 and 24. Note that the learning rate and parameter
initialization is properly adjusted.

Figure 21: Neural network approximation of the mass-spring system after 15 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = sin(x) is used as activation function. The loss of the approximation is
24.60.
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Figure 22: Neural network approximation of the mass-spring system after 50 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = sin(x) is used as activation function. The loss of the approximation is
13.86.

Figure 23: Neural network approximation of the mass-spring system after 135 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = sin(x) is used as activation function. The loss of the approximation is
3.719.
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Figure 24: Neural network approximation of the mass-spring system after 280 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = sin(x) is used as activation function. The loss of the approximation is
783.3.

At the beginning of the training phase, the approximation seems to converge to the analytical
solution and it achieves low losses. However, after approximately 150 epochs, the approxima-
tion gets worse and the loss rises. In contrast to the hyperbolic tangent activation function, the
approximation remains a range and it does not diverge.

Thirdly, f(x) = x3 is tried as an activation function. Note that this is the only bijective
activation function which is tried with R as domain and range. This time, the result is again
successful, since the approximation is not simply 2 numbers nor does it diverge. The results are
shown in figures 25, 26, 27 and 28. Note that the learning rate and parameter initialization are
properly adjusted.
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Figure 25: Neural network approximation of the mass-spring system after 5 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = x3 is used as activation function. The loss of the approximation is 14.52.

Figure 26: Neural network approximation of the mass-spring system after 180 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = x3 is used as activation function. The loss of the approximation is 8.695.
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Figure 27: Neural network approximation of the mass-spring system after 455 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = x3 is used as activation function. The loss of the approximation is 14.87.

Figure 28: Neural network approximation of the mass-spring system after 805 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = x3 is used as activation function. The loss of the approximation is 34.40.

Here, we can see that this activation function does give a relatively good approximation in
comparison to the other activation functions. However, the approximation is still not good at all.
It is also interesting to see that more epochs do not necessarily make the approximation better.

Lastly, f(x) = ln(ex + 1) is tried as activation function. Note that this function is very close to
f(x) = max(0, x), which can be seen in figure 29. f(x) = max(0, x) achieved good results in image
recognition, which makes it worth trying this activation function here [8]. It is however unsuitable
here, since it is not continuously differentiable. Instead, f(x) = ln(ex + 1) is used as replacement.
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Figure 29: Comparison between the f(x) = ln(ex+ 1) function and the f(x) = max(0, x) function.
Note that the former is continuously differentiable whereas the latter is not.

The results of this activation function can be seen in figures 30, 31, 32 and 33. Note that the
learning rate is properly adjusted.

Figure 30: Neural network approximation of the mass-spring system after 30 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = ln(ex + 1) is used as activation function. The loss of the approximation is
23.57.
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Figure 31: Neural network approximation of the mass-spring system after 280 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = ln(ex + 1) is used as activation function. The loss of the approximation is
12.89.

Figure 32: Neural network approximation of the mass-spring system after 565 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = ln(ex + 1) is used as activation function. The loss of the approximation is
16.48.
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Figure 33: Neural network approximation of the mass-spring system after 640 epochs using the
Navier-Stokes neural network solver together with the analytic solution, which is given by u(t) =
5 cos( 1

3 t). Here, f(x) = ln(ex + 1) is used as activation function. The loss of the approximation is
1.217 · 104.

The results of this activation are not better than the other tried activation functions. Note that
this activation function always overflows the computer memory after approximately 700 epochs.
Before the overflow, it does not seem to get a notion of the desired solution. This function is
therefore considered an unsuitable activation function.

In general, the chosen activation function changes the behaviour of the neural network signif-
icantly, as expected. There is however not a single case wherein the approximation converged to
the analytic solution, even if some approximations came very close. It thus looks as if the posed
problem cannot be solved by choosing another activation function.
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5 Conclusions from the experiments and further research
recommendations

It becomes clear from the experiments that using a neural network as a differential equation solver
has some potential and is worth researching. Some success was achieved in solving the mass-spring
equation and the heat equation but every experiment lead to more questions than answers. Most
of these questions need to be answered before the method can be of any practical usage.

When solving the mass-spring equation it was seen that different implementations give different
results, while they should give the same answers. This hints to some inconsistency in the used
software package PyTorch and needs more investigation. It was also found that the method did not
converge for large initial conditions (u(0) = 30 was tried) or for large values of the spring constant
(c = 300 was tried). From the analytical solution, the frequency is given by ω =

√
c. Therefore,

the neural network is having problems with larger frequencies. At this moment it is not known if
there is a limit on the frequency and initial condition or that these problems were merely a result
of a bad neural network configuration. It is recommended to search for this limit and why this
limit is there, as it will place a condition on the usability of this method.

The neural network is able to solve the heat equation, even if it is provided with a discontinuous
initial condition. The method needs to be configured properly and some adjustments need to be
made to the loss calculation and sampling method. The questions which arose for the mass-spring
equation also arise here. Is there a limit on the maximum value of the initial condition?

It is shown that the performance of a neural network is highly dependent on the chosen config-
uration. For a given neural network, a suitable optimization algorithm, learning rate, parameter
initialization, batch size, epoch size and other options must be found. Since this configuration is
dependent on the problem, a given configuration might work for some differential equations, but
not on other differential equations. Moreover, changing the boundary conditions of a differential
equation might already change the performance of the algorithm.

Also note that the algorithm depends on randomness, so when the experiments are repeated,
the results might be totally different. This makes research difficult, since it makes it impossible to
judge the algorithm based on a few runs.

In image recognition, it was found that the performance of the neural network was highly
dependent on the configuration of the neural network [8]. The usage of neural networks have really
gained attention at the moment when more sophisticated architectures, such as ResNet [5], were
used. Since there are countless possible configurations, computer science has mainly focused on
finding this configurations in the last years.

As a starting point to address the found problems, It is suggested to try different neural network
configurations, especially the configurations which perform well for other fields of computer science.

Also note that the role of the optimization algorithm is very important. Since Adam and related
methods always performed well in other fields of computer science, this method was used here as
well. However, it is expected that other methods will perform better since the loss function to
optimize behaves totally different in these computer science fields. Developing a new optimization
algorithm designed to solve differential equations might increase the performance of this method.
Also note that this would solve another problem, since the boundary conditions of the differential
equation could not be fixed when using the Adam optimization algorithm. Developing a new
algorithm which supports the fixation of the boundary conditions would solve this.

In summary, the newly suggested method does have potential to approximate the solutions of
differential equations, as it was able to approximate the solution of the mass-spring equation and
the heat equation. It was not able to approximate the solution of the Navier-Stokes equations
coupled with the continuity equation, but it is expected that this is due a wrong configuration of
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the neural network and the usage of an optimization algorithm which was not designed for this
purpose. When a new optimization algorithm is used together with a proper configuration, the
neural network might be able to approximate the solution of the Navier-Stokes equation as well.
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Appendices

A In depth description of PyTorch implementation

Since some unexpected results were encountered, an in-depth explanation of those experiments is
required. There are a lot of subtle differences between the first and second solver of the mass-spring
system. Personally, I did not expect that these differences would lead to the failure of the second
method (as described in section 4.5), especially since I considered the second method to be the
better one. The two mass-spring solvers are described in-depth here and references to the code
are made. Core pieces of the code are included in this report as figures. The interested reader can
read this section along with the code.

Firstly, there is an obvious difference between source of the two methods. The first method
is developed as a first test case of the neural network differential equation solver method, while
the second method is developed as a check for the Navier-Stokes solver. The second solver might
therefore seem overkill for the mass-spring system, but it should still work.

A.1 Mass-spring system 1

In this section the method used in solving the mass-spring system is described extensively. This
method is relatively simple in comparison to the second system. The system is meant to solve the
equation d2u

dt2 (t) + k · u(t) + c · dudt = 0, which is the damped mass-spring differential equation. For
the undamped system, the differential equation is not changed but c is simply set to zero. The
method is programmed in a single file. The file also includes functionality for finding the right
learning rate, which is not described here.

The method is implemented using Python 3.8, running on a GPU-enabled machine. The
versions of the used libraries are: numpy - 1.18.4, torch - 1.5.0+cu101 and plotly - 4.8.1. The used
IDE is the community version of PyCharm, version 2020.1.1

The starts with class definitions and function definitions. Here, a neural network is created
with 7 layers, 300 neurons per layer and the tanh(x) function is set as activation function, as shown
in figure 34.
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Figure 34: Code used for the initialization of the neural network. The network consists of 7 layers,
each with 300 neurons. The tanh(x) activation function is used.

After the training class definition, the execution of the file starts at the bottom, where the
neural network is moved to the used device, which refers to the GPU on the machine used in this
report. If no GPU is available, the CPU will be used. The initial conditions are set, k and c
from the differential equation are set. In the experiments, k = 0.1 is used, where c differs from
experiment to experiment. The loss is set to mean squared error loss, using the built-in function
in PyTorch, which is in the module torch.nn.MSELoss(). A learning rate scheduler is set, but is
only used for finding the correct learning rate. The learning rate scheduler used during solving is
set later on. Lastly, the optimization algorithm is set and the training algorithm is started. The
code is shown in figure 35.
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Figure 35: Code used for the description of the definitions used in the first mass-spring implemen-
tation.

Now, the training algorithm is described. A loop over all the epochs is started. A range
in which the differential equation is solved is set and discretized. The loss of each point in the
discretization is determined and normalized. This is then used as initial probability distribution
to sample batches from. The code is shown in figure 36.

Figure 36: Code used for at the start of an epoch.

Now, the loop over all mini batches is started. Firstly, a batch is sampled randomly from the
probability distribution that has been created earlier. The mini batch is then entered into the
neural network, from which the output is differentiated twice and the loss is created from the
differential equation. The loss from the initial conditions is also calculated and the two losses are
added together to get the total mini batch loss. Now, an optimization step and a learning rate
scheduler step have been set. The code can be seen in figure 37.
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Figure 37: Code used for performing an optimization step over a mini batch.

In order to plot the results of the training algorithm, a plot of the output of the neural net
of every 50 epochs is made. Since the output of the neural network is the approximation of the
solution, this is directly plotted together with the analytical solution of the system.

A.2 Sampling points from a custom distribution

In this section, the second method of solving the mass-spring system is described. This method
is originally made to solve the Navier-Stokes equations. For the Navier-Stokes equations however,
it is difficult to quantitatively judge the results, since an analytical solution is unknown and a 3-
dimensional solution that changes over time is more difficult to plot than a 1-dimensional solution.
As a test case for the method, the same method is therefore used to solve the less complicated
mass-spring system.

The method has some core differences compared to the first method. Firstly, the method
tries to be as mesh free as possible. This means that the differential equation is not solved on a
discrete set of points, but points are rather sampled from a continuous distribution. However, this
continuum is limited by the computer precision.

Secondly, the distribution from which batches are sampled is updated after each mini batch
from the same loss calculation, which is used for the optimization step.

A.2.1 Mesh free solving

The ability to solve a differential equation without having to generate a mesh would give this
method an advantage over existing methods. During the loss creation of a batch, the loss for each
point is calculated independently of the loss at other points. Therefore, only the batch generator
should be modified to sample points from a continuous probability density function. The continuous
probability density function is created by linearly interpolating a discrete probability mass function.
This means that a discrete mesh should be created for generating the probability density function.
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Note that the mesh for this probability density function is allowed to be much smaller than the
typical meshes used in finite element methods. Moreover, if a truly mesh free method is desired,
the probability density function can be set to the uniform distribution. The solver will be less
efficient, since it is not able to focus on points which have a high loss. A linearly interpolated
uniform distribution remains uniform, so a mesh of only 2 points per dimension is needed.

Now, the code used to generate a continuous probability density function is discussed. Firstly,
a mesh is generated for the discrete probability mass function. For these points, the loss is calcu-
lated, which gives the probability distribution when normalized. Note that the loss might be zero
everywhere, so the distribution cannot be normalized. Therefore, it is checked if the distribution
is zero everywhere and if it is, some small random noise is added.

Now, the discrete cumulative distribution is generated using the build in function torch.cumsum(),
which is equivalent to numpy.cumsum() or the cumsum function in Matlab. The cumulative distri-
bution is immediately normalized by dividing the whole distribution by the last value. Note that
the implemented function is able to handle multiple dimensions, which makes this process possible
when solving the Navier-Stokes equations as well.

To sample from this distribution, the inverse of the cumulative function is created. Since
the function is still discrete, this is simply done by swapping the coordinates of each point. The
discrete cumulative function is now interpolated linearly, in such a way that a continuous cumulative
probability function is retrieved, which is called F (x).

Now, Y is defined as a random variable with the uniform distribution on [0, 1]. PyTorch provides
the torch.rand() function, which does exactly that. Note that F (Y ) is distributed according to
the earlier constructed distribution. Since we are now able to sample points from this continuous
distribution, the whole method only uses the mesh created earlier for the discrete distribution.

After this initialization, the distribution is updated after each epoch. The update procedure is
described in the next section.

A.2.2 Updating the distribution

In order to construct the loss of a batch, it is necessary to calculate the loss at all the points in
that batch. The total loss is then primarily used to set an optimization step, but it can be used
secondarily to update the sampling distribution. In this section, the update process is described in
detail. Note that this updating procedure is not present in the implementation of the Navier-Stokes
equation, because this procedure is not easily extended to more dimensions.

First of all, batch points are added to the discrete distribution. Since the distribution is not
normalized before, this can be done without any scaling of the obtained loss.

There are two problems with this approach that need to be solved. Firstly, if the loss at
the batch points is much higher then the distribution values, the distribution might become very
"spiky" at the batch points. When points are sampled from the new distributions, these will almost
all be in the new spikes. This might result in the spikes growing even larger, which subsequently
results in the collapse of the distribution into a few spikes. This is undesired behaviour, since the
optimization algorithm should optimize the solution over the whole range.

Secondly, if a point is analyzed batches ago, the loss in that point might have changed consid-
erably, meaning that the distribution is not a representation of the error of the solution anymore.
Older loss evaluations should therefore be less meaningful than newer evaluations.

Both of these problems are solved with the same method: the spikes in the distribution should
"spread out" over training time. That way, the distribution cannot collapse to a spiky solution and
older loss evaluations will converge to the average loss, in such a way that the old evaluation loses
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its meaning. The method should also treat the total loss as a conserved quantity.

Note that these properties are all satisfied if the distribution is allowed to diffuse. A diffusion
problem is governed by the differential equation ∂u

∂t = k ∂
2u
∂x2 where k > 0. The boundary conditions

are ∂u
∂x (t, x = 0) = ∂u

∂x (t, x = L) = 0. The initial condition is given by some continuous function
f(x), u(t = 0, x) = f(x). In order to work with complex exponentials, the even extension of f(x)
is used: f(x) = f(−x) x ∈ [−L, 0]. The solution is given by equation 21:

u(t, x) =
n=∞∑
n=−∞

Ane
nπix
L e−

n2π2
L2 kt (21)

An = 1
2L

∫ L

−L
f(x)e−nπixL dx

Note that for large t, u(t, x) = A0, so the peaks in the initial condition are spread out. Also
note that

∫ L
0 u(t, x)dx is a conserved quantity, which is seen in equation 22.

d

dt

∫ L

0
u(t, x)dx =

∫ L

0

∂u

∂t
dx =

∫ L

0
k
∂2u

∂x2 dx = k
∂u

∂x
(t, x)

∣∣∣∣x=L

x=0
= 0 (22)

In our application, the time variable t becomes the training time and k becomes some parameter
that controls the rate at which the peaks spread out. A good value of this parameter is determined
experimentally.

An example of this distribution diffusion process is given in figures 38 and 39.

Figure 38: Example of a distribution based on the loss per point and a smoothed version of this
distribution. The smoothed version is obtained by allowing the original distribution to diffuse.
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Figure 39: Example of a distribution based on the loss per point and a smoothed version of this
distribution. The smoothed version is obtained by allowing the original distribution to diffuse.

PyTorch provides the useful Real Fast Fourier Transform (torch.rfft) and Inverse Real Fast
Fourier Transform (torch.irfft) functions. These functions calculate the discrete Fourier transform
of a discrete signal xm of length n.

The PyTorch rfft implementation is given in equation 23 and the irfft implementation is given
in equation 24 [2]. Note that the PyTorch documentation merely states that the functions are
equal to the Numpy implementation. A reference is therefore made to the Numpy implementation.

Ak =
n−1∑
m=0

xm exp
(
−2πimk

n

)
k = 0, . . . , n− 1 (23)

xm = 1
n

n−1∑
k=0

Ak exp
(

2πimk
n

)
m = 0, . . . , n− 1 (24)

Even though this implementation cannot be used for the heat equation, since a discrete and
finite series is required for these equations, the implementation is still useful. The coefficients Ak
are simply multiplied with the exponential decaying factor in equation 21, so the desired behaviour
is still there.

Remember that the distribution is now known as a discrete sequence which is linearly interpo-
lated. When a batch is created and the loss is calculated for this batch, the batch is added to the
distribution sequence. Note that the distance between the points in the sequence is not constant
anymore, which is a requirement for the use of the torch.rfft function. The sequence is therefore
interpolated linearly for a given number of equidistant points. Usually, the number of interpolation
points is equal to the mesh size, since a constant number of mesh points is then guaranteed.

It was found during experimentation that the neural network does not optimize easily on the
linearly interpolated points between the mesh points. The loss at these points never gets updated
into the new distribution, since the equidistant sampling is always at the mesh points. It is found
that some randomness in the number of equidistant points is beneficial, so a random number
between 0 and 10 is added to the number of equidistant points.

Now, the conservation of loss property given in equation 22 is only satisfied if f(x) is an
even function. The even continuation of the distribution is therefore constructed. If the original
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distribution is represented by x̃[n], then the even continuation is given by equation 25.

x[n] =
{
x̃[n], if 0 ≤ n ≤ N
x̃[2N − n], if N < n ≤ 2N

(25)

which results in a sequence x[n], 0 ≤ n ≤ 2N .

Now, the sequence Ak is calculated according to equation 23 using torch.rfft(). From equation
21, the exponential factor is added: Ãn = An exp

(
−n

2τ
L2

)
, where τ = π2kt is the decay speed

parameter that has been determined experimentally. The new distribution is subsequently obtained
by using torch.irfft().
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