
The Condition-Based Maintenance
Scheduling Challenge:
A Reinforcement Learning Interpretation
Daniel Martini Jiménez

De
lft

Un
ive

rs
ity

of
Te

ch
no

lo
gy

This page was intentionally left blank

The Condition-Based Maintenance
Scheduling Challenge:

A Reinforcement Learning Interpretation
by

Daniel Martini Jiménez

To obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday April 15, 2021

Student number: 4448650
Thesis committee: Member Department
Chair Dr. G. C. H. E. de Croon TU Delft - Control & Simulation
Examiner Dr. A. Bombelli TU Delft - Air Transport & Operations
Supervisor TU Delft Dr. B. F. Lopes dos Santos TU Delft - Air Transport & Operations
Supervisor KLM Ir. F. C. Freeman KLM Royal Dutch Airlines

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

This page was intentionally left blank

Acknowledgements

This report is the final deliverable for my Master of Science thesis on condition-based maintenance schedul-
ing. The work is the result of a fruitful collaboration with TU Delft and KLM Royal Dutch Airlines, made
possible by the European Horizons 2020’s ReMAP project. During the past year, I have worked on devel-
oping a maintenance scheduling framework that enables condition-based strategies through the power of
reinforcement learning. The joint effort of KLM and TU Delft, allowed me to produce a realistic simulation
of airline maintenance operations that are scheduled by an automated tool. The objective of the project is
to introduce a new maintenance decision-support system that reflects the benefit of having a continuous
monitoring of the aircraft systems thanks to the prognostics and health management (PHM) technology, i.e.
sensors on board the aircraft. I am grateful for having been able to study such a challenging topic that is set
to revolutionize the future of the airline business. The completion of this work would not have been possible
without certain people, whom I would like to thank.

Firstly, I would like to thank my TU Delft supervisor Bruno for his continuous support, the constructive feed-
back and day to day coaching throughout these months. His dedication to research and teaching are exem-
plary, and his insatiable motivation and out of the box ideas have never stopped impressing me.

I am thankful to my KLM supervisor Floris, without whom I would not have been able to capture the reality
of maintenance operations. I have vivid memories of the weekly conversations while sharing frustrations
about the maintenance data and the stochastic simulation parameters. I thank him for the many detailed
discussions on airline maintenance strategies and for shedding light on my analysis.

A special word of thanks goes to Erik-Jan van Kampen, Qichen Deng and Iordanis Tseremoglou for listening to
my vision of reinforcement learning in the operations research domain, as well as validating my methodology
every time I was in doubt. Their input has been very valuable for the construction of my model.

Last but not least, I am grateful to my friends and family for the continued trust they placed in me. On a
special note, I would like to thank my parents and my two sisters for their unconditional support. Their
encouragement and belief in my capabilities during these years have been essential for my engagement with
my academic career, and their lessons have allowed me to develop personally and professionally. There are
no words that could express my gratitude for everything they have sacrificed to make me become the person
I am today. To them, I dedicate this thesis.

Daniel Martini Jiménez
Delft, March 2021

Cover photo - Copyright © Marco Spuyman and Tom Kool

i

Contents

List of Figures iv
List of Tables v
List of Abbreviations vi

I Scientific Paper 1

II Literature Study
previously graded under AE4020 38
1 Introduction 39

1.1 Research framework . 40
1.2 Outline of the report . 41

2 Maintenance Planning 42
2.1 Economic impact of airline maintenance . 42
2.2 Maintenance Program Development . 42
2.3 Maintenance Checks . 43
2.4 Maintenance Strategies . 45
2.5 Disruption Management . 45
2.6 Discussion . 46

3 Condition-Based Maintenance 47
3.1 Prognostic and Health Management (PHM). 47
3.2 Task-oriented Strategy . 47
3.3 Task-Packaging . 48
3.4 EC-H2020: ReMAP project . 49
3.5 Discussion . 49

4 The Aircraft Maintenance Problem 50
4.1 Aircraft Maintenance Routing . 50
4.2 Aircraft Schedule Recovery . 52
4.3 Aircraft Maintenance Scheduling . 52
4.4 Discussion . 53

5 Dynamic Programming Approaches 56
5.1 Classic Dynamic Programming . 56
5.2 The need for approximation . 57
5.3 Stochastic modeling in ADP. 58
5.4 The curse of dimensionality. 59
5.5 Applications of ADP in Literature . 60
5.6 Model-free vs Model-based . 62
5.7 Q-Learning . 63
5.8 Actor-Critic . 65
5.9 Neural Combinatorial Optimization . 65
5.10 Discussion . 67

6 Conclusion 68

ii

Contents iii

III Research Methodologies
previously graded under AE4010 69
1 Introduction 71
2 Literature Review 72

2.1 Maintenance Planning . 72
2.2 Condition-based maintenance . 72
2.3 Airline Maintenance Optimization . 73
2.4 Approximate Dynamic Programming approaches . 74
2.5 Synthesis, relevance and positioning of project . 74

3 Research Objectives and Questions 76
4 Methodology 77

4.1 Model of the environment and operating setting . 77
4.2 Model of the scheduling agent . 77
4.3 Stochastic modeling . 78
4.4 Task-packaging integration . 78

5 Experimental Set-up 79
6 Results, Outcome and Relevance 81
7 Project Planning and Gantt Chart 82
8 Conclusions 84

IV Supporting Work 85
1 Airline Maintenance Planning 86

1.1 Aircraft maintenance program . 86
1.2 Daily aircraft utilization . 87
1.3 The transition to CBM . 88
1.4 Interval policies exploration . 90

2 Reinforcement Learning 91
2.1 Learning Strategies . 91
2.2 Q-Learning . 93
2.3 Deep Q-Learning . 93
2.4 Training strategy . 98
2.5 Agents benchmark . 99

3 Verification & Validation 100
3.1 Unit tests . 100
3.2 System tests . 100
3.3 Validation . 102

4 Sensitivity Analysis 105
4.1 DQN hyperparameter tuning . 105
4.2 CBM sensitivity . 109

Bibliography 113
A Aircraft Maintenance Program Tasks 119
B Extended Block Clustering Model 121
C Additional Scheduling Data 122

List of Figures

2.1 Overview and classification of maintenance policies. Adapted from Tinga (2013) 45

3.1 CBM Maintenance Planning (Hölzel et al., 2014) . 48

4.1 Stages of the airline scheduling problem. Adapted from Lagos et al. (2020) 50

5.1 VFA limited horizon rollout algorithm (V-LHRA) structure (Ulmer, 2020) 62
5.2 Standard DQN (above) and Dueling DQN structure (below) (Wang et al., 2016) 65
5.3 Reinforcement learning action-reward feedback loop (Solozabal et al., 2020) 66

5.1 Experimental set-up of the reinforcement learning framework . 79

1.1 Approach overview . 86
1.2 Overview of routine tasks in original A-check program . 87
1.3 Daily aircraft utilization . 88
1.4 Task Repetitions of original A-check Program classified with CBM action 90

2.1 Markov Decision Process. Adapted from Sutton and Barto (1998) 91
2.2 Temporal Difference vs Monte Carlo update (Sutton and Barto, 1998) 92
2.3 Look-ahead mechanism . 95
2.4 DQN Architecture . 98
2.5 Training strategy of Deep Q-Learning model in the AMSP . 98
2.6 RL Agents benchmark . 99

3.1 Verification Test with 2 slots per week for different discount factors 101
3.2 Verification Test with 1 slot per week for different discount factors 102
3.3 Action distribution in validation scenario . 103
3.4 Benchmark Validation Scenario . 104

4.1 Exploration decay sensitivity . 105
4.2 Learning rate sensitivity . 106
4.3 Activation function sensitivity . 107
4.4 DQN structure benchmark . 108
4.5 Interval escalation and PHM uncertainty sensitivity analysis (Case 3 - 25% CBM) 109
4.6 Investment cost absorption vs Fleet size . 112

C.1 Escalated tasks results . 122
C.2 Visualization of results with 15% uncertainty and 100% interval escalation 123
C.3 Maintenance schedule visualization example for the explored interval policies 124

iv

List of Tables

2.1 Airline Maintenance Check Schedule Example (Kinnison, 2004) 44

4.1 Classification of previous works in airline maintenance optimization 55

1.1 CBM Scenarios . 88
1.2 Case 2 (10% CBM) Tasks classified per group and interval duration 89
1.3 Case 3 (25% CBM) Tasks classified per group and interval duration 89
1.4 Interval policies explored . 90

3.1 Verification test comparing Greedy vs DQN Agent with 2 slots per week 101
3.2 Verification test comparing Greedy vs DQN Agent with 1 slot per week 102
3.3 Validation of DQN vs Opt-A Check for the A-check plan of B737 fleet 104

4.1 DQN configuration . 108
4.2 Scheduling results with 3% Uncertainty and 100% Interval Escalation 110
4.3 Scheduling results with 85% Uncertainty and 100% Interval Escalation 111
4.4 Scheduling results with 15% Uncertainty and 125% Interval Escalation 111
4.5 Scheduling results with 15% Uncertainty and 25% Interval Escalation 111

A.1 Routine tasks of A-Check AMP classified per task group and interval duration 119

C.1 Scheduling results with 100% interval escalation and 15% uncertainty (365 days horizon) 122

v

List of Abbreviations

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ADP Approximate Dynamic Programming

AMP Aircraft Maintenance Program

AMR Aircraft Maintenance Routing

AMSP Airline Maintenance Scheduling Problem

AOG Aircraft on Ground

ARP Aircraft Rotation Problem

CBM Condition-based Maintenance

CFA Cost Function Approximation

CO Combinatorial Optimization

DDPG Deep Deterministic Policy Gradient

DET Detailed Inspection

DIS Discard

DP Dynamic Programming

DQN Deep Q-Network

DY Calendar Days

FC Flight Cycles

FH Flight Hours

FNC Functional Check

GVI General Visual Inspection

HMV Heavy Maintenance Visit

IATA International Air Transport Association

LOF Line of Flight

LUB Lubrication

MC Monte Carlo

MDP Markov Decision Process

MEL Minimum Equipment List

MILP Mixed Integer Linear Programming

vi

List of Abbreviations vii

ML Machine Learning

MO Maintenance Opportunity

MPD Maintenance Planning Document

MRB Maintenance Review Board

MRO Maintenance Repair and Overhaul

MSG Maintenance Steering Group

NCO Neural Combinatorial Optimization

NN Neural Network

OPC Operational Check

PER Prioritized Experience Replay

PFA Policy Function Approximation

PHM Prognostic Health and Management

RH Rolling Horizon

RL Reinforcement Learning

RST Restoration

RUL Remaining Useful Life

SGD Stochastic Gradient Descent

SVC Servicing

TA Tail Assignment

TAT Turn-around-time

TD Temporal Difference

VC Visual Check

VFA Value Function Approximation

.

I
Scientific Paper

1

The Condition-Based Maintenance Scheduling Challenge:

A Reinforcement Learning Interpretation

Daniel Martini Jiménez∗

Delft University of Technology, Delft, The Netherlands

Abstract

Condition-based maintenance (CBM) is emerging in the airline industry as a revolutionary con-
cept that could potentially increase the efficiency of aircraft operations. The adoption of CBM
strategies is not yet widespread due to the stringent requirements imposed by aviation authorities
and the fact that the prognostic and health management (PHM) technology is still in its infancy.
Along with the developing technology, CBM requires a performance evaluation in terms of aircraft
maintenance schedule optimization. This paper proposes a novel reinforcement learning model to
solve the airline maintenance scheduling problem subject to prognostics uncertainty. A Deep Q-
Learning model is trained to schedule A-check routine tasks. The approach preserves the dichotomy
of the maintenance problem by scheduling both interval-based clusters of tasks and condition-based
tasks monitored with synthetic prognostics. Maintenance, repair, and overhaul (MRO) data from
a major European airline was used to construct a realistic simulation and a model tailored to their
operations. We explore a wide range of scenarios with varied numbers of tasks scheduled with a
CBM policy, as well as different magnitudes of uncertainty in order to enable a viable maintenance
strategy. Compared to traditional maintenance policies, the results demonstrate that the imple-
mentation of CBM reduces the fleet ground time and improves the task’s interval utilization when
assessing the uncertainty involved in prognostics.

Keywords: Condition-based maintenance, Airline maintenance operations, Operations research, Stochas-
tic optimization, Reinforcement learning

1 Introduction

Over the years, aviation safety and operational efficiency have become key factors in remaining com-
petitive in the airline industry. Maintenance is performed regularly in accordance with strict require-
ments imposed by international airworthiness authorities and aircraft manufacturers. While preventive
maintenance is largely responsible for the outstanding safety and reliability of today’s aviation, its ef-
fectiveness is limited by statistical generalizations and the lack of consideration for specific operating
conditions (Daily and Peterson, 2017). As a result, some systems are replaced long before their po-
tential due date, and others may fail prior to their assigned maintenance slot. Total maintenance

∗Author of this article, supervised by Dr. ir. B. F. Lopes dos Santos and ir. F. C. Freeman

1

expenditure corresponds to approximately 10% of airlines’ direct operating cost (Lagos et al., 2020).
In 2018, the global maintenance, repair and overhaul (MRO) costs were valued at 69 billion USD, and,
based on estimates by IATA’s Maintenance Cost Technical Group (2019), a 4.1% increase per annum
is expected, reaching an estimated market size of 103 billion USD by the year 2028. It is evident that
stakeholders cannot afford to ignore the potential benefit of being at the cutting edge of technology
with predictive maintenance.

Condition-based maintenance (CBM) is a predictive strategy designed to transform real-time aircraft
data into actionable intelligence. Its use helps avoid unnecessary ground times and can replace periodic-
based maintenance checks with a continuous monitoring of the aircraft thanks to prognostic and health
management (PHM) technology. Although some authors define CBM as a preliminary step before
predictive maintenance, this work includes the notion of prognostics and the prediction of a future
due date as part of the CBM concept. The implementation of CBM strategies in the airline industry
consists of two key elements: (1) the use of advanced analytics to understand the driving factors of
performance, monitor aircraft systems, and predict remaining useful life (RUL), and (2) the fielded
evaluation of PHM technology as it matures (Saxena et al., 2008). While the RUL models are still
emerging and being researched, little effort has been made to assess CBM strategies in terms of aircraft
maintenance schedule optimization (Sprong et al., 2020).

Background
The majority of researchers that include maintenance in the scope of operations optimization have
focused on the aircraft routing problem (ARP) and the tail assignment (TA). The former is concerned
with the creation of lines of flight, while the latter assigns these routings to individual aircraft. Fre-
quently, these problems are solved in combination with maintenance considerations, in order to respect
the maintenance schedule that requires the aircraft to be present at the hangar location. Since the
early efforts of Feo and Bard (1989) a vast array of literature has formulated the ARP with a time-space
network. Several other studies have focused on operational aircraft maintenance such as Afsar et al.
(2006), Eltoukhy et al. (2017) and Lagos et al. (2020), yet none of them deals with the creation of a
maintenance schedule but rather assumes that available planning exists to create the aircraft routings.
It is noteworthy that these problems are solved with an operational horizon that normally has a time-
window of 3-4 days. Instead, the planning horizon that is investigated in this research extends it to
8-12 weeks for A-checks. Lastly, Deng et al. (2020) is the only work that considers the check scheduling
problem for long-term strategic decisions. In their work, a look-ahead dynamic optimization model
is developed to solve the aircraft maintenance check scheduling problem in a 4-year time window. In
order to reduce the size of the problem, the aircraft are scheduled by maintenance urgency based on
the earliest due date. One of the major concerns that has arisen from this work is the computational
time of dynamic programming (DP) methods in a stochastic environment.

The problem dimensionality can be circumvented with reinforcement learning (RL) or approximate
dynamic programming (ADP). These frameworks arise as elegant theories to reach near-optimal so-
lutions that make the problem computationally tractable. RL has seen successful applications in the
fields of control theory and robotics (Sutton and Barto, 1998; Kober et al., 2013; Silver et al., 2017),
while ADP has emerged more recently with similar algorithmic strategies to solve problems in the
operation research domain. Powell (2011) addresses a wide range of ADP policies in the context of

2

dynamic resource management. Nonetheless, the applications of RL or ADP to scheduling problems
are not common in the literature, and they are mostly found in the cloud computing domain (Solozabal
et al., 2020; Tong et al., 2020; Liang et al., 2020).

The lack of automated planning tools for maintenance scheduling arises from the fact that it is a long-
term problem in a dynamic environment, where factors such as aircraft utilization and task demand are
continuously changing. Moreover, the literature mainly focuses on the operational horizon by solving
the aircraft routing problem with maintenance constraints. Therefore, there is no flexibility in the
maintenance planning and a pre-existent schedule is necessary in most cases. Two main challenges
are yet to be addressed with regard to the airline maintenance scheduling problem (AMSP): (1) the
model’s exponential growth in size as the planning window increases, and (2) the omission of stochastic
factors that result in the optimization of a static environment with a deterministic approach. Both
challenges indicate that standard optimization techniques would not be able to cope with the size of
the problem and produce useful results for a stochastic environment. In this work, Deep Q-learning, a
well-known RL algorithm, is proposed as a suitable algorithmic strategy based on the discrete nature of
the problem, and the successful applications across different industries (Mnih et al., 2015; Waschneck
et al., 2018; Sun and Tan, 2019; Tong et al., 2020).

Paper Contribution
This study focuses on the assessment of CBM policies in the AMSP by contributing to the deploy-
ment of a scheduling model in a transitional period from preventive to predictive maintenance. We
simulate synthetic prognostics for a limited number of aircraft systems using real data from a preven-
tive maintenance case. Furthermore, we leverage a reinforcement learning framework to address the
challenges that such a dynamic environment poses. Four main contributions to airline maintenance
research arise from this work: (1) the AMSP has been extended with a CBM policy, and formulated as
a sequential Markov decision process (MDP) that integrates a stochastic sampling strategy to simulate
RUL prognostics; (2) a deep reinforcement learning algorithm is trained to learn a dynamic scheduling
policy; (3) diverse transition strategies based on task clustering and varied frequency of maintenance
opportunities have been tested to explore strategic decisions that airlines should take to accommodate
CBM policies; (4) lastly, a wide range of scenarios is proposed to compare the scheduling performance
to the uncertainty levels of PHM technology. To the author’s knowledge, this is the first attempt at
using a reinforcement learning methodology to create a data-driven solution for the AMSP subject to
prognostic uncertainty.

Report Structure
The remainder of this paper is organized as follows. Section 2 gives an overview of the airline mainte-
nance planning problem. In Section 3, the Markov decision process (MDP) formulation of the schedul-
ing problem is presented. Section 4 explains the methodology developed to simulate the problem, from
the clustering of individual tasks and the prognostic generation, to the scheduling algorithm. Section
5 deals with the experimental set-up required to analyze the maintenance scheduling framework and
the methodology proposed. The results are described in Section 6, whilst Section 7 highlights their
relevance and implications. Finally, the conclusion and recommendations are outlined in Section 8.

3

2 Problem Definition

The airline maintenance planning process involves two different paradigms. The first one, also known
as task-packaging, consists of grouping routine tasks based on different features. The second one is
the airline maintenance scheduling problem (AMSP) that consists of assigning each block of tasks to
a maintenance opportunity. We extend this problem by introducing a CBM strategy in a portion of
the maintenance program. Since most of the literature has focused on a limited number of systems
monitored by prognostics and RUL predictive models will not become widely available for all aircraft
tasks, this work assumes an early adoption period where the CBM concept is applied for a limited
number of tasks. The remaining aircraft tasks are scheduled with a traditional letter-check structure.
Therefore, we address two categories of events within the aircraft maintenance program: routine and
CBM tasks. The first ones are clustered during the task-packaging phase in maintenance checks, and
they must be performed periodically based on a usage interval. On the other hand, CBM tasks are
monitored individually during the scheduling process by means of prognostics. Thus, we define a tran-
sition strategy that combines traditional letter checks, predefined in the task-packaging problem, with
a task-based methodology for CBM tasks. The scheduling model allocates A-checks to maintenance
opportunities, and inserts CBM tasks into the scheduled A-checks based on the RUL prognostics. In
the remainder of this section, an overview of the maintenance planning process and the challenges
faced by the airline industry to implement CBM strategies is described.

2.1 Maintenance Planning

There are three main categories of airline maintenance checks based on their periodicity and duration
(Yan et al., 2011). The first, long-term, includes heavy maintenance tasks that require an overhaul
lasting longer than 10 days. They are also called level C and D checks. The mid-term maintenance
plans are set monthly on the long-term plan. They incorporate both level A and B checks. Lastly,
short-term plans produce schedule adjustments due to incidents. Line maintenance is an additional
short-term maintenance activity performed at the gate of the airport. The only method approved by
airworthiness authorities is the Maintenance Steering Group-3 (MSG-3), which develops a set of tasks
for specific functional failures (Shannon and Ackert, 2010). The airplane manufacturer also releases
the maintenance planning document (MPD) that contains a list of the mandatory requirements to
develop a customized maintenance program (Kinnison, 2004).

Traditional maintenance policies opt to cluster a series of routine tasks, based on the resources required,
in large blocks, also called letter-checks (A,B,C,D checks). They use a combination of time-driven
intervals based on calendar days (DY), and usage-driven intervals based on the cumulative aircraft
flight hours (FH) and flight cycles (FC). This methodology has declined in recent years in favor of
progressive maintenance checking. Modern maintenance planning approaches adopt a task-driven
solution where tasks are bundled together in smaller clusters such that the resulting check can be
performed overnight while the aircraft is not in use (Muchiri and Smit, 2009). This is done to reduce
aircraft downtime, to have a flexible grouping of tasks, and to optimize the schedule. On the other
hand, the planning complexity is highly increased, and the reduced slot capacity may represent a risk
when considering safety buffer times to allocate ad hoc maintenance tasks (Shannon and Ackert, 2010).

4

Maintenance tasks can be classified in three categories based on their scheduling nature: routine, non-
routine, and unscheduled (Kinnison, 2004). Routine tasks occur periodically at intervals defined by the
authorities. They are clustered in the letter-checks based on a hierarchy defined in the MPD. Generally,
a large number of routine tasks are dephased from the intervals of these checks, in order to perform the
tasks before due time, which leads to inefficiencies (Witteman et al., 2021). Furthermore, non-routine
tasks are those that vary from check to check and are usually triggered by a routine task such as
an inspection or a functional check. Lastly, unscheduled tasks originate from unexpected failures or
events, such as faults reported by pilots, bird strikes and reactive maintenance tasks.

In this work, we focus exclusively on the A-check routine maintenance program for the following reasons.
Firstly, C-checks are excluded as they are scheduled much farther in advanced than A-checks. Since
C-checks are generally long overhauls, it is preferred to schedule them during low-demand periods,
and in sequence for the whole fleet. Moreover, this allows leveraging the learning curve effect of the
engineers involved in the maintenance checks. Therefore, there is little room for improvement in terms
of aircraft maintenance schedule optimization. Secondly, the non-routine maintenance program and
the unscheduled maintenance events have been excluded because they have an operational planning
horizon. Therefore, they make use of additional opportunities such as line maintenance or last-minute
slots. In this way, the scope of the problem is reduced to the tactical horizon, and the focus is on the
benefits of a CBM transition strategy for the A-check routine maintenance program.

2.2 Condition-Based Maintenance

The transition to condition-based maintenance (CBM) combines preventive and predictive strategies
that aim to reduce maintenance costs while providing services with improved quality and reliability
(Hölzel et al., 2012). Preventive maintenance strategies will remain necessary for an effective transition,
while the industry accommodates a CBM concept. Therefore, the transition maintenance strategy that
we propose includes both interval-based checks and individual CBM tasks. The interval-based checks
adhere to a preventive methodology, while the CBM tasks monitored with RUL prognostics belong to
the predictive maintenance concept.

Through continuous aircraft monitoring, it becomes possible to perform repairs before damage oc-
curs, and maintenance can be scheduled only when necessary. The prognostic and health management
(PHM) technologies, i.e. sensors on board the aircraft, are employed to determine the optimal time to
allocate the tasks and avoid any waste of RUL. The integration of PHM techniques with maintenance
decisions represents the basis of the CBM concept (Vianna and Yoneyama, 2018). It requires the air-
craft to be completely wired and equipped with sensors to monitor the real-time health of the fleet. To
date, various airline operators have implemented certain aspects of CBM in their operations that have
dramatically increased the level of electronic integration in aircraft systems (Teal and Sorensen, 2001).
However, none have taken full advantage of the CBM concept because of the lack of fully equipped air-
craft with health monitoring sensors, strict air safety requirements, and the lack of digitalization in the
maintenance operations domain. In order to foster the implementation of CBM strategies, some hybrid
approaches have been proposed in the research community where traditional scheduled maintenance
is used for safety-critical tasks, and CBM is used for non-critical systems (Dong et al., 2019; ReMAP
H2020). We also define a hybrid approach using real data from a preventive maintenance case. Since

5

the focus of this research is exclusively on routine maintenance tasks, we include a limited number of
these tasks in the scope of CBM, and we simulate synthetic prognostics to monitor their due date.
The objective is to create a scheduling framework that allows the allocation of aircraft maintenance
checks, as well as the insertion of CBM tasks in the same maintenance slot.

CBM strategies can be formalized with two types of actions: interval task (de-)escalation and task
substitution (Hölzel et al., 2014). The former extends or reduces the original interval of the task based
on condition data from sensors. Since interval limitations imposed by authorities are very conservative,
it is likely that CBM escalation will safely lengthen the service life of monitored systems (Vandawaker
et al., 2015). Similarly, task substitution replaces an inspection or a functional check with a sensor
that defers a non-routine task until a threshold is triggered. In both cases, the CBM tasks monitored
by PHM technology no longer form part of a routine block. However, task substitution results in
the removal of inspections and functional checks from the maintenance program, while in the case of
(de-)escalation the tasks are kept in the maintenance program but performed only when the prognostic
alerts a failure. Since the proposed approach only considers routine maintenance tasks, non-routine
tasks triggered by substitution are not included in the scope of the problem. Based on the cost-benefit
analysis presented by Hölzel et al. (2014), an improvement in terms of labor hours is expected due
to a reduction in unnecessary preventive maintenance and improved system utilization. Moreover, we
extend their single-aircraft analysis to a fleet of 16 long-haul aircraft in order to evaluate the planning
and scheduling performance where several aircraft compete for limited maintenance resources.

3 Problem Formulation

The mathematical formulation of the airline maintenance scheduling problem (AMSP) depends on the
choice of optimization model, the planning horizon, and the uncertainty of the factors involved. The
proposed formulation is inspired by the works of Deng et al. (2020) and Lagos et al. (2020) that employ
a dynamic programming approach and a look-ahead estimation of the next states with the objective
of maximizing aircraft utilization. We also leverage the approximate dynamic programming (ADP)
framework presented in the work of Powell and Topaloglu (2006). Their formulation recognizes two key
elements in any dynamic resource allocation problem: the resources and the demand. In the AMSP,
resources are identified as the maintenance opportunities predefined in the slot availability calendar,
while the demand corresponds to the scheduling units, also called routine blocks and CBM tasks, that
need to be allocated. Both types of scheduling units are modeled in the exact same way. However,
routine blocks have a due date dictated by an interval, while the due dates of CBM tasks are dependent
on RUL prognostics. The formulation makes use of the following five main assumptions.

1. Aircraft utilization is known and constant. Aircraft routings are usually only known three
to five days before operations. Therefore, to produce monthly A-check schedules, a statistical
analysis is performed to calculate the average flight hours and cycles per day.

2. The amount of weekly slots is constant and there are sufficient labor hours. We
assume that the size of the A-checks will be similar and the CBM tasks can be accommodated
within the scheduled maintenance slot.

3. Inventory management is not considered. Tools and parts are assumed to be always

6

available to perform scheduled maintenance tasks.

4. CBM tasks can only be allocated within a routine block. In practice, an individual task
could also be performed in line maintenance or additional slots besides A-checks.

5. Additional tasks can be performed with a buffer-time. Eventual non-routine tasks and
unscheduled maintenance events can be accommodated within the A-checks.

The goal of the problem is to select a maintenance slot date for every aircraft in order to maximize
fleet utilization. The problem is set up in a sequential fashion such that at every every timestep t, the
scheduling unit with highest priority (ACt) is selected based on the earliest due date. The problem is
deemed solved when the model schedules the last routine block or CBM task on the time horizon date
(TH). Every time an aircraft is selected either a routine block (A-check) or a CBM task can drive the
earliest due date selection. In the first case, a routine block needs to be allocated to a maintenance
slot, while in the second case, a CBM task is inserted in one of the A-checks previously scheduled. The
problem formulation uses the notation presented below. The choice of reinforcement learning (RL) or
approximate dynamic programming (ADP) requires formulating the problem as a sequential decision
making process, most commonly as a Markov Decision Process (MDP). An MDP assumes the presence
of the state-space, the action-space, the reward function and the transition function. In the remainder
of this section a clear overview of each element is provided.

Sets
K : sets of aircraft scheduling units (A-checks and CBM tasks) for the complete fleet
A : sets of discrete scheduling actions
M : sets of maintenance opportunities
Parameters
TH : Time horizon of the maintenance scheduling simulation
IkFH : Flight hours interval of scheduling unit k
IkFC : Flight cycles interval of scheduling unit k
IkDY : Calendar based interval of scheduling unit k
δtfh : Daily flown hours at timestep t
δtfc : Daily flown cycles at timestep t
Variables
ACt : Aircraft scheduling unit with highest priority selected at time t
SDk

t : Scheduled date selected by at for aircraft k
DDk

t : Due date of scheduling unit k at timestep t
PEkt : Previous maintenance execution date of scheduling unit k at timestep t
Mk
a : Amount of available slots on sub-interval a for scheduling unit k

MDk
a : Date of latest maintenance slot on sub-interval a for scheduling unit k

RDk
t : Reference date to update all environment parameters of scheduling unit k

∆FHk
t : Simulated flight hours at timestep t for scheduling unit k

∆FCkt : Simulated flight cycles at timestep t for scheduling unit k
∆DY k

t : Simulated calendar days at timestep t for scheduling unit k
FHk

t : Remaining flight hours at timestep t for scheduling unit k
FCkt : Remaining flight cycles at timestep t for scheduling unit k
DY k

t : Remaining calendar days at timestep t for scheduling unit k

7

Xk
t : Remaining useful life in calendar days at timestep t for scheduling unit k

Ikt : Minimum interval in calendar days at timestep t for scheduling unit k
ωkt : Predicted due date at timestep t for scheduling unit k

Decision variable
at : Interval utilization of scheduling unit ACt at timestep t

3.1 State Space

The maintenance planning simulation occurs in a sequential process by selecting the most critical
scheduling unit, either a block or a CBM task, depending on which has the earliest upcoming due
date. Each item or scheduling unit has a time window that goes from the previous execution to the
next due date, dictated by either an interval or a prognostic. This time window is discretized in |A|
sub-intervals, as shown in Figure 1, to analyze the available resources in each of them, as well as the
demand for those resources. The state vector takes as a reference the time window of the most critical
item to calculate the relevant environment features. A total of six features is employed to capture the
scheduling environment condition through which the model can learn the effect of its decisions:

Figure 1: Scheduling unit discretization with an example time window of 1500 flight hours

• Dt,a: demand or number of scheduling units competing for a slot in the sub-interval "a". If there
is no slot available, the value of this feature becomes null.

• Rt,a: resources or number of the available slots to the demand Dt,a competing for the slot in
sub-interval "a" of the most critical unit ACt at time t.

• lht,a is the average estimated reward for the competing aircraft computed with a look-ahead
function, assuming that the slot in sub-interval "a" is occupied by ACt. The objective of this
feature is to capture the performance consequences for the rest of the fleet when a slot is being
considered for the most critical scheduling unit. The function works with a greedy policy: every
time a slot in sub-interval "a" is considered, it is removed from the available resources. The
function assigns the latest possible slot to each aircraft in their priority order, and calculates the
cost of allocating the remaining resources to the competing aircraft.

• ht,a indicates the time index of the slot in the simulation horizon, such that the system is aware
of the slot position in time. This feature represents the relative position of the maintenance date
with respect to the simulation end date.

• pt,a is the probability of failure at each sub-interval "a" based on the RUL prognostics of a CBM
task. In the case of routine blocks, the problem is deterministic and this feature is nullified.

• bt,a is a binary variable that indicates whether the scheduling unit ACt is a routine block or a
CBM task. This feature takes the same value for all a ∈ A

8

At every iteration the features are calculated for each discretized sub-interval a ∈ A, and the resulting
vector becomes a column of the state as shown in Equations (1)-(2). The final state given in Equation 3
has a size of |A| × 6.

Rt = [Rt,a]a∈A, Dt = [Dt,a]a∈A, lht = [lht,a]a∈A (1)

ht = [ht,a]a∈A, pt = [pt,a]a∈A, bt = [bt,a]a∈A (2)

St = (Rt, Dt, lht, ht, pt, bt) (3)

3.2 Action Space

The action at ∈ A controls the scheduling environment by determining the aircraft utilization rate
before entering maintenance. Thus, the action space is given by the discretized sub-intervals of the
scheduling unit, plus the additional possibility of having an aircraft on ground (AOG). In the latter
case, the aircraft is forced to be grounded and wait for a maintenance opportunity. Therefore, the
complete action-space with the discretization scheme shown in Figure 1 becomes:

A =

{
15%, 25%, 35%, ..., 95%, 97%, 99%, 100%, AOG

}
(4)

Let Figure 2 be a visualization of the maintenance scheduling environment, with the available slots on
top, and the scheduling unit intervals of different aircraft on the bottom. The interval of AC1 on top of
the list is the most critical as it has the earliest due date. Moreover, a total of five slots, indicated with
a red "X", are available during the time window of this scheduling unit. However, only four actions
are feasible based on the discretization scheme of the interval. For clarity purposes, the four feasible
actions have been highlighted with a striped pattern. The second feasible action contains two slots,
and if it were selected, the latest slot would be assigned to the most critical scheduling unit.

Figure 2: Maintenance Scheduling Environment

There are two types of scenarios that can occur. When a routine block has the earliest due date, the
maintenance opportunities are given based on hangar availability. On the other hand, when a CBM
task needs to be allocated, the opportunities are determined by the slots occupied with a routine block
of the same aircraft tail. In this way, CBM tasks are inserted in the same slot as the A-checks. Ideally,
the maintenance scheduling units should be allocated as close as possible to their due date in order to
maximize aircraft utilization. Nevertheless, an action is feasible only if a maintenance opportunity is
overlapping with the respective sub-interval, as shown in Figure 2 with the striped pattern. Thus, the
feasible region At at time t is expressed as follows:

9

At =

{
ai : PEACt

t + ai−1 · IACt
t ≤MDACt

i ≤ PEACt
t + ai · IACt

t ∀i ∈ A (5)

1 ≤MACt
i ∀i ∈ A

}
(6)

Constraints 5 ensure the maintenance slot date is in the desired sub-interval [ai−1, ai], which is cal-
culated based on the previous execution date (PEACt

t) and the interval requirement (IACt
t) of the

maintenance scheduling unit. Likewise, constraints 6 consider action ai to be feasible only if at least
one maintenance opportunity is present at the time the aircraft is utilized by ai percentage. Lastly,
Equation 7 shows the feasible action space of the example presented in Figure 2.

At =

{
15%, 35%, 90%, 99%, AOG

}
(7)

3.3 Reward Function

In reinforcement learning, the sum of the rewards received over an entire episode determines the final
objective function value, which is referred to as the cumulative reward. The evaluation of the action at,
given the state St and the next state St+1, is assessed through the rewards received at each timestep.
In this way, the model is able to extract information from the intermediate steps between the start
and the end of an episode. We interpret the reward as a cost function that needs to be minimized by
the model applied to the problem such that the fleet utilization is maximized.

The operational impact of the actions represents the interval limit consumed by an aircraft before
entering the maintenance hangar. The linear sum of the interval utilization values would not lead to
the maximization of the whole fleet utilization because some aircraft might have extremely high rates,
while others might be utilized much less. Since the objective function would not reflect this behavior,
an alternative approach is chosen in order to maximize the fleet utilization by means of the cumulative
reward function. A logarithmic transformation of the interval utilization can still represent the cost
of individual actions but, more importantly, the minimization of the cumulative reward would lead to
the maximization of the overall fleet utilization. Equation 8 shows the cost or reward function shape,
where the constant K takes value 1 for CBM tasks, while the K value of routine blocks is doubled in
order to outline the hierarchy of a task-cluster. The cost function is shaped such that it is minimized
when all the actions are as close as possible to 95%, as the airline strives to have a 5% margin due
to the variability in aircraft utilization. Lastly, the action that is penalized most heavily corresponds
to an aircraft on ground (AOG) or missed maintenance opportunity. This option has been included
for feasibility purposes, such that if all maintenance opportunities are occupied or the due date of a
task occurs before the prescribed maintenance date, a large penalty is returned in order to respect the
scheduling unit’s interval.

Rt(St, at) =





K ln
(
100
at

)
if at ≤ 95%

K ln
(

100
2·95−at

)
if 95% < at ≤ 100%

2K ln (100) if at is AOG

(8)

10

3.4 Transition Dynamics

The transition function dictates the dynamics of the environment from state St to state St+1. It is
noteworthy that, at each timestep, the agent processes the aircraft routine block or CBM task with
the highest priority and decides to which opportunity it should be allocated. The complete set of steps
involved in the simulation process are outlined as follows:

1. Simulate the fleet utilization

2. Update remaining useful life (RUL) for all aircraft

3. Calculate the next due date of all scheduling units

4. Select the most urgent scheduling unit based on the earliest due date

5. Process features for the selected scheduling unit

6. Select a scheduling action

7. Update environment attributes

8. Repeat the previous steps until the end of the horizon

Every time a scheduling unit ACt is being processed in state St, a scheduling action a∗t is chosen
based on the policy of the reinforcement learning model. Subsequently, the maintenance resources are
updated by subtracting the slot that has just been allocated (Equation 9), and the scheduled date
variable (SDACt

t) becomes the date of the chosen slot (Equation 10).

Mk
a∗t

= Mk
a∗t
− 1 ∀k ∈ K (9)

SDACt
t = MDACt

a∗t
(10)

Once the current aircraft has been scheduled, the whole fleet utilization is simulated for a number of
days that goes from the previous reference date RDk

t until the selected scheduled date SDACt
t . The

simulated days are converted to flight hours and flight cycles according to daily ratios (δtfh, δ
t
fc) that

are estimated based on the calendar month at timestep t for each scheduling unit k (Equation 11).
These parameters are used to update the remaining calendar days (CY), flight hours (FH), and flight
cycles (FC) of the whole fleet in Equation 12. However, the remaining utilization parameters of the
scheduling unit ACt, that has just been allocated, are re-initiated to their original interval limitations,
as shown in Equation 13. A limitation of this approach is the assumption of complete aircraft utilization
information. Therefore, it does not include future uncertainty related to the utilization variability, for
this reason a 95% target utilization was defined.




∆DY k
t

∆FHk
t

∆FCkt


 =



SDACt

t −RDk
t

∆DY k
t · δtfh

∆DY k
t · δtfc


 ∀k ∈ K (11)



DY k

t+1

FHk
t+1

FCkt+1


 =



DY k

t

FHk
t

FCkt


−




∆DY k
t

∆FHk
t

∆FCkt


 ∀k ∈ K (12)

11



DY ACt

t+1

FHACt
t+1

FCACt
t+1


 =



IACt
DY

IACt
FH

IACt
FC


 (13)

The remaining useful life variables (Xk
t) are updated with the minimum driving requirement either in

DY, FH or FC in Equation 14. Then, the routine block due dates are updated based on the remaining
interval days, while in the case of a CBM task a prognostic ωkt dictates the scheduling unit due date,
as shown in Equation 15. The transition dynamics are slightly different when a CBM task needs to
be allocated. Since it is necessary to simulate the prognostic multiple times with varying uncertainty,
the CBM task scheduling occurs in multiple steps. At every iteration, the model updates the reference
date to the following day (RDk

t + 1) in order to simulate a chronological sequence of actions until the
next available maintenance opportunity. On the other hand, the reference date for the routine blocks
is directly updated to the selected scheduled date (Equation 16). In this way, the prognosticated due
date (ωkt) is re-sampled with less uncertainty since the model gets closer to the end of the interval.
The CBM task is considered to be allocated only when the reference date (RDk

t+1) is the same as the
scheduled date (SDACt

t). The reward of the intermediary steps in the CBM task allocation process is
set to zero until the scheduling date is reached. Furthermore, the previous maintenance execution of
ACt and the minimum interval for every unit in K, are updated in Equations (17)-(18). Lastly, the
scheduling units are positioned in descending order, based on the updated due dates, and the next
most urgent one is selected (Equation 19).

Xk
t = min







DY k
t

FHk
t /δ

t,k
fh

FCkt /δ
t,k
fc





 ∀k ∈ K (14)

DDk
t+1 =




RDk

t +Xk
t if k is a routine block

ωkt if k is a CBM task
∀k ∈ K (15)

RDk
t+1 =




SDACt

t if k is a routine block

RDk
t + 1 if k is a CBM task

∀k ∈ K (16)

PEACt
t+1 = SDACt

t (17)

Ikt+1 = DDk
t+1 − PEkt+1 ∀k ∈ K (18)

ACt+1 = arg min
k

([
DDk

t+1

]
k∈K

)
(19)

Figure 3 shows the transition dynamics that allow the agent to move from slot to slot. At every
timestep, a new scheduling unit ACt is selected based on its due date. The action chosen determines
the opportunity to which the respective scheduling unit is allocated, as well as the simulated days of
fleet utilization. In the case of St+3, the aircraft selected cannot be scheduled after the reference date.
For this reason, the sequence of actions takes a step backwards in the schedule. It is noteworthy that
the timestep index indicates the chronological order in which the actions are taken. The actual date
and time is determined by the date of the maintenance slot that is selected with every action.

12

Figure 3: Transition Dynamics

4 Methodology

To optimize the maintenance task allocation and increase aircraft utilization, the scheduling framework
developed in this work devises three modules. The first is the clustering algorithm required to create
the routine blocks. The second module simulates the synthetic prognostics of the (de-)escalated CBM
tasks. Lastly, the third module allocates maintenance opportunities to both routine blocks and CBM
tasks with a reinforcement learning (RL) agent. The scheduling process is sequential. First, a routine
block or A-check must be allocated to an available slot. Then, the CBM tasks corresponding to the
same aircraft tail can be inserted in maintenance opportunities defined by A-checks.

4.1 Routine Block Clustering

The benefit of clustering tasks in routine blocks is the reduction of the problem size. In fact, there
is an analogy between the maintenance scheduling problem and a puzzle. The more pieces there are,
the more complicate the problem becomes. There is no doubt that a highly segmented maintenance
strategy could be more optimal from a mathematical perspective. However, scheduling maintenance
implies a disturbance to operations because the aircraft has to be grounded for a certain period of
time. Moreover, from a planning perspective, overhead costs related to hangar, engineers, and tool
availability must also be considered. In recent years, airlines have begun to explore policies that increase
the number of checks and reduce the ground time. This enables overnight checks and increases aircraft
availability (Muchiri and Smit, 2009). These strategies foster the integration of CBM in the airline
industry. In fact, if the aircraft is grounded more times for shorter periods, there are more maintenance
opportunities that could be used to perform individual tasks monitored by prognostics. To address
this hypothesis, we consider different maintenance block cycle policies that vary the frequency of the
routine blocks, and the respective maintenance elapsed time.

Figure 4 shows the logic behind different maintenance block cycle policies and the clustering algorithm.
The cycle on the left considers a maintenance policy with 1500 flight hours between every check, while
the cycle on the right employs a policy spaced by 750 flight hours. Therefore, twice as many blocks
appear in the same horizon when the maintenance frequency is increased. Nevertheless, the duration
of these routine blocks is halved to maintain a similar amount of labor hours between the two policies.
Additionally, two other maintenance policies with 500 and 375 flight hours between blocks are evaluated
to observe scheduling performance in such scenarios. A calendar based estimation for these policies
would lead to the grounding of aircraft every three months (1500FH) to every 3 weeks (375FH). The
implementation of these policies requires ad adaptation of the available slots schedule, used as input
for the RL model. The available slots are subdivided in multiple opportunities when maintenance

13

Figure 4: Clustering Strategy

frequency is increased. Thus, a 50% decrease in interval flight hours between the blocks (from 1500FH
to 750FH), leads to the creation of two maintenance slots with half of the original labor capacity, such
that one slot becomes a grounding opportunity for two aircraft. Similarly, when the flight hours are
reduced to 500FH and 375FH, one maintenance slot in the original slot calendar becomes a slot for 3
and 4 aircraft, respectively.

The traditional maintenance policy of the reference airline clusters all the routine tasks with a 1500FH
policy. Their task-packaging strategy involves several expert criteria that are used to produce an op-
erational maintenance block cycle. Among others, the interval requirement, the labor hours, the skill
of the licensed personnel, the aircraft zone, the inventory items, and other task inter-dependencies are
considered in the task-packaging process (Pereira and Ashok Babu, 2016; Ozkol and Senturk, 2017).
There are two main reasons for which the clustering algorithm is employed to create new maintenance
task-packages or routine blocks. Firstly, different maintenance block policies than the one proposed by
the reference airline are explored, for which the interval between blocks is varied. Secondly, a portion of
the routine tasks is removed and monitored individually by means of synthetic prognostics. Therefore,
the composition of routine blocks changes and a new clustering methodology is required. For the sake
of simplicity, tasks have been clustered only based on interval and slot capacity considerations in this
research. The following parameters have been defined to formulate the clustering MILP.
Sets
J : The set of routine tasks for an aircraft
B : The set of blocks based on the maintenance policy configuration
Pij : The set of blocks that have a distance from block i that is less or equal than Ij

Parameters
Ij : The interval of task j
Dj : The duration of task j
LH : The capacity of labor hours in each slot

Decision Variable

xij : Task j is assigned to block i

14

The objective function of the clustering algorithm is to minimize the number of times a task is repeated
in the maintenance block cycle (Equation 20). The coverage constraints in Equation 21 ensure that
all the maintenance tasks are selected at least once in the maintenance block cycle. Constraints 22
prevent a task from being assigned to a block past its interval limitation. The equation makes sure
that if task j is allocated in block i, it appears one or more times in the previous blocks Pij . The
reader is referred to the policy on the left of Figure 4 for a graphical definition of set Pij . If the model
considers placing a task in block A3, the same task should appear at least once in the blocks covered
by the red line in order to respect the interval limitation. In the depicted case, Pij is composed by
blocks A5, A6, A7, A8, A1, and A2. Moreover, constraints 23 ensure that the number of tasks allocated
in a certain block is constrained by the maximum labor hour capacity. A major limitation of this
formulation is the lack of consideration for a homogeneous workload distribution over the maintenance
blocks. Lastly, constraints 24 indicate that the decision variable is a binary variable.

minimize
∑

j∈J

∑

i∈B
xij (20)

∑

i∈B
xij ≥ 1 ∀j ∈ J (21)

xij −
∑

p∈Pij

xpj ≤ 0 ∀i ∈ B, ∀j ∈ J (22)

∑

j∈J
xij ·Dj ≤ LH ∀i ∈ B (23)

xij ∈ {0, 1} ∀i ∈ B, ∀j ∈ J (24)

4.2 Synthetic Prognostic Generation

CBM requires health monitoring data to diagnose the condition of the aircraft, and predict the re-
maining useful life (RUL) of different systems, components and structures. Legacy aircraft are still not
fitted with many of these sensors and RUL predictive models are still emerging in the PHM industry.
Moreover, every system should have a tailored predictive model which is not available for this re-
search. Therefore, a synthetic prognostic module has been designed to simulate the CBM task interval
escalation. It is essential to understand that there will be always uncertainty related to a predicted
due date. Saxena et al. (2008) stress the need of considering the impact of uncertainty in order for
the prognostic to be useful. For this reason, we produce probabilistic interval estimations of the due
date that we draw from a normal distribution. Based on the works of Sankararaman et al. (2013)
and Elattar et al. (2016) it is clear that the RUL prediction models are mainly based on log-normal,
Weibull or Gaussian distributions. Although the probability distribution is likely to be asymmetric, a
normal distribution is assumed because this study generalizes over multiple sub-systems and different
failure possibilities. The main goal of this work is to schedule routine checks and CBM tasks while
considering RUL uncertainty dynamically.

Figure 5 has been included to guide the reader through the prognostic simulation process. Assuming
a routine task with an original interval of 1500 flight hours can be escalated by E%, it becomes a
CBM task. The risk parameter r indicates the maximum date up to which the CBM task can be

15

Figure 5: Synthetic prognostic simulation

scheduled. Past the risk limit, represented by the red vertical bar in Figure 5, there are no more
maintenance opportunities identified in blue at the bottom of the figure as the failure probability is
deemed too high and the task may fail prior to the allocated slot. Furthermore, the parameter k
determines the standard deviation or the uncertainty of the RUL prognostics. The uncertainty σ is
calculated dividing the escalated interval by k such that the 99.7% confidence interval (3σ) is contained
within a specific uncertainty limit. For example, if k = 6, then the corresponding uncertainty is 50%
because the 3σ interval is equal to half of the kσ one. The uncertainty value represents the accuracy
that an eventual RUL predictive model can offer. Therefore, as parameter k increases, the uncertainty
σ becomes smaller. Furthermore, the initial due date expectation or the mean of the distribution is
determined in Equation 25 such that the prognostic is centered around the escalation date, and the
initial uncertainty is calculated with respect to the original interval due date in Equation 26. Lastly,
the predicted due date (ωt) is drawn from the normal distribution shown in Equation 27.

µt = DDACt
t + E% ·XACt

t (25)

σt =
(
µt −DDACt

t

)
/k (26)

ωt ∼ N (µt, σt) (27)

Throughout the schedule generation process, the prognostics are simulated dynamically with less un-
certainty as the algorithm gets closer in time to the predicted due date. Elattar et al. (2016) defines
this concept as "the shrinking of the required accuracy margin when the algorithm approaches the
end of life". This means that algorithm performance must improve with time as more data becomes
available, being the best just before the end of life. For this reason, we assume that the confidence
interval of the prediction decreases linearly in a Gaussian uncertainty propagation model. Every time
the RUL prognostics are re-sampled, the uncertainty is decreased proportionally to the previous one
based on the time difference between each update. Furthermore, the new prognostic is assumed to
be centered around the previously sampled due date. In this way, the performance of the prediction
evolves with time, being less confident at the beginning of the evaluation. As the predicted failure date
approaches in time, the prediction uncertainty decreases and the prognostic is re-evaluated. Therefore,
the dynamic distribution is sampled again based on the following parameters:

16

µt+1 = ωt (28)

σt+1 =
(
ωt −RDACt

t

)
/k (29)

The CBM task interval goes from the Previous Execution up to the Prognostic Due Date (see Figure 5).
The main difference between the interval of a block and a CBM task is that the latter continuously
changes based on the sampled due date. However, the discretization of the interval explained in
section 3 is carried out in the exact same manner for both types of scheduling units. Lastly, the
feature pt,a is determined by the cumulative probability of the failure occurring before the date of
the observed maintenance slot, as shown in Equation 30 where P is the cumulative probability of the
normal distribution N (µt, σt).

pt,a = F (MDACt
a) = P (µt ≤MDACt

a) (30)

4.3 Deep Reinforcement Learning

The goal of reinforcement learning is to develop a policy for sequential decision problems, by optimizing
the cumulative discounted reward signal in Equation 31. The discount factor γ ∈ [0, 1] assigns the
importance of future rewards with an exponential factor with respect to the current timestep, such
that the future returns are considered to be of less value than current rewards. The choice of discount
factor requires careful consideration about the relevance of future rewards for the current state. It is
important to consider the effect of a scheduling action on the short-term because it may compromise
opportunities for the rest of the fleet, as well as in the long-term because a scheduling action influences
the start of the following interval.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑

k=0

γkRt+k+1 (31)

4.3.1 Q-Learning

The AMSP is solved with Q-Learning which is one of the most widely known reinforcement learning
algorithms. The Q-function, also called action-value function, is the expectation of the discounted
reward sum given a certain action at in a state St. The challenge of Q-Learning is to estimate the
future discounted sum of rewards for a state-action pair. By taking advantage of the problem’s recursive
nature, the objective function can be expressed in the form of the Bellman equation (Sutton and Barto,
1998). From Equation 32 it can be observed that the Q-function is employed to provide an estimate of
the cumulative discounted reward. The optimal policy π∗ of the Q-learning model can be deduced by
minimizing the Q-function over the feasible region as expressed in Equation 33. A policy π : St −→ at,
is defined as a function that maps a state St into an action at.

Qπ (St, at) = Eπ(Gt|St, at) =Eπ (Rt+1 + γ ·Qπ(St+1, at+1)) (32)

π∗(St) = arg min
at∈At

Q∗(St, at) (33)

17

In a Markov decision process (MDP), each sequence contains information of a different state. This
information is referred to as the agent experience and it is stored at every timestep with a tuple
< s, a, r, s′ > that represents the state, the action, the reward and the next state of each transition.
The Q-value of each state-action pair is computed by means of Equation 34, where α is the learning
rate of the model.

Qnew (s, a)← Q (s, a) + α

[
r + γmin

a′
Q
(
s′, a′

)
−Q (s, a)

]
(34)

4.3.2 The Deep Q-Network

The state-space of the AMSP is extremely large and the solution space is non-convex. The dimension-
ality problem can be circumvented with a neural network as a non-linear function approximator that
learns a dynamic scheduling policy. Moreover, it is not required to sweep across all the state-action
pairs to achieve convergence. In this way, the neural network facilitates forward dynamic programming
(Powell, 2011): it replaces the computational burden of looping through each possible state-action pair,
with the statistical problem of estimating their value.

A Deep Q-Network (DQN) is a multi-layered neural network with weights θ. The input of the neural
network is the state St and it has a fixed output layer with |A| neurons, each representing theQ(St, at, θ)

value from which it can be extracted the optimal policy. There are two main components in a DQN
(Mnih et al., 2015). The first one is the target network with weights θ− which is a delayed copy of the
online network. The purpose of the target network is to update the loss function visible in Equation 35.
It is noteworthy, that the weights of the target network remain fixed during τ steps to improve the
learning stability, such that the online network can be calibrated in the direction of a stationary target.
The second element of this algorithm is the experience replay buffer R, which is a memory where the
agent stores the observed experiences. Then, at each timestep the agent randomly samples a batch
of experiences to train the neural network. During the training phase, the weights θ of the online
neural network are optimized with a stochastic gradient descent (SGD) algorithm to minimize the
mean squared error of the loss function with respect to the weights θ of the online network (Hasselt
et al., 2016).

L(θ) = E<s,a,r,s′>∼U(R)


r + γmin

a′
Q(s′, a′; θ−)︸ ︷︷ ︸
Target network

− Q(s, a; θ)︸ ︷︷ ︸
Online network


 (35)

4.3.3 Exploration vs Exploitation Dilemma

In large state-space environments, the agent needs to weigh the possibility of exploring other regions
of the search space during the training, and thus giving up short-term rewards. To overcome this
paradigm, we employ a widely known policy to train the agent, also called ε-greedy (Sutton and
Barto, 1998). The agent follows the greedy strategy with probability 1 − ε and selects a random
action with probability ε. Furthermore, the exploration rate ε is decayed over time. As the learning
begins to converge, the behavioral policy shifts toward an exploiting behavior while keeping a reduced
exploration rate of ε=1%. Q-learning is classified as an off-policy algorithm because it learns a greedy

18

policy to minimize the cost value of its actions, however, the behavioral policy is dictated by an ε-
greedy strategy. In other words, the target can be computed without considering how the experience
is generated.

4.3.4 Training Strategy

Figure 6 depicts a representation of the reinforcement learning concept. The agent observes the state
from the environment that contains information about the upcoming due dates, the maintenance
opportunities and the RUL prognostics. Furthermore, the DQN produces an estimation of the Q-value
for every state-action pair, and the agent selects the one with the minimum cost. In order to respect
the slot availability constraints, the argmin operation is allowed only across the feasible region At.
Literature refers to this variant of the algorithm as constrained Deep Q-Learning (Kalweit et al.,
2020). It is also possible to highly penalize the agent when choosing an unfeasible action. However,
experiments conducted for this work demonstrated that the training convergence could be achieved
with a smaller amount of episodes, and the scheduling performance returned better results when the
agent action-space was constrained. Once the policy has been evaluated, the scheduling action is
applied to the environment and the respective reward is used to optimize the DQN weights. In model-
free learning, the transition function is implicit in the update. This means that the Q-function is
updated iteratively based on the new experiences observed, without actually learning the underlying
transition dynamics. Although the assumption of a fully observable process is required by the MDP,
it can be argued that the state is not Markovian due to inherent uncertainties involved in the AMSP.
Nevertheless, we assume that prognostics are sufficiently reliable to schedule the aircraft before their
actual due date. As a result, the model can adapt to stochastic situations and the rewards received
will adjust the Q-function based on the agent’s experience.

Figure 6: Agent-Environment Interaction

5 Experimental set-up

5.1 CBM scenarios

The complete Aircraft Maintenance Program (AMP) contains 1086 tasks that an aircraft should un-
dergo during its lifecycle. The maintenance plan considered in this research contains only 186 routine
tasks based on the A-check data provided by the reference airline. This corresponds to a small fraction

19

(17%) of the total AMP. Each task has a different interval specification and an estimated duration to
be considered when clustering tasks into blocks. Moreover, two case studies have been designed based
on a moderate and an optimistic scenario of CBM integration. They are benchmarked against the
baseline case where all the routine tasks are considered to be part of a maintenance block. Under the
MSG-3 approach, a series of task groups are identified for air-frame systems (Kinnison, 2004). These
groups have been reported in Table 2 with a detailed overview of the percentage of tasks that have
been substituted or escalated in each of the three cases. Functional Checks (FNC) and Operational
Checks (OPC) are heavily dependent on the acquisition of condition-data, therefore, a higher action
rate has been prescribed for those task groups. The remaining tasks that are not monitored by CBM
are clustered in different blocks based on the maintenance block cycle chosen. The reference airline’s
policy groups the A-check tasks in a sequence of 24 blocks spaced by 1500 flight hours. In order to
reap the benefits of CBM, three other policies are defined with interval limitations of 750, 500 and 375
flight hours, respectively. During the second and third case, 10% and 25% of the LUB, RST, and DIS
task groups are escalated, and the remaining task groups are substituted with similar action rates.
This corresponds to 0, 4 and 14 tasks being escalated per aircraft at every case, while the number of
substitutions is 0, 18 and 43, respectively. Thus, the maximum number of escalatable tasks is 14, while
the most tasks that are substituted is 43. In total, this corresponds to 57 tasks in the scope of CBM.
During the result analysis, these tasks are closely monitored to understand the scheduling performance
when they are part of routine block or part of the CBM implementation.

Table 2: CBM Scenarios

Task Group Nr. CBM Action Case 1 [%] Case 2 [%] Case 3 [%]
General Visual Inspection (GVI) 41 Task substitution 0 10 25
Visual Check (VC) 9 Task substitution 0 10 25
Functional Check (FNC) 18 Task substitution 0 25 50
Detailed Inspection (DET) 21 Task substitution 0 10 25
Servicing (SVC) 8 Interval Escalation 0 10 25
Lubrication (LUB) 18 Interval Escalation 0 10 25
Restoration (RST) 14 Interval Escalation 0 10 25
Discard (DIS) 23 Interval Escalation 0 10 25
Operational Check (OPC) 34 Task substitution 0 25 50

5.2 PHM uncertainty and interval escalation

The stochastic version of the AMSP considers prognostics to perform task interval escalation. The
escalation value represents the factor by which the task interval can be extended if monitored with
PHM. Even though the interval of a task can be extended, the uncertainty of the prediction plays an
essential role in the performance of the scheduling model, as it indicates how much the actual due date
can vary with respect to the estimated due date. Any airline would prefer to schedule with conservative
limits in order to ensure safety and reliability over postponing maintenance. To approach this issue,
the escalation parameter is varied throughout the simulations in order to gain understanding on the
benefit of task escalation with respect to the interval utilization. On the other hand, it is of paramount
importance to consider the level of uncertainty that PHM technology can offer. The uncertainty value
is expressed such that the 99.7% confidence interval (3σ) of the prognostic distribution is contained

20

within ±U%. From Figure 5 is possible to visualize the interval escalation (E%) and the uncertainty
interval (kσ) parameters. In the following tables, the values of both parameters varied throughout the
sensitivity analysis are outlined. In Table 3 the uncertainty is presented as a function of parameter
k, and as percentage variation with respect to the prediction distance in time. For clarification an
example has been reported in the last column for the resulting variation in the case the RUL prediction
is estimated to be in 90 days. Let k = 3, then the corresponding uncertainty is 100% because the 3σ
interval is equal to the kσ one. An uncertainty of 100% entails that the due date can vary ±100% of
the distance kσ which is the equivalent to the distance between the current time and the estimated
due date. In the case of a predicted due date in 90 days, an uncertainty variation of 100% denotes a
possible change of ±90 days. Similarly, if the uncertainty would be 10%, the actual due date could
vary ±9 days with respect to the predicted one. The interval escalation values presented in Table 4
are based on the hypothesis tested by Hölzel et al. (2014).

Table 3: Uncertainty variation of prognostic
k Uncertainty (U%) Variation [DY]
3 100.0 90
3.5 85.7 77
4.5 66.7 60
10 30.0 27
20 15.0 13.5
30 10.0 9
100 3.0 2.7

Table 4: Interval Escalation variation

Escalation (E%)

25.0

50.0

75.0

100.0

125.0

5.3 DQN configuration

In general, neural networks can be described as parametric functions that need to be calibrated during
the training process. Nevertheless, some parameters are established beforehand in order to initialize
the model. The scheduling units have been discretized in sub-intervals of 1% in order to have a
fine mesh of all the possible slots. Consequently, the neural network input layer has a size of 100
neurons. The model is composed by three sequential hidden layers, comprising 100 neurons each with
a swish activation function (Ramachandran et al., 2017). The activation function converts the input
of the neurons with a non-linear transformation. Instead, the final layer is designed with a linear
activation function because the output represents the Q-value of the next-state and it should converge
to the discounted reward value. Moreover, the output layer is sized with 101 neurons corresponding
to the discretized sub-intervals and the AOG action. The learning rate, the exploration decay and the
discount factor were selected upon a careful sensitivity analysis. The discount factor is an essential
component as a very low value tends to create a greedy behavior that compromises the future fleet
opportunities, while a very high discount factor does not provide relevant information to the agent.
Since, the maintenance scheduling problem is solved with a long-term horizon, the decisions far in
the future are not relevant to actions taken at the beginning of the simulation. The optimal model
performance is achieved when discounting future rewards by a 0.5 factor. Lastly, the Q-Learning model
has been trained over a period of 100 episodes in order to observe convergence. A complete list of the
relevant DQN parameters has been reported in Table 5.

21

Table 5: DQN Hyperparameters

Parameter Value
Learning rate (α) 0.0001
Discount factor (γ) 0.5
Initial exploration rate (ε0) 1.0
Final exploration rate (εT) 0.01
Exploration rate decay (dε/dt) 0.9
Target delay (τ) 10
Batch size 32
Hidden layers 3
Dense size (neurons) 100
Training episodes (T) 100

6 Results

The case study investigates the maintenance schedule of a narrow-body fleet, composed by 16 aircraft,
with a planning horizon of 12 months. The slot opportunities are assumed to be available twice a week
for a duration of 24 hours. Normally, these resources can only be used by a single aircraft, based on the
airline policy that grounds each aircraft every 1500 flight hours. We assume that one slot can be used
by more aircraft that share the labor hours capacity when the flight hour interval policy is reduced.
Furthermore, the flight schedule data of the previous 5 years has been used to estimate the aircraft
utilization, and the last maintenance execution of each aircraft is used to initialize the problem. The
resulting schedule is analyzed in order to recommend the adaptive maintenance policy that maximizes
the benefits of a CBM strategy. The quality of the maintenance scheduling policy is evaluated by
the interval utilization, the labor hours, and the aircraft availability. The case study results focus on
a scenario with a 100% interval escalation and an uncertainty of 15%, based on a PHM accuracy of
±13.5 days for a due date predicted in 90 days time. A sensitivity analysis is included to address the
effects of PHM uncertainty and interval escalation.

6.1 Training performance

The DQN training performance is monitored to ensure that the agent is able to converge towards the
optimal policy and the cumulative cost function is minimized. In order to reduce the computational
efforts required to train the DQL agent, the learning is performed across a reduced instance of eight
months for each case. During the initial training phase, an exploration period takes place where
sub-optimal decisions are selected multiple times, and the agent learns the impact of each action
with respect to the state information. The training evolution is characterized by fluctuations in the
cumulative rewards due to the DQN calibration process in a stochastic environment. To assess the
training performance, the cumulative rewards are smoothed out using a simple moving average (SMA)
over 10 samples. Figure 7 shows the SMA of the Deep Q-Learning algorithm with different scheduling
policies for Case 3, which includes the most CBM tasks. The vertical axis of the training evolution
figure is scaled with a logarithmic transformation based on the shape of the reward function in order
to capture the resolution of the rewards at each phase. The buffered areas around the SMA curve
represent one standard deviation of the 10 samples included in the calculation. From the figure, it is

22

possible to visualize that the four policies do not converge to the same steady-state value. However,
this behavior does not represent their relative performance. As the flight hour interval decreases, the
aircraft maintenance events become shorter and more frequent. Hence, a larger number of scheduling
units is present, and a larger number of actions needs to be executed in one episode. Moreover,
the increased availability of maintenance opportunities allows the agent to schedule the CBM tasks
closer to the end of their interval which affects the reward obtained at each step. Therefore, the
main takeaway from the training observation is the agent’s ability to minimize the cost function in
each of the stochastic maintenance scheduling environments. Lastly, the variation of the SMA, visible
in the buffered areas, is larger when reducing the flight hours in the maintenance block cycle. This
phenomena occurs because there are more maintenance opportunities to explore, and the due date can
be postponed more often based on the prognostics re-evaluation.

0 20 40 60 80 100
Training episodes

10
2

10
3

C
um

ul
at

iv
e

R
ew

ar
d

Training evolution

Interval (FH)
375FH
500FH
750FH
1500FH

Figure 7: SMA of the cumulative rewards over training episodes for Case 3 (25% CBM)

6.2 Maintenance scheduling policies

The routine blocks configuration is determined by the task clustering algorithm. The MILP clustering
formulation is addressed using the commercial software package Gurobi with a computational time limit
of two hours on an Intel Core i5 3.1GHz laptop with 16GB ram. The 186 routine tasks considered in
the scope of this research are either bundled in a maintenance block or they are individually monitored
with prognostics. Table 6 provides the reduction of routine task repetitions for each maintenance block
policy and for each CBM case with respect to the airline policy. Case 1 with 1500FH has the same
configuration as the airline current practices. Although there should not be any improvement since the
same configuration parameters are being used, a reduction of 1.77% tasks repetitions is reported due to
the fact that labor skills and task inter-dependencies were not considered in the clustering algorithm.

Moreover, as the interval reduces between each maintenance cycle, the improvement increases thanks
to the availability of more maintenance opportunities. Lastly, when more CBM tasks are considered,
the portion of routine tasks to be clustered decreases. In Case 3, task repetitions are reduced by more
than 50% because a quarter of the aircraft maintenance program (AMP) shifts from a preventive policy
(routine blocks) to a condition-based one (CBM tasks).

23

Table 6: Improvement of the clustering MILP with respect to the airline policy

Nr. Blocks Interval (FH) Case 1 [%] Case 2 [%] Case 3 [%]
24 1500 1.77 24.01 53.23
48 750 9.31 31.51 56.94
72 500 11.64 32.16 57.41
96 375 10.26 32.67 57.50

The number of blocks indicates the required maintenance executions to complete the maintenance
block cycle. Nevertheless, in the 12 months simulation horizon, only four full-checks out of the 24 can
be scheduled based on the minimum interval of 1500 FH (approximately three months) established by
the airline policy. We define one full-check as the execution of one maintenance block in the 1500FH
policy, as two blocks in the 750FH policy, as three blocks in the 500FH policy, and as four blocks in
the 375FH policy. This is done such that a similar time interval and labor workload are considered for
every policy. It is noteworthy, that policies which are more segmented divide one check over multiple
blocks, which implies that the start of the next check will happen earlier than in the lower-frequency
policies. To minimize the effect of this final boundary condition, we consider a horizon of 12 months
per aircraft, starting from the initial condition of the problem.

(a) 1500FH Policy

(b) 750FH Policy

Figure 8: Remaining days to due date and horizon in scope of the results (black contour)

A visualization of the investigated horizon and the maintenance schedule is presented in Figure 8 for
two different policies in Case 3. The black contour indicates the 12 month time horizon per aircraft in
the scope of our analysis. The boundary condition of the problem are shown in dark gray. The fleet is
always initialized with the same condition for both policies, as shown on the left of the plot. On the
other side, the simulation is halted when one of the aircraft reaches the end of the simulation horizon.

24

Even though the schedule is simulated until the end of the year, only the schedule within the 12 months
horizon in the black contour is considered for the analysis. The heatmap depicts the remaining days
to the due date for every aircraft, so each row indicates the maintenance cycle of a specific tail. When
the color changes from red to blue, a new due date is calculated from that point in time, which means
that the aircraft has been scheduled for maintenance. For clarity purposes, the scheduled dates are
indicated with the dotted parallel lines. Each of the parallel lines indicates that one maintenance
grounding has been scheduled for the complete fleet. In Figure 8a, four clear sections are delimited by
the dotted lines. They indicate that each aircraft undergoes four maintenance groundings. Instead,
eight sections are encountered in Figure 8b. This corresponds in both cases to the completion of four
full-checks, however, in the first case only four groundings opportunities are encountered, while for the
latter case they are doubled.

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss
ed

Action

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
en

si
ty

Action Histogram

(a) 1500FH Policy

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss
ed

Action

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
ty

Action Histogram

(b) 750FH Policy

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss
ed

Action

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

Action Histogram

(c) 500FH Policy

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Miss
ed

Action

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

Action Histogram

(d) 375FH Policy

Figure 9: DQN Action distribution - Interval Utilization [%]

The distribution of the actions chosen by the DQN model is presented in Figure 9 for the four mainte-
nance policies applied to Case 3. The agent chooses the interval utilization percentage of a scheduling
unit (routine block or CBM task) at every time step. Additionally, the possibility of missing a mainte-
nance opportunity is labeled as "Missed". However, it is never chosen throughout the episodes tested.
It is noteworthy, that a segmented maintenance policy generates a shift towards a higher interval uti-

25

lization in the action distribution. Initially, two peaks are evident in Figure 9a that correspond to the
CBM tasks and the routine blocks utilization, respectively. The DQN struggles to achieve high interval
utilization for the CBM tasks in the 1500FH policy because the maintenance opportunities are spaced
by too much time. Nevertheless, the two peaks become closer when the policy interval decreases to
750FH (Figure 9b). This behavior takes place because the grounding opportunities are more abundant.
Therefore, a higher interval utilization can be achieved thanks to the availability of more maintenance
opportunities closer to the due date, and the re-evaluation of prognostics over multiple opportunities.
The segmentation in the maintenance policy increases the interval utilization until almost all the CBM
tasks and routine blocks are scheduled between 80%-100% as shown in Figure 9c and Figure 9d.

6.3 Key performance indicators

While the interval policy effect is clearly visible from the action distribution of the DQN, the model
performance cannot be analyzed only based on the utilization of the individual scheduling units. Table 7
provides an overview of the key performance indicators (KPI’s) per aircraft during the time horizon of 12
months (365 days). The results of the scheduling algorithm are based on 100 Monte Carlo simulations
for each scenario or row of the table. The first two columns indicate the scenario configuration in
terms of CBM action rate and interval policy. The third column includes the average full-checks
executed. The policies with smaller flight hour intervals perform slightly more full-checks due to the
final boundary condition effect: a higher maintenance frequency inevitably leads to the execution of
part of the following check at the end of the horizon. For this reason, the average labor hour per check
has been included in the ninth column of Table 7. Clearly, the introduction of CBM and a segmented
policy lead to a reduction of the required labor hours per check.

Table 7: KPI’s per aircraft with 100% interval escalation and 15% uncertainty (365 days horizon)1

Case Policy Checks Subs. Esc. Util.[%] Avail.[DY] Labor[hrs] Labor[hrs/check] Comp.[min]
1 1500 4.00 150.00 48.00 - 361.24 302.48 75.62 2.31
1 750 4.00 139.00 43.00 - 361.34 289.74 72.43 4.57
1 500 4.15 141.50 45.69 - 361.29 296.52 71.45 7.00
1 375 4.25 140.00 46.00 - 361.26 286.37 67.38 9.66
2 1500 4.00 79.00 43.31 107.16 362.34 217.93 54.48 3.65
2 750 4.00 71.00 36.00 143.67 362.43 212.43 53.11 7.81
2 500 4.15 70.75 37.54 147.22 362.35 218.00 52.58 12.16
2 375 4.25 67.00 34.87 162.20 362.34 219.05 51.54 17.74
3 1500 4.00 0.00 24.73 113.61 363.09 161.36 40.34 11.55
3 750 4.00 0.00 18.29 148.68 363.26 149.17 37.29 24.15
3 500 4.15 0.00 17.00 160.15 363.24 150.34 36.26 40.27
3 375 4.25 0.00 16.94 168.71 363.32 143.50 33.77 54.78

The fourth column of Table 7 (Subs.) keeps track of the repetitions of the 43 aircraft tasks that are in
the scope of CBM substitution. Instead, the fifth column (Esc.) considers the task repetitions of the
14 tasks in the scope of interval escalation. Initially, all tasks are bundled in one maintenance block

1Subs.: Tasks repetitions in the scope of CBM substitution Avail.[DY]: Aircraft Availability in days
Esc.: Tasks repetitions in the scope of CBM escalation Comp.[min]: Computation time in minutes
Util.[%]: Original interval utilization of the escalated tasks

26

for Case 1. Then, based on the configuration of each case, some substitution tasks are removed from
the AMP, while the escalation tasks are scheduled based on the RUL prognostics. The reduction of
task repetitions in the case of substitution occurs because they are not part of the AMP anymore.
While for the escalated tasks, the reduction of task repetitions is attributed to the fact that they can
be scheduled later than their original interval. The mean utilization (Util.) of the tasks monitored
with RUL prognostics is reported in column five of Table 7. It is noteworthy, that in Case 1 there
are zero CBM tasks, so the respective rows have been intentionally left blank. The mean utilization is
very dependent on the flight hour interval, being higher when the policy is more segmented.

Even though the performance of individual scheduling units is increased, the amount of escalation tasks
that has been considered does not produce a significant reduction in the total labor time. Considering
the fact that approximately 75 labor hours can be performed in one day, in the best case, the ground
time reduction due to interval escalation is lower than half a day per aircraft. The aircraft availability
has been computed based on the ground time reduction in order to provide an estimate of the ben-
efits for the airline network. On average, in the two CBM scenarios, the availability is increased by
approximately 1.0 and 1.9 days, respectively. Although two days are not sufficient to justify a change
in the flight schedule, it can be considered a realistic improvement. Initially, the reference airline A-
check routine program comprises a maximum ground time of 300 labor hours or 4 maintenance days
per year. The conclusion drawn from this analysis points to the fact that the introduction of CBM
in 10% of the AMP can reduce labor time by 27% with respect to traditional policies, while a 25%
CBM action rate decreases the aircraft labor hours by 48%. The reason why the decrease in labor
hours is not proportional to the action rate lies on the interval of the CBM tasks. Initially, shorter
intervals are chosen for the CBM tasks. Nevertheless, as the action rate increases, more tasks with
larger intervals are included which do not have the same impact on the scheduling performance, since
they have less occurrences in the studied horizon. Furthermore, the amount of tasks considered is too
little to produce a significant improvement in the overall aircraft availability. Similarly, the increase of
system utilization between the four interval policies, leads to a reduction of tasks that is too small to
produce major changes in the aircraft availability.

Lastly, the computational times (Comp.) for each case have been reported in the last column of
Table 7. This provides an estimate of how the problem complexity evolves as the number of CBM
tasks is increased. More importantly, the computational time is affected by a greater factor when the
flight hours are reduced. The shorter interval policies are able to re-evaluate prognostics with less
uncertainty as the agent approaches the due date, thanks to the increased availability of maintenance
opportunities. Though the interval utilization increases, this comes at the cost of longer computational
times required to produce a maintenance schedule.

6.4 Sensitivity Analysis

6.4.1 Effect of PHM uncertainty

Among other challenges, the deployment of CBM is heavily dependent on the degree of accuracy that
PHM technology can offer. For this reason, we study the effect of PHM uncertainty on the interval
utilization of the escalated task. The impact of uncertainty variation for an interval escalation of

27

100% is summarized in Figure 10. The uncertainty accommodation has a parabolic relation with the
utilization of escalated systems if there are not sufficient maintenance opportunities, as visible from the
1500FH policy in Figure 10a. The other maintenance policies accommodate the uncertainty variation
with a linear trend because uncertainty effects are absorbed due to re-evaluation of prognostics as the
agent gets closer in time to the due date. Moreover, any average interval utilization below the 100% line
is considered non-beneficial. In theory, an interval escalation of 100% could double the original task
interval, however, when the uncertainty is too large a conservative decision is made by the algorithm
in order to preserve safety. The point where the system utilization curves cross the horizontal line can
be considered as the minimum uncertainty level to consider the implementation of CBM policies.

Figure 10b clearly shows that the DQN keeps the number of tasks going due to zero up to an uncertainty
level of 85%. When the uncertainty is increased to 100%, the 1500FH policy is forced to have an aircraft
on ground (AOG) due to missed maintenance opportunities. The simulation has been extended to
uncertainty levels up to 150% for verification purposes. This demonstrates that as the confidence
interval decreases, the algorithm is forced to miss almost all the task monitored by prognostics. It
also suggests, from this synthetic case, that if the RUL estimations are reasonably reliable, the DQN
can avoid missing maintenance opportunities. This is an inherent trade-off between the risk level up
to which the agent is allowed to schedule a CBM task and the AOG penalties. In this work, we have
focus on a conservative scenario that minimizes risk in order to preserve safety which will be one of the
key factors questioned by the airworthiness authorities during the implementation of CBM policies.

0 20 40 60 80 100 120 140
Uncertainty [%]

0

25

50

75

100

125

150

175

In
te

rv
al

 U
til

iz
at

io
n

[%
]

Interval Utilization vs Prognostic uncertainty

Interval (FH)
375
500
750
1500

(a) CBM Interval Utilization

0 20 40 60 80 100 120 140
Uncertainty [%]

0

50

100

150

200

250

300

350

400

Ta
sk

s
G

oi
ng

 D
ue

Tasks Going Due vs Prognostic uncertainty

Interval (FH)
375
500
750
1500

(b) Tasks going due

Figure 10: PHM uncertainty variation results of Case 3 with a 100% interval escalation

6.4.2 Effect of interval escalation

The influence of the interval escalation is assessed in Figure 11. A linear behavior is appreciated for
an uncertainty level of 15% with respect to the interval utilization of the escalated tasks. As with the
previous results, a clear offset is present between the four maintenance policies that are benchmarked
in this analysis. When the interval escalation increases, the predicted due date is pushed further
in time and the prognostic curve is also stretched to be centered around the new prediction. Thus,

28

the utilization slope does not conserve a one-to-one benefit with the escalation values because when
escalation increases, the RUL uncertainty also grows. When there is more uncertainty involved in
the prediction, the maintenance opportunities are selected with a more conservative approach in order
to guarantee that any failure would not occur before the prescribed maintenance date. In actual
practice, the escalation value is dependent on the specific operating conditions and the individual
aircraft systems. This work generalizes over multiple subsystems and assumes it is possible to extend
the task intervals based on the experiments studied by Hölzel et al. (2014), and the relaxation of the
conservative interval requirements established by the MSG-3 (Vandawaker et al., 2015).

20 40 60 80 100 120
Interval Escalation [%]

80

100

120

140

160

180

In
te

rv
al

 U
til

iz
at

io
n

[%
]

Interval Utilization vs Interval Escalation

Interval (FH)
375
500
750
1500

Figure 11: Interval Escalation effect with a 15% prognostic uncertainty (Case 3)

6.5 Cost-benefit analysis

The introduction of CBM in the airline maintenance strategy does not come at a low cost. In order
to make a cost-benefit analysis, the required investment is compared with the cost reduction in labor
hours. Since the labor hour reduction and the aircraft availability are approximately the same for
the four interval policies, the average values for the three CBM cases are considered for this analysis.
In Case 2 (10% CBM), the average labor hour reduction is 85.63 hours and the respective aircraft
availability increase is 1 day. When the CBM action rate is increased up to 25% (Case 3), the average
labor reduction becomes 151.39 hours, while the aircraft availability is increased by 1.9 days.

The implementation costs can be subdivided in sensor certification and installation. The certification
procedure requires a one-time payment that on average costs e 200,000 per sensor, while the installation
is budgeted at e 25,000 per aircraft based on the opinion of the reference airline MRO experts. Given
these assumptions, the 16-aircraft fleet requires an overall investment of e 600,000 per sensor. The
labor cost savings per aircraft have been calculated based on the ground time reduction with respect
to the baseline case assuming a rate of e 100 per man hour. Table 8 shows that the investment cost
can only be partially covered by the labor cost reduction. Based on an aircraft life cycle of 30 years,
only 31.14% and 21.25% of the investment cost can be absorbed for the two CBM cases. Even if
the maintenance could be reduced to zero hours, the yearly cost reduction would only be e 30,000
per aircraft or e 480,000 for the whole fleet. Thus, the labor hour reduction cannot absorb the CBM

29

investment cost in order to have a profitable maintenance strategy. Nevertheless, the maintenance cost
should also include overhead, delay, slot, and the revenue loss due to aircraft downtime (Saltoğlu et al.,
2016). For a more complete cost-benefit analysis of CBM strategies the reader is referred to the work
of Vlamings et al. (2020). Their analysis demonstrates that the main source of income from a CBM
policy should focus on the additional profit generated by an increased aircraft availability. We extend
the cost-benefit analysis assuming a e 11,000 aircraft profit per day based on an educated guess of
the reference airline2. The respective profit increase leads to an absorption of the investment cost of
71.14% and 50.58% during an aircraft life cycle of 30 years.

Table 8: Cost-benefit analysis

Case Tasks Investment [Me] Labor [ke /year] Profit[ke /year] Absorption [%]
10% CBM 22 13.2 137.00 176.00 71.14
25% CBM 57 34.2 242.22 334.40 50.58

7 Discussion

The implementation of CBM decreases the labor time thanks to the combined effect of CBM actions:
substitution and escalation. In Case 2 a reduction of 27% of the labor hours is observed, while in
Case 3 it is further reduced by 48%. Consequently, the aircraft availability is increased by 1 and 1.9
days, respectively. Given the reduced A-check program, that contains only 186 tasks, the results are
promising. However, the aircraft availability improvement is too small to eventually produce major
changes in the airline network and increase passenger revenue. Nonetheless, the marginal improvement
in availability could be accounted as an added safety margin during disruptions in order to recover
delays and cancellations. The conclusion drawn points to the fact that CBM cannot increase the
fleet availability with a reduced maintenance plan that includes only A-check routine tasks. For the
studied program, it is estimated that, on average, each aircraft requires 300 labor hours of maintenance
that correspond to only 4 days on the ground. Even though the ground time is halved, an extended
maintenance program needs to be considered in the scope of the research, including non-routine and
unscheduled tasks, in order to improve the aircraft availability KPI.

Furthermore, we show that prognostics uncertainty is managed more efficiently when maintenance
opportunities are increased. In this way, a re-evaluation of the predicted due date occurs multiple
times over the interval of a task. In the event that there are not sufficient maintenance opportunities,
the scheduling algorithm is forced to allocate the task much earlier than the due date to avoid the risk
of missing the prescribed maintenance slot. The four maintenance policies that have been explored in
this work (1500FH, 750FH, 500FH, 375FH) have the objective of exclusively improving the escalated
task’s interval utilization. It has been observed that the relation between interval utilization and the
prognostic uncertainty of the escalated tasks follows a parabolic trend when the aircraft is grounded
every 1500FH. Instead, when the maintenance opportunities are doubled with a 750FH policy, the trend
becomes linear and the overall interval utilization per aircraft is increased. The results show that the
original interval utilization in Case 3 is increased from 113.6% to 148.7% when reducing the flight hours

2The profit has been calculated with an assumed 10% operating margin and e 110,000 aircraft revenue per day

30

from 1500 to 750. Further segmentation of the maintenance strategy provides a marginal improvement
up to 168.7% utilization of the original interval. Thanks to the increased interval utilization, the DQN
manages to schedule fewer tasks in the same time horizon. The four policies that have been explored
reduce the task repetitions of the escalated tasks by 48.5%, 57.5%, 62.8% and 63.2% .

Despite the attractive performance that can be achieved with CBM, the number of escalated tasks in the
scope of this research is too small to produce tangible benefits for the airline. In fact, the most optimal
case reported a reduction of 29 tasks per aircraft in one year, which corresponds to approximately half
a day of ground time. The potential of task interval escalation can be unlocked only when a larger
portion of maintenance tasks is considered. In this research, the schedule is composed of interval-based
blocks, and individual CBM tasks that are escalated by monitoring RUL prognostics. However, due
to the fact that the aircraft needs to be grounded the same number of times because of fixed-interval
checks, the labor time is dictated by the routine blocks whose composition is determined prior to
the scheduling process. Therefore, the airline should not shift to a highly segmented maintenance
policy, while the number of escalated tasks is too small and routine maintenance blocks are imposed in
the maintenance planning. Nevertheless, if in future scenarios a CBM task-based strategy should be
considered, aircraft availability could be significantly improved when the maintenance opportunities
are doubled as in the 750FH policy.

A major concern regarding CBM implementation is the substantial monetary investment required
from the MRO stakeholders. In order to absorb these costs, it is not possible to rely only on the labor
cost savings and the profit generated from extended aircraft availability. The number of labor hours
required to execute 186 tasks is not sufficient to justify an investment of e 13.2 M or e 34.2M to install
22 and 57 sensors, respectively. For an aircraft life cycle of 30 years, the cost absorption is 71.14% in
Case 1, while in Case 2 it decreases to 50.58%. Even though the cost is not fully absorbed, two main
conclusions are drawn from this analysis. Firstly, not all tasks are worth a CBM investment. In fact,
the reference airline should focus on the tasks with shorter intervals because they have a higher impact
on the maintenance life cycle. Alternatively, a larger simulation horizon is required to understand the
impact of tasks with larger intervals. Secondly, the certification cost could have a lower influence in
the case of a larger fleet due to economies of scale.

Lastly, the problem investigated was successfully solved with a Deep Q-Learning algorithm. During
the tuning of the neural network the discount factor had a minor influence on the performance of the
agent, meaning that the RL policy is close to being myopic because the objective of the airline is always
to schedule as late as possible. The potential RL benefits are more noticeable in highly constrained
environments with limited resources. Therefore, there are other RL interpretations that could be more
meaningful for the AMSP. A task-based approach would generate a far more challenging problem where
the objective of the agent would not only be to select a scheduling slot, but to group a combination
of CBM tasks and preventive routine tasks subject to capacity constraints. This also entails grouping
tasks as the opportunities arise. In this way, the policy gets rid of static block-structures, and would be
able to schedule maintenance work-packages more efficiently. The resulting schedule could potentially
postpone the maintenance dates instead of grounding the aircraft periodically with a fixed interval
policy.

31

8 Conclusions

This paper presents a Deep Q-Learning (DQL) model to solve the airline maintenance scheduling
problem (AMSP) subject to prognostic uncertainty. We explore a wide range of maintenance policies
to accommodate a transition to condition-based maintenance (CBM) in airline practices. To evaluate
the DQL model, a simulation was performed using real data of a preventive maintenance case from a
major European airline. Four main conclusions are drawn from the results of the case study that are
key to interpreting the hypotheses addressed in this work.

The DQL methodology can aid maintenance planners to promptly adapt the aircraft schedules to
changes in the predicted remaining useful life (RUL). The upcoming month schedule can be updated
within 1-5 minutes, depending on the segmentation of the interval policy. Contrarily to deterministic
optimization techniques, reinforcement learning (RL) develops a solution in a sequential fashion where
the state is evaluated at each step. In the AMSP, the interval due date of CBM tasks is continuously
sampled based on a Gaussian propagation model that allows prognostics uncertainty to be taken into
account. Furthermore, this work demonstrates that DQL is well-suited to learn a dynamic policy based
on the resources available, the maintenance demand, and the RUL prognostics.

Secondly, the implementation of CBM in the preventive maintenance program decreases the required
labor hours, while maintaining high levels of reliability. By applying substitution, specific tasks are
removed from the aircraft maintenance program (AMP), while interval escalation postpones the due
dates of other routine tasks based on RUL predictions. When CBM is implemented in a quarter of the
AMP, the combined effect of substitution and interval escalation reduces the overall task executions
leading to half of the initial labor workload. Despite the promising results, aircraft availability is
increased by only two days per year due to the exclusive focus on the routine A-check program.

The third hypothesis analyzes the impact of prognostics uncertainty on the scheduling performance of
the airline. This problem was addressed by increasing the segmentation of the aircraft maintenance
cycle, such that there are more grounding opportunities that allow the re-evaluation of prognostics
as the due date approaches. The results demonstrate a significant increase in the utilization of tasks
monitored with prognostics. Therefore, a segmented maintenance policy will be necessary in future
adoptions of CBM strategies in order to manage the uncertainty involved in RUL prognostics. Never-
theless, only a minor improvement is obtained in aircraft availability thanks to policy segmentation as
only a reduced portion of the routine tasks is considered in the scope of interval escalation.

Finally, the profitability of CBM strategies has also been evaluated. The investment costs for the
certification and the installation of PHM technology cannot be absorbed exclusively with the reduction
of labor hours and the profit generated from extended aircraft availability. In order to justify the
investment costs, a complete AMP should be tested to address the influence of CBM within the non-
routine and unscheduled maintenance events. More importantly, the limited number of aircraft tasks
monitored by PHM needs to be selected upon a careful consideration of the labor hours, the interval
requirements, and the impact on the non-routine program. Lastly, the fleet size plays an important
role in the absorption of fixed costs, such as the certification cost. For future endeavors, we recommend
an initial implementation of CBM in a reduced portion of a large fleet, in order to leverage economies
of scale when extending the maintenance policy.

32

In future work, it would be interesting to explore the combined effect of different sources of uncertainty
such as RUL prognostics, aircraft daily utilization and maintenance elapsed time. This could be com-
bined with an extension of the maintenance program in order to include non-routine and unscheduled
tasks. In this way, a complete cost-benefit analysis could be investigated, and the investment costs
could be absorbed by other maintenance events apart from preventive routine tasks. Changing the
maintenance strategy to a task-based approach with slot capacity constraints could also be considered
to uncover new synergies between tasks and RUL prognostics. This could possibly solve inefficiencies
encountered during the preliminary clustering of routine tasks into blocks, as well as unlocking the po-
tential of a predictive strategy by postponing the maintenance dates. Although these implementations
would greatly affect the computational time of RL algorithms, they represent extensions to improve
the AMSP performance and capture previously unreachable stochastic complexities.

Aknowledgements

This research work is part of ReMAP project, which received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 769288. We would like to
express our gratitude to the associated ReMAP partners for providing their aircraft maintenance data
and validation of the proposed methodology and its practical relevance. For more information please
visit https://h2020-remap.eu/

References

Afsar, H. M., Espinouse, M., and Penz, B. (2006). A Two-step Heuristic to Build Flight and Main-
tenance Planning in a Rolling-horizon. In 2006 International Conference on Service Systems and
Service Management, volume 2, pages 1251–1256.

Daily, J. and Peterson, J. (2017). Predictive Maintenance: How Big Data Analysis Can Improve Main-
tenance. In Richter, K. and Walther, J., editors, Supply Chain Integration Challenges in Commercial
Aerospace: A Comprehensive Perspective on the Aviation Value Chain, pages 267–278. Springer In-
ternational Publishing, Cham. URL.

Deng, Q., Santos, B. F., and Curran, R. (2020). A practical dynamic programming based methodology
for aircraft maintenance check scheduling optimization. European Journal of Operational Research,
281(2):256–273. URL.

Dong, T., Haftka, R., and Kim, N. (2019). Advantages of Condition-Based Maintenance over Scheduled
Maintenance using Structural Health Monitoring System.

Elattar, H. M., Elminir, H. K., and Riad, A. M. (2016). Prognostics: a literature review. Complex &
Intelligent Systems, 2(2):125–154. URL.

Eltoukhy, A., Chan, F., Chung, S.-H., and Qu, T. (2017). Scenario-based Stochastic Framework for
Operational Aircraft Maintenance Routing Problem.

Feo, T. A. and Bard, J. F. (1989). Flight Scheduling and Maintenance Base Planning. Management
Science, 35(12):1415–1432.

33

Hasselt, H. V., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with Double Q-Learning.
In AAAI Conference on Artificial Intelligence,.

Hölzel, N., Schilling, T., and Gollnick, V. (2014). An Aircraft Lifecycle Approach for the Cost-Benefit
Analysis of Prognostics and Condition-based Maintenance based on Discrete Event Simulation. In
PHM 2014 - Proceedings of the Annual Conference of the Prognostics and Health Management Society
2014.

Hölzel, N., Schröder, C., Schilling, T., and Gollnick, V. (2012). A Maintenance Packaging and Schedul-
ing Optimization Method for Future Aircraft. In 6th International Meeting for Aviation Product
Support Processes (IMAPP). URL.

IATA’s Maintenance Cost Technical Group (2019). Airline Maintenance Cost Executive Commentary.
Technical report.

Kalweit, G., Huegle, M., Werling, M., and Boedecker, J. (2020). Deep Constrained Q-learning. URL.

Kinnison, H. (2004). Aviation Maintenance Management. McGraw-Hill Education. URL.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274. URL.

Lagos, C., Delgado, F., and Klapp, M. A. (2020). Dynamic Optimization for Airline Maintenance
Operations. Transportation Science, 54:998–1015.

Liang, S., Yang, Z., Jin, F., and Chen, Y. (2020). Data Centers Job Scheduling with Deep Reinforce-
ment Learning. In Lauw, H. W., Wong, R. C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., and Pan,
S. J., editors, Advances in Knowledge Discovery and Data Mining, pages 906–917, Cham. Springer
International Publishing.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King,
H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533.

Muchiri, A. and Smit, K. G. (2009). Application of Maintenance Interval De-Escalation in Base
Maintenance Planning Optimization. Enterprise Risk Management, 1.

Ozkol, I. and Senturk, C. (2017). The effects of the use of single task-oriented maintenance concept
and more accurate letter check alternatives on the reduction of scheduled maintenance downtime of
aircraft. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE),
pages 67–74.

Pereira, M. A. and Ashok Babu, J. (2016). Information Support Tool for Aircraft Maintenance Task
Planning. International Advanced Research Journal in Science, Engineering and Technology, 3(2).

Powell, W. B. (2011). Approximate dynamic programming : solving the curses of dimensionality. Wiley.

Powell, W. B. and Topaloglu, H. (2006). Approximate Dynamic Programming for Large-Scale Resource
Allocation Problems. In Models, Methods, and Applications for Innovative Decision Making, pages
123–147. INFORMS.

34

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for Activation Functions. URL.

ReMAP H2020. Website. Accessed on 23/10/2020. URL.

Saltoğlu, R., Humaira, N., and İnalhan, G. (2016). Aircraft Scheduled Airframe Maintenance and
Downtime Integrated Cost Model. Advances in Operations Research, 2016:2576825. URL.

Sankararaman, S., Daigle, M., Saxena, A., and Goebel, K. (2013). Analytical algorithms to quantify
the uncertainty in remaining useful life prediction. In 2013 IEEE Aerospace Conference, pages 1–11.

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., and Schwabacher, M. (2008).
Metrics for evaluating performance of prognostic techniques. In 2008 International Conference on
Prognostics and Health Management, pages 1–17.

Shannon, M. and Ackert, P. (2010). Basics of Aircraft Maintenance Programs for Financiers. Evaluation
& Insights of Commercial Aircraft Maintenance Programs. Technical report.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and
Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676):354–
359. URL.

Solozabal, R., Ceberio, J., Sanchoyerto, A., Zabala, L., Blanco, B., and Liberal, F. (2020). Virtual
Network Function Placement Optimization With Deep Reinforcement Learning. IEEE Journal on
Selected Areas in Communications, 38(2):292–303.

Sprong, J. P., Jiang, X., and Polinder, H. (2020). Deployment of Prognostics to Optimize Aircraft
Maintenance – A Literature Review. Journal of International Business Research and Marketing,
5:26–37.

Sun, Y. and Tan, W. (2019). A trust-aware task allocation method using deep q-learning for uncertain
mobile crowdsourcing. Human-centric Computing and Information Sciences, 9(1).

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, first edition.

Teal, C. and Sorensen, D. (2001). Condition based maintenance [aircraft wiring]. In 20th DASC. 20th
Digital Avionics Systems Conference (Cat. No.01CH37219), volume 1, pages 1–3.

Tong, Z., Chen, H., Deng, X., Li, K., and Li, K. (2020). A scheduling scheme in the cloud computing
environment using deep Q-learning. Information Sciences, 512:1170–1191.

Vandawaker, R. M., Jacques, D. R., and Freels, J. (2015). Impact of prognostic uncertainty in system
health monitoring. International Journal of Prognostics and Health Management, 6.

Vianna, W. O. L. and Yoneyama, T. (2018). Predictive Maintenance Optimization for Aircraft Re-
dundant Systems Subjected to Multiple Wear Profiles. IEEE Systems Journal, 12(2):1170–1181.

Vlamings, B., Verhagen, W., and Freeman, F. (2020). Assessing the Impact of Condition-Based
Maintenance as a Function of the Variation in Prognostics Performance Levels. Technical report.

35

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., and Kyek,
A. (2018). Optimization of global production scheduling with deep reinforcement learning. Procedia
CIRP, 72:1264–1269. URL.

Witteman, M., Deng, Q., and Santos, B. F. (2021). A bin packing approach to solve the aircraft
maintenance task allocation problem. European Journal of Operational Research.

Yan, S., Hsiao, F. Y., Guo, J., and Chen, Y. C. (2011). Effective aircraft maintenance schedule
adjustment following incidents. Transportation Planning and Technology, 34(8):727–745.

36

II
Literature Study

previously graded under AE4020

38

1
Introduction

Throughout the years, aviation safety and operational efficiency have become a major concern to remain
competitive in the airline industry. Maintenance is performed regularly in accordance to the international air
safety requirements and the aircraft’s manufacturer. It is a necessary process closely interconnected with the
flight scheduling problem, especially because the aircraft under repair will remain in the hangar unable to fly
passengers. Ten percent of flight delays and cancellations are currently caused by unscheduled maintenance
events, costing the global airline industry an estimated 8 billion USD. For U.S. airlines alone, this translates
to over 60,000 delays and cancellations a year that could be prevented with a more efficient maintenance
planning program (Daily and Peterson, 2017).

There are three main categories of airline maintenance that can be distinguished: long-term, mid-term and
short-term (Yan et al., 2011). The first one includes heavy maintenance tasks that require an overhaul longer
than 10 days, they are also called level C and D checks. Mid-term maintenance plans are set monthly on
the long-term plan. They incorporate both level A and B checks. Lastly, short-term plans produce schedule
adjustments due to incidents. It is noteworthy that these checks are all performed in the hangar facility.
Nonetheless, line maintenance is an additional category performed at the gate of the airport. There is not a
unique and systematic approach to perform maintenance, and every airline has different guidelines to solve
the problem. In fact, occasionally, different category checks are merged based on the slot opportunities and
the aircraft’s operational condition.

To date, the airline planning process is primarily manually driven due to the difficulty in solving the re-
scheduling airline models. In general, there is still a big gap between the reality faced by airlines and the
resolution that has been offered by an optimization-based environment (Clausen et al., 2010). Nevertheless,
the manual planning is becoming unpractical due to a more dynamic environment in which both costs and
the complexity of the airplanes keep rising (Van Den Bergh et al., 2013). The aircraft data volumes are grow-
ing exponentially in the airline industry, mainly because of the new sensors that could be used to provide an
early signal of performance. The new aircraft generations (e.g. Airbus A350) produce 50 times more data than
the older ones (e.g. Airbus A320), but organizations still struggle to apply this flood of information in their
operations optimization (Daily and Peterson, 2017).

Condition-based maintenance is a strategy designed to transform real-time aircraft data into actionable intel-
ligence to avoid unnecessary ground times and replacing periodic-based strategies. The approach to realize
the digital future of the aviation maintenance is twofold. First, it is essential to deploy the use of advanced
analytics to understand the driving factors of future performance, monitor the individual aircraft parts and
predict remaining useful life (RUL). The second element revolves around how to plan maintenance and op-
timize schedules with a flexible framework enabled through the power of predictive analytics. The ultimate
objective of this research project is focused on the latter, and can be stated as follows:

Develop a maintenance scheduling methodology with an approximate dynamic programming approach to
enable condition-based maintenance in a fast and adaptive manner, and to deliver a near-optimal

maintenance schedule.

The temporal succession of the maintenance operations gives the problem a dynamic nature. At each step,
the available slots change based on the previous decision, constraining further the solution space for the fu-
ture. Therefore, sequential optimization is the approach chosen, while being aware of the future availability
constraints. Through approximate estimations of the fleet condition and predictive analytics, it is possible to

39

1.1. Research framework 40

create such a model. To cope with the nature of the environment and the ever-changing operations, approx-
imate dynamic programming is proposed as a valid methodology to optimize the maintenance scheduling
process.

1.1. Research framework
The maintenance schedule indicates the slot opportunities available to the fleet and how to allocate a series
of tasks. There are two different problems to be identified. The first one, also called task-packaging, consist
on grouping tasks in blocks according to their periodicity. The second one is to assign each block of tasks
to a maintenance opportunity. Additionally, non-routine maintenance tasks are incorporated to the exist-
ing blocks based on predictions, together with the reactive maintenance tasks, detected during inspections.
Therefore, the challenge consists on allocating the correct tasks on each block and assigning them to a main-
tenance opportunity. Further extensions should include the additional challenge of stochastic programming
with elements such as the maintenance elapsed time and the aircraft utilization, that will directly affect the
task due date. Additional line maintenance opportunities, which are only known in the operational horizon,
can also be used to extend the scope of this research.

1.1.1. Scope definition
This section is used to outline the questions that this research work aims to answer. They do not establish
the plan to reach the ultimate goal, but highlight the steps that are considered relevant to expand in the first
phase of this research project. The main research question to be answered in order to fulfill the research
objective is the following:

What approximate dynamic programming approach can enable adaptive maintenance task allocation, and
how should the task-packaging be connected with the maintenance scheduling problem?

In order to achieve the objective and answer the main research question, the following four core sub-questions
have been identified and broken down further:

1. What are the current practices in airline maintenance scheduling (AMS)?

(a) What are the airworthiness requirements related to maintenance?

(b) What is the economic impact of maintenance in the airline industry?

(c) Can maintenance scheduling be divided in multiple phases?

(d) What are the task features considered when creating maintenance work packages?

(e) Which simplifications to the AMS problem are acceptable within the industry practice?

2. How can a CBM context be exploited during maintenance task packaging and allocation?

(a) Can a CBM strategy be applied while keeping a traditional block check structure?

(b) Is it possible to create smaller work-packages instead of fixed periodic blocks?

(c) How does the size of the maintenance work-packages affect the schedule optimization?

(d) How much access synergy can be obtained by packaging tasks prior to scheduling?

(e) Does the condition monitoring technology exist to allow a transition to a fully automatic and dig-
ital maintenance planning tool?

3. What are the current models for airline maintenance scheduling?

(a) What models have already been implemented in the airline industry?

(b) Are maintenance task packaging and allocation considered in the optimization models?

(c) What are the limitations of the current strategies?

(d) What assumptions can be made to the maintenance scheduling model?

(e) What industries face similar problems?

1.2. Outline of the report 41

4. Can approximate optimization techniques produce near-optimal maintenance schedules?

(a) What approximation models can be used?

(b) How can historical task allocation data be used to structure the optimization algorithm?

(c) What are the block and task features that provide better results?

(d) How should the quality-time trade-off be assessed during the validation phase?

(e) What are the most relevant key performance indicators to measure the AMS performance?

(f) How can the robustness of the framework be quantified and tested?

(g) What validation models can be used to validate the scheduling algorithm?

(h) What are the limitations of the proposed scheduling method?

1.2. Outline of the report
The report is organized in the following fashion, such that all the research questions are investigated in the or-
der presented. Chapter 2 gives an overview of the maintenance planning process and a historical perspective
of the maintenance practices. In Chapter 3, the CBM challenge is presented to construct an adaptive sched-
ule with a large planning horizon such that when the aircraft condition indicators enter the hazard threshold,
the maintenance checks are scheduled accordingly. An overview of the state of the art scheduling models
and solution techniques is discussed in Chapter 4. The limitations and the gap of literature regarding the
planning horizon and the scope of this project is also presented here. Motivated by the problem’s compu-
tational intractability, the methods of Approximate Dynamic Programming and Reinforcement Learning are
introduced in Chapter 5. Their potential application could solve scheduling problems of stochastic complex-
ity previously unreachable. Finally, Chapter 6 concludes the literature review with an outlook on the future
research project.

2
Maintenance Planning

The development of an airline maintenance schedule (AMS) is a complicated process that considers eco-
nomic, legal, and technical factors. The ultimate goal is to achieve a flight schedule that is compatible with
airworthiness regulations and the airline’s policies. The AMS problem deals with the construction of a sched-
ule that minimizes maintenance costs, disruption to airline operations, and resource usage, while satisfying
safety regulations imposed by civil authorities (Sriram and Haghani, 2003). Among others, maintenance re-
sources include hangar facilities geographically dispersed through the network, limited inventory tools, spe-
cialized technicians, and spare parts (Sanchez et al., 2020). The main challenge is to allocate these resources
in a cost-effective fashion. The first research question regarding the current practices in airline maintenance
scheduling is tackled in this chapter.

2.1. Economic impact of airline maintenance
According to a recent study by Lagos et al. (2020), maintenance operations correspond to 10% of the airline’s
direct operating cost (DOC). This represents a 12.5 billion USD industry considering only the 10 largest US
airlines. Within this cost, 50% of the expenses are attributed to wages of the highly skilled workforce. For
this reason it is possible to relate the amount of workhours on a task with its cost, as Lagos et al. (2020)
and Witteman (2019) suggest. Apart from the cost of the maintenance activity, there is an additional loss
of revenue due to network disruptions caused by unexpected maintenance events. A study by Cook et al.
(2004) has shown that the annual budget spent in delay due to maintenance amounts to 40% of the total
maintenance burden. Finally, there are additional soft costs due to passenger dissatisfaction that may lead to
a significant loss of the market share in future operations.

The report made by IATA’s Maintenance Cost Tasks Force (2018) presents a rough estimate of $ 324M that the
average airline sustained on maintenance operations during the 2017 Financial Year (FY). This corresponds
to an average of $ 3.6M per aircraft or $ 1,200 per flying hour. According to General Electric (Daily and Pe-
terson, 2017), in 2011 commercial jet airplanes were in the air for 50 million hours. This translates into a $
60 billion annual maintenance bill. Engine maintenance alone accounts for 43% of the total, or 25 billion.
This means that commercial jet engine maintenance costs can be reduced by 250 million for every 1% im-
provement in engine maintenance efficiency due to condition-based maintenance. McFadden and Worrells
(2012) estimated that by 2020 the global Maintenance, Repair and Overhaul (MRO) spending would reach
$ 65 billion. Even a minimal improvement in the operational efficiency would lead to large savings, and a
higher aircraft utilization could be achieved to earn extra revenue. It becomes clear that anyone involved in
the airline business cannot afford to ignore the potential benefit from optimizing the maintenance planning
process.

2.2. Maintenance Program Development
The current approach to develop a maintenance plan in the aviation industry stems from the latest Main-
tenance Steering Group (MSG-3) program developed by the Air Transport Association of America in 1980
(Pontecorvo, 1984). The main characteristic of this technique is the "top down" approach to conduct failure
analysis at the highest manageable level rather than at the component level like in the previous versions. The
MSG-3 logic assesses how the failure affects operations, mainly looking at tasks done for safety reasons and
for economic aspects (Shannon and Ackert, 2010). It is also renowned as a task-oriented approach, as it de-
velops a set of specific tasks selected for a given functional failure. Therefore, it groups tasks in a way that is

42

2.3. Maintenance Checks 43

more efficient for the airlines. It matches the check type with the operational requirement, rather than car-
rying out a maintenance process based on the analysis of each aircraft unit (Kinnison, 2004). There are three
main categories that can be highlighted within the tasks developed by the MSG-3: airframe systems tasks,
structural item tasks and zonal tasks.

The tasks selected in the MSG are published by the manufacturer in a document approved by the airwor-
thiness authorities: the maintenance review board (MRB) report. This document outlines the minimum
scheduled maintenance requirements to develop a program for the operators. Additionally, the manufac-
turer also releases the MPD that contains all the MRB requirements plus maintenance task information to
aid in planning such as grouping by letter check, access panel, man-hour requirement, interval, etc.

2.2.1. Maintenance task categories
Maintenance task can be classified as scheduled or unscheduled tasks (Pereira and Ashok Babu, 2016). The
former refers to maintenance activities that occur periodically in intervals defined by the authorities. In Kin-
nison (2004) they are also defined as routine tasks, which are basically the ones specified in the MRB and MPD
documents. Another category are the variable routine tasks, which are those that vary from check to check.
These tasks include deferred items from previous checks, airworthiness directives and one-off maintenance
actions. In general, the time required to accomplish these tasks is known, so these items are similar to the
routine tasks for planning purposes.

A considerable challenge for the airline industry is to design a schedule that includes non-routine or un-
scheduled tasks. This category encloses items that arise out of inspections, as well as faults reported by pilots,
systems that are maintained reactively, i.e. only after the failure occurs, and other events (e.g. bird strikes).
Aircraft are allowed to carry forward a limited amount of unscheduled maintenance while remaining service-
able. Even if some failures do not affect the immediate continuation of operations, others are included in
the minimum equipment list (MEL). The MEL is based on the aircraft equipment, level of redundancy and
systems. In case of an unexpected failure, the aircraft can be dispatched only if it meets the MEL-conditions.
Otherwise, it must be grounded for safety reasons (Obadimu et al., 2020). It is only possible to estimate the
number of non-routine tasks and their duration depends on multiple factors. Therefore, a buffer time is con-
sidered when planning routine checks that accounts for non-routine tasks. In most cases, it even doubles or
even triplicates the expected duration of the scheduled check.

2.3. Maintenance Checks
On average, a normal aircraft receives around 12 hours of line maintenance per week (Qantas, 2016). This
happens "around the world and around the clock", whenever a transit check is performed. Examples of tasks
performed at the apron are inspecting the wheels, the brakes and fluids in the hydraulic systems, as well as
checking when the sensors alert the need of running repairs.

Every eight to ten weeks the filters are replaced and thorough inspections are carried during the so called A-
checks. On a medium-haul passenger aircraft, these checks can take up to a full day. The B-checks are similar
but involve different tasks that consider moving parts, such as the ailerons and horizontal stabilizers, as well
as the lubrication of key systems (Sriram and Haghani, 2003). Kinnison (2004) mentions that some airlines
incorporate these tasks directly into the line maintenance. They are also known by the expression "less-than-
A-check tasks". The scheduling method is chosen by the airline, however, tasks easily get deferred day after
day due to demanding flight schedules and the aircraft risks to be grounded in case of exceeding utilization
limits.

The C-checks includes mostly heavy-maintenance tasks lasting approximately three weeks. The frequency of
these tasks is once every two years or every 2,500-3,000 flight hours. Moreover, the total workforce required
varies between 2,000-4,000 man hours. The interior of the aircraft is dismantled to closely analyze all the
systems and any hidden structural damage. A typical C-check task is the upgrade of the cabin seats and
interiors.

Finally the D-check is the last and most comprehensive activity. During this check, the entire plane is dis-
sected and, after maintenance, each system is put back together. It can take up to 6 weeks, and for this reason
it is performed only once every six to twelve years, for the newer generation of aircraft. This check involves the
analysis of the aircraft skin and the complete removal of the landing gear, among other systems. The cost can

2.3. Maintenance Checks 44

Table 2.1: Airline Maintenance Check Schedule Example (Kinnison, 2004)

747-400 747-200/300 DC-10-30 A300B4 F50

A check Every 600 FH
Every 500 FH

or 7 weeks

Every 465 FH
or 9 weeks

In 3 parts (A1,A2,A3)

Every 385 FH
or 11 weeks

In 4 parts (A1,A2,A3,A4)

Every 650 FH
or 4 months

B check
Every 1200 FH

In 2 parts (B1,B2)
Every 1000 FH

In 2 parts (B1,B2)
None None

Every 1300 FH
or 8 months

C check
Every 5000 FH
or 18 months

In 2 parts (C1,C2)

Every 4650 FH
or 24 months

Every 4500 FH
or 20 months

In 2 parts (C1,C2)

Every 3000 FH
or 18 months

In 2 parts (C1,C2)

Every 4000 FH
or 25 months

In 2 parts (C1,C2)

D/HMV check
Every 25K FH

or 6 years
Every 20K FH

or 5 years
Every 20K FH

or 6 years
Every 12K FH

or 4 years

Every 12K FH
or 6 years

In 2 parts (H1,H2)

sum up to several million and an average of 10,000-50,000 labor hours, but the aircraft comes out completely
refurbished.

Engine overhauls are considered heavy-maintenance. Depending on the engine type, the cost oscillates be-
tween $ 500,000 and $ 5M every 4,500-24,000 flight hours. They represent the most expensive segment of the
airline maintenance activities (IATA’s Maintenance Cost Tasks Force, 2018). McFadden and Worrells (2012)
states that after the deregulation act of airlines (1978), due to the fierce competition, outsourcing of the main-
tenance activities has been a viable and attractive option for many airlines . New leasing and buying contracts
are frequent, where the manufacturer takes responsibility of the engine checks, reducing the in-house work-
shops.

These indicative ciphers give an estimation of what airlines invest in maintenance. The actual spending, how-
ever, varies per airline depending on fleet type, aircraft utilization, outsourcing of the activities, etc. Table 2.1
summarizes airworthiness intervals related with the checks that have been discussed above. It is noteworthy
that nowadays most airlines only have A and C checks categories. The other tasks have been distributed over
these blocks.

2.3.1. Block and Phased Checks
Nowadays, it is more common to divide these higher checks into segmented clusters or phases. The main
reasons are to reduce aircraft downtime, to have a flexible grouping of tasks, and to optimize the schedule.
On the other hand, the planning complexity is highly increased, the slot capacity may represent a risk when
considering non-routine tasks.

Traditional maintenance strategies opt to cluster a series of tasks in blocks based on the resources required
(A,B,C,D checks). This methodology has declined in recent years, in favor of progressive maintenance check-
ing. Modern maintenance planning approaches adopt a task-driven solution, where tasks are bundled to-
gether, so that the resulting check can be performed overnight while the aircraft is not in use (Muchiri and
Smit, 2009). Rather than having long aircraft downtimes and sporadic manpower requirements as in block
checks, phased checks increase the aircraft availability and introduce flexibility in the way tasks are grouped.
In light of these recent advancements, Papakostas et al. (2010) adheres to this methodology by developing a
line maintenance decision support that schedules tasks sequentially per each aircraft in the fleet.

Phased checks identify smaller packages within the already existing ones in order to perform the tasks with
more frequency but requiring shorter maintenance event duration. For instance, a typical C check that is
performed once a year may be broken down in 4 elements (C1,C2,C3,C4) executed every 3 months or in 12
parts (C1,C2,...,C12), one performed each month (Kinnison, 2004). On the other hand, the scheduling be-
comes more cumbersome with the phased checks as there are shorter work-packages, but they become more
numerous. Finally, it is noteworthy that not all checks can be carried out progressively. For the heavy mainte-
nance tasks (D checks) the aircraft must still be taken apart or undergo a major overhaul (Ruther et al., 2016).
In 1988, after the Aloha Airlines Flight 243 incident, the US National Transportation Safety Board (NTSB) con-
cluded that a highly segmented structural inspection precludes a comprehensive assessment of the aircraft’s
operating condition (Shannon and Ackert, 2010).

2.4. Maintenance Strategies 45

2.4. Maintenance Strategies
Fossier and Robic (2017) recognize three categories of airline maintenance strategies. In order to give a
broader overview, the approach presented is combined with the work of Tinga (2013) that includes a much
more exhaustive maintenance classification. The maintenance categories scheme adapted to the airline in-
dustry can be seen in Figure C.3. The first category is a completely reactive methodology that replaces a
system after the fault has been detected. This strategy is mainly used for non-critical system failures that do
no restrict aircraft operations. The advantage of a reactive maintenance policy is that the service lifetime of
parts and components is fully utilized, thus no remaining lifetime is spoiled.

Figure 2.1: Overview and classification of maintenance policies. Adapted from Tinga (2013)

Preventive maintenance strives to repair a system before the failure occurs. The obvious disadvantage is that
the optimal time to perform a task is hard to determine. It is possible to subdivide this category in static time-
driven intervals, e.g. calendar based (DY); or usage-based intervals, e.g. flight hours (FH) and flight cycles
(FC). It is common practice to combine preventive maintenance with opportunistic policies to benefit from
clustering tasks and economies of scale while scheduling.

Lastly, predictive strategies have the objective of performing maintenance only when necessary. It is a great
approach to reduce the frequency of preventive maintenance and the rate of failures leading to reactive main-
tenance. Thus, improving system availability and reducing maintenance costs. Predictive maintenance an-
alyzes metrics, mainly sensor data, that characterize the real-time health of the aircraft element (condition-
based), as well as predicting when it is more likely to fail in the future (predictive analytics). There is a vast
overlap between the terms predictive and condition-based maintenance, sometimes they are used as syn-
onyms in the industry; others condition-based is intended only as the real-time monitoring, while predictive
includes the outlook over the future lifetime of the aircraft system. In this review the distinction is not of high
relevance. The main interest lies on the impact of scheduling when predicting the maintenance due date by
monitoring the aircraft condition.

2.5. Disruption Management
In general, aircraft recovery models have a partial view of maintenance operations when solving disruptions.
The aircraft routing problem determines the sequence of flights covered by each aircraft in the fleet. This
problem is limited to keeping the maintenance constraints intact during the time window considered. Due
to the sequential approach in the airline operation control center, a maintenance plan is firstly developed
and the flight routings are built accordingly. Barnhart and Smith (2012) states that the fact that maintenance
schedule is regarded as a hard constraint, restricts other potential valuable solutions such as:

• Swapping maintenance of aircraft to a new overnight location.

• Swapping maintenance from an aircraft where it can be legally postponed to a maintenance-critical
aircraft.

2.6. Discussion 46

• Prematurely executing maintenance to assign future opportunities to maintenance-critical aircraft.

Shen and Yao (2015) stresses the need of a dynamic rescheduling system in flexible flow shop problems,
especially to have the ability of coping with disruptions in schedule planning. In fact, it would not only help to
allocate tasks, it would also create robust schedules that are able to account for the uncertainty of non-routine
tasks. In this way the chances of having disruptions are decreased when it regards maintenance factors.
Another valuable point that is made in Barnhart et al. (2003), is the fact that airline operations optimization
focuses a lot on increasing aircraft utilization and reducing slack time as much as possible. Although in theory
it is economically beneficial, in practice it can translate into less robustness and increased costs. To address
this issue researchers have begun to investigate the paradigm of realized and unplanned costs. Among others,
Chiraphadhanakul and Barnhart (2013) and Lan et al. (2006) stand out for designing robust flight schedules
by introducing slack time judiciously in order to hinder the effect of possible disruptions.

2.6. Discussion
In this chapter a general study of the maintenance planning in the industry has been presented, along with
the benefits and drawbacks of different maintenance strategies. The conclusion of the economic impact of
airline maintenance points to possible savings in the order of hundreds of millions of dollars a year for a
small improvement in maintenance plans. More importantly, it can prevent disruptions due to unscheduled
maintenance that costs 8 billion USD a year to the global airline industry. One of the main takeaways is that
maintenance practices are conservative and strict in order to ensure air safety requirements. Most checks
are performed in blocks of tasks, triggered by opportunistic policies that want to avoid groundings as much
as possible. On the other hand, phased blocks dissect traditional checks into smaller work-packages that
require the aircraft to be grounded more often but the systems can be utilized more efficiently. To foster these
strategies, there is a general trend in research to shift from preventive to predictive maintenance in order to
reduce costs while keeping high levels of reliability.

Maintenance plans are developed in different stages based on their category. The heavy checks (C and D)
are planned in the long term and they are decoupled from the other shorter-term plans. It is important to
strategically position these checks in the aircraft timeline to avoid an overhaul during a high peak period
or the summer. Mid-term checks (A and B) are more flexible and can be scheduled less than a month in
advanced. If the slot availability and the aircraft condition are favorable, they can be merged with higher
hierarchy checks. Lastly, line maintenance is planned with a week in advanced concurrently with short-term
plans.

3
Condition-Based Maintenance

The transition to condition-based maintenance (CBM) combines preventive and predictive strategies that
aim to reduce maintenance costs, yet providing services with an improved quality and reliability. Preventive
maintenance strategies are used nowadays to execute recurrent maintenance tasks, and will remain neces-
sary for an effective transition. It both serves as a fail-safe for predictive maintenance and to globally assess
the status of a system in case of false-positive predictions. Furthermore, predictive maintenance can reduce
disruptions through condition-based information. Maintenance can be performed only when necessary and
it becomes possible to identify damage before failure occurs. The prognostic and health monitoring systems
are employed to decide when is the most optimal time to allocate the task and avoid waste of remaining use-
ful life (RUL). This chapter revolves around the second research question that studies the disruptive impact
of CBM in the airline industry.

3.1. Prognostic and Health Management (PHM)
The integration of PHM techniques with maintenance decision represents the basis of the CBM concept
(Vianna and Yoneyama, 2018). Hölzel et al. (2012b) present the disruptive potential of PHM systems to re-
duce both, operational interruptions caused by unscheduled maintenance tasks and downtimes due to un-
necessary preventive maintenance. Recurrent inspections that could be monitored with sensor data are set
to become an obsolete practice in the near future. In theory, a drastic reduction of maintenance events could
be reached in future operations. Holzel alleges that "in the ideal case - which probably will never occur -
there will be no more scheduled maintenance programs. This means a complete shift from preventive to a
condition- or prognostic based maintenance strategy". Significant advances have been reached from sen-
sor integration to scheduling optimization, but several challenges are yet to be solved. In order to initiate a
transition phase, the deployment of on-board monitoring systems is of paramount importance.

Literature suggests that only a half of the total work and parts required by heavy-maintenance checks can
be planned (Kulkarni et al., 2017). The remaining half remains unscheduled, and is identified during the
inspections. Hence, any of the maintenance tasks may cause a potential delay if unexpected requirements
come out of inspections. The expected completion time for the same check may vary substantially from one
case to another, and the inherently unpredictable nature of these events can also have wider implications on
budgeting, inventory management, and maintenance capacity planning (Samaranayake and Kiridena, 2012).
As part of a risk management tool, a safety buffer is always considered in the planning of maintenance, even
though it decreases efficiency. Moreover, the specialized workforce is highly paid, thus idle time should be
kept as low as possible to avoid cost spillage. Clearly, this represents an additional incentive to foster the
development of CBM, such that the scheduling can be able to include tasks before the system fails.

3.2. Task-oriented Strategy
Condition-based maintenance can be considered a task-oriented strategy because it monitors individual
tasks based on the aircraft condition. Therefore, CBM strategies can be best applied with a phased check
structure. In this way a more flexible framework to schedule tasks close to their due date is provided. As
explained before, the block check is a large list of tasks, that are grouped together and repeated periodically.
The innovation of phased checks is that it gets rid of static templates and the individual tasks are assigned to
the most optimal maintenance opportunity. Hölzel et al. (2012a) proposes an aircraft life cycle cost-benefit
model that follows this task-oriented approach. The validity of the maintenance schedule is constrained by

47

3.3. Task-Packaging 48

Figure 3.1: CBM Maintenance Planning (Hölzel et al., 2014)

the available labor force, the availability of slots and the certification of the hangars. Such a problem is clas-
sified as NP-hard with a bin-packing structure. In order to solve the problem in polynomial time, a common
approach is to employ heuristic depth-first search.

In a subsequent publication (Hölzel et al., 2014), the authors depicted graphically the holistic approach, visi-
ble in Figure 3.1. The planning horizon is divided in time windows in order to reduce the size of the problem.
The activities included in a certain time window must be scheduled in the maintenance events of that plan-
ning period. Based on the predicted failure dates, the model assigns tasks minimizing the overall cost, as a
result the waste of life of each task is also minimized. Moreover, the authors test a series of heuristics to al-
locate first the tasks with higher priority. Interestingly, the model showed that the best results were achieved
when sorting the tasks by cost in descending order. Finally, even if at first it seems logic to perform the task as
late as possible, in some cases the costs of using an additional maintenance opportunity, including the loss
of revenue due to aircraft unavailability, are higher than the cost associated with the wasted RUL of a system.

A study by Ozkol and Senturk (2017) highlights the economic benefits of having a flexible single task-oriented
maintenance concept over a classical rigid letter check system. The main goal is to increase the aircraft uti-
lization by reducing the scheduled maintenance downtime, based on the idea that any ground time can be
seen as an opportunity to perform maintenance. The paper benchmarks their policy against a classic main-
tenance strategy on a A340 fleet considering A, C and D maintenance tasks over a planning period of 10 years.
The results show cost savings above 4 million USD and an increased aircraft utilization by 72 days.

3.3. Task-Packaging
A standard maintenance plan includes more than two thousands maintenance tasks which need to be exe-
cuted for each aircraft in the fleet. A series of criterion that can be used to examine individual tasks and their
packaging is reported below (Ozkol and Senturk, 2017).

• Maintenance task source

• Man-hour requirement

• Skill code and licensed personnel requirement (mechanic, avionics, etc.)

• Relationship of the maintenance task with other tasks

• Planning requirements of task card

3.4. EC-H2020: ReMAP project 49

• Reference status of maintenance task

• Inventory items required for the completion of the task, i.e. materials and tools

Pereira and Ashok Babu (2016) identifies some factors of the maintenance packaging strategies used nowa-
days. The location of the task, is very sensitive because if the same panel has to be open for multiple systems,
it is likely that the task related to those (sub)systems will be placed in the same work-package. The paper uses
the access panel as a design criteria for the tasks that can be performed individually or in combination with
other. The opening of the access panel is time consuming and the minimization of it’s access reduces wear
and tear of the panels and the fasteners that bind it to the aircraft surface.

It is of paramount importance to create task work-packages according to the slot’s capacity in order use re-
sources efficiently. Moreover, the skill set of the engineers increases every time the same task is performed,
which increases time efficiency. Therefore, it is logical to have the same check scheduled in sequence (on
different aircraft) and assume that progressively its execution time speeds up with respect to the previous
one. The engineers learning curve effect can be an interesting topic to study in order to understand how this
factor can be included in the scheduling process.

3.4. EC-H2020: ReMAP project
The European Union project ReMAP H2020 aims to reduce maintenance cost by reducing interval-based
tasks such as standard routine inspections, operational and functional checks. Moreover, when possible
task escalation is considered in order to postpone tasks and fully utilize the RUL of the maintained systems.
Finally, failure prevention is achieved with predictive maintenance and a proactive scheduling. In the re-
maining of this review, the focus will be shifted to the scheduling optimization that enable condition-based
maintenance policies.
In order to test the validity of the CBM strategies, the project considers dozens of systems that are not maintenance-
critical. The concept is to demonstrate the reliability and the possibility of implementing CBM prognostic
and scheduling for most aircraft system . Even though the technology is not ready yet, as there are no spe-
cific sensors that monitor the health of all aircraft systems, it is possible to elaborate a proof of concept. The
simulation, verification and validation can be achieved with the diagnostics and prognostics of non-critical
systems, currently maintained reactively. The aim is to initiate a transition from fixed intervals and recur-
rent inspections, to a dynamic and adaptive maintenance plan that is continuously being monitored by PHM
sensors and a data-driven technology.

3.5. Discussion
The long-term cost-benefit analysis of CBM is one of the most attractive aspects of this strategy. It is set to be
the future of airline maintenance because of the digital transition it supposes, and the advantages of a data-
driven technology. The sensors ought to detect damages in real-time that might not be visible to a human
operator, enabling the damage assessment to be performed as frequently as needed. To understand the true
advantage of CBM, a comprehensive maintenance plan must be developed to capture the inter-dependencies
within a fleet. The economic benefits per aircraft can be determined only when a new maintenance plan can
be elaborated and the incoming streams of data are employed efficiently in the schedule optimization . This
is because several aircraft compete for limited maintenance resources, leading to less efficient solutions than
performing maintenance as soon as a threshold is triggered.

At the same time, CBM strategies requires the aircraft to be completely wired and equipped with sensors to
monitor the real-time health of the fleet. To date, various airline operators have implemented certain aspects
of CBM in their operations, that have dramatically increased the level of electronic integration in aircraft’s
systems (Teal and Sorensen, 2001). However, none have taken full advantage of the CBM concept because of
the lack of fully equipped aircraft with health monitoring sensors, the strict air safety requirements, and the
lack of digitalization in the maintenance operations domain. Despite the initial capital investments required
to build the foundations of CBM, some hybrid approaches have been proposed in the research community
where traditional scheduled maintenance is used for critical structures and condition-based maintenance
for non-critical systems (Dong et al., 2019, ReMAP H2020).

4
The Aircraft Maintenance Problem

The airline scheduling problem contains several stages with different planning horizons. The first one is
the flight schedule design, followed by the fleet assignment which selects a fleet type to match the forecast
demand with the capacity offered in every leg. Furthermore, during the tactical stage the crew scheduling
problem and the aircraft rotation problem (ARP) are solved. The latter is aslso known as the aircraft mainte-
nance routing because generates sequences of flights that are called routings or line of flights (LOF’s) (Kab-
bani and Patty, 1992). The scheduling concludes with the tail assignment (TA) in the operational stage, when
the LOF’s are assigned to a specific aircraft. Frequently, the ARP and TA problems are solved in combination
with maintenance considerations, as indicated in Figure 4.1, that shows the typical stages of airline schedul-
ing problem. In this chapter, the answer to the third sub question, about what are the current models for
maintenance scheduling, is elaborated and a complete discussion is presented at the end.

Figure 4.1: Stages of the airline scheduling problem. Adapted from Lagos et al. (2020)

4.1. Aircraft Maintenance Routing
Feo and Bard (1989) propose a model to set-up a network with the minimum number of A-check maintenance
base locations and respect a 4-day maintenance interval. The formulation is a closed-loop network that tries
to minimize cost. The multicommodity flow problem with integer restrictions is too large to be solved with
linear programming. One possibility is relaxing the integrality constraint, but the result would be of marginal
value. For this reason, the authors opt for a two-phase heuristc. Firstly, the problem is decomposed by fleet
type because there are very few economies of scale factors associated with running a maintenance base for
heterogeneous fleets. In fact the main cost is attributed solely to the inventory. The second simplification is
the elimination of the space and labor capacity constraints that is rarely binding.

50

4.1. Aircraft Maintenance Routing 51

Hane et al. (1995) formulates a daily fleet assignment considering up to eleven fleet and 2500 flight legs with
a time-space network. Their work is extended by Clarke et al. (1996) with maintenance and crew considera-
tions. The mixed integer program (MIP) is solved in a similar fashion using a combination of dual-steepest
edge simplex and a branch and bound method. Gopalan and Talluri (1998) study the aircraft maintenance
routing problem to introduce small transit checks every three days and balance check, that have considerable
leeway in scheduling frequency. The model developed is referred under the term "static infinite horizon" to
indicate that the solution is a line of flight that should repeat consistently in the schedule. The network is
constructed such that it only contains overnight maintenance stations and fixed line-of-flights (LOF). Then,
they solve the maintenance routing by swapping flights or even fleet, mainly respecting the three-day main-
tenance requirement to form a feasible solution.

Clarke et al. (1997) formulates the aircraft rotation problem with specified locations, durations and intervals
of line maintenance checks (less than 5 hours long). The solution methodology combines Langrangian Relax-
ation and subgradient optimization. This approach may yield to feasible, but not provably optimal, solutions.
In fact in Martin (1999) this method is described to be useful to calculate the upper and lower bounds of a MIP,
specially in minimization problems where dropping constraints can only lead to a smaller objective value.

Sarac et al. (2006) solves the operational aircraft maintenance routing problem with a time horizon of just
one day. Even though the planning problem that is being researched in this thesis is very different, this study
has been included because it considers the flying hours in the objective function, which is a major concern in
long-term maintenance planning. Thus, it is one of the few works that aims to maximize aircraft utilization
subject to the resource constraints (available man-hours and maintenance slots). The route generation is
prioritized per aircraft in ascending order of their legal remaining flying hours. The author uses an innovative
branch-and-price algorithm formulated with a route-based network including flight and aircraft coverage
constraints, as well as the labor force hours and the slot availability.

Around the same time of the previous publication, Afsar et al. (2006) proposes a rolling horizon heuristic to
solve the maintenance planning problem for an airline with 200 aircraft. The objective is to assign flights to
aircraft while still respecting the maintenance plan. The planning is produced for a 40-weeks period with
a sliding time window of one week. The heuristic first addresses critical aircraft that must undergo mainte-
nance in the planning week and subsequently manages the non-critical aircraft load smoothing with simu-
lated annealing (Afsar et al., 2009). Contrarily to other works in the field of the aircraft routing problem, the
minimization of flight assignment cost is not considered in this model but the maximization of the aircraft
utilization. The strong suit of this approach is the speed of the algorithm which is able to provide the flight
planning of a week instance with 2500 flight under 7 minutes. However, the critical aircraft number is fixed
rather than being dynamically labeled in function of the utilization.

Aircraft maintenance routing (AMR) is closely related to the tail assignment (TA) problem. For this reason,
Liang et al. (2015) combine both problems to produce robust schedules and minimize expected propagated
delays. The robustness is achieved by inserting buffer time in the routings that are more likely to be disrupted.
The TA is treated as an extension of the AMR, where each aircraft is placed in a subnetwork, which it is under-
stood as a multi-commodity flow problem formulation. The solution approach proposes a two-stage column
generation algorithm: the master problem is a MIP solved with CPLEX while the pricing (sub)problems are
tackled with a heuristic. The (sub)problems are used to create line of flights with expected delay propagation.
The heuristic chooses a (delayed) flight option such that the LOF’s follow an optimal buffer allocation pattern
based on minimal propagation delay studies.

Safaei and Jardine (2018) designed a multi-commodity network flow model with generalized maintenance
constraints that ensure that enough maintenance opportunities are present within the aircraft routes. The
author claims to solve the maintenance routing problem considering the full range of maintenance require-
ments of individual aircraft over a planning horizon of one week. The model minimizes the maintenance
misalignment between the opportunities and the workload due for each aircraft. The solution is produced
with LINGO 14.0 which uses a branch-and-bound method to solve a MIP.

In Sanchez et al. (2020) the maintenance planning approach for a 30-day schedule is split into three steps.
The first one consist in defining the maintenance opportunities (MO’s) when the aircraft is on ground, if
possible by large turn-around-times (TAT), otherwise through dedicated ground times. If the maintenance
opportunities do not generate a feasible schedule, a tail assignment algorithm is executed to allocate the

4.2. Aircraft Schedule Recovery 52

remaining checks. Finally, to preserve tractability and improve quality of solutions, the final step is divided
in two stages. The first stage solves conflicts by reassigning maintenance to the next opportunity, while the
second stage makes the timeline more granular to improve the resource allocation. The paper uses Gurobi
optimzer to solve the models and minimize the violation of regulations. Thereby the resources, regulations
and flying time are not hard constraints but are implemented with soft costs. A multi-workshop test case with
16000 flights and 529 aircraft is solved under 2 hours.

4.2. Aircraft Schedule Recovery
Although there is an extensive literature that deals with the classic aircraft routing problem, there is little
work on the integration with maintenance schedules. Maher (2016) is one of the few papers that formulates
an integrated airline recovery methodology. The author proposes a column and row generation framework in
order to reduce the size of the problem. Maintenance planning is enforced by ensuring maintenance critical
aircraft terminate at the base locations. A similar approach is undertaken by Ruther et al. (2016) with a branch
and price solution method for the integrated aircraft routing problem. The routings are generated for one
week using a static rolling horizon approach that partitions the optimization in two problems. The author
recommends this approach for low-cost airlines which generally operate a point-to-point network and are
more open to re-engineering their business process. Contrarily, hub-and-spoke carriers alleviate the effect of
sequential optimization by having multiple crew and aircraft swapping opportunities at their hubs.

The work of Cordeau et al. (2001) uses Bender’s decomposition to solve the same problem, both the Benders
master problem and the primal subproblem are solved using column generation. The model only considers
routine checks performed every 3 to 4 days with a duration of 6 to 8 hours. Other types of maintenance are
not considered because their duration is too long and depends on the availability of maintenance facilities.
A three-phase approach is used to tackle the problem: the first phase relaxes all the integrality constraints,
during the second they are only added to the master problem and in the third phase, integrality constraints
are implemented in the subproblem as well. They report study cases with over 500 flight legs but is not clear
if the approach is computationally feasible since the CPU time exceeds 20 hours on hub-spoke networks with
many crew-bases.

Heuristic approaches have been widely studied to solve large-scale problems to reach computationally tractabil-
ity. Even though they are not guaranteed to reach the global optimum, the quality-time trade off is overcome
with near-optimal solutions and feasible solving times. Different strategies exist to only explore the promising
and realistic actions in the neighborhood of expanded nodes. There have been many publications incorpo-
rating heuristic approaches to solve the airline recovery problem. Notable among these, is the work of Yang
(2007) who solves the airline recovery problem using Tabu Search, a meta-heuristic search method that uses
memory structures to explore decision trees and find near-optimal solutions. The study explores the synergy
that exists between tabu search and a multi-commodity flow network. The resulting hybrid model combines
a route based method and a time-space network, that showed a favorable performance in terms of speed and
objective function value.

4.3. Aircraft Maintenance Scheduling
Sriram and Haghani (2003) consider a 7-day planning horizon assuming a cyclic schedule for an heteroge-
neous fleet with maintenance constraints. The maintenance check assigned is dependent on the aircraft
utilization, thus on the flight sequence that is determined optimal. The scope of the problem is limited by the
planning horizon which allows only A and B checks to be considered. Moreover, this is one of the few papers
that considers aircraft re-assignment over an optimal maintenance opportunity, even though the aircraft was
already assigned. Finally, unexpected maintenance requirements such as unscheduled and reactive mainte-
nance tasks are not considered. However, this is also the case for the previous models presented throughout
this chapter. The solution approach uses a heuristic technique that combines a depth first search with a
random search. The smaller instances (60 flights and 75 airports) are solved within 5 minutes and then are
benchmarked against CPLEX. The result show a gap optimality under 3% with a CPU time reduced with a
factor over 200 for the largest cases.

Steiner (2006) presents a heuristic method for maintenance scheduling with the objective of minimizing
maintenance actions and evenly distribute among the fleet the capacity requirements and flying hours. In

4.4. Discussion 53

their model there are four constraint relaxation which involve the quarterly flying hour requirement, the
maximum flying hours per week, the shifting tolerances of tasks and the maintenance capacity. In addition,
external capacity can be purchased to overcome temporal shortages. The computational period to produce
a maintenance plan with a time span of five years varies from 5 to 15 minutes with real test-instances of a
large fleet. Even though the time seems surprisingly efficient a clear solution method is not provided after the
model formulation.

The MSc thesis by Lotten (2018) claims to achieve a significant reduction in the search space of maintenance
task allocation problem by applying an oriented orthogonal bin-packaging algorithm. The task workpack-
ages are not optimally scheduled but the instance size is reduced heuristically by clustering tasks in function
of the due date and re-solving the bin-packing with a commercial software. The work of Witteman (2019) ap-
proaches the problem in a similar fashion, using an online bin-packing algorithm that allocates task based on
the priority of their interval. The approach is twofold, the problem is first solved for a tactical stage and then
for an operational horizon. In the first one the resources (man-hours) are distributed over the maintenance
opportunities for the whole fleet, decoupling the problem per aircraft. The second stage, allocates the task
individually to the aircraft, including additional unscheduled maintenance tasks that may arise.

Deng et al. (2020) developed a look-ahead dynamic optimization model to solve the aircraft maintenance
scheduling problem by minimizing the unused flight hours for each aircraft interval. The problem size is
determined by a 4-year planning horizon and an heterogeneous fleet of more than 40 aircraft. Two types of
phased checks are considered in the model which theoretically should involve all the tasks provided in the
MPD. The state space is characterized by three types of attributes. The first one concerns those parameters
that have a direct impact on the next decision, the second type refers to attributes of the maintenance check
intervals and tolerances, the last type of attributes depend on exogenous information such as the aircraft
utilization and the check duration. It is important to note that this last type of attributes does not include
stochasticity because the exogenous information is sampled only once with look-up tables and estimates
according to historical performance. Therefore the model developed is deterministic. The solution method-
ology uses forward induction to estimate the value function at each state, otherwise it would be impossible
to solve the model for the whole planning horizon due to its size. In order to reduce the size of the problem
the aircraft are ordered by maintenance urgency based on the earliest deadline. A thrifty algorithm is used to
check the workability of a state by making sure no aircraft will have to be grounded by supposing the worst
case scenario, which makes use of all available slots. Finally, the state space is reduced by aggregation, thus
states with similar properties are clustered into a single one, and discretized according to the mean fleet uti-
lization with respect to the checks. The policy developed is a greedy one that exploits all the iterations, i.e.
there is no learning process thus the policy can only be applied to a specific scheduling scenario embedded
in the formulation.

4.4. Discussion
Most of the literature focus on the aircraft routing problem (ARP) with maintenance considerations using a
multi-commodity network flow model with hard constraints. The solutions propose a cyclic rotation with
planned maintenance at the end of every routing (Jayaraj et al., 2020). In doing so, the aircraft utilization
becomes secondary, and the turn around times are chosen beforehand. Moreover, conflicts are common and
a revision to solve discrepancies in the schedule is often requested from the Airline Operation Control Center
(AOCC). This also originates due to the lack of communication between the AOCC and the Maintenance
Operation Center (MOC) when creating the schedules (Papakostas et al., 2010). Samaranayake and Kiridena
(2012) identifies that one of the main limitations of maintenance planning is the lack of integration between
aircraft scheduling and resource allocation. The main takeaway of this chapter is that there is barely no work
on the maintenance allocation problem. The models found in literature take a preliminary maintenance
allocation schedule which is imposed in the operational horizon when solving the ARP.

Over 30 year ago, Feo and Bard (1989) stated that "few optimization models existed for solving maintenance
related problems". Even though, over the course of the years, an increasing interest has risen in the field,
maintenance schedule optimization remains a great challenge for airlines. It is evident from the analyzed lit-
erature that the challenge to face is not the problem formulation but rather the solving technique. The fairly
recent literature suggests that the actual tail assignment process in airlines is not fully optimized (Sarac et al.,
2006). The imposed hard constraints due to maintenance narrow the routing problem to one-way policies

4.4. Discussion 54

that do not allow airlines to use the full potential of their schedule, since feasibility is favored over optimiza-
tion in order to achieve tractability (Boere, 1977). As a direct consequence, airlines incur many opportunity
costs, including increased premature maintenance, inefficient usage of maintenance opportunities, unnec-
essary grounding of aircraft, maintenance demand fluctuation and imbalanced fleet utilization (Safaei and
Jardine, 2018).

Furthermore, it is noteworthy that the planning horizon considered in the routing problem does not go be-
yond 7-days. It has been observed that the full range of maintenance requirements is omitted in the formu-
lation, and only the most frequent maintenance type is considered. Table 4.1 summarizes the key findings
of this chapter by classifying the main papers in function of the maintenance type, the methodology used,
the objective function and the time-window investigated. This research aims to fill the gap with the litera-
ture studied by attempting the formulation of a long-term schedule with A and C checks. The long-term task
allocation is a strategic problem, thus the aircraft location and the routings are not available for verification
until a week before operations. Finally, all the approaches offer a deterministic solution which neglects the
inherent stochastic component of airline maintenance. The few studies that are operational in nature fail to
consider the uncertainty of legal remaining flying hours and resources at the maintenance bases.

55

Table 4.1: Classification of previous works in airline maintenance optimization

Model config. Maint. type Methodology notes Objective function Horizon Ref. paper

Aircraft
maintenance
routing

A-check Multi-commodity flow network with integer constraints Min. maintenance costs 1 week Feo and Bard (1989)
A-check Lagrangian relaxation and subgradient optimization Max. through value of connections 3-5 days Clarke et al. (1997)
A-check Three-stage static infinite-horizon model Min. routing costs 3 days Gopalan and Talluri (1998)
A-check Branch-and-price with heuristic column generation 1 Min. unused legal flying hours 1 day Sarac et al. (2006)
A-check Rolling horizon and simulated annealing Min. unused legal flying hours 1 week Afsar et al. (2006)
A-check Two-stage column generation 1 Min. expected propagated delay costs 1 week Liang et al. (2015)
A-check Multi-commodity flow network with integer constraints 1 Min. routing costs 1 week Safaei and Jardine (2018)
A-check Value-function approximation and rolling horizon (ADP) Max. flying hours 30 days Lagos et al. (2020)
A\C-check Two-stage algorithm to solve AMS and TA 1 Min violation of maintenance regulations 30 days Sanchez et al. (2020)

Aircraft
schedule
recovery

Daily check Benders decomposition with column generation Min. routings and pairings costs 1-3 days Cordeau et al. (2001)
Daily check Hybrid multi-commodity flow model with Tabu search Min delay, cancellation and swap costs 1 day Yang (2007)
Daily check Column and row generation1 Min. delay, cancellation and crew costs 1 day Maher (2016)
Daily check Branch and price algorithm 1 Min. routes and pairings costs 4 days Ruther et al. (2016)

Aircraft
maintenance
scheduling

A\C-check Depth Search and random search1 Min. maintenance and re-assignment costs 1 week Sriram and Haghani (2003)
A\C-check Heuristic algorithm Min. maintenance actions 5 years Steiner (2006)
A\C-check Stochastic look-ahead policy (ADP) Max aircraft flying hours 6 months Looker et al. (2017)
A\C-check Bin-packaging algorithm Min. maintenance and re-assignment costs 4 years Witteman (2019)
A\C-check Deterministic look-ahead policy (DP) Min. unused legal flying hours 4 years Deng et al. (2020)

1Solved by global optimization solver, e.g. CPLEX, LINGO, Gurobi.

5
Dynamic Programming Approaches

Artificial intelligence has revolutionized multiple fields of engineering with big data and novel optimization
techniques. It is a strategy that does not require hand-engineering and is able to build large parametric ap-
proximators to solve combinatorial problems by means of trial and error in simulations (Bengio et al., 2020).
The methodology researched in this chapter is referred to as Approximate Dynamic Programming (ADP) in
the operations research community, and Reinforcement Learning (RL) in the field of control theory. The fun-
damental idea is to let an agent evaluate decisions through rewards, allowing him to iterate over the opti-
mization environment and train an optimal policy model.

The common ground of the previous approaches is solving highly-dimensional problems related to schedul-
ing and task allocation. Airline maintenance operations are inherently stochastic because they include unex-
pected events such as disruptions and unpredictable failure modes. Unscheduled maintenance has a regular
occurrence in airlines. This clearly outlines the limitations of deterministic models to provide useful guidance
in the schedule planning process. In this chapter, the need of a stochastic model is highlighted and a series of
algorithmic strategies are presented based on their suitability to the research topic. The discussion’s ultimate
objective is answering the fourth and last research question: what ADP methods can produce near-optimal
solutions for maintenance scheduling?

5.1. Classic Dynamic Programming
The concept of dynamic programming was first coined by Bellman (1972) that wanted to describe a math-
ematical optimization approach (’programming’) used to model a time-varying environment (’dynamic’).
During the training process the agent learns to define a policy π : S −→ A, that maps a state S into an action
A. The Markov Decision Process (MDP) is used to formalized the dynamic programming model (Busoniu
et al., 2010). Starting from the fundamentals, an MDP respects the Markov Property, this is also called the
memoryless property. It means that the transition probability to the next state is merely dependent on the
present state and all the previous information can be discarded (Alagoz et al., 2010). The Markov transition
function is also known as the system model. Normally, textbooks on dynamic programming assume that the
transition probability is given, but in many problems, it can be very hard to compute (Iram, 2020). Another
vital element is the reward system: a value for each decision associated with reaching a goal. The goal is to
maximize the gain Gt which is the sum of all the rewards discounted by γ ∈ [0,1) with an exponential factor
respect to the current timestep, as shown in equation 5.1.

Gt = Rt+1 +γRt+2 +γ2Rt+3 + ... =
∞∑

k=0
γk Rt+k+1 (5.1)

The optimal policy is calculated incrementally and iteratively by satisfying the the Bellman optimality equa-
tion shown in 5.2 as the state-value function and in 5.3 as the action-value function. The action-value func-
tion returned by the controller indicates the value associated to each action for a given state. Iterative policy
evaluation is used to train the agent and eventually achieve the optimal status. The one-step transition uses
the old value of the policy evaluation and the estimation of future rewards to update the current policy. This
kind of operation is known by full backup because the iterations are based on all the possible next states
rather than on a sample next state. The update is performed as a sweep across all the states, and the order in
which this is done influences the rate of convergence.

v∗(s) = max
at+1

E[Rt+1 +γv∗(St+1)|St = s, At = a] = max
at+1

∑
s′,r

p(s′,r |s, a)[r +γv∗(s′) (5.2)

56

57

or

q∗(s, a) = E[Rt+1 +γq∗(St+1, a′)|St = s, At = a] = ∑
s′,r

p(s′,r |s, a) · [r +γmax
a′ q∗(s′, a′) (5.3)

Dynamic Programming iteratively solves the value-function by stepping backwards in time. The reason why
it has such a scheme is because the value function of the current state at ts needs the contribution of the final
state and the ones in between. Therefore, it steps back in time from the final state to the current one in order
to estimate the value function at the current point. Within the DP models two different structures can be
identified. First, some problems have a specific end-time or they are modeled over a finite horizon to reach a
decision at the current time instance. A class of problems attaining to this description are those that require
reaching some goal in the future (but not at a particular point in time). The second typology, called infinite
horizon problems, covers those where the governing exogenous information process do not vary over time.

There are two algorithmic strategies to solve DP models. Value iteration is perhaps the most widely used
because of the simplicity of its implementation. Basically, it updates the value function at each iteration
and then extracts a policy given the new estimate. By contrast, the second approach, policy iteration, picks
a random policy and then determines the steady-state value of being in each state given the policy. Not
surprisingly, the second method converges faster in terms of the number of iterations, but it takes longer per
iteration.

An application of classic DP in the airline industry is presented in Moudani and Mora-Camino (2000) to solve
the fleet assignment model (FAM). The FAM is first solved using dynamic programming, and the associated
maintenance scheduling problem is tackled separately with a greedy heuristic that inserts one aircraft at a
time in the maintenance slots, previously defined. The FAM is solved with a dynamic programming approach
for two reasons. The first one is that DP is efficient to treat combinatorial optimization in a dynamic envi-
ronment, which in this case is dictated by the temporal nature of the operations. Secondly, because of the
recursive structure of the algorithm, it is suited to cope with perturbations from nominal conditions, such as
delayed and canceled flights, and the deviations can be used in the feedback loop to iterate the solution.

The key idea of Dynamic Programming is dividing the problem into states and nesting smaller decision prob-
lems inside a larger decision (Dreyfus, 2002). If n and m indicate the number of states and actions, a DP
method takes a number of computational operations that is less than some polynomial function of n and m.
A DP method is guaranteed to find an optimal policy in polynomial time even though the total number of
policies is mn (Sutton and Barto, 1998). Other deterministic approaches can be used to solve similar prob-
lems but their size explodes before DP methods; estimates rise up to a factor of 100. Therefore, for the largest
problems, only DP methods might be feasible.

5.2. The need for approximation
Classic DP is an important theoretical concept but almost impossible to use because it requires a complete
model of the operations and because of the computational intractability. Approximate models simplify the
structure of the search three and allow the use of heuristic approaches that lead to near-optimal solutions.
The focus of this chapter is on the approximate models that are introduced to make large optimization models
computationally viable. Powell (2011) outlines that the main difference between approximate and classic
dynamic programming is how the value function is computed. The algorithmic strategy proposed for ADP
involves a series of important notions that should be noted down:

• Forward dynamic programming is used to avoid the problem of looping through all the states to esti-
mate the value function, but it requires a one-step transition matrix.

• Forward induction only updates visited states but it requires to have an estimation of the values of
states that might be visited. It replaces the computational burden of looping through each possible
state, with the statistical problem of estimating their value.

• States that are not relevant to reach optimality can be avoided but it is also possible to never visit a state
that would have created a good solution.

The effect of computing the next state value by stepping forward has two consequences. Firstly, it is impossi-
ble to explore the whole state space so the exploration versus exploitation dilemma is faced. The agent needs

58

to weigh the possibility of exploring other regions of the search space during the optimization, and thus giv-
ing up short-term rewards, against focusing on high-reward action and potentially giving up valuable regions
of the environment. Secondly, the long-term performance must be maximized using only the feedback of
the one-step performance. This is challenging because actions taken in the present affect the future decision
space and rewards, but the immediate rewards provide only local information and exclude these long-term
effects. This paradigm is also known as the delayed reward problem (Watkins, 1989).
Stochastic optimization problems are studied in many settings, as a result different communities have de-
veloped algorithmic strategies lacking a common modeling framework. Markov decision processes, stochas-
tic programming, stochastic search, simulation optimization, reinforcement learning, approximate dynamic
programming and optimal control deal with sequential optimization problems. Policy iteration may be pre-
sented in different flavors, thanks to the diversity in which a policy can be expressed (Powell, 2011). The
strategies used to solve the (stochastic) optimization can be grouped around five fundamental classes of poli-
cies (Powell et al., 2012):

1. Policy function approximations (PFA) are analytic functions that return an action given a state, with-
out solving an optimization problem. Thus, the action is computed from an a-priori knowledge-base
that could be built out of a set of rules or estimations. A clear example is associating each action with a
threshold of a measurable quantity or computing the action based on the average of given parameters.

2. Value function approximation (VFA) is a policy determined by an explicit function V π,n−1
t (Sx

t) that
indicates the optimal action to take. A VFA provides an estimation of the long-term value of a state.
Mathematically it is expressed as the expected gain given the current state s. The value-function can
be decomposed in imminent rewards, that evaluate the present gains, and discounted rewards that es-
timate the value of future states. The standard definition of the value function is given in equation 5.4,
this is also called the Bellman optimality equation.

Vt (St) = max
xt∈X (St)

(Ct (St , xt)︸ ︷︷ ︸
Imminent reward

+γE{Vt+1(St+1|St)}︸ ︷︷ ︸
Discounted rewards

) (5.4)

3. Myopic policies can be used for stochastic systems influenced by several parameters. This is a relatively
easy policy to implement. It has a greedy behavior that consists on maximizing the imminent rewards
without considering the future evolution of the trajectories. The mathematical expression is exactly the
same as the previous one with a discount factor equal to zero.

4. Cost function approximations (CFA) modify myopic policies that rarely achieve optimal solutions. The
key idea is to slightly modify the cost function with additional basis functions or parametric approxi-
mations over a single time period.

5. Look-ahead policies optimize over more than one time step into the future, for the purpose of making
better decisions now. The most common version is to approximate the future deterministically and
solve the deterministic optimization problem. The main difference between look-ahead and value-
function approximation is the necessity to solve the future periods in order to make a decision, while
the latter uses an estimation. Therefore, look-ahead can be considered a backward dynamic program-
ming method.

5.3. Stochastic modeling in ADP
In the context of airline maintenance there are variables that are inherently dominated by uncertainty. The
most obvious is the interval definition of the task. Since most of them are based upon flying hours (FH) and
flight cycles (FC), it is required to estimated the aircraft utilization to set a fixed task due date. Moreover, the
task duration might also vary due to the possibility of encountering non-routine tasks during inspections. Fi-
nally, the CBM predictions add another layer of complexity and stochasticity. The remaining useful life (RUL)
prognostics are continuously being updated and produce new task lists to be incorporated in the schedule
before the due date.

One of the main advantages of ADP is the facility to model stochastic variables in the formulation. Ideally any
problem could be solved deterministically by calculating the expectation in Equation 5.4. However, most of

59

the time it turns out that the solution space is too large to converge with standard optimization techniques.
The solution procedure can take two different perspectives in this case. One possibility consists on using
value functions, scenario trees approximations or any parametric model that can be used to measure the
impact of a decision now on the future. Nevertheless, it is common practice in the industry to use determin-
istic approximations on the future in order to create an easier problem formulation, but which is criticized
for ignoring uncertainty and being computationally very demanding. The deterministic models of airlines
use fixed flight times to schedule aircraft and crew, energy companies use deterministic predictions of wind
and solar loads, retailers rely on deterministic estimates of demand to plan inventories, and so on. These
models are modified in order to handle uncertainty. For instance, a supply chain management problem can
handle uncertainty through buffer stocks, an energy company might include reserve capacity, and an airline
scheduling model might handle stochastic delays using schedule slack.

It can be concluded that there are two ways to capture the inevitable uncertainty. The first one uses statis-
tical distributions to model the range of possibilities (including slack), and solve samples of the model de-
terministically. This technique is also called sampled approximation because the objective function tries to
maximize the sample average approximation instead of the expectation in Equation 5.4. The second method
includes the stochasticity in the modeling. Therefore, for the same state-action combination, the response
of the model varies based on the exogenous information, by this term we refer to external information that
is uncertain until the next action is taken. These approaches are referred to as adaptive learning models,
they use iterative methods to solve sequences of relatively easy problems, with the hope that the algorithms
will converge to the solution of the original problem. All sequential learning algorithms, for any stochastic
optimization problem, can ultimately be reduced to a sequential decision problem, otherwise known as a
dynamic program (Powell, 2020). In the remainder of this chapter the algorithms presented will either model
stochastic variables explicitly, or sample stochastic trajectories solved by deterministic models.

5.4. The curse of dimensionality
It is well-known that solving the Bellman optimality equation (5.4) suffers from the curse of dimensionality
associated with high-dimensional problems that may lead to a computational intractable structure (Pow-
ell and Topaloglu, 2006). Unfortunately, there are three curses of dimensionality that arise from the size of
the state, the outcome, and the action space. In this section a very elegant theory is presented for solving
stochastic, dynamic programs when it is possible to make some reasonably limiting assumptions that allow
forward induction. The following examples include different categories of value function approximations
(VFA) to tackle the first curse of dimensionality. Their implementation provides estimate for the value of
future states without having to sweep across all the possible ones.

(a) Look-up table. A policy that can be conveyed in an implicit tabular form where each action can be
associated with a state in the form: xn

t = X π
t (Sn

t). This entails that for every discrete state there will be a
tabular entry that maps into the discrete action or state-value.

(b) Parametric function. This approximation can be utilized in policies where the decision to be optimized
is a quantity that depends on other observable variables. It is very common to write it in linear form
based on a regression model.

(c) Neural networks. This is a successful framework to express a general statistical expression which has
to be trained to learn which action should be taken in a given state. They are considered a sophisticated
version of parametric methods.

(d) Non-parametric functions estimate the value function based on a series of observations rather than
using parametric features with a preset behavior. They represent a flexible approach which can be
convenient in functions that have relationships with the marginal value of resources in the state-space.
A common example is Gaussian kernel regression and support vector machines.

The key message of this section is that the classical Bellman equation (5.4) can be rewritten replacing the
expectation (E) with an approximate function for the next state V̄t (·), as shown in Equation 5.5. The algorith-
mic strategy works as follows, at each iteration n, a path ωn is sampled and a post-decision state Sx,n

t−1 will
follow after taking a decision xt−1. By dropping the expectation, it is possible to extend the scope of the opti-
mization to stochastic problems, where each transition is influenced by some exogenous information that is

60

unknown until the next action is taken. To clarify the reader, the same notation used in Powell and Topaloglu
(2006) is introduced for the pre- and post-decision state vector, respectively: St and Sx

t . Thus the sequence
of state decisions and information would be (S0, x0,Sx0

0 ,W1,S1, x1,Sx1
1 , ...,WT ,ST , xT ,SxT

T), where Wt+1 is the
exogenous information that becomes available at time t +1 after making a decision xt . This involves stochas-
tic information regarding the number of resources and demand related to an attribute vector. Similarly, for
the problem studied, the aircraft utilization, the duration of the task and the new task demand after making
a decision could be treated as exogenous information. These changes lead to a new equation to be solved,
visible in Equation 5.5, where v̂n

t is a sample realization of the value of being in state Sn
t .

v̂n
t = max

xt∈X (Sn
t ,W n

t)
{Ct (Sn

t , xt)+γV̄ n−1
t (Sn,x

t)} (5.5)

From here, it is possible to update the value function approximation using a relation depending on the the
previous iteration and the new value. Multiple approaches exist ranging from simple linear relations with a
careful choice of steps to non-linear or piecewise-linear functions (George et al., 2008). The pre-decision state
at iteration n can be computed with Sn

t = SM ,W (Sx
t−1,Wt (ωn)). From the pre-decision state Sn

t , the feasible
region X n

t can be computed. Instead,the post-decision state is computed using Sx,n
t = SM ,x (Sn

t , xt). The
problem is solved for a particular realization of new exogenous information by computing a single decision
xt . In doing so, the second curse of dimensionality due to the outcome space is tackled.

The third curse of dimensionality refers to the action space. In other words, it becomes relevant only when
the action space is so large that the max operation in Equation 5.5 is too complicate. In order to tackle this
problem a specific value-function can be used to reduce the size of the feasible region defined by X (Sn

t ,W n
t)

. Other techniques such as discretization and aggregation of states are also employed to achieve the same
objective. Finally, another possibility consist on considering online approaches that limit the search three
expansion or even reducing the problem size using approaches such as the rolling horizon. This concludes
the curse of dimensionality also widely cited as the "Achilles heel" of dynamic programming.

5.5. Applications of ADP in Literature
Hereafter, a series of ADP techniques that have been implemented in literature and were considered to be
highly related to the task allocation problem, are presented and thoroughly discussed. Moreover, it is possi-
ble to grasp what industries aside from the airline maintenance repair and overhaul (MRO) are affected by
analogous paradigms.

5.5.1. Dynamic fleet management
The work of Simão et al. (2008) is one of the most influential and relevant publications to ADP. The model
developed is meant to manage the fleet of a large truck company in the US. The assignment of truck loads to
drivers is done via an innovative ADP model with the goal of resembling the current network of the company
as much as possible. This has been highlighted to diversify this work with the optimization purpose of this
research. To do so, the mathematical formulation ties a series of attributes for each load and driver to the
state definition, e.g. home location of the driver, duty hours, travel hours, etc. The model uses the attributes
as part of the state and creates an objective function to minimize the cost of operations. The author justifies
the use of a linear approximate value function with the fact that the focus of this project was to understand
the type of driver that should be assigned to each truck load, and not to optimize the network. Therefore, data
regarding the next state is available to construct the linear function. Finally, a direct mapping with assigning
maintenance tasks to multiple aircraft can be seen with the distribution of truck-loads over drivers. Most of
the papers on ADP focus on single-machine scheduling which significantly reduces the size of their models.
Therefore, this method could be used to have an initial formulation of the research problem even though the
proposed value function cannot be used for optimization.

5.5.2. Inventory Optimization
In Simão and Powell (2009) a novel model is proposed to optimize the maintenance parts inventory of differ-
ent cost and frequency demand. The state definition of this approach is composed by two elements. The first
one indicates the number of components for each attribute defined, i.e. location, type, weight, production

61

lead-time, age, etc. While this captures the state of the inventory being managed, the second element con-
tains information about the uncertainty involved in the process (exogenous information). This encapsulates
parameters directly related to the likelihood of failure, such as age of the fleet, average lifetime of the parts
and failure distributions. Moreover, the author hovers on the computational intensity of discrete resource al-
location problems, that can be intractable if solved with a classic deterministic approach. The value function
approximation is achieved via the marginal value of having a certain component available as a function of
the attributes. In the case that the attribute is not relevant for the estimation, a myopic strategy is used where
the impact of decisions on the future is ignored. Unless there is exogenous information, like the availability
of CBM data, the value-function approximation will have to be computed iteratively using dual-variables or
derivatives estimated with the evolution of the state value-function.

As part of the ADP strategy the problem is decomposed into smaller planning horizons, this yields a sequen-
tial optimization which is then solved chronologically. Even though the size of the state space is extremely
reduced, the risk of diverging from the optimality can be dangerous. For instance, in maintenance scheduling
this could risk postponing tasks until failure occurs or the interval is exceeded. Sometimes, with the require-
ment of backtracking to previous options that may not be feasible anymore.

5.5.3. A Vehicle Routing Problem Example
The vehicle routing problem deals with the optimal assignment of a series of transportation services that
must be picked up and delivered in different locations by a fleet with a series of compatibility and capacity
constraints, sometimes the visit time-windows are also specified (Goel and Gruhn, 2008). This is a classical
combinatorial optimization problem that can be extended by considering a dynamic setting with incoming
stochastic information. For instance, in Baradaran et al. (2019) the cost of the edges is subject to volatile
variables such as travel time rather than a fixed distance, the demand also changes over time and needs to be
fulfilled in specified periods.

Ulmer (2020) proposes a novel ADP approach to solve these problems. The author alleviates the trade-off
between online and offline approaches by combining them into one single method. On one hand, a value
function approximation (VFA) is used as an offline method to capture the decision and transition space. On
the other, a rolling horizon algorithm (RH) is employed to have a full detail of the state space due to aggrega-
tion. The strategy is called VFA-based limited horizon rollout algorithm (V-LHRA). The algorihtm procedure
is depicted in Figure 5.1 in order to ease the steps of the discussion. The first circle to the left represents a post-
decision state Sx

k . At every state, a decision is made using the approximate Bellman equation (Eq.5.5) with a

sampled online transition ωk
i that is simulated m times (vertical dimension in the figure). This process is a

variant of a Monte Carlo tree search. Each sample transition is simulated until the rollout horizon is reached
at k +h (horizontal dimension in the figure). The value for each simulation is the sum of accumulated re-
wards plus the VFA value of the last simulated post-decision variable Sx

k+h , as shown in the right hand side of
the figure. The approximate value for each post-decision state is averaged out of the m simulations for each
Sx

k . The presented approach outperforms state-of-the-art benchmark policies while additionally reducing
the required online calculation time drastically for the case sets studied in the paper.

A different approach is undertaken by Nazari et al. (2018) to model the vehicle routing problem as an MDP.
However, an exciting extension is introduced: to improve the policy, a neural network is used to make deci-
sions. The placement decisions are made step-by-step, such that the agent is able to learn from intermediary
states, instead of using an online roll-out approach for every training instance. It is noteworthy that the model
does not infers decisions from a single input as it happens in end-to-end learning.

5.5.4. Aircraft Maintenance Optimization
Stemming from Powell’s ADP knowledge, Lagos et al. (2020) develops a stochastic and dynamic model to
solve the operational maintenance scheduling problem with tail assignment. The formulation allows to en-
force an aircraft on ground (AOG) when the aircraft critical task date expires. In the paper, tasks get disclosed
dynamically over the 30-day planning horizon with a predictive anticipation to resemble real-life operations.
The model is solved with Approximate Dynamic Programming in order to overcome the curse of dimension-
ality. The cardinality of the state space grows exponentially with the number of tasks and fleet size, as the
expectation expression has many terms depending on the number of tasks per day.

62

Figure 5.1: VFA limited horizon rollout algorithm (V-LHRA) structure (Ulmer, 2020)

The state at time t is defined by the ground time for each aircraft available for maintenance operations and
by the task status (disclosed or pending). The decision variables capture the tail assignment to a line of flight,
the maintenance assignment to an aircraft, and finally what tasks are executed on each maintenance day.
The constraints that have been implemented in the model range from flight and maintenance coverage to
capacity and resource restrictions. Finally, the objective function tries to minimize the cost of AOG’s and
expired maintenance tasks.

The author uses a parametric value-function approximator (VFA) and a Rolling Horizon (RH) policy to ap-
proach the problem. This is a very similar hybrid approach that complements offline and online methods
as the one proposed in Ulmer (2020). The offline approximations are based on a number of features that are
weighted with a learning technique called Approximate Value Iteration (AVI) and linear regression, while the
online recursion uses a truncated horizon of one week. It is noteworthy, that one of the most useful features to
calibrate the VFA is the workload of pending tasks with a few days left before the due date. The best solutions
are returned when the tasks requiring less resources are scheduled first, in order to increase the utilization of
maintenance residual capacity.

Looker et al. (2017) proposes an ADP model to address the maintenance allocation problem of a military
aircraft fleet. The objective function is structure to maximize the aircraft utilization in flying hours and the
maintenance throughput. The decision variables include the allocation flight hours and maintenance slots
to an aircraft. Moreover, the state space is composed by a continuous variable that indicate the accrued flying
hours and a binary variable that activates if an aircraft requires maintenance. The unscheduled maintenance
is modeled as an exogenous stochastic variable that represents the daily amount of new unscheduled mainte-
nance generated randomly from a lognormal probability distribution. It includes both time between failures
and time to repair (duration). However, in the ReMAP project, the non-routine task demand should be gen-
erated based on the CBM prognostic data. The model is designed to discover policies that dynamically adapt
to random events to deliver optimal fleet serviceability. The policy considered is a deterministic look-ahead
that depends on a discount factor and a fixed time horizon. More specifically, the computational experiment
produces a schedule plan for 180 days for a 12-aircraft fleet with a sliding time-window of 1 to 14 days.

5.6. Model-free vs Model-based
An approximate dynamic programming approach is twofold, depending on how the model is set up it is
possible to have either a model-based or a model-free scheme (Powell, 2011, Sutton and Barto, 1998). In
the former case the agent has full observability over the environment and the problem can be defined as a
Markov Decision Process (MDP). Here the agent learns a model of the environment thanks to the explicit tran-
sition function, and is able to predict the next state and reward value. Otherwise, when the agent has partial
observability over the environment, one refers to this case as a Partially Observable Markov Decision Process
(POMDP) or model-free learning (Singh et al., 1994). In that case, the agent requires to remember the past
observations in a memory storage, which is then used for training. A clear understanding of the problem is
required to determine which of the two is more apt to solve a particular combinatorial optimization problem.

63

Some systems are so complex that mathematical models are not able to represent them. However, it might
be possible to observe behaviors directly. Such applications arise in operational settings where a model is
running in production, establishing the outcomes observation and state transitions from physical processes
rather than mathematical equations. A simple example, is a tic-tac-toe algorithm that does not have a model
of the opponent. In the field of dynamic programming, model-free refers to those systems that lack of an
explicit transition function. Thus, an MDP cannot be defined, and an exogenous process is assumed to be
available to generate observations and outcome of the system response (Powell, 2011). They are typically
more flexible and thus more common in deep reinforcement learning but they require more samples in the
learning process (Jin et al., 2018). On the other hand, model-based algorithms are highly dependent on the
ability of representing the environment transition dynamics, typically expressed as a decision tree which
expands exponentially as it branches out in time. Instead model-free is based on sampling the episodes and
replaying a buffer memory during training (Polydoros and Nalpantidis, 2017). Therefore, model-free methods
are considered more suitable for high-dimensional problems such as the airline maintenance scheduling
(AMS).

Sutton and Barto (1998) divides the model-free approaches in Monte Carlo and temporal difference (TD-
learning). The first one does not update the estimates of a state-value until the following state is visited.
Then, it uses that value as a target. This procedure is similar to the approaches that have been previously
presented in this chapter, where each iteration takes a sample path and is solved deterministically. In the
following sections, more emphasis will be placed on temporal difference approaches (TD-learning) because
they perform bootstrapping, a technique that becomes relevant in high-dimensional optimization problems.
During bootstrapping the state-value is updated based on estimates of successor state-values without the
need to visit them first. Once the agent learns how to behave, it may generalize the model it has learned to
other unseen problems.

5.7. Q-Learning
Q-Learning was first introduced by Watkins and Dayan (1992) in the early 90’s. The algorithm presents one
policy used to decide which action to evaluate in the training procedure, and a separate policy, which is con-
tinuously improved, is used to choose the action in the future. It is an off-policy algorithms because it learns
the value of an optimal policy independent of the agent’s actions (Odonkor and Lewis, 2018). The algorithm
makes no attempt to learn the underlying dynamics of the environment, in the case of this research is the
maintenance scheduling update of resources, hence it can be labeled as model-free. Knowles et al. (2011) is
one of the few papers that has already tried to approach the CBM problem with a Reinforcement Learning
strategy. The paper is very indicative of the problem that has been formulated in this research. A crucial
point highlighted is that maintenance scheduling can be optimized via a reinforcement learning algorithm
because it is structured as a long-term optimization over a series of short-term decisions. One of the main
gaps in this research is the lack of stochasticity: a deterministic distribution of failures is assumed and the
model is trained accordingly. Moreover there is no diversification between maintenance task categories and
the costs of repairing and performing maintenance are unique. An interesting recommendation is the usage
of function approximators for scaling the problem size in terms of states. The paper uses a classic Q-Learning
algorithm which discretizes every possible state.

5.7.1. Deep Q-Learning
The dimensionality problem can be circumvented with a neural network. In this model the input size has to
be determined, but not the scale. Therefore, having a functionality to capture the optimal policy of the prob-
lem could be very efficient if the right features are extracted to improve it (Mnih et al., 2013). Equation 5.6
shows how the value function is updated with the Bellman optimality equation based on the online network
parameters θ, and the target network parameters θ−. The target neural network is copied from the online
network every τ steps because this delay improves performance and reduces bias in the Q-value estimation.
This approach, called Deep Q-Learning, has been successfully applied in literature in problems ranging from
optimal control to resource allocation. Mnih et al. (2015) received overwhelming attention from the reinforce-
ment learning community after developing a Deep Q-network able to surpass performance scores on 49 dif-
ferent Atari games, without altering the model hyperparameters. Their work was followed by the application
of Deep Q-Learning in other domains. Among others Waschneck et al. (2018) stands out for their dispatching

64

rule model that optimizes the schedule for production control. Recently, Dai et al. (2017) proposed a Deep
Q-learning architecture to learn greedy policies over graphs for a diverse range of combinatorial optimization
problems.

Q(st , at ;θ) = (1−α) Q(st , at ;θ)︸ ︷︷ ︸
Online network

+α

Rt +γmax
at+1

Q(st+1, at+1;θ−)︸ ︷︷ ︸
Target network

 (5.6)

A powerful attribute of Q-learning is that it is able to create a direct mapping between features of the state and
the optimal action. Luo (2020) clarifies this concept when solving the flexible job shop scheduling problem
with Deep Q-Networks. In his work, seven generic state features are extracted to represent the production
states and learn the most suitable action. The model processes the continuous state feature as an input to
the neural network and is trained to output the state-action value of each dispatching rule, also called the Q-
value in this algorithm. Classical approaches would instead assume static manufacturing environment, thus
producing deterministic solutions that are not able to consider variations that inevitably affect the solution
in today’s complex and varying operations.

To conclude, it is important to emphasize that Deep Q-Learning solves problems related to a large number
of states, but it still struggles in high dimensional action spaces. The reason being that finding an optimal
decision, first requires to estimate the Q-function for all possible actions.

5.7.2. Double Q-Learning
The standard deep Q-Learning algorithm is known to overestimates the action-values due to the max() oper-
ator in the Bellman Equation. The risk of using overestimated values does not affect only locally the training
but it is resented on other states due to the discounted influence of future rewards. The root cause of higher
output values in the last neural network layer can be attributed to noise and an insufficiently flexible function
approximation. To prevent this from happening, Hasselt et al. (2016) propose to use an alternative approach
to calculate the Q-value of the next state-action pair.

The standard DQN approach uses the target network to both, select and evaluate an action. Instead, in double
DQN the online network is used to compute the best action and the target network to evaluate it. This is
mathematically expressed in Equation 5.7 where the resulting update function can be seen. It is noteworthy,
how the first set of weights, θ, is employed to select the action via the argmax() operator, while the second set
of weights, θ−, is used to fairly evaluate the value of this policy.

Q(st , at ;θ) = (1−α)Q (st , at ;θ)+α

Rt +γQ

st+1,argmax
at+1

{Q(st+1, at+1;θ)}︸ ︷︷ ︸
Online network

;θ−


︸ ︷︷ ︸
Target network

 (5.7)

5.7.3. Dueling Q-Learning
The dueling architecture (Wang et al., 2016) is a simple concept that includes an extra layer of neurons in a
DQN. This layer explicitly separates the representation of state-value and action advantages. The two streams
are aggregate in the output layer to produce an estimate of the state-action function. Figure 5.2 contains a
clear representation of the new layer that is added in the DQN structure.
The connection between the state-value and the action advantages can be demonstrated with Equation 5.8.
Intuitively, it follows that V measures how good it is to be in a particular state s. The advantage function A
gives a relative measure of the importance of each action. Finally, the set of Q−values, which is the result of
the output layer, provides the value of choosing a specific action when being in state s.

Q(s, a) =V (s)+ A(s, a) (5.8)

65

Figure 5.2: Standard DQN (above) and Dueling DQN structure (below) (Wang et al., 2016)

Prioritized Experience Replay
An additional feature that may boost the performance of a DQN is prioritizing valuable experience during
the training. The experience an agent gains during the simulation is stored in a replay memory. In a standard
approach a uniform sampling occurs to select the steps that are fed to the neural network update. How-
ever, Schaul et al. (2016) enhances the performance of the agent by replaying important transitions more
frequently, and therefore learn more efficiently. This idea can be generalized by including a priority for each
step the agent takes. A feasible approach is to use the magnitude of the temporal difference (TD) error in the
Q-update, between the target the and the online network, as priority function, such that the smaller the error
the higher priority should be given to that step.

5.8. Actor-Critic
At the beginning of this chapter a clear division was made between value-based and policy-based approaches
to classify solution methodologies in dynamic programming. Actor-critic methods combine both approaches
into a single one by having two networks: the actor and the critic. The critic uses temporal difference to learn
a value function. The actor is updated in an approximate gradient direction, based on information provided
by the critic (Q-value network), to produce an optimal policy (Konda and Tsitsiklis, 2003).

The actor-critic methodology can be seen as a learning framework rather than a single algorithmic strategy.
There are two main variants that have been particularly successful in literature: advantage actor-critic (A2C)
and deep deterministic policy gradient (DDPG). The first one relies on Equation 5.8 where the actor policy
calculates the advantages of each action with respect to a baseline. The baseline is calculated by the critic
in the form of the state-value function (Mnih et al., 2016). It is an online policy method because as the be-
havior of the agent changes the updates occur independently of past estimates, so there is not a replay buffer
memory as it happens in Deep Q-Learning.

Lillicrap et al. (2016) introduce deep deterministic policy gradient (DDPG) as an extension of DQN on contin-
uous state-action domains. The architecture consists of two main networks, the actor and the critic, and two
time-delayed copies of these which are called the target networks. It is an off-policy method, like DQN, that
uses a replay buffer to sample experience and update neural network parameters. The value network (critic)
is updated similarly as done in Q-learning. The updated Q value is obtained by iterating over the Bellman
equation. However, in DDPG, the actor updates occur with the next-state Q values in function of the target
value network and target policy network. To calculate the policy network loss function, the objective function
is derived with respect to the policy parameters or the actor network weights. Liu et al. (2020) apply DDPG to
solve a job shop scheduling problem (JSSP). The problem is formalized as a series of jobs that need to be pro-
cessed on a limited number of machines and processing time, each time an action is taken a job is dispatched.
The state is represented by a matrix that includes features such as process time, job compatibility with each
machine and completion of the job. The proposed model comprises actor network and critic network, both
including convolution layers and fully connected layers. The results are benchmarked against Google’s OR-
Library with an accuracy of 91% on deterministic problems and 83% on stochastic environments.

5.9. Neural Combinatorial Optimization
Bello et al. (2019) is among the first works to use machine learning in combinatorial optimization. In his paper

66

he proposes Neural Combinatorial Optimization (NCO) approaches to solve large-scale problem. Classical
supervised frameworks are not applicable due to the lack of optimal labels. However, if combined with a re-
inforcement learning algorithm a feedback reward can be designed to steer an agent in the learning process.
The interplay between machine learning (ML) and combinatorial optimization (CO) is discussed in Bengio
et al. (2020). In the article, the author mentions the problem of sparse rewards because it hinders the agent’s
behavioral improvement if no positive rewards are obtained. Therefore, special attention has to be conveyed
when creating a simulation-environment to provide learning opportunities. When ML is used to approximate
functions and enough data is provided, a policy can be learned by imitation through the expected behavior
which is embedded in the data labels. In case of optimization, a new policy needs to be discovered, by match-
ing the reward structure with the optimization objective, the goal of the learning agent becomes to solve the
problem, without assuming any prior expected knowledge. Bengio et al. (2020) complete their discussion
by considering augmentations of the CO problem with ML and MILP, for further information the reader is
referred to their paper.

Figure 5.3: Reinforcement learning action-reward feedback loop (Solozabal et al., 2020)

The work of Solozabal et al. (2020) is reasonably related to the task allocation problem. This paper solves
a bin-packaging problem using a Recurrent Neural Network as value-function approximator. The problem
considered is cloud computing: a series of network services that need to be optimally placed in a set of host
servers. Along the same line, the maintenance task allocation problem consider a series of tasks that need to
be optimally placed on a set of maintenance opportunities. While on the first problem capacity is dictated
by computing power, storage and connection capabilities, on the maintenance problem the main resource
considered are the man-hours per task. Moreover, there is an additional layer of complexity given by the
interval deadlines, which in the problem of Solozabal could be regarded as a constraint that dictates which
network services can be hosted on each CPU. In very simplistic terms, the bin-packing problem can be seen
as a "Tetris" game, however the final goal is not to construct a puzzle but a schedule that takes the least
possible resources. Figure 5.3 clearly depicts the reinforcement learning process. As visible, the agent’s action
is a sequence with equal length as the input that indicates where each service is going to be placed. The
agent uses NCO to infer a policy πθ(p s |s), where θ are the weights of the neural network, and the policy is
able to map an observation of services, s, to an optimal placement, p s . Thereby, the model proposed has
an end-to-end learning structure. NCO does not consider constraints within its formulation. Thus, dealing
with constraint dissatisfaction is essential to have an objective function that captures enough information
to infer a competitive policy. In this work, the author chooses to further extend the objective function using
Lagrange relaxation technique to include the constraints. The Policy Gradients method suffers from local
convergence. Throughout the learning process, the weights of the neurons are calibrated in the direction of
the gradient of the chosen objective function. Since the solution space is non-convex, this method is prone
to converging to sub-optimal minimums. In order to escapes these zones, exploitation techniques such as
entropy regularization are used in the training process.

67

5.10. Discussion
Approximate dynamic programming is a wide umbrella that encloses different policy behaviors. The reality
is that with rare exceptions, all the approximate classes of policies are almost guaranteed to be suboptimal
(Powell, 2014). This is the cost of dealing with a stochastic optimization model. Nonetheless, it is possible
to argue that each class of policy offers features that could match specific classes of problems. PFA’s are best
suited for low dimensional action spaces and the behavior to be expected is fairly obvious. CFA’s can be at-
tractive for deterministic models that are not able to account for the uncertainty invovled in the environment.
Moreover, look-ahead policies can be useful for time-dependent problems and especially if there is a stochas-
tic prediction involved. Lastly, VFA’s are applicable in highly dimensional problems and when the future state
can be estimated, to communicate the marginal value of being in a state. Therefore, more attention has been
drawn to the latter, given the availability of data, multidimensional resource allocation problems have been
successfully treated with VFA in literature. Hybrid approaches are also a valuable option in order to capture
interactions that might be hard to estimate otherwise.

One of the main points to be addressed is the difference between model-free and model-based approaches.
In model-free methods, the agent’s policy is optimized in a simulation environment by a trial-and-error. In-
stead, model-based methods develop an internal model of the transition dynamics to derive the optimal
policy. Thus, the policies are updated using the model, and then the optimal policy is applied in the envi-
ronment. A transition state function is necessary to update the environment attributes that define the state
when a new decision is taken. In the case that the dynamics of the underlying environment are too complex
and require large decision trees to be formalized, model-based schemes can be biased towards their inter-
nal modeling, while model-free can learn a mapping from state to actions based on the correct observable
features. Therefore, a model-free approach seems to be a more natural choice at first sight.

One of the main advantages of using reinforcement learning is that is effective in a high dimensional and
continuous state space. As seen in most of the control applications, it is possible to extrapolate the prop-
erties related to a state, model them in the optimization with a continuous domain and convert them back
into a discrete action with a mapping function. Furthermore, reinforcement learning it is best suited to learn
stochastic policies since the training process requires a large amount of samples to learn the optimal policy
with respect to a series of (stochastic) attributes and observations. On the other side, disadvantages are also
present when approximations are considered: the local convergence is highly dependent on what approxi-
mation functions are chosen. For instance, a neural network uses stochastic gradient descent which means
that neuron weights are trained in the direction of local minimum that can become difficult to escape without
a diversification strategy.

Another appealing design choice is end-to-end deep learning. However, those reinforcement learning ap-
proaches have the risk to be inaccessible processes. As in the Neural Combinatorial Optimization case, the
agent learns to infer the policy at once from a single input source. In practice, it becomes cumbersome to
fine-tune an approach with a very large state-space which is also not transparent. Moreover, placements
are naturally made in step-by-step decisions, so an agent should be given the possibility to learn from the
intermediary processes when allocating maintenance tasks. Thus, an end-to-end strategy should be avoided.

Finally, it is noteworthy that most works focus on specific techniques around reducing the model size to
make it computationally tractable. Among others, the rolling horizon stands out for drastically reducing the
computational efforts by solving smaller time-window instances. It is also important to include state aggrega-
tion and discretization, especially when considering a stochastic optimization setting. Moreover, the forward
induction or approximation is an essential ingredient to reduce the optimization iterations. The last approx-
imation methodology that should be considered is the decoupling of the problem into several parallel stages
to go from a multi-machine allocation to a single-machine scheduling problem.

6
Conclusion

This literature review explores the airline maintenance scheduling problem from a bottom-up perspective.
The ultimate goal of this work is to develop an adaptive schedule with a task-resolution, rather than a rigid
check-letter scheme. A plethora of literature is critically reviewed to address the challenges that condition-
based maintenance (CBM) brings along, and to enable a dynamic decision-making framework.

The vast majority of the research in airline maintenance focuses on the operational horizon by solving the
aircraft maintenance routing problem. The coupling of the tail assignment with the maintenance scheduling
problem leads to a large model, whose size quickly becomes absurd with the number of flights, tasks, aircraft
and time-windows. Thus, only the most frequent checks are considered, and schedules are assumed to have
a cyclical pattern. The optimization efforts revolve around approximations techniques and simplifications of
the problem to make it computationally tractable. In most cases, the approaches developed are deterministic,
thus a clear limitation arises due to the fact that the inherently stochastic nature of operations is disregarded.
The novelty of this research is the study of large horizon scheduling problems with a dynamic fashion. The
modeling of the stochastic variables is mainly identified in the aircraft utilization, the maintenance elapsed
time, and the demand of non-routine tasks. The last one is especially important, because one of the biggest
challenges of CBM is to deploy a technology able to predict failure and dynamically schedule the tasks related
to the systems affected.

Therefore, approximate dynamic programming is selected as a valid methodology. The reasoning behind this
choice can be broken down in three steps. Firstly, dynamic programming allows to solve a large combinatorial
optimization by nesting smaller decision problems. Hence, the sequential nature of the problem is captured.
Secondly, the stochasticity can be introduced using exogenous information in the state space representa-
tion. Lastly, the synergies between machine learning and dynamic programming make this methodology the
best candidate to solve the stochastic maintenance task allocation problem. In order to narrow down the
vast landscape of algorithmic possibilities, the most promising approaches have been decomposed in four
branches: (1) value-function approximations are introduced to achieve forward induction, and range from
neural networks to simple look-up tables; (2) the receding horizon approach can be used to tackle the large
planning time window; (3) the decoupling of the fleet problem into several single-aircraft scheduling prob-
lems; and (4) state aggregation and discretization are used to avoid sweeping through states that may not
produce beneficial solutions.

Although the purpose of this literature review is purely exploratory, we believe that the proposed methodolo-
gies foster the advancement of airline maintenance planning tools, to solve scheduling problems of stochastic
complexity previously unreachable.

68

III
Research Methodologies

previously graded under AE4010

69

Executive Summary

The long-term maintenance planning is an interesting, yet unsolved, problem for the airline industry, but
also for the operations research community. Preliminary maintenance schedules are created years ahead
in the planning-horizon phase, especially the packaging of maintenance tasks occurs at this stage, and long
overhaul checks are established. However, in the operational-horizon phase, non-routine tasks arise as un-
expected events, and can produce expensive changes in the airline network. Condition-based maintenance
(CBM) strategies aim to bridge the gap between these two realities that normally are treated separately. De-
spite of the potential economic benefit in optimizing the maintenance schedule, the challenge has received
limited attention regarding the planning horizon perspective. This research advocates for pushing further
the integration of machine learning techniques in the stochastic maintenance task allocation problem. An
extensive review of the state-of-the-art methodologies is presented, the limitations of current approaches are
addressed, and the value of stochastic dynamic optimization is conveyed. The outcome of the project will be
a maintenance scheduling tool designed to capture unexpected events, such as aircraft utilization and ran-
dom failures, that hopefully outperforms the current performance of the European airline investigated. More
broadly, the results will be of interest to airlines, airworthiness institutions and MRO operators, enabling the
next generation of maintenance schedules based on a data-driven technology.

70

1
Introduction

Throughout the years, aviation safety and operational efficiency have become a major concern to remain
competitive in the airline industry. Maintenance is performed regularly in accordance to the international air
safety requirements and the aircraft’s manufacturer. It is a necessary process closely interconnected with the
flight scheduling problem, especially because the aircraft under repair will remain in the hangar unable to fly
passengers. Ten percent of flight delays and cancellations are currently caused by unscheduled maintenance
events, costing the global airline industry an estimated 8 billion USD (Daily and Peterson, 2017). Maintenance
operations expenditures correspond to 10% of the airline’s direct operating cost, any marginal improvement
can result in a significant benefit for the airline’s profit (Lagos et al., 2020).

Condition-based maintenance is a strategy designed to transform real-time aircraft data into actionable in-
telligence to avoid unnecessary ground times and replacing periodic-based maintenance strategies. The
approach to realize the digital future of the aviation maintenance is twofold. First, it is essential to deploy
the use of advanced analytics to understand the driving factors of future performance, monitor the individ-
ual aircraft parts and predict remaining useful life (RUL). The second element revolves around how to plan
maintenance and optimize schedules in a dynamic environment. The objective of this thesis focuses on the
latter, by proposing and thoroughly evaluating an adaptive scheduling framework that enables maintenance
tasks allocation in a dynamic environment. The framework will represent a substantial contribution to both
the ADP systems and airline maintenance scheduling literature, bridging the gap of adaptive optimization in
stochastic environments. Capturing the dynamism and planning constraints at hand poses novel challenges
in ADP, and requires substantially extending state of the art optimization techniques from literature.

This research proposal is organized in the following fashion. Section 2 presents a summary of the state of
the art in airline maintenance scheduling, in order to guide the reader from the vast array of literature to
the research questions and main objective in section 3. In section 4, the theoretical background of adaptive
learning methods and their application in a context of airline maintenance scheduling are described. Section
5 deals with the experimental set-up required to develop a maintenance scheduling platform that integrates
the data sources with the methodology proposed. The expected results are described in Section 6, which also
highlights the relevance and implications of the project. In Section 7 the logistics of the project are tackled
and supported with a detailed planning. Finally, Section 8 concludes the project plan with a reflection on all
aspects of the project plan.

71

2
Literature Review

The airline maintenance scheduling (AMS) problem involves two different paradigms. The first one, also
called task-packaging, consists on grouping tasks in blocks according to their periodicity, required skills and
duration. The second one is to assign each block of tasks to a maintenance opportunity. Further extensions
of the problem should include the additional challenge of stochastic optimization with elements such as the
maintenance elapsed time and the aircraft utilization, that will directly affect the task due date (Deng et al.,
2020). Additional line maintenance opportunities, which are only known in the operational horizon, can also
be used to extend the scope of this research.

2.1. Maintenance Planning
There are three main categories of airline maintenance based on their periodicity and duration (Yan et al.,
2011). The first one, long-term, includes heavy maintenance tasks that require an overhaul longer than 10
days. They are also called level C and D checks. The mid-term maintenance plans are set monthly on the
long-term plan. They incorporate both level A and B checks. Lastly, short-term plans produce schedule
adjustments due to incidents. It is noteworthy that these checks are all performed in the hangar facility.
Nonetheless, line maintenance is an additional category performed at the gate of the airport. There is not a
unique and systematic approach to perform maintenance, and every airline has different guidelines to solve
the problem. In fact, occasionally, different category checks are merged based on the slot opportunities and
the aircraft’s operational condition.

Traditional maintenance strategies opt to cluster a series of tasks in blocks based on the resources required
(A,B,C,D checks). This methodology has declined in recent years, in favor of progressive maintenance check-
ing. Modern maintenance planning approaches adopt a task-driven solution, where tasks are bundled to-
gether, such that the resulting check can be performed overnight while the aircraft is not in use (Muchiri and
Smit, 2009). Ozkol and Senturk (2017) developed maintenance task packages for a fleet with over two thou-
sands tasks based on the task source, the personnel requirement, dependency of tasks, and inventory items.
Task-packaging is an important aspect of phased checks in order to increase the aircraft availability and in-
troduce flexibility in the way tasks are grouped, rather than having long aircraft downtimes and sporadic
manpower requirements as in block checks. Nowadays, it is more common to divide these higher checks into
segmented clusters or phases. The main reasons are to reduce aircraft downtime, to have a flexible group-
ing of tasks, and to optimize the schedule. On the other hand, the planning complexity is highly increased,
and the reduced slot capacity may represent a risk when considering non-routine tasks (Shannon and Ackert,
2010).

2.2. Condition-based maintenance
The transition to condition-based maintenance (CBM) combines preventive and predictive strategies that
aim to reduce maintenance costs, yet providing services with an improved quality and reliability. Further-
more, disruptions due to maintenance faults are reduced, and more likely to be foreseen without causing
unexpected aircraft downtimes. Through condition-based information, maintenance can be performed only
when necessary and it becomes possible to identify and perform repairs before damage occurs. The prognos-
tic and health monitoring (PHM) systems are employed to decide when is the most optimal time to allocate
the task and avoid waste of remaining useful life (RUL). Preventive maintenance strategies are used nowadays
to execute recurrent maintenance tasks, and will remain necessary for an effective transition. It both serves
as a fail-safe for predictive maintenance and to globally assess the status of a system in case of false-positive

72

73

predictions. They use a combination of time-driven intervals, based on calendar days, and usage-driven in-
tervals, based on the cumulative aircraft flight hours and cycles (Kinnison, 2004).

The integration of PHM techniques with maintenance decision represents the basis of the CBM concept
(Vianna and Yoneyama, 2018). Hölzel et al. (2012b) present the disruptive potential of PHM systems to re-
duce both, operational interruptions caused by unscheduled maintenance tasks and downtimes due to un-
necessary preventive maintenance. Literature suggests that only a half of the total tasks required by heavy-
maintenance can be planned, the remaining half remains unscheduled until the inspections (Kulkarni et al.,
2017).
Condition-based maintenance (CBM) strategies requires the aircraft to be completely wired and equipped
with sensors to monitor the real-time health of the fleet. To date, various airline operators have implemented
certain aspects of CBM in their operations, that have dramatically increased the level of electronic integra-
tion in aircraft’s systems (Teal and Sorensen, 2001). However, none have taken full advantage of the CBM
concept because of the lack of fully equipped aircraft with health monitoring sensors, the strict air safety
requirements, and the lack of digitalization in the maintenance operations domain. In order to foster the
implementation of CBM strategies in the industry, some hybrid approaches have been proposed in the re-
search community where traditional scheduled maintenance is used for critical structures and condition-
based maintenance for non-critical systems (Dong et al., 2019, ReMAP H2020).

2.3. Airline Maintenance Optimization
The majority of researchers that include maintenance in the scope of the optimization have focused on the
aircraft routing problem (ARP) and the tail assignment (TA). The first one is concerned with the creation of
lines of flight, while the second one assigns these routings to individual aircraft. Frequently, these problems
are solved in combination with maintenance considerations, in order to respect the maintenance schedule
that requires the aircraft to be present at the hangar location. Since the early efforts of Feo and Bard (1989)
a vast array of literature has formulated the ARP with a time-space network. Hane et al. (1995), Clarke et al.
(1996), Clarke et al. (1997) and Gopalan and Talluri (1998) extend their formulation with maintenance and
crew considerations. It is noteworthy that the problem is solved with an operational horizon that normally
has a time-window of 3-4 days. Instead, the planning horizon that is investigated in this research extends to
3-8 weeks for mid-term checks until 1-2 years for the long-term strategical checks.

Sarac et al. (2006) is one of the few works that aims to maximize aircraft utilization subject to the resource
constraints (available man-hours and maintenance slots). The author uses an innovative branch-and-price
algorithm formulated with a route-based network including flight and aircraft coverage constraints, as well as
the labor force hours and the slot availability. Along similar lines, Safaei and Jardine (2018) designed a multi-
commodity network flow model with generalized maintenance constraints. The longest aircraft maintenance
routing horizon is proposed by Sanchez et al. (2020) with a 30-day schedule. Moreover, there is more flexibility
as any ground time represents a feasible opportunity. However, the author explores a different problem that
concerns line maintenance instead of hangar checks.

Sriram and Haghani (2003) consider a 7-day planning horizon assuming a cyclic flight schedule for an het-
erogeneous fleet with maintenance constraints. The maintenance checks are dependent on the aircraft uti-
lization, thus also on the flight sequence. The scope of the problem is limited by the planning horizon which
allows only A and B checks to be considered. Steiner (2006) presents a heuristic method for maintenance
scheduling with the objective of minimizing maintenance actions and evenly distribute among the fleet the
slot capacity availabl and flying hours. Around the same time, Afsar et al. (2006) proposes a rolling horizon
heuristic to solve the maintenance planning problem for an airline with 200 aircraft. The planning is pro-
duced for a ten-weeks period with a sliding time window of one week. The heuristic first addresses critical
aircraft that must undergo maintenance in the planning week and subsequently manages the non-critical
aircraft load smoothing with simulated annealing (Afsar et al., 2009).

Lastly, Deng et al. (2020) developed a look-ahead dynamic optimization model to solve the aircraft main-
tenance scheduling problem of a European airline. The problem size is determined by a 4-year planning
horizon and an heterogeneous fleet of more than 40 aircraft. Two types of phased checks are considered in
the model which theoretically should involve all the tasks provided in the maintenance planning document
(MPD). In order to reduce the size of the problem the aircraft are ordered by maintenance urgency based on
the earliest deadline. A thrifty algorithm is used to check the workability of a state by making sure that no

74

aircraft will have to be grounded in the worst case scenario, which makes use of all available slots.

2.4. Approximate Dynamic Programming approaches
The key idea of Dynamic Programming (DP) is dividing the problem into states and nesting smaller decision
problems inside a larger decision (Dreyfus, 2002). The Markov Decision Process (MDP) is used to formalized
the dynamic programming model in DP (Busoniu et al., 2010). Even though classic DP is an important theo-
retical concept, it is almost impossible to use in large combinatorial problems. Therefore, to make a problem
computationally tractable, approximate models introduce elegant theories to reach near-optimal solutions.
The algorithmic strategy proposed by Approximate Dynamic Prpgramming (ADP) involves forward induc-
tion. This optimization technique only updates visited states, but it requires to have an estimation of the val-
ues of states that might be visited. It replaces the computational burden of looping backwards through each
possible state to obtain the exact value in classic DP, with the statistical problem of estimating the state-value.
This is also known as the first curse of dimensionality that arises due to the state space. Powell et al. (2012)
defines the value function approximation (VFA) as a policy determined by an explicit function that indicates
the optimal action to take when the state space is too large. Mathematically it is expressed as the expected
gain given the current state s. The value-function can be decomposed in imminent rewards and discounted
rewards, that estimate the value of future states (Littman et al., 2013). Value function approximations can be
presented in different flavors, this terminology include simple look-up tables to parametric functions, like a
linear regression or a neural network, as well as non-parametric functions, like Gaussian kernel regressions
(Powell and Topaloglu, 2006).

There are two ways to solve stochastic dynamic problems. The first one uses statistical distributions to model
the range of possibilities (including slack), and solve samples of the model deterministically. This technique
is also called sampled approximation because the objective function tries to maximize the sample average
approximation instead of the expectation in the Bellman equation (Bellman, 1972). The second method in-
cludes the stochasticity in the modeling. Therefore, for the same state-action combination, the response
of the model varies based on the exogenous information, by this term we refer to external information that
is uncertain until the next action is taken. These approaches are referred to as adaptive-learning models,
they use iterative methods to solve sequences of relatively easy problems, with the hope that the algorithms
will converge to the solution of the original problem. All sequential learning algorithms, for any stochastic
optimization problem, can ultimately be reduced to a sequential decision problem, otherwise known as a
dynamic program (Powell, 2011).

In order to narrow down the vast landscape of algorithmic possibilities, the most promising approaches
have been decomposed in four branches: (1) value-function approximations; (2) the receding horizon ap-
proach can be used to tackle the large planning time window; (3) the decoupling of the fleet problem into
several single-aircraft scheduling problems; (4) state aggregation and discretization are used to avoid sweep-
ing through states that may not produce beneficial solutions. The first one, VFA, has been widely studied in
the works of Nazari et al. (2018), Simão and Powell (2009), Simão et al. (2008) to solve a dynamic fleet manage-
ment, an inventory optimization and a stochastic vehicle routing problem respectively. The rolling horizon
has been implemented with Monte Carlo iterations in the work of Lagos et al. (2020), Ulmer (2020) and Deng
et al. (2020). The decoupling of the fleet problem into parallel or sequential stages is proposed based on the air-
line strategical diversity that exists between different aircraft subtypes and check types. State aggregation and
discretization are general approaches used to reduce the computational requirements of a model (Deng et al.,
2020, Powell and Topaloglu, 2006). Finally, within the reinforcement learning community the approaches that
stand out are model free due to the difficulty in learning the large dynamics of maintenance operations, that
would be required for a model-based algorithm. The most attractive approaches that have been identified are
deep Q-learning (Mnih et al., 2015), actor-critic (Mnih et al., 2016), and neural combinatorial optimization
(Bengio et al., 2020).

2.5. Synthesis, relevance and positioning of project
In this literature review, the airline maintenance scheduling problem has been presented alongside the mod-
els that include maintenance considerations. The clear lack of automated planning tools for maintenance
scheduling arises from the fact that it is a long-term problem in a dynamic environment where factors such
as the aircraft utilization, the maintenance elapsed time and the non-routine task demand are continuously

75

changing. Moreover, the literature mainly focuses on the operational horizon by solving the aircraft routing
problem with maintenance constraints. Therefore, there is no flexibility in the maintenance scheduling and a
pre-existent maintenance plan is necessary. The main takeaway of this chapter is that there is barely no work
on the maintenance allocation problem, however, the literature models can be adapted and extended. It is
evident from the analyzed literature that two main challenges are yet to be addressed: (1) the models grow in
exponential size as the planning window increases, and (2) stochastic factors are not included in the models,
so the optimization takes a static environment and a deterministic approach. Therefore, it is deduced that
both reasons indicate that standard optimization techniques, like commercial solvers, would not be able to
cope with the size of the problem and produce useful results for a dynamic environment. In order to include
the inherent uncertainty of maintenance operations, the state-of-the-art scheduling approaches are reviewed
and considered for the scope of this research. Based on the sequential nature of dynamic programming and
its synergy with machine learning, adaptive-learning methods are proposed as a suitable algorithmic strategy
to solve the problem addressed in this thesis project.

3
Research Objectives and Questions

The main research objective of this thesis is the following:

Develop a maintenance scheduling methodology with an approximate dynamic programming approach to
enable condition-based maintenance in a fast and adaptive manner, and to deliver a near-optimal

maintenance schedule.

The main research question to be answered in order to fulfill the research objective is stated below.

What approximate dynamic programming approach can enable adaptive maintenance scheduling, and how
should the stochastic elements be modeled in the optimization?

In order to achieve the objective and answer the main research question, the SMART framework is chosen to
formulate specific, measurable, achievable, realistic and time-specific project objectives. The following four
sub-questions are identified and broken down further:

1. What are the current practices in airline maintenance scheduling (AMS)?
(a) What are the airworthiness requirements related to maintenance?

(b) What is the economic impact of maintenance in the airline industry?

(c) Can maintenance scheduling be divided in multiple phases?

(d) What are the task features considered when creating maintenance work packages?

(e) Which simplifications to the AMS problem are acceptable within the industry practice?

2. How can a CBM context be exploited during maintenance task packaging and allocation?
(a) Can a CBM strategy be applied while keeping a traditional block check structure?

(b) Is it possible to create smaller work-packages instead of fixed periodic blocks?

(c) How does the size of the maintenance work-packages affect the schedule optimization?

(d) How much access synergy can be obtained by packaging tasks prior to scheduling?

(e) Does the condition monitoring technology exist to allow a transition to a fully automatic and digital mainte-
nance planning tool?

3. What are the current models for airline maintenance scheduling?
(a) What models have already been implemented in the airline industry?

(b) Are maintenance task packaging and allocation considered in the optimization models?

(c) What are the limitations of the current strategies?

(d) What assumptions can be made to the maintenance scheduling model?

(e) What industries face similar problems?

4. Can approximate optimization techniques produce near-optimal maintenance schedules?
(a) What approximation models can be used?

(b) How can historical task allocation data be used to structure the optimization algorithm?

(c) What are the block and task features that provide better results?

(d) How should the quality-time trade-off be assessed during the validation phase?

(e) What are the most relevant key performance indicators to measure the AMS performance?

(f) How can the robustness of the framework be quantified and tested?

(g) What validation models can be used to validate the scheduling algorithm?

(h) What are the limitations of the proposed scheduling method?

76

4
Methodology

In order to answer the research questions in an exhaustive manner, the methodology has been structured
based on the research objective and questions. These steps are fundamental to establish an ADP framework
that will be tested in a real case scenario of a European airline that is providing the data for this research
project.

4.1. Model of the environment and operating setting
It is of paramount importance to develop an environment that encloses the airline operations dynamics. The
first and third research questions are investigated in order to accurately model the maintenance operations
and adapt existing airline maintenance models to an ADP environment. As described in the literature, a
dynamic programming approach is modeled as a Markov Decision Process (MDP) that have four essential
components (Busoniu et al., 2010). The first one is the transition function, that establishes how each action
changes the state of the environment. Therefore, it updates the resources (available slots) and the demand
(aircraft competition), as well as the next due date of the rescheduling problem. Secondly, the state needs
to be defined based on observable features that the agent shall be able to assess. Eventually, the agent will
learn the most optimal policy based on this information received from the environment. For this reason, it is
important to mathematically formulate the aircraft competition, the resources available, the future impact on
the rescheduling tasks, and the availability of maintenance slots. In order to respect the Markov or memoryless
property, the optimal policy should be merely dependent on the present state and all the previous ones can
be disregarded (Alagoz et al., 2010). Thirdly, the reward function needs to be shaped. Each action that the
scheduling agent takes, follows a local reward. It is important to transmit sufficient information to the agent
in order to learn the value of being in a state. Lastly, the fourth element is the action space that defines the
possible actions that the agent can take at each step based on the operational constraints. Due to the nature of
the problem each action will be related to a scheduling possibility and it will be discrete. Since, a model-free
approach has been chosen, the agent will not be aware of how each element is computed but it will simply
observe the state that should contain all the relevant information to make a decision.

4.2. Model of the scheduling agent
The agent function is to learn an optimal policy that is able to map a state into a scheduling action. The
knowledge-base of the agent is improved through iterations over the environment such that the internal func-
tion is calibrated to respond with an optimal action at every step. Therefore, the fourth research question,
regarding the approximate optimization model, is intrinsically related to the agent behavior. A key aspect
is to develop an agent that is able to interact with the environment. The sequential nature of the problem
should be captured in order to take into account the weight of an action in the future. This means that both,
the reward function and the state features need to be shaped based on the agent learning performance. Ide-
ally, it should be possible to design a modular agent that is able to test different algorithmic strategies such
as deep Q-learning, actor-critic and Monte Carlo iteration. Finally, the agent should be able to adapt to new
environments it has never seen before. Therefore, it is quintessential to explore different scenarios during the
training. The agent should learn the optimal behavior for every possible situation rather than only a specific
fleet condition or maintenance slot configuration.

77

78

4.3. Stochastic modeling
Initially, the model developed will be deterministic in order to create a simpler case study and test the ADP
frameworks. Therefore, the aircraft utilization will be fixed, and the due dates of each task will be the same at
every iteration. Moreover, the non-routine tasks will not be considered explicitly, but it is assumed they can
be included with a buffer time at every slot. Lastly, the unexpected failures will be excluded from the scope of
the deterministic model such that due dates will be only dependent on the aircraft utilization.

The stochastic parameters that will be implemented in later stages are the aircraft utilization and the non-
routine tasks. The first one can be modeled as a random variable sampled at each step of an episode based
on historical information. The aircraft utilization will mainly affect the due date of a maintenance block. The
second parameter is the non-routine task demand which can be modeled based on unexpected failures and
maintenance elapsed time. Thus, it affects both due dates and tasks included in each block.

4.4. Task-packaging integration
The last step of the methodology proposed investigates a maintenance policy that goes beyond the traditional
operational setting. In other words, it assumes a future scenario where the maintenance slot calendar is not
designed to fit equal blocks in a periodic pattern. Therefore, smaller work-packages need to be designed in
order to exploit more the interval of each task. Since the task with the earliest due date defines the block inter-
val, it follows that the smaller the maintenance blocks, the more flexible becomes the scheduling framework.
In order to evaluate possible task-packaging policies the guidance of the airline will be essential to produce
realistic groups of tasks and maintenance slot calendars. Ideally, the task-packaging can be solved with sim-
ple rules that slightly alter the existing work packages. The resulting configurations will be tested with the
ADP framework, and evaluated based on several key performance indicators such as the interval utilization,
the number of groundings and the rescheduling instances of a task.

5
Experimental Set-up

The research project is conducted under the supervision and guidance of TU Delft and a European Airline.
The airline facilitated maintenance operations data in order to develop a realistic framework with operational
restrictions. The data necessary to develop a maintenance plan involves three different sources. The first one
refers to the maintenance slot availability that indicates the opportunities for a fleet. Secondly, the mainte-
nance planning document is essential to have a realistic number of tasks and a block configuration. Thirdly,
the daily aircraft utilization is necessary to calculate estimations of the next due date and constrain the task
intervals. Moreover, the airline provided historical task allocation data, to have a baseline for the optimiza-
tion, and flight schedules, in order to leverage turn-around-times as line maintenance opportunities.

The environment features include the maintenance blocks to be performed, the fleet condition, and the
maintenance slot availability. The agent will perform scheduling actions that will return a reward, the next
state and the status of the episode (ongoing or finished). At every step, the environment is updated based on
the aircraft utilization data and the tasks are ordered based on their priority and urgency. Figure 5.1 has been
included to visualize the modules, and the general sequencing of a maintenance scheduling framework. The
figure shows a general reinforcement learning structure adapted to the research topic, and it is possible to
distinguish deterministic (blue) from stochastic (red) modules. The flowchart has been designed based on
the methodological steps described in the previous section.

Figure 5.1: Experimental set-up of the reinforcement learning framework

The approximate dynamic framework of maintenance task allocation will be developed in Python 3.7. The
main reason is because it is a programming language widely used for scientific research. Moreover, it is possi-
ble to exploit several built-in libraries that range from machine learning to optimization. The most attractive

79

80

libraries are keras to develop neural networks as parametric value-functions, and openAI that is used as in-
spiration to create a reinforcement learning environment. Furthermore, the simulations will be executed on
a MacBook Pro machine with a 3.1 GHz Intel i5 dual-core processor and 16GB of RAM. All the data previ-
ously mentioned is downloaded from the WebDrive and stored locally in the computer. The main drawback
is the limited computational power of the machine, however, it could be possible to test the final training
performance on the TU Delft server that is directly linked with the WebDrive that the airline uses to share the
data.

6
Results, Outcome and Relevance

The analysis of the scheduling result is a core part of the project captured by research questions 2 and 4. The
first question investigates the possibility of changing the task-packaging schedule of the airline with alterna-
tive configurations, while the second one refers to the optimization results achieved with an ADP approach.
The outcome of the research project will be a novel decision framework for maintenance scheduling able to
deal with stochastic variables, with the main goal of enabling a condition-based maintenance strategy. To the
best of our knowledge, it is the first attempt to bridge the gap between long-term maintenance planning with
the operational horizon, as well as the creation of a stochastic optimization for maintenance planning. The
results can also be used by the European airline, to which the operations model has been tailored, to address
the feasibility of a maintenance plan under certainty, as well as re-adapting the schedule due to unexpected
events.

Verification and validation tests are necessary in order to ensure soundness of the results, establish the rele-
vance of the research and its intersection with the maintenance planning and the ADP literature. Unit level
test are essential to ensure that the individual blocks are working properly. For instance the due date calcu-
lation will be compared for known cases, the interval and aircraft utilization constraints will be computed
for an input maintenance task and the performance of the agent will be tested with different cost functions.
The verification at a system level will involve (1) robustness tests to ensure that small schedule changes lead
to similar allocation results, (2) greedy tests to avoid an agent that oversees the importance of future per-
formance, and (3) reduced scenarios with trivial solutions in which the optimal allocation is known. The
validation will be performed based on the historical allocation, however, this comparison will provide only a
limited understanding of the ADP performance due to flexibility that maintenance controllers have in prac-
tice and the maintenance plan changes over large horizons. Therefore, a second validation strategy has been
proposed. The airline tool to schedule A-checks will be compared under the same conditions of the ADP
framework. Even though only A-checks are considered in the scope, the validation result will obtain insights
on the optimization performance of an ADP model compared to a commercial solver.

81

7
Project Planning and Gantt Chart

In the following page, a Gantt chart has been included to illustrate a complete schedule of the work to be
conducted. The main steps described in the methodology have been broken down into several tasks and
modules. Moreover, an estimate is made regarding the time required for the completion of each task. To
date, most of the tasks up the midterm have been completed as indicated by the progress bars. These work-
packages constitute the bulk of the thesis project, but several other steps such as revisions, iterations, report
writing, and key meetings are also important parts of the project. The Gantt chart starts after the literature
study with the kick-off meeting (14/05/2020) but it is still possible to look at the orientation phase activities
on the leftmost column. The core modeling began after the kick-off meeting, which is the date on which the
airline data became accessible after signing the non-disclosure agreement.

The project is organized in four main blocks. During the orientation phase, the literature study is performed
together with the formulation of the research questions. In the midterm phase the data analysis and the
model are developed, as well as the verification and validation of the deterministic model. It is noteworthy
that most of the activities have been designed based on the research questions formulated in Section 3 and
their chronological dependency. During the final phase, the model is reiterated based on the feedback re-
ceived in the Midterm meeting (09/11/2020). Moreover, the aim is to enhance the model with the addition of
stochastic variables such as aircraft utilization, non-routine tasks and variable task-packages. The graduation
phase concludes the project with the submission of the draft report and the green light meeting (12/01/2021)
before the last date (28/01/2021), when the defense will take place.

82

ID Task

Mode

Task Name Duration Start Finish

1 1 Orientation Phase 75 days Fri 1/24/20 Thu 5/14/20

2 1.1 Project selection 0 days Fri 1/24/20 Fri 1/24/20

3 1.2 Defintion of the research question 7 days Fri 1/24/20 Mon 2/10/20

4 1.3 Literature Study 50 days Thu 2/13/20 Wed 4/22/20

5 1.4 Draft Submission 0 days Wed 4/22/20 Wed 4/22/20

6 1.5 Prepare kick-off presentation 9 days Fri 4/24/20 Wed 5/6/20

7 1.6 Kick-off meeting 0 days Thu 5/14/20 Thu 5/14/20

8 2 Midterm Phase 112 days Fri 5/15/20 Fri 11/6/20

9 2.1 Data Extraction & Analysis 5 days Fri 5/15/20 Thu 5/21/20

10 2.2 Familiarization with previous codes 5 days Fri 5/22/20 Thu 5/28/20

11 2.3 Analyze historical task allocation 4 days Fri 5/22/20 Wed 5/27/20

12 2.4 Analyze aircraft utilization 4 days Thu 5/28/20 Tue 6/2/20

13 2.5 Simulation of determinisitic AC utilization 5 days Tue 6/2/20 Mon 6/8/20

14 2.6 Simulation of stochastic AC utilization 5 days Tue 6/9/20 Mon 6/15/20

15 2.7 Report data analysis 3 days Tue 6/16/20 Thu 6/18/20

16 2.8 Data Analysis Completed 10 days Fri 6/19/20 Thu 7/2/20

17 2.9 Develop mathematical model 10 days Fri 7/3/20 Thu 7/16/20

18 2.10 Implement ADP model 7 days Fri 7/17/20 Mon 7/27/20

19 2.11 Analyze solutions 7 days Fri 7/31/20 Fri 8/28/20

20 2.12 Model completed 0 days Fri 8/28/20 Fri 8/28/20

21 2.13 Verification & Validation 31 days Sat 8/29/20 Mon 10/12/20

22 2.13.1 Unit testing and trivial solution scenarios7 days Sat 8/29/20 Tue 9/8/20

23 2.13.2 Benchmark against historical data 7 days Sat 9/12/20 Tue 9/22/20

24 2.13.3 Analyze MILP data 7 days Wed 9/23/20 Thu 10/1/20

25 2.13.4 Benchmark against MILP 7 days Fri 10/2/20 Mon 10/12/20

26 2.14 Finalize Literature Study 12 days Tue 10/13/20 Wed 10/28/20

27 2.15 Prepare Midterm presentation 7 days Thu 10/29/20 Fri 11/6/20

28 2.16 Midterm Meeting 0 days Fri 11/6/20 Fri 11/6/20

29 3 Final Phase 31 days Mon 11/9/20 Mon 12/21/20

30 3.1 Model enhancement 5 days Mon 11/9/20 Fri 11/13/20

31 3.2 Include sotchastic aircraft utilization 5 days Mon 11/9/20 Fri 11/13/20

32 3.3 Model random distribution of non-routine

tasks

5 days Mon 11/16/20 Fri 11/20/20

33 3.4 Include line maintenance opportunities and

TO's

5 days Mon 11/23/20 Fri 11/27/20

34 3.5 Prototype complete model 4 days Mon 11/30/20 Thu 12/3/20

35 3.6 Simulate Case Study 4 days Fri 12/4/20 Wed 12/9/20

36 3.7 Verification & Validation 4 days Thu 12/10/20 Tue 12/15/20

37 3.8 Finalize Thesis report 4 days Wed 12/16/20 Mon 12/21/20

38 3.9 Final Draft report 0 days Mon 12/21/20 Mon 12/21/20

39 4 Graduation Phase 17 days Tue 12/22/20 Thu 1/28/21

40 4.1 Finalize editing of report 5 days Tue 12/22/20 Tue 1/12/21

41 4.2 Greenlight meeting 0 days Tue 1/12/21 Tue 1/12/21

42 4.3 Final Model iteration 5 days Wed 1/13/21 Tue 1/19/21

43 4.4 Feedback implementation 5 days Wed 1/13/21 Tue 1/19/21

44 4.5 Thesis Hand-in 0 days Tue 1/19/21 Tue 1/19/21

45 4.6 Prepare defense presentation 7 days Wed 1/20/21 Thu 1/28/21

46 4.7 Defense 0 days Thu 1/28/21 Thu 1/28/21

Orientation Phase

Project selection

Defintion of the research question

Literature Study

Draft Submission

Prepare kick-off presentation

Kick-off meeting

Midterm Phase

Data Extraction & Analysis

Familiarization with previous codes

Analyze historical task allocation

Analyze aircraft utilization

Simulation of determinisitic AC utilization

Simulation of stochastic AC utilization

Report data analysis

Data Analysis Completed

Develop mathematical model

Implement ADP model

Analyze solutions

Model completed

Verification & Validation

Unit testing and trivial solution scenarios

Benchmark against historical data

Analyze MILP data

Benchmark against MILP

Finalize Literature Study

Prepare Midterm presentation

Midterm Meeting

Final Phase

Model enhancement

Include sotchastic aircraft utilization

Model random distribution of non-routine tasks

Include line maintenance opportunities and TO's

Prototype complete model

Simulate Case Study

Verification & Validation

Finalize Thesis report

Final Draft report

Graduation Phase

Finalize editing of report

Greenlight meeting

Final Model iteration

Feedback implementation

Thesis Hand-in

Prepare defense presentation

Defense

7 12 17 22 27 3 8 13 18 23 28 2 7 12 17 22 27 2 7 12 17 22 27 1 6 11 16 21 26 1 6 11 16 21 26 31 5 10 15 20 25 30 4 9 14 19 24 29 4 9 14 19 24 29 3 8 13 18 23 28 3 8 13 18 23 28 2 7 12 17 22 27

February 2020 March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020 October 2020 November 2020 December 2020 January 2021 February 2021

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: Thesis_ProjectPlan_Dan

Date: Thu 3/11/21

8
Conclusions

Approximate dynamic programming approaches have the potential to unlock the benefits of condition-based
maintenance policies. In order to capitalize on these benefits, airlines face a number of hurdles due to the
lack of sensor technology and the unattempted optimization of maintenance schedules. The challenge con-
sidered in this research project is the latter. The literature study revealed that maintenance scheduling is a
problem studied with short planning horizons and deterministic models. The need of stochastic optimization
stems from the uncertainty involved in airline operations and the availability of large streams of maintenance
data. To overcome this barrier, adaptive-learning methods have been identified as a promising algorithmic
framework.

Several research questions have been formulated and a methodology was defined to address them, and fulfill
the research objectives. The methodology considers four main modules. Firstly, the environment module
encloses everything related to the simulation of airline maintenance operations. Secondly, the reinforcement
learning agent model is created to optimize the maintenance blocks allocation. The third module requires the
implementation of stochastic variables and a simulation with unexpected events. Lastly, the fourth module
considers a modification to the maintenance work-packages in order to explore alternative configurations
that may result in a better performance. The duration of the thesis project will be of approximately 9 months,
excluding the summer and Christmas holidays, with the final defense at the end of January 2021. The majority
of resources have been allocated to developing a reinforcement learning framework and thoroughly analyzing
the maintenance scheduling optimization performance. The outcome of the project will be a maintenance
scheduling tool designed to capture unexpected events, such as aircraft utilization and random failures, that
hopefully outperforms the current performance of the airline investigated. More broadly, the results will be
of interest to airlines, airworthiness institutions and MRO operators, enabling the generation of maintenance
schedules with a data-driven technology.

84

IV
Supporting Work

85

1
Airline Maintenance Planning

The airline maintenance panning problem consists of two paradigms. The first one is the task-packaging
problem that is related to the creation of maintenance work-packages. The second paradigm is the airline
maintenance scheduling problem (AMSP), where the predefined maintenance blocks or work-packages are
allocated to a limited set of maintenance opportunities. Modern airlines have several thousands of parts,
systems and components that require the aircraft to undergo maintenance periodically after a specific us-
age interval, defined in either flight hours (FH), flight cycles (FC), or calendar days (DY) (Witteman et al.,
2021). With the introduction of condition-based maintenance (CBM), some of the tasks of the aircraft main-
tenance program (AMP) are monitored by prognostic and health management (PHM) technology, i.e. sensors
on board of the aircraft. Therefore, the notion of fixed interval is replaced by a probabilistic distribution of
the task due date over the maintenance lifecycle. The task-packaging problem is tackled in a methodology
that combines routine blocks predefined with a MILP clustering model and individual CBM tasks. The latter
are continuously monitored with prognostics and must be allocated together within the routine blocks, also
called A-checks, before their predicted due date. Figure 1.1 shows the conceptualization of the approach de-
fined to solve the AMSP. In this chapter an overview of the reduced AMP considered for this work is provided.
Moreover, the transition to condition-based maintenance (CBM) is presented in order to enable the next-
generation of airline maintenance operations. Lastly, the CBM experimental scenarios and the routine block
clustering policies are explained in more detail. The reinforcement learning model that solves the AMSP is
presented in the following chapter.

Figure 1.1: Approach overview

1.1. Aircraft maintenance program
The complete routine aircraft maintenance program contains 1086 tasks. These tasks belong to different
check categories based on their interval limitation, the aircraft zone, the labor hours, the skills required, and
other task inter-dependencies (Ozkol and Senturk, 2017). The focus of this research is centered around 186
routine tasks belonging to the A-check program. Therefore only 17% of the complete AMP is in the scope of
this research. The C-check program is excluded because due to strategical reasons they are scheduled much

86

87

farther in advanced than A-checks. Since C-checks require a lot more labor hours, it is preferred to schedule
them during low-demand periods and in sequence for the whole fleet, in order to leverage the learning curve
effect of the engineers. Furthermore, smaller than A-checks and the non-routine maintenance program have
been excluded because they have an operational planning horizon. Therefore, they make use of additional
opportunities such as line maintenance or last-minute slots. For this reason, in Figure 1.1 non-routine tasks
arising from substituted tasks have not been considered in the scope of this work. Since this research focuses
on the tactical maintenance planning process, only A-checks have been considered in the scope of the CBM
implementation. For a complete overview of the AMP used for this work, the reader is referred to Appendix A
where all the tasks have been classified in their respective group with the interval limit specifications.

The A-check program defined by the reference European airline comprises a total of 24 maintenance blocks
spaced by 1500 FH, 600 FC, and 120 DY. Therefore, it determines the aircraft maintenance lifecycle for approx-
imately 8 years. The 24-block maintenance program comprises a total of 2296 task executions per aircraft. In
Figure 1.2 the original A-check program has been taken as a reference to illustrate the different skills required
per task group. On the left (Figure 1.2a) the total number of tasks repetitions has been reported with a clas-
sification per skill and task group, while on the right (Figure 1.2b) the amount of labor hours is visible. It is
deduced that the skills that are required the most for the completion of the 24-block program are G_M&A and
C_CM. Nonetheless, skills have not been considered for the creation of maintenance blocks when modifying
the original A-check program. In order to simplify the problem, it has been assumed that the work-packages
can be created exclusively on interval-based requirements and slot capacity constraints. This assumption
should lead to different clustering results than the airline, however, it is safe to assume that their influence
will be minor since, generally, maintenance work-packages have an homogeneous distribution of resources.
Therefore, the A-checks composition could be modified in later stages to include additional operational re-
quirements.

D
ET D
IS

FN
C

G
VI

LU
B

O
PC R
ST

SV
C VC

0

50

100

150

200

250

300

R
ep

et
iti

on
s

Tasks Repetitions in A-checks

Skills
C_CM
G_CT-M&A
G_M&A
M_CT-B1

(a) Task Repetitions of original A-check Program diversified per skill and
task group

D
ET D
IS

FN
C

G
VI

LU
B

O
PC R
ST

SV
C VC

0

50

100

150

200

250

La
bo

r H
ou

rs

Labor hours in A-checks

Skills
C_CM
G_CT-M&A
G_M&A
M_CT-B1

(b) Labor hours of original A-check Program diversified per skill and task
group

Figure 1.2: Overview of routine tasks in original A-check program

1.2. Daily aircraft utilization
The task intervals can be defined either in flight hours (FH), flight cycles (FC) or calendar days (DY). It is of
paramount importance to account for the daily aircraft utilization because the first two limitations are usage
based. Moreover, the fleet investigated is composed by 16 Boeing 787 which usually fly long haul routes. Con-
sequently, the flight hour interval tends to be the most constraining factor for maintenance requirements.
The average monthly utilization of five years has been considered to perform a statistical analysis over the
complete fleet, as visible from Figure 1.3. The average daily rates are 16 flight hours and 1.85 cycles per air-
craft. A seasonal pattern is observable with higher utilization rates in the summer and the Christmas periods.
This pattern is captured in the simulation by calculating the task due dates with the respective aircraft uti-
lization at each month. An additional remark is the generalization of equal daily rates for the complete fleet
which gives place to another assumption: every aircraft is utilized by a constant monthly rate. In reality, each
aircraft is utilized by a different amount of flight hours and flight cycles depending on the individual routings.

88

2 4 6 8 10 12
Month

2

4

6

8

10

12

14

16

D
ai

ly
 U

til
iz

at
io

n

Daily fleet utilization

Flight Hours
Flight Cycles

Figure 1.3: Daily aircraft utilization

1.3. The transition to CBM
Nowadays aircraft maintenance programs are mainly constituted by preventive and corrective tasks (Hölzel
et al., 2012a). While the first ones are foreseeable and easy to plan, the actual due date of the tasks is dictated
by a conservative interval limit to preserve safety. On the other hand, corrective maintenance tasks make full
use of the life of a system but are more difficult to plan due to the short-term notice. The use of prognostics
brings the benefit of extending the useful life of preventive tasks, and the ability of forecasting the due date
of a corrective maintenance task before the respective failure occurs. The installation of PHM technology
in the future generation of aircraft could reduce scheduled maintenance, and in turn increase the aircraft
availability and utilization.

A large share of the maintenance activities in the AMP are expected to become obsolete and unnecessary
thanks to the availability of aircraft condition data and remaining useful life (RUL) prognostics. Hölzel et al.
(2012b) describes this maintenance strategy as prognosis- and task-based . However, there is not a clear sym-
biosis between the CBM task-based approach and the traditional letter-check program. Moreover, not all
tasks will be monitored with sensors, and preventive maintenance strategies will remain a core part of the
maintenance program in the transition period. Therefore, this work proposes a strategy that is able to incor-
porate an early adoption of PHM technology in the current maintenance planning practices, while keeping a
letter-check structure. To overcome this barrier, a portion of the routine maintenance tasks are assumed to
be monitored with a task-based approach; while the remaining routine tasks are clustered into maintenance
blocks that are repeated in a predefined sequence based on fixed-interval requirements.

Table 1.1: CBM Scenarios

Task Group Nr. CBM Action Case 1 [%] Case 2 [%] Case 3 [%]
General Visual Inspection (GVI) 41 Task substitution 0 10 25
Visual Check (VC) 9 Task Substitution 0 10 25
Detailed Inspection (DET) 21 Task Substitution 0 10 25
Functional Check (FNC) 18 Task Substitution 0 25 50
Operational Check (OPC) 34 Task Substitution 0 25 50
Servicing (SVC) 8 Interval Escalation 0 10 25
Lubrication (LUB) 18 Interval Escalation 0 10 25
Restoration (RST) 14 Interval Escalation 0 10 25
Discard (DIS) 23 Interval Escalation 0 10 25

The CBM task-based approach is twofold. Some tasks will follow a task interval escalation based on RUL
prognostics, while the other part will be substituted. In the latter case, tasks such as inspections or visual

89

checks are completely removed from the routine maintenance program, and instead a sensor replaces those
tasks that eventually will trigger a non-routine task. The experiments proposed in this work evaluate three
different cases where the CBM action rate is varied as reported in Table 1.1. The baseline case only contains
routine tasks, while the second and third case have a 10% and 25% CBM action rate. Each task group is
affected by either escalation or substitution based on the nature of the tasks. For instance, an inspection
can only lead to substitution, while lubrication or restoring tasks are affected by interval escalation. A higher
action rate was applied to the Functional Checks and Operational Checks as they are heavily dependent on
the acquisition of condition-data.

Table 1.2 and Table 1.3 provide a more detailed overview of the specific tasks that have been considered in
the two CBM cases. The tasks have been classified per task group and their respective interval in either flight
hours, flight cycles or calendar days. It is observable than in the 10% CBM case, the majority of tasks have
1500 FH interval. On the other hand, in the 25% CBM case a larger portion of tasks is included. Therefore,
tasks that occur with less frequency have been considered in the CBM scope. The average task interval of
Case 2 is estimated to be every 103.7 days, while for Case 3 is 148.1 days. Moreover, it is expected that the
benefit of CBM is more relevant for tasks that occur with more frequency because their executions can be
reduced by a larger share than the others.

Table 1.2: Case 2 (10% CBM) Tasks classified per group and interval duration

Task Group CBM Action FH FC DY Nr. Tasks Labor [hrs]
Operational Check Substitution 1500 - - 8 9.8
Detailed Inspection Substitution 1500 - - 2 1.5
Functional Check Substitution 1500 - - 1 0.4
General Visual Inspection Substitution 1500 - - 4 4.5
Functional Check Substitution 2000 - - 3 2.1
Discard Escalation 1500 - - 1 0.4
Restoration Escalation 1500 - - 1 0.2
Lubrication Escalation 2000 - - 1 1.4
Discard Escalation 3000 - - 1 1.5

Table 1.3: Case 3 (25% CBM) Tasks classified per group and interval duration

Task Group CBM Action FH FC DY Nr. Tasks Labor [hrs]
Operational Check Substitution 1500 - - 9 11.5
Detailed Inspection Substitution 1500 - - 5 4.0
Functional Check Substitution 1500 - - 1 0.4
General Visual Inspection Substitution 1500 - - 4 4.5
Visual Check Substitution 1500 - - 2 1.1
General Visual Inspection Substitution - 600 120 2 1.4
Functional Check Substitution 2000 - - 4 2.3
General Visual Inspection Substitution - - 180 4 1.6
Operational Check Substitution - - 180 3 1.8
Operational Check Substitution 3000 - - 5 1.5
Functional Check Substitution - 2000 360 3 1.7
Functional Check Substitution 6000 - - 1 0.5
Discard Escalation 1500 - - 1 0.4
Servicing Escalation 1500 - - 2 2.6
Restoration Escalation 1500 - - 3 2.4
Lubrication Escalation 2000 - - 1 1.4
Lubrication Escalation - 800 150 3 3.7
Discard Escalation 3000 - - 1 1.5
Discard Escalation 4000 - - 3 2.4

90

Figure 1.4 provides an overview of the influence of CBM on the original AMP. Since the maintenance program
is different for every interval policy and CBM case, the original 24-block program with 2296 tasks repeti-
tions has been used to have a general reference framework. The figure shows the portion of tasks repetitions
affected by the implementation of a CBM concept with the three action rates proposed in the experiment
set-up. In the first case, all the tasks are considered as part of a routine block. In the second case (10%
CBM), the portion of substituted tasks corresponds to 18.8% of the complete maintenance tasks repetitions,
while the escalated tasks only to the 3.7%. Since the fraction of the escalated tasks is so small, the scheduling
performance should be lightly affected by RUL prognostics. The third case (25%CBM) raises the portion of
substituted tasks to 39.5%, while the tasks executions that will be escalated correspond to 12.5% of the total.

0% CBM 10% CBM 25% CBM
0

500

1000

1500

2000

R
ep

et
iti

on
s

3.7%
12.5%

100.0%

77.5%

48.0%

18.8%

39.5%

CBM Tasks in A-check program

Classification
Escalation
Routine
Substitution

Figure 1.4: Task Repetitions of original A-check Program classified with CBM action

1.4. Interval policies exploration
In order to support and integrate prognostics in an optimal way, a flexible maintenance planning process
is considered to accommodate individual maintenance tasks that follow a CBM task-based strategy. Since
a CBM task can only be allocated in the same slot as a routine block, the routine blocks are clustered with
different interval policies to explore the benefit of having a varied frequency of maintenance opportunities.
The analysis starts with the standard airline approach that spaces blocks by 1500FH and grounds the aircraft
for a total duration of 24 hours. Then, the check frequency is increased and the maintenance slot duration
is proportionally reduced. In this way, the CBM tasks dispose of more block opportunities where to be allo-
cated. This hypothesis should lead towards a more flexible maintenance strategy that integrates CBM more
optimally. A complete overview of the block clustering policies has been included in Table 1.4. It is note-
worthy that the majority of tasks that are part of a routine block tend to be dephased from the interval of the
routine block. In other words, most tasks are allocated to a block that is scheduled long before their due date,
which leads to inefficiencies in the scheduling process. The explored interval policies are presented along
with the average gap optimality of the three cases (0%, 10%, and 25% CBM) returned by Gurobi solver based
on a computational time limit of 2 hours per case on an Intel Core i5 3.1GHz laptop with 16GB ram.

Table 1.4: Interval policies explored

Interval Policy
N. Blocks Ground time [hrs] Gap optimality[%]

FH FC DY
1500 600 120 24 24 2.95
750 300 60 48 12 13.07
500 200 40 72 8 23.14
375 150 30 96 6 30.59

2
Reinforcement Learning

In recent years, reinforcement learning (RL) has gradually evolved to one of the most active research areas in
machine learning, artificial intelligence, and neural networks (Sutton and Barto, 1998). Contrarily to classical
machine learning approaches, RL does not require a dataset with labeled input and output for each element.
Rather than inferring a pattern, RL is able to interact with an environment through a reward structure. In this
way, an agent is able to explore the action-space and discover which actions yield the highest reward. Fig-
ure 3.3 represents the canonical agent-environment feedback loop by means of a Markov Decision Process
(MDP). At every timestep, the agent observes a state St of the environment and it takes an action based on
the internal policy π(a|s). The objective of the agent is to calibrate the policy function based on the rewards
received after performing each action. In the airline maintenance scheduling problem (AMSP), a policy is
interpreted as selecting the best maintenance opportunity for an aircraft, given the fleet condition and the
available resources. In this chapter, a general overview of the RL strategies is provided. Furthermore, the
application of the chosen algorithm, Deep Q-Learning (DQL), is contextualized in the AMSP. Lastly, a bench-
mark with other well known RL models is provided to motivate further the choice of DQL.

Figure 2.1: Markov Decision Process. Adapted from Sutton and Barto (1998)

2.1. Learning Strategies
The iterative nature of the problem allows multiple suitable approaches to develop the optimal policy π(a|s)
that maps a state s into an action a. Primarily, a distinction must be made regarding the search type and the
methodology to update the agent policy. In this section the main algorithmic strategies to solve a dynamic
program have been outlined.

2.1.1. Model-based vs Model-free
The reinforcement learning model is strictly related to the observable information at every state. The ap-
proach can be classified either as model-based or as a model-free scheme (Powell, 2011, Sutton and Barto,
1998). In the former case the agent learns a model of the environment thanks to an explicit transition func-
tion, and is able to predict the next state and reward value. Otherwise, when the transition function is implicit,
model-free learning is employed to learn a dynamic policy. In that case, the agent requires to remember the
past observations in a memory storage, which is then used for training. A clear understanding of the prob-
lem is required to determine which of the two is more apt to solve a particular combinatorial optimization
problem.

91

92

Some systems are so complex that mathematical models are not able to represent them. However, it might
be possible to observe behaviors directly. Such applications arise in operational settings where a model is
running in production, establishing the outcomes observation and state transitions from physical processes
rather than mathematical equations. Moreover, in many real world problems where uncertainty is consid-
ered, the assumption of a fully observable state cannot be maintained. In these cases, the agent has partial
observability over the environment and the problem is be defined as a Partially Observable Markov Decision
Process (POMDP) (Singh et al., 1994). In the field of dynamic programming, model-free refers to those systems
that lack of an explicit transition function. Thus, a transition function cannot be learned, and an exogenous
process is assumed to be available to generate observations and outcome of the system response (Powell,
2011). They are typically more flexible and thus more common in deep reinforcement learning but they re-
quire more samples in the learning process (Jin et al., 2018). On the other hand, model-based algorithms are
highly dependent on the ability of representing the environment transition dynamics, typically expressed as a
decision tree which expands exponentially as it branches out in time. Instead, model-free relies on sampling
the experience gathered throughout the episodes and replaying a buffer memory during training (Polydoros
and Nalpantidis, 2017). Therefore, model-free methods are considered more suitable for high-dimensional
problems such as the AMSP.

2.1.2. Temporal Difference vs Monte Carlo
Sutton and Barto (1998) divides the model-free approaches in Monte Carlo and temporal difference (TD-
learning). The first one requires to explore a full-sequence of actions to determine the value of a state. As
shown on the right of Figure 2.2, the Monte Carlo tree search needs to arrive to the end of the episode in
order to calculate the gain or sum of discounted rewards shown in Equation 2.1. On the other hand, tem-
poral difference approaches perform bootstrapping, a technique that becomes relevant in high-dimensional
optimization problems. During bootstrapping the state-value is updated based on estimates of successor
state-values without the need to visit them first. The most obvious advantage of TD-learning is the ability to
learn from each transition regardless of what subsequent actions are taken. Therefore, it is not required to
wait until the end of the episode to obtain the state-value. However, the agent must provide an estimate of
the value of the learned policy. Hybrid approaches combine a Monte tree search up to a certain level, after
which they perform bootstrapping for the remaining states by means of a discounted reward approximation.

Gt = Rt+1 +γRt+2 +γ2Rt+3 + ... =
∞∑

k=0
γk Rt+k+1 (2.1)

Figure 2.2: Temporal Difference vs Monte Carlo update (Sutton and Barto, 1998)

2.1.3. Value-based vs Policy-based
In reinforcement learning a major distinction is made between deterministic and stochastic polices. Value-
based methods provide an algorithmic strategy to compute the value of next states. The policy is determined
by choosing the actions that leads to the state with the highest value. Therefore, value-based methods are
deterministic approaches. They leverage the Bellman Equation to calculate incrementally and iteratively the
state-value function (Equation 2.2) or the action-value function (Equation 2.3). The policy is extracted by
taking the action that maximizes one of the two functions.

93

v∗(s) = max
at+1

E[Rt+1 +γv∗(St+1)|St = s, At = a] = max
at+1

∑
s′,r

p(s′,r |s, a)[r +γv∗(s′) (2.2)

or

q∗(s, a) = E[Rt+1 +γq∗(St+1, a′)|St = s, At = a] = ∑
s′,r

p(s′,r |s, a) · [r +γmax
a′ q∗(s′, a′) (2.3)

On the other hand, stochastic policies are formalized as the probability distribution of selecting a certain
action with the objective of maximizing future rewards. The goal of policy estimation methods is to maximize
a performance function J (πθ) that corresponds to the sum of future rewards as shown in Equation 2.4, where
πθ is the learned policy with parameters θ. The maximization of the objective function is achieved by policy
gradient algorithms that update the parameters θ in the direction of the performance gradient, shown in
Equation 2.5. For a complete derivation of the policy gradient theorem the reader is referred to Silver et al.
(2017).

J (πθ) = Es,a∼πθ [r (s, a)] =∑
rt (s, a) =Gt (2.4)

∇J (πθ) = Es,a∼πθ [∇θlogπθ(a|s) ·Gt] (2.5)

2.2. Q-Learning
Value-based methods are widely used because of the simplicity of its implementation. These approaches
suffer the dimensionality of large action spaces and are better suited for discrete actions. Since the scheduling
problem is discrete by nature, a Q-learning algorithm has been devised to solve the AMSP. The algorithm was
firstly developed by Watkins (1989) in a tabular form. A look-up table was used to store every possible state-
action pair, which is iteratively updated based on the agent experience. The Q-value of each state-action pair
is computed by means of Equation 2.6 at each timestep, whereα is the learning rate of the model. The update
is performed with a 1-step TD learning methodology because the discounted reward sum of the following
states is contained in the Q-value.

Qnew (St , at) ←Q (St , at)+α
[

Rt+1 +γmin
at+1

Q (St+1, at+1)−Q (St , at)

]
(2.6)

The algorithm makes use of an ε-greedy policy to decide which action to evaluate in the training procedure.
The underlying principle of this policy chooses a random action with probability ε, and the rest of the times
it uses a separate policy, which is continuously improved, to pick the action that maximizes the Q-value. It
is an off-policy algorithm because it learns the value of an optimal policy independent of the agent’s actions
(Odonkor and Lewis, 2018). The algorithm makes no attempt to learn the underlying dynamics of the envi-
ronment. In the case of this research, this refers to the transition function used to update the slot resources
and the fleet utilization. Hence, Q-Learning can be labeled as value-based model-free methodology.

2.3. Deep Q-Learning
The Q-Learning tabular version developed by Watkins (1989) presents a major limitation because it requires
an exhaustive representation of all possible state-action pairs. The state-space dimensionality of Q-Learning
can be circumvented with a neural network. The input size has to be determined, but not the scale. Therefore,
having a functionality to capture the Q-value allows the algorithm to be a lot more efficient (Mnih et al., 2013).
This approach, called Deep Q-Learning, has been successfully applied in literature in problems ranging from
optimal control to resource allocation. An artificial neural network (ANN) is constructed by multiple layers
that contain a series of neurons. Each of the neurons act as a coefficient of the parametric model that has
value θi and consist of a non-linear transformation function. The sequence of these transformations leads to
learning different levels of abstraction from which the optimal policy is inferred (François-Lavet et al., 2018).
The mathematical operation that takes place in each hidden layer of an ANN is a simple matrix multiplication
shown in Equation 2.7, where h are the output values of the hidden layer, A is the activation function or non-
linear transformation, and b a bias term.

h = A(θ · x +b) (2.7)

94

The input of the neural network is the state St and it has a fixed output layer with |A |neurons, each represent-
ing the Q(St , at ,θ) value from which it can be extracted the optimal policy. There are two main components in
the original DQN proposed by Mnih et al. (2015). The first one is the target network with weights θ− which is
a delayed copy of the online network, such that θ− ← θ every τ steps. It is noteworthy, that the weights of the
target network remain fixed during τ steps to improve the learning stability. In this way the online network is
able to chase a stationary target value during τ steps. The purpose of the target network is to update the loss
function. Equation 2.8 shows how the value function is updated with the Bellman optimality equation based
on the online network parameters θ, and the target network parameters θ−.

Q(st , at ;θ) = (1−α) Q(st , at ;θ)︸ ︷︷ ︸
Online network

+α

Rt +γmin
at+1

Q(st+1, at+1;θ−)︸ ︷︷ ︸
Target network

 (2.8)

The second element of this algorithm is the experience replay buffer R, which is a memory where the agent
stores the observed experiences. Then, at each timestep the agent randomly samples a batch of experiences
to train the neural network. During the training phase, the weights θ of the online neural network are op-
timized with a stochastic gradient descent (SGD) algorithm to minimize the mean squared error of the loss
function with respect to the weights θ of the online network (Hasselt et al., 2016). The complete algorithm
has been outlined below, in order to provide a clear sequence of the steps occurring in the training loop of
the Deep Q-Learning agent.

Algorithm 1 Deep Q-Learning

1: Initialize DQN with random weights θ
2: Initialize target network with DQN weights θ
3: for each epi sode do
4: Reset Environment
5: while not done do
6: get state s
7: calculate action-values Q(s, a,θ) ∀a ∈A

8: select best action a = argminaQ(s, a,θ)
9: receive reward r

10: transition to next state s′
11: store experience < s, a,r, s′ > in R

12: for batch in BatchSize do
13: sample experience < s, a,r, s′ >∼U (R)
14: if s′ is terminal then
15: target = r
16: else
17: target = r +γminQ(s′, a′,θ−)
18: end if
19: calculate loss Lθ = (Q(s, a,θ)− target)2

20: update DQN θi+1 ← θi +α ∂L(θi)
∂θi

21: end for
22: end while
23: if τ is 10 then
24: update target network θ−i+1 ← θi+1

25: τi+1 ← 0
26: else
27: τi+1 ← τi +1
28: end if
29: end for

95

The weights of the neural network define the behavioral policy of the deep reinforcement learning agent.
They are updated with backpropagation via the SGD algorithm. The fundamental principle is to update the
weights in the direction of the loss function gradient as shown in Equation 2.9. The backpropagation process
is given in Equation 2.10 with the loss function gradient of the Deep Q-Learning model.

θi+1 ← θi +α∂L(θi)

∂θi
(2.9)

θi+1 ← θi +α
(
r +γQ(s′, a′,θ−i)−Q(s, a,θi)

) ·∇θi Q(s, a,θi) (2.10)

2.3.1. State Space
The state space is the mathematical formalization of the maintenance scheduling environment. It provides
the agent with six observable features of the environment based on which the optimal decision is taken. The
Markov property, also known as the memory-less property, assumes that the optimal action is merely depen-
dent on the current state (Alagoz et al., 2010). Therefore, the agent should not require any past state infor-
mation to reach the optimal scheduling action . To satisfy this requirement, a number of features have been
provided to the agent for every possible allocation slot that capture the essence of maintenance operations.
Although the assumption of a fully observable state is required by the MDP, it can be arguably discussed that
the state is not Markovian due to inherent uncertainties involved in the AMSP subject to prognostics uncer-
tainty. Nevertheless, we assume that prognostics are sufficiently reliable to schedule the aircraft before their
actual due date. In this way, Deep Q-Learning is applicable to a stochastic environment.

The model works in a sequential fashion by scheduling at every timestep the aircraft routine block or CBM
task with earliest due date. The interval of the most critical scheduling unit is discretized in 100 units at
every timestep. Then, the state features are calculated for each of the discretized sub-intervals, if a slot is
present. Otherwise, the value of the features is null when there are no slots available. Thus, the state vector
is composed by 100 rows that correspond to the discretization levels of the scheduling unit, and six columns
that represent the features of the environment. In the remainder of this section a detailed explanation of each
feature is provided. Lastly, a reduced scenario example is employed to demonstrate a sample calculation of
the state vector.

Demand (D t ,a)
The demand is defined as the number of aircraft competing for a slot. Although the complete fleet is contin-
uously competing for every slot, only the aircraft that have been utilized by more than 70% of their interval
are considered as part of the demand for a slot. The feature takes 70% interval utilization as a baseline since
any aircraft scheduled below this value is considered to have a poor performance.

Resources (Rt ,a)
The resources are the remaining maintenance opportunities available to the competing aircraft, i.e. the
scheduling units demand. Therefore, this feature provides an overview of the alternative options to the fleet
when a specific slot is being considered.

Look-ahead function (l ht ,a)
The look-ahead function provides an estimation of the competing aircraft’s average reward when a slot is
encountered. Let Figure 2.3 be a reduced version of the AMSP environment. The most urgent scheduling unit
is on top of the aircraft list and highlighted in green. The agent has four possible actions available based on
the discretization level shown in the figure. The first option includes two possible slots. In this case, the latest
slot which is on Friday is considered for the allocation.

Figure 2.3: Look-ahead mechanism

96

The look-ahead reward provides an overview of the consequences to the rest of the fleet if AC 1 is allocated
to that slot on Friday. The working logic of the look-ahead function is to allocate each aircraft, in the priority
order shown, to the latest available slot. Even if the optimal policy might not be dictated by a myopic policy
such as this one, this methodology provides the average reward per aircraft and it is a way to capture the
consequences of an action for the rest of the fleet. Moreover, this look-ahead mechanism reflects at each
state if a competing aircraft might be grounded because there are not sufficient slots; or if a future aircraft will
have to be allocated to a much earlier slot than its due date because of sub-optimal allocations previously
made.

Time-index (ht ,a)
The time index variable indicates the position with respect to the simulation horizon of each discretized unit.
Therefore, if a specific slot is available 6 months after the start of the simulation, and the simulation horizon
is 12 months in total, the time-index feature will be equal to 0.5

Prognostic probability (pt ,a)
The prognostic probability is included in the state vector only when a CBM task is considered. The due date
of CBM tasks is dependent on the prognostic curve. Thus, this feature is included to capture that a slot with
a high probability of failure should be avoided. The agent should try to re-evaluate a prognostic at the next
iteration when it is closer in time to the due date such that less uncertainty is involved in the prediction.

Task-Block feature (bt ,a)
The task-block feature is a binary variable that indicates the type of scheduling unit with earliest due date.
This might be either a routine block that needs to be allocated to a free slot, or a CBM task that needs to be
allocated in a slot where a routine block of the same aircraft was previously scheduled.

Example state-space calculation
The reduced environment proposed in Figure 2.3 is used as reference to calculate the state vector features.
Since the time-index, the prognostic probability and the task-block feature are quite straight forward, the
focus of this example is on the first three features: the resources, the demand, and the look-ahead reward.

The scheduling unit AC 1 has the earliest due date. For this reason, it is selected as the most critical one.
Moreover, it is observable how the block intervals have been discretized in 8 different units, only for this
reduced scenario. In reality, the vector has 100 rows but for the sake of simplicity it has been reduced to 8
rows for this example. The reader can assume that the first row spans from 0-25% interval utilization, the
second row from 25-40%, and the remaining rows go from 40%-100% interval utilization in steps of 10%.
Equation 2.11 shows the corresponding state-vector of the reduced scenario.

St =



D t ,a Rt ,a lht ,a ht ,a pt ,a bt ,a

0 0 0 − − −
1 5 lht ,40 − − −
0 0 0 − − −
0 0 0 − − −
1 5 lht ,70 − − −
2 5 lht ,80 − − −
0 0 0 − − −
3 6 l ht ,100 − − −


(2.11)

The first two columns indicate the amount of scheduling units competing at each sub-interval, and the total
resources available to those aircraft. It is noteworthy that in row 6, corresponding to the 80% interval utiliza-
tion of AC 1, there are only two aircraft competing. The additional aircraft is AC2 because this slot on Tuesday
is at 70% of its interval. AC 3 is not included because this slot is at 50% of its interval. The second column
corresponds to the number of slots available during the interval of the competing scheduling units. Lastly,
the third column is calculated with the logarithmic reward function explained in Part I of this work. The four
lh values are worked out in the following equations. There are three terms corresponding to the reward of
AC1, AC2 and AC3, respectively. Every time the look-ahead considers two elements: (1) the reward of AC1
when assigned in the slot corresponding to the row of the vector; (2) the reward of the remaining two aircraft
based on a myopic policy as shown in Figure 2.3. In the first three equations, AC 2 is assigned to the latest slot

97

available at 90% of its interval. In the last case (lht ,100), AC 1 is assigned to the slot on the second Thursday,
and therefore AC 2 is moved to an earlier slot at 70% of its interval.

lht ,40 = 1

3
·
(
ln

(
100

40

)
+ ln

(
100

90

)
+ ln

(
100

100

))
(2.12)

lht ,70 = 1

3
·
(
ln

(
100

70

)
+ ln

(
100

90

)
+ ln

(
100

100

))
(2.13)

lht ,80 = 1

3
·
(
ln

(
100

80

)
+ ln

(
100

90

)
+ ln

(
100

100

))
(2.14)

l ht ,100 = 1

3
·
(
ln

(
100

100

)
+ ln

(
100

70

)
+ ln

(
100

100

))
(2.15)

Lastly, it is of paramount importance to consider that the gradient of the Q-value depends on the state vector.
Therefore, the normalization of the state vector is performed to stabilize the learning curve. In this way, the
gradient of the neural network weights becomes smaller, and it should be easier to optimize the reinforce-
ment learning policy. The normalization of the features is performed to bound each value in the interval
[0,1]. The demand and the resources are normalized with respect to the fleet size. The look-ahead results
are normalized with respect to the highest average result of each step. Lastly, the time-index, the prognostic
probability, and the task-block feature are already bounded in the desired interval.

2.3.2. Action Space
The action space represents the interval utilization rate at which the most critical aircraft is scheduled for
maintenance. The neural network produces 100 values that correspond to the aircraft utilization percentage
between 1%-100%. Nonetheless, not all actions are possible to take, but only those where a slot is present.
Otherwise, the agent would be allocating an aircraft to a day where there is no slot available. In Equation 2.11
the feasible action-space can be understood as the rows that are not null in the state. Furthermore, the action
space of the Deep Q-learning model requires a fixed size because it determines the size of the ANN output
layer. Even if the DQL model calculates the action-values for the null rows of the state, the policy is forced to
only pick one of sub-intervals that contain a maintenance opportunity.

Moreover, the agent has an additional action that is always available. This option corresponds to an aircraft
on ground (AOG), and it should be taken only if no slots are available to the model in order to highly penalize
the agent when an aircraft is left with no other opportunities. For the problem investigated, this results in an
action-space with a size of 101 elements, and the following notation:

A =
{

1%,....98%,99%,100%,AOG

}
(2.16)

2.3.3. DQN Architecture
The DQN architecture is designed in function of the state-space and the action-space of the AMSP. The state-
space defines the size of the input layer, while the action-space determines the size of the output layer. A
clear visualization of the DQN structure is shown in Figure 2.4 alongside the shape of each layer and the
parameters that have to be optimized in the model. The model is composed by a total of five layers. The first
one is labeled as the input layer and has the same size of the state vector and, for this reason there are no
model parameters because it simply receives an input from the RL environment. The following two layers,
also called dense layers, have 100 neurons each, and their output shape depends on the previous layer. The
first dense layer has 700 parameters corresponding to 6 features times 100 weights plus 100 biases of each
neuron (6 ·100+100 = 700). Each neuron provides an abstract feature, therefore in the second layer there are
100 ·100+100 = 10100 parameters. Moreover, the flatten layer simply makes a one-dimensional vector out
of the previous layer. Lastly, the output layer has a size of 101 neurons, exactly the same as the action-space.
The total parameters of this layer are 10000 ·101+101 = 1010101.

The neural network weights are initialized with a normal distribution in order to reduce bias. Moreover, the
activation function for each layer is called swish (Ramachandran et al., 2017). Instead, the last two layers
are designed with a linear activation function because the DQN output represents the Q-value of the next-
state and it should converge to the discounted reward value. The learning rate, the exploration decay and

98

the discount factor were selected upon a careful sensitivity analysis. For a complete overview of the neural
network tuning and the optimal model configuration the reader is referred to chapter 4 of this report.

Figure 2.4: DQN Architecture

2.4. Training strategy
The interaction of the Deep Q-Learning model with the scheduling environment is explained in more detail
in this section. The classic reinforcement learning feedback loop is tailored to the AMSP problem by means of
the process shown in Figure 2.5. Initially, the environment is reset with the last maintenance execution dates
and the complete list of tasks and routine blocks that form part of the aircraft maintenance program. The due
dates of each aircraft are calculated based on the incremental utilization that is simulated at each timestep,
and the scheduling unit with earliest due date is selected as the most urgent one.

Figure 2.5: Training strategy of Deep Q-Learning model in the AMSP

99

In the following step, the state vector is calculated and fed as input to the DQL model. The DQN outputs a
series of Q-values that represent the discounted cost sum of the available discretized actions to the agent. The
best action is selected by taking the minimum Q-value in order to minimize the cost function. Furthermore,
in the case that the model is processing a routine block, the scheduling unit is directly allocated. Alternatively,
when a CBM task is considered, an additional loop is introduced in the agent-environment interaction that
updates the state based on a new RUL prognostic. In this way, it is possible to synchronize the DQN decision
model with the Gaussian propagation of the prognostic uncertainty. Once the scheduling unit is allocated, the
transition to the next state occurs and the DQN update loop initiates. The blocks highlighted in red indicate
the steps required to calibrate the neural network. Firstly, the target network is updated every 10 steps in
order to ensure learning stability. Then, the experience observed at every agent-environment interaction
step is sampled from a finite buffer memory. The sampling occurs in batches of 32 steps, where the stored
experiences are fed as a tuple, with the form < s, a,r, s′ >, and the loss function is calculated in order to
minimize the deviation between the online and the target networks. The episode loop concludes when the
simulation horizon is reached, while the training loop terminates after a sequence of 100 episodes.

2.5. Agents benchmark
Reinforcement learning provides a general framework to solve a specific problem as a Markov Decision Pro-
cess. The agent-environment interaction can be adapted to any algorithmic strategy. This section explores
other two well-known RL algorithms that were considered during the literature study of this work in Part II.
Deep deterministic policy gradient (DDPG) belong to the policy-based methods, and asynchronous advan-
tage actor-critic (A3C) is considered to bridge both worlds, policy-based and value-based, by means of two
networks that improve each other. In general, these approaches are preferred to overcome the dimensionality
of the action-space, however, they have a high variance and may converge to a local minimum. In Figure 2.6
the three agents have been benchmarked in the deterministic problem version that only schedules aircraft
routine blocks. The DQN is the algorithm that behaves best in the AMSP. Moreover, the advantage of the other
two algorithms is not beneficial for this case because the action space is relatively small: only 101 actions
are available to the agent. Furthermore, A3C is particularly conservative when choosing a slot and prefers to
schedule maintenance earlier which causes it to converge to a local minima. The DDPG algorithm has a com-
parable performance to the DQN, however, it also creates a schedule where the fleet is utilized slightly less.
Lastly, DDPG is best suited in continuous action spaces due to the gradient calculation of the performance
function. Instead in this problem, the policy is discretized over a limited set of available actions.

Figure 2.6: RL Agents benchmark

3
Verification & Validation

Verification and validation are necessary procedures in order to ensure soundness of the results, and establish
the relevance of the methodology. In this chapter, the most important unit tests are outlined in Section 3.1,
then, the system tests are presented in Section 3.2. Lastly, in section 3.3 the reinforcement learning model is
validated by comparing the scheduling results of a deterministic scenario with the airline’s A-check schedul-
ing tool.

3.1. Unit tests
Unit level test are essential to ensure that the individual simulation blocks are working properly. This ver-
ification procedure involves three main assessments. Firstly, the discretization of the scheduling intervals
is analyzed. For this test, the DQL agent is configured with different state and action space dimensions to
ensure that when a finer mesh is utilized, the rewards are closer to the actual utilization rate. The second
test is related to the state vector calculation. The calculation is verified by using the initial states of different
scenarios, and the features are compared to the analytical state calculation of the initial condition. Lastly,
the number of scheduled checks per aircraft is divided by the simulation horizon in order to ensure that the
number of maintenance events is in line with the interval limitations of each policy.

3.2. System tests
The system tests represent the bulk work of the model verification. In this section, the model response is
observed and the scheduling policy changes are analyzed.

3.2.1. Utilization alteration
The due date calculation is dependent on the utilization of the aircraft fleet. To ensure that the due dates
are calculated accordingly to the flown hours and cycles, the utilization is altered to fixed values. The model
grounds more aircraft when the utilization is higher because there are not sufficient slots where to allocate
the aircraft. On the other hand, when the utilization is reduced to extremely low values, the DQN does not
schedule any aircraft as all the due dates appear to occur after the end of the simulation horizon.

3.2.2. Resources alteration
The maintenance scheduling problem is highly affected by the resources available or the maintenance oppor-
tunities. If there are sufficient slots, the optimal solution could be found by applying a greedy policy algorithm
that selects the latest option for each aircraft. Therefore, the resource alteration test removes slots in order to
observe that aircraft are grounded when the slots are not available to the agent. Similarly, the agent achieves
100% utilization when there are unrealistic amounts of slots available every day.

3.2.3. Greedy algorithm comparison
One of the key reasons to use a reinforcement learning approach is the high adaptability to other environ-
ments. The approximate dynamic framework offers a high versatility by exploring the actions available. In
order to demonstrate the viability of Deep Q-learning, a reduced scenario with a time horizon of 6 months
has been created in which a total of 18 aircraft blocks need to be allocated with a 1500 flight hour interval pol-
icy. The case study analyzed does not contain any CBM tasks for this verification test due to computational
resources required to train the models, and the fact that CBM adds an additional layer of complexity to the
problem. Therefore, it assumed that the differences analyzed in this verification test would be more accen-

100

101

tuated in a scenario with CBM tasks. The performance of the algorithm is compared with a myopic policy
that chooses the best option for every aircraft without considering other factors such as the future impact on
the fleet. This agent is referred to as the greedy agent and it does not use any value function approximation
since its decisions are merely based on the imminent cost value of the action-space at time t . In Table 3.1, the
results of the first verification test have been reported. The first scenario is set-up with two available slots per
week. It is observable how the greedy policy works very well in environments with a lot of available slots as
every aircraft has an available option close to their respective due date. In fact, the highest interval utilization
is reached with the Greedy agent. However, the DQN with 0.5 discount factor finds the best solution because
the objective is to schedule all aircraft blocks as close as possible to 95% interval utilization.

Table 3.1: Verification test comparing Greedy vs DQN Agent with 2 slots per week

Parameter Greedy Agent DQN Agent
Dicsount factor - 0.1 0.5 0.7 0.95
Obj. Function 5.34 5.37 5.25 5.84 7.57
AOG’s 0 0 0 0 0
Utilization [%] 95.29 95.15 94.74 94.33 93.05

Figure 3.1 has been included to visualize the distribution of the aircraft block utilization. The DQN perfor-
mance with 0.5 discount factor outperforms the others because the spread of the utilization is smaller and a
better allocation management is achieved by scheduling all the blocks as close as possible to 95%.

Greedy 0.1 0.5 0.7 0.95
Discount factor

92

94

96

98

U
til

iz
at

io
n

[%
]

Block Utilization with 2 slots/week

Figure 3.1: Verification Test with 2 slots per week for different discount factors

The second verification test is more constrained in the solution space because only one slot per week is avail-
able. The greedy algorithm manages to have a relatively high average block utilization but it comes at the
cost of some aircraft in the fleet that are scheduled at 17%. The greedy policy schedules all aircraft as late as
possible instead of scheduling them earlier in order to leave better options to rest of the fleet. For this rea-
son the results reported in Table 3.2 demonstrate that a greedy policy does not perform better than the DQN
agent. Once again, when the rewards are discounted by 0.5, the DQN manages to schedule aircraft in order
to have the lowest interval utilization at 39%. For this reason, the overall cost is the lowest for the DQN with
0.5 discount factor.

102

Table 3.2: Verification test comparing Greedy vs DQN Agent with 1 slot per week

Parameter Greedy Agent DQN Agent
Dicsount factor - 0.1 0.5 0.7 0.95
Obj. Function 40.96 39.4 27.8 75.41 51.9
AOG’s 0 0 0 0 0
Utilization [%] 86.65 86.81 86.52 76.27 81.31

In Figure 3.2 the action distribution of the second verification test is shown. The agent with 0.5 discount
factor performs much better than the other as it manages to have an average utilization of 86.52 % with a rel-
atively contained variation. From this analysis it is deemed that the RL agent is able to understand the state
space representation and it does not learn a simple greedy policy. Moreover, it is observable that the greedy
agent achieves a performance that is close to optimal in scenarios with a large amount of slots. Nonetheless,
the solution quality is not competitive enough in constrained action-spaces. Therefore, it can be concluded
that reinforcement learning present a much more robust solution and it can be used as a valid algorithmic
strategy. Lastly, when the DQN is discounted with a low value such as 0.1, the performance of the agent is
very similar to the greedy agent because it learns to approximate the imminent rewards without considering
future states. Instead, if the discount factor rises above 0.5, the future rewards estimation does not provide
relevant information to the agent, and it starts behaving sub-optimally. This additional verification analy-
sis demonstrates the usefulness of reinforcement learning in maintenance scheduling, and the importance
of discounting rewards in a way that it provides relevant information about the competing aircraft and the
available resources.

Greedy 0.1 0.5 0.7 0.95
Discount factor

20

40

60

80

100

U
til

iz
at

io
n

[%
]

Block Utilization with 1 slots/week

Figure 3.2: Verification Test with 1 slot per week for different discount factors

3.3. Validation
The validation strategy of the scheduling tool is a necessary aspect of this research, required to benchmark
the solution quality and understand whether the reinforcement learning algorithm is able to produce an
near-optimal scheduling policy. Since, the CBM simulation has never been attempted before, the tool can be
validated only for a deterministic case. Therefore, the validation of a scenario with routine blocks is deemed
sufficient for the implementation of a DQL model in the AMSP. The proposed validation strategy employs the
airline tool called OptA-Check, that schedules A-checks under the same conditions of the DQL model.

OptA-Check is a mixed-integer linear program (MILP) tool that schedules the A-checks of a specific fleet. The
validation excericse is carried out with a maintenance block policy of 1500FH as outlined in the Maintenance
Planning Document (MDP). The Boeing 737 fleet, composed by 52 aircraft, is considered in the scope of the
problem because it provides a more challenging scenario; mainly because the fleet is larger, and the scenario

103

considers three types of user constraints. Furthermore, the validation exercise proved that the adaptability of
the RL algorithm to user-constraints is well-suited in an industry context. The user-constraints are explained
in the following list:

• Slot reservation: a specific slot is assigned to a tail number

• Slot cancellation: specific slots are canceled due to an event, such as holidays or engineers unavail-
ability

• Merging with C-checks: if a C-Check of a specific tail is scheduled during the simulated horizon, it
is highly recommended to merge the A-check in order to ground the aircraft the least possible times.
To implement this constraint, the action-space of the DQL was increased to 102 neurons, where the
additional output corresponds to the merge action. The reward of merging an A-check into a C-Check
is costed as half of the best interval utilization action.

(a) DQN Average Interval Utilization: 93.5% (b) OptA Average Interval Utilization: 91.5%

Figure 3.3: Action distribution in validation scenario

The action distribution of the two algorithms can be seen in Figure 3.3. The performance of the Deep Q-
Network is slightly better than OptA-Check and it is more centered around an interval utilization of 95%. The
average interval utilization of the DQN is 93.5%, while OptA-Check has an average performance of 91.5%.
Although theoretically in a deterministic scenario it would be impossible to have a better performance than a
MILP model, the improvement is attributed to different assumptions and simulation dynamics. For instance,
the DQN assumes a constant flight hour distribution between each update of the fleet, and the MILP calcu-
lates maintenance days as idle time for each aircraft. In Figure 3.4a and Figure 3.4b, the due dates events and
the slots utilized by the two algorithms are superimposed. Two observations are noted from this analysis: (1)
the DQN dates are slightly delayed with respect to the OptA-check decisions, and (2) in 72% of the cases the
same slots were selected, while the remaining times a slot on a different date was chosen.

Furthermore, it can be observed from Figure 3.4c that the type of slots used by the two algorithms is almost the
same. The only difference is that the DQN does not merge two extra A-checks in a C-check due to boundary
conditions. In other words, the DQN stops the simulation earlier than OptA check because the maintenance
could be scheduled in a slot that is not given in the current horizon. Lastly, in Figure 3.4d the block interval
drivers are depicted. Most of the times the block driving factors are determined by the calendar days or year
limitation (DY, CY) which can be considered as the same. However, the DQN simulation is also constrained
by the flight cycles, while OptA check is affected by the FH interval. This divergence occurs due to slightly
different utilization parameters that have been estimated from historical data for the DQN case. Overall, the
performance is quite satisfactory, and the simulation parameters such as drivers, due dates and used slots
indicate that the DQN policy produces a schedule similar to the airline in-house tool.

104

(a) Due Dates distribution (b) Slot dates distribution

(c) Benchmark of checks used (d) Benchmark of Block Driver

Figure 3.4: Benchmark Validation Scenario

Finally, Table 3.3 contains a summary of the validation results. The block interval utilization is highly com-
parable for the two models. The 2% difference can be justified because the DQN is more flexible when cal-
culating due dates and makes use of different transition dynamics than Opt-A in order to calculate aircraft
utilization. The objective function values align with the difference in interval utilization based on the loga-
rithmic shape of the reward function, and the fact that the DQN model schedules less tasks when is close to
the final boundary condition.

Table 3.3: Validation of DQN vs Opt-A Check for the A-check plan of B737 fleet

Model Utilization[%] Obj. Function Blocks Scheduled A-Check Slots C-Check Slots User Constrained Slots
DQN 93.5 55 68 57 7 4
Opt-A 91.5 73 70 57 9 4

4
Sensitivity Analysis

It is of paramount importance to investigate the influence of the model parameters and the input variables on
the scheduling performance. In this chapter, a detailed analysis is presented to tune the DQN configuration.
Firstly, the learning convergence and the final training performance are observed to make an educated choice
of neural network hyperparameters. Then, the maintenance scheduling results are analyzed by changing
some of the most relevant input variables in the CBM scenarios.

4.1. DQN hyperparameter tuning
4.1.1. Greediness sensitivity
The greediness determines the balance between exploration and exploitation during the training. Initially,
the neural network weights are assigned randomly. As a result, the RL model behaves accordingly during
the first episodes, which leads to sub-optimal decisions. The initial exploration rate of the environment is
set to 100%, such that it is able to search the feasible action-space region. As the learning progresses, the
agent understands what is the impact of the actions it takes, based on the state it observes and the reward it
receives. At this point, the exploration rate is slowly decayed such that the internal value-function knowledge
is exploited with a greedy policy by means of the argmin operator. The implementation of this strategy, also
known as ε−greedy policy, occurs by decreasing the probability that the agent acts randomly over time, and
instead a greedy policy is used to decide the next action. The analysis performed in this section keeps the
same starting and finishing ε to 1 and 0.01, respectively. However, the decay is changed at every episode with
a different rate until the minimum exploration value is reached. The resulting sensitivity analysis can be seen
in Figure 4.1 where the simple moving average (SMA) over ten samples of the cumulative rewards has been
plotted against the training episodes.

0 20 40 60 80 100 120 140
Training episodes

10

20

30

40

50

60

70

Cu
m

ul
at

iv
e

re
wa

rd

Epsilon decay Benchmark
d /dt= 0.5
d /dt= 0.6
d /dt= 0.7
d /dt= 0.8
d /dt= 0.9
d /dt= 0.95
d /dt= 0.99

Figure 4.1: Exploration decay sensitivity

105

106

In general, the exploration rate is not highly influential on the model performance but mainly on the con-
vergence rate. Thus, in most of the cases, the DQN agent is able to learn very similar policies. The optimal
exploration decay was calibrated with a value of 0.9 since it manages to explore a wide portion of the action
space, and it achieves the lowest cumulative cost at the end of the training phase.

4.1.2. Learning rate sensitivity
The learning rate indicates the importance of new experiences in the calibration of the model.The neural
network is defined by the coefficients of each neuron, also known as weights. Powell (2011) states that the
choice of the step-size or learning rate is one of the most important decisions to ensure convergence in the
learning process. Therefore, a sensitivity analysis has been performed in order to analyze the influence of the
backproagation in the model and determine the most optimal learning rate. Two main conclusions can be
drawn from Figure 4.2. Firstly, when the learning rate is too high, as in the case of l r = 1e−2, the NN does not
manage to learn the optimal policy because every update changes the model too much and the gradient is
never calibrated in the optimal direction. On the other hand, when the learning rate is increased above 1e−5
the convergence process is too slow and the agent learning is not sufficient to produce an optimal schedule.
Therefore, the best choice is found for l r ∈ [1e −5,1e −3]. In fact, the performance is almost equal for these
cases. Based on the sensitivity results, the policy observed was slightly better for l r = 1e−4 which was deemed
as the most optimal choice for the final model.

0 20 40 60 80 100
Training episodes

0

100

200

300

400

Cu
m

ul
at

iv
e

re
wa

rd

Learning rate Benchmark
lr= 1e-05
lr= 0.0001
lr= 0.001
lr= 1e-06
lr= 0.01
lr= 1e-07
lr= 1e-08

Figure 4.2: Learning rate sensitivity

4.1.3. Activation function sensitivity
The activation function is a crucial component of a neural network. It has a major role in the ability of the
model to converge and learn significant (abstract) features from the scheduling environment. The underly-
ing principle is fairly simple: it serves as a transformation function to map the input of the neuron with a
non-linear function. It is also possible to use a linear mapping but then a NN would produce a model that
is comparable to a parametric linear regression. Neural networks use a technique called backpropagation to
train the model, which places an increased computational strain on the activation function, and its deriva-
tive. The sensitivity analysis considers four activation functions, that often have been applied in the deep
reinforcement learning domain. The mathematical expressions of Sigmoid, Relu, Leaky Relu, and Swish are
given in the equations below, where x represents the input of the neurons. The first two are widely known
in the artificial intelligence community, while the last two have arisen more recently as a modification of the
other.

107

Si g moi d = 1

1+e−x (4.1)

Relu = max(0, x) (4.2)

Leak yRelu = max(0.1x, x) (4.3)

Swi sh = x ·Si g moi d = x

1+e−x (4.4)

In Figure 4.3 the activation functions have been applied to the DQN model and their training performance is
observed. It is noteworthy how the first two functions do not cope well with the minimization of the cumu-
lative cost. This behavior arises as a consequence of the NN weights calibration that is not able to converge.
It is assumed that the minimization of the loss function encounters negative inputs in the neuron values that
in general are not properly interpreted with the Sigmoid and the Relu activation. The best function is Swish,
since it achieves convergences earlier than the LeakyRelu, and it outputs a lower objective function at the end
of the training period.

0 20 40 60 80 100
Training episodes

0

20

40

60

80

100

120

140

160

C
um

ul
at

iv
e

co
st

Activation function rate Benchmark

Sigmoid
Swish
Relu
LeakyRelu

Figure 4.3: Activation function sensitivity

4.1.4. DQN structure benchmark
Several modifications have been explored to adjust the DQN architecture in order to improve training per-
formance. The literature study proposes three other structures: Double DQN, Dueling DQN, and prioritized
experience replay (PER). The neural networks modifications have been investigated individually assuming
their effect could be linearly superimposed. In Figure 4.4 the four DQN structures have been benchmarked.
Firstly, the dueling structure does not achieve any learning. Moreover, the prioritized experience replay (PER)
initially converges towards a higher aircraft utilization but the learning is destabilized, causing the model to
drift away from the optimal policy. This behavior is attributed to the fact that PER was designed to give pri-
ority to those experiences that produced a small deviation in the loss function. However, the agent needs
to rely on the other experiences as well to learn the optimal scheduling policy. Lastly, the double DQN does
not influence a lot the learning behavior because it is best employed when the Q-values are overestimated.
Since the problem studied in this research is not affected by future rewards as much as other RL problems,
the DQN predictions are lower. Therefore, the conclusion drawn from this analysis points to the fact that the
DQN modifications suggested in literature do not provide an increase in performance for the maintenance
scheduling problem.

108

0 20 40 60 80 100
Training episodes

0

50

100

150

200

250

Cu
m

ul
at

iv
e

re
wa

rd

Learning rate Benchmark
DQN
Double DQN
Dueling DQN
DQN PER

Figure 4.4: DQN structure benchmark

4.1.5. DQN final configuration
The optimal DQN configuration is derived from the sensitivity analysis and the verification tests. In Table 4.1
the complete set of hyperparameters has been reported. The discount factor has been determined from the
verification test conducted in chapter 3. Moreover, the learning rate, the decay rate, and the activation func-
tion were established during the sensitivity analysis. Lastly, the batch size, buffer memory size, the hidden
layers, the target delay, and the dense layer size were chosen on a trial and error basis.

Table 4.1: DQN configuration

Parameter Value
Learning rate (α) 0.0001
Discount factor (γ) 0.5
Initial exploration rate (ε0) 1.0
Final exploration rate (εT) 0.01
Exploration rate decay (dε/d t) 0.9
Target delay (τ) 10
Batch size 32
Buffer memory size (|R|) 64
Hidden layers 3
Dense size (neurons) 100
Output size (neurons) 101
Training episodes (T) 100
Activation function swish
DQN structure DQN

109

4.2. CBM sensitivity
4.2.1. PHM uncertainty and interval escalation
The results presented in Part I of this work focused on a specific case with 100% interval escalation and 15%
PHM uncertainty. Though a preliminary sensitivity analysis was already presented in the scientific article, the
purpose of this section is to provide additional information on the results of other scenarios with varied CBM
parameters. The sensitivity analysis presented in Figure 4.5 shows the combined effect of escalation and
uncertainty on the utilization of escalated tasks. The analysis investigates the results of Case 3 (25% CBM)
because a larger number of escalated tasks is considered. However, a similar effect could be observed in Case
2 (10% CBM). A clear trend is appreciated from the figures: the utilization of escalated systems increases
from the bottom left corner towards the upper right corner. This behavior is expected as lower uncertainties
and higher interval escalation should lead to an overall higher interval utilization. It is noteworthy that the
1500FH policy presents lower values than the rest because, in this case, uncertainty affects the scheduling
performance parabolically. Furthermore, as the interval escalation increases, the CBM utilization converges
more and more for the policies analyzed. Therefore, a highly segmented policy is more useful whenever there
is uncertainty involved in the maintenance planning process. However, this effect dissipates as the interval
escalation increases. For instance, the top right corner (3% uncertainty and 125% escalation) of the four plots
presents values that are much closer than in any other regions of the heatmap. Nonetheless, an uncertainty
level of only 3% is too optimistic and not likely to occur. The conclusion drawn from this sensitivity analysis,
is that interval segmentation always benefits the utilization of tasks monitored by prognostics.

25 50 75 100 125
Interval Escalation [%]

3
10

15
30

50
66

85
10

0
U

nc
er

ta
in

ty
 [%

]

Uncertainty vs Interval Escalation Effect

80

100

120

140

160

180

C
B

M
 S

ys
te

m
 U

til
iz

at
io

n
[%

]

(a) 1500FH Policy

25 50 75 100 125
Interval Escalation [%]

3
10

15
30

50
66

85
10

0
U

nc
er

ta
in

ty
 [%

]

Uncertainty vs Interval Escalation Effect

80

100

120

140

160

180

C
B

M
 S

ys
te

m
 U

til
iz

at
io

n
[%

]

(b) 750FH Policy

25 50 75 100 125
Interval Escalation [%]

3
10

15
30

50
66

85
10

0
U

nc
er

ta
in

ty
 [%

]

Uncertainty vs Interval Escalation Effect

80

100

120

140

160

180

C
B

M
 S

ys
te

m
 U

til
iz

at
io

n
[%

]

(c) 500FH Policy

25 50 75 100 125
Interval Escalation [%]

3
10

15
30

50
66

85
10

0
U

nc
er

ta
in

ty
 [%

]

Uncertainty vs Interval Escalation Effect

80

100

120

140

160

180

C
B

M
 S

ys
te

m
 U

til
iz

at
io

n
[%

]

(d) 375FH Policy

Figure 4.5: Interval escalation and PHM uncertainty sensitivity analysis (Case 3 - 25% CBM)

110

In the tables below, four additional cases have been reported where the complete key performance indicators
can be analyzed. The scenarios selected include the following combinations of escalation-uncertainty per-
centages: 100-3, 100-85, 25-15, and 125-15. In the first two cases, shown in Table 4.2 and Table 4.3, the effect
of uncertainty is analyzed more accurately, while in Table 4.4 and Table 4.5 the effect of interval escalation is
considered. The key performance indicators reported in the tables are the following:

Case : Experimental case that determines CBM action rate
Policy : Interval policy in flight hours (1500, 750, 500, 375)
Checks : One full check corresponds to one A-check for the 1500FH policy, two A-checks for

the 750FH policy, and so on
Tasks : Total amount of tasks scheduled. This includes routine tasks, substituted tasks, and

escalated tasks based on RUL prognostics
Sub. : Repetitions of tasks in the scope of substitution (43 tasks in total)
Esc. : Repetitions of tasks in the scope of interval escalation (14 tasks in total)
Util.[%] : Average interval utilization of escalated tasks monitored with RUL prognostics
Util. (all)[%] : Average interval utilization of 14 tasks in the scope of CBM interval escalation and

43 tasks in scope of CBM substitution
Avail.[DY] : Average aircraft availability in days
Labor[hrs] : Average labor hours per aircraft
Labor[hrs/check] : Average labor hours per aircraft check
Comp[min] : Computational time of the instance in minutes

An increase in the interval utilization of escalated tasks is visible when decreasing uncertainty and increasing
escalation. Nevertheless, the scheduling performance is dictated by other factors such as the aircraft avail-
ability, the labor hours, and the total number of scheduled tasks. In the four cases, it is clear that the policies
with shorter intervals perform more maintenance checks. However, this is an inevitable consequence of cal-
culating the KPI’s over a period of 12 months for each aircraft. It is expected that policies that have a higher
maintenance frequency will start already the first part of the next check before the lower frequency policies.

It is noteworthy that the KPI’s of Case 1 (0% CBM) are fixed for the all the tables because this sensitivity
analysis is only varying CBM parameters. When the uncertainty is increased from Table 4.2 to Table 4.3, the
number of tasks repetitions also increases for the escalated systems. This effect is a direct consequence of
not being able to postpone the task due dates, as visible from the sixth column of the tables where the mean
utilization of escalated systems (Util.[%]) is reported. Moreover, the hour difference of the labor per check
KPI is smaller for the high frequency policies, since they can deal with uncertainty more efficiently. The
aircraft availability is lightly affected in the sensitivity analysis because it is mainly driven by the reduction of
substitution tasks. Although substitution is not affected by escalation nor uncertainty, in future extensions
of this work, the consideration of non-routine tasks originating from substituted tasks should influence the
overall model performance.

Table 4.2: Scheduling results with 3% Uncertainty and 100% Interval Escalation

Case Policy Check Tasks Sub. Esc. Util.[%] Util.(all)[%] Avail.[DY] Labor [hrs.] Labor[hrs/check] Comp.[min]
1 1500 4.00 383.00 150.00 48.00 - 78.92 361.24 302.48 75.62 2.31
1 750 4.00 365.00 139.00 43.00 - 82.05 361.34 289.74 72.43 4.57
1 500 4.19 368.12 141.50 45.69 - 75.69 361.29 296.52 70.81 7.00
1 375 4.25 351.00 140.00 46.00 - 77.47 361.44 286.37 67.38 9.66
2 1500 4.00 301.04 79.00 41.04 144.09 77.40 362.34 216.77 54.19 3.84
2 750 4.00 287.36 71.00 35.36 156.83 82.75 362.44 212.15 53.04 7.17
2 500 4.13 297.69 70.61 37.66 139.71 77.19 362.35 217.68 52.66 10.79
2 375 4.25 285.07 67.00 35.07 155.40 81.33 362.34 219.29 51.60 15.24
3 1500 4.00 201.04 0.00 19.04 149.77 149.77 363.19 154.63 38.66 13.19
3 750 4.00 190.07 0.00 17.07 173.17 173.17 363.28 147.83 36.96 23.10
3 500 4.15 196.84 0.00 16.65 170.45 170.45 363.24 149.83 36.14 34.92
3 375 4.25 185.92 0.00 16.92 175.39 175.39 363.32 143.48 33.76 47.41

111

Table 4.3: Scheduling results with 85% Uncertainty and 100% Interval Escalation

Case Policy Check Tasks Sub. Esc. Util.[%] Util.(all)[%] Avail.[DY] Labor [hrs.] Labor[hrs/check] Comp.[min]
1 1500 4.00 383.00 150.00 48.00 - 78.92 361.24 302.48 75.62 2.31
1 750 4.00 365.00 139.00 43.00 - 82.05 361.34 289.74 72.43 4.57
1 500 4.19 368.12 141.50 45.69 - 75.69 361.29 296.52 70.81 7.00
1 375 4.25 351.00 140.00 46.00 - 77.47 361.44 286.37 67.38 9.66
2 1500 4.00 307.67 79.00 47.67 88.27 74.86 362.25 222.92 55.73 3.71
2 750 4.00 293.04 71.00 41.04 96.46 79.92 362.34 216.42 54.10 8.18
2 500 4.14 303.04 70.66 42.82 92.69 75.21 362.28 221.56 53.54 12.05
2 375 4.25 289.61 67.00 39.61 97.03 78.67 362.25 222.44 52.34 16.16
3 1500 4.00 224.19 0.00 42.19 84.77 84.77 362.75 186.98 46.75 12.60
3 750 4.00 210.12 0.00 37.12 94.22 94.22 362.93 173.31 43.33 29.02
3 500 4.15 216.94 0.00 36.75 92.63 92.63 362.90 175.34 42.29 38.55
3 375 4.25 204.47 0.00 35.47 94.36 94.36 363.01 166.95 39.28 54.61

The interval escalation mainly influences the average utilization of escalated systems. In Table 4.4 the due
dates are postponed more often than in Table 4.5. Therefore, a higher interval escalation value, leads to a
larger interval utilization and fewer task repetitions. Overall, the influence on the labor hours and the aircraft
availability is smaller for an interval escalation change with respect to a change in PHM uncertainty. This
effect also occurs because interval escalation affects the model performance linearly, while uncertainty can
have a parabolic relation with the interval utilization if the prognostics are not re-evaluated on time.

Table 4.4: Scheduling results with 15% Uncertainty and 125% Interval Escalation

Case Policy Check Tasks Sub. Esc. Util.[%] Util.(all)[%] Avail.[DY] Labor [hrs.] Labor[hrs/check] Comp.[min]
1 1500 4.00 383.00 150.00 48.00 - 78.92 361.24 302.48 75.62 2.31
1 750 4.00 365.00 139.00 43.00 - 82.05 361.34 289.74 72.43 4.57
1 500 4.19 368.12 141.50 45.69 - 75.69 361.29 296.52 70.81 7.00
1 375 4.25 351.00 140.00 46.00 - 77.47 361.44 286.37 67.38 9.66
2 1500 4.00 300.19 79.00 40.19 157.16 77.60 362.34 216.06 54.02 3.87
2 750 4.00 287.04 71.00 35.04 149.54 82.03 362.44 211.64 52.91 7.36
2 500 4.13 297.62 70.57 37.73 128.38 76.56 362.36 217.56 52.67 11.12
2 375 4.25 285.02 67.00 35.02 136.60 80.18 362.34 219.07 51.55 15.15
3 1500 4.00 199.41 0.00 17.41 164.29 164.29 363.21 152.62 38.16 15.48
3 750 4.00 189.52 0.00 16.52 176.96 176.96 363.29 147.05 36.76 27.49
3 500 4.14 195.47 0.00 15.38 174.75 174.75 363.26 148.16 35.75 40.77
3 375 4.25 184.37 0.00 15.37 175.86 175.86 363.35 141.51 33.30 53.43

Table 4.5: Scheduling results with 15% Uncertainty and 25% Interval Escalation

Case Policy Check Tasks Sub. Esc. Util.[%] Util.(all)[%] Avail.[DY] Labor [hrs.] Labor[hrs/check] Comp.[min]
1 1500 4.00 383.00 150.00 48.00 - 78.92 361.24 302.48 75.62 2.31
1 750 4.00 365.00 139.00 43.00 - 82.05 361.34 289.74 72.43 4.57
1 500 4.19 368.12 141.50 45.69 - 75.69 361.29 296.52 70.81 7.00
1 375 4.25 351.00 140.00 46.00 - 77.47 361.44 286.37 67.38 9.66
2 1500 4.00 307.49 79.00 47.49 88.27 74.84 362.26 222.65 55.66 3.75
2 750 4.00 292.12 71.00 40.12 98.40 79.91 362.34 215.05 53.76 7.75
2 500 4.15 301.67 70.75 41.11 102.12 75.76 362.30 220.36 53.15 11.83
2 375 4.25 288.00 67.00 38.00 110.76 79.57 362.29 221.52 52.12 16.25
3 1500 4.00 222.62 0.00 40.62 87.75 87.75 362.79 183.97 45.99 12.22
3 750 4.00 209.09 0.00 36.09 98.88 98.88 362.96 171.80 42.95 28.79
3 500 4.14 212.66 0.00 33.03 101.62 101.62 362.97 170.41 41.19 42.16
3 375 4.25 199.02 0.00 30.02 112.28 112.28 363.09 160.57 37.78 62.58

112

4.2.2. Fleet size sensitivity
One of the main issues remarked during the cost-benefit analysis (CBA) was the importance of considering
the fleet size in the scope of the CBM implementation. By increasing the number of aircraft, the investment
cost increases as there are more sensors that need to be installed. Nevertheless, the profit value due to extra
fleet availability and the labor cost reduction lead to larger savings. Lastly, the sensor’s certification costs
can be absorbed more easily due to economies of scale. The CBA sensitivity is performed based on a linear
extrapolation of the investment cost, the labor savings, and the profit due to extended availability of one
aircraft. The absorption of the investment cost is calculated by means of Equation 4.5, where AC indicates
the fleet size.

Absorption[%] = New Income

Investment
= (Labor Savings + Profit) · AC

Installation · AC +Certification
(4.5)

Figure 4.6 demonstrates that the cost absorption improves with a logarithmic trend. Based on Equation 4.5 an
horizontal asymptote is expected as the fleet size increases. The original fleet size of 16 aircraft corresponds
to the first point of the graph. Therefore, the current fleet size poses an additional barrier for the profitability
of the CBM strategy. Moreover, the investment cost required to implement CBM in 25% of the AMP is not
compensated with a larger fleet. Since the tasks included in the 25% CBM case have larger intervals, only a
few executions of those tasks are realized in a time horizon of one year. To have a profitable maintenance
strategy, CBM tasks need to be selected based on their impact on the investigated time horizon, as well as
their influence on the non-routine maintenance program.

50 100 150 200 250 300
Fleet size

50

60

70

80

90

100

A
bs

or
pt

io
n

[%
]

Investment cost absorption vs Fleet size

Case
10% CBM
25% CBM

Figure 4.6: Investment cost absorption vs Fleet size

Bibliography

Afsar, H. M., Espinouse, M., and Penz, B. (2006). A Two-step Heuristic to Build Flight and Maintenance Plan-
ning in a Rolling-horizon. In 2006 International Conference on Service Systems and Service Management,
volume 2, pages 1251–1256.

Afsar, M. H., Marie-Laure, E., and Bernard, P. (2009). Building flight planning for an airline company under
maintenance constraints. Journal of Quality in Maintenance Engineering, 15(4):430–443. URL.

Alagoz, O., Hsu, H., Schaefer, A. J., and Roberts, M. S. (2010). Markov decision processes: A tool for sequential
decision making under uncertainty. Medical Decision Making, 30(4):474–483.

Baradaran, V., Shafaei, A., and Hosseinian, A. H. (2019). Stochastic vehicle routing problem with heteroge-
neous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach.
Computers & Industrial Engineering, 131:187–199. URL.

Barnhart, C., Belobaba, P., and Odoni, A. R. (2003). Applications of operations research in the air transport
industry. Transportation Science, 37(4):368–391.

Barnhart, C. and Smith, B. (2012). Quantitative Problem Solving Methods in the Airline Industry, volume 169
of International Series in Operations Research & Management Science. Springer US, Boston, MA. URL.

Bellman, R. E. (1972). Dynamic Programming. Academic Press, Inc., New York, USA, first edition.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2019). Neural combinatorial optimization with re-
inforcement learning. In 5th International Conference on Learning Representations, ICLR 2017 - Workshop
Track Proceedings. URL.

Bengio, Y., Lodi, A., and Prouvost, A. (2020). Machine learning for combinatorial optimization: A method-
ological tour d’horizon. European Journal of Operational Research. URL.

Boere, N. J. (1977). Air Canada Saves with Aircraft Maintenance Scheduling. Interfaces, 7(3):1–13.

Busoniu, L., De Schutter, B., and Babuska, R. (2010). Approximate Dynamic Programming and Reinforcement
Learning. In Studies in Computational Intelligence, volume 281, pages 3–44.

Chiraphadhanakul, V. and Barnhart, C. (2013). Robust flight schedules through slack re-allocation. EURO
Journal on Transportation and Logistics, 2(4):277–306. URL.

Clarke, L., Johnson, E., Nemhauser, G., and Zhu, Z. (1997). The aircraft rotation problem. Annals of Operations
Research, 69(0):33–46. URL.

Clarke, L. W., Hane, C. A., Johnson, E. L., and Nemhauser, G. L. (1996). Maintenance and crew considerations
in fleet assignment. Transportation Science, 30(3):249–260.

Clausen, J., Larsen, A., Larsen, J., and Rezanova, N. J. (2010). Disruption management in the airline indus-
try—Concepts, models and methods. Computers & Operations Research, 37(5):809–821. URL.

Cook, A., Tanner, G., and Anderson, S. (2004). Evaluating the true cost to airlines of one minute of airborne or
ground delay: final report. Technical report, EUROCONTROL, Brussels, Belgium. URL.

Cordeau, J.-F., Stojkovic, G., Soumis, F., and Desrosiers, J. (2001). Benders Decomposition for Simultaneous
Aircraft Routing and Crew Scheduling. Transportation Science, 35:375–388.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial optimization algo-
rithms over graphs. In Advances in Neural Information Processing Systems, volume 2017-December, pages
6349–6359. URL.

113

https://doi.org/10.1108/13552510910997788
http://www.sciencedirect.com/science/article/pii/S0360835219301834
http://link.springer.com/10.1007/978-1-4614-1608-1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083951744&partnerID=40&md5=3094b169095ee7094e48d0fe02e0213f
http://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.1007/s13676-013-0028-y
https://doi.org/10.1023/A:1018945415148
http://www.sciencedirect.com/science/article/pii/S0305054809000914
http://eprints.wmin.ac.uk
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047000455&partnerID=40&md5=67ad35217ae4917b464177c0a66c617e

114

Daily, J. and Peterson, J. (2017). Predictive Maintenance: How Big Data Analysis Can Improve Maintenance.
In Richter, K. and Walther, J., editors, Supply Chain Integration Challenges in Commercial Aerospace: A
Comprehensive Perspective on the Aviation Value Chain, pages 267–278. Springer International Publishing,
Cham. URL.

Deng, Q., Santos, B. F., and Curran, R. (2020). A practical dynamic programming based methodology for air-
craft maintenance check scheduling optimization. European Journal of Operational Research, 281(2):256–
273. URL.

Dong, T., Haftka, R., and Kim, N. (2019). Advantages of Condition-Based Maintenance over Scheduled Main-
tenance using Structural Health Monitoring System.

Dreyfus, S. (2002). Richard Bellman on the birth of dynamic programming. Operations Research, 50(1):48–51.

Feo, T. A. and Bard, J. F. (1989). Flight Scheduling and Maintenance Base Planning. Management Science,
35(12):1415–1432.

Fossier, S. and Robic, P. (2017). Maintenance of complex systems — From preventive to predictive. In 2017
12th International Conference on Live Maintenance (ICOLIM), pages 1–6.

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J. (2018). An Introduction to Deep
Reinforcement Learning. now. URL.

George, A., Powell, W. B., and Kulkarni, S. R. (2008). Value Function Approximation using Multiple Aggregation
for Multiattribute Resource Management. Journal of Machine Learning Research, 9(68):2079–2111. URL.

Goel, A. and Gruhn, V. (2008). A General Vehicle Routing Problem. European Journal of Operational Research,
191(3):650–660.

Gopalan, R. and Talluri, K. T. (1998). The Aircraft Maintenance Routing Problem. Operations Research,
46(2):260–271. URL.

Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., and Sigismondi, G. (1995). The fleet
assignment problem: Solving a large-scale integer program. Mathematical Programming, 70(1):211–232.
URL.

Hasselt, H. V., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with Double Q-Learning. In AAAI
Conference on Artificial Intelligence,.

Hölzel, N., Schilling, T., and Gollnick, V. (2014). An Aircraft Lifecycle Approach for the Cost-Benefit Analysis
of Prognostics and Condition-based Maintenance based on Discrete Event Simulation. In PHM 2014 -
Proceedings of the Annual Conference of the Prognostics and Health Management Society 2014.

Hölzel, N., Schilling, T., Neuheuser, T., and Gollnick, V. (2012a). System Analysis of Prognostics and Health
Management Systems for Future Transport Aircraft. In 28th Congress of the International Council of the
Aeronautical Sciences 2012, ICAS 2012, volume 6.

Hölzel, N., Schröder, C., Schilling, T., and Gollnick, V. (2012b). A Maintenance Packaging and Scheduling Op-
timization Method for Future Aircraft. In 6th International Meeting for Aviation Product Support Processes
(IMAPP). URL.

IATA’s Maintenance Cost Tasks Force (2018). Airline maintenance executive cost commentary. Accessed on
12/11/2020. URL.

Iram, P. (2020). Algorithms of approximate dynamic programming for hydro scheduling. E3S Web of Confer-
ences, 144.

Jayaraj, A., Sridharan, R., and Panicker, V. V. (2020). Dynamic tail re-assignment model for optimal line-of-
flight breakages. Sādhanā, 45(1):16. URL.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018). Is Q-learning Provably Efficient? 32nd Conference
on Neural Information Processing Systems.

https://doi.org/10.1007/978-3-319-46155-7_18
https://www.sciencedirect.com/science/article/pii/S0377221719306782?via%3Dihub
http://ieeexplore.ieee.org.tudelft.idm.oclc.org/document/8585411
http://jmlr.org/papers/v9/george08a.html
https://www.jstor.org/stable/222864
https://doi.org/10.1007/BF01585938
https://elib.dlr.de/76244/
https://www.iata.org/whatwedo/workgroups/Documents/MCTF/MCTF-FY2017-Report-Public.pdf
https://doi.org/10.1007/s12046-019-1256-0

115

Kabbani, N. M. and Patty, B. W. (1992). Aircraft routing at American Airlines. Proceedings of the AGIFORS
symposium.

Kinnison, H. (2004). Aviation Maintenance Management. McGraw-Hill Education. URL.

Knowles, M., Baglee, D., and Wermter, S. (2011). Reinforcement Learning for Scheduling of Maintenance. In
Bramer, M., Petridis, M., and Hopgood, A., editors, Research and Development in Intelligent Systems XXVII,
pages 409–422, London. Springer London.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM Journal on Control and Optimization,
42(4):1143–1166.

Kulkarni, A., Yadav, D., and nikraz, h. (2017). Aircraft maintenance checks using critical chain project path.
Aircraft Engineering and Aerospace Technology, 89:0.

Lagos, C., Delgado, F., and Klapp, M. A. (2020). Dynamic Optimization for Airline Maintenance Operations.
Transportation Science, 54:998–1015.

Lan, S., Clarke, J. P., and Barnhart, C. (2006). Planning for robust airline operations: Optimizing aircraft rout-
ings and flight departure times to minimize passenger disruptions. Transportation Science, 40(1):15–28.

Liang, Z., Feng, Y., Zhang, X., Wu, T., and Chaovalitwongse, W. A. (2015). Robust weekly aircraft mainte-
nance routing problem and the extension to the tail assignment problem. Transportation Research Part B:
Methodological, 78:238–259. URL.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016). Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971.

Littman, M., Dean, T., and Kaelbling, L. (2013). On the Complexity of Solving Markov Decision Problems.

Liu, C.-L., Chang, C.-C., and Tseng, C.-J. (2020). Actor-Critic Deep Reinforcement Learning for Solving Job
Shop Scheduling Problems. IEEE Access, PP:1.

Looker, J. R., Mak-Hau, V., and Marlow, D. O. (2017). Optimal policies for aircraft fleet management in the
presence of unscheduled maintenance. In 22nd International Congress on Modelling and Simulation, Ho-
bart, Tasmania, Australia. URL.

Lotten, D. (2018). Scheduling Planned Hangar Maintenance. Technical report, Amsterdam Vrije Universitetit,
Amsterdam. URL.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement
learning. Applied Soft Computing, 91:106208. URL.

Maher, S. J. (2016). Solving the integrated airline recovery problem using column-and-row generation. Trans-
portation Science, 50(1):216–239.

Martin, R. K. (1999). Large Scale Linear and Integer Optimization: A Unified Approach. Springer US.

McFadden, M. and Worrells, D. (2012). Global Outsourcing of Aircraft Maintenance. Journal of Aviation
Technology and Engineering, 1.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous Methods for Deep Reinforcement Learning. In 33rd International Conference on Machine
Learning, ICML, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. A. (2013).
Playing Atari with Deep Reinforcement Learning. ArXiv, abs/1312.5602. URL.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529–533.

https://books.google.nl/books?id=chaEuME-_icC
http://www.sciencedirect.com/science/article/pii/S0191261515000569
https://www.mssanz.org.au/modsim2017/J6/looker.pdf
https://beta.vu.nl/nl/Images/stageverslag-lotten_tcm235-896974.pdf
http://www.sciencedirect.com/science/article/pii/S1568494620301484
https://arxiv.org/abs/1312.5602

116

Moudani, W. E. and Mora-Camino, F. (2000). A dynamic approach for aircraft assignment and maintenance
scheduling by airlines. Journal of Air Transport Management, 6(4):233–237. URL.

Muchiri, A. and Smit, K. G. (2009). Application of Maintenance Interval De-Escalation in Base Maintenance
Planning Optimization. Enterprise Risk Management, 1.

Nazari, M., Oroojlooy, A., Snyder, L., and Takac, M. (2018). Reinforcement Learning for Solving the Vehicle
Routing Problem. Advances in Neural Information Processing Systems 31, pages 9839–9849.

Obadimu, S. O., Karanikas, N., and Kourousis, K. I. (2020). Development of the minimum equipment list:
Current practice and the need for standardisation. MDPI Aerospace, 7(1).

Odonkor, P. and Lewis, K. (2018). Control of Shared Energy Storage Assets Within Building Clusters Using
Reinforcement Learning.

Ozkol, I. and Senturk, C. (2017). The effects of the use of single task-oriented maintenance concept and more
accurate letter check alternatives on the reduction of scheduled maintenance downtime of aircraft. In 2017
8th International Conference on Mechanical and Aerospace Engineering (ICMAE), pages 67–74.

Papakostas, N., Papachatzakis, P., Xanthakis, E., Mourtzis, D., and Chryssolouris, G. (2010). An approach to
operational aircraft maintenance planning. Decision Support Systems, pages 604–612.

Pereira, M. A. and Ashok Babu, J. (2016). Information Support Tool for Aircraft Maintenance Task Planning.
International Advanced Research Journal in Science, Engineering and Technology, 3(2).

Polydoros, A. and Nalpantidis, L. (2017). Survey of Model-Based Reinforcement Learning: Applications on
Robotics. Journal of Intelligent & Robotic Systems, 86:153.

Pontecorvo, J. A. (1984). MSG-3–A Method For Maintenance Program Planning. In Aerospace Congress and
Exposition. SAE International. URL.

Powell, W. B. (2011). Approximate dynamic programming : solving the curses of dimensionality. Wiley.

Powell, W. B. (2014). Clearing the Jungle of Stochastic Optimization. In Bridging Data and Decisions, pages
109–137. INFORMS.

Powell, W. B. (2020). Reinforcement Learning and Stochastic Optimization: A unified framework. John Wiley
& Sons. URL.

Powell, W. B., Simao, H. P., and Bouzaiene-Ayari, B. (2012). Approximate dynamic programming in trans-
portation and logistics: a unified framework. EURO Journal on Transportation and Logistics, 1(3):237–284.
URL.

Powell, W. B. and Topaloglu, H. (2006). Approximate Dynamic Programming for Large-Scale Resource Allo-
cation Problems. In Models, Methods, and Applications for Innovative Decision Making, pages 123–147.
INFORMS.

Qantas (2016). The A, C and D of aircraft maintenance. Website. Accessed on 10/05/2020. URL.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for Activation Functions. URL.

ReMAP H2020. Website. Accessed on 23/10/2020. URL.

Ruther, S., Boland, N., Engineer, F., and Evans, I. (2016). Integrated Aircraft Routing, Crew Pairing, and Tail
Assignment: Branch-and-Price with Many Pricing Problems. Transportation Science, 51.

Safaei, N. and Jardine, A. K. S. (2018). Aircraft routing with generalized maintenance constraints. Omega,
80:111–122. URL.

Samaranayake, P. and Kiridena, S. (2012). Aircraft maintenance planning and scheduling: An integrated
framework. Journal of Quality in Maintenance Engineering, 18(4):432–453.

https://www.sciencedirect.com/science/article/pii/S0969699700000119
https://doi.org/10.4271/841485
http://castlelab.princeton.edu/RLSO/
https://doi.org/10.1007/s13676-012-0015-8
https://www.qantasnewsroom.com.au/roo-tales/the-a-c-and-d-of-aircraft-maintenance/
https://arxiv.org/abs/1710.05941
https://h2020-remap.eu/
http://www.sciencedirect.com/science/article/pii/S0305048316309410

117

Sanchez, D. T., Boyacı, B., and Zografos, K. G. (2020). An optimisation framework for airline fleet maintenance
scheduling with tail assignment considerations. Transportation Research Part B: Methodological, 133:142–
164. URL.

Sarac, A., Batta, R., and Rump, C. M. (2006). A branch-and-price approach for operational aircraft mainte-
nance routing. European Journal of Operational Research, 175(3):1850–1869. URL.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay. In 4th International
Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. URL.

Shannon, M. and Ackert, P. (2010). Basics of Aircraft Maintenance Programs for Financiers. Evaluation &
Insights of Commercial Aircraft Maintenance Programs. Technical report.

Shen, X.-N. and Yao, X. (2015). Mathematical modeling and multi-objective evolutionary algorithms applied
to dynamic flexible job shop scheduling problems. Information Sciences, 298:198–224. URL.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., and Hassabis, D. (2017).
Mastering the game of Go without human knowledge. Nature, 550(7676):354–359. URL.

Simão, H. and Powell, W. (2009). Approximate dynamic programming for management of high-value spare
parts. Journal of Manufacturing Technology Management, 20:147–160.

Simão, H. P., Day, J., George, A. P., Gifford, T., Nienow, J., and Powell, W. B. (2008). An Approximate Dynamic
Programming Algorithm for Large-Scale Fleet Management: A Case Application. Transportation Science,
43(2):178–197. URL.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning Without State-Estimation in Partially Observable
Markovian Decision Processes. In Cohen, W. W. and Hirsh, H., editors, Machine Learning Proceedings 1994,
pages 284–292. Morgan Kaufmann, San Francisco (CA). URL.

Solozabal, R., Ceberio, J., Sanchoyerto, A., Zabala, L., Blanco, B., and Liberal, F. (2020). Virtual Network Func-
tion Placement Optimization With Deep Reinforcement Learning. IEEE Journal on Selected Areas in Com-
munications, 38(2):292–303.

Sriram, C. and Haghani, A. (2003). An optimization model for aircraft maintenance scheduling and re-
assignment. Transportation Research Part A: Policy and Practice, 37(1):29–48. URL.

Steiner, A. (2006). A Heuristic Method for Aircraft Maintenance Scheduling under Various Constraints. 6 th
Swiss Transport Research Conference. URL.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. A Bradford Book, Cambridge,
MA, USA, first edition.

Teal, C. and Sorensen, D. (2001). Condition based maintenance [aircraft wiring]. In 20th DASC. 20th Digital
Avionics Systems Conference (Cat. No.01CH37219), volume 1, pages 1–3.

Tinga, T. (2013). Principles of loads and failure mechanisms. Applications in maintenance, reliability and
design. Springer Series in Reliability Engineering. Springer.

Ulmer, M. W. (2020). Horizontal combinations of online and offline approximate dynamic programming for
stochastic dynamic vehicle routing. Central European Journal of Operations Research, 28(1):279–308.

Van Den Bergh, J., De Bruecker, P., Beliën, J., and Peeters, J. (2013). Aircraft maintenance operations: state of
the art. Technical report, KU Leuven, Leuven.

Vianna, W. O. L. and Yoneyama, T. (2018). Predictive Maintenance Optimization for Aircraft Redundant Sys-
tems Subjected to Multiple Wear Profiles. IEEE Systems Journal, 12(2):1170–1181.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Frcitas, N. (2016). Dueling Network
Architectures for Deep Reinforcement Learning. In 33rd International Conference on Machine Learning,
ICML 2016, volume 4, pages 2939–2947. URL.

http://www.sciencedirect.com/science/article/pii/S0191261519302000
http://www.sciencedirect.com/science/article/pii/S0377221705004807
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083953310&partnerID=40&md5=d6aceb1a03d34855ae6ea59bd372934a
http://www.sciencedirect.com/science/article/pii/S0020025514011177
https://doi.org/10.1038/nature24270
https://doi.org/10.1287/trsc.1080.0238
http://www.sciencedirect.com/science/article/pii/B9781558603356500428
http://www.sciencedirect.com/science/article/pii/S0965856402000046
https://www.researchgate.net/publication/269466332
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998996757&partnerID=40&md5=886bdba2a62237e39fc8298d86a1e5c6

118

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., and Kyek, A. (2018).
Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP, 72:1264–
1269. URL.

Watkins, C. (1989). Learning From Delayed Rewards. PhD thesis, University of Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292. URL.

Witteman, M., Deng, Q., and Santos, B. F. (2021). A bin packing approach to solve the aircraft maintenance
task allocation problem. European Journal of Operational Research.

Witteman, M. M. D. (2019). A practical maintenance task packaging model applicable to aircraft maintenance.
Technical report, Delft University of Technology. URL.

Yan, S., Hsiao, F. Y., Guo, J., and Chen, Y. C. (2011). Effective aircraft maintenance schedule adjustment fol-
lowing incidents. Transportation Planning and Technology, 34(8):727–745.

Yang, M. (2007). Using advanced tabu search techniques to solve airline disruption management problems.
PhD thesis, University of Texas. URL.

http://www.sciencedirect.com/science/article/pii/S221282711830372X
https://doi.org/10.1007/BF00992698
http://repository.tudelft.nl.
https://repositories.lib.utexas.edu/handle/2152/3660

A
Aircraft Maintenance Program Tasks

Table A.1: Routine tasks of A-Check AMP classified per task group and interval duration

Task Group FH FC DY Nr. Tasks Labor [hrs]
Detailed Inspection 1500 - - 7 5.35
Detailed Inspection - - 120 1 1
Detailed Inspection 2000 - 360 1 0.5
Detailed Inspection 3000 - - 1 0.33
Detailed Inspection - - 365 1 1.4
Detailed Inspection 7500 - - 1 0.13
Detailed Inspection - 1000 - 2 4.46
Detailed Inspection - 4000 730 1 0.27
Detailed Inspection - - 730 1 0.5
Detailed Inspection 12000 - - 5 1.81
Discard 1500 - - 1 0.35
Discard 3000 - - 1 1.5
Discard 4000 - - 8 5.11
Discard 6000 - - 4 3.57
Discard 8000 - - 3 2.1
Discard 8000 3650 - 1 1.4
Discard - - 720 1 0.35
Discard - - 730 1 0.13
Discard 12000 - - 1 0.7
Discard 12000 3650 - 2 2.8
Functional Check 1500 - - 1 0.35
Functional Check 2000 - - 4 2.32
Functional Check - 2000 360 3 1.7
Functional Check 6000 - - 4 2.4
Functional Check 8000 - - 3 2.19
Functional Check 12000 - - 3 3.7
General Visual Inspection 1500 - - 4 4.53
General Visual Inspection - 600 120 2 1.38
General Visual Inspection - - 180 6 2.44
General Visual Inspection 3000 - - 1 0.27
General Visual Inspection 4000 - - 4 2.24
General Visual Inspection 6000 - - 12 10.7
General Visual Inspection - - 730 1 0.35
General Visual Inspection 12000 - - 5 1.15
General Visual Inspection 12000 6000 1095 6 1.07
Lubrication 2000 - - 1 1.4
Lubrication - 800 150 8 6.48
Lubrication - 1000 180 1 0.27
Lubrication - 2000 360 1 0.48
Lubrication 6000 - 540 4 3.8

119

120

Lubrication - 2000 540 2 2.4
Lubrication - - 730 1 0.35
Operational Check 1500 - - 9 11.53
Operational Check - - 180 3 1.75
Operational Check 3000 - - 6 2.01
Operational Check 3500 - - 1 0.33
Operational Check - - 365 1 1.4
Operational Check 6000 - - 2 1.74
Operational Check 8000 - - 4 1.57
Operational Check - - 730 1 0.27
Operational Check 12000 6000 1095 2 2.8
Operational Check 12000 - - 5 3.97
Restoration 1500 - - 5 8.65
Restoration 3000 - - 3 2.02
Restoration 6000 - - 3 2.06
Restoration - 1000 - 1 0.27
Restoration 9000 - - 1 0.08
Restoration 12000 - - 1 1.4
Servicing 1500 - - 3 2.98
Servicing 3000 - - 1 0.33
Servicing 6000 - 540 2 1.65
Servicing 6000 - - 1 0.7
Servicing - - 730 1 0.7
Visual Check 1500 - - 3 1.21
Visual Check 2000 - - 2 0.26
Visual Check - 600 - 2 0.54
Visual Check - - 360 1 0.42
Visual Check - - 730 1 0.13

B
Extended Block Clustering Model

An extension of the block clustering models has been included in this appendix. The new objective function
(Equation B.1) minimizes the task repetitions by giving priority to the tasks that occur more frequently, so
those that have a shorter interval limitation. Furthermore, it considers capacity constraints per skill (Equa-
tion B.4), instead of having a general capacity limitation per block. However, this model was not employed
for two main reasons. Firstly, the reinforcement learning algorithm was designed without considering labor
hours, such that the required skills would always be available on the maintenance date. Secondly, this ex-
tended model did not manage to find a feasible solution in a reasonable time. Lastly, the clustering model
could be further extended by implementing zonal and task inter-dependencies requirements.

Sets
J : The set of routine tasks for an aircraft
B : The set of blocks based on the maintenance policy configuration
K : The set of labor skills
Pi j : The set of blocks that have a distance from block i that is less or equal than I j

Parameters
I j : The interval of task j
Dk

j : The labor hours requirement of skill k for task j

LH k : The capacity of labor hours in each block for skill k

Decision Variable
xi j : Task j is assigned to block i

minimize
∑
j∈J

∑
i∈B

xi j /I j (B.1)∑
i∈B

xi j ≥ 1 ∀ j ∈ J (B.2)

xi j −
∑

p∈Pi j

xp j ≤ 0 ∀i ∈ B , ∀ j ∈ J (B.3)

∑
j∈J

xi j ·Dk
j ≤ LH k ∀i ∈ B , ∀k ∈ K (B.4)

xi j ∈ {0,1} ∀i ∈ B , ∀ j ∈ J (B.5)

121

C
Additional Scheduling Data

The results presented in the scientific article can be visualized by means of plots for the individual KPI’s rather
than in a table format. In this appendix the final results for the 15% uncertainty and 100% interval escalation
case are presented by means of several bar charts in order to visualize the relative performance between
policies and CBM cases. Each plot contains the average results per aircraft based on a 12 months horizon and
100 Monte Carlo simulations.

Table C.1: Scheduling results with 100% interval escalation and 15% uncertainty (365 days horizon)

Case Policy Check Tasks Sub. Esc. Util.[%] Util.(all)[%] Avail.[DY] Labor [hrs.] Labor[hrs/check] Comp.[min]
1 1500 4.00 383.00 150.00 48.00 - 78.92 361.24 302.48 75.62 2.31
1 750 4.00 365.00 139.00 43.00 - 82.05 361.34 289.74 72.43 4.57
1 500 4.19 368.12 141.50 45.69 - 75.69 361.29 296.52 70.81 7.00
1 375 4.25 351.00 140.00 46.00 - 77.47 361.44 286.37 67.38 9.66
2 1500 4.00 303.31 79.00 43.31 107.16 75.82 362.34 217.93 54.48 3.65
2 750 4.00 288.00 71.00 36.00 143.67 82.27 362.43 212.43 53.11 7.81
2 500 4.15 298.10 70.75 37.54 147.22 77.49 362.35 218.00 52.58 12.16
2 375 4.25 284.87 67.00 34.87 162.20 81.58 362.34 219.05 51.54 17.64
3 1500 4.00 206.73 0.00 24.73 113.61 113.61 363.09 161.36 40.34 11.49
3 750 4.00 191.29 0.00 18.29 148.68 148.68 363.26 149.17 37.29 24.15
3 500 4.15 197.19 0.00 17.00 160.15 160.15 363.24 150.34 36.26 40.27
3 375 4.25 185.94 0.00 16.94 168.71 168.71 363.32 143.50 33.77 54.78

10% CBM 25% CBM
Scenario

100

110

120

130

140

150

160

170

In
te

rv
al

 U
til

iz
at

io
n

[%
]

Individual Performance of Escalated Tasks

Interval (FH)
375
500
750
1500

(a) Utilization of tasks monitored by RUL prognostics

0% CBM 10% CBM 25% CBM
Scenario

0

10

20

30

40

50

Ta
sk

s
R

ep
et

iti
on

s

Escalated tasks repetitions vs Maintenance Policy

Interval (FH)
375
500
750
1500

(b) Escalated tasks repetitions

Figure C.1: Escalated tasks results

122

123

0% CBM 10% CBM 25% CBM
Scenario

0

20

40

60

80

100

120

140

Ta
sk

s
R

ep
et

iti
on

s
Substitution tasks repetitions vs Maintenance Policy

Interval (FH)
375
500
750
1500

(a) Substitution tasks repetitions

0% CBM 10% CBM 25% CBM
Scenario

0

50

100

150

200

250

300

350

400

Ta
sk

s
R

ep
et

iti
on

s

Total tasks repetitions vs Maintenance Policy

Interval (FH)
375
500
750
1500

(b) Total Tasks repetitions

0% CBM 10% CBM 25% CBM
Scenario

0

50

100

150

200

250

300

La
bo

ur
 h

ou
rs

/A
irc

ra
ft

Labor hours vs Maintenance Policy

Interval (FH)
375
500
750
1500

(c) Maintenance Labor hours

0% CBM 10% CBM 25% CBM
Scenario

0

10

20

30

40

50

60

70

La
bo

ur
/C

he
ck

Labor hours per check vs Maintenance Policy

Interval (FH)
375
500
750
1500

(d) Maintenance Labor hours per cycle

0% CBM 10% CBM 25% CBM
Scenario

361.0

361.5

362.0

362.5

363.0

363.5

364.0

A
irc

ra
ft

A
va

ila
bi

lit
y

[D
ay

s]

Aircraft Availability vs Maintenance Policy

Interval (FH)
375
500
750
1500

(e) Aircraft Availability

0% CBM 10% CBM 25% CBM
0

10

20

30

40

50

C
om

pu
ta

tio
na

l T
im

e
[m

in
]

Computational Time vs Maintenance Policy

Interval (FH)
375
500
750
1500

(f) Computational time per scenario

Figure C.2: Visualization of results with 15% uncertainty and 100% interval escalation

124

06/09 30/10 19/12 13/02 07/04 29/05 24/07 16/09 06/11 01/01
Slot dates

A
irc

ra
ft

Ta
il

Maintenance Schedule Visualization

0

20

40

60

80

D
ay

s
to

 D
ue

 D
at

e

(a) 1500FH Policy

05/09 29/10 20/12 13/02 08/04 29/05 23/07 16/09 10/11 01/01
Slot dates

A
irc

ra
ft

Ta
il

Maintenance Schedule Visualization

0

10

20

30

40

D
ay

s
to

 D
ue

 D
at

e

(b) 750FH Policy

05/09 29/10 20/12 13/02 07/04 02/06 24/07 16/09 10/11 01/01
Slot dates

A
irc

ra
ft

Ta
il

Maintenance Schedule Visualization

0

5

10

15

20

25

30

D
ay

s
to

 D
ue

 D
at

e

(c) 500FH Policy

05/09 29/10 20/12 13/02 08/04 02/06 24/07 16/09 10/11 01/01
Slot dates

A
irc

ra
ft

Ta
il

Maintenance Schedule Visualization

0

5

10

15

20

D
ay

s
to

 D
ue

 D
at

e

(d) 375FH Policy

Figure C.3: Maintenance schedule visualization example for the explored interval policies

	List of Figures
	List of Tables
	List of Abbreviations
	I Scientific Paper
	II Literature Study previously graded under AE4020
	Introduction
	Research framework
	Outline of the report

	Maintenance Planning
	Economic impact of airline maintenance
	Maintenance Program Development
	Maintenance Checks
	Maintenance Strategies
	Disruption Management
	Discussion

	Condition-Based Maintenance
	Prognostic and Health Management (PHM)
	Task-oriented Strategy
	Task-Packaging
	EC-H2020: ReMAP project
	Discussion

	The Aircraft Maintenance Problem
	Aircraft Maintenance Routing
	Aircraft Schedule Recovery
	Aircraft Maintenance Scheduling
	Discussion

	Dynamic Programming Approaches
	Classic Dynamic Programming
	The need for approximation
	Stochastic modeling in ADP
	The curse of dimensionality
	Applications of ADP in Literature
	Model-free vs Model-based
	Q-Learning
	Actor-Critic
	Neural Combinatorial Optimization
	Discussion

	Conclusion

	III Research Methodologies previously graded under AE4010
	Introduction
	Literature Review
	Maintenance Planning
	Condition-based maintenance
	Airline Maintenance Optimization
	Approximate Dynamic Programming approaches
	Synthesis, relevance and positioning of project

	Research Objectives and Questions
	Methodology
	Model of the environment and operating setting
	Model of the scheduling agent
	Stochastic modeling
	Task-packaging integration

	Experimental Set-up
	Results, Outcome and Relevance
	Project Planning and Gantt Chart
	Conclusions

	IV Supporting Work
	Airline Maintenance Planning
	Aircraft maintenance program
	Daily aircraft utilization
	The transition to CBM
	Interval policies exploration

	Reinforcement Learning
	Learning Strategies
	Q-Learning
	Deep Q-Learning
	Training strategy
	Agents benchmark

	Verification & Validation
	Unit tests
	System tests
	Validation

	Sensitivity Analysis
	DQN hyperparameter tuning
	CBM sensitivity

	Bibliography
	Aircraft Maintenance Program Tasks
	Extended Block Clustering Model
	Additional Scheduling Data

