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Abstract: Roads in the Netherlands are often heavily congested. Real-time travel time information can be 

a valuable instrument to reduce the impact of increasing traffic demand on travel time with advantages for 

traffic participants as well as for the traffic network managers.  

For urban roads travel time estimation is a more complex problem than for freeways. In order to provide 

online, real-time and accurate travel times, in this paper a new estimation approach is developed based on 

measurements supplied by the (vehicle-dependent) traffic controllers. These measurements include the 

occupancy from the corresponding long loop, the flow from the short loop, and the green percentages. 

Based on these measurements the location and length of the queues is estimated. 

Moreover, the approach transforms the data in a way that the underlying reason(s) of congestion becomes 

apparent (in terms of bottleneck location), which can be very useful for, e.g., advanced traffic information 

systems or decision support systems. Compared with the approach based on license plate recognition 

cameras, which is used in the Netherlands in many locations, this approach is expected to be more accurate 

in heavily congested situations, since for license plate recognition vehicles have to pass the end of the 

route before the traveled time can be measured. 

The approach is tested with real traffic data for an urban route in the Netherlands. The test case presented 

in the paper shows that the use of the additional data from traffic controllers (occupancy, green percentage, 

waiting time of first vehicle in queue) is beneficial. 
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1 INTRODUCTION 

1.1 Traffic in the Netherlands 

In the Netherlands, during the last 10 years, oversaturation of 

networks and traffic congestion have been accepted as the 

result from the persistent imbalance between traffic demand 

and traffic infrastructure supply. Advanced Traffic 

Information Systems (ATIS) provide opportunities to use the 

available network supply more efficiently (so-called demand-

supply synchronization). Furthermore, providing travellers 

with reliable traffic information will reduce uncertainty and 

allow for better trip planning.  

ATIS requires a data collection and state estimation system 

that provides reliable and accurate estimates of the prevailing 

traffic conditions on the freeway, rural, and urban network.  

The state-of-practice of travel time estimation and prediction, 

and the distribution of this information on freeways in the 

Netherlands can be qualified high in comparison with urban 

roads, since most of the freeways are equipped with double 

loop detectors on every 500m. Van Lint showed [1] how 

these point measurements of traffic volumes and speeds can 

be used for travel time estimation and prediction on freeways. 

However, these kinds of detectors are present on only a small 

part of the provincial and urban roads. 

Estimation of travel times in urban areas is more complicated 

due to a variety of factors.  An urban network is more 

complex than a freeway network, due to roads of different 

categories, more intersections with different control systems, 

and more route alternatives. Since delays at the intersections 

are a substantial part of the total travel time, the traffic 

dynamics has a stronger stochastic component in urban 

networks [2]. A detailed double loop detection system on 

every 500m for all urban roads in the network would be rather 

expensive, and would still ignore the waiting times at the 

intersections. 

In this paper, a new and cost-efficient method is introduced 

for online travel time estimation. In comparison with other 

approaches, this method makes not only use of traffic 

volumes as online information from traffic controllers, but 

also of other data, from which the occupancy of long loop 

detectors is the most important. The model is developed and 

tested with use of real traffic data.  

1.2 Travel time estimation in urban networks  

In the past several approaches have been proposed for 

estimating travel times in urban areas. The approaches can be 
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distinguished according to the type of data used and the 

model type. The thesis of Liu contains an overview of most of 

these approaches [3]. In general, three types of approaches 

exist:

 

• Data-driven (black box) approaches, 

• Model-based approaches, 

• Hybrid approaches. 

Data-driven approaches are not based on traffic theory or a 

traffic model. They either use a kind of measurement that 

directly relates to travel times, or estimate the relation 

between travel time and other measured variables, such as 

volumes, green times, etc, that indirectly relate to travel time. 

Examples of the direct approach are the use of data from 

mobile phones, use of GPS data from taxis and the use of 

License Plate Recognition cameras. An example of an 

indirect approach is the approach of Robinson[8] who 

estimated travel time in London using data from data short 

loop detectors using the k-NN (K-Nearest Neighbour) 

method. This method needs training data, a database 

consisting of measured travel times and loop detector data. 

Model-based approaches make use of knowledge of traffic 

flow operations, formalized in either a static model or a 

dynamic model, which acts as base for estimation of travel 

times (for example, a standard BPR function, which is already 

included in the static model itself) [4]. The advantage of this 

approach is that travel time measured on a link can be added, 

which makes improvements by data-driven techniques 

possible. 

In a hybrid approach, both approaches are combined.  

While the data driven approaches may lead to accurate results 

but at a high cost (due to the required number of detectors), 

the model-based approaches are low(er)-cost, but less 

accurate methods. In this paper we aim at improving the 

accuracy of travel time estimation, using the available -- but 

until now unused – measurements from the traffic controllers. 

In the Netherlands, typically loop detectors of traffic 

controllers provide information only on volumes of traffic 

over fixed time periods. The disadvantage of using volumes 

only as online data input is that no distinction can be made 

according to the cause of the changes in the traffic flows. 

Such changes may be a result of: 

• varying traffic demands, or other stochastic 

disturbances, 

• blocking back, 

• saturation of an upstream intersection. 

We argue that by using more data from traffic controllers than 

traffic volumes alone, a hybrid model could be more accurate 

and cost efficient. Liu [2] argues that this information is not 

available, but in practice, the additional costs of providing 

this data for online purposes are not very large.  

A simple online approach of using volume data is, for 

instance, based on the cumulative count approach of Daganzo 

[6]. From the moment that a traffic controller measures a start 

of oversaturation, the change in queue length is estimated by 

the difference between entering and leaving vehicles of that 

link. This approach has some disadvantages and practical 

problems, as pointed out also by Liu [3], which may lead to 

inaccurate estimates: 

• For one or more unmeasured intersections between 

two controlled intersections an estimation must 

replace measured data, which may lead to 

inaccuracies; 

• Counting errors for the measured volumes tend to 

accumulate over time; if lanes are used for different 

directions, directions percentages have to be 

estimated and can change from reality; 

• The method is vulnerable in situations where not all 

controllers provide information in time in an online 

situation (due to, e.g., communication errors), since 

data from 2 controllers for the algorithm are needed. 

2 URBAN TRAVEL TIME ESTIMATION APPROACH 

This section outlines a new hybrid approach to estimate travel 

times on urban networks using data from controlled 

intersections. The approach can be seen as an improvement of 

the so called 'Sandglass traffic model', using the image of 

sand through an hourglass for an oversaturated link [7]. The 

basic idea is to classify the traffic situation around a 

signalized intersection for each arm as either under- or 

oversaturated, and to use a simple calculation method for 

each class.  

The approach first estimates the queue lengths at each 

intersection on the considered route, and next determines the 

travel time on each link of the route. 

2.1 Queue length estimation 

For the queue length estimation let’s consider intersection i 

on the given route and refer to the incoming link to this 

intersection also by index i,  and denote its length by 
i

l . In 

this approach it is assumed that link i is divided into two 

parts, the upstream part with length 
u

i
l and the downstream 

end with length
d

i
l , with 

u d

i i i
l l l= + . 

In the Netherlands the typical loop configuration is to have a 

short loop at the stop line of the intersection and a long loop 

(with length of around 20m) upstream of it. The basic idea of 

the queue length estimation is that based on the occupancy 

measurement from the long loop and the flow measurement 

of the short loop of the intersections, the length of the queues 

on the upstream and downstream part of the link are 

estimated separately.  

The estimation of the queue length on the downstream part of 

the link is based on the occupancy of the long loop. The 
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occupancy is the percentage of time that at least a part of a 

vehicle is above the detector. The long loop detector (20m) 

will be occupied for 100% if the distance between any two 

vehicles is less than 20m. So, if all vehicles have the same 

driving and car-following behaviour, oversaturation will 

theoretically lead to 100% occupancy. In case of under-

saturation, after the green time, there will be gaps greater than 

20m. So, under-saturation will lead to occupancy lower then 

100%. However, in practice, even in the case of 

oversaturation, 100% occupancy during a time period is not 

always reached, since a truck or a slower vehicle may have a 

larger headway within a queue. In case of oversaturation we 

assume that there is a queue present at the downstream end of 

the link. The estimated queue length 
d,queue

i
l is given by 

 
d,queue d

1 1 occ( , , )
i i

l p q p lβ= , (1) 

which is a scaling of the length of the length 
d

i
l by a factor 

given by the cumulative beta distribution, and occp  is the 

measured occupancy. An example of the beta distribution is 

given in Figure 1. The tuning parameters 1p and 1q  determine 

the shape and “smoothness” of the queue length as a function 

of the occupancy. 

The next step is to estimate the queue length 
u,queue

1i
l +  at the 

upstream part of the link leaving intersection i (which is 

therefore the upstream part of the incoming link of 

intersection i+1). 

The reasoning is based on the observation that there may be 

basically two reasons for a high occupancy at intersection i: 

• A lack of capacity at the intersection; 

• A queue downstream of the intersection (blocking 

back). 

If a high occupancy is measured (by the long loop detectors) 

and there is no blocking back, traffic volume (V) on a lane 

will be given by 

 gV=p c , (2) 

where c is the lane capacity, and pg the green percentage 

within a cycle. However, in case of blocking back, V will be 

lower. Now, let us define the capacity factor pcp given by 

 min 1;cp

g

V
p

p c

 
=   ⋅ 

, (3) 

where pcp expresses undersaturation. Essential in (3) is the use 

of the measured value of the percentage of green time pg and 

not an estimation of it, since the comparison between V and pg 

must be made as accurate as possible. 

With a similar reasoning a queue is assumed to be present at 

the upstream part of link i+1 (which is directly downstream 

of intersection i) only if (1) the measured occupancy is high 

and the queue discharge rate is lower than the capacity. 

The estimated queue length 
u,queue

1i
l + is expressed by 

 
u,queue u

1 1 1 occ 2 2 cp 1( , , ) ( , ,1 )i il p q p p q p lβ β+ += − , (4) 

where the first factor is the same as in (1) , the second factor 

expresses the “degree” of flow saturation, and 2p and 2q are 

tuning parameters. 

It is worth mentioning that in case of a growing or decreasing 

queue, the downstream queue length 
d,queue

i
l  might be 

overestimated, and the upstream queue length 
u,queue

1i
l + underestimated, since the queue length is estimated 

based on a point measurement. When a queue starts building 

up, e.g., from a congested freeway to an urban road, the 

queue downstream of the last controller (the upstream queue) 

on the route will be ignored till the start of the queue has 

reached the intersection. At the moment the queue is 

somewhere upstream of the last controller, it is estimated 

halfway between the last two controllers, which is an 

overestimation of the queue length, if the distance between 

the two controllers is significant. 

The beta parameters are assumed to be network parameters, 

which are only dependent of the length and position of the 

loop detector. Although traffic behaviour and vehicle 

composition will possibly influence the parameters p1 en q1, 

we don't expect this be too significant.  For practical 

implementation a network estimation of p en q would be 

interesting. 

 

2.2 Travel time calculation 

Travel time in urban networks can be subdivided into three 

parts: 

• Free driving time (t0) 
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Figure 1 An example of the beta function. 
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• Waiting time for signalized intersection, except 

queuing (or uncontrolled intersection) (tw) 

• Time spent in waiting queue (tq) 

The free driving time on link i can be approximated by: 

 
0 d,queue u,queue

0( ( )) /
i i i i

t l l l v= − +  (5) 

Where 
i

l l is the length of link i and 
d,queue u,queue

i i
l l+ is the 

total length of the queue, and 0v  is the maximum allowed 

speed. 

In case of uniformly arriving vehicles, a fixed-time controller, 

the mean waiting time (until green) is the product of the 

probability of waiting and the half of the red time: 

 0.5 (1 )w r gt t p= ⋅ ⋅ −  (6) 

Where 
r

t  is the red time and pg is the percentage of green 

time. In our model, we replace 
r

t  by the waiting time of the 

first vehicle in the queue, 
1

w
t : 

 
10.5 (1 )w w gt t p= ⋅ ⋅ −  (7) 

1

w
t  is measured by the traffic controller and is, in cases of low 

traffic and vehicle responsive control, more accurate than 

using the red time, since in that case the assumption of an 

uniform arrival time during red is not valid: the signal 

remains red until a first vehicle arrives. 

The time spent in the waiting queue tq is determined by the 

length lq of the waiting queue, the flow V on one lane, and the 

headway distance d of the vehicles in the queue, according to 

 
q

q

l
t

d V
=

⋅
. (8) 

In (8) V is measured by the short loop detectors of the traffic 

controller.  

3 CASE STUDY: DATA DESCRIPTION 

In the remainder of the paper, we will illustrate the 

functioning of the proposed estimation procedure by applying 

it to a case study with data from the Dutch city Zoetermeer.   

3.1 Case Zoetermeer 

Data was collected for a period of 3 months with accurate 

travel times from a License Plate Recognition (LPR) camera 

system and online data from 4 traffic controllers on a route in 

the city of Zoetermeer. A schematic representation of the 

considered route is given in Figure 2. The thick line indicates 

the measured route of the LPR system. The data is aggregated 

over 5 minute intervals, and contain high peaks in travel 

times. With use of these data, testing and calibration of the 

algorithm was in sight. 

 

 
Figure 2 The investigated route in the city of 

Zoetermeer (the Netherlands)  

 

The data is collected from September to December 2005. 

From these data a selection is made with days which consist 

of a travel time greater than 15 minutes: 7 days are selected. 

The following data are collected by / from the traffic 

controllers: 

• Traffic volume; 

• Occupancy long detector loops; 

• Occupancy short detector loops; 

• Mean green time; 

• Number of start green; 

• Mean waiting time of first vehicle in waiting queue. 

Figure 3 shows an example of an intersection with position of 

long and short loop detectors. 

 

Figure 3 Overview of typical loop detector 

infrastructure in the Netherlands  
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In the Netherlands, most detector infrastructure consists of a 

short detector for each signal group just before the stop line 

and a long loop detector (20m) at 40 m before the stop line, 

apart from bus, pedestrian and cycle detectors. These long 

loop detectors are used in order to optimize the end of green 

time. 

3.2 Collected travel time data 

From the LPR system, the following data are defined and 

collected: 

• Departure travel time (DTT) = mean departure time 

of set of vehicles leaving from the first LPR camera 

within a certain time period 

• Arrival travel time (ATT) = mean travel time of set 

of vehicles arriving at the second LPR camera within 

a certain time period 

3.3 Level of aggregation 

Travel times of shorter time periods consist of much 

heterogeneous variation (start and end of green times of 

controllers). Practical consequences are: 

• For some periods no DTT or ATT exist: in the 

dataset these empty data are replaced by 

interpolation of previous and next data; 

• The key data from the traffic controllers has some 

statistical variation, depending on the exact starting 

and ending times of a new phase cycle within the 5-

minute periods. 

• A shorter aggregation period would lead to more 

serious problems as mentioned above. A larger 

aggregation period will lead to an unnecessary loss 

of information. 

3.4 Calculation of trajectories 

In order to compare mean travel time, estimated by data from 

traffic controllers, and the measured travel times from the 

LPR, the DTT is chosen as travel time reference. The purpose 

is to estimate the DTT from data from traffic controllers.  For 

practical reason, it is assumed that velocity is constant 

homogenous over the network within one period. In case of 

network travel times greater than the aggregation period, the 

part of the route travelled during the aggregation period is 5 

minutes divided by the travel time of the aggregation time 

period. An example of this method is shown in TABLE 1. 

 

 

 

 

TABLE 1 Example of estimating departure travel time from 

network travel time. 

start end network travel time on succeeding aggregation time periods (s) propagation time (s) estimated

time time travel time (s) 1 2 3 4 5 6 start time end time ddt (s)

7:50 7:55 538 300 300 94 0 0 0 694 955 824

7:55 8:00 812 300 300 300 55 0 0 955 1379 1167

8:00 8:05 1283 300 300 300 300 179 0 1379 1321 1350

8:05 8:10 808 300 300 300 300 121 0 1321 1272 1296

8:10 8:15 2154 300 300 300 300 72 0 1272 1037 1155

8:15 8:20 2347 300 300 300 137 0 0 1037 797 917

8:20 8:25 1396 300 300 197 0 0 0 797 598 697

8:25 8:30 824 300 298 0 0 0 0 598 584 591

8:30 8:35 468 300 284 0 0 0 0 584 739 662

8:35 8:40 791 300 300 139 0 0 0 739 642 690

8:40 8:45 720 300 300 42 0 0 0 642 463 552

8:45 8:50 682 300 163 0 0 0 0 463 290 376

8:50 8:55 290 290 0 0 0 0 0 290  
 

This method makes it possible to handle high values of 

network travel times in an easy, consistent and proper way. 

For example: if a driver starts at 7:50, your network travel 

time till 7:55 is 538 seconds, at 7:55 you have passed 300/538 

= 56% of the route. The next period, the network travel time 

is 812 seconds, so you travel 300/812 = 37% of the route. The 

last 7.3% of the route takes 0.073*1283 = 94 seconds. 

4 DATA ANALYSIS 

In this section the values of the data are plotted as time series 

in order to know which approach can be suitable for 

estimation of travel time during congestion. 

4.1 Travel times 

In Figure 4 the departure travel time is shown in the morning 

peak for some selected days with congestion. The y-axis 

represents travel time in seconds, while the x-axis shows the 

time of the day (hours and minutes); the different lines are the 

different days. Shapes are different from day to day. It seems 

not easy to forecast travel times using historic data.  
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Figure 4 Departure travel time for selected days 

as function of aggregate time period 

 

Figure 5 shows the arrival travel time on the y-axis, time on 

the x-axis for the same days. Peaks are reached later in time, 

which is logically correct by definition. 
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Figure 5 Arrival travel time for selected days as 

function of aggregate time period 

4.2 Traffic volumes 

Traffic volumes (mean value over traffic controllers and 

relevant lanes) are shown in Figure 6. During congestion, 

traffic volumes drop. By using only this information, it is not 

possible to estimate travel times, since the reason of a volume 

drop is not clear. However, in combination with occupancy 

this data can be very useful. The drop of volumes which 

explains downstream queuing is visible. 
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Figure 6 Mean traffic volumes for selected days 

as function of aggregate time period 

4.3 Waiting time first vehicle in queue 

Figure 7 shows on the y-axis the waiting time of the first 

vehicle in queue (mean value over controllers and relevant 

lanes) for the selected days. This data show an up going and 

down going line, showing the relationship between red time 

and traffic volume.  
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Figure 7 Waiting time first vehicle in queue for 

selected days as function of aggregate time 

period 

4.4 Loop detectors 

Figure 8 shows the occupancy of the short detectors (mean 

over controllers and relevant lanes). There is some 

correspondence between travel time and occupancy, but 

differences in occupancy are not very great.  
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Figure 8 Occupancy short detectors for selected 

days as function of aggregate time period 

Figure 9 shows the occupancy of the long detector, as mean 

over all controllers and lanes (figure 9a), and as a 1 day result 

(29th of November) separated by controller and relevant lane 

(figure 9b), where the thick lines represent the last, the thin 

lines the middle and the dotted lines the first controller. 

Queuing starts at the thick, the thin lines follows quick and 

the dotted comes later with two dips at 8:05 and 8:30. A high 

correspondence can be found with the travel time figures. 

Congestion starts at a saturation level of 70-80%.  
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Figure 9a Occupancy long detectors for selected 

days as function of aggregate time period 

 

Occupancy long detectors by detector
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Figure 9b Occupancy long detectors on 1 day, 

for different positions on the route 

5 RESULTS OF ESTIMATION 

This section discusses the results of applying the estimation 

procedure presented in section 2 to the Zoetermeer case.  

5.1 Data Correction  

Controller 342295 provided counting data only (due to 

technical reasons). Therefore, it was decided to split the total 

route length of 2,249 m in the 6 parts upstream and 

downstream of the 3 remaining controllers. TABLE 2 depicts 

these choices.  

 

TABLE 2 lengths of the upstream and 

downstream links of each controller 

controller upstream downstream total

900736 70 200 270

901140 239 100 339

901135 101 1,539 1,640  
 

 

 

The longest section is the downstream section of controller 

901135, about 70% of the whole route. 

5.2 Parameter estimation 

The model is estimated by means of successive manual 

optimization of the parameters, minimizing the RMSE (Root 

Mean Square Error). The estimated distance between two 

succeeding vehicles in a queue, d = 6.5 m. The estimated lane 

capacity = 1800 vehicle/hour, the estimated parameters of the 

cumulative beta distributions are: p1 = 12, q1 = 4, p2 = 1.5, q2 

= 5. With this specification, 79% of the travel time variation 

can be explained (using a measure), where the ATT values as 

estimate of the DTT (LPR approach) come to 73%. The 

MARE is 18%. For measured travel times larger than 300 

seconds, the MARE is 29%. Figure 10 shows the estimated 

travel times as dots against the line of measured values (10a) 

with a 25% lower and upper bound and the same data in a 

time series plot (10b). In situations of very high travel times, 

for some cases the fit is rather good, but in other cases, the 

measured travel time is underestimated by the model. This 

can be explained by the fact that the last controller did not 

provide good data. Therefore it takes some time before a 

queue is recognized (length of third downstream section = 

1,539 m). During this time, travel time is underestimated. The 

result could be better if the last controller provided proper 

data.  
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Figure 10a Results of travel time estimation  
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Figure 10b Results of travel time estimation  
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6 CONCLUSIONS, FURTHER RESEARCH AND 

RECOMMENDATIONS 

The use of on-line occupancy measurements from traffic 

controllers turns out to be a rather easy and valuable addition 

to online estimation of travel times. A rather simple model 

using this data turns out to have good results especially in 

case of serious congestion, compared with the travel time 

estimation from license plate recognition. The advantage of 

this approach is that it uses more recent information, 

compared to license plate recognition (which use arrival 

travel times), which is important in cases of serious 

congestion. In practice, for car drivers, robust information is 

more important than very accurate: it is more important to be 

sure about a route either it is congested or not, rather than to 

know if the congested travel time is 20 minutes or 25 

minutes. 

Furthermore, this approach shows the location of the 

congestion (starting and ending points in a network) and 

identifies the cause of congestion, which is very useful for 

dynamic traffic management. If the model will be used for 

online travel time estimation, another result can be a 

functional and systematic evaluation of the signalized 

intersections in the network: for every controller can be 

estimated the percent of time in which the controller is a 

bottle neck in the network and what the total lost of vehicle 

hours this means. Network owners can use this information 

for an efficient investment in traffic controllers and small 

infrastructure upgrades.  

Further research needs to be done to test the model in a more 

extended network, in order to get insights into the sensitivity 

of the estimated parameters, with respect to changing traffic 

composition, starting and ending of incidents, routing, traffic 

volume, etc. The manual optimization can be replaced by an 

automatic method.  

In the Netherlands, the typical detection infrastructure is the 

one presented in this paper. Most other countries use short 

detectors only. The data suggest that the occupancy of short 

detectors can also be used for this model, but that parameters 

will be different. 

For ATIS it is recommended to collect more real-time data 

from traffic controllers (occupancy, green percentage, waiting 

time of first vehicle in queue) than just volumes.   
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