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Preface

This story has started in August of 2014. It was a beautiful warm summer evening,
which we spent out of town with the whole family. David and Liia were already 8
months old. We were enjoying dinner outside and having a nice usual chat just
about everything. We had already been lightly thinking about moving somewhere
abroad for some time, but by the end of that calm and quiet evening Alina and I
suddenly realized: it is now or never. So, I picked up the phone and called the
only person abroad that I knew well - Denis. Until our determination was gone, I
wanted to ask if he has anything to suggest - and of course he did.

A year later, we got off a plane and set foot on Dutch soil, as I accepted a
PhD candidate position in Delft University of Technology under Denis’s supervision.
My experience in the development of reservoir simulators and high-performance
computing provided certain confidence in the success, creating high pressure on
the level of achievements to reach on the other hand. Denis helped to define
the right mindset - I desired to use the unique opportunity of working under his
guidance for 4 years to create something really interesting, useful, and of course
fast.

More than 4 years, 15.000 cycled kilometres, and 100.000 written lines of code
later, at this very moment, I can say that the results have exceeded my wildest
expectations. The book you are holding now is a mere compilation of the published
materials over these years. Could it be written better including more thorough
and consistent investigations? Definitely, yes. However, a lot of effort has been
deliberately put in flexibility, re-usability, conciseness, and modularity of architecture
of the reservoir simulation platform that we created. DARTS is already used by many
MSc and PhD students, postdocs in our department for their research. Moreover,
my faith in its both academic and industrial potential is so strong, that I decided to
carry on as a postdoc at TU Delft to be able to continue this work.

Given the complexity of the algorithms and software that we design, I share
the opinion that corresponding source code should be made available for the entire
community, complementing the published materials for the sake of reproducible
research. Therefore, I set myself a goal to make DARTS publicly available and
hereby complete my scientific contribution. I am impatient to see how it will evolve
over the next few years. And another calm yet fateful family evening may follow...

Mark KHAIT
Delft, November 2019

Xi






Summary

The modern development of subsurface resources requires numerical reservoir sim-
ulation. It is used to predict and compare the performance of different reservoir
development schemes as well as to reduce uncertainties in parameters estimation
and associated field management risks. Growing computational power available in
the high-performance computing market spawned a higher demand for more com-
plex, accurate, and larger models. However, these complexities often challenge the
performance of the simulation process.

The opening Chapter 1 briefly introduces the current context of general purpose
reservoir simulation. Non-isothermal multiphase compositional simulation is based
on the solution of governing equations describing mass and energy transfer in the
subsurface. Usually, a Newton-based method is used to solve a strongly nonlin-
ear system of residual equations robustly and efficiently. It requires linearization
stage consisting of Jacobian assembly for a fully coupled system of equations. This,
in turn, requires the determination of the derivatives of all the residual equations
with respect to independent variables. Linearization completely defines the mod-
elling capabilities of a reservoir simulator and often represents the most specific,
complicated, and volumetric part of its source code.

A novel Operator-Based Linearization (OBL) method for multiphase composi-
tional fluid flow and transport in the subsurface is established in Chapter 2 and
extended to support thermal and buoyancy effects in Chapter 3. The approach
simplifies the Jacobian assembly introducing discretization of the physical descrip-
tion of fluid and rock in addition to space and time discretizations. The trade-off
between accuracy and performance of a reservoir simulator receives thereby a new
degree of freedom. Coarse resolutions of discretization of physical properties, de-
livering satisfiable solution accuracy, can substantially improve the non-linear con-
vergence of the complex thermal-compositional problems. Besides, OBL decouples
physical description of fluid and rock from the main simulator core creating unique
opportunities in the architecture of a reservoir simulator.

The applicability of the OBL approach to the general purpose reservoir simu-
lation problems is demonstrated for different physical kernels including dead-oil,
black-oil, isothermal compositional fluids with 4 and 6 components, low- and high-
enthalpy geothermal, and thermal-compositional multiphase formulations. As a rule
of thumb, a resolution of 64 uniformly distributed points along each of parameter
space axes within the required range is sufficient for an accurate representation of
fluid and rock properties. On the other hand, the limited coarsening of parame-
ter space improves the nonlinear convergence in most cases. The performance of
the OBL approach benefits from the simplified assembly of Jacobian of the simula-
tion problem and almost complete bypass of phase behaviour calculations (except
supporting points).

Xiii



Xiv Summary

Chapter 4 describes and compares several prototype implementations of the
OBL approach, revealing the difference in computational performance depending on
chosen software and hardware platforms. The linearization approach was initially
designed within Automatic Differentiation General Purpose Research Simulator (AD-
GPRS) framework and then implemented in stand-alone simulators in MATLAB, C++
(for CPU platform), and C++/CUDA (for GPU platform). The latter prototype was
implemented for both CPU and GPU platforms. Compared to conventional AD-based
linearization, the single-threaded CPU prototype performs the Jacobian construction
up to 19x times faster, while the GPU prototype boosts the linearization by a factor
of 260x.

The Delft Advanced Research Terra Simulator (DARTS) is introduced and de-
scribed in Chapter 5. It combines the experience and knowledge obtained during
previous iterations of OBL implementation. Having kept all performance-critical
parts of simulator core in C++, DARTS exploits physical description decoupling to
the full extent, providing Python-based plugin interface to customize fluid and rock
properties. DARTS demonstrates how the architecture of a reservoir simulator can
reveal the performance potential of OBL in three independent levels: improved non-
linear performance - algorithmic level; actual performance of linearization stage -
software level; portability to alternative computing architectures including GPU -
hardware level.

Finally, Chapter 6 discusses current DARTS applications and future develop-
ments. Two different approaches of non-uniform parameterization of physical space
are investigated. A significant increase in parameterization accuracy was confirmed
compared to uniform parameterization with a similar amount of supporting points in
most cases. In addition, DARTS platform can be easily and efficiently used to create
different kinds of proxy models. For example, Multi-Scale Compositional Transport
(MSCT) approach approximates the compositional description of a multi-component
fluid with a specially built binary system. The resulting proxy model is straightfor-
wardly constructed within DARTS simply by substituting restricted fractional flow
curves into operators. Another possibility to construct a proxy model in DARTS is
to coarsen the space and time discretization resolution of the full model.

Chapter 7 concludes this dissertation recapitulating the main points. Additional
accuracy-performance trade-off provided by OBL, simplified manipulation of a sim-
ulation model via Python, and exceptional computational performance make DARTS
an ultimate platform for both forward and inverse modelling. Its architecture allows
to change existing formulations and even introduce new physical descriptions with
minimal efforts not sacrificing computational performance. Furthermore, the com-
plete transition of the main simulation loop to GPU, along with the implementation
of adjoint gradients will allow taking the inverse modelling performance on a new
level.



Samenvatting

De moderne ontwikkeling van ondergrondse bronnen vereist numerieke reservoir
simulatie. Het wordt gebruikt om de prestaties van verschillende reservoir ontwik-
keling plannen te voorspellen en te vergelijken, en om onzekerheden in de schatting
van parameters en bijbehorende veldbeheer risico’s te verminderen. Toenemende
rekenkracht die beschikbaar is gekomen binnen de hoge-prestatie computatie markt
heeft tot een hogere vraag naar complexere, nauwkeurigere en grotere modellen
geleidt. Deze complexiteit daagt echter vaak de prestaties van het stimulatie pro-
ces uit. Hoofdstuk 1 geeft een korte introductie over wat de huidige context van
reservoir simulatie voor algemene doeleinden is. Niet-isotherme meerfasige com-
positie simulatie is gebaseerd op de oplossing van vergelijkingen die de massa- en
energieoverdracht in de ondergrond beschrijven. Normaal gesproken wordt een
op Newton gebaseerde methode gebruikt om een sterk niet-lineair systeem van
rest-vergelijkingen robuust en efficiént op te lossen. Het vereist een linearisatie
fase bestaande uit Jacobiaanse constructie voor een volledig gekoppeld stelsel ver-
gelijkingen. Dit vereist op zijn beurt de bepaling van de afgeleiden van alle rest-
vergelijkingen met betrekking tot onafhankelijke variabelen. Linearisatie definieert
volledig de modellering mogelijkheden van een reservoir simulator en vertegen-
woordigt vaak het meest specifieke, gecompliceerde en het grootste deel van de
broncode. Een nieuw uitgevonden Operator-Based Linearisation (OBL) methode
voor meerfasige compositie vloeistofstroming en transport in de ondergrond is vast-
gesteld in Hoofdstuk 2 en uitgebreid om thermische en drijfvermogen effecten in
Hoofdstuk 3 te ondersteunen. De benadering vereenvoudigt de constructie van de
Jacobian die discretisatie van de fysieke beschrijving van vloeistof en gesteente in-
troduceert naast ruimte- en tijd-discretisaties. De afweging tussen nauwkeurigheid
en prestaties van een reservoir simulator krijgt daardoor een nieuwe graad van vrij-
heid. Een grove resolutie in de discretisatie van fysische eigenschappen, die een
tevreden nauwkeurigheid van de oplossing leveren, kan aanzienlijk de niet-lineaire
convergentie van de complexe thermische compositie problemen verbeteren. Bo-
vendien ontkoppelt OBL de fysieke beschrijving van vloeistof en gesteente van de
hoofd simulator-kern en creéert het unieke kansen in de architectuur van een re-
servoir simulator. De toepasbaarheid van de OBL-benadering op de reservoir simu-
latie problemen voor algemene doeleinden wordt aangetoond voor verschillende
fysieke kernen waaronder dode-olie, zwarte-olie, isothermische vloeistoffen met
meervoudige componenten met 4 en 6 componenten, geothermische met lage en
hoge enthalpie, en thermische formuleringen voor vloeistof met meervoudige com-
ponenten. Als vuistregel is een resolutie van 64 uniform verdeelde punten langs
elk van de parameter ruimte-assen binnen het vereiste bereik voldoende voor een
nauwkeurige weergave van vloeistof- en gesteente-eigenschappen. Anderzijds ver-
betert de beperkte vergroting van de parameter ruimte in de meeste gevallen de

XV



xvi Samenvatting

niet-lineaire convergentie(this sentence might need to restructuring, not sure what
you exactly want to say here). De prestatie van de OBL-benadering is gebaat bij de
vereenvoudigde constructie van de Jacobian van het simulatie probleem en via een
bijna volledige vermijding van de fasegedrag berekeningen (behalve ter plaatse
van ondersteunende punten). Hoofdstuk 4 beschrijft en vergelijkt verschillende
prototype-implementaties van de OBL-aanpak. Vervolgens wordt het verschil in
rekenprestaties onthuld welke afhankelijk is van de gekozen software en hardware-
platforms. De linearisatie benadering werd oorspronkelijk ontworpen binnen het
AD-GPRS (Automatic Differentiation General Purpose Research Simulator) kader en
is vervolgens geimplementeerd in zelfstandige simulators in MATLAB, C ++ (voor
CPU-platform) en C ++ / CUDA (voor GPU-platform). Het laatste prototype werd ge-
implementeerd voor zowel CPU- als GPU-platforms. Vergeleken met conventionele
AD-gebaseerde linearisatie, voert het single-threaded CPU-prototype de Jacobian
constructie tot 19x keer sneller uit, terwijl het GPU-prototype de linearisatie met
een factor van 260x versneld. De Delft Advanced Research Terra Simulator (DARTS)
wordt geintroduceerd en beschreven in Hoofdstuk 5. Het combineert de ervaring
en kennis die is opgedaan tijdens eerdere iteraties van de OBL-implementatie. Alle
prestatie-kritische delen van de simulator kern zijn ontwikkeld in C ++ en wordt een
op Python gebaseerde interface om vloeistof- en gesteente-eigenschappen aan te
passen aangeboden. Hierdoor maakt DARTS optimaal gebruik van de ontkoppeling
van de fysische beschrijving en het numerieke rekenwerk. DARTS laat zien hoe
de architectuur van een reservoir simulator het prestatiepotentieel van OBL op drie
onafhankelijke niveaus kan onthullen: verbeterde niet-lineaire prestaties - algorit-
misch niveau; werkelijke prestaties van linearisatie fase - software niveau; draag-
baarheid naar alternatieve computerarchitecturen inclusief GPU - hardware niveau.
Ten slotte bespreekt Hoofdstuk 6 huidige DARTS-toepassingen en toekomstige ont-
wikkelingen. Twee verschillende methodes van niet-uniforme parameterisatie van
fysieke ruimte worden onderzocht. In de meeste gevallen werd een significante toe-
name van de nauwkeurigheid van de parametrering bevestigd in vergelijking met
een uniforme parametrering met een vergelijkbaar aantal ondersteunende punten.
Bovendien kan het DARTS-platform eenvoudig en efficiént worden gebruikt om ver-
schillende soorten proxy-modellen te maken. De benadering van Multi-Scale Com-
positional Transport (MSCT) benadert bijvoorbeeld de beschrijving van een vloeistof
met meerdere componenten met een speciaal gebouwd binair systeem. Het re-
sulterende proxy-model is eenvoudig geconstrueerd binnen DARTS door beperkte
fractionele stroomcurves te vervangen door operators. Een andere mogelijkheid
om een proxy-model in DARTS te bouwen, is om de ruimte- en tijd-discretisatie
resolutie van het volledige model te vergroten. Hoofdstuk 7 concludeert dit proef-
schrift waarin de belangrijkste punten worden samengevat. Extra afweging van
nauwkeurigheid en prestaties verwezenlijkt met OBL, vereenvoudigde manipulatie
van een simulatiemodel via Python en uitzonderlijke rekenprestaties maken DARTS
een ultiem platform voor zowel voorwaartse als inverse modellering. De archi-
tectuur maakt het mogelijk om bestaande formuleringen te veranderen en zelfs
nieuwe fysieke beschrijvingen te introduceren met minimale inspanning zonder de
rekenprestaties op te offeren. Bovendien zal de volledige overgang van de hoofd
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simulatielus naar GPU, samen met de implementatie van aanvullende gradiénten,
de inverse modellering prestaties naar een nieuw niveau brengen.






Nomenclature

Linearization Operators

a; physical term of component mass accumulation operator
a, physical term of energy accumulation operator

B physical term of component mass convection operator
Be physical term of energy convection operator

Beg physical term of component gravity operator

Bep physical term of component in phase mass convection operator
Beg physical term of energy gravity operator

Bep  physical term of energy in phase mass convection operator
6. physical term of component gravity operator

Sy physical term of phase gravity operator

Ye physical term of energy conductive operator

0, component mass influx/outflux term

0, energy influx/outflux term

& physical term of phase rate operator

a spatial term of mass accumulation operator

ae spatial term of energy accumulation operator

b spatial term of mass convection operator

b, spatial term of energy convection operator

by, spatial term of phase mass convection operator

bep spatial term of energy in phase convection operator

by spatial term of gravity operator

Ce spatial term of energy conductive operator

Other Symbols

Xix



XX Nomenclature
3 spatial coordinate

It geometrical part of transmissibility over interface
It conductive transmissibility over interface

r phase transmissibility over interface

] Jacobian

w physical state

3¢ physical state at surface conditions

r residual

u well control variables

g gravitational constant

I interpolation operator

l interface between control volumes

n parameterization resolution

N number of components

nyp number of phases

Physics Relations

K

effective permeability tensor
thermal conduction

phase thermal conduction
rock thermal conduction
phase mobility

phase viscosity

phase molar fraction
effective rock porosity

initial rock porosity

phase potential between control volumes i and j
component density

phase molar density



Nomenclature

xxi

pref

phase in/outflux

phase internal energy

rock internal energy

phase velocity

rock compressibility

depth

component fugacity in phase

phase enthalpy

phase relative permeability
pressure difference across interface
phase pressure

reference pressure

temperature

time

temperature difference across interface
volume

component mole fraction in a phase
component overall molar fraction
phase vertical pressure gradient

phase saturation






Introduction

Numerical simulations are essential for the modern development of subsurface
reservoirs [1-3]. They are widely used for the evaluation of oil recovery efficiency,
performance analysis, and various optimization problems. Due to the complexity
of the underlying physical processes and considerable uncertainties in the geolog-
ical representation of reservoirs, there is a persistent demand for more accurate
models.

To increase the accuracy of a model, one can apply a more refined computa-
tional grid in space or time, or use a more detailed description of the fluids, such
as in a thermal-compositional model. However, an improvement in the accuracy
of numerical models is usually counterbalanced by a reduction in the overall per-
formance of the simulation. Besides, more refined space and time approximations
can increase the nonlinearity of governing equations, which need to be resolved
numerically.

Depending on the formulation, different types of nonlinear unknowns and strate-
gies can be used to perform nonlinear update [4]. The most frequently used ap-
proaches for reservoir simulation are the natural [5] and molar formulations [6, 7].
For natural formulation, phase behaviour computations include equally important
phase split calculation and stability test. Compared to the straightforward algo-
rithm, the performance of both can be improved by 1-2 orders of magnitude by
using physically-based heuristics and bypassing techniques [8] or by employing pa-
rameterization idea and approximating the calculations with desired accuracy [9].
The main difference of (overall) molar formulation is that the set of variables re-
mains constant in the course of simulation independently on the number of phases
in the given grid cell, avoiding the need of variable substitution. Noting that it is
difficult to compare different formulations directly and fairly, the two formulations
show comparable performance in terms of nonlinear iterations [10]. However, the
molar formulation does not allow to avoid or bypass phase equilibrium calculations
hence is likely to be slower in terms of CPU time at a single nonlinear iteration.
Confirming that, [11] also show that for miscible displacement regimes the molar

1



2 1. Introduction

formulation requires significantly less nonlinear iterations outrunning its counter-
part in terms of CPU time. Also, the authors demonstrate that the parametrization
technique applies to the molar formulation, speeding up phase behaviour com-
putations. Finally, it was shown recently that some specific treatments of phase
appearance or disappearance may help to improve the nonlinear behaviour of the
natural formulation in miscible regimes [12].

Fully implicit methods are conventionally used in reservoir simulation because
of their unconditional stability [1]. On the other hand, after discretization is ap-
plied to governing Partial Differential Equations (PDE) of a problem, the resulting
nonlinear system represents different tightly coupled physical processes, which is
difficult to solve. Usually, a Newton-based iterative method is applied, which de-
mands an assembly of the Jacobian and the residual for the combined system of
equations (i.e., linearization) at every iteration forming a linear system of an equal
size (often ill-conditioned). Precisely the solution of such systems takes most of
the simulation time in most practical applications. Alternatively, localized nonlinear
solving strategies can be used. They exploit the fact that the transport mechanism
of fluid phases is in practice mostly unidirectional, exhibiting countercurrent flow
due to buoyancy and capillary forces only in local areas of the computational do-
main. Therefore, it is possible to apply flux-based reordering (see Cascade ordering
for cocurrent flow defined by [13] and generalized to address countercurrent flow
by [14]) and solve a series of nonlinear systems of reduced size localized along the
upwind direction. This strategy may involve a rearrangement of blocks of the entire
nonlinear system to exhibit lower triangular form, which is then efficiently solved
on a cell-by-cell basis. This approach was consistently improved over the years
by [15-17], including generalizations for an unstructured grid and compositional
formulation. Alternatively, the influence of every source of mass imbalance can be
limited to a certain neighbourhood, leading to a collection of localized nonlinear
problems which superpositioned solutions reproduce Newton update of the full sys-
tem [18, 19]. These strategies, however, require sequentially coupled solution of
flow and transport equations for total velocity field construction, hence inheriting
splitting errors.

Conventionally used in most practical applications Newton-based nonlinear solvers
require linearization. Several conventional linearization approaches exist, though
neither of them is robust, flexible, and computationally efficient all at once. Nu-
merical derivatives provide flexibility in the nonlinear formulation (see [20], for ex-
ample), but a simulation based on numerical derivatives may lack robustness and
performance [21]. Straightforward hand-differentiation is the state-of-the-art strat-
egy in modern commercial simulators [22, 23]. However, this approach requires
an introduction of a complicated framework for storing and evaluating derivatives
for each physical property, which in turn reduces the flexibility of a simulator to
incorporate new physical models and increases the probability for potential errors.

The development of Automatic Differentiation (AD) technique allows preserving
both flexibility and robustness in derivative computations. In reservoir simulation,
the Automatically Differentiable Expression Templates Library (ADETL) was intro-
duced by [24]. Using the capabilities of ADETL, an Automatic Differentiation Gen-



eral Purpose Research Simulator (AD-GPRS) was developed [10, 25]. Later, the AD
technigue becomes more demanded in research frameworks for reservoir simulation
[26]. Certain frameworks even allow any of the mentioned linearization approaches
to be used in a particular formulation [27]. Being attractive from the perspective
of flexibility, the AD technique by design inherits computational overhead, which
affects the performance of reservoir simulation [28].

Once the linear system with Jacobian and right-hand side is constructed, it needs
to be solved. Since the dimensionality of a typical reservoir simulation problem is
rather high, iterative linear solvers are usually used with effective preconditioning
schemes. Widely used two-stage preconditioning scheme addresses mixed elliptic-
hyperbolic behaviour of underlying nonlinear equations applying Constrained Pres-
sure Residual (CPR) [29-31] to decouple an elliptic system with only pressure un-
knowns. Then it can be efficiently solved using algebraic multigrid methods (AMG,
see [32, 33]) concluding the first stage of preconditioning. At the second stage,
the entire linear system is processed with fine-scale smoother to address high-
frequency errors, and incomplete LU-factorization with zero fill-in (ILU(0)) is the
standard choice [34].

Once the solution to the linear system with predefined tolerance is found, we
need to update the nonlinear unknowns and repeat the nonlinear iteration. The
nonlinear solution may require several nonlinear iterations to converge depend-
ing on the nonlinearity of a problem. Even if a fully-implicit scheme is chosen, a
standard Newton solver can fail to converge within a reasonable number of iter-
ations, especially for large timesteps. In such cases, all computations related to
that timestep are discarded, and the Netwon process is repeated with a smaller
timestep. In order to address this problem, a sophisticated analysis of Newton up-
dates can be made to loosely follow the solution path. For example, Continuation
Newton method assigns every nonlinear update to an inner timestep and therefore
avoids discarded nonlinear iterations [18].

The number of nonlinear iterations for transport problems can be sufficiently
reduced (implying also that more timesteps will not be discarded) by controlling the
nonlinear update of saturation variable. Several heuristic algorithms were designed
for black-oil models to prevent a rapid change of phase mobility properties, as well
as that of the magnitude of saturations themselves (e.g., Appleyard chop) [22]. The
generalization of such control of saturation update, based on a thorough analysis of
the shape of flux functions, has led to a new family of trust-region based nonlinear
solvers, established by [35]. Later, it was enhanced by [36] improving convergence
on large timesteps for viscous dominated flows, and by [37] with the focus on
strong capillary forces.

All these techniques can be straightforwardly and effectively applied to compo-
sitional models with the natural formulation where saturation unknown is present
(e.g., see [38]). The Negative Saturation method is another extension of the natural
formulation helping to avoid variable substitution and apply corrections to discontin-
uous changes in derivative, usually related to phase appearance and disappearance
[39, 40]. On the other hand, there is a lack of efficient advanced strategies for the
overall molar formulation, where saturation unknown is not present. A version of
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a trust region correction was developed for the molar formulation [41], but it still
lacks robustness in comparison to the natural formulation. This can be explained
by the more complicated nonlinear update procedure, which requires performing
an exact flash for every block at a two-phase state in each nonlinear iteration.

This problem can be avoided by using parameterization in compositional space
instead. A strategy, based on the Compositional Space Parameterization idea [9],
was designed by [11]. The nonlinear solver based on a special point correction
along the fractional flow curve has proved to be robust and efficient [11]. However,
this approach requires reformulation of a nonlinear problem in a tie-line space and
formally cannot be applied to the conventional molar formulation [42].

Another approach for the molar formulation called Operator-Based Linearization
(OBL), was proposed recently in [43]. It could be seen as an extension of the idea to
abstract the representation of properties from the governing equations, suggested
in[11] and [44]. In the OBL approach, the parameterization is performed based on
the conventional molar variables. A similar approach can be designed for the natural
formulation, but it requires dealing with several parameter spaces and switching
between them.

In the OBL approach, all properties involved in the governing equations are
lumped in a few operators, which are parameterized in the physical space of the
simulation problem either in advance or adaptively during the simulation process.
The control on the size of parameterization hyperrectangle helps to preserve the
balance between the accuracy of the approximation and the performance of non-
linear solver [45]. Note, that the OBL approach does not require the reduction in
the number of unknowns, and only employs the fact that physical description (i.e.,
fluid properties) is approximated using piecewise linear interpolation.

1.1. Research Objectives

Numerical simulation is based on space and time discretization, which provides a
trade-off between accuracy and computational performance. The OBL approach can
be viewed as an attempt to build such a discretization for the physical description
of fluid and rock. The research objectives addressed by this work are:

¢ Investigate the applicability of the OBL approach to general purpose reservoir
simulation based on thermal-compositional description.

» Develop a general purpose simulation framework targeting to exploit the ad-
vantages of OBL to the full extent.

e Investigate how OBL can be coupled with modern software and hardware
architectures to improve flexibility and performance of reservoir simulation.

1.2. Thesis Outline

The dissertation consists of seven chapters, including this introductory Chapter 1.
First, we show the applicability of the OBL approach to multiphase multi-component
mass transport and demonstrate the numerical convergence of physical solutions
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based on the OBL technique for problems with up to 6 components in Chapter 2.
Chapter 3 describes the extension of the OBL method to account for energy balance
and buoyancy. We investigate several approaches for the robust treatment of grav-
ity forces and demonstrate its applicability for challenging thermal-compositional
problems including a full-field example.

Then, we describe the details of OBL implementation in different prototypes
in Chapter 4. Based on several numerical models with various physical descrip-
tions, the computational performance of prototypes is compared, including an en-
tirely GPU-based implementation. Chapter 5 presents a detailed description of the
Delft Advanced Research Terra Simulator (DARTS). It provides a simulation frame-
work built around the OBL approach in an attempt to maximize its flexibility and
performance. We show how this attempt affects the architecture of the reservoir
simulation framework and what advantages it allows to achieve. Sensitivity to the
resolution of the OBL representation is investigated. Benchmarks comparing the
accuracy of the numerical solution and computational performance with other sim-
ulators are also provided.

Finally, Chapter 6 shows several applications of DARTS and describes how the
OBL method can be advanced further. We demonstrate two approaches for a
non-uniform OBL parameterization and describe proxy-modelling within the DARTS
framework. Chapter 7 concludes the work and defines perspectives of further de-
velopment of OBL and DARTS.







Operator-Based Linearisation
(OBL)

2.1. Governing Equations

First, we describe one of the conventional nonlinear formulations for a general pur-
pose compositional model. This formulation was implemented in the Automatic
Differentiation General Purpose Research Simulator (AD-GPRS)[10] and is used to
obtain the reference solution. Mass transport for a system with n, phases and n,
components is considered. For this model, the n, component molar mass conser-
vation equations can be written as

) Np
d
Fr ) Z XepPpSp |+ div Z XepPplUp
p=1 p=1
p
+ Z XepPpdp =0, c=1,..,n,. (2.1)
p=1

Here, t is time, ¢ is effective rock porosity, x.,, is component ¢ concentration in
phase p, p, denotes phase p molar density, s, is saturation of phase p, u, is
velocity of phase p, and ¢, denotes source of phase p.

Phase flow velocity is assumed to follow the Darcy law:

X Kk
0, = —(KML:(Vpp—ypVD)), (2.2)

where K is the effective permeability tensor, k.., is phase p relative permeability,
Uy is phase p viscosity, p,, is phase p pressure, y,, is vertical pressure gradient, and
D is depth.

Parts of this chapter have been published in Journal of Petroleum Science and Engineering 157, 990
(2017) [46]
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Equation 2.1 is then approximated in time using a Fully Implicit Method (FIM).
The method suggests that the convective flux term depends on the values of non-
linear unknowns at the current time step. After application of a finite-volume dis-
cretization on a general unstructured mesh and a backward Euler approximation in
time we get

n

np np
Vi{e Z XcpPpSp | — | ¢ Z XcpPpSp
p=1 p=1
np np
—Atz Z xt,ppTHAYE | + Atz XepPp9p = 0, c=1,..,n, (2.3)
l p=1 p=1

where V is volume of mesh grid block and g, = ¢,V is a source of phase p
over the control volume. Here, we have neglected capillarity, gravity and used
a Two-Point Flux Approximation (TPFA) with an upstream weighting. Therefore,
Ay' becomes a simple difference in pressures over an interface I. In addition,
I, = I'ki,/u, is a phase p transmissibility over interface I, with T* assumed to
be the constant geometrical part of transmissibility, including rock permeability and
geometry of the control volumes connected by interface I. All terms of the equations
are defined at n+ 1 timestep, except the second part of accumulation term denoted
by n superscript.

This choice of a fully-coupled approach introduces nonlinearity into the sys-
tem, which is further increased by the closure assumption of instantaneous ther-
modynamic equilibrium. In this formulation, an exact thermodynamic equilibrium
is required at every nonlinear iteration. Hence, for any grid block that contains a
multiphase (n,,) multi-component (n.) mixture we solve the following system:

p
E =z - Z Voxey = 0, (2.4)
p=1
Fc+nc =fa(@ T, x1) — fcp(p' T, xp) = 0, (25)
N¢
Fp+ncxnp = Z(xcl - xcp) = O! (2.6)
c=1
p
Fo oy = Z v,—1 = 0. 2.7)
p=1

In this procedure, which is usually called multiphase flash [47], the overall molar
composition z, of component c is defined as:

X XepPpSp

= 2.8
e Xy PpSp (2.8)
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Note, that overall molar composition is computed across all existing phases in the
mixture, unlike composition in the chemical sense meaning the relative amounts of
chemicals making up a single phase. Further in this work, by composition we will
assume overall molar composition. Next, f.,(p,T, x.,) is the fugacity of component
¢ in phase p. By solving the system of Equation 2.4-Equation 2.7, we obtain mole
fractions for each component x,,, phase molar fractions v,,, and consequently phase
saturations S, for the given state.

After obtaining the solution of the multiphase flash, we determine partial deriva-
tives with respect to nonlinear unknowns using the inverse theorem (see [10] for
details) and assemble the Jacobian and the residual. This step, often referred to as
linearization, is required by the Newton-Raphson method, which solves the follow-
ing linear system of equations on each nonlinear iteration:

J(xX) (K — x*) + r(x*) = 0, (2.9)

where J(x;) and r(x;) are the Jacobian and the residual defined at a nonlinear
iteration k. The conventional approach assumes the numerical representation of
rock and fluid properties and their derivatives with respect to nonlinear unknowns.
This may require either table interpolation (e.g., for relative permeability) or the so-
lution of a highly nonlinear system Equation 2.4-Equation 2.7 for properties defined
by an Equation of State (EoS) in combination with the chain rule and the inverse
theorem. As a result, a nonlinear solver has to resolve all of the small features of
the property descriptions, which can be quite challenging and is often unnecessary
due to the numerical nature and uncertainties in property evaluation.

2.2, Physical State and Spatial Coordinate

According to the Operator Based Linearization (OBL) method proposed in [43], all
variables in the discretized form of Equation 2.1 are introduced as functions of
a physical state w and/or a spatial coordinate §. The physical state represents
a unification of all state variables (i.e., nonlinear unknowns: pressure, temper-
ature/enthalpy, saturations/compositions, etc.) of a single control volume. In the
overall molar formulation, the nonlinear unknowns are p and z., therefore the phys-
ical state w is completely defined by these variables. The spatial coordinate defines
the location of a given control volume which reflects the distribution of heteroge-
neous rock properties (e.g., porosity) and elements of space discretization (e.g.,
transmissibility). Besides, well control variables u are introduced to represent vari-
ous well management strategies.

Now, all terms of Equation 2.1 and Equation 2.2 can be characterized as func-
tions of the spatial coordinates &, physical state w, and well control variables u as
follows:

* ¢(§ w) — effective rock porosity,
* x¢p(w) — component concentration in phase,

* pp(w) — phase molar density,
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* sp(w) — phase saturation,

* uy(§, w) — phase velocity,

* ¢,(§, w,u) — source of phase,

o K(§) — effective permeability tensor,

* k,p(w) — phase relative permeability,

* up(w) — phase viscosity,

* pp(w) — phase pressure,

* yp(w) — vertical pressure gradient,

e D(§) — depth.

2.3. Operator Form of Conservation Equations

First, we introduce notions of state-dependent and space-dependent operators. A
state-dependent operator is defined as a function of the physical state only. There-
fore, it is independent of spatial position and represents physical properties of fluids
and rock. A space-dependent operator is defined as a function of both physical state

w and spatial coordinate ¢.

Next, we rewrite Equation 2.3 neglecting buoyancy and capillary forces, and rep-
resent each term as a product of state-dependent and space-dependent operators
[43]. The resulting mass conservation equation reads

a(®) (@ (@) — @ (@) + Y b(E@)e(w)
l

Here

a($)
ac(w)
b(§, w)

Be(w)

0§ w,u)

+ 6. wu)=0 c=1,..

bV ($),
p
(1 + Cr(p - pref)) Z xcpppspr
p=1
AtT ()P,
p
l l k}’p
XepPp—71
o= Hp
p
At ) Xeppptty (0,0,

p=1

(2.10)

(2.11)
(2.12)
(2.13)

(2.14)

(2.15)
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In the equations above, ¢, - rock porosity at reference pressure, c, is rock
compressibility, p,.r - reference pressure, p' - pressure difference between the
mesh grid blocks connected by interface I, while w and w,, are nonlinear unknowns
at the current and previous time step respectively.

The physical meaning of mass accumulation operator «, is the molar mass of
component ¢ per unit pore volume of uncompressed rock under physical state w.
The physical meaning of the mass flux operator for component c is the total mobile
molar mass of that component in all phases of the mixture under physical state w
per unit time, pressure gradient, and constant geometrical part of transmissibility.

This representation allows us to identify and distinguish the physical state-
dependent operators - «a., 8. in mass conservation Equation 2.3. The source/sink
term can also be processed in a similar manner, see Section 5.4.

2.4. Approximation of Fluid and Rock Properties

The proposed approach simplifies the description of fluid and rock properties by
building approximation interpolants for the operators «,, 5. within the parameter
space of a simulation problem. For a general isothermal compositional problem
with n, components and n,, phases with neglected buoyancy and capillary effects,
the method requires [2n.] operators: one accumulation and one flux operator per
component. If fluid properties change spatially and several regions of pressure-
volume-temperature (PVT) or special core analysis (SCAL) properties are employed,
several sets of operators need to be introduced accordingly (see Section 5.5). The
values of the operators are fully determined by the set of N = [n.] independent
variables {p, zy, ..., z, —1}. The range of pressure variable in the compositional pa-
rameter space can usually be determined by the conditions specified for wells, or
inferred from permissible pump operation regimes, while the overall composition is
naturally bounded by the interval [0,1].

Composition

Pressure

Figure 2.1: 2D parameterization of an abstract operator

Next, we parametrize the interval of each state variable using, for simplicity, the
same number n = n; = --- = ny of uniformly distributed points on the intervals of
parameters, according to Equation 2.16. This results in a set of supporting points
(Pi» 21, - Zn,—1,) + © = 1,...,m, which can be interpreted as a discrete representation
of physical space in the simulation. At the pre-processing stage, or adaptively, we
can evaluate the operators a., B, at every point in the discrete parameter space
and store them in n.-dimensional tables A, and B,. Figure 2.1 illustrates an exam-
ple for an abstract operator, parametrized in two-dimensional space describing a
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binary system. During the simulation, we interpolate both the values and the par-
tial derivatives of all state-dependent operators, using tables created for each grid
block. This provides a continuous description based on the interpolation operator
whose accuracy is controlled by the resolution of discretization in parameter space.

Note, that this approach is different from the numerical derivatives often used in
reservoir simulation [20, 48], since the nonlinear physics is fully defined by interpo-
lated properties f = {a., 8.} and consistent with their derivatives. Due to piecewise
interpolation, the approximated operators may not be differentiable at the support-
ing points (i.e., are piecewise differentiable). However, such functions do not cause
any problems for numerical simulation partly because of discrete computer repre-
sentation of floating point numbers [49]. Piecewise differentiable functions are
widely used in industry-grade simulators (e.g., majority of PVT and SCAL properties
are tabulated).

This representation significantly simplifies the implementation of complex sim-
ulation frameworks. Instead of keeping track of each property and its derivatives
with respect to nonlinear unknowns, we can construct a linear system of equations
with abstract algebraic operators representing the complex physics. The perfor-
mance of this formulation benefits from the fact that all expensive evaluations can
be performed using a limited number of supporting points. Finally, the performance
of the nonlinear solver can be improved since the Jacobian is constructed based on
a combination of piece-wise linear operators directly dependent on the nonlinear
unknowns.

2.5. Computation of Partial Derivatives During Mul-

tilinear Interpolation

The key difference of the proposed approach is the replacement of conventional
property computations by an interpolation procedure. Specifically, we use a piece-
wise multilinear generalization of piecewise bilinear interpolation for an N-dimensional
space at the linearization stage. We chose this approach for its relative application
simplicity in comparison with the approach proposed in [11] for compositional sys-
tems with a large number of components. Both methods have comparable accuracy
and performance when applied to systems with a limited number of degrees of free-
dom; see [50] for details.

An interpolant approximation A(xy, ..., xy) to a function a (x4, ..., xy) can be built
using interpolation table values of a:

{a(Xil,Xiz, ""XiN) : il = 1, vy Ny, e, iN = 1, ...,nN}, (2.16)

where n,, ..., ny are the numbers of points along interpolation axes. The first step
of the method is to find table intervals (X, , X}, +1), ..., (X}, X1 +1) such that

XIl le SX11+11"'1XIN SxN SXIN+1' (2.17)

In order to further simplify the description, we scale each of the intervals to (0, 1).
That allows us to reformulate the problem to finding an approximation I(y;, ..., yy)
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for a function n(y,, ..., vy) defined over the unit N-cube, described as

where
*i — X (2.19)
" X - Xy '

using the table values

{T[(jl' ""jN) = a(XL'1+j1,, ...,XL'N+]'N) :jl =0or 1, ""jN =0or 1} (2.20)

The piecewise multilinear approximation is here represented via recursion just
to provide a clear description. Implementation-wise, however, it is performed via a
nested loop, which is far more efficient in this case. First, we define

H’i = H(jl' ...,ji_l, 1, Yi+1» -"1yN)'

M5 = (g, o Jic1r 0 Yig1s -0 V) (2.21)
Then,
A= H(yl, ...,yN), . (2.22)
0(1, s Jir Viers -0 yn) = O§ + v, (M =T1), i=1,..,N, (2.23)
where the table values are
G, -0 dn) = (1, - Jn)- (2.24)

The partial derivatives are determined in a similar way. First,

Hlla' = Hk(jl' ""ji—l' 1!yi+11 '"tyN)'

Hgi = Hk(jl' ""ji—l! 0! Yi+1» ""yN)l (225)
and then
da 6A
—_— — = k
5xk 6xk II (J’p---:)"]v)' (2'26)
K+ y,(MF —TEY, i=1,..,k,
Ky . nj -1 .
G, e Jio Yiers w0 IN) = v——— i =k, (2.27)
X1i+1 _Xll'

M+ y, (I — M%),  i=k+1,..,N.

2.6. Adaptive Parameterization

The total size of the interpolation tables is defined by the number of dimensions N
and the number of interpolation points n as n". While the dimensionality depends
on the number of components and thermal assumptions in a problem of interest,
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the number of interpolation points corresponds to the desired accuracy of the phys-
ical representation. Therefore, parameterization at the pre-processing stage would
require a substantial amount of memory for the multi-component systems modelled
at a high interpolation precision. Furthermore, the necessity of searching support-
ing points (i.e., operator values) for every interpolation in a huge array of data
affects the performance of the simulation. Notice that due to the hyperbolic nature
of some variables (e.g., overall compositions), the vast majority of parameter space
remains unused [9, 11].

The adaptive parameterization approach avoids these disadvantages by remov-
ing the need for the entire pre-processing stage [11]. In this approach, supporting
points are computed only when they are required by the current physical state of
a control volume. The obtained operator values are then employed in the interpo-
lation process and stored for future use.

Consequently, the method adds a new supporting point and computes appropri-
ate operators, if the supporting point was not evaluated before, as shown in Fig-
ure 2.2. On the left, an example of a two-dimensional parameter space is shown
at the moment, when the simulation occupies rectangle 2, while rectangle 1 was
already used. Each rectangle has 4 vertices (for a n-dimensional space there will
be hyperrectangles, or n-orthotopes, with 2™ vertices each), depicted as coloured
circles. Each circle represents a supporting point with the set of corresponding
operator values required to perform interpolation within the rectangle. Since rect-
angles share vertices, and a simulation process is likely to spread continuously over
the parameter space, in most cases many operator values can be re-used.

An efficient implementation of adaptive parameterization includes two storages
- hyperrectangle and vertex - which are associative containers of key-value(s) pairs
with unique hash-based keys. This choice was made to ensure fast data access for
high-dimensional cases. In the hyperrectangle storage, all vertices of each occu-
pied hyperrectangle are kept together to maximize interpolation performance. The
vertex storage is used when a new hyperrectangle is requested by the simulation
process. If the new hyperrectangle shares some vertices with already visited hyper-
rectangles, then those vertices will be simply copied to the first storage, as shown by
black arrows on the right in Figure 2.2. Missing supporting points will be calculated
and added to both storages (shown with green arrows). This approach is crucial in
high-dimensional cases when each vertex is shared among many hyperrectangles.

At the end of the simulation, the resulting sparse multi-dimensional table of
stored operators represents an actual subspace of physical parameters being used
in the process. For example, Figure 2.3 shows an adaptive parameterization in

P Hyperrectangle
storage
1 2
C Vertex storage

Figure 2.2: Representation of adaptive OBL storage
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Figure 2.3: Snapshot of adaptive parameterized points in the OBL for black-oil physical kernel after 10
and 1900 days respectively

the parameter space for a black oil simulation at two different timesteps (at the
beginning and the end of the simulation). The adaptive approach reproduces the
exact numerical results of the pre-processing method used in [45] with greatly
improved overall performance, especially for multi-component systems.

2.7. Numerical Results

In this section, we present the results of modelling with the OBL approach, im-
plemented in the AD-GPRS simulator [10, 51]. A performance study and an error
analysis are provided for different resolutions of the physical parameter space, using
the results of the conventional approach as a reference solution. The improvement
in the performance of OBL-based simulations is achieved by a smaller number of
nonlinear iterations, the absence of iterative phase behaviour computations in the
OBL method, and avoidance of derivative computations in ADETL [24], which is
the underlying automatic differentiation library used by AD-GPRS for construction
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and assembly of the Jacobian. However, the necessity of artificial data (values and
derivatives obtained by interpolation) injection back to AD-based data structures
negatively impacts the performance. That can be avoided if a stand-alone simula-
tor is implemented entirely from the OBL perspective, as shown in Chapter 4.

For all simulations, we used two-dimensional heterogeneous reservoir based on
a 7-th layer of SPE10 model shown in Figure 2.4. An injection well is placed in the
middle of the reservoir, with four producers set at the corners. We applied TPFA
discretization and coupled this model with different physical kernels to demonstrate
the applicability of the OBL method for a general purpose simulation.

Figure 2.4: Reservoir permeability map used for all simulations

2.7.1. Isothermal Black-Oil Kernel
Here, we used a standard black-oil model, where only the gas component can
dissolve in the oil phase and most of the properties are described as table-based
correlations. The water injection well operates at Bottom Hole Pressure (BHP) con-
trol at a pressure P, = 350 bar, and the producer well operates at P, = 270 bar for
the first 2000 days and then switched to P, = 170 bar for the rest of simulation.
The reservoir was initialized uniformly with pressure Py = 300 bar, water saturation
Sw = 0.2, gas saturation S, = 0 and bubble pressure P,,, = 270 bar. All simu-
lations were run for 6000 days with a maximum timestep of At = 10 days, which
corresponds to average Courant-Friedrichs—Lewy (CFL) humber = 5.3.

In order to estimate the error between the reference solution and the solution
obtained with OBL, the following error estimation was introduced for each of primary
variables:

n
L T
n (max(xref) - min(xref))
Here, n is the number of grid blocks in the model, x,p; and x,..; are solution vectors

for OBL and reference simulations respectively, and x! is a particular solution value
at grid block i. This error was determined at the end of simulation (65 years) for

i i
Xobl ~ Xref

(2.28)
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pressure and composition variables.

The PVT properties and relative permeabilities were used from the SPE 9 test
case [52]. The obtained performance results are shown in Table 2.1. The resolution
of parameter space, defined by the number of interpolation points n, is shown in
the first column. The total number of nonlinear iterations for each test case is
presented in the second column. The next two columns show the error in pressure
and compositions (average for both components). The fifth column shows the
percentage of points used for the adaptive parameterization of parameter space by
the OBL approach. The sixth column reflects the CPU time required for a serial run
on an Intel Xeon E5-1620 @ 3.5 GHz processor. Finally, the last two columns show
the percentage of CPU time spent on generation and interpolation of all operators
respectively.

Table 2.1: Results of black oil simulation

Resolution | Iters. E,, % E, % Space,% CPU,sec. Gen., % Interp., %
Std. | 6404 - - - 1217.2 - -

64 | 4206 1.12 2.60 1.7447 659.4 <0.1 19.7

32 | 3544 1.60 3.18 3.8681 555.9 <0.1 19.7

16 | 3303 1.69 4.09 9.3506 542.2 <0.1 18.8

8 | 2916 2.26 7.53  22.5586 482.2 <0.1 18.8

Table 2.1 demonstrates that a smaller number of interpolation points results in
a simpler nonlinear system since it requires fewer Newton iterations to be solved.
Note, that the number of Newton iterations performed in the OBL method is sig-
nificantly lower than that for the standard simulation. Based on this and other
improvements provided by the OBL approach (e.g., simplified Jacobian assembly),
the corresponding CPU time is significantly reduced in comparison to the conven-
tional approach implemented in AD-GPRS. For a black-oil kernel, the generation
stage is very cheap and does almost not require any extra time. The time spent
on interpolation of operators is almost independent of the resolution of parame-
terization space and represents the time spent for complete Jacobian and residual
assembly including property and derivatives evaluation.

In this test, the overall composition of the water component introduces the
largest error with respect to the rest of the unknowns. Maps of water overall com-
position and distribution of errors (in %) after 6000 days of the simulation are shown
in Figure 2.5. It is clear that the error is distributed near the displacement fronts
and is comparable with the time and space truncation error typical for reservoir
simulation [53, 54].

2.7.2. Isothermal Compositional Kernel

4 Components

Next, we demonstrate the applicability of the OBL technique for an isothermal pro-
cess of carbon dioxide and methane injection into the oil with composition from
[55]. The initial oil was made of 4 components C0,, C,, C,, and C,, at correspond-
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Reference solution OBL error (n = 8), % OBL error (n = 64), %

Figure 2.5: Composition of water and error distribution for two OBL resolutions after 6000 days of
simulation

ing compositions: 1% of carbon dioxide, 11% of methane, 38% of n-butane, and
50% of decane. We injected a mixture of 80% of CO, and 20% of C; at a BHP
P, = 120 bar. The production wells operated at BHP B, = 60 bar. The initial pres-
sure was P, = 90 bar and temperature T, = 80° C. The simulation period was 4000
days with a maximum timestep At = 50 days that corresponds to an average CFL =
110. A description of phase behaviour and properties based on the Peng-Robinson
Equation of State [56] and Lohrenz-Bray-Clark (LBC) correlations for viscosity [57]
was used in this kernel.

Table 2.2 shows the main results of the isothermal compositional simulation. The
difference in the number of Newton iterations between the standard and operator-
based linearization simulations is less than in the previous case, but the trend is
similar with an exception for 8 points where the number of nonlinear iterations is
slightly larger than for 16 points. This reflects the fact that the location of interpola-
tion supporting points in the current version of the approach was blindly determined
by uniform distribution without any analysis of nonlinearity.

At the same time, the performance of simulation with the OBL approach was
improved even more significantly in comparison with the conventional simulation,
than it was in the black-oil kernel. It can be explained by more expensive phase be-
haviour, usually required for conventional compositional simulation, in comparison
with black oil. Notice that these phase behaviour calculations are almost com-
pletely absent in the OBL approach, which explains an additional CPU gain. On the
other hand, the interpolation kernel still performs effectively (see Gen. and Interp.
columns) since the dimensionality of parameter space is relatively low.

In this test, the overall composition of CO, component generates the largest
error. The distribution of CO, composition and error maps (in %) after 2000 days
of the simulation are shown in Figure 2.6. Again, the error is distributed near the
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Table 2.2: Results of compositional (4 comp.) simulation

Resolution | Iters. E,, % E, % Space,% CPU,sec. Gen, % Interp., %
Std. 626 - - - 562.2 - -

64 561 0.33 0.71 0.1262 152.6 11.6 20.3

32 531 0.34 1.00 0.4392 129.8 3.0 21.7

16 498 0.34 1.73 1.7006 119.5 0.8 22.0

8 509 0.54 3.96 7.4463 123.7 0.2 21.5

11

12

Reference solution OBL error (n = 8), % OBL error (n = 64), %

Figure 2.6: Composition of CO, and error distribution for two OBL resolutions after 2000 days of simu-
lation

displacement fronts and is comparable to the typical time and space truncation
error.

6 Components
To estimate the performance of the OBL approach for a system with a larger num-
ber of components, we ran a similar simulation with 6 components oil made of
{€0,(1%), C,(10%), C,(9%), C5(10%), C,(15%), C1,(55%) }. The same mixture
of {€0,(80%), €,(20%)} was used as an injection stream and the same timestep
AT = 50 days, which corresponds to an average CFL = 139, was employed in this
case. The results of the simulation are presented in Table 2.3. Here, the per-
formance of the OBL approach still improves in comparison to the conventional
technique, but the speed-up is lower. This is because the performance of the
OBL approach is directly dependent on the performance of a piece-wise multilinear
interpolation, which becomes more expensive in the case of a high dimensional
parameter space, as discussed in [50].

In Table 2.3 one can see, that both generation and interpolation times sig-
nificantly increase in comparison to the previous (four component) simulations.
Here, the generation of operator tables becomes the slowest procedure for a high-
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resolution case due to the larger dimensionality of the parameterization space. In
this case, it is more convenient to switch to the simplex-based interpolation which
requires less supporting points and was fully utilized in [11] for compositional sim-
ulation based on tie-line space parameterization. Another possibility is to improve
the generation stage by optimizing flash calculations [58]. Still, the most expensive
high-resolution OBL case performs more than 2-times faster than the conventional
compositional approach implemented in AD-GPRS. The error distribution in this case
is similar to a four-component test case.

Table 2.3: Results of compositional (6 comp.) simulation

Resolution | Iters. E,, % E, % Space,% CPU,sec. Gen., % Interp., %
Std. 577 - - - 829.5 - -

64 466 0.31 0.91 0.0001 393.6 44.0 18.5

32 448 0.31 1.51 0.0017 249.2 15.0 27.4

16 431 0.35 3.02 0.0280 213.8 4.4 30.5

8 416 0.70 7.53 0.4761 202.6 1.0 31.2




Extensions of
Operator-Based Linearisation

3.1. Thermal Extension

3.1.1. Governing Equations
In this section, we extend the description of multiphase multipcomponent mass
transport for the non-isothermal case introducing an energy conservation equation:

[ & &
= <¢ D ppsplyp + (1 - ¢)Ur> +div Y hypyiiy
p=1 =

p=1

p
+ div(xVT) + z hyppd, =0. (3.1)
p=1
Here U, is phase p internal energy, U.. is rock internal energy, h,, denotes phase
p enthalpy, and « is thermal conduction. After application of a finite-volume dis-
cretization on a general unstructured mesh and backward Euler approximation in
time we get

|4 <¢ z ppspUp + (1 = ¢)Ur> - <¢ Z ppSpUp + (1 = ¢)UT>
p=1 p=1

p p
—Atz ( hbphrb Ayt + rgml) + At Z hypp@y =0. (3.2
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Parts of this chapter have been published in SPE Journal 33, 522 (2018) [59] and in Geothermics 74,
7 (2018) [60]
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As in Equation 2.3, we neglected capillarity, gravity and used a Two-Point Flux
Approximation (TPFA) with an upstream weighting. Therefore, AT! is the temper-
ature difference between neighboring blocks. In addition, I} corresponds to con-
ductive transmissibility which includes thermal conduction of all phases (including
solid) and geometry as

rl=r! <¢(Z Spip) + (1 — ¢)Kr>. (3.3)
p=1

Similarly to Equation 2.3, all terms of the equation are defined at n + 1 timestep,
except the second part of accumulation term denoted by n superscript.

Operator form of the conservation equations

For the non-isothermal case, physical state w is also defined by T (or k) in addition
to p and z.. All terms in Equation 3.1 can be characterized as functions of the
spatial coordinates ¢ and physical state w as follows:

* U,(w) — phase internal energy,

U,.(¢, w) — rock internal energy,

h,(w) — phase enthalpy,

k(§, w) — thermal conduction.

Next, for simplicity we assume that the rock internal energy and thermal con-
duction are spatially homogeneous, thus

Ur =f(w), x=f(w). (3.4)

In order to apply the described approximation method, we rewrite Equation 3.2,
representing each term as a product of state-dependent and space-dependent op-
erators [43]. Besides, we assume the initial porosity as a pseudo-physical state
variable (¢, € w). The modified energy conservation equation becomes

0e(§) (@ (@) ~ ae(@n)) + ) bo(E,0)fe(@)
l

+ ) @)@ +0,Eww =0, (35
l
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where
a.(§) = V() (3.6)
a.(w) = ¢(prspup_Ur)+Ur' (3.7)
p=1
b§ w) = bl w), (3.8)
np kl
A = hhph =1L, 3.9
Pe(@) ; pPp b (3.9
c.(§) = AI'T, (3.10)
Ye(w) = ¢(Zspkp_Kr)+Kr: (3.11)
p=1
6§ 0) = Bt hypydy(E 0,0, (3.12)
p=1

In these derivations, T! is temperature difference between two mesh grid blocks
connected by interface [.

This representation allows us to identify and distinguish the physical state-
dependent operators - «,, B., . in the energy conservation equation.

Approximation of fluid and rock thermal properties

The proposed approach simplifies the description of fluid and rock properties by
building approximation interpolants for the operators «., 8., a., B., y. Within the pa-
rameter space of a simulation problem. For a general non-isothermal compositional
problem with n, components, the method requires [2n, + 3] operators.

The values of the operators are fully determined by the set of N = [n.+ 1] inde-
pendent variables {p,T,zy, ..., 2z, —1}. The pressure and temperature ranges in the
compositional parameter space can usually be determined by conditions specified
for wells, while the overall composition is naturally bounded by the interval [0,1].
As mentioned above, we add the porosity as a pseudo-physical state variable with
the corresponding range.

Next, we parametrize the interval of each state variable using, for simplicity,
the same number n = n; = --- = ny of uniformly distributed points on the inter-
vals of parameters, according to Equation 2.16. This results in a set of vectors
@i Ti 21, ) Zng—1, $1) + L = 1,...,n, which can be interpreted as a discretization
of physical-state space in the simulation. At the pre-processing stage, or adap-
tively, we can evaluate the operators a., B., @., B., v. at every point in the discrete
parameter space and store them in (n. + 2)-dimensional tables 4, and I, and
(n. + 1)-dimensional tables A, B, B,.
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3.1.2. Numerical Results
In the next few subsections, we introduce numerical results of simulations based on
the described approach. First, in Subsection 3.1.3, we present a three-dimensional
heterogeneous model describing a realistic reservoir for low-enthalpy geothermal
operations. We show a comparison between simulation using the conventional
geothermal formulation in AD-GPRS [61] and using the COMSOL simulation platform
[62], which was utilized for low-enthalpy geothermal simulations in the past [63].
COMSOL is interactive simulation software, where one can model problems from
different application fields (e.g., electrical, mechanical, chemical or fluid flow). The
penalty of this generality is the low computational performance of the simulation.
Further, in Subsection 3.1.4, we display the results of a simple sensitivity analysis
of the geothermal model, based on the variation of a doublet position. In Subsec-
tion 3.1.5, we present a convergence study of the operator-based linearization for
the one-component geothermal model based on different resolutions of parame-
terized tables using the same reservoir. Finally, similar convergence analysis is
performed for a geothermal system with natural gas co-production in low-enthalpy
(Subsection 3.1.6) and high-enthalpy (Subsection 3.1.7) regimes.

3.1.3. Three-Dimensional Realistic Heterogeneous
Geothermal Reservoir

Here, we present the results of a geothermal simulation based on the realistic ge-
ological model introduced by [64]. This model is one of the realizations of sed-
imentological simulation for the Nieuwerkerk sedimentary formation in the West
Netherlands Basin. These realizations have been generated for an investigation
of the performance of a doublet (a pair of injection and production wells) in low-
enthalpy geothermal systems. Reservoir dimensions are 1km x 2 km x 50 m and
the discretized model contains 50x100x20 grid blocks. Both wells are placed in
the middle of the model, along the long side (Y-axis) with a spacing of 1 km (see
Figure 3.1). The fluvial sandstone bodies are located along the longer side of the
reservoir, with the porosity distributed within the range [0.16, 0.36] and permeabil-
ity distributed within the range [6, 3360] mD. The boundary conditions along the
short sides (X-axis) of the reservoir are set to a constant initial pressure; the bound-
ary conditions at the other sides are set to no-flow. The reservoir in Figure 3.1 is
vertically scaled up by a factor of 5 for better visibility.

Both wells operate under a constant water rate control g = 2400 m3/day. The
production well consumes energy from the reservoir, producing hot water at a reser-
voir temperature T,,,,4 = 348 K. The injection well returns cold water to the reservoir
at T;,; = 308 K, forcing a cold-front propagation to the production well. Both wells
are perforated through all layers of the model. Two energy-transfer mechanisms
are involved in this process: fluid flow and heat conduction. When the cold front
arrives at the production well, the temperature drops below a certain limit (338 K
in this study) and the so-called doublet lifetime is reached.

To verify the conventional geothermal formulation in the AD-GPRS framework,
we compare our simulation results with the results of a COMSOL simulation de-
scribed in [64]. For both simulations, we used similar correlations for the proper-
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2000 * 1000

Figure 3.1: Permeability distribution and geothermal doublet configuration of the geothermal reservoir
realization

ties of fluid and rock described by [63]. In Figure 3.2, we show the comparison
between the temperatures at the production well in both cases.
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== == COMSOL

T
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Figure 3.2: Comparison between COMSOL and AD-GPRS realistic heterogeneous reservoir simulation
results

It can be seen that the AD-GPRS and COMSOL results are very similar until the
time around 50 years when the temperature reduction is already quite significant.
These differences can be explained by the differences in the spatial discretization
since AD-GPRS is using a conservative Finite Volume discretization while COMSOL
supports a general Finite-Element (i.e., non-conservative) discretization. Based on
this fact, we believe that the temperature reduction is more realistic in AD-GPRS
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simulation; however, further investigation is required. We use the conventional
geothermal formulation by AD-GPRS as a reference solution and compare it with
the proposed OBL approach.

3.1.4. Sensitivity Analysis of Geothermal Doublet Position

The importance of sensitivity analysis can hardly be overestimated for risk man-
agement in geothermal reservoir development. Sometimes, key performance indi-
cators dramatically change with a small variation of, as it might seem, insignificant
parameters. To demonstrate it, we ran a series of geothermal simulations, using
the described above model as a base case and varying just one parameter — doublet
position.

Both wells were simultaneously shifted in the lateral direction from the base grid
cell to all neighbouring cells (including diagonal neighbours) so that their mutual
arrangement remained unchanged. Wells were controlled by rate g = 2400 m3/day
during the whole simulation period of 200 years for each of the models. This light
deviation in wells position provoked a large difference in geothermal doublet lifetime
(up to 20 years or more), even if we discard three cases with the biggest lifetime
(see Figure 3.3). The two numbers in square brackets denote the offsets (in grid
cells) of the doublet position from the base case along X and Y axes of the reservoir
respectively. The base case is therefore denoted as [0;0].
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Figure 3.3: Variation of the cold-front arrival time for doublet lateral position deviations of one grid cell
from the base case [0;0]

That difference can be explained by different distributions of energy in the reser-
voir, caused by variation of connectivity between injection and production wells.
Thorough sensitivity and uncertainty analyses help to mitigate reservoir develop-
ment risks but require a large number of simulations. A tradeoff between the num-
ber of models to run and available time/computational resources always occurs,
that is why the computational performance of reservoir simulation is so important.

3.1.5. One-Component Geothermal Model
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Convergence of Operator-Based Linearization

Here, we compare the results of simulation with OBL performed at the different
resolutions of interpolation tables and the reference solution based on the conven-
tional (continuous) linearization method. We use a modified variant of the original
test case with uniformly distributed thermal properties of rock while rock perme-
abilities and porosities remain heterogeneous. Both wells work at the same rate
control ¢ = 2400 m3/day. Each simulation was performed with a different number
of points in the interpolation table which, for simplicity, was equal for all of the
unknowns (p, t and ¢), while values were uniformly distributed within the range
between p,,,;, =160 bar and p,,,,, =250 bar for pressure, T,,;, =308 K and T,,,,,,.=349
K for temperature, and between 0 and 1 for porosity.

The results of the comparison are presented in Table 3.1. The number of points
used for interpolation operators is shown in the first column. The second column
contains the number of nonlinear iterations, which are directly proportional to the
simulation time. The third and fourth columns represent the error in the tempera-
ture and pressure solution (obtained according to Equation 2.28), respectively. The
last column shows relative single average linearization cost (in terms of CPU time)
of the OBL-based simulator prototype, described in Chapter 4, with respect to the
standard AD-GPRS simulator.

Table 3.1: Results of 3D homogeneous simulation

Resolution | Newtoniters. E,, % Er, % Linearization cost per Newt.
Std. 174 - - 1

64 182 0.0005 0.002 0.051

32 212 0.001 0.007 0.054

16 231 0.002 0.028 0.051

8 240 0.008 0.116 0.048

4 245 0.039 0.561 0.051

2 195 0.24 3.775 0.045

From Table 3.1, the results based on any parameterization approach with a
resolution of 8 and higher show relatively small error, while the linearization is
performed about 20 times faster in comparison with AD-based linearization. At the
same time, this cost does not change significantly with an increase in resolution in
the OBL approach. The error in this simulation is so small because all interpolated
properties, based on correlations from [63], have substantially linear behaviour with
respect to the nonlinear unknowns. It seems sufficient in this model to perform the
operator-based linearization using the resolution of 8 points.

The comparison of the production temperatures and temperature distribution
also supports this conclusion, as shown in Figure 3.4 and Figure 3.5 respectively.
Figure 3.4 demonstrates a good match between reference and parameterization ap-
proach based solution with 8 points, while simulation based on the coarsest table
introduces non-physical initial growth of temperature due to a very coarse approx-
imation of operators involved in the energy equation.

In Figure 3.5, the cold front propagates over the top layer of the reservoir. The
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Figure 3.4: Comparison of temperatures at production well based on different linearization approaches
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Figure 3.5: Temperature front after 15 (a), 30 (b) and 45 (c) years for the conventional linearization
(upper), OBL with 8 point resolution (middle), and absolute difference between them (lower) in the top
layer of the reservoir

top row in Figure 3.5 represents the results from the conventional linearization after
15, 30 and 45 years of simulation. The middle row shows the results obtained with
OBL using a resolution of 8 points at the same times. The lower row displays the
absolute difference between the reference and OBL solutions. The injection-well
position is marked with the blue circle; the production-well position is shown with
the red one.

Analysis of Linearization Operators

In Figure 3.6, we present the most-nonlinear operators used in the proposed lin-
earization approach. All of them are built based on the 64-point interpolation ta-
bles in parameter space. These operators correspond to the linearization of mass-
accumulation «,, and flux B, terms in the water-component mass equation and en-
ergy accumulation a, and conduction y, in the energy equation (see Equation 2.10
and Equation 3.5). They are represented by isosurfaces in pressure, temperature
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Figure 3.6: Physics-based operators of water mass accumulation «,, (a), energy accumulation «, (b),
water mass flux B, (c) and energy conduction y, (d) terms

and porosity parameter space. As expected, all of the operators behave almost
linearly in parameter space that explains why the results of simulation with just 8
points are so accurate.

3.1.6. Two-Component Low-Enthalpy Geothermal Model

Here, we demonstrate geothermal simulation with gas co-production using the
same three-dimensional reservoir. The injection well injects cold water at T;,, ;=308
K and controlled by a water rate ¢ = 1200 m3/day. The initial reservoir composition
of the gas component (methane) z, = 0.1, with initial pressure p=100 bar, and
initial temperature T=348 K. The production well is controlled by the bottom-hole
pressure p,,,q,=70 bar. Since the injection rate is now 2 times lower, we increased
simulation time to 100 years.

We used phase behaviour and densities based on the Peng-Robinson Equation
of State [56] with critical parameters described in Table 3.2. For the enthalpy of the
mixture, we used a correlation described in [65] with parameters from the same
table. The Lohrenz-Bray-Clark (LBC) correlations were used for the viscosities of
each phase [57].

Table 3.2: Parameters for properties

Comp. [ T. (K) P. (bar) V. ACF M, CPG, CPG, CPG, CPG,
C,|190.6 46.04 0.098 0.013 16.04 19.251 0.0521 1.197e-5 1.132e-8
H,0 | 646.8 220.60 0.056 0.344 18.015 32.243 0.0019 1.055e-5 -3.596e-9

Convergence of Operator-Based Linearization
We performed a set of simulations with 6 different interpolation-table resolutions
and compared solutions with the reference solution based on the conventional
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approach. For parameterization, we used uniformly distributed points between
Pmin=60 bar and p,,,,=120 bar for pressure, T,,;,=300 K and T,,,=360 K for
temperature, and finally between 0 and 1 for both composition and porosity. The
results can be seen in Table 3.3. Columns 1-4 are same as in Table 3.1, the fifth col-
umn shows the error in gas composition, and the last column shows a relative cost
of Operator-Based Linearization per Newton iteration in comparison with AD-based
linearization.

Table 3.3: Results of 3D, two-phase low-enthalpy simulation

Resolution | Newton iters. E,, % Er, % E,, % Linearization cost per Newt.
Std. 1247 - - - 1

64 974 0.155 0.809 1.734 0.029

32 968 0.557 1.529  3.692 0.028

16 977 1305 2567 6.414 0.028

8 890 1977 4.288 11.215 0.028

4 890 1.628 5.308 11.397 0.027

2 867 2.191 5.618 13.207 0.027

The two-component two-phase geothermal model is more challenging for the
operator-based linearization approach in comparison to the previous case. However,
the error of the OBL method drops significantly with the increasing resolution of
interpolation tables. Here, the cost of the Operator-based Linearization is more
than 30 times lower in comparison with the AD-based linearization. This happened
because, in AD-GPRS, an iterative solution of EoS is required in the two-phase
region, while in OBL, it only required for a limited number of parameterization
points. For a higher OBL resolution, the linearization cost insignificantly increases.

— Reference
—— =2 points
= « =4 points
= = 8 points
16 points
~~~~~~~ 64 points.

Figure 3.7: Comparison of temperatures at production well based on different linearization approaches
in low-enthalpy model with co-production

Production temperatures for the reference solution and solutions based on lin-
earization operators are shown in Figure 3.7. Here, the non-physical behaviour for
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Figure 3.8: Temperature front after 20 (a), 40 (b) and 60 (c) years for the conventional linearization
(upper), OBL with 64-point resolution (middle), and absolute difference between them (lower) in the
top layer of the reservoir in low-enthalpy model with co-production

2-point resolution is similar to the previous case. This behaviour is quickly stabilized
for the cases with a higher resolution.

The comparison of the thermal fronts is shown in Figure 3.8. Here, one can
see that the reference solution (upper row) and the solution based on the OBL
with 64 points (middle row) mostly match, and the largest errors of 5 degrees are
primarily observed around the thermal front. Importantly, the maximum error does
not grow along with the simulation. Compared to the previous case, the flow is now
more influenced by the production well because of the changed pressure boundary
conditions. Therefore, injected cold water primarily flows towards the production
well causing faster breakthrough despite a lower injection rate.

Analysis of Linearization Operators

In Figure 3.9, the 3D iso-surfaces are shown to characterize the most nonlinear
operators for the case of the two-phase geothermal model. These operators cor-
respond to the linearization of mass accumulation a, and flux g, terms for the gas
component in the mass equation and energy accumulation «, and flux g, in the
energy equation. All of the operators are built based on the 64-point interpolation
table. They are shown as functions of pressure, temperature and composition at a
constant valueg = 0.2. Unlike for the pure geothermal case, all operators are more
nonlinear as functions of all state variables.

3.1.7. Two-Component High-Enthalpy Geothermal Model

Here, we demonstrate geothermal simulation with gas co-production for a high-
enthalpy reservoir. The initial temperature, pressure and composition of the gas
component (methane) was adjusted to T=500 K, p=100 bar, and z, = 0.1, which
makes the original mixture close to a critical fluid at reservoir conditions. The
injection temperature stays the same T;,,;=308 K, and the injection well operates
under a constant water rate control ¢ = 120 m3/day. Only the top layer of the
reservoir was modelled because of the significant reduction in simulation speed.
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Figure 3.9: Physics-based operators of mass accumulation for gas component a, (a), mass flux for gas
component B, (b), energy accumulation @, (c) and energy flux S, (d) terms in low-enthalpy model with
co-production

This drop is related to more-expensive phase behaviour evaluations (in the near-
critical region) for the reference solution and a lower limit of simulation timestep to
suppress instabilities associated with high-enthalpy systems [66].

Convergence of Operator-Based Linearization

Similarly to the previous runs, we performed simulations with 6 resolutions of the
interpolation table and compared them with the reference model. For parameteri-
zation, we used uniformly distributed points between p,,;,=60 bar and p,,,,,=290
bar for pressure, T,,;,=300 K and T,,,=510 K for temperature, and between 0
and 1 for both composition and porosity. The results can be seen in Table 3.4 with
columns similar to Table 3.3.

Table 3.4: Results of 2D two-phase high-enthalpy simulation

Resolution | Newton iters. E,, % Er, % Ezp % Linearization cost per Newt.
Std. 7617 - - - 1

64 2715 0.023 0.092 0.711 0.027

32 2629 0.071 0356  2.257 0.027

16 2489 0.096 0.496  3.443 0.026

8 2118 0.07 0.615 3.748 0.026

4 2113 0.088 1.104 3.99 0.027

2 1901 0.108 4.279 3.672 0.026

In comparison to the low-enthalpy case, the high-enthalpy simulation requires
much more Newton iterations to converge. That is related to the fact that the
high-enthalpy system corresponds to more nonlinear pressure-temperature depen-
dencies. However, the OBL method introduces smaller errors, still requiring 64
points to keep the errors below 1%. We believe that overall accuracy increased
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because the model has become 2-dimensional, therefore some factors affecting
the solution, such as vertical conduction, are no longer present. Still, the error
for OBL decreases as the resolution of interpolation tables increases. The cost of
linearization per Newton iteration behaves similarly to the low-enthalpy case.
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Figure 3.10: Comparison of temperatures at production well based on different linearization approaches
in the high-enthalpy model with co-production

Production temperatures for the reference solution and solutions based on the
linearization operator are shown in Figure 3.10. The lowest resolution in the phys-
ical tables introduces a large error in the temperature breakthrough time, as was
expected from Table 3.4. With higher resolutions, the behaviour becomes closer
to the reference solution, even though some non-physical results can be observed
at intermediate resolutions. For example, the 4-point resolution in Figure 3.10
demonstrates production temperature higher than initial temperature right at the
beginning of simulation.
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Figure 3.11: Temperature (condensation) front after 20 (a), 40 (b), and 60 (c) years for the conventional
linearization (upper), OBL with 64-point resolution (middle), and absolute difference between them
(lower) in high-enthalpy model with co-production

The spatial distribution of temperature demonstrates a certain discrepancy be-
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tween two approaches — up to 2 degrees, as can be seen in Figure 3.11. Asin
previous cases, the maximum error does not increase along with the simulation and
is concentrated around the thermal front.

Analysis of Linearization Operators
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Figure 3.12: Physics-based operators of mass accumulation for gas component a4 (a), mass flux for
gas component g, (b), energy accumulation a, (c) and energy flux 8, (d) terms in high-enthalpy model
with co-production

In Figure 3.12, we plot again 3D isosurfaces to describe operators in the case
of a high-enthalpy geothermal model with co-production. Here, we show the same
operators as in Figure 3.9. For the high-enthalpy case, all operators demonstrate
more nonlinear behaviour. That s partially due to the closeness to superheated con-
ditions of the gas-water mixture and partially due to the larger interval of changes
in temperature covered in simulations. We hope that in the future work, the de-
tailed analysis of parametrized operators will help to improve the nonlinear solver
in geothermal simulations.

3.1.8. Thermal Compositional Model With 4 Components
The next simulation model was built on a thermal-compositional physical kernel,
extending the isothermal model described in subsection Subsection 2.7.2. The initial
and injection conditions stayed the same as in the previous example except that the
injection mixture had a lower temperature of T=315 K. The simulation period was
2000 days with a maximum time step of At=20 days. The temperature distribution
at the last time step and the corresponding errors are depicted in Figure 3.13. The
errors are concentrated near the cooling front (similar to composition errors located
near the displacement front) and the injection well. The latter can be explained by a
larger nonlinearity in the energy conservation equation, introduced by a correlation
for enthalpy.

The convergence results of the thermal-compositional simulation, presented in
Table 3.5, are similar to those for the isothermal model, provided by Table 2.2
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(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 3.13: Temperature solution at t=2000 days
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Figure 3.14: Total well rates for reference solution, OBL with 8 points, and OBL with 64 points

Table 3.5: Results of non-isothermal compositional simulation

2000

Resolution | Iters. E,, % Er, % Eco,, % E;,% Ec,% E;, , % Space,% CPU, sec
Std. | 647 - - - - - - - 628

64| 587 0.12 0.12 0.19 0.37 0.20 0.21 0.005 317

32| 553 0.12 0.27 0.33 0.67 0.35 0.37 0.037 234

16| 536 0.14 0.48 1.15 2.02 1.21 1.35 0.241 209

8| 555 041 121 2.79 5.16 3.64 3.86 2.371 217

(the description of columns also matches, except that errors are provided for each
component individually, but still according to Equation 2.28). In this simulation, the
region of adaptive parameterization of physical space drops down to 0.001% which
reflects the importance of the adaptive approach for higher dimensional systems

(i.e., systems with more nonlinear unknowns per control volume).
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3.2. Buoyancy Extension

In this section, another important extension of OBL to buoyancy dominated systems
is described.

3.2.1. Phase Potential Upwinding (PPU)

In the conventional modelling approach, the introduction of buoyancy in multiphase
flux calculations assumes that each phase has its own phase potential difference at
a given interface ij, allowing counter-current flow:

®pi; = (pj—pi = 6pij(Dj = Dy)) (3.13)
Opit6p; : . .
o if phase p appears in both cell i and j;

Spij = Op,i» ?f phase p appears only ?n cell i; (3.14)
Op,j» if phase p appears only in cell j;
0, if phase p doesn't exist in neither cell i nor j,

where &, ; = 8,(w;) = gp,;, g - the acceleration of gravity, p; - mass density
of a phase p in a control volume i. Numerical fluxes are usually computed using
a phase potential upwinding (PPU) strategy, in which phase mobilities are selected
depending on a sign of the corresponding phase potential difference separately for
each phase.

Straightforward implementation of PPU within the OBL approach implies an in-
crease in the number of flux operators from n. to n.n,, since phases should be
treated separately. In addition, a mass density operator &, has to be introduced
for each phase. Striving to reduce the amount of required interpolations, we evalu-
ate a single mass density value per phase for the united control volume of adjacent
blocks, instead of averaging the two values obtained for each of the blocks. Hence,
Equation 3.14 becomes:

6p,ij = 6p (wU) (315)
w; + w;
(Dl']' = 2 J (3.16)

Taking into account buoyancy, Equation 2.10 is transformed into:

a(®) (@e(@) — @) + D > by(§ 0)ep(@)
JEL(D) p
+ 6. wu)=0 c=1,..,n, (3.17)

where
bp(f, (1)) = Atl“ijdbp,ij, (318)

_ {xcp,ipp,i/lp,i |f q)p,ij <0

= Iy 3.19
Pep(@) YeviiPpiitpij Xcp,jPp,jAp,; Otherwise. (3.19)
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Similarly, the energy balance equation (Equation 3.5) becomes:

6o (@e(@) = Ce(@) + D > bep(§,0)fep(®)

JEL() p

£ colE @)e(@) + 0o w,w) =0, (320)
l

where

bep ($, ) b, (§, w), (3.21)

hp,ipp,illp,i |f q)p,ij <0

h A otherwise. (3.22)

ﬂep(w) = hp.ifpp'ijllp'ij:{

p.iPp.j p.j

Therefore, OBL with PPU requires n. +n.n, +n,, operators for the isothermal prob-
lem with n. components and n,, phases, and n, + n.n, + 2n, + 2 for the non-
isothermal one.

3.2.2. Component-Potential Upwinding (CPU)
Striving to reduce the number of operators, we introduced a following component
density paradigm:

p
E_le{g”xcppp/lp
po(w) = Y c=1,.,n,. (3.23)

np

X XepPplp
p=1

Using this mobility-averaged density of a component allows to obtain a single
component-potential at an interface ij for upwinding. Counter-current flow is still
possible, but each component now moves only in one direction, apart from PPU:

i = (pj—pi—6cij(Dj — D)), (3.24)
6cij = Oc(wij) (3.25)
wy; = 2% > 2 (3.26)

55(0)[) = 9Pc,- (327)

The physical interpretation of this approximation is based on the fact that in
cross-current flow, independently of phase directions, the total mass of the com-
ponent is moving to a single direction. In addition, this scheme avoids summa-
tion across phases for each component and, thus, reduces the number of oper-
ators involved. It implies minimal changes in the original mass and energy bal-
ance equations (Equation 2.10, Equation 3.5) by making the space operator b(¢, w)
component-dependent:

b(f, (1)) = bc(f, (1)) = Atl"ijCDC,ij. (328)
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In this scheme, OBL requires 3n,. operators for the isothermal problem with n,
components and n,, phases, and 3n. + 3 for the non-isothermal one.

3.2.3. Independent Upwinding (IU)

Following the idea of hybrid upwinding (HU) [67] to the full extent, we completely
separated computations of viscous- and buoyancy-induced flow. For each of the
two parts, the upstream direction is obtained independently, based on the pressure
difference for the first and based on the depth difference for the second. This
implies

a(§) (ac(w) — ac(wy)) + Z (b(§, @)B(@) + by(§, w)fey(w))

jeadj(
+ 6. wu)=0 c=1,..,n. (3.29)
Here
by(§ w) = Atlij(—g(D; —Dy)), (3.30)
p
Beg(w) = Z Xep,ijPpij APy
p=1

xcp_ipp,i/lp_ipg}i |f Di < D]

. 3.31
Xcp,jPp,itpiPpy  Otherwise. (3.31)

where  xcp,ipp,ijApiiPpi; = {

This approximation can be interpreted as a compositional version of HU, where
independently of flow direction, the gravity term of the lighter phase is always
pointing up while for the heavier phase it is pointing down.

Similarly, the energy balance equation ( Equation 3.5) becomes:

e (§) (e (@) — ac(wy)) + Z (be (8, @)Be (@) + by (§, )Beg(@))

jeadj(®)
FD @ @)e(@) + 0§ 0w =0, (3.32)
jeadj(D)
where
Tp
feg(w) = Eh,,,i,-p,,,ijﬂp{,'}ij.

p=1

_{hp,ipp.iﬂp,ipz?.li if D; < D; (3.33)

where Ry ;ippiidyiipTs; = .
PUTPUTPHERY by ipy iAp, Py Otherwise.
This approach matches the previous one in terms of the number of required state

operators.
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3.2.4. One-Dimensional Dead-Oil Model with Gravity Segrega-
tion

We started with a simple one-dimensional domain for a vertical segregation model
with buoyancy-driven flow. It consist of 5 grid cells 10 x 10 x 10 m each, extending
over a depth of 50 m overall. The rock permeability is equal to 100 mD and the
porosity is equal to 0.2. We started with a dead-oil kernel, filling the top three grid
cells with water (with a constant density p* = 1000 kg/m?3) while the bottom two
cells were filled with oil (with a constant density p* = 800 kg/m3). The reservoir
was initialized with B,=100 bar. We ran the model for 10,000 days until the system
reached an equilibrium. The dynamic distribution of fluids is shown in Figure 3.15.
It can be seen that the heavier water phase, placed on top, has exchanged position
with the oil phase by the end of the simulation time.

v v o T
L. I I L

Initial fluid distribution  After 1.000 days  After 2.000 days After 10.000 days

Figure 3.15: Dead-oil gravity segregation

In Figure 3.16(a), the error between the reference and OBL simulations is shown
depending on parameterization resolution. It is clear that the error is converging
to zero at high OBL resolution. Next, Figure 3.16(b) demonstrates the dynamic
cumulative number of nonlinear iterations versus time for two OBL resolutions of
16 and 100 points. The plot covers only the first 1800 days since later the system is
close to equilibrium and requires a single Newton iteration to converge for all sim-
ulations. The lower resolution demonstrates better convergence at the beginning
of the simulation requiring more iterations near its end. The finer resolution model
behaves similarly to the model with the reference physics.

Table 3.6: Results of dead-oil gravity segregation with PPU

Resolution | Iters. E,,
Std. | 1054 - - -

64 | 1076 0.05 0.11 4.350

32 | 1276 1.02 6.40 7.599

16 | 1119 0.92 2.03 13.281

8 - - -

% E, % Space, %
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Figure 3.16: OBL behaviour for dead-oil kernel

Table 3.7: Results of dead-oil gravity segregation with CPU

Resolution | Iters. E
Std. | 1054 - - -

64 | 1076 0.05 0.11 4,091

32 | 1276 1.02 6.40 7.248

16 | 1119 0.92 2.03 12.283

8 - - -

» % E, % Space,%

3.2.5. One-Dimensional Compositional Model with Gravity Seg-
regation

Next, we ran the gravity segregation test with 4-component isothermal composi-
tional model used before. The initial oil with 1% of CO,, 11% of C;, 38% of NC,,
and 50% of C,;, was placed in the top three grid cells, while mixture of gas with
80% of CO, and 20% of ¢, was placed in the two bottom cells. The initial reservoir
pressure was set to P,=120 bar and temperature T;=350 K forming a pure liquid
phase in the top and a pure gas phase in the bottom. The dynamic distribution of
phases is shown in Figure 3.17. Unlike in the dead-oil kernel, the gravity segre-
gation here is combined with extensive mass exchange between liquid and vapor
phases which drastically changes the composition of fluids.

In Figure 3.18(a), one can see the corresponding error in pressure and composi-
tion (maximum over all components) for the final solutions of OBL model, compared
to reference physics, depending on the resolution of the OBL approach. It is clear
that the error is converging slower than in the dead-oil kernel due to a more com-
plicated dynamics of the process. At the same time, the nonlinear performance
(Figure 3.18(b)) behaves more predictably, being better for the lower resolution
and slightly worse for the high resolution in the OBL simulation. Again, the plot
covers only the most intense first 140 days, as later the nonlinear behaviour of all
simulations is equal.
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Figure 3.17: Compositional gravity segregation
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Figure 3.18: OBL behaviour for compositional kernel

Table 3.8: Results of compositional gravity segregation with PPU

Resolution | Iters. E,, % E,, % E,, % Space,%
Std. 298 - - - -

64 424  45.95 1.50 0.83 0.399

32 445 208.96 2.92 1.68 1.782

16 303 441.45 6.66 1.99 5.382

8 - - - -

3.2.6. Brugge Field Model

aturation
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To demonstrate the applicability of the OBL approach for a full field three-dimensional
model, we employ the Brugge field, which is often used as an optimization bench-
mark for reservoir simulation study [68]. This model is based on realistic reservoir
structures and properties shown in Figure 3.19. The simulation time spans 10 years
with BHP controls changing every 3 months for both injection and production wells.
For reservoir parameters and well controls, we used the base case realization de-

scribed in [69].
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Table 3.9: Results of compositional gravity segregation with IU

Resolution | Iters. E,, % E,;, % E,, % Space,%
Std. 298 - - - -
64 130 385.23 20.22 28.92 0.202
32 129 473.79 20.79  29.17 0.998
16 124 379.98 19.40 29.70 3.601

8 117 502.72 17.22  36.50 11.963

PORO
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- 015

I 0.075
0.0

Figure 3.19: Porosity distribution of the Brugge field

In Figure 3.20, we compare total well rates for both production and injection
wells for the reference dead-oil kernel and the OBL implementation (with the reso-
lution n = 64) with and without gravity. It can be seen, that the buoyant forces play
an important role in this model, and only the simulation using OBL with buoyancy
successfully recovers reference well rates.

Total water injection rate Total oil production rate

18000

Reference
OBL without buoyancy
OBL with buoyancy

16000

14000

12000

10000

sm3/day
sm3/day

8000

6000

4000

Reference
OBL without buoyancy
OBL with buoyancy

2000

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Days Days

Figure 3.20: Well rates comparison for Brugge field
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The corresponding errors and nonlinear behaviour are shown in Figure 3.21. Itis
clear that the overall error is quite insignificant even for the coarsest resolution (n =
8). The error stabilizes at n = 32 and remains so up to the finest resolution n = 96.
The nonlinear behaviour is almost equivalent between the reference solution and
OBL at different resolutions in the first half of the simulation. After that OBL-based
simulations require slightly more nonlinear iterations to converge. The CPU cost of
simulation with the reference physics is comparable with the OBL approach without
buoyancy (580 vs. 582 seconds respectively, while linearization takes around 260
seconds in both). The corresponding number of operators in the OBL approach with
gravity grows significantly (from 2 to 6 for dead-oil kernel) increasing the overhead
due to ADETL. That can explain why the simulation time for the OBL approach
with buoyancy is larger. Table 3.10 and Table 3.11 demonstrate the results for OBL
approach with PPU and IU accordingly. The amount of newton iterations in case of
PPU is slightly higher than for reference physics, while in case of IU is even higher
that for PPU. At the same time, the error remains very low for both approaches. The
simulation time for OBL in this case is 734-790 seconds with linearization cost of
around 470 seconds. As was already mentioned above, the proper implementation
of the OBL approach can speed up Jacobian assembly by a factor of 14x. Moreover,
the migration and optimization of algorithms for emerging architectures (e.g., GPU)
improves the linearization performance by another order of magnitude [28].

il Pressure error, %

=== Composition error, %

0 10 20 30 40 50 60 70 80 90 100 0 500 1000 1500 2000 2500 3000 3500 4000
Resolution Days

Final solution error Nonlinear solver behaviour

Figure 3.21: OBL error behaviour for Brugge field model

Table 3.10: Results of Brugge model with PPU

Resolution | Iters. E,, % E, % Space,% CPU, sec
Std. 817 - - - 579.7

64 829 0.13 0.01 20.521 786.6

32 856 0.13 0.01 23.757 799.9

16 824 0.13 0.01 28.693 766.2

8 826 0.16 0.02 44.318 769.1
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Table 3.11: Results of Brugge model with IU

Resolution | Iters. E,, % E, % Space,% CPU, sec
Std. 817 - - - 579.7

64 960 0.37 0.13 20.513 782.1

32 956 0.37 0.13 23.806 773.2

16 980 0.37 0.13 29.601 791.2

8 893 0.40 0.14 43.403 734.6




Prototype Implementations of
Operator-Based Linearization

4.1. Extension of Existing Simulation Framework

Automatic Differentiation General Purpose Research Simulator (AD-GPRS) is a flex-
ible and efficient reservoir simulation research laboratory with extensible modelling
and solution capabilities. AD-GPRS is one of a few simulators based on automatic
differentiation (AD) framework (see also [26]). It has a modular object-oriented
design, while all of the code is written in standard C++. This design is convenient
for researchers to extend the simulator by incorporating new physics, introducing
complex processes, or adding new formulations and solution algorithms. It was
a natural choice to implement OBL as an alternative nonlinear formulation in AD-
GPRS. To better understand the specifics, the structure of the AD-GPRS framework
will be briefly observed first.

4.1.1. General Structure of AD-GPRS

The system model shows the basic classes and their relations, and it is very helpful
for understanding the structure of AD-GPRS. Due to the complexity of AD-GPRS, the
system model can be addressed level by level using multiple figures. The description
will be concentrated on the most necessary aspects for the understanding of OBL
implementation.

Figure 4.1 shows the overall structure of the entire simulator. SimMaster is a
manager of all simulation-related objects. When SimMaster is created, in turn it
instantiates a specific NonlinearFormulation object. After that, common objects in-
cluding Reservoir, Facilities, NonlinearSolver are constructed. The data members
of SimMaster also include the global variable set (adX) that stores all the simulation
variables with both values and gradients, as well as the global backup set (adX_n)

Parts of this chapter have been published in the proceedings of SPE Reservoir Simulation Conference
(2017)[28]

45
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Figure 4.1: Overall structure of the entire simulator

that saves a copy of values of all variables. Those can include, in particular, pres-
sure, temperature, phase saturations, component molar fractions, phase mobilities,
and so on. Special status in a variable formulation activates a part of the corre-
sponding variables to be independent and leaves the rest of the variables to be
dependent, without changing their values.
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T Inheritance Formulation
Natural Molar Gamma (
. . R B new
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. . . formulation)
Formulation | | Formulation Formulation
Conservation Component Always Present Phase Thermal
Equation Order Table Phases Combinations Properties

Figure 4.2: Structure of the NonlinearFormulation

Now, the NonlinearFormulation class will be discussed in detail. Figure 4.2 shows
its structure. This is the abstract base class of various formulations, such as Natu-
ralVariableFormulation, MolarVariableFormulation, and so on. By constructing new
inherited classes of NonlinearFormulation (or one of its derived classes) with the
same interfaces but possibly different realizations, we are able to introduce new
formulations.

NonlinearFormulation contains a variety of formulation-related virtual member
functions. Some functions are called in the initialization stage to specify the phase,
component and variable structure of a formulation. This includes, among many
others, fluidPropertiesCalculation, which computes all fluid properties for a given
control volume, and computeMassFluxTerm, which performs computations related
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to a specific interface between two control volumes.

It is essential to understand that nearly all computations at the nonlinear level
in AD-GPRS are performed using data structures from Automatic Differentiation
Expression Template Library (ADETL). The most important ones are aforementioned
adX and adX_n, but there are many other locally used data storages. Any operation
with ADETL types additionally involves augmented gradient computations, which
are happening behind the scenes according to the selected primary variable set.
Each nonlinear formulation defines such a specific set. Then, in order to construct
a Jacobian matrix, one should only care of residual equations, and all gradients are
computed automatically.

4.1.2. Additional Nonlinear Formulation with OBL

It was a natural choice to implement OBL in the AD-GPRS framework as an addi-
tional nonlinear formulation. MolarVariableFormulation was chosen to be modified,
since it provided a primary variable set which does not require variable switch-
ing (as, for instance, in NaturalVariableFormulation where the number of phases is
changing). In order to apply OBL to computations of accumulation and flux terms of
a residual equation, fluidPropertiesCalculation and computeMassFluxTerm functions
of the new nonlinear formulation were modified accordingly.

All ADETL-based computations related to the evaluation of state operators were
replaced by corresponding multilinear interpolation procedures. Nevertheless, all
gradients obtained through interpolation had to be injected back into ADETL struc-
ture adX for further processing in Jacobian assembly. This was implemented in
additional function assembleADScalar. Of course, these manipulations of gradient
data can be seen as unnecessary overhead computations, which can be avoided in
a stand-alone simulator designed on top of the OBL from the very beginning.

All state operators were interpolated in an adaptive manner, which is thoroughly
described in Section 2.6. It allowed to run OBL-based simulations with up to 6 de-
grees of freedom (see Subsection 2.7.2). Each operator was stored and interpolated
separately. On one hand, that allowed applying a different parameterization res-
olution for each of them. On the other hand, it was not found really beneficial,
and, for consistency, in the majority of simulations an identical parameterization
resolution was applied to all operators. In this case, the search of values of their
supporting points and interpolation was also performed independently, despite the
fact that a large degree of those computations was redundant.

Even though the implementation of OBL within AD-GPRS had the aforemen-
tioned issues, the performance benefits of the approach were confirmed (see Chap-
ter 2, Chapter 3). To estimate the full performance advantage provided by OBL, a
stand-alone simulation capability with combined operator storage was needed. All
implementation stages are described in the sections below.

4.2. One-Dimensional Simulator in MATLAB

As a first step, a stand-alone simulator was created in Matlab. Its goal was to model
conservation equations in operator form, while operator values were generated
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by AD-GPRS implementation and provided to Matlab externally via text files. To
simplify the analysis, the model was limited to a 1D reservoir with Cauchy boundary
conditions on the left and right sides. This made the spatial discretization simpler,
yielding to the following equation in vector form (the length of vector corresponds
to the number of components n,) for the block i:

Ti(wi_1, W), Wiy, @)

where

a;
biy (@i, wiy1)
bi_(w;, w;_y)

+

In the case of total velocity formulation

by (Wi, wiyq)
bi_(w;, w;_1)

(a(w)) — a(w])) a;
B(w)by(w;, wiy1)
B(w;_)b;_(w;, w;_1) =0,

¢0iVl"
AtT;iy1(Piv1 — DO,
AtT;_1,i(Pi — Di-1)-

AtT; i1 (Piv1 — POAM @)
AtTi_1,i(pi — Pi—1)A(@i_1)-

(4.1)

(4.2)
(4.3)
(4.4)

(4.5)
(4.6)

Next, we assume a homogeneous reservoir with V, ¢, and T constants. Equa-
tion 4.1 written for internal reservoir block can be simplified:

;= (a; — al)
a;

Bi

14

by

b;_

Y (Bibiy + Bi—1bi),
a(w;),
B(w)),
Tab
Atw,
Pi — Pi+1
bi — Pi-1-

In the case of total velocity formulation

b,
bi— =

Pi — pir1)A (@)
i — pi—)A@;_1).

Now, the internal i-th Jacobian block row can be written as:

T

YBi_1bi— +yBi—1 X bj_; 4
Ji = |A; +v (Bibis + B:
YBi X bjy s

X bj, i+ Bi—1 X bi_;)

(4.7)
(4.8)
(4.9)

(4.10)

(4.11)
(4.12)

(4.13)
(4.14)

(4.15)



4.3. Stand-Alone Simulator with OBL for CPU and GPU Architectures 49

where
[ O0a; da, Oa, da,
' _awi] [api 0z, azi,nc—l ¢ ot (4.16)
_ -aﬁi _ aﬁc aﬁc aﬁc _
BL' = -awi:| = [apl Flll aZi’nC_l ,C = 1, ey Ny (417)
T
—10..0| , conventional
[ ab,_ 1" Py
bi_;1 = —l] =4 T (4.18)
’ »6(»1-_1 0/1
(pi—pi_l)a +/‘ll 1|—10..0 , total velocity
Wi-1 nc—l
T
T 10..0| , conventional
abi_ ne—1
bi_; = [ awi] =4t T , (4.19)
Ai—1]10..0[| , total velocity
ne—1
T T
, 0b; 4 9(—bgi+1)- ,
Pres = [awi] B [ 0w (i+1)-1 = "Dy a1 (4.20)
' abL+ 0( b(1+1) ) ,

To maximize the simulation performance, functions performing operator interpo-
lation and Jacobian assembly were vectorized. In addition, the Jacobian was com-
posed as a tridiagonal block sparse matrix directly of three diagonals (i.e., bands).
That helped to speed up the assembly itself and, more importantly, to ensure the
usage of efficient sparse direct solver.

4.3. Stand-Alone Simulator with OBL for CPU and
GPU Architectures

In order to evaluate the genuine performance of the OBL approach, we decided
to develop a new C++ prototype of the compositional simulator, without using an
Automatic Differentiation (AD) library. Due to the limited time allotted for the de-
velopment of both CPU and GPU versions of the simulation code, we restricted the
number of components to n, = 2. The target implementation was designed to
closely follow the implementation in AD-GPRS to allow a proper performance com-
parison between them. To ensure that, we aligned the initialization and simulation
loop in both simulators.

The initialization stage consisted of several parts. First, the mesh was initial-
ized in both AD-GPRS and prototype simulators from a connection list augmented




50 4. Prototype Implementations of Operator-Based Linearization

by transmissibility, volume, and porosity values. This allowed to gain simplicity
and unstructured grids support [70]. Second, the initial state of the reservoir was
defined directly from the values of state variables, dumped from AD-GPRS after ini-
tialization. Finally, the look-up tables required by the OBL approach were processed
similarly: pre-calculated in AD-GPRS, stored, and then loaded in the simulator pro-
totype. Thereby, both AD-GPRS and C++ prototypes were initiated identically.

The linearization stage with the linear and nonlinear solvers comprise the main
simulation loop. The OBL was implemented equivalently in all simulation codes
with the only difference in the Jacobian storage selection. While the AD-GPRS
framework used AD-based specific storage, the new prototype employed a standard
Block Compressed Sparse Row (BCSR) matrix format. We selected the GMRES linear
solver preconditioned by ILU(0) [34], because this combination is well known for
its good convergence behaviour [71], and its implementation is widely available.
AD-GPRS already had this setup implemented [72].

In the new prototype, we used our own implementation of the CPU linear solver,
while for the GPU version, the linear solver library from [73] was used. The basic
Newton-Raphson nonlinear solver was used in all modelling approaches. The non-
linear convergence criterion was implemented based on the L2-norm of a residual
for all simulations. Finally, we achieved an identical behaviour of the iteration pro-
cess and the time stepping across all OBL-based modelling approaches, delivering
simulation results that closely match the conventional AD-GPRS results as long as
the parameterization resolution n is high enough.

The new simulator prototype is conceptually close to the approach described by
[74], having the same initialization driver for both GPU and CPU versions, which
are developed as interchangeable parts. The GPU version first loads the required
initial data to GPU memory and then performs all major computations on the device.
The CPU is only used to control the main execution logic and to launch the GPU
kernels. All kernels were implemented on a thread-per-cell basis, avoiding any
communication between threads. Restricted by only 2 components, we achieved a
streaming multiprocessor occupancy of 100% for the bi-linear interpolation kernel
and 52% for the Jacobian assembly kernel. Gaining the performance by using the
BCSR storage and native data types, we did not specifically tune neither our CPU nor
our GPU kernels. Carefully applied vectorization, memory padding and alignment,
and mixed precision will be able to improve the computational performance further.

4.4. Numerical Resuls and Performance Compari-

SOo1
We compared the computational performance of four modelling approaches:

1. the default overall molar formulation in AD-GPRS [10],

2. the OBL-based molar formulation in AD-GPRS [75],

3. the prototype of the OBL-based compositional simulator on CPU, and
4. the prototype of the OBL-based compositional simulator on GPU.
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The first three approaches, which use only the CPU, were executed in a serial mode
on a single server with two Intel Xeon E5-2620 v2 processors clocked at 2.1 GHz.
We performed all executions on CPU in serial mode to escape considerations about
the efficiency of shared-memory implementation. The fourth approach was run
on NVIDIA Tesla K40m at 875 MHz. All OBL-based approaches used a constant
resolution of n =64.

4.4.1. Benchmark Model

The SPE10 test case [76], initially created to compare upscaling techniques, now is
probably the most commonly used model to benchmark the performance of reser-
voir simulators. Due to its highly heterogeneous permeability distribution, achiev-
ing 10 orders of magnitude, and considerable size of 1.1 million cells, this model is
quite challenging for both linear and nonlinear solvers. Here, we selected the SPE10
test case as a benchmark to compare Jacobian construction times. We chose the
simplest linear and nonlinear solution strategies, described above, to perform the
consistent comparison of all four implementations. Wells were modelled as simple
source/sink terms controlled by pressure. We introduced two wells, an injector and
a producer, at the opposite corners of the model, with perforations in all vertical
layers. The original porosity of the SPE10 model was adjusted to a minimum limit
of ¢in = 0.001 to avoid the presence of nonactive cells in the model.

In addition to the standard SPE10 model, we used a homogeneous model with
the same geometrical characteristics, but constant porosity ¢ = 0.2, horizontal
K, = 10 mDarcy, and vertical K, = 0.4 mDarcy permeabilities. For each of the
models, we performed a waterflooding simulation described by the original SPE10
dead-oil properties and gas injection simulation based on EoS properties.

Conducting the benchmarks, we were limited by both small simulation timesteps,
caused by the choice of simple linear and nonlinear solvers, and a short time-frame
of exclusive access to the server. Due to these restrictions, we ran all simulations
for a limited run-time. For a more involved simulation and a detailed analysis of the
impact of OBL on solution see [75].

4.4.2. Waterflooding in Heterogeneous Reservoir
We employed a standard dead-oil model, where oil and water components exist
only in their corresponding phases and do not mix. Most of the properties are
described as table-based correlations. The water injection well operated with a
pressure control at p; = 400 bar, and the production well operated at p, = 100
bar. The initial pressure distribution was set at p, = 200 bar and the initial water
saturation was set at S, = 0. All simulations were run for 0.1 days with a limited
timestep to avoid convergence issues in both the linear and the nonlinear solvers.
Table 4.1 demonstrates the performance results for the simulators, listed in
the first column. Due to identical initial conditions, tolerances and convergence
conditions for both the linear and the nonlinear solvers, the number of timesteps,
nonlinear iterations, and linear iterations, presented in the second, the third, and
the fourth columns respectively, match for all OBL-based simulators and are close
to those for the standard AD-GPRS.
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Table 4.1: Performance results for the dead-oil simulation in the heterogeneous reservoir

Simulator | Ts Newt. it. Lin. it. Jac., s Single Jac.,, s Lin. solv.,,s  Total, s
AD-GPRS | 16 51 1891 592.892 8.849 976.459 1569.351
AD-GPRS + OBL | 16 52 1887 505.644 7.436 964.846 1470.490
Prototype (CPU) | 16 52 1887 35.400 0.521 715.000 751.000
Prototype (GPU) | 16 52 1887 2.330 0.034 118.540 122.900

The difference in Jacobian construction time, which is shown in the fifth column,
between the standard linearization and OBL within the AD-GPRS framework shows
the advantage of the approach. Furthermore, the same approach, built in the pro-
totype simulator, speeds up the Jacobian construction by an order of magnitude
on the CPU platform, and by another order of magnitude on the GPU platform,
resulting in a 257x speedup over the Jacobian assembly performed in the default
AD-GPRS implementation. There are several reasons explaining these results. First,
all simulation runs on the CPU platform were performed on a single processor core,
as we did not want to rely on the efficiency of a multithreaded parallel implementa-
tion. Second, as was mentioned before, AD-GPRS is based on the extensive use of
the AD technique [24] which introduces a certain overhead caused by augmented
algebra computations, storage selection, and compiler optimization.

The next column in the table represents an average time spent on a single
Jacobian assembly. It was estimated by dividing the Jacobian construction time
by the sum of nonlinear iterations and timesteps, which represents the number
of Jacobian evaluations. We calculated this value to compare the Jacobian con-
struction performance regardless of the number of nonlinear iterations or timesteps
made. According to [74], their GPU implementation of Jacobian assembly takes 8
s in SPE10 simulation with 68 timesteps and 418 Newton iterations on the similar
NVIDIA Tesla K40, which gives an average of 0.016 s per single Jacobian assembly,
assuming there were no time step cuts. In this case, our first prototype implemen-
tation of a general purpose simulator is only 2x slower.

Linear solver execution time is shown in the 7-th column. The linear solver, used
in the CPU version of the prototype, performs better than that in the default imple-
mentation in AD-GPRS. The GPU-based linear solver has a convincing advantage
over the fastest CPU solver, performing 6x times faster. The total simulation times,
excluding initialization, are shown in the last column of the table. AD-GPRS-based
simulations have a little difference due to the different linearization approaches.
The CPU version of the prototype is 2x faster than the standard AD-GPRS owing to
a 16x faster Jacobian assembly and a more efficient linear solver implementation.
Finally, the GPU version of the prototype is only 12x times faster than the refer-
ence simulation, even though the Jacobian assembly now takes only 2.3 s. The
reason is in a lower scalability of the linear solver, probably caused by employing
substantially sequential ILU(0) as a preconditioner in this simulation. However, an
additional speedup can be obtained by use of multi-GPU systems.
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4.4.3. Dead-oil Waterflooding in Homogeneous Reservoir

Here, we simplify the initial model by setting porosity and transmissibility values to
constant. This allowed us to set a larger timestep and run the simulation for 10
days. As Table 4.2 shows, the numbers of timesteps and nonlinear iterations still
match across all simulations, while the number of linear solver iterations is slightly
higher for the reference approach than that for OBL-based approaches. The cost
of a single Jacobian construction remains practically unchanged for all simulators.

Table 4.2: Performance results for the dead-oil simulation in the homogeneous reservoir

Simulator | Ts Newt. it. Lin. it. Jac, s Single Jac., s Lin. solv.,, s  Total, s
AD-GPRS | 10 37 1420 411.776 8.761 677.327 1089.103
AD-GPRS + OBL | 10 37 1395 354.758 7.548 670.299 1025.057
Prototype (CPU) | 10 37 1395 21.380 0.455 474.150 496.000
Prototype (GPU) | 10 37 1395 1.630 0.035 84.100 87.200

4.4.4. Gas Injection in Heterogeneous Reservoir

Here, we present the results of gas injection into oil composed of {C0,,C;,} to
demonstrate the applicability of the developed simulators to compositional prob-
lems. The gas was injected at a pressure of B, = 100 bar, while the oil was produced
at B, = 60 bar. The initial oil contained 31% carbon dioxide and 69% decane, while
the injected mixture was composed of 79% of €0, and 21% of C,,. The reservoir
was initialized uniformly at a pressure of P, = 80 bar and a temperature of T, = 372
K. As before, the simulations were performed with a limited timestep and ran for
0.1 days.

Table 4.3: Performance results for the compositional simulation in the heterogeneous reservoir

Simulator | Ts Newt. it. Lin. it. Jac., s SingleJac.,, s Lin. solv, s  Total, s
AD-GPRS | 16 19 1403 304.540 8.701 872.068 1176.608
AD-GPRS + OBL | 16 19 1403 228.267 6.522 870.073 1098.340
Prototype (CPU) | 16 19 1403 17.310 0.495 697.580 715.200
Prototype (GPU) | 16 19 1403 1.110 0.032 97.720 100.200

Table 4.3 shows that the cost of a single Jacobian evaluation remained close
to the dead-oil case for all approaches in compositional simulation. It can be ex-
plained by a small run-time period used in our simulations. The real impact of phase
behaviour computations to the linearization stage and advantages provided by the
OBL approach can be found in [75].

4.4.5. Gas Injection in Homogeneous Reservoir

The results of €0, + C;, injection in the homogeneous reservoir are presented in
Table 4.4. The observations and conclusions in this case are similar to the previous
results. Notice that the time of a single Jacobian assembly for the OBL approach
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implemented in the prototype simulator is almost independent of the complexity of
the physics across all test cases.

Table 4.4: Performance results for the compositional simulation in the homogeneous reservoir

Simulator | Ts Newt. it. Lin. it. Jac, s Single Jac., s Lin. solv.,s  Total, s
AD-GPRS | 10 20 1497 238.613 7.954 885.941 1124.554
AD-GPRS + OBL | 10 20 1497 178.292 5.943 886.649 1064.941
Prototype (CPU) | 10 20 1497 13.500 0.450 705.890 719.700
Prototype (GPU) | 10 20 1497 0.980 0.033 100.030 102.200

4.4.6. Gas Injection in One-Dimensional Homogeneous Reser-
voir

In order to add the MATLAB prototype into the comparison, we also modeled gas
injection into oil composed of {C0,,C,,C,o} in a one-dimensional reservoir with
1000 grid blocks. The gas was injected at a pressure of P. = 100 bar. The initial oil
contained 1% carbon dioxide, 65% buthane and 34% decane, while the injected
mixture was composed of 79% CO0,, 20% C,, and 1% C;,. The reservoir was
initialized uniformly at a pressure of By = 60 bar and a temperature of T, = 353 K.
The simulations were performed with a limited timestep of 1 day and ran for 200
days. For OBL simulations, the resolution of 32 was used.

Table 4.5: Performance results for the compositional simulation in the one-dimensional heterogeneous
reservoir

Simulator | Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv.,, s Total, s

AD-GPRS | 203 635 635 2.6 0.0031 0.6 4.5
AD-GPRS + OBL | 203 580 580 2.1 0.0026 0.5 3.4
Prototype (CPU) | 203 580 580 0.2 0.0003 0.17 0.6
Prototype (MATLAB) | 203 580 - 7.8 0.009 1 9.3

Table 4.5 demonstrates that the performance difference between the C++ and
MATLAB-based simulators is around an order of magnitude. The main contribution
is made by linearization, which is almost 40x slower in MATLAB despite the vector-
ized implementation. The linear solver is only 5x behind the C++ version (it should
be noted that the MATLAB version employed a direct linear solver, whereas the CPU
prototype uses an iterative GMRES + BILU(0) scheme). The difference in lineariza-
tion performance between the AD-GPRS and CPU prototypes did not change for the
models of reduced size and remained around an order of magnitude.



Delft Advanced Research
Terra Simulator (DARTYS)

After several prototype implementations of OBL were developed, tested, and vali-
dated, a certain level of maturity was reached. Existing code has been significantly
refactored and extended, exploiting the advantages of the approach to its limits.
The main goal for the new Delft Advanced Research Terra Simulator (DARTS, [80])
was to preserve its simplicity and computational efficiency, but make it modular
and extendable as much as possible. At the same time, general purpose reservoir
simulation capabilities were required, with the potential to extend them further.

5.1. Combined Implementation in Python/C++

In order to reach these goals, it was decided to complement two technology stacks
in the simulator: C++ and Python. The former is the most popular compiled
programming language, inherently providing the required computational efficiency
and additionally allowing the usage of coarse-grained and fine-grained parallelism
through OpenMP and CUDA language extensions. C++ was used in DARTS for im-
plementation of critical for performance parts, such as linearization, interpolation,
and solution of a linear system. Python is one of the most popular interpreted lan-
guages, providing flexibility and simplicity of development. Moreover, it integrates
with C++ with minimal overhead, allowing even to inherit existing C++ interface
classes and therefore extend original, already compiled functionality with a custom
script.

Python was used in DARTS mainly for data pre- and post-processing, where
performance fades into the background, yielding functionality in importance. For
a constantly developing research simulator, it is imperative to adapt existing and

Parts of this chapter have been published in the proceedings of 16th European Conference on the
Mathematics of Oil Recovery (2018)[77], in the proceedings of SPE Reservoir Simulation Conference
(2019)[78], and in the proceedings of 44th Workshop on Geothermal Reservoir Engineering (2019) [79]
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introduce new input data arrays. Traditionally used input keywords, rigidly imple-
mented in C++ core code, become an obstacle here. It is much more natural to
prepare all input data in Python by reading text or binary files or generating it
according to any desired algorithm, and then feed it into DARTS.

It is also true for the output data: having all results as Python variables, it is up
to a user whether to save it in the desired format, analyse using various scientific
libraries, (e.g., NumPy, SciPy or Pandas [81-83]), or export to a powerful visualiza-
tion tool such as Paraview [84]. Finally, the entire simulator can be wrapped by a
single Python function call, immediately opening opportunities for inverse modelling
without redundant Input/Output overhead.

5.2. Decoupling of Physical Properties

Following the main idea of OBL, the DARTS framework distinguishes operators from
governing equations and treats them in a special way. Operators are functions of
the state in a single control volume. Typically, they represent a combination of
fluid and rock properties and correspond to the most complex and nonlinear part
of the governing equations. Sometimes, the dependency of operators on the state
is determined through indirect procedures like phase-split, and therefore it is hard
to linearize them in a general way. Suggesting an alternative to an automatic or
direct hand-differentiation solution to this problem, OBL replaces the operators with
their piece-wise multilinear approximations. For those, it is possible to express their
derivatives with respect to state variables in a general way.

In DARTS, approximated operators values (along with partial derivatives) are
computed via multilinear interpolation, where the amount of dimensions matches
the number of nonlinear variables (i.e. the length of the state, or the number of
degrees of freedom) in a single control volume. The true operator values, which
are used in interpolations, are called supporting points or base points. They are
computed in an adaptive manner during simulation [59] only once for a given state.
Supporting points then are saved in a special two-level sparse storage designed for
efficient lookup and re-use.

This approach has proven to be especially effective when property calculations,
involved in the evaluation of operator values, are computationally expensive (e.g.,
involve complex phase behaviour). Since supporting points are values of functions
of the state, they do not depend on spatial location and can be applied either across
the whole reservoir or at least within the sub-regions where fluid and rock properties
remain constant (e.g., PVT regions). Thereby in DARTS, property calculations occur
relatively rare and their amount depends not on the spatial discretization, but rather
on a discretization of the parameter space used for operator approximation and
development of the simulation in that space.

From the perspective of the simulation nonlinear loop, the operator interpolation
replaces properties calculations in the Jacobian assembly step. In addition, it also
'shadows’ physical phenomena behind the operators, leaving out only the values
of supporting points, which are rarely computed but utilized all the time during in-
terpolation. This allows to detach fluid and rock properties calculations (now only
performed during operator evaluation at supporting points) from the main nonlinear
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loop, as well as to relax the performance requirements for such calculations. The
Jacobian assembly now depends on the choice of the nonlinear variables and the
governing physical mechanisms which are taken into account. The former deter-
mine the dimensionality of parameter space, while the latter define the operators
required for the assembly. Once the choice is made, the Jacobian assembly is sim-
ply the right combination of approximated operator values and partial derivatives
with spatial properties and states, encapsulated in a simulation engine.

Dead oil (C++)
engine_pz<NC>

static_itor
<ND, NO> Black oil (C++)

engine_pz_gc<NC, NP>

Compositional

engine_ptz<NC> (C++/Library)

adaptive_itor
<ND, NO>

Thermal compositional
(C++/Library)

engine_phz<NC>

Geothermal

state state g
(Python, IAPWS-97)
- —

operator values operator values
& derivatives

Figure 5.1: DARTS modular structure

The modularity of DARTS is demonstrated in Figure 5.1. On the left, four simu-
lation engines are shown:

e engine_pz — multiphase multi-component mass transport,
W = {p' Z1, '"lznc—l};

¢ engine_pz_gc — multiphase multi-component mass transport with gravity and
capillarity,

W = {p'zlt '"lznc—l};

¢ engine_ptz — multiphase multi-component mass and energy transport,
0 ={p,T,21,,Zn,1};

» engine_phz — multiphase multi-component mass and energy transport,
w={p,h, z, ...,znc_l}.

All engines are written in a general manner for NC components (and NP phases for
engine_pz_gc). Notion < NC > here indicates that the variable represents integer
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template parameter of corresponding class, known at compile time. This approach
allows to maximize various compiler optimizations (e.g., loop unrolling).
Next, two interpolators are available (Figure 5.1, middle):

e static_itor — pre-computes all supporting points in advance, and can be useful
for coarse physical representation and low-dimensional parameter space;

¢ adaptive_itor — adaptively computes supporting points along with the simula-
tion, as described in Section 2.6.

Both interpolators are written in a general way for ND degrees of freedom and NO
operators. All operator values are stored together to benefit from faster search and
interpolation. Moreover, operator values computed during simulation can be stored
and loaded, which can be extremely beneficial in case of running multiple models
with the same physical properties (inverse modelling, optimization).

Finally, several operator sets are present (Figure 5.1, right):

¢ Dead oil — water and oil components, water and oil phases,
w = {p,zy};

Blackoil — water, oil, and gas components, water, oil, and gas phases,
w = {przgrzo};

Compositional — n, components, liquid and vapor phases,
W = {p,Zl, ""ch—l};

Thermal compositional — n, components, liquid and vapor phases,
w={p,T, 21, ., 2n,1};

Geothermal — water component, liquid and vapor phases,
w = {p, h}.

All the items above are implemented in C++, except the geothermal operator set,
which is implemented purely in Python, as a wrapper over the IAPWS library [85].
Nevertheless, as is shown in Section 5.7, it does not diminish simulation perfor-
mance unless excessive parameterization accuracy is used. With sufficient param-
eterization resolution, DARTS is significantly faster than other simulators (see Sub-
section 5.7.4).

Note, that it is relatively easy to refactor existing C++-based operator sets with
an AD library. In this case, it will be possible to skip the interpolation link and di-
rectly supply the AD-based gradient from the operator set to the simulation engine.
This mode momentarily converts DARTS to a conventional simulator with the exact
representation of physical properties. It can be used to obtain a reference solution
or simulation time for accurate estimation of OBL accuracy and performance.

In addition, DARTS opens the opportunity to perform the entire simulation on
GPU architecture by offloading only engines, interpolators, and linear solvers. All
operator-related computations may be still performed on CPU without significant
impact on simulation performance thanks to adaptive parameterization.
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Detaching operators and engines create unique opportunities in terms of both
flexibility and performance. From the perspective of the engine, the exact im-
plementation of evaluation of operator supporting points is not relevant, because
operators values along with their derivatives are computed by interpolation. Receiv-
ing those, the Jacobian assembly is then done using straightforward computation
of derivatives, which is feasible because of the simplicity of the governing equations
written in operator form, even for complex physical applications.

5.3. Unstructured Grids

In order to keep the framework general and flexible, the space discretization proce-
dure is left out of the simulation engines. They are initialized by a connection list,
which represents peer-to-peer connectivity between control volumes in the reser-
voir and can be built in the same format for both structured and unstructured grids.
The connection list for TPFA is defined by the total amount of grid blocks and a
list of connections. Each connection is defined by the set (i,j,T,T;), where i and j
are indices of neighbouring control volumes, T is transmissibility of fluxes and T; is
diffusion transmissibility. The sparsity pattern of the Jacobian matrix is computed
directly based on the connection list and remains fixed during the simulation.

(a) Coarse grid with 3722 control volumes (b) Fine grid with 31746 control volumes
and 1376 fracture elements and 3610 fracture elements

Figure 5.2: Unstructured grids for Descrete Fracture Model (DFM)

This approach allows to run the same simulation code on structured grids, grids
build within Discrete Fracture Model (DFM) concept (described among many others
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(a) Coarse grid (b) Fine grid

Figure 5.3: Unstructured radial grids

in [86]), or radial unstructured grids (see examples in Figure 5.2, Figure 5.3).

5.4. Multisegment Wells

Following the general unstructured grid framework, a well is discretized by a set of
control volumes of well segments, chained together by connections. The current
implementation only includes the homogeneous flow model in segments. Any well
segment can be connected with an arbitrary number of reservoir control volumes,
representing well perforations. For the well discretization, we use a connection-
based approach, suggested by [87].

Each perforation is characterized by geometrical transmissibility representing the
connectivity of corresponding well segments to the reservoir, also referred to as a
well index. Similar to the connections between reservoir grid blocks, well indices are
computed outside simulation engine taking into account geometry and orientation
of wellbore and perforated grid block (along with associated rock properties) in a
general unstructured grid. In addition, the top well segment is also connected to a
ghost control volume, which has exactly one connection and is used as a placeholder
for well control equations (see details in [88]).

Two examples are shown in Figure 5.4: a one-segment well configuration (sim-
ilar to a regular well) is on the left and a multi-segment well configuration is on
the right. Reservoir control volumes are shown in gray; well control volumes in-
cluding the top segment w; - in blue; the well ghost control volume w, - in red.
The interface between w, and w, is denoted as w. Black arrows represent con-
nections between reservoir control volumes; blue arrows - perforation connections;
red arrows - intra-well connections. Even though the examples show a structured
grid case with a vertically oriented wellbore, the well configuration in DARTS can
be arbitrary owing to the connection-based approach to describe well perforations.

All well control volumes are considered as extensions of a reservoir and treated
exactly the same way during Jacobian assembly, except for w,. Naturally, due to the
absence of the porous media inside a wellbore, the phase relative permeabilities
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Figure 5.4: Example of multi-segment well discretization for structured reservoir

will be different from those in the reservoir. This can be modelled accordingly
via operator regions (Section 5.5). Each well segment is defined by a volume-
dependent on a wellbore diameter and a segment length, while other properties
are neglected. The flow in the multi-segment well is following the homogeneous
multiphase flow in an idealized tube without roughness or slip [88].

5.4.1. BHP Well Control

One of the two most common controls for wells in reservoir simulation is fixed
bottom hole pressure. The following system of equations is applied to the w, control
volume instead of Eq. Equation 2.10 in order to maintain target pressure p*@r9¢t:

p—p'¥Iet = 0, (5.1)

up z& for injector (5.2)

c=1,..,n.—1, 2z =
¢ ¢ z2*  for producer

U
2z, — z¢8 0,

5.4.2. Rate Well Control

Another common way to define the well regime is to specify volumetric phase rate
at surface conditions. In order to parametrize this rate, we first define the state at
the separator (or surface) conditions using the overall composition of the flux g¥
over interface w, which is evaluated according to Equation 2.13:

SC SC ﬁi” ﬁm—l
,T 'EC:BcW'""Zﬁé”] (5.3)

c

¢ = [p
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Next, we can obtain a target rate introducing rate operator ¢, (w):

w w
b Ecjﬁc Sp(wSC) 3 bw

w w _ |¢p(w) for injector
dt  p(@5C) Eg (w), &(w) —[

{p(w") for producer

(5.4)

Qp

Finally, we write down equations for the control volume w, to maintain target rate
target,
Qp :

z¢* for producer

bW
E(}’,V(w) -Q =0 (5.5)
i for ini
ze—2z% =0 c=1.,n—-1 2z = [ZC or injector (5.6)

Due to more nonlinear relations involved in operator evaluation for well controls,
parameterization tables with resolution higher than in reservoir simulation are often
needed to control the error.

Note, that physical state w for well control volumes, including w,, is defined
exactly the same way as for the reservoir control volume. Hence, the choice of
nonlinear variables and their order is also identical. This approach simplifies effec-
tive preconditioning of the linear system (see Section 5.6).

5.4.3. Validation

Another source of error comes from operators involved in the approximation of
properties for well controls. Multi-segment wells provide the most accurate solu-
tion when cross-flow effects coupled with complex phase behaviour occur in the
reservoir model. In order to mimic these conditions, we took a synthetic model
comprised of three layers with lateral permeabilities of K,, =100, and 500 mD,

K
while the vertical permeability was set at K, = 18y . Each layer consisted of 10x10

grid blocks of 100x100x10m with a porosity of 25%. The initial oil is composed of
C,, C., and C,, at corresponding compositions: 1% methane, 35% n-butane, and
64% n-decane. The description of the phase behaviour and properties is based on
the Peng-Robinson Equation of State [56].

Two vertical multi-segment wells with three segments each are placed at the
opposite corners of the model. Each segment is connected to the corresponding
layer with different well indices of 10, 20 and 30. We inject a mixture of 99% of ¢,
and 1% of ¢, at a constant gas rate @, = 1.5 x 10° sm3/day. The production well
operates at a constant oil rate Q, = 800 sm3/day with a minimum BHP constraint of
10 bar. In order to model single-phase gas injection into a single-phase liquid, we
set the initial pressure at P, = 60 bar and temperature T, = 77 °C. The simulation
period is 4000 days.

The comparison between DARTS and AD-GPRS with multi-segment well model
is shown in Figure 5.5, Figure 5.6. The two results match very well. The injector
BHP climbs up due to gas compressibility till breakthrough happens after roughly
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1600 days of simulation, as it can be seen from Figure 5.5. After that the injec-
tion pressure rapidly drops, while the producer cannot satisfy the oil rate control

anymore after roughly 2300 days of simulation and therefore switches to the BHP

constraint of 10 bar.
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Figure 5.5: BHP for injector and producer provided by DARTS and AD-GPRS

Producer gas and oil rate comparisons are shown in Figure 5.6. There is a very
good match between the DARTS and AD-GPRS results. The producer gas rate starts
at 0, then rapidly increases after breakthrough and falls back after the producer
switches to the BHP control. The production oil rates computed by the DARTS and
AD-GPRS multi-segment well models (denoted as AD-GPRS_ms) match well. The
results provided by the AD-GPRS standard well model, denoted as AD-GPRS_std,

underestimate oil production after breakthrough and illustrate the substantial dif-
ference between the two well models in this case.

Producer gas rate

Producer oil rate
L — — DARTs 4001 — DARTS o
ADGPRS ADGPRS_ms ’ N
\ —450 1 —-- ADGPRS_std
~100000 \
-500
—
> = ~550
& —200000 3
oy )
£ £ -600
3‘ 300000 E‘
& / S -650 4
/
\ | -700
—400000 \ /
\ / -750 4
\Ji
—500000 _800
0 %00 1000 1500 E‘;‘;: 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500

4000
Days

Figure 5.6: Producer oil and gas rates provided by DARTS and AD-GPRS

In order to test the same physical set up in a highly heterogeneous reservoir, we
took the top layer of the SPE10 test case [76] and applied an inverted five- spot well
pattern. The reservoir’s initial physical state and injection mixture are the same as
in the previous case. The injection well starts with the BHP control at 180 bar, and
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after 500 days switches to gas rate control Q, = 2300 sm3/day with a maximum
BHP constraint of 199 bar. The production wells, placed at the corners, operate
with gas rate control @, = 200 sm3/day with a minimum BHP constraint of 30 bar.
The simulation period is 2500 days.
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Figure 5.7: Injector BHP and gas rate provided by DARTS and AD-GPRS
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Figure 5.8: P3 and P4 BHP provided by DARTS and AD-GPRS

Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10 demonstrate a close match be-
tween the DARTS and AD-GPRS results. The injection well switched to gas rate con-
trol after 500 days of simulation and reached the BHP limit by roughly the 1900th
day, as can be seen in Figure 5.7. The P1 and P2 production wells happened to be
perforated in low permeable reservoir area producing negligible amounts of fluids,
so we omit their results. The BHPs for P3 and P4 are shown in Figure 5.8. For P3 it
remains constant throughout the simulation, while for P4 it starts raising after 1500
days of simulation - the well switches to gas rate constraint after the breakthrough.
This is confirmed by Figure 5.9 and Figure 5.10. The oil production rate immediately
decreases while the gas production rate increases until its limit of Q,=200 sm3/day
once the breakthrough is reached for P4. A small increase in the gas production
rate by the end of the simulation indicates the breakthrough for the P3 well.
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Figure 5.9: P3 and P4 oil rates provided by DARTS and AD-GPRS
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5.5. Operator Regions

One of the important features, usually implemented in industry-level simulators, is
the ability to model fluids and rock with spatially different properties in a single
reservoir. It is essential for modelling of complex multilayered reservoirs with sig-
nificantly different characteristics, especially when wells are perforated in several
layers. Traditionally, each option of fluid PVT, SCAL, or rock compaction properties
is associated with a single corresponding region. Then, every control volume in
the computational mesh is explicitly assigned to a specific region via corresponding
keywords for each of spatially variable property (e.g.,, PVTNUM, SATNUM, ROCK-
NUM in [22]). Usually, regions represent large reservoir partitions, their amount is
limited, and partitioning remains fixed during a simulation.

DARTS supports this feature introducing operator regions. Since all physical
properties of fluid and rock are represented by corresponding state operators, there
is no need to define a separate set of regions for every property. Therefore, it is
sufficient to associate every control volume of the computational mesh to a sin-
gle operator region (via OPNUM, similarly to above-mentioned keywords), whereas
each operator region represents spatial variability in any of fluid or rock properties.

Table 5.1: Validation model parameters

Parameter Value () SWOF 1
Reservoir dimensions, m  1000x10x1 Sw K Ko
Reservoir grid 100x1x1 0.2 00 1.0
Permeability, mD 100 0.5 0.2 0.6
Porosity 0.2 1.0 1.0 0.0
Initial pressure, bar 100

Initial water saturation 0.2 (b) SWOF 2

Injector BHP, bar 150 Sw Knw Ko
Producer BHP, bar 50 0.2 0.0 1.0
Maximum timestep, days 10 05 05 0.5
Simulation period, days 3000 1.0 1.0 0.0

Validation of the numerical solution obtained by DARTS in case of spatial vari-
ability of fluid properties was done by comparison against the solution obtained
from the Eclipse 100 simulator [22]. Conventional waterflooding based on Dead-
Oil PVT description was modelled for an homogeneous one-dimensional reservoir
with high resolution in space, time, and physical properties discretizations (only for
DARTS). In this model, gravity and capillarity effects were not taken into account.

The model parameters are represented in Table 5.1. The injector was placed at
the first grid block, the producer at the last one. The first half of the model was
considered as region 1, the second half - region 2. Each of the regions was assigned
to a specific oil-water relative permeability curve introducing spatial variability in
fluid properties. In the Eclipse 100 model, two SWOF tables (Table 5.1a, Table 5.1b)
were used along with the SATNUM keyword. In the DARTS model, two independent
sets of operators were initialized with corresponding tables. Since PVT properties
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were not different between the regions, values for accumulation operators matched
between sets, however flux operators values (for physical states corresponding to
water saturation above connate water saturation) were different.
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Figure 5.11: Comparison of water production rates between DARTS and Eclipse 100 models for 2 regions
and a single region

Figure 5.11 shows the water production rate at the producer well for DARTS and
Eclipse 100 models. It is easy to see that the match between the two solutions is
almost ideal. In order to confirm the significance of spatial variability in fluid prop-
erties in this case, also a single region model was simulated and compared. Here,
only the table corresponding to the first region was used for the entire reservoir.
Since Table 5.1a corresponds to the less mobile water phase, the breakthrough
happens later compared to the 2 regions model, and the water production rate
curve is substantially different. Still, the solutions obtained by DARTS and Eclipse
100 match very well.

5.6. Linear Solvers

For the vast majority of practical reservoir simulations, linear solution occupies the
most of simulation time. Efficient implementation of linear solvers is determined not
only by the actual algorithms and quality of their implementation but starts from
the choice of the underlying data storage and further depends on the number of
implicit transformations it undergoes at various levels of the linear solver.

One of the most common storage formats for large sparse matrices is Com-
pressed Sparse Row (CSR) [34]. Its goal is to minimize data transfers between
memory and CPU by storing contiguously nonzero entries belonging to a single
row. Linear systems originating from problems with n degrees of freedom per con-
trol volume (element) solved with fully implicit schemes, usually exhibit n x n dense
blocks of nonzero entries in matrix portraits.

The Block Compressed Sparse Row (BCSR) matrix format, introduced by Pinar
and Heath [89], exploits this feature to reduce the memory access even further.
The amount of row and column indices is then reduced by a factor of n. More
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importantly, all linear combinations involving the matrix (e.g., sparse matrix-vector
multiplications) are performed block-wise, operating on dense n x n sub-matrices,
which is more efficient on modern CPU architectures due to more intense usage of
register and cache storage.

DARTS engines perform Jacobian assembly directly into a BCSR storage in a
single pass, filling in both diagonal and off-diagonal values. This choice is condi-
tioned by the goal to develop a general and efficient framework for simulation on
unstructured grids. Depending on the upwind direction, certain derivative values
result in zeroes. Nevertheless, they are still stored explicitly inside matrix blocks to
maintain uniform data storage format.

Since the computational mesh is assumed to be fixed for the entire simulation,
and well opening/closing does not entail changes in the number of variables, the
BCSR structure is computed once at the beginning of a simulation and does not
change in the process. Only matrix values are recomputed on every iteration, while
its portrait stays constant. This assumption allows to apply the same approach at
a linear level: internal structures are initialized only once, further increasing the
performance of the linear solution.

The standard choice of linear solvers for large reservoir simulation are Krylov
subspace iterative solvers with a sophisticated preconditioning strategy [34]. Pre-
conditioning is an essential technique to reduce the condition humber of the linear
system increasing the convergence rate of the iterative solver substantially. Typi-
cally, different preconditioners work with various efficiency when applied to systems
with different nature. For example, the Algebraic Multigrid Method (AMG) is effi-
cient for near-elliptic problems [32], while Incomplete LU factorization with 0 level
of fill-in (ILU(0)) is successfully applied for near-hyperbolic equations [90].

Reservoir simulation equations with a Fully Implicit approximation scheme lead
to the linear system where both types of unknowns are present. It is comprised of
a near-elliptic pressure equation, a near-hyperbolic composition (saturation) equa-
tion, while the temperature equation can be either type depending on whether the
process is conduction- (thermal diffusion) or convection-dominated. For the effi-
cient treatment of such systems, a Constrained Pressure Residual (CPR) approach
was designed in [29, 30].

The CPR method is a two-stage preconditioner, where at the first stage, the
pressure system is decoupled from the full system and solved separately with AMG-
based scheme. Often, a single V-cycle is enough for efficient preconditioning. At
the second stage, the full system is processed by an ILU(0) preconditioner using the
pressure solution from the first stage. This strategy has proved to be very robust
and efficient even for highly heterogeneous reservoirs with strong coupling between
elliptic and hyperbolic parts of the linear system. This results in stable convergence
within a limited number of linear solver iterations even when simulation time steps
are very large.

The linear system in DARTS is solved using the Flexible Generalized Minimum
Residual (FGMRES) iterative method [91]. All matrix operations are performed in
native BCSR format. The two-stage CPR preconditioning strategy is employed. The
pressure system is decoupled from the full FIM system using a True-IMPES reduction
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approach directly from the BCSR storage. Then, a single V-cycle of the AMG solver
is used to obtain an approximation of the pressure solution. Finally, it is substituted
in the full system and the block ILU(0) preconditioner is applied.

5.7. Geothermal Benchmark

In this section, we perform a set of benchmark tests and compare the simulation
results of DARTS with the state-of-the-art research simulators TOUGH2 and AD-
GPRS. First, we describe the geothermal model used in the benchmark. Next,
we compare simulation results of pressure and temperature solution under both
low- and high-enthalpy conditions. Finally, we display the performance of different
simulators in the geothermal formulation. In the benchmark study, because of the
complexity of data pre-processing in TOUGH2 and some convergence issues in AD-
GPRS for the high-enthalpy condition, a single layer of the model is used to run
and compare under low- and high-enthalpy condition within 3 simulators. The full
model is only compared with AD-GPRS under the low-enthalpy condition.

5.7.1. Three-dimensional Geothermal Model

A synthetic geological model from [92] is used in this section for benchmark tests.
All properties in the model are populated with a dataset from fluvial Nieuwerkerk
formation of the West Netherlands Basin similar to Subsection 3.1.3. The reservoir
dimensions are 1.8 km x 1.2 km x 0.1 km as shown in Figure 5.12. The discretized
model contains 60 x 40 x 42 grid blocks. One doublet is placed on the middle-line
along the X-axis with 1.2 km spacing as shown in Figure 5.13. The fluvial sandstone
is distributed along the X-axis of the reservoir. The open flow boundary condition
is set along the Y-axis of the reservoir, and a no-flow boundary condition is defined
along the X-axis of the reservoir. Two energy-transfer mechanisms are considered
in this process: convective and conductive heat flow.

Table 5.2: Parameters used in benchmark tests

Parameter Value
Depth, m 2300
Pressure, bar 200
Temperature, K 348.15
Porosity 0.16 ~ 0.36
Permeability, mD 6~ 3360
Sand heat capacity, kJ/m?3/K 2200
Sand thermal conductivity, kJ/m/day/K 180

5.7.2. Comparisons of DARTS and TOUGH?2

Table 5.3 shows the initial conditions and well controls used in the validation with
TOUGH2. The results are shown in Figure 5.14 and Figure 5.15 for low- and high-
enthalpy conditions respectively. The TOUGH2 solution is taken as a reference.
A good match can be observed between DARTS and TOUGH2 results under both
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Figure 5.12: Schematic of the facies distribution for synthetic geothermal model

Figure 5.13: Geothermal doublet location for synthetic geothermal model

conditions. The maximum relative temperature difference is just around 1.6% for
the low-enthalpy case rising to 4% and concentrating along the cold front for the
high-enthalpy case. The higher difference in the high-enthalpy case, apart from
being attributed to higher nonlinearity of the process, can also be explained by
a higher amount of timesteps for TOUGH2 (see Table 5.5), leading to a certain
difference in time truncation errors between the simulators. The saturation solution
exhibits differences up to 10% only along the front, where both liquid and vapor



5.7. Geothermal Benchmark 71

bars %
1200 170 1200
i
800 120 800 Lo
. 130 - 0.8
120 0.6
400 Jchl)g 400 0.4
90 0.2
0 0
£ 0 600 1200 1800 0 600 1200 1800
> °C %
- 1200 16
1.4
1.2
800 1o
0.8
400 0.6
0.4
- 0.2
0
0 600 1200 1800 0 600 1200 1800
X, m
Figure 5.14: Comparison of final solutions for low-enthalpy conditions obtained from DARTS and TOUGH2
for pressure (top row) and temperature (bottom row). In each row, the left column corresponds to the

final solution from TOUGH2, while the right column represents the relative difference between solutions
from TOUGH2 and DARTS

bars %

1200 115 1200 1.0
it e LB
800 100 800 . 0.6
o 95 0.4

400 90 400 .
a5 0.2
0 : 80 0 .0

1200 1800 0 600 1200 1800
°C

1200 350 4.0
300 g(s)

250 -
€ 800 500 %(5)
400 100 Is
50 0.5
0 0 0.0

0 600 1200 1800

1.0 1200 10

0.8 8

0.6 800 6

0.4 400 4

0.2 2

0.0 0 0

0 600 1200 1800 0 600 1200 1800
X, m
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Parameter Low-enthalpy  High-enthalpy
Initial temperature, K 348.15 623.15
Initial pressure, bar 100 100
Injection enthalpy, kJ/kg 100 100
Injection rate, m3/day 36 36
Production pressure, bar 80 80
Simulation time, years 100 100

Table 5.3: Simulation parameters used for comparison between DARTS and TOUGH2 in low-enthalpy
and high-enthalpy cases

phases are present.

5.7.3. Comparison of DARTS and AD-GPRS

Here, we take the AD-GPRS solution as a reference. Figure 5.16 and Figure 5.17
show the solution and difference of a single-layer model. Figure 5.18 shows the so-
lution of the 20th layer of the full three-dimensional model. That layer corresponds
to the highest differences in the solution since its average permeability is also the
highest.

Parameter Low-enthalpy  High-enthalpy
Initial temperature, K 348.15 623.15
Initial pressure, bar 100 100
Injection temperature, K 298.15 298.15
Injection rate, m3/day 40 40
Production pressure, bars 80 80
Simulation time, years 100 100

Table 5.4: Simulation parameters used for comparison between DARTS and AD-GPRS in low-enthalpy
and high-enthalpy conditions

As shown in Figure 5.16, for the model with the low-enthalpy condition, the
maximum temperature difference between DARTS and AD-GPRS is around 3% of
the overall temperature variation range. For the high-enthalpy case (Figure 5.17),
the temperature variation range is from 25 to 225°C. The maximum temperature
difference, in this case, goes up to 3.5% similarly to the comparison with TOUGH2.
Again, partly the difference can be explained by the different amounts of timesteps
required for simulators to converge. However, the highest differences are not only
distributed along the front but are also present inside the liquid phase region. The
difference in saturation solution remains at 10 % and is predictably distributed over
the two-phase region along the front, exactly as in the case with TOUGH2.

For the full three-dimensional model with low-enthalpy conditions, the observed
maximum temperature difference is observed for the 20th layer. As shown in Fig-
ure 5.18, it reaches around 2% for both temperature and pressure.
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Figure 5.18: Comparison of final solutions for 20th layer of full three-dimensional model with low-
enthalpy conditions obtained from DARTS and AD-GPRS for pressure (top row) and temperature (bottom
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represents the relative difference between solutions from AD-GPRS and DARTS

5.7.4. Performance comparison

Table 5.5 shows the performance of different simulators as run on an Intel(R)
Xeon(R) CPU 3.50GHz desktop. All runs have been performed in a single thread
regime. Despite that in some cases, there are significant differences in the num-
ber of timesteps, nonlinear, and linear iterations, it is clear that DARTS achieves
much better performance than TOUGH2 and AD-GPRS among these runs. A smaller
timestep of 20 days is employed for high-enthalpy conditions. Nevertheless, the
amount of timesteps for TOUGH?2, in this case, is significantly higher than for DARTS,
possibly due to certain limitations in the nonlinear convergence for the former (see
[93]). Fast simulation in DARTS can be attributed to the OBL approach, which
significantly simplifies the calculation of state-dependent properties and Jacobian
assembly. A slightly higher number of nonlinear iterations in DARTS runs in com-
parison to AD-GPRS in the low enthalpy cases is related to different convergence
criteria.

5.8. Performance on Realistic Full-Field Models

For general purpose simulation, it is important to deal with realistic full-field models
at different levels of complexity. In this section, we demonstrate the applicability
of DARTS to reservoir models with different physics, reservoir structure, and model
size.
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Test case Simulator Max ts (days) Ts Newt. it. Lin. it. CPU
time (s)

Low-enthalpy DARTS 365 115 259 1950 2.9
one layer model TOUGH2 365 115 - - 24.1
High-enthalpy DARTS 20 2020 6834 95032 97.9
one layer model TOUGH2 20 2997 - - 942.0
Low-enthalpy DARTS 365 115 259 1950 2.9
one layer model AD-GPRS 365 115 253 1616 5.5
High-enthalpy DARTS 20 2173 10855 125160 126.6
one layer model AD-GPRS 20 2075 9742 159929 475.6
Low-enthalpy DARTS 365 115 261 2841 159.3
full model AD-GPRS 365 115 264 2437 446

Table 5.5: Comparison of simulation performance of different simulators

5.8.1. Numerical Models

First, we describe different test cases utilized for performance comparisons. Models
introduced by ascending order in the number of control volumes, the humber of
unknowns per control volume and the complexity of physics.

Brugge Field Model

The Brugge test case is often used as an optimization benchmark problem in reser-
voir simulation [68]. In our study, we used a particular permeability realization and
production scenario described in [69]. The simulation time spans 10 years with
BHP controls changing every 3 months for both injection and production wells. In
this study, we only use this test case for performance comparisons. The detailed
convergence analysis and the comparison with the reference physics can be found
in [59]. The number of control volumes in this model is equal to 43,846 with two
unknowns per each. There are in total 124,370 connections and dead-oil reference
physics is used.

(a) Porosity scaled 3 times along Z axis (b) Pressure along the water distribution

Figure 5.19: Brugge field

Geothermal Model
To test thermal-compositional formulation in the DARTS framework, we use a geother-
mal model described in Subsection 5.7.1. Here, we use a modification of the original
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model where brine and dissolved methane are present at reservoir conditions. De-
tails on validation of the geothermal model and the convergence analysis for OBL
resolution accuracy can be found in [60]. This model has 100,800 control volumes
with 3 independent unknowns (pressure, enthalpy and composition), 295,882 con-
nections and mixed EoS-based thermal-compositional reference physics [94].

(a) Porosity distribution scaled 3 times (b) Temperature solution with threshold
along Z axis below 345 K

Figure 5.20: Geothermal model

SPE10 Model

The results of the isothermal compositional simulation for gas injection processes
is demonstrated using a four-component model described in [59]. In this model,
the original distribution of permeability and porosity was taken from SPE10 prob-
lem [76]. The compositional properties were processed using the Peng-Robinson
Equation of State [56] with original oil composition from [55]. The details of the
model, comparison with the reference physics and convergence analysis for numer-
ical results can be found in [59]. This model has 1,122,000 control volumes with 4
nonlinear unknowns per control volume, 3,329,020 connections and compositional
reference physics [40].

5.8.2. Sensitivity to OBL Resolution

Here, we present the results of numerical simulation for the models described
above. The models are described in ascending order of complexity where the first
model has in total 87,728 degrees of freedom and simplest physics, the second
model has 302,400 degrees of freedom and more complicated physics and the last
model has 4,488,000 degrees of freedom with the most nonlinear physics.

Table 5.6 presents the inclusive simulation time for each model where the first
subcolumn 'Sim’ corresponds to the total simulation time, the second subcolumn
"Jac’ represents the linearization time (Jacobian assembly) and the last subcolumn
‘Gen’ corresponds to the time spent on the generation of supporting points in the
OBL parameterization.

It is clear that for the simplest (Dead-Qil) physics in the first model, the gen-
eration time is almost negligible since the property evaluation is extremely cheap
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Figure 5.21: SPE 10 model
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Figure 5.22: SPE 10 model compositional parameter space for pressure range 53-85 bar
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Table 5.6: Performance results

Resolution Brugge Geothermal SPE10
Sim,s Jac,s Gen,s| Sim,s Jac,s Gen,s| Sim,s Jac,s Gen,s
16384 | 84.6 17.2 5.23|1441.1 1316.1 1300.56 - - -
8192 | 83.5 155 4.02|1214.6 1082.7 1066.76 - - -
4096 | 81.5 13.4 2.19]1089.6 959.7 944.00 - - -
2048 | 80.0 11.7 0.88| 809.1 683.4 668.40|14731.3 2639.2 2029.9
1024 | 79.6 11.0 0.30| 491.5 368.5 354.22|13359.9 1020.1 419.6
512 79.1 104 0.09| 266.3 139.3 125.19| 10947.5 583.3 71.8
256 | 80.3 10.3 0.03| 170.3 45.1 32.10 | 9627.5 476.8 12.3
128 | 78.0 9.8 0.01| 1370 17.6 6.35| 7360.8 366.1 2.3
64| 827 10.2 0.00| 133.4 11.3 1.14| 6323.8 327.3 0.5
32| 84.8 103 0.00| 130.2 9.7 0.21 | 5425.8 290.7 0.1
16| 81.5 10.0 0.00| 129.0 9.4 0.03| 54324 307.2 0.1

(table-based). Even at the most expensive OBL resolution, the total cost of lineariza-
tion is below 15% of total simulation time. For the larger model with more complex
binary thermal-compositional physics, the cost of generation is growing much faster
and soon enough (with the resolution above 256 points) becomes dominant in the
simulation. For the bigger and more involved four-component compositional model,
the linearization cost only becomes noticeable at extremely high OBL resolutions.
This is happening since the compositional model, even in the most realistic set-
ting, has a strong hyperbolic behaviour with a limited spread of compositions in the
parameter space [11].

Notice that according to our previous investigations [see 46, 59], a resolution
above 64 points already guarantees an error in simulation results below 1% in the
most cases. It is also worth to mention that our multiphase flash solver is not
optimized for performance and only tuned for accuracy of the phase behaviour
prediction especially in the near-miscible gas injection regime (close to the critical
point). In addition, the parameterized points in OBL can be effectively reused for
repeated simulations since the solution in compositional space is mostly controlled
by the thermodynamics of the problem [11]. Therefore, for subsequent launches
of models, the effective simulation time remains nearly constant for any resolution
of parameter space discretization.



DARTS Perspectives and
Applications

6.1. Parameterization

In the previous chapters, all provided examples with OBL used a uniform parame-
terization of physical space. Despite that choice proves to be simple and efficient, a
resolution increase leads to refinement in the entire (used) parameter space. Con-
sequently, the generation of supporting points starts to dominate in the Jacobian
construction (see Table 5.6) with highly accurate OBL parameterizations. At the
same time, the refinement is useful only for those regions of the parameter space
where the behaviour of state operators is the most nonlinear. Besides, "blind” uni-
form parameterization can be inaccurate when handling functions with a strong dis-
continuity of partial derivatives. One important example is the parameterization of
phase boundaries in compositional simulation. While most of the phase properties
are continuous when composition crosses these boundaries, the derivative of these
properties can be highly discontinuous [40]. Intermediate solutions like local grid
refinement (LGR) can be applied to preserve a rectilinear parameterization mesh,
and therefore still applicable for piecewise multilinear interpolation. However, the
introduction of unstructured non-uniform parameterization is more attractive, since
it allows to minimize the number of supporting points and prescribe them freely and
accurately to any position in parameter space (e.g., at the phase boundaries). Also,
this choice forces to replace multilinear interpolation based on N-dimensional rect-
angles (hyperrectangles) with, for example, piecewise linear interpolation based
on N-dimensional triangles (simplexes). Despite that searching for simplex loca-
tions is more difficult, the interpolation itself is much less expensive especially for
high-dimensional problems (see [50]). Therefore, we investigate two strategies of
non-uniform parameterization of physical space for compositional simulation.

Parts of this chapter have been published in the proceedings of 16th European Conference on the
Mathematics of Oil Recovery (2018)[77, 95]
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6.1.1. Physics-Based Non-Uniform Parameterization

The OBL approach simplifies the description of fluid and rock properties by build-
ing approximation interpolants for the operators «a., 8. and 6. within the parameter
space of a simulation problem [see 59, for details]. Those interpolants are then
used in the course of simulation to obtain the values and partial derivatives of the
operators with respect to nonlinear unknowns for the Jacobian assembly. Uni-
form discretization of parameter space, which was used previously, proved to be a
simple, efficient, and robust approach. However in this approach, approximation
quality and consequently the accuracy of a simulation depend only on the number
of supporting points, while their locations are prescribed blindly.

Next, we describe a tie-line-based non-uniform parameterization approach. The
key idea is to use the knowledge of the thermodynamic behaviour of a system to
discretize the parameter space more efficiently. Using this parameterization, we can
reduce the interpolation error with the same parameterization accuracy (number of
supporting points).

Representation of Phase Behaviour in Compositional Space

We show the application of tie-line parameterization for a three-component isother-
mal system with two hydrocarbon phases for the sake of simplicity. However,
similar parameterization techniques can be extended to a multi-dimensional pa-
rameter space with multiple phases [11, 96]. For each pressure within the interval
of interest, we construct a ternary diagram for phase behaviour representation in
compositional space.

An example of such representation is shown in Figure 6.1. Here, the one-phase
region is shown in green and the two-phase region in red. A tie-line is a key concept
in the thermodynamical description of a multiphase multi-component mixture at
equilibrium assumptions. It is a line within the two-phase region between a bubble
point B; and a dew point D; with equal compositions of liquid and vapour phases.
Along with this line, overall compositions z and phase saturations S keep changing,
but molar fractions of components within phases x remain constant.

All tie-lines can be extended through the one-phase region to the sides of the
diagram covering the sub-critical region C,L.-R.-C, (see Figure 6.1). If a critical
point z., exists for the system under given p, T, then the tie-line which passes
through that point has zero length and is called a critical tie-line. The part of the
one-phase region which is above the extended critical tie-line L.,-R,., is called super-
critical region. The approach provides a separate parameterization treatment for
these regions. If the critical point does not exist for given p, T then we assume that
the sub-critical region covers the entire compositional space [C;, C,, C5].

Parameterization of Sub-Critical Region

We use an extension of tie-lines to parametrize the entire sub-critical region. First,
we obtain the number of intermediate tie-lines between the critical L_,.R.,- and the
base (longest) ¢, C, tie-lines based on the distance between their midpoints M., M,
and discretization parameter Ax:

(6.1)

_ |M0Mcrll
nit - .

Ax
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Figure 6.1: Tie-line based compositional space parameterization

Next, we split MyM,, into n;; + 1 equal segments and get the midpoints M; of
intermediate extended tie-lines L;R;, where i = 1 ...n;;. Now, for every intermediate
tie-line, we place supporting points at L;, B;, D;, and R;. Naturally, we also place them
at Cy, By, Dy, Co, Ler, Zor, and R.,.. The segments L;B;, B;D;, and D;R; are evenly
divided by the fixed number of supporting points into sub-segments, similarly to
MyM,,. As the result, each sub-segment becomes shorter than Ax. Segments
C1By, ByDy, DyCy, LerZr, and Z..R.., are treated in the same way.

Parameterization of Super-Critical Region

The super-critical region can not be parameterized using tie-lines, because they
neither exist nor extend there. Instead, we apply a uniform parameterization with
gridlines parallel to the critical tie-line. First, we determine the number of such
lines:

(6.2)

| IMr G5
n; = Ax .

Then, we split each of the segments L.,.Cs, R.-C3 into n;; + 1 equal subsegments.
Finally, we place supporting points at Cs, L}, R; and along segments L;R;, so that the
segments become sliced into the equal subsegments shorter than Ax. Later, we test
the tie-line-based parameterization against a uniform parameterization proposed in
[43, 46].
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Numerical Results
The quality of a parameterization approach can be assessed using the accuracy
of the interpolator built on the parameterization. Previously, the piece-wise multi-
linear interpolation was used, since the supporting points were evenly distributed
over parameter space. This condition is no longer valid with the tie-line-based pa-
rameterization approach. Therefore, to compare two types of parameterization,
we apply Delaunay triangulation to the set of supporting points and then use a
simplex-based interpolation based on triangular simplices in both cases [11, 50].
The accuracy of an interpolator I can be estimated directly at any point of pa-
rameter space by computing the absolute difference between the interpolated value
and the true value. A generalized error can be obtained by multiple application of
this procedure at every point in set 22, covering densely the entire parameter space.
The error is computed at every point i € 2 of compositional space using the L, norm
of the operator for all components:

JE U @) - ac(wp)?
1Egll; =

man,c |ac(wj)|

(6.3)

Here, I,p is the interpolant of operator «, in discrete parameter-space 27, c cor-
responds to the component and w; corresponds to the state at i.

We demonstrate the results of the approach by modelling a fluid mixture of
C0,, NC,, and C,, at three particular pressures of 20, 60, and 100 bar, while the
temperature is fixed at 345 K.

Phase diagrams for the mixtures at all 3 pressures are shown in Figure 6.2. In
Figure 6.2(a), the two-phase region occupies almost the entire parameter space.
Figure 6.2(b) shows the phase behaviour at p = 60 bar. Here, the size of the
two-phase region has reduced, but the extension of the two-phase region still pa-
rameterizes the entire compositional space.

A similar diagram was generated for p = 100 bar in Figure 6.2(c). Here, the two-
phase and entire sub-critical regions occupy a smaller portion of the compositional
space and a large portion of space is present in the critical region.

NC, NC, NC

W wophase region /,/\\ B Twophase region / \\

I single phase gas \ [ Singlephase gas 4
/ \ /
/ / u \
/// :
y
C{ €0, C1o €02
(@) p = 20 bar (b) p = 70 bar (c) p = 100 bar

Figure 6.2: Ternary diagram for the system C0,,NC,,C;o at T = 345 K

Figure 6.3 and Figure 6.4 show the norm of combined operators « and g at
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different pressures respectively. These figures confirm that the thermodynamic
properties of the system dictate the behaviour of accumulative and flux operators.
The border between the one-phase and two-phase regions accounts for the most
abrupt changes in operator values. With growing pressure, the two-phase region
shrinks and the nonlinearity increases, especially for the convection operator S.
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Figure 6.3: Euclidian norms of accumulation operator « at p = 20, 60 and 100 bar
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Figure 6.4: Euclidian norms of convection operator g at p = 20, 60 and 100 bar
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For a meaningful comparison, the number of supporting points in uniform and
adaptive parameterizations should be equivalent. This is easy to control in the
uniform parameterization but more difficult in the adaptive version, since the num-
ber and density of supporting points depend on the form of the two-phase region.
In the following comparison, we generate the adaptive parameterization first with
fixed parameters. Next, we select the resolution of the uniform parameterization to
match the number of points in the adaptive parameterization as close as possible.
This approach lets us compare the errors consistently.

In Figure 6.5 and Figure 6.6, we demonstrate the normalized interpolation error
E,(w) for the operator « in case of adaptive and uniform parameterization respec-
tively. The corresponding mesh is also shown for both types of parameterization.
It can be clearly seen how the tie-line-based mesh adapts to the shape of the two-
phase region. The number of points for adaptive parameterization at pressures
p = 20, 60, and 100 bar is 46, 36, and 51 points respectively. To compare the
errors, the resolution of uniform parameterization was tuned to generate 45, 36,
and 55 points for these pressures respectively. The error maps show that the main
error is concentrated at the boundary of the two-phase region and is more pro-
nounced for the uniform parameterization. For the convection operator g, the error
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in the adaptive parameterization is closer to the error in the uniform parameteriza-
tion, see Figure 6.7 and Figure 6.8 for the adaptive and uniform parameterization

respectively.
NC4 N(.‘,4 NC4
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Figure 6.5: Errors for adaptive parameterization of accumulation operator « at p = 20, 60, and 100 bar
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Figure 6.6: Errors for uniform parameterization of accumulation operator a at p = 20, 60, and 100 bar

The maximum errors of a combined operator are considered for sensitivity anal-
ysis as
IEe |l = max || Eql|;- (6.4)

The variation of error with the increase in the number of supporting points is shown
on the semi-log plot on the X-axis in Figure 6.9 and Figure 6.10. Five intervals
are chosen between parameterizing distance Ax = 0.1 and Ax = 0.01. Since the
nonlinearity is strongly correlated with the two-phase shape, the error behaves
non-monotonically at the highest pressure for both parameterizations. However, in
most cases, the error at lower resolutions for the adaptive mesh is smaller than
the error for the uniform mesh. At lower Ax, the difference in errors between
uniform and adaptive mesh reduces since the proximity between the supporting
points increases.

6.1.2. Automatic Non-Uniform Parameterization

Compared to the physics-based parameterization approach developed for compo-
sitional simulation, described in Subsection 6.1.1, automatic non-uniform parame-
terization is a more general technique and can be applied to a physical model of
any kind.

The key difference here is that the placement of supporting points does not
require prior knowledge of underlying physics. The technique requires only the
ability to compute operator values at any point in parameter space and aims to
detect parameter space locations where the operators are changing the most. Once
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Figure 6.7: Errors for adaptive parameterization of convection operator g at p = 20, 60, and 100 bar
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Figure 6.8: Errors for uniform parameterization of convection operator g at p = 20, 60, and 100 bar
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Figure 6.9: Mean error comparison for accumulation operator with various parameterization resolutions
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Figure 6.10: Mean error comparison for flux operator with various parameterization resolutions at p =
20, 60, and 100 bar

scattered supporting points are placed, similar to Subsection 6.1.1, triangulation is
introduced and linear barycentric interpolator is built to approximate a continuous
form of nonlinear operator. As a result, the error can be significantly reduced within
the same number of parameterization points compared to uniform parameterization.
Besides, simplex-based interpolation complexity is 0(D + 1), which makes it highly
attractive for highly-dimensional problems.

The suggested automatic parameterization approach requires three stages:

1. Initialization
2. Structuring
3. Enrichment

The first step accounts for the definition of boundaries in parameter space. The
corner locations of the parameterized region in parameter space constitute the initial
set of supporting points. The second step adds the locations corresponding to
operator extrema, forming a coarse set of supporting points. The third step adds
a limited amount of supporting points targeting to reduce approximation error as
much as possible. It can be performed multiple times until the parameterization is
enriched enough to meet the desired accuracy.

Several implementations of the suggested algorithm were developed and com-
pared. The flux operator for decane in a binary compositional mixture of €0, and
N,, was employed as a function to be parametrized and approximated. Setting
constant temperature T = 350 K allowed to have only two degrees of freedom —
pressure and overall C0O, composition. This choice was made for simplicity and
better visualization purposes. Pressure was bounded in a range of [30; 150] bar to
include both single-phase and two-phase regions. Composition is naturally bounded
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by the [0; 1] interval. Therefore, the supporting point set is initialized with {(0, 30),
(0, 150), (1, 30), (1, 150)}.

Structuring Stage

A local constrained optimization algorithm can be used to detect extrema of a
general nonlinear function. In particular, a sequential least squares programming
(SLSQP) algorithm, based on the Han—Powell quasi-Newton method, was used be-
cause of its general robustness [97]. Local optimization algorithms converge to a
local extremum in a reasonable time, starting from a certain initial guess and fol-
lowing the steepest descent (ascent) based on the local gradient. On the other
hand, there is no guarantee that the local extremum coincides with the global one.
Therefore, to make the algorithm more robust, several optimization processes can
be launched with different initial guesses. All local extrema which are found in
such process, even though they may not coincide with the global extrema, are still
important for accurate approximation.

Figure 6.11 illustrates the results of the described process with a variable amount
of initial guesses. The flux operator for decane in mixture of C0, and N, shapes
a surface with a quite nonlinear behaviour ( Figure 6.11 A-E). The orange points
correspond to locations where supporting points are placed. All subfigures contain
such points at the corner locations, coming from the initialization stage. Subfigure A
has one additional point, resulting from the local optimization process with a single
initial guess at the centre of parameter subspace under consideration. Subfigure B
has more points coming from 4 (2x2) initial guesses, uniformly scattered over the
parameter subspace. Similarly, C-E, illustrate the results of the structuring stage
for 3x3, 4x4 and 5x5 uniformly scattered initial guesses.

Note that some optimization processes may fail or converge to very close po-
sitions, therefore the total number of supporting points can be smaller than the
number of initial guesses. It is easy to see that 4x4 and 5x5 schemes result in too
many local extrema (caused by the saw-tooth shape of the surface on the edge
of the cliff), therefore the 3x3 scheme was chosen to proceed with. Sometimes,
when the underlying function is monotonous, the entire structuring stage can be
wasteful, which is illustrated by subfigure F.

Enrichment Stage

Upon completion of the structuring stage, the coarsest parameterization is obtained.
To increase its accuracy, additional supporting points have to be added. This is done
in an iterative way, in which one or more points are added at a time. One of the
ways to process this enrichment is to continue using the optimizer, but apply it to the
absolute approximation error. Since it computes the absolute difference between
the accurate and approximated operator values, its local maxima represent the
locations where additional points are needed the most. This process is illustrated
in Figure 6.12.

Addressing Boundaries
As experience has shown, the chosen optimizer was not performing well enough
along the boundaries. This resulted in the relatively inaccurate approximation of
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Figure 6.11: A-E: Flux operator for decane in mixture of C0, and N,, and detected extrema points with
1x1 (A), 2x2 (B), 3x3 (C), 4x4 (D) and 5x5 (E) initial guesses, F: accumulation operator for decane in
mixture of C0O, and N,, and detected extrema points with 5x5 initial guesses

an operator on the edges of the parameter subspace under consideration. Fig-
ure 6.13a, Figure 6.13c demonstrate the issue: only a few supporting points are
placed along the border leading to a large error.

To address the issue, a separate optimization process was launched at every
boundary. Since every boundary has one of the degrees of freedom fixed, such an
optimization problem will be less expensive than the main optimization procedure.
On the other hand, the number of boundary searches will grow for problems with
more degrees of freedom.

Therefore, every iteration of the enrichment stage specifically addresses the
edges of the parameter subspace under consideration. It includes several opti-
mization problems with various dimensions and boundaries. As a result, the num-
ber of supporting points and consequently the approximation quality significantly
improves along the borders, as Figure 6.13b, Figure 6.13d confirm.

Comparison Against Uniform Parameterization
Here, the quality of the automatic non-uniform parameterization is compared to
a uniform one. The mean and maximum errors are considered. Each of these is
found using the difference between approximated and actual operator values at
every point of a very dense uniform grid over the parameter subspace of interest.
Two different operators with highly nonlinear behaviour, displayed in Figure 6.14,
were used for comparison.

Figure 6.15 shows the mean error comparison for 16, 64, 256, 1024, and 4096
supporting points between the non-uniform (denoted as “Adaptive grid”) and uni-
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(a) Interpolated function before (b) Interpolated function after
enrichment stage enrichment stage

(c) Approximation error before (d) Approximation error after
enrichment stage. Detected minimum single iteration of enrichment stage.
and maximum locations are shown Locations of all supporting points are shown

Figure 6.12: Approximated function and corresponding error before and after single iteration of enrich-
ment stage for accumulation operator for carbon dioxide in mixture of C0O, and N4,

form (denoted as “Regular grid”). Note, that the mean error axis has a log scale. It
is easy to see that automatic parameterization provides significantly better param-
eterization accuracy on average for both operators. Furthermore, the difference
between the approaches increases as the parameterization resolution grows.

The standard deviation of the error, shown in Figure 6.16, characterizes its
spread. It is clear, that the errors for non-uniform parameterization are mostly
closer to the mean error than those for the uniform one.

However, the comparison of the maximum errors for the approaches, provided
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Figure 6.13: Delaunay triangulation and corresponding approximated operator after different stages of
parameterization

by Figure 6.17, shows that the non-uniform parameterization can induce a slightly
higher approximation error. The approximation errors for both parameterizations for
one of the cases are shown in Figure 6.18. Not only it confirms the conclusions made
from Figure 6.15 - Figure 6.17, but also indicates that high values of maximum errors
for non-uniform parameterization are caused by the nature of local optimization
algorithms employed. Given that the area around high peaks is mostly flat, as
Figure 6.18 shows, it is complicated for a gradient-based SLSQP optimizer to spot
them.

6.2. Proxy Models in Physics

Proxy modelling is widely used in practice to obtain the best possible prediction
when time or/and computational resources are limited. For example, simplified
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S

Figure 6.14: Two operator functions used for comparison
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Figure 6.15: The mean error comparison between automatic non-uniform and uniform parameterization
at different parameterization resolutions for both operators
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Figure 6.16: Comparison of standard deviation of approximation errors between automatic non-uniform
and uniform parameterization at different parameterization resolutions for both operators
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Figure 6.17: Comparison of maximum approximation error between automatic non-uniform and uniform
parameterization at different parameterization resolutions for both operators
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Figure 6.18: Approximation errors for uniform and non-uniform parameterizations of the second operator
for 1024 points

models are useful for global optimization in various scenarios of reservoir produc-
tion/development, or decision support in real-time management of field production.
Here, we describe how the DARTS framework can be straighforwardly utilized for
the development of proxy models in physics.

Several efforts have been made to improve the performance of compositional
reservoir simulators by enhancing phase-behaviour computations [98-100], spa-
tial coarsening of compositional models [101, 102] or reformulation of the com-
positional nonlinear problem [103]. While the improvement of phase behaviour
computations usually does not introduce errors in results, its influence on the total
computational time is limited. The biggest improvement is usually achieved by the
coarsening in spatial representation (upscaling) since it can significantly reduce the
number of unknowns in the linear system of equations. However, upscaling always
introduces an error in computational results.

As an alternative to the upscaling, the Algebraic Multi-Scale (AMS) approach
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was initially proposed to solve an elliptic flow problem by [104]. Several extensions
of this method have been successfully developed [105-107]. However, most of
the AMS methods were focused exclusively on the flow solver and did not address
the transport problem, except [108], where an adaptive Multiscale Finite Volume
Method was proposed to accelerate the transport solver. Based on these ideas, a
Multi-Scale Compositional Transport (MSCT) method for reconstruction of the com-
positional transport problem with an arbitrary number of components was devel-
oped in [109].

This approach suggests a two-stage reconstruction, where at the first stage, the
boundary of a two-phase region is recovered, while the detailed solution in the two-
phase region is reconstructed in the second stage. MSCT utilizes the OBL technique
proposed by [43] and is implemented within the DARTS framework.

6.2.1. Multi-Scale Compositional Transport

The solution of a compositional transport problem can be shown in a phase diagram
by the solution path in compositional space. Such a path defines the compositional
changes between the initial and injection mixtures. Conservation principles and
fractional-flow theory form the foundation for the general solution method [110].
The compositional path of a conventional gas injection problem where single phase
gas is injected into single-phase oil always results in two shocks (leading and trail-
ing shocks) between the single- and two-phase regions. In a ternary diagram (Fig-
ure 6.19a), it is presented as yellow lines connecting the initial oil and injected gas
composition.
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Figure 6.19: Gas-injection solution in ternary system: (a) ternary diagram with displacement path and
two key tie-lines and (b) fractional-flow curves for component c0, with solution path

The shocks between single- and two-phase regions are always aligned along
two key tie-lines (black dashed lines) defined by liquid x; and vapor y; fractions of
each component. For a fixed pressure, x; and y; remain constant and it is possible
to construct the fractional-flow curve corresponding with compositional transport,
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see Equation 6.5. Figure 6.19b gives the injection and initial fractional-flow curves
for CO, in a ternary system corresponding to the injection and initial tie lines in
Figure 6.19a.

F=x;(1-f))+wfy; i=1.,n.—1 (6.5)

The proposed Multi-Scale Compositional Transport approach consists of two
stages [111]. The first stage utilizes a set of restriction-prolongation operators for
reconstructing two-phase boundaries (the trailing and leading shocks). The restric-
tion here reduces the n, — 1 transport equations to a single equation with a special
flux operator based on the pseudo-fractional-flow curve. Once the restriction so-
lution is obtained, a simple interpolation-based prolongation operator is applied to
reconstruct the solution in the single-phase regions.

In the second stage, the set of restriction-prolongation operators is applied in
the two-phase region to reconstruct the solution structure of the two-phase dis-
placement. This stage is based on the invariance of two-phase solutions in tie-line
space reported in [112] and adapted for practice in [113].

The proxy model for compositional simulation, utilized in this work, uses the
first-stage multi-scale reconstruction from [111]. A restriction operator combines
two fractional-flow curves for injection and initial tie-lines, defined as:

Fm = xir( = f) +yimify, BV =M A - )+ s (6.6)

The equivalent fractional-flow curve, serving as the restriction operator, is con-
structed by taking a convex hull on the union of both curves:

Fp = conv(F™ u Fint) (6.7)

In Figure 6.20, this curve is shown in green. Next, the equivalent values of F,
and z; from the green curve are tabulated into the restriction operator and the re-
duced system is solved. The reduced system of equations includes the conventional
pressure equation and the restricted transport equation based on the constructed
pseudo-fractional-flow curve. In structure, this system is very close to the conven-
tional binary compositional problem.

Figure 6.21 gives an example of the operators which are tabulated from the
analytical fractional flow curve. Those operators are utilized in the OBL framework
[46] to solve the first-stage restricted system.

Once the solution of the restricted system is found, the full system is recon-
structed based on the prolongation operator. This operator applies interpolation
between initial and injection compositions using the solution of the restricted sys-
tem k(zz) as an indicator:

K(zg) []R1 = ]R{nc_l] 2 = I ini injy (Z). (6.8)

Here, k is the interpolation-prolongation operator, z; is the restricted solution and
I is the piecewise linear interpolation function. Referring to this linear interpolation,
the transport solution of other components in the multi-component system is recon-
structed and used as a proxy model in place of the full compositional model. Notice
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Figure 6.21: Operators for a restricted compositional system parameterized at N=64

that this system can accurately predict only the boundaries of the two-phase region
and their dynamic propagation in space; for an accurate solution, the second-stage
multi-scale reconstruction should be applied [111].

6.2.2. Restricted Solution

Next, the comparison between solutions of a full compositional model and a cor-
responding proxy model is demonstrated. Here, we limit our investigation to a
conceptual 1D reservoir model for simplicity. In this model, the injection well on
the left operates at a constant gas rate when the production well on the right is
controlled by Bottom-Hole Pressure (BHP).




96 6. DARTS Perspectives and Applications

Figure 6.22 shows the restricted solution zz, which yields the shock reconstruc-
tion curves for simulation results for the growing BHP at the production well. All
simulation results are shown for the model with parameters after 1000 days of sim-
ulation. The K-value table in this work is obtained from the embedded Constant
Composition Expansion (CCE) experiments in [114] based on the PR EoS. The K-
value system does not develop miscibility even when BHP provides the pressure at
the displacement front close to the First-Contact Minimal Miscibility Pressure (FC
MMP) for this system (around 126 bar at T = 373 K). This happens due to the
inability of the K-value model to predict miscibility accurately since compositional
dependency is not captured in this model.

It can be overcome by either extension of the K-value parameterization with
additional degrees of freedom [e.g. 115] or incorporation of EoS-based phase be-
haviour [113]. However, the two-phase boundaries can be accurately represented
by the restricted model for K-value based physics. Besides, the complexity and
structure of the restricted solution are invariant to the number of components

present and only depends on initial and injection tie-lines in the multi-component
system [see 111, for details].
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Figure 6.22: Shock reconstruction of the four-component system for two different BHP controls at
production well (K-values)

Next, the results of the restricted solution for the compositional problem based
on the EOS is shown. The structure of the compositional transport solution depends
on key tie-lines [110]. For the restricted solution, we follow the same strategy
as before and construct the restriction operator based on combined fractional flow
(Equation 6.6) according to the first stage of the MSCT approach [111]. The solution
of the restricted transport equation reconstructs the boundaries of the two-phase
region using one transport equation instead of n, — 1 equations in the conventional
compositional model.

The results of quaternary system reconstruction are shown in Figure 6.23. Here,
one can see that for a high BHP value, the structure of the solution is much closer to
miscibility (leading and trailing shocks stay closer to each other) than in the K-value
approximation. This happens because the EOS-based phase behaviour correctly
represents the compositional dependence of the solution. Similar to the K-value
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model, the leading and trailing shocks are accurately reconstructed by the proxy
model.
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Figure 6.23: Shock reconstruction of the four-component system for two different BHP controls at
production well (EoS model)

Prolongation of Proxy Model
Now, we illustrate the construction of the proxy model using an interpolation-based
prolongation operator (Equation 6.8) for both cases. It can be seen in Figure 6.24
and Figure 6.25 that the restriction stage does not reconstruct the full structure of
the solution, but only one indicator component. For the full solution, the prolonga-
tion stage should be applied (see [111] for details).

-

©

o o o
=~ o

Composition[-]

Q
o

)
o
5

o
°
g

Composition[-]
o
S
S

2

o
w

)
o

Composition[-]
e
o

0
0

Distance[m]

0
0 50 100 150 200 0 50 100 150 200
Distance[m] Distance[m]
Ne, Cio
0.4
5 0% 1
@ 1
202 !
a
£
S 01 —
3 2
0
50 100 150 200 0 50 100 150 200

Distance[m]

(a) Full solution for BHP = 85 bar

Composition[-]

Composition[-]

co

1 0.04
I, -
0.8 < 003
S
06 20,02
a
0.4 £ 001
o
0.2 0
0 50 100 150 200 0 50 100 150 200
Distance[m] Distance[m]
NC4 ClD
03 04
S o3
02 S
202
01 g
£o01
3 o ==
0 0
0 50 100 150 200 0 50 100 150 200

Distance[m]

(b) Full solution for BHP = 120 bar

Distance[m]

Figure 6.24: Proxy model for a four-component system (K-value based)

The prolongation stage yields a full compositional solution in every control vol-
ume, which then can be used in a multiphase flash procedure to predict phase
behaviour. This phase behaviour provides the boundary of the two-phase region in
space. This prediction can be used to compute phase rates at wells and evaluate
the net present value (NPV) for a proxy model. The comparison of NPV for one and
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Figure 6.25: Proxy model for a four-component system (EoS based)

two controls are shown in Figure 6.26 and Figure 6.27. The details on economic
parameters can be found in [95].
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Recapitulation and
Conclusions

7.1. Operator-Based Linearization

A new linearization method for multiphase thermal-compositional fluid flow and
transport in the subsurface with two-point flux approximation (TPFA) and Fully Im-
plicit (FI) time approximation is established in Chapter 2. In this approach, the
governing equations of a general purpose reservoir simulation problem are repre-
sented in the operator form where each term is a product of two types of operators.
The first type of operators is fully defined by the physical state of the problem, while
the second is characterized by spatial and temporal discretization. Mass conserva-
tion equations in operator form are characterized by component mass accumulation
and flux state-dependent operators.

To perform the linearization of the governing equations, we introduced a uni-
form parameterization in the space of physical unknowns. Each state-dependent
operator is evaluated at supporting points of the parameter space. This defines
discretization in the physical description of fluid and rock. Piecewise multilinear
interpolation is applied to compute both values and partial derivatives of state-
dependent operators based on the created parameterization. Once that is done,
the linearization of the governing equations in simplified operator form is completed
in a conventional manner using analytical derivatives by chain rule between deriva-
tives of two operator types.

Adaptive parameterization in the discretized thermodynamic space is devel-
oped to address the performance limitations of accurate parameterization for high-
dimensional problems. Because of the near-hyperbolic behaviour of several un-
knowns in the nonlinear solution (i.e., saturation or overall molar composition),
only a limited amount of supporting points in parameter space is usually used in a
simulation. Therefore, operator values at every new supporting point, required by
the simulation process, can be computed adaptively on-the-fly and then stored for
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reuse during the same or a subsequent simulation.

We demonstrated the applicability of the OBL approach to general purpose reser-
voir simulation problems. In particular, we applied different physical kernels that
include black-oil, isothermal compositional kernels with 4 and 6 components. We
showed that the OBL approach reproduces the results of the reference solution at
any reasonable resolution with insignificant errors, localized at the displacement
front. As a rule of thumb, a resolution of 64 uniformly distributed points along
each of the parameter space axes within the required range is sufficient for an ac-
curate representation of fluid and rock properties. On the other hand, the limited
coarsening of parameter space improves the nonlinear convergence in most cases.

The performance of the OBL approach benefits from the simplified assembly of
the Jacobian of the simulation problem and an almost complete bypass of phase
behaviour calculations (except for supporting points). Compared to linearization
based on Automatic Differentiation (AD), the new approach is relieved from the
computational overhead related to augmented algebra computations, while provid-
ing almost the same level of flexibility for the extension of the physical model in a
simulation framework.

Proving the last point, Chapter 3 introduces an extension of the OBL approach
to account for thermal effects. It demonstrates the applicability of the approach to
the simulation of thermal-compositional multiphase flow in porous media. In addi-
tion to mass conservation, the energy conservation equation was also transformed
to the operator form, forming energy accumulation, convection, and conduction
state-dependent operators. Initial porosity was chosen to enrich the vector of state
variables to reduce the number of state-dependent operators. However, the dimen-
sionality of the parameter space for energy accumulation and conduction operators
is consequently increased by one. A similar approach can be used to handle the
changes in the mass of solid phase(s) due to the chemical precipitation and disso-
lution.

To test the geothermal application, we used a realistic model of a channelized
system of the Delft Sandstone member (DSSM), situated at the West Netherlands
Basin. Simulation results showed that the proposed approach reproduces the refer-
ence solution results quite accurately with a reasonable parameterization resolution.
For a single-component low-enthalpy geothermal model, a relatively coarse resolu-
tion of interpolation tables can handle all governing nonlinearities and matches the
reference solution based on full physics precisely. For a two-component geother-
mal model with natural gas co-production, the required resolution of interpolation
tables is higher. This happens due to the highly nonlinear nature of linearization
operators in case of two-phase systems. However, the simulation with a coarser
resolution still can be used as fast proxy models in the inversion and uncertainty
quantification process.

It is important to notice that the proposed linearization approach significantly
improves the performance of the AD-based linearization. The relative cost of OBL
does not grow significantly with the increased resolution while the number of non-
linear iteration is decreasing with coarser representation. For all observer cases,
the parameterization resolution of 64 points provided a sufficient level of accuracy,
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keeping the average error below 1%.

In addition, Chapter 3 describes the buoyancy extension of OBL. We introduced
three types of upwinding based on phase potential, component potential, and inde-
pendent treatment. The first type can be seen as the conventional approach, where
its OBL representation implies a substantial increase in the number of flux operators
compared to the case without the buoyancy effect. The two other types attempt
to simplify the conventional description and decrease the humber of flux operators
while maintaining the accuracy of the solution. The developed approaches were
validated on dead-oil and compositional simplified gravity segregation models. Be-
sides, we investigated the sensitivity of the OBL solution accuracy and nonlinear
solver convergence to the parameterization resolution for a realistic model of the
Brugge field with buoyancy.

In overall, Chapter 2 and Chapter 3 confirm the applicability of the OBL approach
to general purpose reservoir simulation based on thermal-compositional description.
It is shown that coarsening of the physical description of rock and fluid introduces
an additional trade-off between the accuracy of numerical simulation and the per-
formance of the nonlinear solver. Similarly to the discretization in space and time,
the OBL description can be coarsened, loosing certain accuracy in favor of simu-
lation performance to speed up optimization, uncertainty quantification, or inverse
modelling.

7.2. Delft Advanced Research Terra Simulator

While the entire concept was matured and improved, OBL has had a few prototype
implementations described in Chapter 4. The first implementation was performed
in the AD-GPRS framework. It was a natural choice: in the beginning, it was vital to
validate the applicability of the new linearization method to a wide range of reser-
voir simulation problems. Once that was done, it became clear that OBL provides
a significant performance advantage (by 15-30%) over the conventional lineariza-
tion despite non-ideal implementation from the performance point. In the original
implementation, AD-based storages were abused by artificial injection of externally
computed gradients. Therefore, to estimate the true performance capabilities of
the method, a stand-alone implementation was needed.

As a first attempt, a MATLAB-based prototype was coded. The parameterization
information was generated in AD-GPRS, exported to a set of text files and then
imported to the simulator. The entire code was under 1000 lines, but capable to
solve one-dimensional isothermal compositional flow and transport problem in a
fully implicit manner. This development confirmed the efficiency of the concept:
decoupling physical properties from the main simulator core allows to simplify and
generalize Jacobian assembly and make it portable to alternative computational
architectures.

Then, a standalone high-performance prototype of a compositional simulator
based on C++\CUDA was developed for both CPU and GPU computing architec-
tures. Note, that the GPU version executes the entire simulation loop on GPU. The
prototype supports general unstructured grids via connection lists, hence one-, two-
, and three-dimensional reservoirs are supported. To perform a fair comparison,
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initialization, nonlinear and linear solvers were aligned with AD-GPRS. Benchmarks
showed that the single-threaded CPU version performs the Jacobian construction
up to 19x times faster. The GPU version of the prototype boosts the linearization by
a factor of 260x. Careful tuning of GPU kernels and the use of multi-GPU systems
can improve the performance even further.

Finally, the Delft Advanced Research Terra Simulator (DARTS) was introduced
and described in Chapter 5. It combined the experience and knowledge obtained
during previous iterations of OBL implementation. Having kept all performance-
critical parts of the simulator core in C++, DARTS exploits physical description de-
coupling to the full extent, providing a Python-based plugin interface to customize
fluid and rock properties. Since property computations are performed for a limited
amount of discrete locations (e.g., supporting points), the computational perfor-
mance requirements for such plugins are relaxed. Moreover, the results of physics
parameterization can be simply saved and reused in subsequent simulations when
uncertainty quantification, inversion modelling or production optimization are per-
formed. This allows introducing advanced thermodynamic and chemical equilibrium
computations based on complex software libraries, and couple them with flow and
transport in a fully implicit manner without sacrificing performance.

Parameterization, evaluation of operator values and their gradients are con-
trolled by DARTS interpolators. Uniform parameterization with piecewise multilin-
ear interpolation can be either performed statically (i.e., all supporting points are
pre-computed) or adaptively (on-the-fly along the course of a simulation). Adap-
tive parameterization allows to achieve extreme resolutions in parameter space
discretization (e.g., 4.3 x 1012 supporting points for 3-dimensional space) and still
provide reasonable simulation time. Alternatively, the entire interpolator can also
be seamlessly replaced by AD-based operator evaluator. Then, DARTS would sup-
port the conventional treatment of the rock and fluid properties description and
provide an exact reference solution.

The Jacobian assembly of the simplified operator form of the governing equa-
tions is taken care of by DARTS engines. Depending on the desired amount of
components, primary variables, and physical effects to be taken into account, one
or another engine is chosen. Multisegment wells are introduced in DARTS via the
OBL approach and contribute to the Jacobian assembly in a way which keeps the
blocked structure of the matrix. Once the Jacobian is assembled, it is passed over
to the linear solver, which includes a CPR-based preconditioner, de-facto standard
for a fully implicit scheme. The major computational load of the simulation process
is delegated to a relatively simple engine object and linear solver. Since various
linear solvers become available on different computing architectures such as a GPU
(e.g., see [116]), the whole simulation can be executed there, while the calculations
of operator values can still be performed on a CPU.

Petroleum and geothermal industries constantly exert pressure on reservoir sim-
ulation for more rigorous models to improve accuracy and concurrently demands
faster turnaround times to speed up history-matching and uncertainty quantifi-
cation. While the traditional CPU architectures are currently limited in providing
consistent acceleration to reservoir simulation codes, the GPU architectures evolve
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rapidly and promise to take the initiative. Hence, aside from the purely algorithmic
aspect of simulation performance, it is essentially important to take into account the
efficient implementation of the chosen methods in terms of both software and hard-
ware. DARTS demonstrates how the architecture of a reservoir simulator can reveal
the performance potential of OBL in three independent dimensions: improved non-
linear performance (algorithmic level); actual performance of linearization stage
(software level); portability to alternative computing architectures including a GPU
(hardware level).

7.3. DARTS Applications

Chapter 6 discusses current DARTS applications and future developments. It starts
with the investigation of two different approaches of non-uniform parameterization
of physical space. The first is designed specifically for compositional formulation.
It uses prior knowledge about the shape of state operators - phase envelope, and
therefore relatively cheap. The second is more expensive since it directly detects the
most problematic regions requiring refinement, using local optimization algorithms.
Both methods confirm a significant increase in parameterization accuracy compared
to uniform parameterization with a similar amount of supporting points in most
cases. Proper implementation of non-uniform parameterization approaches coupled
with the simplex-based interpolation will allow evaluating the resulting performance
of this alternative.

Proxy models in physics built within DARTS and their applications are also dis-
cussed in Chapter 6. Usually, proxy models provide significant improvement in sim-
ulation performance by introducing various simplifications into full-physics models.
Multi-Scale Compositional Transport (MSCT) simplifies the compositional descrip-
tion of a multi-component system with a specially built binary system. This allows
reducing the size of the corresponding linear system by % times. The resulting
proxy model is straightforwardly constructed within DARTS simply by substituting
restricted fractional flow curves into operators. It can accurately predict leading
and trailing shocks, which is enough for judgement of miscibility development.
Consequently, cheap yet accurate NPV estimation can be constructed and used
for production optimization based on a proxy model.

Employment of DARTS as a workhorse in production optimization and inverse
modelling is especially attractive because of the minimal input/output overhead pro-
vided by the Python integration. It is especially valuable for proxy models, when
the runtime of a forward simulation is measured in seconds. At the moment, only
numerical derivatives can be used for gradient-based optimization methods. The
implementation of adjoint-based gradient calculations within DARTS would be sim-
plified owing to operator form of the governing equations, and would further im-
prove gradient-based optimization performance ([117]).

In overall, additional accuracy-performance tradeoff provided by OBL, simpli-
fied manipulation of simulation model via the Python interface, and exceptional
computational performance make DARTS an efficient platform for research for both
forward and inverse modelling. Its architecture allows to change existing formu-
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lations and even introduce new physics with minimal efforts. Furthermore, the
complete transition of the main simulation loop to GPU, along with the implemen-
tation of adjoint gradients will allow taking the inverse modelling performance to a
new level.
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