

Delft University of Technology

Empirical Study of the Docker Smells Impact on the Image Size

Durieux, Thomas

DOI
10.1145/3597503.3639143
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 ACM/IEEE 44th International Conference on Software Engineering, ICSE 2024

Citation (APA)
Durieux, T. (2024). Empirical Study of the Docker Smells Impact on the Image Size. In Proceedings - 2024
ACM/IEEE 44th International Conference on Software Engineering, ICSE 2024 (pp. 2568-2579).
(Proceedings - International Conference on Software Engineering). IEEE.
https://doi.org/10.1145/3597503.3639143
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3597503.3639143
https://doi.org/10.1145/3597503.3639143

Empirical Study of the Docker Smells Impact on the Image Size
Thomas Durieux

TU Delft
The Netherlands

thomas@durieux.me

ABSTRACT
Docker, a widely adopted tool for packaging and deploying appli-
cations leverages Dockerfiles to build images. However, creating
an optimal Dockerfile can be challenging, often leading to “Docker
smells” or deviations from best practices. This paper presents a
study of the impact of 14 Docker smells on the size of Docker
images.

To assess the size impact of Docker smells, we identified and
repaired 16 145 Docker smells from 11 313 open-source Docker-
files. We observe that the smells result in an average increase of
48.06MB (4.6%) per smelly image. Depending on the smell type,
the size increase can be up to 10%, and for some specific cases,
the smells can represent 89% of the image size. Interestingly, the
most impactful smells are related to package managers which are
commonly encountered and are relatively easy to fix.

To collect the perspective of the developers regarding the size
impact of the Docker smells, we submitted 34 pull requests that
repair the smells and we reported their impact on the Docker image
to the developers. 26/34 (76.5%) of the pull requests have been
merged and they contribute to a saving of 3.46GB (16.4%). The
developer’s comments demonstrate a positive interest in addressing
those Docker smells even when the pull requests have been rejected.

CCS CONCEPTS
• Software and its engineering → Software evolution; Maintain-
ing software.
ACM Reference Format:
Thomas Durieux. 2024. Empirical Study of the Docker Smells Impact on
the Image Size. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639143

1 INTRODUCTION
Docker is a widely adopted tool among developers and organiza-
tions for packaging, deploying, and running applications in light-
weight, portable containers. A critical component of Docker is the
Dockerfile, a straightforward text file based on shell that outlines
the necessary steps to build a Docker image. However, creating
an optimal Dockerfile can be challenging, particularly when shell
best practices differ from the ones in Docker. When there is a devi-
ation from these best practices, we refer to it as a “Docker smell”.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639143

Docker smells are commonly found within Dockerfiles because
many developers who create them may lack expertise in this area
[15]. Furthermore, the best practices used in interactive shells often
contrast with those applicable to shells within Dockerfiles, resulting
in suboptimal Docker images.

Previous research conducted by academics and industry has pri-
marily focused on detecting Docker smells. Several linters, such as
Binnacle [15], hadolint [13], dockerfilelint [6], docker-bench-security
[5], and dockle [7], have been developed specifically to identify
a wide range of Docker smells. However, these tools suffer from
limited recognition in the developer community as multiple studies
show the almost systematic presence of smells in Dockerfiles [3, 21].
One possible reason for the lack of recognition among developers
may be the absence of studies on the impact of these smells, making
it challenging to justify investing effort into addressing them.

In this contribution, we aim to address this specific problem
by investigating the impact of Docker smells on the image size.
We focus on the image size since it impacts multiple aspects of the
Docker ecosystem. Firstly, the image size impacts theDocker images
selection by the developers, smaller images have more chances to
be selected [27]. It also contributes to the size of the Docker registry
which was already reaching 1 PB in 2019 [37] for public repositories
and is expected to be much bigger for private repositories. It also
impacts the download latency of the Docker images [35] which is
problematic in large deployment environments, as well as increases
the attack surface of the Docker images.

In this study, we investigate the size impact of 14 Docker smell
types originally identified by Henkel et al. [15] as having a potential
impact on image size. The size impact is measured by identifying
and removing 16 145 real Docker smells from 11 313 open-source
Dockerfiles. We then investigate the developers’ perspectives and
interests in those Docker smells in order to identify if notifying
the developers about those smells is relevant or not. This aspect
has been performed by opening 34 pull requests that repair and
report the impact of 78 Docker smells. The detection and repair
are performed by our tool, Parfum, which has been specifically
developed for this purpose.

Our observations reveal that Docker smells exert a substantial
impact on the size of Docker images. On average, the Docker smells
lead to a size increase of 48.06MB or 4.6 % per image. Additionally,
this bloat translates to a total additional 2.05 TB in transferred data
per week on DockerHub. Notably, we found that the most impactful
smells identified in this study are associated with the utilization
of package manager commands. Those smells also happen to be
among the most frequently encountered ones, which means that
identifying and repairing a few smells can have a huge impact and
improve the quality of the Docker images.This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-1996-6134
https://doi.org/10.1145/3597503.3639143
https://doi.org/10.1145/3597503.3639143
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639143&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

As direct evidence of the relevance of smells repair, 26/34 (76.5 %)
of pull requests have been successfully merged, indicating devel-
opers’ interest in repairing Docker smells, 6 pull requests are still
waiting for an answer and 2 pull requests have been rejected be-
cause the proposed changes were already included in the repository.
The merged pull requests contribute to a saving of 3.46GB (16.4 %).

In summary, the contributions of this paper include:
• An empirical study on the impact of Docker smells on the
image size,

• A new dataset of 159 748 Dockerfiles extracted from GitHub
and a ground truth dataset of 384 Dockerfiles,

• 34 pull requests that repair 78 Dockerfile smells,
• Parfum, a tool that detects and repairs automatically 14 types
of Docker smells.

We are pleased to announce that we have made the results of our
study accessible at [8]. Additionally, the smell detection and repair
technique is available at [9] and can be tested at https://durieux.
me/docker-parfum.

2 BACKGROUND
In this section, we provide the key concepts and background infor-
mation required for our study.

Containers are a form of virtualization technology designed to
offer a more efficient and streamlined approach to software deploy-
ment. Unlike traditional virtual machines, containers encapsulate
applications and their dependencies, ensuring consistency across
different environments. By doing so, they enhance portability and
facilitate the seamless movement of applications between devel-
opment, testing, and production environments. Containers gained
popularity also due to their lower overhead compared to virtual
machines [1, 19].

Docker is the most popular container platform that can create,
deploy, and run containerized applications.1 Docker also has its own
Docker registry which is the most popular registry for open-source
Docker images.

Docker Image is an executable package for Docker that includes
everything needed to run a piece of software, including the code, a
runtime, libraries, environment variables, and config files. Docker
images are built using instructions contained in a Dockerfile.

Dockerfile is a text file that contains instructions for building a
Docker image. The instructions define the base image to use (FROM
<image>), the files to include (COPY <source> <dest>), the ports
to open (PORT <port>), the entry point (ENTRYPOINT <script>),
and the scripts to execute (RUN <script>). The scripts declared
in the Dockerfiles define the actions that need to be performed to
create the Docker image. Those scripts are shell commands which
are generally bash or PowerShell (for Windows Docker image).

Docker Smell refers to a potential issue, problem, or suboptimal
configuration with a Dockerfile or Docker image [31]. This issue is
generally detected when the Dockerfile or image violates some best
practices. Common Docker smells include bloated images, miscon-
figuration, misuse of commands, and security issues. Identifying
and addressing these smells can help improve the efficiency, se-
curity, and maintainability of a Docker-based project [31]. In this
paper, we focus on smells inside the Dockerfiles.
1Docker: https://www.docker.com

Binnacle by Henkel et al. [15] is a tool that studies and detects
Docker smells in Dockerfiles. The particularity of this work com-
pared to other linters such as Hadolint is that it not only detects
Docker smells but also analyzes the presence of those smells in-
side GitHub and compares it to a high-quality set of Dockerfiles.
Additionally, it also categorizes the impacts of the smells they ob-
served. Interestingly, the majority of the smells are related to space
waste; this observation initiated this study to measure the actual
impact of those smells on the image size. The Docker smells re-
ported by Binnacle have a small overlap with other existing linters
such as Hadolint which only supports 4 smell types, also supported
by Binnacle, that impact image size. Indeed, most of the Binnacle
smells are related to the shell while Hadolint focused on the Docker
instructions and the size impact is related to the shell usage.

3 METHODOLOGY
We describe the empirical studywe conduct on the impact of Docker
smells. We first present the methodology that we follow to perform
this empirical study. Then, we present the datasets that we use for
the empirical study. We follow by describing how we detect and
repair Docker smells with our tool called Parfum.

3.1 Methodology Overview
In order to measure the impact of the smells on image size. We
follow the following methodology for each Dockerfile. First, we
identify the smells that are present inside the Dockerfiles. If a smell
is present, we build the smelly Dockerfile to produce a Docker
image and we measure the size of that image. We then repair the
smell and produce a new Dockerfile without smells. We then build
the repaired Dockerfile and measure the size of the new image.
Finally, the difference in size between the original and the repaired
image is the impact of the detected smells.

3.2 Research Questions
In this section, we present the impact of Docker smells on Docker
image size. We design and conduct an empirical evaluation to an-
swer the following research questions:
RQ1 What is the effectiveness of our approach in detecting

and repairing Docker smells? This first research question
aims to validate a crucial aspect of our methodology: being
able to detect and repair Docker smells. To do so, we first
measure the effectiveness of smell detection on a ground
truth dataset. Then, we conduct a quantitative analysis of
the repair of 164 597 Dockerfiles that contain at least one
smell. Finally, we selected 11 313 smelly Dockerfiles and
built them to ensure that the repairs do not break the Docker
builds.

RQ2 What is the impact of the identified Docker smells on
the Docker image size? In this second research question,
we study the impact of the Docker smell on the size of the
Docker images. To answer this question, we measure the
image size before and after the repair for the 4827Dockerfiles.
We also study which smells have the most impact the most
the Docker image size and the effect of the smells on the
DockerHub bandwidth. Finally, we measure the impact of
the smells in terms of bandwidth on Dockerhub.

https://durieux.me/docker-parfum
https://durieux.me/docker-parfum
https://www.docker.com

Empirical Study of the Docker Smells Impact on the Image Size ICSE ’24, April 14–20, 2024, Lisbon, Portugal

RQ3 What is the developers’ attitude towardsDocker smells?
In the final research question, we aim to evaluate the inter-
est that the developers have in the repair of Docker smells
impacting image size. To do so, we opened 34 pull requests
that fix the identified smells and we analyzed the responses
of the developers.

By addressing these research questions, we aim to analyze the
Docker smells impact on image size and developers’ attitudes re-
garding these smells.

3.3 Docker Smells
As previously mentioned, for this study we focus on the Docker
smell that introduces an increase in size as presented by Henkel
et al. [15]. We therefore ignore the smells that are related to the
security or build reliability. During this study, we will therefore
focus on 14 smells. Table 1 describes the smells and provides the ID
that we will use to refer to them. Additionally, the table includes
the results of our first research question which we will present later
on.

3.4 Datasets
In order to study the impact of the smells we had to select and
create a new dataset of Dockerfiles. This section will present the
dataset that we use in this study. Table 2 gives an overview of the
main characteristics of our datasets and highlights some of their
main differences.

3.4.1 Ground Truth Dataset. The second dataset that we consider
in this study is a dataset of 384 unique Dockerfiles. That is used
to measure the effectiveness of our approach to detect Docker
Smells. The Dockerfiles have been manually annotated to identify
the Docker smells. We randomly selected those Dockerfiles from
the Binnacle Dataset. We chose a sample size of 384 Dockerfiles
to obtain a dataset that is representative of the Binnacle dataset
with a confidence level of 95% and with a margin of error of 5%
according to the Cochran’s Sample Size Formula: 𝑛 =

𝑧2 ·𝑝 (1−𝑝)
𝜖2

,
where 𝑛 is the required sample size, 𝑧 is the Z-score corresponding
to the desired confidence level (e.g., 1.96 for a 95% confidence
level), 𝑝 is the estimated proportion of the population with a certain
characteristic, and 𝜖 is the desired margin of error [4]. The ground
truth dataset is also available on our online artifact [8]. We observe
that the distribution of the number of instructions in the ground
truth dataset and the Binnacle dataset are similar and therefore we
are confident that this annotated dataset is representative.

The methodology to create this dataset is as follows: 1. The
authors read the description of the smells to have a clear under-
standing of the smells. 2. We create a dashboard that displays and
annotates the Dockerfiles; the goal is to minimize the effort of the
annotation and to focus on the manual detection of the smells. 3.
Multiple interactions have been performed to ensure that all smells
are identified. 4. As a final check, we carefully analyze the results of
Binnacle and ours to identify cases that could have been mislabeled.

At the end of this process, 152Dockerfiles have at least one smell,
and in total 468 smells have been annotated. This dataset is as far
as we know the first ground truth dataset for Docker smells.

3.4.2 Binnacle Dataset. The first dataset that we use is the dataset
of unique Dockerfiles presented in the Binnacle paper [15], which
contains 178 452 Dockerfiles extracted from GitHub repositories
in 2020. The main purpose of this dataset is to compare our smell
detection to the baseline: Binnacle.

3.4.3 Parfum Dataset. The third and final dataset contains 159 748
Dockerfiles that were extracted from GitHub repositories in 2022.
This dataset is used to study the impact of the smells in RQ2 and
identify projects where we submit pull requests in RQ3. We could
not use the Binnacle dataset for RQ2 and RQ3 because we could not
identify from which repository the Dockerfiles from the Binnacle
dataset were and therefore we could not build the Docker images to
measure their size nor open pull requests. To avoid this problem in
the future, we include in our dataset the origin repository, commit
SHA, and the path of the Dockerfile.

The methodology for creating this new dataset is described in
the following. The first step is to identify an initial set of GitHub
repositories. We decided to select repositories that are 1) not forks,
2) have at least 10 stars, and 3) have at least 50 commits. We choose
those criteria to obtain Dockerfiles from repositories that have a
minimum of activity and that are more likely to have been main-
tained. We ended up with a list of 500 108 potential repositories.2

The next step is to download the file list from the default branch
of the latest commit for each repository. We were able to download
the file list for 500 022 repositories, the missing file lists are due to
unreachable repositories.

The following step is to identify and download the Dockerfiles
stored in these repositories. We iterated over the list of files and
considered any files that contained the string “Dockerfile” (case
sensitive) as potential Dockerfiles. Finally, we identified the unique
Dockerfiles that we use in this study. This resulted in a collection
of 159 748 Dockerfiles that constitute the new dataset which is
available on our online artifact [8] as well as the scripts that are
used to generate the dataset.

3.5 Parfum
In this section, we present, Parfum, a tool we use to detect and
repair Docker smells. Parfum is available on GitHub [9] and it
also has been ported to a browser version which is available at
https://durieux.me/docker-parfum.

Parfum detection of smells is inspected by Binnacle [15] and
supports the smells that Binnacle reports as being related to space
waste. The major difference between Binnacle and Parfum is that
Parfum repairs those smells and it also links the smells to an AST
node which allows much more precise analysis and extensions.

3.5.1 Parfum Steps. In this section, we briefly explain how Parfum
works by presenting the six main steps.

(1) Parsing Dockerfile AST: The first step of Parfum is to
parse the Abstract Syntax Tree (AST) representation of the
Dockerfile.

(2) Parsing shell commands: Parfum parses each Docker com-
mand that includes a shell command, i.e., RUN <cmd> and
compiles it with the Dockerfile AST to form a unified AST.

2Downloaded on July 12, 2022 from https://seart-ghs.si.usi.ch/

https://durieux.me/docker-parfum
https://seart-ghs.si.usi.ch/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

Table 1: The considered Docker smells and the detection rate by Parfum and Binncale in our Ground Truth dataset.

Smell ID Smell Description Parfum Binnacle
1 pipUseCacheDir Clean cache after pip install. 82/82 (100.0 %) 67/82 (81.7 %)
2 npmCacheCleanUseForce Clean cache after npm install. 2/2 (100.0 %) 2/2 (100.0 %)
3 mkdirUsrSrcThenRemove Remove /usr/src/* after usage. - -
4 rmRecurisveAfterMktempD Remove temporary folders. - -
5 tarSomethingRmTheSomething Remove tar files after decompression. 13/12 (108.3 %) 7/12 (58.3 %)
6 apkAddUseNoCache Use --no-cache flag with apk add. 8/8 (100.0 %) 8/8 (100.0 %)
7 aptGetInstallUseNoRec Use --no-install-recommends flag in apt-get

install.
159/159 (100.0 %) 122/159 (76.7 %)

8 aptGetInstallRmAptLists Remove /var/lib/apt/lists/* after apt-get
install.

153/153 (100.0 %) 117/117 (100.0 %)

9 gpgVerifyAscRmAsc Remove .asc file after usage. - -
10 npmCacheCleanAfterInstall Force to clean cache after npm install. 30/30 (100.0 %) 28/28 (100.0 %)
11 gemUpdateSystemRmRootGem Clean cache after gem update --system. 1/1 (100.0 %) 1/1 (100.0 %)
12 gemUpdateNoDocument Add --no-document flag to the .gemrc config file. 1/1 (100.0 %) 1/1 (100.0 %)
13 yumInstallRmVarCacheYum Clean cache after yum install. 17/17 (100.0 %) 17/17 (100.0 %)
14 yarnCacheCleanAfterInstall Clean cache after yarn install. 3/3 (100.0 %) 0/3 (0.0 %)

Table 2: Characteristics of Binnacle [15], Parfum, and Ground
Truth datasets.

Metric Binnacle Parfum Ground Truth
Creation date 2020 July 2022 July 2022
Dockerfile 178 452 159 748 384
Smelly Dockerfile 72 313 89 143 152
Total # Instruction 2 223 139 3 637 952 4938
Avg. # Instruction 12.45 18.04 12.86
Med. # Instruction 9 12 9

(3) Enriching the Docker AST: Next, Parfum enriches the
Docker AST by incorporating structural information from
the command lines. For instance, consider the command RUN
apt-get install wget and its AST representation. The
enriched AST contains annotations specifying that apt-get
is used to install packages, and the installed package
is wget. These annotations are added to the correspond-
ing nodes in the AST, highlighting their roles and relation-
ships and they can be used later on by the smell analyzer.
Parfum supports a total of 88 command lines, which account
for 89.05% of all the commands found in the Dockerfiles
within our dataset. The remaining commands consist of ei-
ther custom or infrequent commands. Consequently, these
commands will not be part of Docker smells by nature.

(4) Enriching embedded commands: Parfum enriches com-
mands that are embedded within other commands. For exam-
ple, the command sudo apt update contains a main com-
mand (sudo) and an embedded command (apt update).

(5) Detecting Docker smells: The detection of smells is made
by querying the AST. Each smell is associated with an AST
query. The detection of smells is detailed in Section 3.5.2.

(6) RepairingDocker smells: Once Docker smells are detected,
Parfum can proceed with the repair. We employ a template-
based approach to repair the smells, the details of the repair
are available in Section 3.5.3.

3.5.2 Smell Detection. The smell detection of Parfum uses a tem-
plate matching system to identify patterns inside the Dockerfile
AST. In total, Parfum supports 32 Docker smell detections, but we
only considered the 14 that are related to space waste. The list of
the 32 supported smells is presented in our repository [9], even if
they are not the focus of this paper, developers can still use Parfum
to detect and fix them.

The considered smells are described in Section 3.3. Each rule is
defined as a query, specifying the required AST nodes that need
to be present to trigger the smell. An additional post-condition
specifies additional AST nodes that should be present before, af-
ter, or inside the matched node. Figure 1a presents an example
of such a template matching. In this example, we detect that the
flag -f is missing within the command npm cache clean. In
this example, we look for the command npm cache clean us-
ing the query Q("NPM-CACHE-CLEAN"). The post-condition veri-
fies that the flag -f is not present inside the node with the query
Q("NPM-F-FORCE"). If those two queries have a match, Parfum
has detected the smell and it is reported to the developer.

3.5.3 Smell Repair. Once a smell is detected, Parfum repairs the
Dockerfile by modifying its AST. This is a novelty of Parfum, as far
as we know Parfum is the first tool that fixes smells in Dockerfiles.
Figure 1b presents an example of how the Parfum modifies the
AST to fix the smell. In this particular example, the smell is related
to the command npm cache clean. Parfum repairs the smell by
adding the --force flag as an argument to the npm cache clean
command. Once the AST is transformed, the detection of the smell
is triggered again to verify that the repair was made properly. If
the smell is still detected, the repair is rollback to avoid introducing
inappropriate changes to the Dockerfiles.

Empirical Study of the Docker Smells Impact on the Image Size ICSE ’24, April 14–20, 2024, Lisbon, Portugal

{
// look for `npm cache clean`
query: Q("NPM-CACHE-CLEAN"),
consequent: {
// look for `--force` flag
inNode: Q("NPM-F-FORCE") }

}

(a) Detect smell.

function repair(node) {
// insert --force flag
node.addChild(BashCommandArgs().addChild(

BashLiteral("--force")
));

}

(b) Repair smell.

@@ -21,1 +21,1 @@
-RUN npm cache clean
+RUN npm cache clean --force

(c) Generated Dockerfile patch.

After modifying the AST, Parfum can reprint the AST into a
Dockerfile. The reprinting process in Parfum utilizes a pretty-print
feature, resulting in the reprinted AST containing only the modified
nodes. This approach minimizes the changes made to the Dock-
erfile while addressing the detected smells. An example of such
transformation can be seen in Figure 1c, showcasing the differences
between the original Dockerfile and the repaired version.

4 STUDY RESULTS
In this section, we present and discuss the answers to our research
questions.

4.1 RQ1: Smell Detection & Repair Effectiveness
In this first research question, we assess the effectiveness of our
methodology in identifying and repairing Docker smells. The detec-
tion and repair are handled by our tool: Parfum and consequently,
we will also evaluate the effectiveness of our tool. To simplify the
narrative, we will refer to our approach as Parfum in this research
question.

This evaluation is divided into two parts: first, we evaluate the
effectiveness of detecting the smells by analyzing the smell detec-
tion rate of our approach on the ground truth dataset and also
comparing it to the baseline: Binnacle [15]. Second, we evaluate the
repair effectiveness of our approach and its impact on the Docker
build, i.e., build failure rate.

4.1.1 Parfum vs Binnacle. To increase our confidence in our ap-
proach, we measure our approach detection rate and compare it
to the baseline, Binnacle, on our ground truth dataset (see Sec-
tion 3.4.1). Table 1 presents the detection rate of Parfum and Bin-
nacle. We observe that Parfum has almost a perfect detection rate.
Only in one case, Parfum produces a false positive for the smell
tarSomethingRmTheSomething while Binnacle produces at least 89
false negatives. We cannot get the precise rate because Binnacle
only reports the number of each detected smell without their posi-
tion which could lead to an unprecise comparison with the ground
truth.

Listing 1 presents the only false positive reported by Parfum. It
happens because Parfum does not succeed in identifying that the
developers already removed the tar using the command: rm -rf
/tmp/firefox.*.

Based on those results, we can be confident in the detection
effectiveness of our approach.

4.1.2 Parfum Repair Effectiveness. We are now looking at the effec-
tiveness of Parfum to repair the Docker smells. As far as we know
no tool or dataset could be used to compare the results of Parfum.

RUN FIREFOX_URL="https://download.mozilla.org/?pro ⌋

duct=firefox-latest-ssl&os=linux64&lang=en-US"↩→

&& ACTUAL_URL=$(curl -Ls -o /dev/null -w
%{url_effective} $FIREFOX_URL)↩→

&& curl --silent --show-error --location --fail
--retry 3 --output /tmp/firefox.tar.bz2
$ACTUAL_URL

↩→

↩→

&& sudo tar -xvjf /tmp/firefox.tar.bz2 -C /opt
&& sudo ln -s /opt/firefox/firefox

/usr/local/bin/firefox↩→

&& sudo apt-get install -y libgtk3.0-cil-dev
libasound2 libasound2 libdbus-glib-1-2
libdbus-1-3

↩→

↩→

&& rm -rf /tmp/firefox.*
&& firefox --version

Listing 1: False positive produced by Parfum. Parfum did
not identify that firefox.tar.bz2 was removed by rm -rf
/tmp/firefox.* commands and therefore identifies the tar-
SomethingRmTheSomething smell in this snippet.

Therefore, we use Parfum to automatically repair the smells in the
178463(𝐵𝑖𝑛𝑛𝑎𝑐𝑙𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡) + 159748(𝑃𝑎𝑟 𝑓 𝑢𝑚 𝐷𝑎𝑡𝑎𝑠𝑒𝑡) = 338211
Dockerfiles, 164 597 (48.7 %) of them contain at least one smell. We
then verified that the smells were fixed by analyzing the repaired
Dockerfiles. Due to the high detection rate presented in the first
part of this research question, we can be confident about the repair
rate. To increase our confidence in checking if Parfum is not break-
ing builds, we built the Docker image for a selection of Dockerfiles
to ensure that the repair did not break the Docker build. This will
give us some indications of the reliability of the repair. We do know
that it is not a perfect oracle and it does not guarantee that the
behavior of the images is preserved. However, we could not identify
a way that would allow us to verify the behavior of Docker images
at a meaningful scale.

Table 3 presents the results of the smell repairs. The first column
of Table 3 contains the name of the smell, and the second column
contains the number of occurrences of this smell. The third col-
umn contains this information after the repair. The fourth and fifth
columns contain the same information but instead count the num-
ber of Dockerfiles, i.e., a Dockerfile can contain more than one oc-
currence of a specific smell. The results show that Parfum is able to
repair 514 010 (99.8 %) Docker smells. The smell aptGetInstallThen-
RemoveAptLists is the smell that is the most present after repair

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

Table 3: The occurrence of each smell before and after the repair using Parfum on Binnacle and Parfum datasets.

Docker Smell # Docker Smell # Dockerfile with Smell
Before Repair After Repaired Before Repair After Repaired

pipUseNoCacheDir 76 856 (14.9 %) 7 (0.9 %) 41 282 (25.1 %) 3 (0.6 %)
npmCacheCleanUseForce 2447 (0.5 %) 6 (0.8 %) 2413 (1.5 %) 6 (1.2 %)
mkdirUsrSrcThenRemove 4777 (0.9 %) 28 (3.6 %) 4329 (2.6 %) 27 (5.5 %)
rmRecursiveAfterMktempD 768 (0.1 %) 11 (1.4 %) 491 (0.3 %) 11 (2.2 %)
tarSomethingRmTheSomething 20 902 (4.1 %) 129 (16.5 %) 14 660 (8.9 %) 97 (19.7 %)
apkAddUseNoCache 15 094 (2.9 %) 0 (0.0 %) 11 671 (7.1 %) 0 (0.0 %)
aptGetInstallUseNoRec 172 028 (33.4 %) 1 (0.1 %) 81 448 (49.5 %) 1 (0.2 %)
aptGetInstallThenRemoveAptLists 142 187 (27.6 %) 389 (49.7 %) 74 958 (45.5 %) 209 (42.5 %)
gpgVerifyAscRmAsc 157 (0.0 %) 0 (0.0 %) 144 (0.1 %) 0 (0.0 %)
npmCacheCleanAfterInstall 32 437 (6.3 %) 63 (8.0 %) 24 248 (14.7 %) 52 (10.6 %)
gemUpdateSystemRmRootGem 505 (0.1 %) 2 (0.3 %) 457 (0.3 %) 2 (0.4 %)
gemUpdateNoDocument 390 (0.1 %) 0 (0.0 %) 345 (0.2 %) 0 (0.0 %)
yumInstallRmVarCacheYum 24 124 (4.7 %) 95 (12.1 %) 12 083 (7.3 %) 53 (10.8 %)
yarnCacheCleanAfterInstall 5010 (1.0 %) 12 (1.5 %) 4041 (2.5 %) 12 (2.4 %)
Total 514 793 783 164 597 492

Table 4: The number of build errors per smell.

Docker Smell # Build Errors
aptGetInstallUseNoRec 312 (84.6 %)
aptGetInstallThenRemoveAptLists 254 (68.8 %)
pipUseNoCacheDir 115 (31.2 %)
npmCacheCleanAfterInstall 32 (8.7 %)
tarSomethingRmTheSomething 48 (13.0 %)
apkAddUseNoCache 17 (4.6 %)
mkdirUsrSrcThenRemove 6 (1.6 %)
yumInstallRmVarCacheYum 4 (1.1 %)
gemUpdateSystemRmRootGem 1 (0.3 %)
gemUpdateNoDocument 1 (0.3 %)
npmCacheCleanUseForce 1 (0.3 %)

followed by tarSomethingRmTheSomething and yumInstallRmVar-
CacheYum. However, those cases are rare and should not impact
significantly the results of our study.

We now verify that Parfum does not break the build. To do
so, we build the Docker images before and after the repair. We
could not scale the build of the 164 597 Dockerfiles due to the
amount of computing it would have required. Indeed, it takes on
average 8m 37s to build a Docker image. Additionally, the rate-
limited imposed by Dockerhub would also block to perform this
experiment on all the images. Instead, we selected all the Dockerfiles
that are located at the root of the repositories, that are exactly
named Dockerfile, and that contain at least one smell. We chose
those criteria because we expect that those Dockerfiles are the main
Dockerfiles of the repositories. We end up with 11 313 Dockerfiles
and we only succeeded in building 5196 (45.9%) of them which
illustrates the complexity of reproducing Docker builds.

Once, we identify the 5196 Dockerfiles that are buildable and
apply Parfum on them, and proceed to rebuild the Dockerfiles after
the repair. 4827 Dockerfiles build after the repair which results
in 369 (7.1%) build failures (or build flakiness). It is difficult to

RUN wget -O gsl.tgz ftp://ftp.gnu.org/gsl-1.16.tar
&& tar -zxf gsl.tgz && mkdir gsl
&& cd gsl-1.16 && ./configure --prefix=/app/gsl
&& make && make install
&& rm gsl.tgz # Added line

Listing 2: Example of invalid repair made by Parfum for the
repository github.com/olavolav/te-causality.

estimate the number of builds that are failing due to the build
flakiness. However, it is reasonable to believe that the majority is
due to Parfum repairs.

Table 4 presents the number of builds that finish with an error
per smell type. Note that we consider that all applied repairs have
impacted the build status. We observe that the vast majority of
the errors are related to the rules aptGetInstallUseNoRec and apt-
GetInstallThenRemoveAptLists. Those rules can break builds when
a recommended package is removed when it is required or when
Parfum removes the cache when it was already empty.

In a few cases, Parfum produces invalid repairs such as Listing 2.
In this case, Parfum places rm gsl.tgz after the change of direc-
tory (cd gsl-1.16), the file gsl.tgz is, therefore, not found and
the build fails.

Answer to RQ1. We show that our approach is able to detect
all the Docker smells in our ground truth dataset with only one
false positive while also being able to repair 99.8 % of the smells.
We broke 7.1 % of the builds, but it is acceptable for developers
that are able to tolerate from 15 % to 20 % of false positives that
developers would tolerate [2]. We conclude that our approach
is suitable for measuring the size impact of the smells. By side
effect, we also show that Parfum is effective and could be used
by practitioners to detect and fix Docker smells.

https://github.com/olavolav/te-causality

Empirical Study of the Docker Smells Impact on the Image Size ICSE ’24, April 14–20, 2024, Lisbon, Portugal

4.2 RQ2: Impact of Docker Smells
In this research question, we investigate the impact of Docker
smells on the size of Docker images. We utilize the 5196 buildable
Dockerfiles from the previous research question and analyze the
differences between the images before and after the repairs. Our
investigation focuses on image size impact, and on bandwidth usage
introduced by the smells.

The results of the size impact investigation are presented in
Table 5. The table lists the names of the smells, along with the space
used by each smell (difference before and after repair), average used
space, median used space, and maximum used space.

It is crucial to acknowledge that while we can observe the space
savings per Dockerfile, it is not possible to determine the exact
space savings for each smell since we built the Docker images once
with all repairs applied.

Overall, the identified smells contribute to an increase in the
image size of 277.03GB (approximately 4.66%). On average, each
Dockerfile exhibits an increase of approximately 48.06MB in terms
of size, with a median of 1.9MB per Dockerfile.

We performed the Wilcoxon signed-rank test to verify if the
reduction of size is a significant difference. Wilcoxon signed-rank
test is used to compare the locations of two populations using two
matched samples and this test is also compatible with non-normal
data as is the case here as observed by the Shapiro normality test.
We consider that the reduction in size is significant if the 𝑝−𝑣𝑎𝑙𝑢𝑒 is
lower than 0.05. We obtained a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 value of 0 which indicates
a significant difference in the size before and after the repair.

We also observe a variation in terms of size impact depending
on the smell. Some smells, like npmCacheCleanUseForce, result in
an average impact of approximately 10%. While other smells like
mkdirUsrSrcThenRemove only have an impact of 1.1%. In general,
the smells that primarily impact image size are related to pack-
age managers, particularly instances where developers forget to
remove caches, such as aptGetInstallThenRemoveAptLists, pipUseNo-
CacheDir , npmCacheCleanAfterInstall, and aptGetInstallUseNoRec.
These smells are not only among the most frequent but are also
relatively straightforward to address.

Additionally, considering the number of times Docker images
are downloaded from DockerHub, the impact of these smells be-
comes more significant. Table 6 presents the impact of the smells
on the bandwidth of DockerHub. This table only considers the 1511
Docker images that we found on DockerHub. 3 We estimate that
the detected smells result in an increase of 40.45 TB of data transfer
per week on DockerHub. This estimation considers the total down-
loads for each Docker image and the size difference between the
original and repaired Docker images, divided by the median image
compression ratio (3.2x) reported by Zhao et al. [36].

Those numbers can seem non-meaningful for a company the
size of DockerHub. However, we measured the impact on a small
number of images, Dockerhub contains at least used 636 625 unique
images [24] that are pulled 446 billion times. While considering the
full scale of DockerHub those smells have a measurable impact on
DockerHub.

3Collected on January 6th, 2023

Hi there,

I've made a small improvement to the Dockerfile
that I think could help optimize the image
size.

↩→

↩→

Summary of the changes:
- <change description>

Impact on the image size:

Image size before repair: <size> MB
Image size after repair: <size> MB
Difference: <size> MB
I hope that you will find these changes useful to

you. Let me know if you have any questions or
concerns.

↩→

↩→

Thanks,

Listing 3: Template of the pull request description that we
used to propose Docker smell repair.

Answer to RQ2. Docker smells significantly impact the size of
Docker images, with an average of 4.66 % and going up to 10 %
for some of the smells. This leads to an additional 2.05 TB of
data transfer per week on DockerHub for 1511Docker images.
Among the most frequent and impactful smells we identified,
many are related to the use of package managers and their
caches. Addressing these smells can have a substantial effect on
image size and overall image efficiency.

4.3 RQ3: Developers’ Attitude Towards Docker
Smells

In this final research question, we investigate developers’ attitudes
toward Docker smells and their impact. The main goal is to validate
the relevance of these smells to developers and the importance of
addressing them. To gather feedback from developers, we opened
pull requests that addressed Docker smells, and we assessed the im-
pact of these smells within the pull request descriptions. A template
of this description is available in Listing 3.

We established the following criteria to select the repositories
where we would submit the pull requests: (1) Dockerfile has at least
one smell and less than ten. (2) The repository is active (not archived,
not a fork, has open issues, at least one fork, and has a commit in the
last twomonths preceding the date of the study on themain branch).
(3) The Docker image builds successfully after the repair. (4) No
more than one pull request per GitHub organization. (5) The Docker
image has been downloaded at least 1000 times from Dockerhub.
(6) The size difference needs to be larger than 1Mb. Following
these criteria, we identified 124 potential candidates and selected
34 repositories that explicitly welcome external contributions. The
list of opened pull requests can be found in our repository [8].

The merged and closed pull requests are presented in Table 7.
The table includes the repository name, the number of stars, and the

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

Table 5: The image size reduction per rule, note that the saving is computed at the image level where several smells could have
been repaired.

Docker Smell # Smell Image Size Reduction
Total Average Median Maximum

aptGetInstallUseNoRec 2242 188.1GB (6.2%) 85.9MB (6.2%) 17.1MB (1.8%) 4.4GB (87.7%)
pipUseNoCacheDir 2008 180.8GB (7.1%) 92.2MB (7.1%) 14.6MB (1.6%) 6.7GB (88.3%)
aptGetInstallThenRemoveAptLists 2170 163.2GB (5.7%) 77MB (5.7%) 13.4MB (1.4%) 4.4GB (87.7%)
npmCacheCleanAfterInstall 1640 46.5GB (3.6%) 29MB (3.6%) 1.3 KB (0%) 6.7GB (88.3%)
tarSomethingRmTheSomething 184 4.6GB (2.5%) 25.7MB (2.5%) 318 Bytes (0%) 383MB (38.7%)
yumInstallRmVarCacheYum 89 4.5GB (4.8%) 51.2MB (4.8%) 177 Bytes (0%) 801.4MB (49.6%)
apkAddUseNoCache 887 3.5GB (1.5%) 4MB (1.5%) 628 Bytes (0%) 369.5MB (32.7%)
mkdirUsrSrcThenRemove 219 2.6GB (1.1%) 12.2MB (1.1%) 275 Bytes (0%) 205.4MB (32.7%)
gemUpdateSystemRmRootGem 34 877.4MB (2.8%) 25.8MB (2.8%) 306 Bytes (0%) 279.1MB (17.6%)
gemUpdateNoDocument 31 863.5MB (3%) 27.9MB (3%) 948 Bytes (0%) 279.1MB (17.6%)
npmCacheCleanUseForce 3 56.4MB (10.1%) 18.8MB (10.1%) 25 Bytes (0%) 56.4MB (18.6%)
rmRecursiveAfterMktempD 2 43 Bytes (0%) 21.5 Bytes (0%) 0 Byte (0%) 43 Bytes (0%)
Total 277.03GB (4.66%) 48.06MB 1.9MB 6.66GB

Table 6: Impact of the smells on the bandwidth ofDockerHub.

Docker Smell # Docker Pull Data saved
Per Week per week

aptGetInstallUseNoRec 6 205 156 32.76 TB
pipUseNoCacheDir 3 591 566 8.62 TB
aptGetInstallThenRemoveAptLists 3 667 777 12.41 TB
npmCacheCleanAfterInstall 2 325 059 2.94 TB
tarSomethingRmTheSomething 440 604 42.07GB
yumInstallRmVarCacheYum 675 10.45GB
apkAddUseNoCache 2 048 579 664.63GB
mkdirUsrSrcThenRemove 229 698 1.03 TB
gemUpdateSystemRmRootGem 8675 2.64GB
gemUpdateNoDocument 266 2.64GB
rmRecursiveAfterMktempD 319 649 4.1MB
Total 11 784 785 40.45 TB

total and average weekly downloads on Dockerhub. Additionally,
it shows the original image size, pull request ID, pull request status,
number of repaired smells, image size reduction, and the theoret-
ical average bandwidth saving per week (considering a median
compression rate of 3.2 [36]).

Out of the 34 pull requests, 26 (76.5 %), were accepted andmerged
successfully including one required manual change. The remaining
6 (17.6 %) pull requests are awaiting responses from the developers.
The accepted pull requests resulted in a total saving of 3.46GB,
which translates to a weekly saving of 2.05 TB, considering the
45 617 average weekly downloads.

Some pull requests triggered some discussions; while other pull
requests were simplymerged by developers without interaction. But
most developers simply appreciated the contribution and merged
the pull requests, as seen in PR-7 and PR-9. While those feedbacks
do not explicitly address the Docker smells, it does indicate that de-
velopers value such contributions, suggesting they consider Docker
smells as relevant. In a different case, developers explicitly expressed

their interest in the changes, as seen in PR-11: Hi, thank you very
much, this change seems quite sensible! Cheers.

Some other pull requests triggered additional discussions as
illustrated in Figure 2. The developers asked if you could apply the
changes to the base image of their application as seen in PR-18,
some other repositories wanted to know about the tool that we use
to create the fix such as PR-2.

During the discussions, there were instances of developers ex-
pressing concerns about specific repairs, notably regarding the
aptGetInstallUseNoRec smell, which pertains to not installing recom-
mended packages. For instance, developers in PR-17 were worried
about the impact and asked us to remove that part of the change.
Nonetheless, they appreciated the contribution and expressed grat-
itude for learning something new about Docker and apt.

Regarding the pull requests that were rejected, developers in-
formed us that the changes were already present in the production
or Alpine version as illustrated in Figure 3. In PR-27, the maintainer
said There’s no need for this, just use the Alpine version., and in
PR-28, they said Duplicated. Already in production.. While our pull
requests were not merged, the fact that the changes were already
implemented indicates that the smells are still considered relevant.

An important outcome of this research question is the acceptance
by the developers. We have not faced yet a case where the devel-
opers do not find the change relevant. This is an interesting result
compared to how smells are generally considered by developers.
We expect that the perspective of the developers is different in this
case because the impact of the smell can be directly measured, the
number of false positives is low and the fix is comprehensive. This
observation motivates us to extend further the ability of Parfum
and to propose automatic patches for the Docker Smells.

https://github.com/Kruptein/PlanarAlly/pull/1142
https://github.com/jcraigk/kudochest/pull/187
https://github.com/gotzl/accservermanager/pull/53
https://github.com/mitre/saf/pull/989
https://github.com/pelias/openaddresses/pull/514
https://github.com/sbs20/scanservjs/pull/527
https://github.com/atmoz/sftp/pull/357
https://github.com/codacy/codacy-eslint/pull/3741

Empirical Study of the Docker Smells Impact on the Image Size ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 7: List of the pull requests that receive an answer from the maintainers. The complete list of opened pull requests is
available in our repository [8].

Project # Stars # Image Pull Image Size PR ID Status # Smell Data Saved
Total Per Week Image per Week

1 AdWerx/pronto-ruby 20 198 057 1125 857.35MB 171 Merged 6 38.68 MB (4.51%) 13.28GB
2 pelias/openaddresses 46 90 188 304 577.31MB 514 Merged 2 131.65 MB (22.8%) 12.2GB
3 TomWright/mermaid-server 248 2172 15 889.97MB 122 Merged 2 28.56 MB (3.21%) 136.32MB
4 sqlfluff/sqlfluff 6876 43 313 743 208.15MB 4262 Merged 3 11.74 MB (5.64%) 2.66GB
5 rchakode/realopinsight 60 26 023 118 809MB 30 Merged 2 39 MB (4.82%) 1.4GB
6 vyperlang/vyper 4695 72 697 443 453.77MB 3224 Merged 1 23.9 MB (5.27%) 3.23GB
7 Kruptein/PlanarAlly 361 165 010 848 342.55MB 1142 Merged 3 31.07 MB (9.07%) 8.04GB
8 ShaneIsrael/fireshare 522 10 968 340 879.21MB 166 Merged 4 158.71 MB (18.05%) 16.45GB
9 jcraigk/kudochest 18 2096 28 1.52GB 187 Merged 3 302.91 MB (19.42%) 2.57GB
10 fzls/djc_helper 331 6682 95 489.2MB 149 Merged 4 266.1 MB (54.39%) 7.68GB
11 gotzl/accservermanager 48 7040 35 1.14GB 53 Merged 1 680.38 MB (58.07%) 7.32GB
12 nitrictech/cli 22 1042 34 1.47GB 438 Merged 4 113.78 MB (7.55%) 1.19GB
13 artsy/hokusai 89 396 984 1442 539.42MB 323 Merged 2 10.07 MB (1.87%) 4.43GB
14 brndnmtthws/tweet-delete 92 14 727 74 478.49MB 107 Merged 2 19.94 MB (4.17%) 460.73MB
15 bitovi/bitops 34 8496 70 168.45MB 390 Merged 2 12.31 MB (7.31%) 270.08MB
16 evennia/evennia 1671 37 540 121 1.25GB 3091 Merged 5 195.49 MB (15.24%) 7.22GB
17 sbs20/scanservjs 583 253 233 1846 1.04GB 527 Merged 6 419.13 MB (39.45%) 236.15GB
18 mitre/saf 118 4113 75 603.93MB 989 Merged 2 124.01 MB (20.53%) 2.83GB
19 w9jds/firebase-action 883 3 167 517 28 147 1.36GB 176 Merged 4 124.99 MB (8.96%) 1.05 TB
20 naorlivne/terraformize 151 9663 57 131.89MB 367 Merged 1 3.98 MB (3.02%) 70.82MB
21 nwithan8/tauticord 78 1568 8 971.41MB 60 Merged 1 18.89 MB (1.94%) 50MB
22 azlux/botamusique 290 174 582 1316 667MB 353 Merged 2 85.4 MB (12.8%) 34.31GB
23 labsyspharm/scimap 46 3456 44 2.15GB 43 Merged 1 307.74 MB (13.96%) 4.11GB
24 leighmacdonald/gbans 32 1437 14 40.45MB 374 Merged 3 2.46 MB (6.09%) 10.94MB
25 alephdata/aleph 1881 2 254 039 8249 990.23MB 2801 Merged 4 263.57 MB (26.62%) 663.54GB
26 openedx/credentials 20 1893 26 1.28GB 1912 Merged 8 132.96 MB (10.15%) 1.05GB
27 atmoz/sftp 1469 982 418 661 2 289 101 155.55MB 357 Closed 1 26.3 MB (16.91%) 17.94 TB
28 codacy/codacy-eslint 13 636 580 1685 1.38GB 3741 Closed 2 195.24 MB (13.82%) 100.37GB
34 Opened, 26 (76.5 %) Merged, 2 (5.9 %) Closed, 6 (17.6 %) Pending Pull Requests 78 3.46GB 2.05 TB

Answer to RQ3. We submitted 34 pull requests, 26 have been
accepted, two have been rejected. Overall, the merged pull re-
quests and the feedback that we received from the developers
are overwhelmingly positive where developers acknowledged
the fix even in the case of rejected pull requests. This observa-
tion contrasts with the general treatment that code smells are
receiving from developers which highlights the importance and
relevance of this study.

5 RELATEDWORK
Docker has become a popular tool for developers and organizations
to package, deploy, and run applications in a lightweight, portable
container. As such, there has been a significant amount of research
focused on improving the efficiency, security, and maintainability
of Docker-based projects. In this section, we review several relevant
studies that are related to this contribution.

A large number of papers studied the Docker ecosystem. We
present a selection of them. Ibrahim et al. [17] investigate the num-
ber and diversity of images available on DockerHub for the same

system, finding that there is a large number of images to choose
from and significant differences between them. Ksontini et al. [18]
study the occurrence of refactorings and technical debt in Docker
projects, finding that refactorings are common but technical debt
is rare. Xu et al. [33] present a study of mining container image
repositories for software configuration information, finding that
such information is often incomplete or outdated. Lin et al. [22]
study the Docker images hosted on DockerHub. They observe a
downward trend of Docker image sizes and smells in Dockerfiles.
However, they also observed an upward trend in using obsolete
base images. Lui et al. [23] also study DockerHub but focused on the
security risks associated with it. Eng et al. [10] did a longitudinal
study of the evolution of Dockerfiles, and they confirm that there
are slightly fewer smells over time. However, none of those papers
study the impact of the smells on the Docker image size.

Other works also focus on improving the security of containers,
such as SPEAKER [20], which reduces the number of available
system calls to a given application container by customizing and
differentiating its necessary system calls at the booting and the

https://github.com/AdWerx/pronto-ruby/pull/171
https://github.com/pelias/openaddresses/pull/514
https://github.com/TomWright/mermaid-server/pull/122
https://github.com/sqlfluff/sqlfluff/pull/4262
https://github.com/rchakode/realopinsight/pull/30
https://github.com/vyperlang/vyper/pull/3224
https://github.com/Kruptein/PlanarAlly/pull/1142
https://github.com/ShaneIsrael/fireshare/pull/166
https://github.com/jcraigk/kudochest/pull/187
https://github.com/fzls/djc_helper/pull/149
https://github.com/gotzl/accservermanager/pull/53
https://github.com/nitrictech/cli/pull/438
https://github.com/artsy/hokusai/pull/323
https://github.com/brndnmtthws/tweet-delete/pull/107
https://github.com/bitovi/bitops/pull/390
https://github.com/evennia/evennia/pull/3091
https://github.com/sbs20/scanservjs/pull/527
https://github.com/mitre/saf/pull/989
https://github.com/w9jds/firebase-action/pull/176
https://github.com/naorlivne/terraformize/pull/367
https://github.com/nwithan8/tauticord/pull/60
https://github.com/azlux/botamusique/pull/353
https://github.com/labsyspharm/scimap/pull/43
https://github.com/leighmacdonald/gbans/pull/374
https://github.com/alephdata/aleph/pull/2801
https://github.com/openedx/credentials/pull/1912
https://github.com/atmoz/sftp/pull/357
https://github.com/codacy/codacy-eslint/pull/3741

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

Figure 2: Comment examples of merged PRs: PR-2,PR-11,PR-
17

Figure 3: Comments of rejected PRs: PR-27,PR-28

running phases. Confine [11] is a similar technique that uses static
analysis to identify the required system calls.

Other contributions aim to improve or fix Dockerfiles. Henkel
et al. [16] propose an approach for repairing Dockerfiles that do
not build correctly. It uses machine learning to infer repair rules

based on build log analysis. Hassan et al. [14] present Rudsea, a
technique that adapts Dockerfiles based on the changes in the rest
of the project. Zhang et al. [34] propose a technique that recom-
mends Docker base images to improve efficiency and maintainabil-
ity. Other tools aim to reduce the size of the Docker images by
identifying bloat in the images and removing it. Cimplifier [25] and
their framework [26] aim to automatically partition containers into
simpler containers based on user-defined constraints. The goals
are isolation of each sub-container, communicating as necessary,
and only including enough resources to perform their functional-
ity. strip-docker-image [29], minicon [12] and docker-slim [28] are
open-source projects that reduce Docker image size by specializing
the container to the application.

An important part of the bloat comes from bad practices. Several
tools and works focus on identifying those Docker smells. Binnacle
[15] is a tool for detecting Docker smells, they compared the pres-
ence of those smells between a set of Dockerfiles from GitHub and
a set of Dockerfiles written by experts. They observed that there
are five times fewer smells in the export Dockerfiles. Wu et al. [31]
study the docker smell occurrence in 6334 projects. They show that
smells are very common and there exists co-occurrence between
different smells. Xu et al. [32] propose a technique based on static
and dynamic analysis to detect temporary files inside Dockerfiles.
Nonacademic works focus on detecting Dockerfile smells: Hadolint
[13], dockerfilelint [6], docker-bench-security [5], or dockle [7].
However, none of these tools aim to repair the detected smells or
analyze the impact of those smells.

Overall, there has been a significant amount of research focused
on Docker, including tools for debloating, optimizing, and securing
containers, as well as studies of the evolution and management
of Dockerfiles and images. However, this empirical study is as far
as we know the first that studies the impact of the smells on the
Docker images and that collects feedback from the developers.

6 THREATS TO VALIDITY
In this section, we explore potential threats to the validity of our
study and detail the measures taken to address them, thereby bol-
stering confidence in our results. Our classification framework
aligns with the model proposed by Wohlin et al. [30].

6.1 Construct Validity
Construct validity threats stem from the alignment between theory
and observation, largely influenced by the measurement procedures
in our study. To address this, we took a meticulous approach. Firstly,
we selected smell types reported and measured by a different re-
search group. These smells were presented to practitioners, and
their impact was measured. Another potential threat arises from
the study’s limited scope, focusing on specific smells in bash Dock-
erfiles. We mitigated this by verifying the presence of smells in
recent Dockerfiles and presenting them to developers through pull
requests.

Additionally, our focus on bash Dockerfiles excludes those in
PowerShell, but given the prevalence of bash in Dockerfiles, our
results remain relevant for the majority of users. We aimed to
eliminate potential bias or subjectivity in the technique selection
process.

https://github.com/pelias/openaddresses/pull/514
https://github.com/gotzl/accservermanager/pull/53
https://github.com/sbs20/scanservjs/pull/527
https://github.com/sbs20/scanservjs/pull/527
https://github.com/atmoz/sftp/pull/357
https://github.com/codacy/codacy-eslint/pull/3741

Empirical Study of the Docker Smells Impact on the Image Size ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6.2 Internal Validity
Internal validity focuses on establishing a reliable causal relation-
ship between a treatment or intervention and its observed outcomes.
One potential threat is the presence of internal bugs in Parfum.
To address this, extensive testing was conducted, and Parfum was
made open-source, enabling scrutiny by developers and researchers.
Another potential threat involves the diversity of our dataset. To
mitigate this, we collected a large and diverse dataset of Docker-
files and supplemented our pull request selection with an existing
dataset (Binnacle).

6.3 External Validity
External validity concerns the generalizability of study results. To
enhance external validity, experiments were conducted on diverse
case studies from different open-source projects, spanning various
languages and sizes. While we focused on measuring the impacts of
smells in terms of size and bandwidth on Docker images, this might
limit the generalization of our results to all smell types. However,
this specific impact aligns with common effects of smells, as sup-
ported by [15]. The relevance of image size in distributed systems
further strengthens the importance of considering size increases in
the evaluation of distributed software.

6.4 Conclusion Validity
Threats to conclusion validity involve the connection between the
treatment and outcome, specifically regarding the reproducibility
of the study’s findings. To address this concern, we conducted ex-
periments with a rigorous and mostly automated methodology. We
also evaluated the precision and recall of the tool used in the study
to ensure that our observations are reproducible. This comprehen-
sive approach provides ample evidence to draw valid conclusions.
Moreover, to ensure replicability, a rigorous methodology was fol-
lowed in performing the experiments. The source code, scripts, and
procedures are thoroughly documented, enabling other researchers
to replicate the study with precision.

7 CONCLUSION
In this paper, we present an empirical study of the impact of Docker
smells on image size. For this study, we identify and repair 16 145
Docker smells from 21 165 Dockerfiles.

We observe that smells lead to an average increase in image
size by 4.66% and a total of 40.45 TB of transfer per week (on
DockerHub). Interestingly, the most common smells are related to
the package managers and they are the smells that impact the most
the image size.

Additionally, we verify the relevance of the smells by opening
34 pull requests on open-source projects that fix the Docker smells
and reduce the Docker image size. We found that the developers
react overwhelmingly positively to the pull requests by merging
26 (76.5 %) and by providing feedback that confirms that the smells
are relevant to them even in the two cases where our pull requests
were rejected.

The detection and repair of the smells has been performed by our
tool Parfum. This study consequently also highlights the relevance
of such a tool to help practitioners improve their Dockerfiles and
therefore their Docker image.

Those results motivate us to continue this line of research and
improve the Docker ecosystem. In particular, we aim to extend
Parfum to support additional smell, integrate it inside IDE for direct
developer feedback and also work on estimating the impact of the
smells without having to build the Docker images.

DATA AVAILABILITY
We provide the scripts, dataset, and tool used in this contribution.
You can find Parfum at [9], and the empirical study data at [8] as
well as a functional demo of Parfum at https://durieux.me/docker-
parfum.

REFERENCES
[1] Keith Adams and Ole Agesen. 2006. A comparison of software and hardware

techniques for x86 virtualization. ACM Sigplan Notices 41, 11 (2006), 2–13.
[2] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from

Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (Singapore, Singapore)
(ASE ’16). Association for Computing Machinery, New York, NY, USA, 332–343.
https://doi.org/10.1145/2970276.2970347

[3] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the docker container ecosystem
on github. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, IEEE, New York, NY, USA, 323–333.

[4] William G Cochran. 1977. Sampling techniques. John Wiley & Sons, USA.
[5] docker-bench security. 2022. docker-bench-security: script that checks Docker

deployment best practices. https://github.com/docker/docker-bench-security.
[6] dockerfilelint. 2020. hadolint: An opinionated Dockerfile linter. https://github.

com/replicatedhq/dockerfilelint.
[7] dockle. 2020. dockle: Container Image Linter for Security. https://github.com/

goodwithtech/dockle.
[8] Thomas Durieux. 2023. Open-science repository for the experiments of Parfum.

https://doi.org/10.5281/zenodo.10439580 GitHub Repo: https://github.com/
tdurieux/docker-parfum-experiment.

[9] Thomas Durieux. 2023. Open-science repository for Parfum. https://doi.org/
10.5281/zenodo.10439571 GitHub Repo: https://github.com/tdurieux/docker-
parfum.

[10] Kalvin Eng and Abram Hindle. 2021. Revisiting Dockerfiles in Open Source
Software Over Time. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, New York, NY, USA, 449–459.

[11] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated SystemCall Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, San Sebastian, 443–458.
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia

[12] grycap. 2020. Minimization of the filesystem for containers. https://github.com/
grycap/minicon.

[13] hadolint. 2022. hadolint: Dockerfile linter validate inline bash written in haskell.
https://github.com/hadolint/hadolint.

[14] Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang. 2018. RUDSEA: Recom-
mending Updates of Dockerfiles via Software Environment Analysis. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 796–801. https://doi.org/10.1145/3238147.3240470

[15] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps. 2020.
Learning from, Understanding, and Supporting DevOps Artifacts for Docker. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 38–49. https://doi.org/10.1145/3377811.3380406

[16] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’Amorim, and Thomas
Reps. 2021. Shipwright: A Human-in-the-Loop System for Dockerfile Repair.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, New York, NY, USA, 1148–1160.

[17] Md Hasan Ibrahim, Mohammed Sayagh, and Ahmed E. Hassan. 2020. Too many
images on DockerHub! How different are images for the same system? Empir.
Softw. Eng. 25, 5 (2020), 4250–4281.

[18] Emna Ksontini, Marouane Kessentini, Thiago do N Ferreira, and Foyzul Hassan.
2021. Refactorings and Technical Debt in Docker Projects: An Empirical Study. In
2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, New York, NY, USA, 781–791.

[19] Krishan Kumar and Manish Kurhekar. 2016. Economically efficient virtualization
over cloud using docker containers. In 2016 IEEE international conference on cloud
computing in emerging markets (CCEM). IEEE, IEEE, New York, NY, USA, 95–100.

https://durieux.me/docker-parfum
https://durieux.me/docker-parfum
https://doi.org/10.1145/2970276.2970347
https://github.com/docker/docker-bench-security
https://github.com/replicatedhq/dockerfilelint
https://github.com/replicatedhq/dockerfilelint
https://github.com/goodwithtech/dockle
https://github.com/goodwithtech/dockle
https://doi.org/10.5281/zenodo.10439580
https://github.com/tdurieux/docker-parfum-experiment
https://github.com/tdurieux/docker-parfum-experiment
https://doi.org/10.5281/zenodo.10439571
https://doi.org/10.5281/zenodo.10439571
https://github.com/tdurieux/docker-parfum
https://github.com/tdurieux/docker-parfum
https://www.usenix.org/conference/raid2020/presentation/ghavanmnia
https://github.com/grycap/minicon
https://github.com/grycap/minicon
https://github.com/hadolint/hadolint
https://doi.org/10.1145/3238147.3240470
https://doi.org/10.1145/3377811.3380406

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Thomas Durieux

[20] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,
and Qi Li. 2017. SPEAKER: Split-phase execution of application containers. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, New York, NY, USA, 230–251.

[21] Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. 2020. A Large-scale Data Set
and an Empirical Study of Docker Images Hosted on Docker Hub. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
IEEE, New York, NY, USA, 371–381. https://doi.org/10.1109/ICSME46990.2020.
00043

[22] Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. 2020. A large-scale data set
and an empirical study of docker images hosted on docker hub. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
New York, NY, USA, 371–381.

[23] Peiyu Liu, Shouling Ji, Lirong Fu, Kangjie Lu, Xuhong Zhang, Wei-Han Lee, Tao
Lu, Wenzhi Chen, and Raheem Beyah. 2020. Understanding the Security Risks
of Docker Hub. In Computer Security – ESORICS 2020, Liqun Chen, Ninghui Li,
Kaitai Liang, and Steve Schneider (Eds.). Springer International Publishing, Cham,
257–276.

[24] Ruben Opdebeeck, Jonas Lesy, Ahmed Zerouali, and Coen De Roover. 2023. The
Docker Hub Image Inheritance Network: Construction and Empirical Insights.
In 23rd IEEE International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM 2023). IEEE, IEEE, New York, NY, USA, 198–208.

[25] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. Association
for Computing Machinery, New York, NY, USA, 476–486.

[26] Vaibhav Rastogi, Chaitra Niddodi, Sibin Mohan, and Somesh Jha. 2017. New
Directions for Container Debloating. In Proceedings of the 2017 Workshop on
Forming an Ecosystem Around Software Transformation (Dallas, Texas, USA)
(FEAST ’17). Association for Computing Machinery, New York, NY, USA, 51–56.
https://doi.org/10.1145/3141235.3141241

[27] Giovanni Rosa, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto. 2023.
What Quality Aspects Influence the Adoption of Docker Images? ACM Trans-
actions on Software Engineering and Methodology 32, 6, Article 142 (sep 2023),
30 pages. https://doi.org/10.1145/3603111

[28] SlimToolkit. 2023. Inspect, Optimize and Debug Your Containers. https://github.
com/slimtoolkit/slim.

[29] Mark van Holsteijn. 2018. Utility to strip Docker images to their bare minimum
size. https://github.com/mvanholsteijn/strip-docker-image.

[30] Claes Wohlin, Per Runeson, Martin H"ost, Magnus C Ohlsson, Bj"orn Regnell,
and Anders Wessl’en. 2012. Experimentation in software engineering. Springer
Science & Business Media.

[31] Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. Characterizing
the occurrence of dockerfile smells in open-source software: An empirical study.
IEEE Access 8 (2020), 34127–34139.

[32] Jiwei Xu, Yuewen Wu, Zhigang Lu, and Tao Wang. 2019. Dockerfile tf smell
detection based on dynamic and static analysis methods. In 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, New
York, NY, USA, 185–190.

[33] Tianyin Xu and Darko Marinov. 2018. Mining container image repositories
for software configuration and beyond. In Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results. Association
for Computing Machinery, New York, NY, USA, 49–52.

[34] Yinyuan Zhang, Yang Zhang, Xinjun Mao, Yiwen Wu, Bo Lin, and Shangwen
Wang. 2022. Recommending Base Image for Docker Containers based on Deep
Configuration Comprehension. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, New York, NY, USA, 449–
453. https://doi.org/10.1109/SANER53432.2022.00060

[35] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren Chen, Vasily Tarasov,
Dimitrios Skourtis, Lukas Rupprecht, Ali Anwar, and Ali R. Butt. 2020. Du-
pHunter: Flexible High-Performance Deduplication for Docker Registries. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
USA, 769–783. https://www.usenix.org/conference/atc20/presentation/zhao

[36] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Arnab K Paul, Keren Chen, and Ali R Butt. 2020. Large-scale
analysis of docker images and performance implications for container storage
systems. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 918–
930.

[37] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. 2019.
Large-scale analysis of the docker hub dataset. In 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, IEEE, New York, NY, USA, 1–10.

https://doi.org/10.1109/ICSME46990.2020.00043
https://doi.org/10.1109/ICSME46990.2020.00043
https://doi.org/10.1145/3141235.3141241
https://doi.org/10.1145/3603111
https://github.com/slimtoolkit/slim
https://github.com/slimtoolkit/slim
https://github.com/mvanholsteijn/strip-docker-image
https://doi.org/10.1109/SANER53432.2022.00060
https://www.usenix.org/conference/atc20/presentation/zhao

