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ABSTRACT

A new model for handling non-orthogonal cracks within
the smeared crack concept is described. It is based on a
decomposition of the total strain increment into a
concrete and into a crack strain increment. This decom-
position also permits a proper combination of crack
formation with other non-linear phenomena such as
plasticity and creep and with thermal effects and
shrinkage. Relations are elaborated with some other
crack models that are currently used for the analysis of
concrete structures. The model is applied to some
problems involving shear failures of reinforced concrete
structures such as a moderately deep beam and an
axisymmetric slab. The latter example is also of interest in
that it confirms statements that ‘reduced integration’ is
not reliable for problems involving crack formation and
in that it supports the assertion that identifying numerical
divergence with structural failure may be highly
misleading,

INTRODUCTION

The formation of cracks is undoubtedly one of the most
important non-linear phenomena which govern the
behaviour of concrete structures. Consequently, any
numerical program which is to be used for the analysis of
concrete structures should embody a sound numerical
procedure that handles the formation (and eventually
closing and reopening) of cracks. Indeed, ever since the
finite element method has been applied to concrete, the
formation of cracks has received much attention.

Ngo and Scordelis* were probably the first to allow
cracks to be formed in a finite element mesh. Cracks were
allowed to propagate along predefined inter-element
boundaries. Nilson? allowed crack propagation by dis-
connecting nodes if the tensile force in that particular
node had exceeded a threshold value. In recent years, this
so-called discrete crack approach was refined by Saouma
and Ingraffea® and by Grootenboer* who developed
discrete crack models in which the cracks are no longer
forced to align with the original inter-element boundaries.

A major disadvantage that adheres to the discrete crack
approach is the fact that the topology of the finite element
mesh is changed continuously. This seems to limit the
scope of the approach to research applications as in
practical situations such concepts are rather unwieldy.
The so-called smeared crack models® are more promising
in this respect. In these models the formation of cracks is
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simulated by replacing the isotropic stiffness matrix by an
orthotropic stiffness matrix upon crack formation.

In the early days of the smeared crack approach the
method seemed to be inferior to the discrete crack models
assomewhat irregular and often excessively diffused crack
patterns were obtained. However, the introduction of a
shear retention factor® to model dowel action and
aggregate interlock and especially the replacement of the
sudden drop in tensile stress after crack formation by
more advanced tension-softening models™® have
enhanced the capabilities of smeared crack models sig-
nificantly. At present, smeared crack models have evolved
so far that even detailed crack propagation analyses of
concrete specimens can be undertaken successfully®,

Nevertheless, a number of questions are still unresolved
and reliable answers cannot always be obtained for some
important cases such as shear failures in beams and slabs.
A major problem that adheres to many smeared crack
models becomes apparent when we analyse such
structures, namely the rotation of the principal stress axes
after crack formation. In most existing smeared crack
models the crack direction is fixed upon formation of a
crack. Owing to aggregate interlock and dowel action as
represenited by a non-zero shear retention factor, shear
tractions develop on the faces of the crack at continued
loading, so that the principal stress directions no longer
align with the crack directions, Moreover, owing to high
shear stresses the major principal tensile stress may well
become larger than the tensile strength, which may result
in incorrect predictions of the structural behaviour. Until
recently this problem has received surprisingly little
attention in literature. It is mentioned, though, by
Cope'®!! who proposed to change the material axes
when the stress rotation had exceeded a certain threshold
angle. Obviously, this solution is not correct from a
thermodynamical point of view for the same reason as
non-linear orthotropic elasticity models violate thermo-
dynamics principles!®*3, Despite this objection, it has
been shown that such a ‘rotating crack’ model may yield
answers which are significantly better than results that are
obtained by the traditional fixed crack model!4.

The authors have recently proposed another solution
to this problem!®, In the proposed algorithm a second
crack is allowed to form after the change in principal
stress directions has exceeded a certain threshold value,
say 30° or 45°. If on subsequent loading a further rotation
in principal stress directions would occur, even a third
crack is allowed to occur. This procedure of allowing non-
orthogonal cracks differs significantly from the pro-
cedures adopted by most other analysts. For two-
dimensional stress states they mostly either allow a
secondary crack to form only perpendicular to a primary
crack, or assume that upon formation of a second crack all
stiffness is lost'®, Notable exceptions are the models by
Litton'”, Kristjansson'®#3? and Ebbinghaus!®, but their
models have rather limited capabilities in describing the
force—displacement (or in smeared crack terminology the
stress—strain) relation in a crack, whereas our treatment
allows incorporation of the full stress—strain relation.

Another problem with smeared crack models is that the
situation in which cracking and non-linear behaviour
under compressive stresses occur simultaneously in an
integration point cannot be handled well. Indeed,
inserting the orthotropic cracked stiffness matrix in an
elastoplastic stress—strain law may result in a stress state

Eng. Comput., 1985, Vol. 2, March 35



Non-orthogonal cracks in a smeared finite element model: R. de Borst and P. Nauta

which neither complies with the yield function nor
satisfies the fracture function. It therefore seems of vital
importance to make a clear distinction between the
concrete strains and the crack strains. Such a decom-
position permits the development of an algorithm which
yields a stress state which satisfies both the yield function
and the fracture function.

A further aspect to which we will draw attention is the
ability of the finite element method to correctly predict
failure loads and post-failure behaviour of concrete
structures. In practice, structural failure is often asso-
ciated with a divergence of the iterative procedure. It is the
authors’ opinion that this is not correct as such a
divergence may be caused by a variety of reasons, ranging
from an attempt to analyse snap-back behaviour under
displacement control to ordinary program errors, and we
will show a typical example thereof. Hence, there is a
great need for methods which permit tracing the post-
peak behaviour of concrete structures so that the
complete load-deformation response can be obtained,
thus allowing for a proper assessment of the peak and
eventually of the residual strength of concrete structures.

SMEARED CRACK MODEL FOR NON-
ORTHOGONAL CRACKS

A fundamental feature of the proposed crack model is a
decomposition of the total crack strain increment into a
concrete strain increment A& and into a crack strain
increment Ag:

Ag= A" + A (1)

Such a decomposition is not new and has also been
advocated by other researchers! 2%, Moreover, a similar
decomposition, namely into an elastic and into a plastic
strain increment is also assumed in elastoplasticity.
Indeed, the final equation which we will derive for the
cracked concrete bears some resemblance to the elasto-
plastic stiffness matrix.

Considering the crack strain increment Ag™ first, we
observe that this strain increment is composed of the
contributions of the individual crack strain increments of
a particular integration point. If we denote the vector
which assembles the individual crack strain increments by
Ae®, we have:

A = (Ae§ AyT A AyS - - - A Aye)T (2a)
where the superscript T denotes a transpose. Aef and Ays
are the normal and the shear crack strain increment
respectively of crack number n. The size of the vector Ae™

depends on the number of open cracks in an integration
point. For one open crack (2a) reduces to:

Aes'= (Aef Ayf)T (2b)
1

For each subsequent open crack in an integration point,
Ae® is enlarged by two components, namely the normal
and the shear crack strain of that crack,

The relation between the global crack strain increment
A& and the vector Ae” which assembles the individual
crack strain increments, is given by the identity:

A" =N Ae* (3)

For a two-dimensional solid, the matrix N reads:
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cos? 6, —sin 6, cos 0,
N= Sinz 01

2sin 6, cos 0, cos? B, —sin? 0,

sin 6, cos 0,
cos? 0, —sin 6, cos 0,

sin 6, cos 6, (4)
2 sin 6, cos §, cos? 6,—sin? 6,

sin? 0,

where 6, is the inclination angle of the normal of crack
number n with the x-axis. As Ae” has a variable length
depending on the number of open cracks, the size of the
transformation matrix N also depends on the number of
open cracks. For one open crack N is a 342 matrix, for 2
open cracks N is a 3%4 matrix and so on.

In a similar way, we may develop a relation between the
global stress increment Ag and the stress increments in the
cracks. When we define

As® = (AsT ALS Asy ALy -+ As Ae)T 5
as the vector which contains the stress increments in the

cracks (Asy being the normal and Aty being the shear
stress increment in crack number n), we can derive:

As"=NT Ag 6)

The transformation matrix N is again defined by (4).

To complete our system of equations, we need a
constitutive relation for the intact concrete and a stress—
strain law for the smeared cracks. For the concrete
between the cracks we assume an incrementally linear
constitutive relationship:

Ac=D® Ag® ()

where the matrix D contains the constitutive properties
of the uncracked concrete, Linearized endochronic,
elastic-plastic or fracturing models may for instance be
used to formulate this matrix. In the sample problems
which we will discuss, we have employed a simple elastic—
perfectly plastic model.

Similarly to the stress-strain relation for the concrete
(7), we can define a relation between the crack strain
increment Ae® and the crack stress increment As™:

ASCI'= DCI‘ Aecr (8)

The structure of the matrix D is slightly more
complicated than that of the stress-strain matrix D
because the size of D depends on the number of open
cracks in an integration point. For one crack it is a 22
matrix, for two cracks it is a 4x4 matrix and so on. For n
open cracks we can write formally:

DY 0 : 0

D= 10 DY ;0 )
I 3
0 0 !D¥

All the off-diagonal 242 submatrices are zero and this
implies that no coupling effects between different cracks
are considered. The stress increment in crack n is assumed
to depend on the crack strain increment of the same crack
only, their relation being given by the 2x2 submatrix Dj.
This may be a simplification of reality, as the amount of
damage which has already been done in an existing crack
reduces the energy that can be released in subsequent
cracks.

In addition to the idealization that the off-diagonal
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Figure 1 Normal stress versus normal strain of cracked concrete

submatrices in the constitutive matrix D are zero, we
have also assumed that the off-diagonal terms in each
submatrix D" are zero. This assumption implies that no
coupling is taken into account between the normal stress
increment in a crack and the shear strain increment, or
between the shear stress increment and the normal strain
increment. This assumption results from the considera-
tion that it is not sensible to use very advanced models if
we cannot put simpler models into practice. From Figure
I'weread thatin case of one crack the relation between the
normal stress increment As in the crack and the normal
strain increment Ae, of the cracked concrete is given by E,,
the modulus of the softening branch. The relation between
increment As{ and the normal strain increment of the
crack Ae; can then be worked out to be EE,/(E - E,) with
E the Young’s modulus of the uncracked concrete. We
further assume that the shear strain increment Ay of
crack n and the shear stress increment AtS of that crack
are related through 4BE/[(1—pB)1+v)], where v is
Poisson’s ratio and f is the so-called shear retention
factor®. The stiffness $BE/[ (1 — B)(1 +v)] derives from the
decomposition of the total shear strain increment into a
concrete and into a crack shear strain increment. With the
above relation our approach can be connected with the
more traditional approaches which assume a relation
1BE/(1 +v) between the total shear strain increment and
the shear stress increment. Hence, we arrive at the
following constitutive relation for a crack:
_EE,_ 0
E—E,
Dy = (10)
o P _E
1= 2(1+v)

It is noted that the magnitude of E, mainly depends on the
ultimate normal strain g, of the softening branch, which
has to be adjusted in accordance with the element size as
to obtain objective results with regard to the finite element
mesh. Then, the fundamental parameter which governs
crack propagation is the fracture energy G,

With the aid of (1), (3), (6), (7) and (8) we can develop the
stress—strain relation for the cracked concrete. To this end
we substitute (1), (3) and (7) in (6). This gives:

As"=NTD*[Ag—N Ae”] (11)
Together with (8), this yields:
Ae“=[D"+NTD*N]~'NTD* Ae (12)
Substituting this relation in
Ao =D"[Az—N Ae*] (13)

provides us with the constitutive relation for the cracked
concrete:

Ac=[D®~D°N(D*+NTD°N)"'N"D*] As (14)

Itis noted that as long as the constitutive matrices D* and
D® remain symmetric, the stress-strain matrix also
remains symmetric.

CRACKING AND OTHER NON-LINEAR
PHENOMENA

The behaviour of concrete under compressive triaxial
stress states is very complicated. It resembles materials
like rock and sand in that the strength also depends on the
first stress invariant and because we also observe
dilatancy and strain-softening in triaxial tests?!-22, As we
have concentrated on the numerical modelling of
cracking, we have refrained from using sophisticated
models for the description of the behaviour of the concrete
under compressive stress states. Merely an elastic—
perfectly plastic model has been used in conjunction with
a Mohr-Coulomb yield locus (see Figure 2). Test results
indicate that the angular Mohr-Coulomb yield surface is
conservative and they point at a slightly more convex
yield surface for concrete, The load-carrying capacity of a
structure may thus be underestimated somewhat using
this failure criterion. A more severe restriction is the fact
that no hardening and especially no softening under
compressive loading have been included in the analyses.
This probably has a greater impact on the results than a
yield surface which is too conservative. Another short-
coming of this plasticity model is the fact that we have
used a classical associated flow rule (normality). The
plastic volume expansion which is predicted by an
associated flow rule when used in conjunction with a
pressure-sensitive yield criterion, greatly overestimates
the plastic dilation observed in triaxial tests. For confined
situations which may occur in thick-walled structures, use
of an associated flow rule may therefore cause a too stiff
load—deformation response and may even result in an
overestimation of the failure load. Future calculations
should therefore include a more advanced non-associated
hardening/softening model for concrete??.

Especially with shear failures, there exist regions in the

To‘1

Figure 2 Mohr-Coulomb vyield locus in the three-
dimensional stress space
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structure in which we have high compressive stresses
parallel to the cracks. Numerically, this results in integra-
tion points which are not only cracked but also show
plastic behaviour. As argued, the decomposition of the
total strain increment into a concrete and into a crack
strain increment allows for the development of an
algorithm that yields a stress state which not only
complies with the yield function, but also agrees with the
fracture function. Yet, straightforward application of (14)
generally results in a stress state lying outside of the yield
surface, This is because (14) is in fact a linearization
around the current stress state, and strictly speaking this
equation is only exact for infinitesimal changes but not for
finite strain increments. This problem of drifting from the
yield surface exists whether we have crack formation or
not. A number of methods have been devised that aim at
minimizing or eliminating this drifting tendency. A possi-
bility, which has been shown to be accurate for frictional
materials like concrete and soils is to apply a correction
oo,

 flo
oa= — W D E (15)
ds  Oc

to the stress point?3**!, where f represents the yield
function and D¢ is the elasticity matrix. The stress state
after correction, however, does not necessarily comply
with the fracture criterion. Pending the development of a
more sophisticated algorithm, we have applied the
following procedure.

Upon violation of the tension cut-off criterion, we first
determine the intersection of the stress path with the
tension cut-off. The strain increment from the initial state
up to the tension cut-off is considered as elastic and the
remaining part of the strain increment is treated as elastic-
fracturing. A first estimate of the stress increment for the
latter part is made using (14). If we have no plasticity the
elasticity matrix D¢ is substituted for D*® and we may
proceed to the next integration point. If we have
encountered plasticity during the previous loading step so
that the stress in the beginning of the present step ¢° is on
the yield locus, the classical elastoplastic matrix is sub-
stituted for D

T
D°°=De——~5%—"—ﬁ (16)

The scalar h represents the hardening which we set equal
to zero because we assume ideal-plastic behaviour. The
stress state which results from application of (14) in
conjunction with (16) is on the softening branch of Figure
1, but a drift from the yield surface may have occurred. We
therefore recompute the stress increment using:

fla*) of
A =DE —— cry __ e
o (Ag— Ag™) __51’?”_—13,,_5‘_]: D Py %))
do do
with
o'=¢"+D(Ae— Ag"") (18)

The resulting stress state ¢! = ¢° + Ag can be shown to be
on the yield surface for the Mohr-Coulomb yield locus,
and also for the Drucker—Prager criterion provided that
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this yield function is written in a particulate form?*, The
crack strain increment follows from the initial estimate
using (14) and remains unaltered during this corrector
step. The crack stress increment is changed by the
application of (17) and consequently, the crack strain
increments Ae* and the crack stress increments As™ are no
longer related by the crack relations (8) to (10). Conceiving
the computed plastic strain increment Ag” as an initial
strain increment, we may obtain an improved estimate for
the stress increment using:

Ag=[D*—DN(D*+NTD*N) " 'NTD*|(Ae— Ae?)  (19)

which gives stress increments that are related to the crack
strain increment via (8) to (10), but the total stress may
now again violate the yield function.

After an initial estimate using (14) we therefore apply an
inner iteration loop using (17) to (19). Our current
experiences indicate that this process always converges to
a stress state which complies with the yield function and
which agrees with the crack relation. Convergence may be
rather slow, but this is not considered a major problem as
in the case of perfect plasticity the number of Gauss points
in a structure which are both cracked and show plastic
behaviour, is limited.

CLLOSING AND OPENING OF CRACKS

In smeared crack analyses of concrete members we
experience a lot of what may be referred to as spurious
cracking, Here we mean that there are quite a number of
sampling points which crack, but show only small crack
strains, This partly causes the diffused crack pattern of
smeared crack analyses. If we omit them, we often observe
that only a limited number of cracks really open and lead
to failure (strain-localization). Yet, these sampling points
with small crack strains pose a problem as a number of
them show unloading, even close and sometimes open
again in a later stage of the loading process.

Unloading of cracks occurs for instance when an
integration station in the neighbourhood cracks or when
new cracks in the same integration point arise. For the
unloading branch we have adopted a secant approach as
is shown in Figure 1. So when a crack starts unloading,
(10) is replaced by:

Dy = 8 E (20)
1-B2(1+v)

where E is the secant modulus of the unloading branch.
This assumption is too simple as in reality we may expect
some residual strain upon closing of a crack?®2>:26 but
our experiences indicate that this procedure is
numerically stable.

When a crack fully closes, i.e. when the normal stress in
the crack changes from tension into compression, the full
elastic stiffness is inserted again, so that Ag=D As.
Although upon closing of a crack, the normal strain and
the normal stress both vanish in our conception, this need
not be true for the shear stress and the shear strain,
Consequently, these stresses and strains are considered as
initial stresses and initial strains upon closing of the crack
and the stress after closing formally follows from:
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a=0'0+fD°°é dr (21a)

where ¢° is the stress state that exists when the crack
closes and ¢ is the strain-rate vector. If we have linear-
elastic material behaviour in compression (D®=D¢),
(21a) reduces to:

o=0"+D%¢e—&% (21b)

with ¢° the strain that exists in the sampling point upon
closing of the crack. When a crack opens again the shear
stress and the crack shear strain are initialized with the
values which follow from ¢° and ¢°, i.e. the shear stress and
the shear strain which existed when the crack closed.
During reloading (20) is used for the incremental relation
between the crack stresses and the crack strains. If the
normal strain in the crack exceeds the previously reached
maximum strain, (20) is replaced by (10) for the softening
branch.

RELATION WITH OTHER SMEARED CRACK
MODELS

There is a clear relation between the model described here
and a number of other crack models which are currently
employed in finite element analyses of concrete structures.
For instance, when we have only one crack and when
there is no plasticity, our crack model reduces to BaZant
and Oh’s” compliance formulation. This is demonstrated
most simply by considering a crack with the normal in the
x-direction. This is by no means a restriction as an
analysis for a crack with an arbitrary inclination angle
would yield exactly the same result. For a crack with the
normal aligned with the x-axis the transformation matrix
N reads:

1 0
N=10 0 (22)
01

E 1 v 0
D"°=1_v2 v 1 0 (23)
0 0 i(1-v)

for the elasticity matrix in a plane stress situation, we can

derive that:
E [1 0
TDco — 4
N N 1—v? [O %(1~—v)j| 24)

Adding the stress—strain matrix D* for the crack (see (10))
and inverting yields:

E—E,
1—v* | E—~Ep?

E 1—
2
0 1

(Dcr + NT DcoN') -1 (25)

Premultiplying with DN and postmultiplying with
NTD® and subtracting the result from D yields:

D~ DcoN(Dcr ~+ NT DcoN) - 1NTDco o

™ EE, vEE, . 1
E—Ey? E—EpN?
vEE, E?
0 26
E—Ey E—Ep? @9
BE
0 0 —
B 2(1+v) |

This is the stiffness matrix which BaZant and Oh’
obtained when they inverted their compliance relation for
partly cracked concrete. The only difference lies in the fact
that we have included a shear term, whereas they
elaborated their equations in the principal stress space.

Our model can also be related to the well-known two-
orthogonal crack models'®, in which secondary cracks
are allowed to form only orthogonal to primary cracks.
To demonstrate this, we consider two orthogonal cracks
aligned with the coordinate axes. For such a system the
transformation matrix N reads:

100 0
N=|001 0 27
010 —1

Invoking relation (23) for the concrete, we may derive
that:

1 0 v 0
NTD®N = E 0 i1-v 0 —31-v 28)
1—v* |y 0 1 0
0 —31—v) 0 H1-v)
so that:
(Dcr+NTDcoN) =1
1 0 —v 0 ]
(1—=B)(1+v) (1—B*(L+v)
0 2-—""nt 0 2t
1 B2-p) B2~ p)
E | —y 0 1 0 (29)
(1—p)%(1+v) (1-B)d+v)
0 2— o P AN
_ 2P pe—p)

Premultiplying with DN and postmultiplying with
NTD® and subtracting the result from D now yields:

D _— DcoN(Dcr + NTDcoN) - INT D =

0 0 0
0 0 (TE (30)
00 s

22—-B)(1+v)

It is noted that the factor /(2 — f) which reduces the shear
stiffness of the cracked system now does not equal the
usual shear retention factor. This is because the factor
B/(1 — B) which has been inserted in the stiffness matrix for
the cracks D, has been derived under the assumption
that there is only one crack. Indeed, if we assume that
there are two cracks, so that the total strain iscomposed of
the concrete strain and the strains of two cracks, we may
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derive that the reduction factor for each crack should be
taken equal to 2B8/(1 —pf) as to ensure that the shear
stiffness of the total system is equal to %BE/(1+v).
However, the difference is not great as is shown in Figure
3,s0 that the results which we obtain if we force the cracks
to form orthogonal, are close to answers obtained by the
common two-orthogonal crack models.

In a similar manner, relations can be elaborated with
some other non-orthogonal crack models' ”19, although
the derivations are usually somewhat more tedious and
cumbersome,

A

*

shear stiffness factor of system: B

T
T

B

Figure 3 Shear stiffness of cracked concrete as a function of the
shear retention factor f§ for two cracks in an integration point
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BEAM FAILING IN SHEAR

The first example which we consider is the moderately
deep beam of Figure 4. This beam has been tested
experimentally?” and has been analysed using the
DIANA finite element program?®®, in which the pro-
cedures described in the foregoing have been imple-
mented. The properties of the concrete were assumed to
be: Young’s modulus E, = 28,000 N/mm?2, Poisson’s ratio
v=0.2, tensile strength f,=2.5 N/mm?, shear retention
factor f=0.08 and fracture energy G,=0.06 N/mm. The
beam had a thickness of 200 mm and had no shear
reinforcement as is shown in Figure 5. The reinforcement
at the bottom of the beam had a Young’s modulus E, =
210,000 N/mm? and a yield stress ¢,=440 N/mm?.

The analysis was carried out using eight-noded Seren-
dipity plane stress elements with nine-point Gaussian
integration. It has been argued*® that it may be favourable
to use Lobatto integration as such a closed scheme better
accounts for the bending influence. In that publication it
was also asserted that it is sometimes better to employ
triangular elements as they do not suffer from directional
bias which may also cause spurious cracking. The import-
ance of these aspects will be investigated in future and a
particular aspect concerning the order of numerical
integration is addressed in the next section.

In the experiment, it was observed that failure occurred
due to the diagonal cracks shown in Figure 7. Prior to the
development of the diagonal cracks, vertical cracks had
arisen predominantly in the constant moment zone. In the
numerical analysis we also observe that vertical cracks
due to bending arise first. On subsequent loading the
stresses rotate and new, non-vertical crack form in the

v

F
Y l
T
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T 1620 2014
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Figure 4 Finite element mesh for moderately deep beam
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Figure 5 Refined mesh for moderately deep beam
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Figure 6 Load versus deflection at midspan for the beam problem,
(a) =30, (b) a=60°

region between the point load and the support (see
Figures 8 and 9). Some of these cracks arise in integration
points in which a vertical crack already existed. This
phenomenon can be handled with the present model as
has also been verified by combined tension-shear loadings
on panels in a homogeneous state of stress. Yet, allowing
cracks to form every time the stresses rotate slightly and
violate the tensile strength in the new principal direction,
leads to excessive formation of new cracks and closing of
existing cracks. Therefore a threshold angle o has been
adopted which allows new cracks to form in an integra-
tion point only when the angle between the principal
stress direction and the normal to the existing crack has
exceeded the threshold angle.

The first analyses with the model were carried out using
a relatively high threshold angle, namely o¢=60°, which
information was accidentally omitted in a previous
publication'®. To investigate the performance of the
model for lower values of «, other analyses have been
performed using a threshold value of 30°. The impact on
the global load—displacement curve of Figures 6a and 6b
appeared negligible until a displacement at midspan of
7.2 mm. Then, the analysis with a«=30° (Figure 6a)
diverged. No convergence could be achieved no matter
how small the imposed displacement increments were
taken. However, when we decremented displacements we
were able to get a converged solution, although a number
of new cracks arose. When we observed no more physical
changes we again incremented displacements and we
could continue the solution up to and beyond the point
where the steel started yielding.

It is debatable whether the ‘snap-back’ behaviour of
Figure 6a is physical or merely numerical, Spurious non-
physical solutions have for instance been observed in fluid
mechanics which appeared to vanish on mesh refine-

R4
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Figure 7 Experimentally observed crack pattern at impending failure
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Figure 8 Calculated crack pattern at impending failure for high threshold angle (all cracks)
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ment?®. This observation would support the conclusion
that the observed behaviour is numerical rather than
physical. Indeed, when we recalculated this problem with
a mesh which was slightly refined near the location of the
reinforcement (Figure 5), no numerical difficulties were
met at this point. Yet, convergence was slow also in this
case and small steps had to be taken.

Although the behaviour is thought to be non-physical
in the present case, it has been shown that snap-backs are
possible when employing softening models®. It is
therefore not unthinkable that numerical difficulties
which we meet at such points will be the starting point ofa
descending branch on the load-displacement curve and of
a ‘brittle failure’ if we include a more accurate relation
between the shear stress and the shear strain in a crack.

As in most smeared crack analyses a certain degree of
diffusion in the crack pattern is observed (see Figures 8
and 9). This diffused crack pattern largely disappears
when we plot only those cracks which carry no normal
stress, which may be interpreted as micro-cracks which
have coalesced into one macro-crack. Then the crack
patterns of Figures 10 and 11 are obtained, which clearly

exhibit strain localization including the initiation of a
diagonal crack. This diagonal crack is closer to the point
load for the low threshold angle, while it is more near the
support for the higher threshold angle. A similar trend
was observed for computations on this beam upon the
introduction of a variable shear retention factor®!. It
seems that the use of a very low value for the shear
retention factor forces the diagonal crack to move to the
point load, where it is recalled that although both
calculations reported here have been performed using the
same shear retention factor, the shear capacity for the
calculation with the lower threshold angle is effectively
lower because of the existence of more multiply cracked
integration points (see Figure 3).

The examples presented in this section and also those
which we will show in the next section have been obtained
using secant and quasi-Newton methods32+*3, They could
not be obtained using a standard Newton-~Raphson
method as with this type of method convergence (energy
criterion ¢=0.0001) could not be achieved at various
stages of the loading process. Secant and quasi-Newton
methods are very competing when analysing concrete
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Figure 9 Calculated crack pattern at impending failure for lower threshold angle (all cracks)
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Figure 17 Cracks that transfer no normal stress at impending failure for lower threshold angle
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Figure 13 Finer mesh for axisymmetric slab

structures under displacement control®3, Analyses of
concrete structures with these methods under arc-length
control are sometimes less successful, which prompted the
development of a line-search procedure in conjunction
with arc-length control**, Then economic analyses are
feasible again. Indeed, the snap-back behaviour which we
encountered could have been analysed more elegantly
using an arc-length technique as was done by Crisfield for
another snap-back problem in a concrete beam3,

Itis remarked finally that no attempt has been made to
accurately fit the experimental load—displacement curve.
Instead, we have focused on simulating the basic charac-
teristics of this problem such as the inception of a
dominant diagonal crack and the brittle failure.

PUNCHING SHEAR OF AN AXISYMMETRIC
SLAB

The second example that we consider is the axisymmetric
slab of Figures 12 and 13. The properties of the concrete
are now given by: Young’s modulus E, = 28,000 N/mm?,
Poisson’s ratio v=0.2, tensile strength f,=2.6 N/mm?,
shear retention factor =02, fracture energy G, =
0.06 N/mm, cohesion c¢=9.6 N/mm? friction angle
¢=30°. The slab is reinforced isotropically with a
reinforcement ratio of 1% and the properties of the
reinforcement are E,=205,000 N/mm? and o,=
465 N/mm?. The experimental failure mechanism of this
slab is ultimately due to punching shear3®, Earlier
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Figure 14 Load_deflection curves for axisymmetric slab

analyses of this slab had to be stopped after an imposed
displacement of approximately 7 mm37 or involved only
crack formation??,

The first analysis involving both plasticity and crack
formation was carried out for the coarse mesh of Figure 12
and reduced four-point Gaussian integration was
employed. After incrementing the displacement up to a
deflection of 9.6 mm no convergence appeared possible
although very small displacement increments were
imposed (see Figure 14). However, when the analysis was
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Figure 15 Plastic region at peak load level (shaded)
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Figure 16 Tangential crack pattern at peak load level

repeated with exactly the same mesh and the same
material parameters, but with ‘full’ nine-point integration,
displacements could be imposed until and beyond a
plateau in the load—displacement curve had been reached.
The same trend was observed for computations with the
refined mesh of Figure 13, ie. the analysis with ‘full’
integration could be continued after the plateau had been
reached and the analysis with reduced integration
diverged at some displacement level (Figure 14). Yet, the
latter calculation with ‘reduced’ integration could be
continued much further than the computation with
‘reduced’ integration for the coarser mesh., This would
again indicate that spurious snap-backs and divergence
gradually disappear with mesh refinement.

The poor behaviour of ‘reduced’ integration in con-
junction with crack formation has been explained to be
caused by the introduction of spurious zero-energy modes
upon the formation of cracks in ‘reduced’ integrated
elements®®, With the formation of a new crack, an extra
spurious zero-energy mode is introduced, so that we have
four additional zero-energy modes when all four integra-
tion points are cracked. Observations about incorrect
predictions of structural behaviour when using reduced
integration have also been reported by Crisfield®®, but it
has not yet been demonstrated that it may even lead to
divergence of the iterative procedure. This example clearly
illustrates that associating divergence of the iterative
procedure with structural failure which is sometimes done
especially with ‘brittle failures’ may be misleading. It is the
authors’ opinion that this is incorrect and that a proper
assessment of the structural behaviour can only be made if
the entire load—deflection curve can be traced.
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The load—deflection curve of Figure 14 ultimately
reaches a plateau. Usually such a plateau is identified with
yielding of the reinforcement. In this example this was not
the case as yielding started only after a deflection of
approximately 20 mm, thus after that a considerable part
of the plateau had been traversed. Probably, the plateau is
due to yielding of thé concrete in the compression zone
(see Figure 15). If we had included a softening model for
the concrete in compression instead of a perfectly-plastic
model, we would presumably have observed a softening
behaviour instead of a plateau. Inclusion of such a
softening model and a non-constant shear retention factor
for the cracks seem important refinements on the con-
stitutive model in order to obtain a post-peak softening
response.

The tangential crack pattern of Figure 16 that we
calculated at peak load is very shallow. This is in
accordance with the experimental observations which
also show that tangential cracking spreads over a rather
large area®®. The observation that radial cracks arise
almost throughout the slab already in an early stage of the
loading process is also in agreement with experimental
findings (Figure 18). When we plot only the so-called
major cracks which carry no more tensile stress, we again
observe a much more localized pattern which reveals the
initiation of a diagonal shear crack (see Figure 17). The
large horizontal crack that we also observe in Figure 17 is
somewhat strange as such cracks are not reported from
tests on such specimens. At first, it was assumed that these
horizontal cracks were caused by the modelling of the
boundary conditions as the area where the loading was
applied was forced to remain plane because of the adopted
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Figure 17 Major cracks (no normal stress transfer) at peak load

Figure 78 Region in which radial cracks have developed (shaded)

displacement control. In the experiment, some load-
distributing medium was applied so that the boundary
conditions are more like a uniform traction. Nevertheless,
when the analysis was repeated for a uniform traction and
using an arc-length method to control the loading
process, the same cracks were observed. Indeed, on a
closer examination of the experimental data, it appeared
that it may well be possible that such cracks really arise®®

A final remark concerns the threshold angle o for the
formation of secondary and eventually of tertiary cracks.
The results presented in this section have been obtained
using a threshold angle of 60°, An analysis with o= 30° has
also been undertaken, but the solution appeared to be
rather unstable, involving several snap-backs and snap-
throughs, probably of a numerical nature. On closer
examination a number of integration points were detected
in which no less than four cracks had arisen (one radial
and three tangential cracks). It may be expected that little
(shear) stiffness remains and that spurious zero-energy
modes may easily occur in such points thus leading to ill-
conditioning. Apparently the slab problem is significantly
more difficult than the beam problem of the preceding
section for which an analysis with a=30° was feasible.

CONCLUSIONS

A new smeared crack model which permits non-
orthogonal cracks has been described. It is transparent as
the strain increment is divided into a concrete and into a
crack strain increment. It can be related to other smeared
models which are used to simulate crack formation and
some relations have been elaborated.

This decomposition moreover allows for a natural

combination of crack formation and other non-linear
phenomena such as plasticity and creep and with thermal
dilation and shrinkage within a smeared finite element
model**2° A numerical algorithm that handles the
combination of plasticity and crack formation has been
discussed in somewhat greater detail.

The use of so-called reduced integration in conjunction
with crack formation may lead to erroneous results and to
dlvergence of the iterative procedure. This observation is
in line with statements in some other publications®®*%,
When using eight-noded elements three-by-three or ‘full’
Gauss integration is more reliable for concrete structures
as this largely prevents spurious zero-energy modes to
occur.

It is incorrect to identify structural failure with diver-
gence of the iterative procedure as is sometimes done for
brittle failures. This has been demonstrated by the
example of an axisymmetric slab which diverged entirely
because a reduced integration scheme had been
employed. For a proper assessment of the structural
behaviour it is necessary to trace the post-failure response
also. This may involve analysing snap-through and snap-
back behaviour for which the arc-length method seems
very suitable also for concrete structures®#, An example
thereof has been discussed, although it is doubted whether
the observed snap-back behaviour is of a physical nature.

Smeared crack approaches are capable of predicting
dominant diagonal cracks which occur in shear failures.
Reasonable crack patterns for a beam and for an axi-
symmetric slab both failing in shear, were obtained
despite a certain degree of diffusion. So, strain-
localization can to ‘a certain extent be represented by
smeared crack models. Here, the situation is similar to
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non-associated plasticity, where the localization of
deformation in thin shear bands can also be predicted by

smeared representations
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