
 
 

Delft University of Technology

Investigation of MPM inaccuracies, contact simulation and robust implementation for
geotechnical problems

Gonzalez Acosta, J.L.

DOI
10.4233/uuid:f0be1724-3041-4214-bb7e-7be1c473b17f
Publication date
2020
Document Version
Final published version
Citation (APA)
Gonzalez Acosta, J. L. (2020). Investigation of MPM inaccuracies, contact simulation and robust
implementation for geotechnical problems. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:f0be1724-3041-4214-bb7e-7be1c473b17f

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f0be1724-3041-4214-bb7e-7be1c473b17f
https://doi.org/10.4233/uuid:f0be1724-3041-4214-bb7e-7be1c473b17f


INVESTIGATION OF MPM INACCURACIES, CONTACT
SIMULATION AND ROBUST IMPLEMENTATION FOR

GEOTECHNICAL PROBLEMS





INVESTIGATION OF MPM INACCURACIES, CONTACT
SIMULATION AND ROBUST IMPLEMENTATION FOR

GEOTECHNICAL PROBLEMS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on Tuesday 6 October at 15:00 o’clock

by

José León GONZÁLEZ ACOSTA

Master of Science in Geotechnical Engineering,
Universidad Nacional Autónoma de México, Ciudad de México, México,

born in Ensenada Baja California, México



This dissertation has been approved by the promotors

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. M. A. Hicks, Delft University of Technology, promotor
Dr. P. J. Vardon, Delft University of Technology, promotor

Independent members:
Dr. M. Martinelli, Deltares
Prof. dr. C. E . Augarde, Durham University, UK
Prof. dr. K. G . Gavin, Delft University of Technology
Prof. Dr.-Ing J. Grabe, Technische Universiteit Hamburg, Germany
Prof. dr. ir. C. Vuik, Delft University of Technology

Keywords: Double mapping, Implicit contact, Landslides, Large-strain simulations,
Material point method, Soil-structure interaction, Stress oscillation

Printed by: Gildeprint Drukkerijen - Enschede

Author: José León González Acosta

Cover by: Grazia Tona
Copyright © 2020 by J.L. González Acosta
Email: J.L.GonzalezAcosta-1@tudelft.nl;lgonzalez.a87@gmail.com

ISBN: 978-94-6366-310-6

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

J.L.GonzalezAcosta-1@tudelft.nl; lgonzalez.a87@gmail.com
http://repository.tudelft.nl/


To my beloved family and friends





CONTENTS

Summary xi

Samenvatting xiii

List of figures xv

1 Introduction 1
1.1 Numerical methods in science and engineering . . . . . . . . . . . . . . 2
1.2 Numerical methods for large deformations . . . . . . . . . . . . . . . . . 2
1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 MPM Background 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 MPM discretisation and computational steps . . . . . . . . . . . . . . . . 11
2.3 MPM formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Explicit MPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Nodal integration, solution and update phase (explicit) . . . . . . . 16
2.3.3 Implicit MPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Static scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Newmark’s time integration scheme . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Nodal integration and update phase (dynamic) . . . . . . . . . . . 19

2.5 Conservation of mass and momentum in the implicit MPM . . . . . . . . 19
2.6 Implementation of MPM . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Evaluation of MPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Free fall block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.2 1D compression bar . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 Vertical cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 An investigation of stress inaccuracies and proposed solutions in the mate-
rial point method 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Axisymmetric benchmark . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Vertical cut benchmark . . . . . . . . . . . . . . . . . . . . . . . 43

vii



viii CONTENTS

3.3 Oscillations in MPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Stress recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Nodal integration using SF gradients. . . . . . . . . . . . . . . . . 45
3.3.3 Nodal integration of the mass M and external forces Fext using SFs . 49
3.3.4 Stress redistribution due to plasticity . . . . . . . . . . . . . . . . 49

3.4 Improvements to reduce stress oscillations . . . . . . . . . . . . . . . . . 50
3.4.1 GIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Modified integration weights . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Double mapping (DM) . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 DM-GIMP(DM-G) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.5 Composite material point method (CMPM) . . . . . . . . . . . . . 54
3.4.6 Implementation of DM-G and CMPM . . . . . . . . . . . . . . . . 55

3.5 Testing of the double mapping technique to compute nodal stiffness . . . . 56
3.6 DM-GC Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 1D Elastic bar convergence . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 Axisymmetric benchmark . . . . . . . . . . . . . . . . . . . . . . 61
3.6.3 Vertical cut benchmark . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Development of an implicit contact technique for the material point method 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Contact formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Explicit and implicit contact algorithm . . . . . . . . . . . . . . . . . . . 77

4.3.1 Explicit contact algorithm . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 implicit contact algorithm . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Application and evaluation of contact methods . . . . . . . . . . . . . . . 80
4.4.1 Benchmark problems . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Geotechnical applications . . . . . . . . . . . . . . . . . . . . . . 88
4.4.3 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Study of landslides and the interaction with structures using implicit MPM 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Application of the implicit contact method . . . . . . . . . . . . . . . . . 99

5.2.1 Vertical cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Landslide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions and Recommendations 115
6.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 MPM inaccuracies and causes . . . . . . . . . . . . . . . . . . . . 116
6.1.2 MPM improvements to increase accuracy . . . . . . . . . . . . . . 116
6.1.3 MPM implicit contact . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.4 Geotechnical simulations using improved MPM . . . . . . . . . . . 117



CONTENTS ix

6.2 Recommendations for further research . . . . . . . . . . . . . . . . . . . 118

A Appendix A 121
A.1 Plane strain and axisymmetric matrices. . . . . . . . . . . . . . . . . . . 122
A.2 Analytical axisymmetric solution . . . . . . . . . . . . . . . . . . . . . . 125

B Appendix B 127
B.1 Double mapping procedures . . . . . . . . . . . . . . . . . . . . . . . . 128

Notation 131

Acknowledgements 137

Curriculum Vitæ 139

List of Publications 141





SUMMARY

The material point method (MPM) is a numerical technique which has been demon-
strated to be suitable for simulating numerous mechanical problems, particularly large
deformation problems, while conserving mass, momentum and energy. MPM discretises
material into points and solves the governing equations on a background mesh which
discretises the domain space. The points are able to move through the mesh during the
simulation. MPM is an improvement over other well-established numerical techniques,
such as the finite element method (FEM), as it is able to simulate large deformations
and therefore can simulate mechanical problems from initiation to the final outcome.
It has the potential to become the preferred numerical tool to analyse many enginee-
ring problems. Nonetheless, it has been demonstrated throughout this thesis that the
performance of MPM has often been far from the levels of accuracy desired in order to
be considered a reliable technique for providing quantitative analyses for engineering
problems. In this thesis, the implicit solution version of MPM has been taken as the star-
ting point to investigate and solve its current main drawbacks, i.e. (i) the lack of accuracy
when computing stresses (stress oscillations), and (ii) interaction between bodies, e.g.
soil and structures.

The stress oscillation problem is well-known in the MPM community, and is attributed
mostly to material points crossing background cell boundaries, termed the cell-crossing
problem. It has been shown in this thesis that cell-crossing is indeed one of the primary
sources of oscillation. However, there are also other aspects contributing to the observed
inaccuracies. In the literature, cell-crossing has been addressed by creating a particle
domain, e.g. in the generalised interpolated material point (GIMP) method. It has been
shown in this thesis that major problems also include (i) the use of linear shape function
(SF) gradients to calculate (material point) strains and (ii) non-Gauss numerical quadra-
ture to integrate material stiffness. The integration is made worse when using GIMP. In
order to reduce the inaccuracies caused by integration a double mapping (DM) technique
has been developed, which reduces the errors when integrating nodal stiffnesses. This is
shown to also work well with GIMP (DM-G method). Additionally, DM has been combined
with a Lagrangian interpolation technique, which uses a larger solution domain (through
the combination of background cells to form patches) to enhance the stresses computed
at the material points (DM-C or DM-GC methods). The developed methods have been
able to significantly improve the accuracy and stability of the simulated problems. This
improvement will allow more robust use of more advanced constitutive models.

The interaction of bodies is of benefit in large deformation simulations, although
MPM can roughly simulate contact without special treatment. An MPM contact algorithm
was initially proposed by other researchers for explicit time integration schemes, but
no method was available for the implicit time integration scheme. An implicit contact
scheme has been developed based on the original (explicit) contact formulation in order
to calculate the change of nodal velocity during the Newton–Raphson iterative procedure.
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xii SUMMARY

The results obtained with this contact methodology are shown to be as accurate as
those computed using the explicit scheme, although generally with a larger time step.
Additionally, it has been observed that, in most of the cases, implicit contact simulations
are analysed faster than explicit simulations. However, the contact loads computed with
this technique and the internal forces developed are inconsistent (i.e. not equal), reducing
the energy conservation and remains an issue to be solved. An analysis of the problem
is presented as a first step towards a solution. One challenge is that any method using
consistent contact and internal forces is sensitive to stress oscillations, which can lead to
highly unrealistic contact forces.

Using the improvements developed in this thesis (i.e. DM-GC combined with the
contact algorithm), soil-structure interaction problems and landslides have been suc-
cessfully simulated. Incorporating the contact algorithm into the model has allowed the
simulation of complex failure mechanism development during slope failure. The impact
on neighbouring structures was realistic, and captured expected behaviours such as the
sliding and rotation of the rigid elements.

It has been demonstrated that (i) the accuracy in MPM has been improved via the
combination of several (existing and novel) techniques, (ii) techniques developed for
the explicit scheme (or other numerical methods) can be converted and introduced in
implicit MPM, maintaining as much as possible the consistency of the formulation, and
(iii) by improving diverse aspects of the formulation, more realistic simulations can be
obtained. The work presented in this thesis makes several steps contributing to the
improvement of MPM, which will lead towards it being used in engineering practice.



SAMENVATTING

De materiaal punt methode (MPM) is een numerieke methode die geschikt is voor het
simuleren van verschillende mechanische problemen, in het bijzonder problemen met
grote vervormingen. Hierbij worden massa, moment en energie behouden. MPM ver-
deelt materiaal over punten en lost de differentiaalvergelijkingen op met een rooster
van achtergrondelementen, die het domein van de simulatie voorstelt. De punten be-
wegen door het rooster gedurende een simulatie. In tegenstelling tot gerenommeerde
numerieke methodes, zoals de eindige elementen methode (EEM), kunnen met MPM
grote vervormingen gesimuleerd worden. Dit biedt de mogelijkheid mechanische pro-
blemen van begin tot eind te onderzoeken, waardoor MPM de voorkeursmethode zou
kunnen zijn voor de analyse van vele (civiel-)technische problemen. Desondanks is in dit
proefschrift herhaaldelijk aangetoond dat de nauwkeurigheid van MPM in veel gevallen
ondermaats is om een betrouwbare methode voor kwantitatieve analyses te zijn. In dit
proefschrift is MPM met een impliciet oplossingsschema gebruikt als basis voor het on-
derzoeken en oplossen van (op dit moment) belangrijke nadelen van MPM, namelijk (i)
een gebrek aan nauwkeurigheid in de spanningsberekeningen (spanningsoscillaties) en
(ii) het niet kunnen simuleren van interactie tussen lichamen, bijvoorbeeld ondergrond
en constructies.

Spanningsoscillaties zijn een bekend fenomeen in het MPM werkveld, en worden
voornamelijk toegekend aan materiaal punten die de grens van een achtergrondelement
overschrijden. Dit probleem wordt ook wel ‘cell-crossing’ genoemd. In dit proefschrift
is aangetoond dat cell-crossing inderdaad één van de primaire oorzaken van oscillaties
is, die in literatuur wordt opgelost door het gebruik van een materiaal punt domein,
bijvoorbeeld in de ‘gegeneraliseerde interpolatie materiaal punt’ (GIMP) methode. Dit
proefschrift presenteert echter twee andere oorzaken van oscillaties, namelijk (i) het
gebruik van afgeleides van lineaire interpolatie functies (SF) voor de berekening van rek
(in materiaal punten) en (ii) niet-Gauss numerieke integratie van materiaal stijfheid. De
integratie van materiaal stijfheid verslechtert wanneer GIMP wordt gebruikt. Een dubbele
interpolatie (DM) techniek is ontwikkeld om de fouten die ontstaan bij integratie van
stijfheid te verminderen. Deze techniek werkt goed samen met GIMP (DM-G methode).
Daarnaast is DM gecombineerd met een Lagrangiaanse interpolatie techniek die een
groter domein gebruikt (door het combineren van achtergrond elementen) om de nauw-
keurigheid van spanningsberekeningen te vergroten (DM-C or DM-GC methodes). De
ontwikkelde methodes hebben de nauwkeurigheid en stabiliteit van de uitgevoerde simu-
laties significant vergroot en deze verbetering maakt het mogelijk om meer geavanceerde
constitutieve modellen te gebruiken in MPM.

De interactie tussen lichamen is belangrijk in simulaties met grote vervormingen.
MPM kan interacties tussen lichamen in de basis simuleren, maar voor ingewikkelde of
meer preciese interacties moeten speciale methodes ontwikkeld worden. In de literatuur
is een interactie methode voor MPM met een expliciet oplossingsschema beschreven.
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xiv SAMENVATTING

Op basis van deze methode is in dit proefschrift een interactie methode voor het impli-
ciete oplossingsschema ontwikkeld, waarin de snelheidsverandering van knooppunten
van het achtergrondrooster wordt berekend gedurende een iteratieve Newton-Raphson
procedure. Testresultaten laten zien dat de nauwkeurigheid van deze nieuwe methode
overeenkomt met die van het expliciete oplossingsschema. Daarnaast is de benodigde
simulatietijd van de impliciete interactie simulaties over het algemeen korter dan de
expliciete simulaties. Echter, de interactie krachten berekend in deze methode zijn incon-
sistent met de interne krachten waardoor energie niet altijd behouden is. Dit probleem
is nog niet opgelost, maar de gepresenteerde analyse van het probleem is de eerste stap
naar een oplossing. Een uitdaging voor de ontwikkeling van een methode met consistente
interactie en interne krachten, is dat deze methode sensitief is voor spanningsoscillaties,
waardoor onrealistisch hoge interactie krachten berekend kunnen worden.

Met de ontwikkelingen uit dit proefschrift (DM-GC gecombineerd met de interac-
tie methode) zijn succesvolle simulaties gedaan van grond-constructie interacties en
aardverschuivingen. De toevoeging van de interactie methode in DM-GC maakt het
mogelijk om complexe faalmechanismes tijdens afschuivingen te simuleren. De impact
op nabijgelegen gebouwen beschreef verwacht gedrag, zoals schuiven en roteren van
stijve elementen.

Het is aangetoond dat (i) de nauwkeurigheid van MPM is verbeterd door een combi-
natie van verschillende (bestaande en nieuwe) technieken, (ii) technieken ontwikkeld
voor het expliciete oplossingsschema (of andere numerieke methodes) aangepast kunnen
worden voor introductie in MPM met een impliciet oplossingsschema, waarbij de formu-
latie (zoveel mogelijk) consistent blijft, en (iii) door verbetering van diverse aspecten van
MPM, meer realistische simulaties verkregen kunnen worden.

Het werk gepresenteerd in dit proefschrift maakt meerdere stappen in de verdere
ontwikkeling van MPM, wat er toe leidt dat MPM uiteindelijk ook in de praktijk kan
worden gebruikt.
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1
INTRODUCTION

Part of the inhumanity of the computer is that, once it is competently programmed and
working smoothly, it is completely honest.

Isaac Asimov
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2 1. INTRODUCTION

1.1. NUMERICAL METHODS IN SCIENCE AND ENGINEERING

In the early days, the design of structures was based on experience rather than a concrete
knowledge of equilibrium and failure mechanisms. As expected, this commonly leads
to oversized structures or, in the worst case scenario, to inadequate designs causing
failure. It was not until the 18th century that the first work on theoretical soil mechanics
was conceived (Coulomb, 1773). In that work, an introduction to limit equilibrium
theory was developed, in which the now well-known concepts of active and passive
pressure (Rankine, 1857) were presented. Later, during the 20th century, the treatment
of the soil as an engineering material began with the publication of Erdbaumechanik
auf Bodenphysikalischer (Terzaghi, 1925), where the mechanical behaviour of soils was
presented, and in which the knowledge of geology, geophysics and the theory of elasticity
was considered. It can be stated that this is the point in which Geotechnical Engineering
was born. After Terzaghi, many other researchers contributed to the development of
geotechnical engineering, such as Arthur Casagrande (who contributed numerous works
on apparatus and testing techniques for soils), Alec Westley Skempton (who performed
numerous studies on the consolidation and residual strength of clays), and Harry Bolton
Seed (pioneer in the field of Geotechnical Earthquake Engineering). With the increase in
geotechnical knowledge, the level of confidence also grew, allowing the building of larger
structures. Nevertheless, the complexity of the structures reached a point in which hand
calculations were not feasible, and more sophisticated and faster solutions were needed.

Then, starting from the late 1940s, with the appearance of the first computers, and
later between the late 1960s and the early 1980s, with the appearance of the personal
computer, the possibility of performing large numbers of computations was possible.
The implementation of numerical techniques, such as those developed by Newton, Euler,
and Gauss, to study and solve engineering problems was also possible. It was at this
time when techniques such as the Finite Element Method (FEM), the Finite Difference
Method (FDM), and the Finite Volume Method (FVM), were born. Identifying the first
implementation of such techniques using computers is rather difficult, but some of the
early works using FEM, FDM and FVM can be traced to Courant et al. (1943), Turner et al.
(1956), Synge (1957), Argyris & Kelsey (1960), Forsythe & Wasow (1960), Richtmyer & Dill
(1959), Collatz (1960), McDonald (1971) and Samarskii (1965). Each one of these methods
has its own advantages with respect to another, and much interesting research was
produced. Among these techniques, FEM is generally the most used in civil engineering,
due to its robustness, and is the one that will be taken as a reference in the following
chapters, since the material point method (MPM) shares the same continuum mechanics
background as FEM.

1.2. NUMERICAL METHODS FOR LARGE DEFORMATIONS

FEM is nowadays the most used numerical technique and its use extends to a large
number of problems in every branch of engineering. Nevertheless, FEM is far from being
perfect and suffers from several limitations (as does every numerical technique developed
so far). The main limitation in FEM (which has prompted new developments, including
the one studied in this thesis) is the necessity of using elements to simulate the geometry
of the problem analysed. The elements are attached to each other at fixed points, or nodes,
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and without special treatments are unable to separate or handle large deformations. Due
to this inconvenience, the range of engineering problems that can be solved using FEM is
constrained, and new techniques are needed.

One of the first solutions proposed to simulate large deformation problems was to
combine the Lagrangian method (in which each individual node of the computational
mesh follows the associated material particle during motion) and the Eulerian method (in
which the computational mesh is fixed and the continuum moves with respect to the grid)
into one technique, that would later be called the Arbitrary Lagrangian-Eulerian (ALE)
method. Some of the initial work using ALE can be found in Noh (1963), Franck & Lazarus
(1964), and Trulio (1966). Later, this method was used in the FEM context to simulate
mechanical problems (e.g. Belytschko & Kennedy 1978, Belytschko et al. 1982, Ghosh &
Kikuchi 1991, Nazem et al. 2009). Unfortunately, the ALE method has not become widely
adopted, mainly due to its complexity.

Another family of (continuum and non-continuum) methods formulated to simulate
large deformations are those based on the use of particles to discretise the material
domain. Some of these techniques are:

• The Particle Finite Element Method (PFEM) (Idelsohn et al. 2004, Oñate et al. 2004),
which can be seen as an FEM technique with a re-meshing step. In this technique,
the FEM elements which have suffered severe distortion are rebuilt, keeping the
elements as undistorted as possible. This technique is relatively easy to implement
since all FEM developments are already included in PFEM. Some examples of the
implementation and accuracy of the PFEM can be found in Aubry et al. (2005),
Idelsohn et al. (2006), Carbonell et al. (2009), and Papakrivopoulos (2018);

• The Smoothed Particle Hydrodynamics (SPH) method (Lucy 1977, Gingold & Mona-
ghan 1977) and the Vortex Method (Chorin 1973) which are two particle techniques
known as "meshless"methods. This is because structured meshes are not used, and
the differential equations are solved through the use of radial or polynomial basis
functions;

• The Discrete Element Method (DEM) (Cundall & Strack 1979), a powerful technique
which can consider the geometry of particles (Chang 1992, Tavarez & Plesha 2007).
Nevertheless, implementing DEM is not as straightforward as the other large defor-
mation techniques. Its main disadvantage is the difficulty in approximating the real
shape of the particles, especially when particles have sharp edges or large aspect
ratios. Additionally, the computational cost when such geometries are simulated
grows markedly, making DEM almost infeasible.

Finally, a particle technique which has gained particular recognition due to its simpli-
city and robustness is the material point method (MPM). MPM is the evolution of two
particle techniques, the Particle-in-Cell (PIC) method (Buneman 1959, Dawson 1962,
Harlow 1964), and the FLuid Implicit Particle (FLIP) method (Brackbill & Ruppel 1986,
Brackbill et al. 1988). MPM (Sulsky et al. 1994, Sulsky et al. 1995) is a fully Lagrangian
particle method which utilizes the advantages of both Eulerian and Lagrangian methods.
Compared with Eulerian methods, the numerical dissipation normally associated with
the Eulerian approach is reduced, while the complete deformation history of material
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points is tracked. Unlike Lagrangian methods, excessive mesh distortion and element
entanglement are avoided by restoring the background mesh to its original position at
the end of each computational step. Therefore, MPM has obvious advantages in tackling
extreme events such as impact, blast, penetration, perforation, machining, fragmentation,
and multi-phase interaction involving failure evolution (Zhang et al. 2016).

The use of MPM has been growing over the last fifteen years (Fern et al. 2019). Many
of the developments which have been implemented in other numerical techniques have
been successfully reproduced in MPM, such as multi-phase material behaviour, contact
simulation using Lagrangian multipliers, regularization techniques, etc. Moreover, with
the continuous growth of computational power of the new computers, the use of fine
unstructured meshes is becoming feasible. Unfortunately, due to the lack of computers
able to handle a large number of calculations rapidly, techniques capable of ensuring the
accuracy of the results without the need of refining the computational mesh or increasing
the number of material points are needed. Some of these techniques are the generalized
interpolation material point (GIMP) method (Bardenhagen & Kober 2004), the convected
particle domain interpolation (CPDI) method (Sadeghirad et al. 2011), and the B-Spline
MPM (Steffen et al. 2008), which can significantly improved the accuracy of MPM. No-
netheless, most MPM developments still use the explicit scheme, which has numerous
disadvantages compared to the implicit scheme. In this thesis, the work of Wang et al.
(2016), an implicit version of MPM, is taken as the starting point for the developments
here elaborated.

1.3. AIMS AND OBJECTIVES
The aims of this thesis are to study, and mitigate for, numerical inaccuracies occurring
in MPM, to develop novel contact techniques, and to apply the developed techniques to
practical problems in geotechnical engineering. This is achieved by combining new and
existing techniques in MPM. In detail, this thesis is focused on:

• Studying the causes of stress oscillations. To date, most of the inaccuracies in MPM
are attributed to the jumping of material points between elements. Nonetheless,
an exhaustive study dedicated to this problem has not been done;

• Studying the use of mapping techniques. These mapping techniques will be focused
on oscillation problems; in particular, for implicit solution schemes, in which the
stiffness matrix also contributes to the inaccuracy of the results;

• The development of a methodology to simulate contact using the implicit scheme.
To date, existing solutions have mainly been developed for the explicit scheme;
implementation and testing for implicit schemes is needed;

• Studying the use of MPM to simulate soil-structure interaction problems. In parti-
cular, the collision of a vertical cutting against a retaining wall and the penetration
of a rigid footing into a cohesive soil will be investigated;

• The study of landslides.



1.4. OUTLINE

1

5

1.4. OUTLINE
The outline of the remainder of this thesis is as follows:

• Chapter 2: Elaborates the MPM background. The formulations of the static, explicit
and implicit MPM are delineated. The algorithm for each solution scheme is given,
and the accuracy of each technique is tested against several benchmark problems;

• Chapter 3: Elaborates on the inaccuracies in MPM, particularly stress and stiffness
inaccuracies (oscillation), and their elimination or reduction. A description of the
causes of such oscillations is given, and a series of benchmarks are introduced to
measure the oscillations. A combination of mapping procedures and a high order
interpolation technique is used to reduce the oscillations. Finally, insights into the
implementation of this new oscillation reduction technique and its computational
performance are given;

• Chapter 4: Elaborates on the developments required to simulate contact in the
implicit scheme. Existing formulations for the explicit scheme are used as the basis.
Then, a number of benchmarks are introduced to validate the implicit contact
algorithm. Finally, the implicit contact solution is tested against two geotechnical
problems;

• Chapter 5: Demonstrates the applicability of implicit MPM to solve geotechnical
problems. In particular, the simulation of a landslide triggered by construction
procedures is studied;

• Chapter 6: Summarises the main conclusions of the thesis and gives recommenda-
tions for further research.
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MPM BACKGROUND

The derivation of the explicit, static and implicit dynamic MPM equations is presented.
The algorithmic procedures followed in a typical MPM code are presented, and a number of
benchmark problems are introduced to demonstrate the accuracy and advantages of using
MPM.
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2.1. INTRODUCTION
During the late 1950s and early 1960s, the Particle-in-Cell (PIC) method was developed
(Harlow et al. 1956; Harlow 1957, 1964), in which the advantages of grid and particle
methods were combined for fluid mechanics problems. In this method (and the methods
developed later), particles are used to carry some transported variables whereas the mesh
is used to solve the equilibrium equations. Since the original PIC method was not fully
Lagrangian (because some information was stored in the particles and other information
in the element nodes) the FLuid Implicit Particle (FLIP) method was developed (Brackbill
& Ruppel 1986, Brackbill et al. 1988). In the FLIP method, the particles carry all the
information related to the fluid. As a consequence of this change, the FLIP maintained the
advantages of the original PIC but eliminated the major source of numerical inaccuracies.
Later, due to the necessity of including history-dependent effects (such as stresses and
plastic strains in the simulations), MPM was developed. MPM (Sulsky et al. 1994, Sulsky
et al. 1995) is a method in which the mechanical framework is similar to the FEM. In MPM,
two discretisations are implemented: one is a finite element (FE) mesh covering the entire
computational space (whereas in FEM the mesh models the shape of the structure), and
the other is a set of (material) points, which discretises the body (or bodies) analysed. The
mesh covering the computational space is used to solve the equation of equilibrium (in
term of accelerations, velocities or displacements). The material points perform the same
role as FEM Gauss integration points, i.e. stress/strain recovery and integration to form
nodal equations, while carrying state variables of the bodies throughout the simulation,
e.g. kinematics, stresses, properties. At this point, MPM and FEM characteristics are
almost the same. Nevertheless, since in MPM all variables are stored at the (material)
points, it is possible to reset the FE mesh to its original position to avoid large mesh
distortions, and, using the data stored in the points and their new positions, a new
solution step (i.e. set of equations) can be formed. This MPM attribute allows the material
points to move large distances through the mesh (due to the accumulation of relatively
small displacements every solution step), making possible the solution of a large variety of
problems. Besides simulating large deformations, MPM also has the following advantages:

• Since MPM is formulated similarly as FEM, the majority of methods developed in
FEM can be easily included in MPM;

• It allows the use of several constitutive relations;

• Due to the partition of unity property of the shape functions (SFs), the conservation
of mass is guaranteed;

• It allows the use of multiple bodies which can interact via contact conditions.

It has been demonstrated that MPM can be used to simulate and study a large variety
of problems. As an example, MPM has been used in computer graphics (Stomakhin
et al. 2013), aerospace (Gao et al. 2018, Mason et al. 2014), and medicine (Chong et al.
2017) professions to simulate snow, fluid sediment mixture flow, gas flows at high speeds,
and body injuries. Regarding geomechanical implementations, MPM has been used to
simulate slope stability problems and landslides (Beuth et al. 2008, Andersen & Andersen
2010, Mast et al. 2014, Soga et al. 2015, Alonso et al. 2015, Bandara & Soga 2015, Wang et al.
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2016a, González Acosta et al. 2018, Woo & Salgado 2018, Müller & Vargas 2019), shallow
foundation problems (Sołowski & Sloan 2015), anchor pull-out (Coetzee et al. 2005),
hydro-geotechnical problems (Abe et al. 2013, González Acosta et al. 2019), tunnelling
excavation (Cheng et al. 2015, Fern 2019) and pile installation (Phuong et al. 2016, Lorenzo
et al. 2017), as well as many more applications.

2.2. MPM DISCRETISATION AND COMPUTATIONAL STEPS
To demonstrate the implementation of MPM, two examples are used. The first example
illustrates the discretisation used in MPM (Figure 2.1) and the second illustrates the
solution steps (Figure 2.2). Figure 2.1a shows two structural elements (bodies), i.e. a
foundation lying on the soil surface. It is seen that, when FEM is used (Figure 2.1b), the
mesh discretises both structural elements, which interact through common nodes. In
contrast, using MPM (Figure 2.1c), the mesh covers the entire computational space in
which the bodies are able to move and interact, and the material points discretise the
bodies. Since equilibrium is computed at the nodes, the interaction between the bodies
is still occurring at some common nodes (as in FEM), but they must be updated every
solution step.

(a)

(b)

elements

(c)

elements mp's

Figure 2.1: a) Example geotechnical problem, b) FEM discretisation, and c) MPM discretisation
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Next, the solution steps followed in typical FEM and MPM are studied using a beam
fixed at the left end and carrying a load at the right end. Figure 2.2 shows the beam
deformation after one step in the analysis using FEM and MPM. The red crosses inside
each mesh element represent the (FEM) Gauss integration points and the (MPM) ma-
terial points. Additionally, the shaded elements indicate the activated elements used
for calculations when the MPM scheme is used. Figures 2.2a and 2.2b show the initial
phase, in which the values from the Gauss or material point are integrated to form nodal
equations. Since external loads (or tractions) are also part of material point information,
they should be placed at the nodes via SFs. After nodal integration, a solution phase is
performed (Figures 2.2c and 2.2d). In this step, the nodes move (or elements deform)
due to the external loads and the increment of internal forces. This movement reduces
as the internal forces equilibrate the external loads, and equilibrium is reached when
the deformations are small enough. The elements around the beam are highly stretched
(when using MPM), but this is not a problem, since these elements are not part of the
solution and they do not contribute to the updating of material point internal variables.

At this point, MPM is identical to FEM; the same steps have been followed and the
same solution has been obtained. In Figures 2.2e and 2.2f, equilibrium has been reached,
and the next load increment must be applied. When using FEM, the next load increment
can be applied immediately since the Gauss point variables and the mesh nodes remain
unchanged after equilibrium. On the other hand, when using MPM, an intermediate step
is performed, in which the material point variables (e.g. position, velocity, acceleration)
are updated, followed by the restoration of the mesh to its original position. Since the
mesh is restored, the material points end up inside a new set of elements, and an activa-
tion procedure is initiated, in which the new set of elements are activated, including their
nodal connectivity and boundary conditions. After these steps, the next load increment
can be applied and the new solution can be computed. In Figure 2.2f, the activated
elements make up an irregular shape, no longer resembling or representing the shape
of the beam. Therefore, using this new arrangement of active elements to compute the
beam response can cause numerical inaccuracies, but this problem will be discussed
later.
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(a)
(b)

(c) (d)

(e)
(f)

Figure 2.2: a) FEM integration phase, b) MPM integration phase, c) FEM solution phase, d) MPM solution phase,
e) next FEM solution step, and f) MPM convection (upgrade) phase

2.3. MPM FORMULATION
The solution to the equation of equilibrium using MPM (or FEM) can be achieved using
the explicit scheme (in terms of nodal accelerations) or the implicit scheme (in terms of
nodal displacements). The implicit scheme is known to be unconditionally stable and
has no restriction on the time step other than that required for accuracy. The explicit
approach, on the other hand, is known for being conditionally stable, which means that a
small time step is needed to maintain the accuracy of the solution (Lindgren & Edberg,
1990).

The explicit scheme is the most used in MPM, since it is relatively easy to implement.
The implicit scheme is not as developed as the explicit scheme despite its advantages;
mainly due to the construction and storage of large matrices, which (i) adds complexity
to its implementation and (ii) increases the computational time during the solution step.
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The static scheme which is also relatively frequently used, is also an implicit scheme, but,
in this case, the accelerations are excluded from the formulation, which means that the
kinematics are not part of the solution.

In this chapter, the formulation of each MPM scheme is presented (for a single body).
First, the explicit formulation is elaborated followed by the implicit formulation. The
conservation properties of the implicit MPM are presented. A summary of the algorithm
for each technique is added to illustrate the structure of the codes used. In order to
demonstrate the performance of the MPM formulations, three benchmark problems
are simulated and compared to analytical solutions or the Updated Lagrangian FEM
(UL-FEM), which is a version of FEM that formulates the discrete equations in the current
nodal configuration (i.e. the position of nodes is updated after each solution step). Note
that the formulation presented is limited to small strains, although large displacements are
allowed. For a detailed elaboration of the equations, the reader is directed to Bathe (2006),
Belytschko et al. (2013), Sulsky et al. (1995), Wang et al. (2016b), and González Acosta et al.
(2020).

2.3.1. EXPLICIT MPM
The equations of mass and momentum conservation are

dρ

dt
+ρ∇·v = 0 (2.1)

ρa =∇·σ+ρb (2.2)

where ρ is the mass density, v is the velocity vector, t is time, a is the acceleration vector,
σ is the Cauchy stress tensor, b is the body force (which in this case accounts only for
gravity), and ∇· denotes the divergence of a vector. Besides the conservation laws, stress-
strain laws should hold. Considering small-strain theory, the strain increment computed
from the velocities, and the resulting stresses, are given as

dε= 1

2

(∇v+∇vT)
dt (2.3)

dσ= Ddε (2.4)

where ε represents the strain increment vector, ∇ indicates the gradient operator, and D
is the material elastic matrix. Furthermore, the total strain increment (ε) can be divided
into two parts for non-linear material behaviour; the elastic increment and the plastic
increment (i.e. ε=εe +εp). Assuming dY

dσ as the rate of change of the yield function for
plastic behaviour, then

dεp = dλ
dY

dσ
(2.5)

where dλ is a scalar defining the magnitude of the plastic strain increment (which must
satisfy the condition dY = 0, where Y is the yield function).

Using the principle of virtual power, the weak form of eq. 2.2, considering traction,
is found by taking the product of a test function with the equation of conservation of
momentum and integrating over the current configuration:
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∫
V
ρaδvdV =

∫
V
σ∇δvdV+

∫
V
ρbδvdV+

∫
Γ

ssδvdΓ (2.6)

where δv is the test function, ss is the traction load at the body surface Γ (i.e. boundary
condition), and V is the current body volume. Then, since in MPM two discretisations are
used (i.e. material points representing the computational body and elements representing
the computational space), the integrals in 2.6 can be expressed as nodal equations via the
summation of material point values in the elements, leading to the (element) equation

δv̄
nmp∑
p=1

ρpNT (
xp

)
N

(
xp

)
ā |J|Wp =

δv̄

[
−

nmp∑
p=1

BT(xp)σp |J|Wp +
nmp∑
p=1

ρpNT (
xp

)
b |J|Wp +

bmp∑
p=1

NT(xp)ss
pΓ

]
(2.7)

where ρp is the material point mass density, N is the element matrix of shape functions
(SFs), B represent the strain-displacement matrix, ā is the vector of nodal accelerations,
xp is the position of each material point, σp is the material point stress tensor, J is the
Jacobian matrix, Wp is the material point integration weight (which is dimensionless and
equal to the volume of the material point in isoparametc parent element coordinates), ss

p
is the material point traction force, nmp is the number of material points p, and bmp is
the number of boundary material points having a concentrated traction load. Note that
the shape functions are used to interpolate the material point variables to the element
nodes (i.e. Nδv̄

(
xp

)= δv
(
xp

)
, where δv̄ is the vector of nodal test function velocities)

and the volume of each material point is represented by the Jacobian determinant and
the material point weight (i.e. vp = |J|Wp , where vp is the material point volume), which
results from implementing the quadrature rule. Finally, since the element test function
( δv̄) in eq. 2.7 should hold for any arbitrary virtual velocity that satisfies all boundary
conditions, it vanishes from eq. 2.7 since δv̄A = δv̄B, in which A and B represent the left
and right side of eq. 2.7, respectively. Then eq. 2.7 reduces further and may be expressed
for an element |elem using matrix notation as

m |elem ā |elem= Fext |elem −Fint |elem (2.8)

where

m |elem=
nmp∑
p=1

ρpNT(xp)N(xp) |J|Wp (2.9)

Fext |elem=
nmp∑
p=1

ρpNT(xp)b |J|Wp +
bmp∑
p=1

NT(xp)ss
pΓ (2.10)

Fint |elem=
nmp∑
p=1

B(xp)σp |J|Wp (2.11)

In eq. 2.8 and 2.9, m represents the elemental consistent mass matrix, which can increase
the solution time. Hence, the element lumped mass matrix is used here, and is computed
using the “row-summation” technique as
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mii =
∑

mij (2.12)

Furthermore, the lumped mass matrix can be replaced by an element mass vector
(m̄i = mii). This replacement improves the computational time, since matrix operati-
ons (i.e. matrix inverse computation) are replaced by linear operation. Finally, note that
the use of m̄ is particular to the explicit scheme, whereas in the implicit scheme m will be
used.

2.3.2. NODAL INTEGRATION, SOLUTION AND UPDATE PHASE (EXPLICIT )
At the beginning of each solution step, state variables are mapped to the nodes. For
example, the velocity at node i is computed as

vt
i =

∑nmp
p=1 ρpvt

pNi(xp) |J|Wp∑nmp
p=1 ρpNi(xp) |J|Wp

(2.13)

where Ni is the nodal SF, and the summation is over all the material points in the ele-
ments surrounding the node. After nodal mapping and integration to form the element
equations, an assembly operation over the mesh is undertaken (as in FEM), yielding
global vectors and matrices at time t, i.e. the global mass matrix mt, the global external
force Fext,t and global internal force Fint,t, which can be solved to find the global accele-
ration vector. Since the vector of nodal masses is used, the solution of the equation of
equilibrium (in terms of accelerations) is computed as

āt = Fext,t −Fint,t

m̄t (2.14)

and, using the Euler time integration technique, material point variables are updated at
time t+∆t as

vt+∆t
p = vt

p +N(xp)āt |elem ∆t (2.15)

xt+∆t
p = xt

p +vt+∆t
p ∆t (2.16)

σt+∆t
p = Dp∇N(xp)v̄t+∆t |elem +σt

p (2.17)

where σt
p is the previous material point stress. Furthermore, the vector of (element) nodal

velocities at time t+∆t in eq. 2.17 is computed from the material point velocities at time
t+∆t as

v̄t+∆t |elem=
∑nmp

p=1 mpvt+∆t
p N(xp)∑nmp

p=1 mpN(xp)
(2.18)

where mp is the material point mass. Note that this vector of nodal velocities is computed
from the material point velocities at time t+∆t rather than using the Euler time integration
method (i.e. v̄t+∆t = v̄t + āt+∆t∆t) to ensure conservation of momentum.
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2.3.3. IMPLICIT MPM
To derive the equation for implicit equilibrium, the principle of virtual work is used. This
states that the difference between the internal and external work should be equal to zero
(Π= Wint −Wext), and is written as

Π= 1

2

∫
V
εTDεdV−

(∫
V

uTρ(b−a)dV+
∫
Γ

uTssdΓ

)
(2.19)

where u represents the continuous displacement field. In the second term on the right
hand side of eq. 2.19, the inertia term (i.e. a) is included as part of the body forces using
D’Alembert’s principle. Then, by evaluatingΠδ= 0 with respect to the displacements and
knowing that δε2 = 2εδε (Davies 2011, Bathe 2006), eq. 2.19 becomes∫

V
δεTDεdV =

∫
V
δuTρ (b−a)dV+

∫
Γ
δuTssdΓ (2.20)

where δu and δε represent the test function in terms of displacements and strains. Then,
following similar procedures as in eq. 2.7 and expressing the total material point stresses
as functions of the previous material point stresses

(
i.e.σ=σ0 +∆σ)

, eq. 2.20 is written
as [

nmp∑
i=1

BT(xp)DpB(xp) |J|Wp

]
ū−

nmp∑
i=1

ρpNT(xp)N(xp)ā |J|Wp =

−
nmp∑
i=1

BT(xp)σt |J|Wp +
nmp∑
i=1

ρpNT(xp)b |J|Wp +
bmp∑
p=1

NT(xp)ssΓ (2.21)

where B is used to interpolate the virtual strains using virtual nodal displacements,
i.e. Bδū

(
xp

)= δε
(
xp

)
, where δū are the virtual displacements, σ0 represents the vec-

tor of initial stress, and ū represents the vector of (element) nodal displacements, which
is obtained from the interpolation of strains, i.e. Bū =ε. As for eq. 2.8, the previous
equation can be expressed in matrix form as

K∆ū |elem +mā |elem= Fext |elem −Fint |elem (2.22)

where the element stiffness matrix is

K |elem=
nmp∑
p=1

BT(xp)DB(xp) |J|Wp (2.23)

and Fext |elem and Fint |elem are similar to eq. 2.10 and eq. 2.11, respectively.

2.3.4. STATIC SCHEME
To obtain the static scheme, the inertia term (i.e. ma) in eq. 2.19 should be ignored, then
the equation of equilibrium reduces to

K∆ū |elem= Fext |elem −Fint |elem (2.24)

which represents quasi-static equilibrium. Finally, details of the matrices used in previous
sections are elaborated in Appendix A
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2.4. NEWMARK’S TIME INTEGRATION SCHEME
By using the Newmark (1959) time integration technique, which is recognised to be highly
effective (Bathe 2007), eq. 2.22 can be computed as a function of time. Velocities and
displacements at time t+∆t are computed as

v̄t+∆t = v̄t + [
(1−γ)āt +γāt+∆t]∆t (2.25)

ūt+∆t = ūt + v̄t∆t+
[(

1

2
−α

)
āt +αāt+∆t

]
∆t2 (2.26)

where ūt+∆t, v̄t+∆t, and āt+∆t are the respective vectors of displacements, velocities and
accelerations at time t+∆t, and α and γ are time stepping parameters that are chosen to
be α = 0.25 and β = 0.5 (giving a constant-average-acceleration approach). Then, isolating
āt+∆t from equation eq. 2.26 leads to

āt+∆t =
(

4ūt

∆t2 − 4v̄t

∆t
− āt

)
(2.27)

where ∆ū = ūt+∆t + ūt is the vector of total displacements as a function of the incremental
and initial displacements. Then, substituting eq. 2.27 into eq. 2.25 results in

v̄t+∆t = 2ūt

∆t
−vt (2.28)

Finally, substituting eq. 2.27 into eq. 2.22 and adding the Newton-Raphson iteration
procedure, the equilibrium equation is written as(

Kt + 4mt

∆t2

)
k∆ū =(k−1)

(
Fext,t+∆t −mt

(
4(k−1)ūt

∆t2 − 4v̄t

∆t
− āt

)
−(k−1) Fint,t+∆t

)
(2.29)

or

K̄k∆ū =(k−1)
(
Fext −Fkin −Fint

)t+∆t
(2.30)

where

K̄t = Kt + 4mt

∆t2 (2.31)

and

kFkin,t+∆t = mt

(
4(k−1)ūt

∆t2 − 4v̄t

∆t
− āt

)
(2.32)

In the previous equations, K̄ represents a modified stiffness matrix, Fkin are the kinetic
forces, and the left superscript k refers to the Newton-Raphson iteration step, which can
be stopped after the desired convergence criterion has been reached, which in this thesis
is computed as (Guilkey & Weiss 2003)∥∥k∆ū

∥∥∥∥kū
∥∥ < tol (2.33)

where tol is the tolerance value. There are several alternative convergence criteria which
could be used, but this has been selected due to simplicity. It is noted that this conver-
gence criterion is susceptible to false convergence due to iteration stagnation.
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2.4.1. NODAL INTEGRATION AND UPDATE PHASE (DYNAMIC)
The integration of nodal external loads, mass, velocity and stiffness has already been
shown in eq. 2.10, 2.12, 2.13 and 2.23, respectively. In addition, in contrast to the explicit
scheme, nodal accelerations are needed and are computed as

āt
i =

∑nmp
p=1 ρpat

pNi(xp) |J|Wp∑nmp
p=1 ρpNi(xp) |J|Wp

(2.34)

After assembling the stiffness and mass matrices (eq. 2.31), the equilibrium in terms
of displacements is computed (eq. 2.30) and the vectors of internal forces, nodal accele-
rations and kinetic forces are updated every iteration step using eq. 2.11, 2.27 and 2.32,
respectively. Finally, after the desired tolerance is reached (i.e. the change of incremen-
tal displacements is nearly zero), the updates of material point acceleration, velocity,
position and stress are computed as

at+∆t
p = N(xp)āt+∆t |elem (2.35)

vt+∆t
p = vt

p +
[

N(xp)āt+∆t |elem +at
p

]
2

∆t (2.36)

xt+∆t
p = xt

p +N(xp)ū |elem (2.37)

σt+∆t
p = DB(xp)ū |elem +σt

p (2.38)

2.5. CONSERVATION OF MASS AND MOMENTUM IN THE IMPLI-
CIT MPM

In MPM, because of the partition of unity of the SFs, mass is automatically conserved in
mapping:

nn∑
i=1

mi =
nn∑
i=1

nmp∑
p=1

mpNi(xp) =
nmp∑
p=1

mp (2.39)

where mp is the material point mass, which is computed as mp = ρp |J|Wp. Regarding the
conservation of momentum, the method uses the FEM approach to solve the equation of
motion on the nodes, which conserves momentum, and therefore it is the updating of
the material point momentum that is considered here. The total linear momentum of a
material point at the end of a time step is determined considering Newmark’s scheme,
and is computed as

nmp∑
p=1

mpvt+∆t
p =

nmp∑
p=1

mp

[
vt

p +
1

2

[
at

p +
nn∑
i=1

āt+∆t
i Ni(xp)

]]
(2.40)

In MPM, the total nodal momentum and change of momentum are equal to the total
material point momentum and change of momentum, due to the partition of unity of the
SF, as
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nn∑
i=1

miv̄
t
i =

nn∑
i=1

nmp∑
p=1

mpvt
pNi(xp) =

nmp∑
p=1

mpvt
p (2.41)

and
nn∑
i=1

miā
t
i =

nn∑
i=1

nmp∑
p=1

mpat
pNi(xp) =

nmp∑
p=1

mpat
p (2.42)

Substituting eq. 2.41 and eq. 2.42 into eq. 2.40, and rearranging, leads to

nmp∑
p=1

mpvt+∆t
p =

nmp∑
p=1

mpvt
p +

1

2
∆t

nmp∑
p=1

mpat
p+

2
nn∑
i=1

mi
∆ūi

∆t
−2

nn∑
i=1

miv̄
t
i −

1

2
∆t

nmp∑
p=1

mpat
p (2.43)

which reduces further to
nmp∑
p=1

mpvt+∆t
p = 2

nn∑
i=1

mi
∆ūi

∆t
−

nn∑
i=1

miv̄
t
i (2.44)

Considering that the equation of equilibrium has reached convergence (the right-hand
side of eq. 2.30 reduces to zero within a specified tolerance), the following is true:

Fext,t+∆t
i −mt

i

(
4∆ūt+∆t

i

∆t2 − 4v̄t
i

∆t
− āt

i

)
−Fint,t+∆t

i = {0} (2.45)

Then, considering an isolated system, i.e. where momentum would not be altered by
external forces, it can be stated that

Fext,t+∆t = {0} (2.46)

At the beginning of the time step, for an isolated system, there is no net rate of change of
momentum:

nmp∑
p=1

mpat
p =

nn∑
i=1

miā
t
i = {0} (2.47)

Moreover, acknowledging that
∑nn

i Bi(xp) = {0}, then

Ft+∆t
i,int =−

nn∑
i=1

nmp∑
p=1

σpBi(xp) |J|Wp = {0} (2.48)

Summing eq. 2.45 over all the nodes, and substituting in eq. 2.46 - 2.48, yields

nn∑
i=1

mi
4∆ūi

∆t2 −
nn∑
i=1

mi
4∆v̄i

∆t
= {0} (2.49)

Finally, substituting eq. 2.49 into eq. 2.44 leads to the conservation of momentum for the
isolated system as

nmp∑
p=1

mpvt+∆t
p = 2

nn∑
i=1

miv̄
t
i −

nn∑
i=1

miv̄
t
i =

nmp∑
p=1

mpvt
p (2.50)
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2.6. IMPLEMENTATION OF MPM
In Table 2.1, the main steps followed in the explicit MPM are shown, and several minor
steps have been ignored (e.g. setting vector and matrix sizes, upgrading material point
local coordinates, activation of elements, initialization of nodal values, etc.) to keep the
structure of the steps followed as simple as possible. As can be seen, the steps followed
in this scheme are relatively few and large matrices are not constructed. As previously
mentioned, this simplicity is what makes the scheme attractive to many engineers.

Table 2.1: Steps followed in the explicit MPM scheme

Integrate nodal mass and velocity: m̄t and v̄t

Integrate nodal external and internal loads: Fext,t and Fint,t

Estimate nodal accelerations: āt

Update material point velocity at time t+∆t: vt+∆t
p

Update nodal velocities: v̄t+∆t

Evaluate material point trial stresses: σtrial
p

Loop 1: if Y(σtrial
p ) > 0: return stresses to the yield surface Y

Plastic iteration loop

IF Y(σtrial(t+∆t)
p ) = 0: EXIT Loop 1

END Loop 1

Update material point stresses σt+∆t
p =σtrial(t+∆t)

p

Update material point positions: xt+∆t
p

In Table 2.1, the trial stress is computed as in eq. 2.17, and then it is tested to determine
if plasticity is encouraged. If plasticity occurs, several plastic iterative steps must be
followed to return the stresses to the elastic region. These iterative plastic steps are
indicated in the table but not elaborated, since they are outside the scope of this work.
The reader is directed to Sloan (1987) and Sloan et al. (2001), where the plastic procedures
implemented in this thesis are elaborated.

In Table 2.2, the steps followed in the static scheme are shown. In this solution scheme,
the nodal displacements (ū) cannot be computed directly as the nodal accelerations are
in the explicit scheme. Instead, an additional numerical procedure must be employed to
compute the nodal displacements as a function of the nodal loads and stiffness. Similar
to the plastic iterative steps, elaboration of this numerical procedure is out of the scope of
this work. Nevertheless, a detailed description of some of these procedures can be found
in Smith et al. (2013). Finally, the vectors and matrices which remain the same during
the iterative solution procedure are kept outside the loop. Including these elements in
the iterative loop would not have an impact on the accuracy of the solution, but would
increase the computational time. In Table 2.3, the steps followed in the implicit scheme
are shown. In this scheme, the steps followed are similar to the static scheme, but with
the difference that the kinematics are included as part of the solution.
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Table 2.2: Steps followed in the static MPM scheme

Integrate nodal external loads: Fext

Integrate nodal stiffness: K

Loop 1: over the max number of iteration steps

Integrate nodal internal loads: k−1Fint

Estimate nodal displacements: kū

Evaluate material point trial stresses: kσtrial
p

Loop 2: if Y(σtrial
p ) > 0: return stresses to the yield surface Y

Plastic iteration loop

IF Y(σtrial
p ) = 0: EXIT Loop 2

END Loop 2

Update material point stresses σp =σtrial
p

IF converge or max number of iterations is reached: EXIT Loop 1

END Loop 1

Update material point positions: xp

Table 2.3: Steps followed in the implicit MPM scheme

Integrate nodal mass, velocity and acceleration: mt, v̄t, āt

Integrate nodal external loads: Ft
ext

Integrate nodal stiffness: K̄t

Initialize total displacement vector: ū = 0

Loop 1: over the max number of iteration steps

Integrate nodal internal loads: k−1Ft+∆t
int

Integrate nodal kinetic loads: k−1Ft+∆t
kin

Estimate nodal displacements: k∆ūt+∆t

Update nodal accelerations: kāt+∆t

Evaluate material point trial stresses: kσtrial
p

Loop 2: if Y(σtrial
p ) > 0: return stresses to the yield surface Y

Plastic iteration loop

IF Y(σtrial(t+∆t)
p ) = 0: EXIT Loop 2

END Loop 2

Update material point stresses σt+∆t
p =σtrial(t+∆t)

p

IF converge or max number of iterations is reached: EXIT Loop 1

END Loop 1

Update material point accelerations: at+∆t
p

Update material point velocities: vt+∆t
p

Update material point positions: xt+∆t
p
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2.7. EVALUATION OF MPM
To demonstrate the potential and limitations of MPM, three benchmark problems are
studied. These problems are simulated using the schemes previously described (if ap-
plicable), followed by a discussion of the results obtained.These problems are selected
to investigate different aspects of MPM, such as large displacements, energy conserva-
tion, and accuracy of the results. Also, some of the main limitations in MPM and early
treatments are introduced. The first benchmark investigated is a block which falls due
to gravity loading and bounces over a rigid surface. This problem is introduced to de-
monstrate the conservative qualities of MPM, using plots of the material point’s position,
velocity and energy conservation. The second benchmark is the simulation of a 1D bar
(using 2D elements) undergoing compression due to an increment of the gravity force.
The objective of this benchmark is to show that, independently of the observed realistic
deformation of the bar, the results are far from the real results. These inaccuracies are
demonstrated by comparing MPM results against those obtained with UL-FEM and the
analytical solution. Finally, the third benchmark consists of a vertical cutting, which
fails due to its self-weight and the low strength of the material. The importance of this
problem is to demonstrate the feasibility of simulating geotechnical problems including
post-failure behaviour. The results for the vertical cutting are compared to the FEM
results, and the similarity of the results is promising.

In this thesis, the consequences of using different (i) numbers of material points,
(ii) element sizes, and (iii) time steps is not extensively studied. The main objective in
this work is to understand MPM, its advantages and sources of inaccuracies, in order
to develop adequate improvements. Most of the problems studied use conventional
mesh discretisation (i.e. equal-sized four noded structured meshes), with four material
points equally distributed inside the elements (i.e. initially located at the local coordinates
ξ±0.5 and η±0.5), and reasonably small time steps (i.e. time steps that are large enough
to return accurate results in less computational time). Finally, all the benchmark and
problems solved in this and the following sections use the plane strain condition and do
not consider damping.

2.7.1. FREE FALL BLOCK

This problem consists of a block made up material points which is in free-fall due to the
gravity force, and bounces over a rigid surface. Figure 2.3a shows a sketch of the problem,
and Figure 2.3b shows the MPM discretisation including the boundary conditions. In this
simulation, the background mesh is constructed using elements of size ∆x =∆y = 0.20 m,
and the block is modelled by placing material points inside 25 elements, forming a square
of 1 m side length. The distance between the block and the rigid surface is h2 = 0.8 m. The
behaviour of the material is linear elastic, and the parameters used are Young’s modulus,
E = 1000 kPa, and Poisson’s ratio, υ = 0.45. The material unit weight and gravity load are,
γblock = 15 kN/m3 and g = 10 m/ss, respectively. The time step used in the explicit and the
implicit schemes is ∆t = 1.0×10−5 s. The use of the same time step in the explicit and the
implicit schemes is for comparison purposes. Note that the rigid surface is considered by
fixing the boundary nodes, while the nodes at the left and right sides of the computational
domain are fixed only in the horizontal direction.
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(a)

w1

h1

h2

(b)

Figure 2.3: a) Sketch of the free fall block, and b) MPM discretization considering boundary conditions

(a) (b) (c)

(d) (e)

Figure 2.4: Position of the falling block using the explicit scheme after a) 0.0, b) 0.28, c) 0.4, d) 0.5, and e) 0.78
seconds

Figure 2.4 shows the explicit simulation of the falling block throughout 0.8 s of simu-
lation. It is observed that the material points are able to move a relatively significant
distance, crossing several elements without experiencing perturbations. Moreover, it is
observed that at time t = 0.78 s (Figure 2.4e), the block is able to reach its original position,
which means that the energy in the system is conserved. Note that the bouncing occurs
due to the fixed boundary, which prevents the displacement of the block, causing the
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development of strain energy which consequentially pushes the block upwards. Contact
begins as soon as a material point enters an element where a boundary condition is
applied.

Figure 2.5 shows the average displacement of the block using the explicit and implicit
schemes, in which the positions of the block illustrated in Figure 2.4 are indicated. Com-
pared to the results shown in Figure 2.4, these results are extended until the block has
bounced three times. It is seen that both solutions are identical and, after each bounce,
the block almost recovers its original position, demonstrating energy conservation. Figure
2.6 shows the mean velocity of the block. Again, the results of the explicit and implicit
solutions are similar. Moreover, it is observed that the maximum (absolute) velocities
reached before and after each bounce (vmax and −vmax, respectively) are almost equal
(as expected), and that these values remain constant at each bounce. Finally, in Figure
2.7, the plot of the total energy (TE) is shown. In this case, TE is computed by adding the
kinetic energy (KE), the potential energy (PE), and the strain energy (SE). Each energy can
be computed as
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Figure 2.5: Position of the block throughout the simulation using the explicit and the implicit scheme, where
labels a-e indicate the results shown in Figure 2.4

KE = 1

2

nmp∑
p=1

mpv2
p (2.51)

PE = g
nmp∑
p=1

mphp (2.52)

SE = 1

2

nmp∑
p=1

Vpσpεp (2.53)

where hp is the distance between the material point and the rigid surface. Note that the
material point volume and velocity are depicted using an uppercase V and a lowercase
v, respectively. It is seen that the results using the explicit and implicit schemes are not
equal, and that the energy with the implicit scheme reduces a fraction after each bounce
(B.1, B.2, and B.3, respectively). Since this loss of energy is small, its effect is not evident
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in Figure 2.5. Also, it is assumed that this loss of energy is caused by using the constant-
average-acceleration approach in a non-linear event (contact), as this causes numerical
instability (as studied in Deuflhard et al. 2008).
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Figure 2.6: Velocity of the block throughout the simulation using the explicit and the implicit scheme
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Figure 2.7: Energy conservation of the free fall block using the explicit and the implicit scheme

2.7.2. 1D COMPRESSION BAR

This problem consists of a 1D bar which is compressed due to an increase of the gravity
force. Figure 2.8 shows a sketch of the bar including the boundary conditions. The bar
is constructed using square elements of size ∆x =∆y = 0.25 m. The nodes at the bottom
are fully fixed, while the nodes at the left and right vertical boundary are fixed in the
horizontal direction to prevent lateral displacements. The dimensions of the bar are a
height of h1 = 5 m and a width of w1 = 0.25 m. The behaviour of the material is linear
elastic, and the parameters used are a Young’s modulus of E = 1000 kPa and a Poisson’s
ratio of υ = 0.35. The bar is initially loaded using a material unit weight of γbar = 15 kN/m3

and an initial gravity force of 1 g. The compression of the bar is achieved by adding gravity
load increments every step of∆g = 1.0×10−3 g (for the static scheme), and∆g = 1.0×10−5
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g (for the dynamic schemes). The time step used in the dynamic scheme is∆t = 1.0×10−3

s.

Figure 2.8: Initial condition of the bar problem

Figure 2.9 shows the deformation of the bar during the simulation and using the static
scheme. Figure 2.9a show the initial configuration of the bar, in which the gravity load
is equal to 1 g. Figures 2.9b and 2.9c show the bar after strains of 10 and 20 %, in which
the gravity loads are 27 g and 49 g, respectively. These results appear to be realistic due
to the almost uniform distribution of the material points. Figure 2.10 shows the vertical
displacement of the material point at the top of the column (labelled top mp), for each
solution scheme. The vertical dotted line indicates the instant at which the top material
point crosses an element boundary. It is seen that the movement of the top material point
increases with gravity, and that the results between the schemes are similar.

(a)

1g

(b)

27g

(c)

49g

Figure 2.9: 1D bar after a deformation of a) 0, b) 0.5, and c) 1.0 m. Note the gravitational load in g next to each
figure
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Nonetheless, after including the results using UL-FEM, it is seen that MPM results
are highly inaccurate. In Figure 2.11, the results using UL-FEM are added to the MPM
results of Figure 2.10. It is seen that, initially, the results are the same. However, when
the element crossing problem begins, the MPM results deviate strongly from UL-FEM
results and, at the end of the simulation, the deformation is ≈ 50% below that with UL-
FEM. Furthermore, Figure 2.12 shows the vertical stress of a material point located close
to the centre of the bar (labelled centre mp) compared to the vertical stress of a Gauss
point located initially at the same position. It is seen that the stresses are oscillating (i.e.
deviating from the real stresses) during the entire simulation, and that this oscillation
increases due to the element boundary-crossing problem, where the material point stress
experiences large increments and decrements (with the stress at some instants being
equal to zero).
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Figure 2.10: Top material point deformation using the static, the explicit and the implicit scheme
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Figure 2.11: Top material point deformation including the UL-FEM solution
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The inaccuracies observed in Figures 2.10-2.12 are caused mainly by the use of bi-
linear FE SFs (the properties of which are investigated in the next chapter). Moreover,
these inaccuracies grow with the element boundary-crossing problem. In Wang (2017)
these problems have been reduced by using the following solutions: (i) adding a back-
ground stiffness (i.e. each activated element has a minimum constant stiffness close
to 5% of the initial element stiffness), and (ii) using incremental stresses rather than
accumulated stresses (i.e. the MP stresses obtained at the end of each solution step are
erased, starting the new solution step with zero MP stresses). Using these simplifications,
the errors caused by using the inadequate positions of the material points to perform
nodal integration can be partially removed. However, it should be noted that the problem
is then not identical to the original problem. In Figures 2.13 and 2.14, the results using
UL-FEM and the simplified MPM are plotted. It is clear that, compared to the previous
results, the results are improved significantly. Nevertheless, the use of the simplified MPM
is limited to the static scheme, and its use with dynamic schemes is not possible in many
cases.
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Figure 2.13: Vertical displacement of the top material point using UL-FEM and the simplified MPM
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Figure 2.14: Vertical stress of the centre material point using UL-FEM and the simplified MPM

2.7.3. VERTICAL CUT

The failure of a 2D elasto-plastic vertical cutting has been simulated using a linear elas-
tic von Mises soil incorporating linear post-peak softening, as described in Wang et al.
(2016a). The cutting has been loaded by gradually increasing the gravity load at a rate
of ∆g = 0.01g/s, and the failure occurs due to the low strength of the material. Figure
2.15 shows the boundary conditions and discretisation of the vertical cut. The cut has a
height of H = 2.5 m and a length of L = 6.0 m. The size of the elements are ∆x =∆y = 0.10
m, and each element contains(initially) four material points that are equally distributed.
The material parameters are Young’s modulus, E = 1000 kPa, Poisson’s ratio, υ= 0.35, and
soil unit weight, γsoil = 20 kN/m3. The strength parameters are peak cohesion, cp = 10
kPa, residual cohesion, cr = 5 kPa, and softening modulus, Hs =−16 kPa. Regarding the
boundary conditions, the nodes at left boundary are partly fixed to prevent displacement
in the horizontal direction, whereas the nodes are fully fixed at the bottom boundary. The
time discretization used in the explicit and implicit simulations are ∆t = 1.0×10−3 s and
∆t = 0.1 s, respectively.

Figure 2.15: Sketch of the cutting stability problem (mesh indicative and not to scale)
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Figure 2.16 shows the failure of the cutting including plastic deviatoric strains. These
results correspond to the static scheme. Figure 2.16a shows the first failure at a gravity of
0.87 g. Since this failure occurs before the gravity force reaches 1g, it can be stated that the
factor of safety of the cutting is below 1 (i.e. the external loads are larger than the resisting
soil properties). After the first failure, and due to the continuous increase of the gravity
load, two more failures occur. Figures 2.16b and 2.16c show a second and a third failure at
a gravity force of 1.22 g and 1.65 g, respectively. This multi-failure mechanism is known
as retrogressive failure, which has been reported in the literature (Mitchell & Klugman
1979, Kohv et al. 2010, Locat et al. 2011) and simulated using numerical techniques
(Wang 2017, Zhang et al. 2017, Tran & Sołowski 2019). Additionally, note that the soil can
slide over the bottom boundary regardless of the fully fixed boundary condition. This is
because the bottom boundary elements can undergo shear deformation, which allows
the displacement of the material points.
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Figure 2.16: Deformation and plastic deviatoric strains of the vertical cut at a gravity load of a) .87, b) 1.22, and
c) 1.65 g

These results demonstrate MPM can reasonably simulate large deformation me-
chanical problems. In an attempt to quantifiably validate the MPM results, three FEM
simulations have been performed. These FEM results were obtained using the Total
Lagrangian FEM (TL-FEM), in which the initial configuration of the vertical cut is con-
sidered in each solution step to compute equilibrium. In the first simulation (Figure
2.17a), a TL-FEM vertical cut (which has the same discretisation as the MPM vertical
cut) has been simulated. Then, to replicate the progressive failure mechanism, a second
simulation has been performed (Figure 2.17b) in which the elements comprising the
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block of soil that has failed were removed. In the last simulation (Figure 2.17c), the same
procedure as in the second simulation was carried out, i.e. the elements comprising the
second block of soil that has failed have been removed. To compare both simulations
(i.e. TL-FEM and MPM reults), Figure 2.18 is included, in which the displacement of each
failing block of soil is shown at the points A, B and C from Figure 2.16. The first failure
(1st Failure) displacements are obtained from point A. In this case, both simulations show
similar results; the failure is triggered at almost the same gravity load, and the distance
reached is almost the same. The second failure (2nd Failure) displacements are obtained
from point B. Again, MPM and TL-FEM results are similar. The third failure (3rd Failure)
displacements are obtained from point C. In this case, it is seen that the TL-FEM slope is
triggered well before the MPM slope, which can be attributed to the lack of support at the
right side of the slope (where the soil has been removed). Also, the distance reached by
the soil using TL-FEM is larger compared to the MPM analysis.

(a) (b) (c)

Figure 2.17: Initial and final mesh configurations after and before the a) 1st Failure, b) 2nd Failure, and c) 3rd

Failure
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Figure 2.18: Gravity versus displacement for MPM and FEM simulations of retrogressive failure

Although the deformations of the vertical cut appear similar to the results presented
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in literature, the inaccuracies observed in Figure 2.12 are also observed in this simulation.
Figure 2.19 shows the deviatoric stresses developed inside the slope for the same steps
presented in Figure 2.16. In Figure 2.19a, large oscillations are observed at the left side
of the shear band. These oscillations are not large enough to cause the material to yield
and therefore have limited influence in the simulation. However, the use of a different
constitutive model could cause significant errors in the results. Figures 2.19b and 2.19c
show the deviatoric stresses in the second and third failures of the vertical cut. In these
figures, it is observed that the stresses in the failing body are also erratic.
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Figure 2.19: Deformation and deviatoric stresses of the vertical cut at a gravity load of a) .87, b) 1.22, and c) 1.65 g

2.8. CONCLUSIONS
The formulation of the static, explicit and implicit MPM has been elaborated, including
the Newton-Raphson iteration procedure (static and implicit schemes) and Newmark’s
time integration scheme (implicit scheme). A proof of mass and momentum conser-
vation for implicit MPM is given, adding to that available in the literature for the other
methods. A summary of the algorithm steps followed in each solution scheme has been
presented, and the key differences between the schemes were explained. Afterwards,
three benchmark problems were introduced and analysed to demonstrate MPM beha-
viour and the behaviour of each solution scheme. It has been observed that the three
schemes can simulate large deformations and the results obtained between the schemes
are similar, which was expected. The first benchmark has demonstrated that MPM can
convert kinetic energy to strain energy accurately and conserve the total energy in the
system. Nevertheless, it has been observed that, using the implicit scheme, contact within
simulations can cause numerical inaccuracies. These inaccuracies are associated with the
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use of a constant-average-acceleration assumption. The second problem demonstrated
inaccuracies caused by the movement of the material points through the domain. A
typical solution used elsewhere in literature for this problem was introduced; however
this solution is not generally applicable. Finally, the third benchmark has demonstrated
that it is possible to simulate typical geomechanical problems using MPM. Using a ma-
terial model which included softening, the simulation of progressive and retrogressive
failures was shown to be feasible, and delivered results which are difficult or impossible
to recreate using other numerical techniques such as FEM.
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3
AN INVESTIGATION OF STRESS

INACCURACIES AND PROPOSED

SOLUTIONS IN THE MATERIAL

POINT METHOD

Stress inaccuracies (oscillations) are one of the main problems in the material point method
(MPM), especially when advanced constitutive models are used. The origins of such oscilla-
tions are a combination of poor force and stiffness integration, stress recovery inaccuracies,
and cell crossing problems. These are caused mainly by the use of shape function gradients
and the use of material points for integration in MPM. The most common techniques de-
veloped to reduce stress oscillations consider adapting the shape function gradients so that
they are continuous at the nodes. These techniques improve MPM, but problems remain,
particularly in two and three dimensional cases. In this chapter, the stress inaccuracies
are investigated in detail, with particular reference to an implicit time integration scheme.
Three modifications to MPM are implemented, and together these are able to remove almost
all of the observed oscillations.

Parts of this chapter have been published in González Acosta et al. 2017 and González Acosta et al. 2020.
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3.1. INTRODUCTION
Many researchers have shown that MPM can be used to analyse some of the most common
geotechnical problems, such as slope stability (Beuth et al. 2008, Alonso et al. 2015, Wang
et al. 2016a, Bandara & Soga 2015, González Acosta et al. 2018), foundation installation
(Phuong et al. 2016, Lorenzo et al. 2017, Sołowski & Sloan 2015) and anchors (Coetzee
et al. 2005). However, the accuracy of MPM, in particular relating to the stress fields, is
still far from the desired level. Indeed, it is noted that many publications do not display
full results of the stresses, either presenting only deformations or limited data, and that
the majority of work presented in the literature so far uses simple constitutive models.
In some work, the stress oscillations and inaccuracies are acknowledged, and mainly
attributed to the use of discontinuous finite element (FE) shape function (SF) gradients
(e.g. Steffen et al. 2008a, Steffen et al. 2008b, Zhang et al. 2011, Andersen & Andersen
2009). Hence, a number of techniques have been developed to keep the SF gradients
continuous between element boundaries, i.e. C1-continuous, for example:

• GIMP (Bardenhagen & Kober 2004), which distributes the influence of each material
point over a characteristic or support domain, possibly extending the influence to
multiple elements at a time. Both the SF and the SF gradients are modified.

• CPDI (Sadeghirad et al. 2011), which is an extension of GIMP in which the material
point support domain can deform, maintaining the interaction between particles
even after large extension. There are a number of CPDI variants, with different
orientations and behaviour of the support domain.

• B-spline MPM (Steffen et al. 2008a), which replaces the linear SFs by functions
with higher-order B-spline basis functions, which are at least C1-continuous and
positive definite.

• DDMP (Zhang et al. 2011), which preserves the linear SFs and replaces the SF-
gradients by smooth continuous functions, thereby allowing the usage of a local
integration procedure rather than having a material point support domain.

These techniques have been proven to reduce the impact of cell-crossing. Meanwhile,
other techniques use material point integration together with Gauss point integration
to reduce numerical inaccuracies (Jassim 2013, Liang et al. 2019). However, a complete
investigation of the causes of the stress inaccuracies has not been presented. Moreover,
these techniques typically involve explicit MPM schemes, thereby ignoring the errors
the proposed solutions can cause in the integration of the stiffness matrix in implicit
schemes and in not exploiting the advantages of implicit time integration. Finally,
examples have often been investigated only for 1D cases (usually with 2D elements), so
that oscillations caused by other deformations, e.g. material rotation or distortion, have
not been examined.

This chapter first presents two benchmark problems to illustrate the oscillation
problem. In Section 3.3, the main causes of stress oscillations are investigated. Then,
a series of existing and novel solutions are presented and investigated. Finally, a
comparison of regular MPM and the new proposed oscillation-free MPM is given for the
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simulation of a vertical cut failure, in order to demonstrate the relative performance for a
problem involving both 2D geometry and elasto-plasticity.

3.2. BENCHMARKS

Two benchmarks are introduced to demonstrate and investigate the inaccuracies which
occur in MPM. The first benchmark consists of an elastic quasi-static axisymmetric
problem. The second benchmark is a 2D dynamic, elasto-plastic, vertical cut problem.

3.2.1. AXISYMMETRIC BENCHMARK

The first benchmark is similar to that presented by Naylor (1974) and Mar & Hicks (1996)
to explore stress recovery. It consists of a hollow cylinder which deforms due to an
incremental pressure

(
∆ps

)
applied on the internal boundary (s). The main benefit of

this benchmark is that, unlike a 1D plane strain problem, the stresses inside the elements
are not constant; moreover, they deviate from the real solution and, depending on the
material point position, the deviation may be large or small.

Figures 3.1a and 3.1b show the initial conditions of the benchmark; that is, the top view
of the cylinder and the finite element discretization of the cylinder wall, respectively. In
both Figures, the position of the boundary material point is shown (i.e. the material point
nearest to the cylinder axis), which is used to determine the position of the boundary (s).
Figure 3.1c and 3.1d illustrate that, during the loading, the distance ri to the inner wall
(s) changes, and is equal to the distance between the cylinder axis and the nearest active
node (this implies that ri remains constant until the boundary material point jumps to
the next element). To enable the numerical (large deformation) solution to be interpreted
in terms of the analytical (small strain) solution, the methodology includes the following
three features: 1) The applied pressure

(
∆ps

)
on the boundary (s) is applied to the outer

nodes of the elements containing the outer most material points; 2) Due to the new
location of the inner wall, ∆ps is re-evaluated as ∆ps(ri) = A/r2

i +2Ψ, where A andΨ are
constants associated with the initial geometry and boundary conditions of the benchmark,
as shown in Figure 3.2 (a description of the analytical solution and the constants A andΨ
are presented in Appendix A.2); 3) Instead of accumulated stresses, incremental stresses
at the material points are used throughout the analysis. These three features ensure that
the incremental stress at the material points, for an arbitrary position of the cylinder wall,
can be compared to the analytical stress related to the original geometry of the cylinder.
The inner (initial) and outer cylinder boundaries are located at ri = 0.5 m and re = 1.5 m,
respectively. The cylinder domain is discretised by elements of dimension ∆r =∆y = 0.20
m, and each element initially contains four material points equally spaced. The elastic
properties are Young’s modulus, E = 1000kN/m2, and Poisson’s ratio, υ= 0.3. The initial
applied pressure increment is∆ps = 100 kPa, and A and C are 19.56 and 10.87, respectively.

In Figure 3.3, the incremental stress invariants (deviatoric stress ∆q and mean stress
∆p) at material point mp1 are plotted and compared to the analytical solution over 25∆ps

increments. It is evident that the stress invariants can deviate strongly from the analytical
solution.
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Figure 3.1: Axisymmetric model of a hollow cylinder under internal pressure. a) top view of the benchmark, b)
domain and boundary conditions, c) initial internal boundary location, and d) internal boundary location at a
given step
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Figure 3.3: Evolution of mp1 stresses relative to rmp1. a) deviatoric stress ∆q, and b) mean stress ∆σm

3.2.2. VERTICAL CUT BENCHMARK

A 2D plane strain elasto-plastic vertical cut problem (similar to that simulated in Section
2.7.3) has been simulated using the Von Mises constitutive model incorporating post-
peak softening as described in Wang et al. 2016b. Figure 3.4 shows the domain, boundary
conditions and discretisation. The height H of the cut and length L of the domain are
3.0 m and 6.0 m, respectively; the element size is ∆x = ∆y = 0.10 m and each element
contains initially four equally distributed material points. The elastic parameters are E =
1000 kPa and υ= 0.35, whereas the peak cohesion is cp = 12 kPa, the residual cohesion is
cr = 3 kPa, and the softening modulus is Hs =−30 kPa. At the left boundary, the nodes
are partly fixed to avoid displacement in the horizontal direction, whereas the nodes are
fully fixed at the bottom boundary. The initial stresses in the domain are generated by
fixing the locations of the material points and applying gravity loads until the internal
and external forces are in equilibrium. After equilibrium is reached, the material points
are released and deformation takes place.

Figure 3.5a and 3.5b shows contours of the deviatoric and mean stresses, respectively.
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H

Lx

y

Figure 3.4: Sketch of the cutting stability problem

It is seen that during the movement of material points, both deviatoric and mean stress
oscillations occur, although the overall failure mechanism is as expected. For Figure 3.5b,
the shown range was fixed between 10 and -30 kPa because the oscillations are enormous
in and around the shear band.

(a)

(b)

Figure 3.5: MPM stresses after 1.0 m of horizontal displacement at the toe. a) deviatoric stress, and b) mean
stress

3.3. OSCILLATIONS IN MPM
The MPM technique can be seen as an FE stepwise procedure, in which the integration
points (now called material points) move together with the mesh, but keep their new
positions while the mesh returns to its original position. This allows the simulation of
large deformations since extreme distortion of the mesh is avoided, although the process
is found to cause stress oscillations. There are a number of contributing factors causing
these oscillations, which are investigated below.
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3.3.1. STRESS RECOVERY
As is typical in many implicit FEM formulations, displacements have been used as the
primary variable and stresses are back-calculated using the strain-displacement matrix
and the elastic matrix (eq. 2.38). During the back calculation of stresses an oscillation
occurs, as may be observed by the stresses inside the elements, interpolated using the
element SF gradients, deviating from the expected stresses (i.e. the stresses calculated
using an analytical solution, referred to further as analytical stresses) except at the su-
perconvergent positions (Naylor 1974, Barlow 1976, Zienkiewicz et al. 2005), which are
locations inside the elements at which the stresses have a higher accuracy than at any
other position. This problem is not observed in problems where the analytical stress is
uniform across the element, e.g. as in a 1D bar. Figure 3.6 illustrates the radial stress
inside a linear or quadratic axisymmetric element from Figure 3.1. It is seen that the
computed stress distribution across the linear element (σL) is different from that across
the quadratic element (σQ), and that both are different from the analytical stress (σA).
However, the linear and quadratic stresses (σL and σQ, respectively) match the analytical
solution exactly at the Gauss point locations. This means that, depending on the posi-
tion of the material point, the recovered stresses can be either higher or lower than the
analytical stresses, as illustrated in Figure 3.3.
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Figure 3.6: Radial stress inside an axisymmetric element

Figure 3.7 shows the analytical radial stress distribution and the stress recovered using
MPM (or FEM) at any stress recovery position for the first load step in the axisymmetric
benchmark. It is evident that the exact solution is near the centre of the elements, and
recovering stresses at any other position will cause oscillations. It can also be seen that
there will be a large oscillation whenever a material point crosses an element boundary,
since the radial stress is discontinuous across inter-element boundaries.

3.3.2. NODAL INTEGRATION USING SF GRADIENTS

The nodal integrations of Fint and K are performed using SF gradients and the material
point positions. However, considering that the SF gradients used in MPM are linear/plane
(linear elements) and discontinuous between elements, and that the material point
positions change each time step, the resulting nodal values are inaccurate, especially if
material points cross element boundaries. Next, a description of the SF gradients in MPM
and the consequences of using them are presented.
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Figure 3.7: Analytical radial stress and stresses recovered using MPM in the axisymmetric benchmark

2D BI-LINEAR SHAPE FUNCTIONS

Figure 3.8 shows the SF (Figure 3.8b) and the horizontal and vertical SF gradients (Figure
3.8c, 3.8d) of node 1 of a 4-node square element (Figure 3.8a). It is noticed that the
SF gradient is a maximum at the node, constant in the direction associated with the
SF gradient, and decreases down to zero in the orthogonal direction. When a material
point crosses an element boundary, the combination of the two element SFs must be
considered.

(a)

1

2

4

3

h

x

(-1,-1)

(-1,+1)

(+1,-1)

(+1,+1)

(b)

1

N = x1
4

(1-   )

2 3

4

h(1-   )
1

(c)

1

2 3

4

dN
dx

= h1
4

- (1-   )1

(d)

1

dN
dh

= x
1
4

- (1-   )

2 3

4

1

Figure 3.8: a) Element local numbering, b) regular SF associated with node 1, c) horizontal SF gradient
associated with node 1, and d) vertical SF gradient associated with node 1. Ni is the shape function for node i,
and ξ and η are local coordinates

In Figure 3.9, two elements are shown: E1 and E2 (Figure 3.9a). The SFs and SF
gradients in both directions of node 5 are shown in Figure 3.9b, 3.9c and 3.9d, respectively.
Figure 3.9b shows that the SFs are continuous between elements, while Figure 3.9d shows
that the vertical SF gradient is continuous between elements in the horizontal direction
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and constant in the vertical direction. On the other hand, Figure 3.9c shows that the
horizontal SF gradients at the inter-element boundary are discontinuous, and that they
decrease in the vertical direction.
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Figure 3.9: a) Connected elements E1 and E2, b) regular SFs for node 5, c) SF gradients in the horizontal
direction, and d) SF gradients in the vertical direction. In this figure, the superscript and subscript refer to the
node and element numbering, respectively

INTEGRATION OF THE INTERNAL FORCES Fint AND STIFFNESS K
Since SF gradients must be used in the integration of any variable to compute nodal
internal forces Fint and nodal stiffness [K], it results in an inadequate distribution of
such nodal quantities, whereas the distribution of nodal mass [M] and nodal external
forces Fext is smoother due to the use of SFs. Moreover, Fint is computed using the strain-
displacement matrix (B) once (eq. 2.11), whereas the element stiffness is computed
using both B and its transpose BT (eq. 2.23), which causes additional inaccuracies when
high-order SFs gradients are used to perform nodal integration procedures.

As an example of the inaccuracies caused by using SF gradients, the vertical and
horizontal nodal internal force distributions (Fx and Fy) and the diagonal entries of the
stiffness matrix (eq. 2.23) corresponding to the vertical and horizontal degrees of freedom
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(Kx and Ky) using two different material point distributions, are computed for nodes 1-5
of the plane strain finite element mesh shown in Figure 3.10. In both cases the material
points are equally distributed inside the elements; in the first case (Figure 3.10a) the
material points are located inside each element, whereas in the second case (Figure 3.10b)
the material points have moved and some are located at the inter element boundaries.
After the movement, the material points are still located inside their original element,
except for material points a-d which have crossed the boundary by an infinitesimal
distance. Stress components of σx =σy =−1.0 MPa and σxy = 0, a Young’s modulus of E =
1.0 kPa and a Poisson’s ratio of υ= 0 for each material point have been considered, while
the distance between the nodes is 1 m and the material point weights are equal to 1.
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Figure 3.10: Investigation of internal forces and stiffness calculation using a) material points inside elements;
and b) displaced material points where some material points (e.g. a - d) have crossed the inter element
boundaries. Nodal force distribution c) before boundary crossing and d) after boundary crossing, and stiffness
distribution e) before boundary crossing and f) after boundary crossing
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In Figure 3.10c and 3.10d, the vertical internal force is equal to zero in both cases.
The force is unchanged because the horizontal displacement of the material points does
not affect the values of the vertical SF gradients, and equals to zero because the internal
vertical forces on both sides of the nodes are the same but with an opposite sign. However,
the distribution of the horizontal internal force is highly inaccurate due to the material
point crossing the element boundary and the discontinuity of the horizontal SF gradients
(Figure 3.10d). When integrating the nodal stiffness, the horizontal and vertical stiffnesses
are initially similar (Figure 3.10e). However, as the material points cross an element
boundary (Figure 3.10f), the inaccuracies are evident again, although they are smaller
than those of the internal forces. This is because the product BBT returns positive nodal
values, so avoiding the change in sign of the SF gradients.

3.3.3. NODAL INTEGRATION OF THE MASS M AND EXTERNAL FORCES Fext

USING SFS

The integration of M and Fext is performed using SFs rather than SF gradients, so that
discontinuities between elements do not occur. In this section, only the external forces
caused by gravity are considered. Since a lumped form of the mass matrix is used, and
also because of the partition of unity of SFs, any initial distribution of material points
inside the elements results in the same nodal mass (or external force), as long as the
distribution is symmetrical. As an example, Figure 3.11 shows two different material point
distributions inside an element, but the nodal mass and nodal external force are the same
in both cases.
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Figure 3.11: Different symmetric material point distributions in two elements

Figure 3.12 shows the distribution of M for the same problem as in Figure 3.10. It is
clear that the movement of material points and the crossing of nodes does not cause any
trouble for the nodal integration because of the continuity of the SFs. Also, since Fext is
computed in a similar manner to M, the distribution would be similar to the one in Figure
3.12.

3.3.4. STRESS REDISTRIBUTION DUE TO PLASTICITY
The stress oscillation caused by stress redistribution on the onset of plasticity is an exten-
sion of the oscillations explained in the previous sections. As the stresses exceeding the
yield surface are integrated as a new external force computed with SF gradients, additio-
nal oscillations comparable to the Fint oscillations are introduced. Moreover, oscillating
stresses could cause some points to yield spuriously, leading to an unrealistic system
behaviour.
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Figure 3.12: Nodal mass distribution considering a) initial material point distribution, and b) material point
distribution after horizontal movement

3.4. IMPROVEMENTS TO REDUCE STRESS OSCILLATIONS
In FEM, high-order elements can be used to enhance the interpolation of strains within
an element, improving the stresses recovered. In MPM, the use of such elements is
not feasible (yet), since high-order SFs could produce a negative nodal mass, which
is unfeasible. Additionally, the gradients of such SFs at the element interfaces remain
discontinuous, causing large numerical inaccuracies during the movement of the material
points between elements. Due to the unfeasibility of using such elements in MPM, several
techniques have been developed, which can overcome the problems caused by using
bi-linear SFs.

3.4.1. GIMP
The generalised interpolation material point (GIMP) method (Bardenhagen & Kober
2004) was proposed to reduce oscillations derived from material points crossing element
boundaries. In GIMP, FE SFs are replaced by functions constructed based on the linear FE
SF and a material point support domain (SD). This means that each material point has a
domain over which its influence is distributed. The GIMP SF (Sip) and its gradient (OSip)
in one dimension are computed as

Sip = 1

Vp

∫
Ωp

⋂
Ω
χp(x)Ni(x)dx (3.1)

∇Sip = 1

Vp

∫
Ωp

⋂
Ω
χp(x)∇Ni(x)dx (3.2)

whereΩ is the problem domain,Ωp is the material point support domain, i is the node,
and χp is the characteristic function delimiting the area of influence of the material point
and is originally presented as

χp (x)

{
1, if x

⋂
Ωp

0, otherwise
(3.3)

Using the original definition of support domain given by Bardenhagen & Kober (2004),
it would have a size of 2lp (lp = half of the material point support domain), which is
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obtained by dividing the element size by the number of material points. In Figure 3.13, a
1D comparison between an FE SF and a GIMP SF is plotted, considering a distribution of
two equally-distributed material points per element. It is seen that the GIMP SF and GIMP
SF gradients are no longer exclusive to a single element and that the GIMP SF gradients
are continuous between elements (as shown in the axisymmetric benchmark).
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Figure 3.13: a) GIMP shape function (Sip) and regular FE shape function (Ni) of node i, and b) GIMP shape
function gradient (∇Sip) and regular FE shape function gradient (∇Ni) for node i

The GIMP SFs in 2D and 3D are computed as products of the 1D GIMP SF in each
direction; that is, Si (x) = S1

ip (x1) ·S2
ip (x2) in 2D and Si (x) = S1

ip (x1) ·S2
ip (x2) ·S3

ip (x3) in 3D,

where Sk
ip is the 1D GIMP SF in the k-direction. An additional advantage of including a

support domain is that the material boundary is explicitly defined, and can be used to
apply boundary conditions.

3.4.2. MODIFIED INTEGRATION WEIGHTS
To reduce the problems caused by an irregular number of material points inside an
element, it is here proposed to modify the material point integration weight to

W∗ = Wp
omp

cmp
(3.4)

where W∗ is the modified material point weight (dimensionless), cmp is the current
number of material points in the element, and omp is the original number of material
points in the element. This modified weight is used considering only structured meshes,
i.e. a mesh composed of equal-sized square elements, and equal mass material points,
and its use with unstructured meshes or unequal mass material points is not part of this
work. This modified weight technique, which compensates for the variation of the number
of material points within an element, differs from the approach of other researchers who
have modified the weights based on volumetric strain (e.g. Chen et al. 2017), which, while
compensating for 1D deformations of the material points (compression or extension),
does not reduce the problems caused by the rotation or advection of the material points.
Finally, it should be noted that for four noded elements this modified weight value reduces
to 4.0/cmp.
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3.4.3. DOUBLE MAPPING (DM)
Integration using SF gradients is seen to work only at Gauss point locations, whereas
material point integration is stable when based on SFs. Therefore, mapping to the Gauss
point locations using shape functions (via the nodes) is proposed. As an example, the
stiffness matrix is used. The elastic matrix is mapped to the nodes from the material
points and then to the Gauss points, prior to the integration. Using FE SFs, the material
point elastic matrix is mapped to the element nodes as

Di =
cmp∑
p=1

Ni(xp)DpW∗ (3.5)

where Di is the elastic matrix at node i, and Dp is the elastic matrix of material point p.
At this point, the total stiffness contribution of the material points is accumulated at the
nodes, and this contribution is then redistributed to the original Gauss positions as

Dg =
nn∑
i=1

Ni(xg)Di (3.6)

where Dg is the elastic matrix at the Gauss point, Ni(xg) is the nodal SF evaluated at the
Gauss points, and nn is the number of nodes of the element. By substituting eq. 3.5 into
eq. 3.6, Dg is obtained as

Dg =
nn∑
i=1

(
Ni(xg)

cmp∑
p=1

Ni(xp)DpW∗
)

(3.7)

Finally, combining eq. 3.7 and eq. 2.23 (in FEM form) results in the nodal stiffness:

K =
ngauss∑

g=1
BT(xg)

[
nn∑
i=1

(
Ni(xg)

cmp∑
p=1

Ni(xp)DpW∗
)]

B(xg) |J|WFE (3.8)

where ngauss is the number of Gauss points in the element and WFE is the weight associa-
ted with Gauss point g (as in FEM).

3.4.4. DM-GIMP(DM-G)
As mentioned in Section 3.4.1, the GIMP method was created to avoid problems caused
by the use of discontinuous FE SF gradients. However, a simple example in calculating
the stiffness reveals a key problem. Figure 3.14 shows the same problem as in Figure 3.10,
but in this case the stiffness is computed using regular SFs and GIMP SF gradients.

As shown in Figure 3.14a, for the initial configuration of material points, the horizontal
nodal stiffness distributions remain the same for both techniques, because at this position
the MPM and GIMP SF and SF gradients are the same. With the movement of the material
points (Figure 3.14b), the horizontal nodal stiffness computed with GIMP decreases,
as the GIMP SF gradients drop to zero at the inter-element boundaries (as shown in
Figure 3.13). In addition, the contribution of material points in neighbouring elements
is not capable of compensating for this drop. This would be the case for other methods,
including DDMP and CDPI, that have this same characteristic.
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Figure 3.14: Nodal stiffness computed using regular SFs and GIMP SFs considering a) initial material point
positions, and b) after displacement of material points

To overcome the problems of using GIMP to integrate nodal stiffness, it has been
proposed that the double mapping approach be used alongside the local GIMP SFs
(Charlton et al. 2017). The local GIMP SFs (Sip∗ ) are similarly created as regular GIMP SFs,
but the influence of the material point support domain affects only the nodal FE SF in
a single element rather than contributing to all contiguous elements. In Figure 3.15, an
illustration of the development of regular and local GIMP shape functions of a node is
shown.
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Figure 3.15: a) Nodal FE SF and interaction with the material point support domain, b) original GIMP SF (Sip), c)
nodal FE SF and interaction with the material point support domain in a single element, d) local GIMP SF (Sip∗ )

In a similar manner to the double mapping technique using regular SFs, by using local
GIMP SFs it is possible to distribute the elastic matrix to the nodes of an element and
afterwards to the Gauss positions. The element stiffness matrix is then constructed as
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Kel =
ngauss∑

g=1
B(xg)T

[
nn∑
i=1

(
Ni(xg)

smp∑
p=1

Sip∗ (xp)DpW

)]
B(xg) |J|WFE (3.9)

where Sip∗ is the local GIMP SF of node i evaluated at the material point position, and
smp is the number of material points with a support domain inside the element. Note
that eq. 3.9 is similar to eq. 3.8, but instead of using Ni, Sip∗ is used. The algorithm to
compute the stiffness matrix using DM and DM-G is given in Appendix B, together with a
study of the computational performance.

3.4.5. COMPOSITE MATERIAL POINT METHOD (CMPM)
The composite material point method (CMPM) (González Acosta et al. 2017) is a mo-
dification of the composite finite element method (CFEM), proposed by Sadeghirad &
Vaziri Astaneh (2011), in which the support domain used to recover the stresses is exten-
ded, i.e. a patch, improving the accuracy of the stresses computed. New shape functions
enveloping all neighbouring elements of the element containing the material point are
developed using Lagrange interpolation. In Figure 3.16, the C2 shape functions are shown
in 1D, in which each shape function N2 envelopes the local element plus the neighbouring
elements.

Figure 3.16: CMPM shape functions with C2 continuity for a central local element

Using Lagrange interpolation, each of the N2 shape functions is computed as

N2
n(ξ) =

n∏
m=1; m6=j

ξ−ξm

ξj −ξm
(3.10)

where ξ is the nodal local coordinate in the extended domain, n is the number of nodes,
ξ j is the local coordinate of the N2

i shape function, and ξm is the local coordinate of
the remaining nodes. Solving eq. 3.10 for each node, the CMPM shape functions for an
element with two neighbours are

N2
i

N2
j

N2
k

N2
l

= 1

16


− ξ2−3ξ2−ξ+3

3

ξ2 −ξ2 −9ξ+9

−ξ2 −ξ2 +9ξ+9
ξ2+3ξ2−ξ−3

3

 (3.11)
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If the material point is located at the boundary, as in Figure 3.17, the CMPM shape
functions are then N1

i

N1
j

N1
k

= 1

4


ξ2−4ξ+3

2

−ξ2 +2ξ+3
ξ2+4ξ+3

2

 (3.12)

Figure 3.17: CMPM shape functions with C1 continuity for a central local element

It is important to mention that although the CMPM SFs extend beyond the limits of
an element, the range of the functions remains between −1 ≤ ξ≤ 1. Also, this solution
can only be used with a structured mesh. To extend the solution to a 2D domain, the new
SFs are the product of the SFs in each direction.

3.4.6. IMPLEMENTATION OF DM-G AND CMPM
When DM-G is combined with CMPM (DM-GC), the (element) vectors of external and
internal nodal forces are integrated using typical GIMP SFs Bardenhagen & Kober (2004)
as

Fext |elem=
nmp∑
p=1

ρpST
ip(xp)b |J|Wp +

bmp∑
p=1

ST
ip(xp)ss

pΓ (3.13)

Fint |elem=
nmp∑
p=1

∇Sip(xp)σp |J|Wp (3.14)

where Sip is the element matrix of GIMP SFs, and ∇Sip is the strain-displacement matrix
for the GIMP SFs. Since the implicit solution scheme is used, the (element) stiffness
matrix is computed using double mapping (DM) procedures as

K |elem=
ngauss∑

g=1
BT(xg)

[
nn∑
i=1

(
Ni(xg)

cmp∑
p=1

Sip∗(xp)DpW∗
)]

B(xg) |J|WFE (3.15)

And, the incremental stress of a material point is updated for the explicit and implicit
schemes as

∆σp = Dp∇N2 (
xp

)
∆v̄ext (3.16)

and
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∆σp = Dp∇N2 (
xp

)
∆ūext (3.17)

where N2 is the (element) matrix of the CMPM SF gradients (equivalent to the strain-
displacement matrix), and ūext and v̄ext are the vectors of nodal displacements and ve-
locities, respectively, in the extended CMPM domain. Note that since GIMP and local
GIMP SF are used to integrate both the forces and stiffness matrix, the stencil (i.e. support
domain of each material point) is the same in both cases, including when using double
mapping. CMPM uses an extended domain (v̄ext or ūext) to recover stresses, which is not
necessarily equal to the GIMP stencil. Finally, it is important to remark that the state
variables (i.e. mass, velocity, acceleration) are mapped using GIMP SFs.

3.5. TESTING OF THE DOUBLE MAPPING TECHNIQUE TO COM-
PUTE NODAL STIFFNESS

Previously, it was demonstrated that SF gradients cause large inaccuracies when inte-
grating variables to the nodes. By using GIMP, those inaccuracies reduced significantly,
especially during the computation of internal nodal loads. Nevertheless, nodal stiffness
inaccuracies remain, for which DM techniques have been developed. The testing strategy
in this section is focused on the stiffness matrix. To compare the stiffness using each
technique, the stiffness magnitude is used, and this is computed as

Kmag =
√

K2
x +K2

y (3.18)

where Kx and Ky are the diagonal entries of the stiffness matrix corresponding to the
horizontal and the vertical degrees of freedom, respectively. The test consists of compu-
ting the stiffness of an infinite space made up of square elements that are full of equally
spaced material points, four per element, as shown in Figure 3.18a. The infinite domain
is then rotated 20o degrees around its centre (C), as in Figure 3.18b. The elastic properties
of the material are E = 1000 kN/m2 and υ= 0.30. Figure 3.19 presents the stiffness com-
puted using regular MPM and DM and the results are compared with the FEM stiffness,
computed using four Gauss integration points (Kmag = 3263.57kN/m2). In addition, the
stiffness using the modified integration weights (W∗) and Gauss mapping (GM) separately
(the two components of DM) are shown to highlight their comparative effects. Since
the material points remain equally distributed after rotation, the stiffness of the domain
should not change (i.e. be mesh independent). Finally, a further test is performed using
two materials, by considering the properties of material points below line A - A’ to be E =
1500 kN/m2 and υ= 0.25.

Theoretically, the stiffness of the domain should be independent of the rotation of the
field of material points, and should be equal to the FEM stiffness before rotation (for the
case with one material). As can be observed in Figure 3.19, the stiffness obtained using
regular MPM is not accurate and improvements are needed. After including the modified
integration weight (W*), which accounts for a varying amount of material points per
element, the stiffness distribution oscillates, although with a different spatial pattern than
in regular MPM. Using GM the oscillation also persists, as the number of material points
per cell is still incorrect, but it is less than in regular MPM because it helps to reduce
errors due to material point position. It is noted that including W* and GM separately are
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Figure 3.18: Infinite domain full of equally spaced material points (a) before and (b) after rotation

unable to fix the stiffness oscillation, and that the spatial distribution is almost opposite
in pattern, i.e. where high values occur in GM, low values occur in W*, and vice versa.
Using DM, i.e combining GM and W*, the stiffness oscillation is reduced significantly as
it accounts for both the material point position and the number of material points per
element. Moreover, the transition is smooth over the elements when two materials are
used. In Figure 3.20, the tests from Figure 3.18 have been performed using GIMP and
DM-G. As can be observed, the stiffness obtained using GIMP integration is significantly
more inaccurate when compared to MPM integration, as it both oscillates and reduces in
magnitude. Note that the results for GIMP are shown using a different contour range; this
is because using GIMP SF gradients the stiffness reduces significantly, and it is necessary
to change the contour range to visualize the stiffness distribution. On the other hand,
using DM-G the stiffness oscillation is reduced further than using DM. This is because
the W* approach, which only allows the impact of a discrete number of points in each
element to be considered, is not being used. Utilising DM-G allows a gradual transition
of mass from one element to another. Moreover, using DM-G, the transitions between
materials appears sharper than in regular FEM due to an increase in the accuracy of the
material stiffness distribution between the interface nodes.

Method Maximum increase (%) Maximum decrease (%)

Regular MPM 5.51 -7.38

W* 5.93 -8.88

GM 4.75 -5.63

DM 2.23 -2.38

GIMPa 0.0 -33.95

DM-G 0.21 -0.39
a Using GIMP the stiffness only decreases with respect to FEM

Table 3.1: Relative differences in stiffness magnitude between FEM and other methods for homogeneous
material

In Table 3.1, the difference between the stiffness obtained using each technique
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Figure 3.19: Stiffness distribution considering rotation of the domain, using one and two materials, computed
with FEM, MPM, W*, GM and DM
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Figure 3.20: Stiffness distribution considering rotation of the domain, using one and two materials, computed
with GIMP and DM-G

is shown relative to the nodal stiffness magnitude of the real FEM stiffness. In this
comparison, only the homogenous material is considered. As can be observed, regular
MPM and GIMP give large stiffness oscillations relative to the FEM stiffness, but in the
case of GIMP the stiffness only decreases (as observed also in Figure 3.14b). Using only
the modified integration weight the stiffness oscillation increases, whereas using the GM
stiffness the oscillation decreases (compared to regular MPM), but not significantly. Using
DM and DM-G, the dependence between the mesh and the position of the material points
is reduced, and the nodal stiffness oscillations reduce significantly, especially using DM-G
where the variation is smaller than 1%.

3.6. DM-GC BENCHMARKING
In this section, the DM-GC is tested using three benchmark problems. The first bench-
mark is a 1D elastic column subjected to an incremental gravity load. This benchmark
is introduced to demonstrate the rate of convergence of DM-GC. The second and third
benchmarks are those introduced in Section 3.2, which are now re-analysed using the
improvements described in Section 3.4. Finally, all the benchmarks and geotechnical
simulations introduced later are simulated using plane stress conditions.

3.6.1. 1D ELASTIC BAR CONVERGENCE
To demonstrate the accuracy of DM-GC, a 1D benchmark problem is analysed. This
problem is similar to the benchmark analysed in Coombs et al. 2018, in which a 1D
column made of material points is subjected to an incremental gravity force, whereas the
number of square background elements (nel) is increased. In this benchmark, the initial
gravity load is zero, and is increased using increments of ∆g = 1.0×10−4 until a maximum
gravity load of gSD = 0.1g and gLD = 20g, in which the first maximum gravity load (i.e. gSD)
is used to study small deformations, and the second (i.e. gLD) to study large deformations.
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The 1D bar has an initial height and width of H = 10 m and L = 1 m. The elastic parameters
of the bar are Young’s modulus, E = 1.0×103 kPa, and Poisson’s ratio, ν= 0.0. The density
of the material points is ρ= 1500kg/m3. The bar is fully fixed at the bottom, and fixed in
the horizontal direction at both vertical sides. Each background element is filled (initially)
with four material points equally spaced, and the simulations have been performed
using the static scheme to avoid kinematic effects. The error through the calculations is
measured as

error =
nmp∑
p=1

∥∥σp,z −σa,z(Z)
∥∥V0

p(
ρgH0

)
V0

BAR

(3.19)

in which σp,z is the material point vertical stress, σa,z(Z) is the analytical vertical stress of
the bar at the height z (i.e. σa,z = ρg(H−z), in which z is measured from the bottom), ‖·‖
is the L2 norm of (·), V0

p is the initial material point volume, V0
BAR is the initial bar volume,

and ρsH0 is the vertical stress at the bottom of the bar used to normalise the difference of
stresses, in which H0 is the initial bar height.

Figure 3.21: Convergence of MPM, GIMP, and DM-GC after a gravity load of 0.1g

Figure 3.22: Convergence of MPM, GIMP, and DM-GC after a gravity load of 20g
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Figure 3.21 shows the convergence of MPM, GIMP and DM-CG considering small
deformations. It is observed that MPM and GIMP have the same convergence (α = 1, in
which α is the order of convergence). Nevertheless, it is observed that MPM error cannot
reduce linearly at a certain point, which is attributed to the element crossing problem.
On the other hand, using DM-GC, the order of convergence is 1 < α < 2. Figure 3.22 shows
the results considering a large deformation. In this case, it is observed that MPM error
grows due to the large number of material points crossing elements, which causes highly
inaccurate internal stresses. On the other hand, the GIMP and DM-GC error reduces at a
similar rate (with DM-GC having a smaller error).

3.6.2. AXISYMMETRIC BENCHMARK

Figure 3.7 showed the stress oscillation caused by using regular SFs to recover stresses in
the cylinder wall. In Figure 3.23, GIMP and CMPM are compared against regular MPM
for a single (i.e. the first) load step. As can be seen, the GIMP oscillation is the same as
MPM close to the centre of the element, because there the SF gradients are the same
for both techniques. However, stresses are continuous between the elements, due to
the continuous gradients of GIMP. On the other hand, using CMPM the stresses remain
discontinuous between elements, but the reduction of oscillation when compared to the
analytical solution is significant.
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Figure 3.23: Analytical, MPM, GIMP and CMPM radial stresses through the cylinder wall

In Figure 3.24, the evolution of the incremental deviatoric and mean stresses of
material point mp1 (over 25 load steps) are shown using normal MPM (as shown in Figure
3.3), DM and DM-CMPM (DM-C). As can be seen, there is a significant increase in the
accuracy of the stresses recovered using the DM technique, due to the improved stress
recovery and stiffness integration. Moreover, if CMPM is included in the analysis, the
stress oscillation reduces still further to give stresses close to the analytical solution.
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Figure 3.24: a) Deviatoric, and b) mean stress recovered from mp1 at different positions
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Figure 3.25: Internal boundary location at a given step using the GIMP support domain
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Figure 3.26: a) Deviatoric, and b) mean stress using DM-G and DM-GC

Next, the same example using DM-G and DM-GIMP-CMPM (DM-GC) is studied.
Using DM-G, the stiffness is computed with the DM-G method and the stresses are
recovered using GIMP SF. Using DM-GC, the DM-G method is again used to compute the
stiffness, but the stresses are now recovered using CMPM rather than GIMP. In addition,
since the inner wall boundary can be determined accurately using the material point
support domain (as mention in Section 3.4.1), the distance between the cylinder axis and
the inner boundary (s) is ri = rmp1 − lp as in Figure 3.25. Then, the applied pressure ∆ps is
distributed linearly to the nodes of the boundary element based on proximity.

In Figure 3.26 it can be seen that, using DM-G and DM-GC, the results approximate
the analytical solution even better that DM and DM-C, respectively. This is because the
stiffness computed using DM-G is closer to the FEM stiffness and also due to the accurate
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distribution of the external pressure considering the accurate location of the internal
boundary.

3.6.3. VERTICAL CUT BENCHMARK
Figure 3.27 shows the elastic stiffness magnitude in the vertical cut benchmark problem,
using regular MPM and DM-GC. As can be observed in Figure 3.27(a) – (d), using regular
MPM large stiffness oscillations occur, from the beginning (small deformations) up until
the end (large deformations) of the analysis. In contrast, using DM-GC (Figure 3.27(e) –
(h)) the stiffness oscillation reduces significantly, although some small oscillation can be
observed in the shear band and along the edge of the domain.
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Figure 3.27: Stiffness magnitude in the body using regular MPM (a-d) and DM-GC (e-h) after a horizontal toe
displacement of a & e) 0.10 m, b & f) 0.30 m, c & g) 0.50 m, and d & h) 1.0 m
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In Figure 3.28 the nodal Fint magnitude is shown, once again comparing regular MPM
and DM-GC. Analogous to eq.25, the magnitude of the nodal internal force is computed
as

Fint
mag =

√
Fint

x +Fint
y (3.20)

where Fint
x and Fint

y are the nodal internal forces for the horizontal and the vertical degrees
of freedom, respectively. It is seen that if GIMP and CMPM are included in the solution, a
large reduction in the oscillations of Fint is obtained. Using GIMP, the oscillation caused
by the material points crossing cell boundaries are reduced. Furthermore, by including
CMPM, the recovered stresses are improved, reducing the oscillation caused by the stress
recovery position.
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Figure 3.28: Fint magnitude in the body using regular MPM (a-d) and DM-GC (e-h) after a horizontal toe
displacement of a & e) 0.10 m, b & f) 0.30 m, c & g) 0.50 m, and d & h) 1.0 m

Figure 3.29 shows the deviatoric stress contours from both analyses. It is evident that,
after reducing the oscillation in the stiffness and the internal nodal forces by using DM-GC,
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the deviatoric stress distribution in the domain is significantly smoother. Similarly, Figure
3.30 shows the comparison of mean stresses during the analyses, demonstrating that the
mean stress oscillations are reduced with DM-GC. In this case, as in the axisymmetric
benchmark, some oscillation of the mean stresses still occurs, but this is thought to be
due to incompressibility during plastic yielding. For methods to reduce locking behaviour
in MPM using low order shape functions the reader is referred to Coombs et al. (2018).
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Figure 3.29: Deviatoric stress in the body using regular MPM (a-d) and DM-GC (e-h) after a horizontal toe
displacement of a & e) 0.10 m, b & f) 0.30 m, c & g) 0.50 m, and d & h) 1.0 m

As can be seen from previous figures, the oscillation of material point stresses, nodal
stiffness and internal nodal forces are reduced significantly using DM-GC. Plots for the
nodal mass and external nodal forces are not included in the results since the oscillation
for both MPM and DM-GC is small.
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Furthermore, p-q curves have been plotted for 3 material points at key positions in
the soil body. Figure 3.31, shows the location of the points chosen; material point A is
located at the toe of the cutting, material point B is found in the middle of the soil layer in
the shear band, and material point C is in the centre of the sliding block.

A

B C

Figure 3.31: Material points selected to plot stresses in p-q space
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Figure 3.32 shows the p-q stress paths at the 3 points, as computed using both techni-
ques, as well as the initial position of the yield surface for a Von Mises material (FVM). It
is seen that, for material point A, both techniques give reasonable results; this is because
the bottom of the domain is fully fixed, so that the material point does not move much
throughout the analysis. For material points B and C, if regular MPM is used (Figure
3.32 (b) and (c)), the oscillations are extreme. It is evident that were a constitutive model
different from Von Mises to be used, in which plasticity does not depend only on the
deviatoric stress, regular MPM would not perform well. On the other hand, using DM-GC,
the stress path appears to be well-behaved (Figure 3.32 (e) and (f)), with only some small
oscillations. Finally, based on the results obtained with the benchmarks and the geotech-
nical implementations, Table 3.2 summarises the advantages and disadvantages of each
of the methods studied in this chapter.

MPM DM-GC

a) Material point A d) Material point A
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3.7. CONCLUSIONS
MPM is a technique that is able to handle problems involving large deformations, since
material properties and the body geometry are no longer attached to a mesh. Unfor-
tunately, the use of regular bi-linear finite element shape functions causes significant
oscillations when integrating internal forces and stiffness, decreasing the accuracy of
the simulations. Moreover, the grid crossing of a material point between elements and
poor stress recovery create additional oscillations. A series of improvements, both novel
and building upon the work of others, have been studied and combined to obtain an
almost oscillation free version of MPM. It has been shown that GIMP reduces the errors
caused by grid crossing, but integration using SF gradients, shown via an example using
the stiffness matrix, is inaccurate due to the use of SF gradients that drop to zero at the
inter-element boundaries. Using GIMP together with a double mapping integration pro-
cedure significantly reduces the stiffness matrix oscillation. Also, it has been proven that
CMPM increases the accuracy of the stresses computed at the material points compared
to typical MPM and GIMP. These techniques combined (termed DM-GC) increases consi-
derably the accuracy of the MPM simulations. Moreover, since it has been observed that
DM performs well when using both typical finite element shape functions, and better still
when using GIMP shape functions, the combination of DM with other C1-continuous
methods, such as CPDI, B-spline MPM or DDMP, is a possibility which can be studied in
the future. The DM and DM-G methods have the benefit of being able to be implemented
implicitly or explicitly including typical elasto-plastic constitutive models.
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4
DEVELOPMENT OF AN IMPLICIT

CONTACT TECHNIQUE FOR THE

MATERIAL POINT METHOD

An implicit contact algorithm for the material point method (MPM) has been developed
to simulate contact. This allows recently developed implicit MPM codes to simulate large-
scale deformations and interaction with external bodies. The performance of the method
has been investigated and compared to an existing explicit method using benchmark and
geotechnical examples. In particular, the proposed formulation has been shown to conserve
energy in a similar way to the explicit formulation and reach similar results. The method
typically converges to the analytical solution when an adequate time step and mesh size
is used, with the time step generally around ten times larger than the explicit method,
although during the contact phase this does not always result in faster computation due to
the iterative solution procedure.

Parts of this chapter appear in González Acosta et al. 2020
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4. DEVELOPMENT OF AN IMPLICIT CONTACT TECHNIQUE FOR THE MATERIAL POINT

METHOD

4.1. INTRODUCTION
As the fundamental attributes of MPM involve material moving substantial distances, for
example in landslides with an extensive runout (e.g. Wang et al. 2016a), the impact of
this material on other structures is a logical aspect to be investigated, which has great
value in many branches of engineering. In one of the seminal MPM papers, Sulsky et al.
(1994) showed that different bodies of material could be simulated together on the same
background grid, with a single valued velocity field, and contact would be automatically
calculated. However, the simulated contact was non-slip, (background) mesh dependent
and, due to the lack of a specific contact formulation, inaccurate when considering bodies
with different properties or initial state conditions.

The first dedicated methodology in MPM to simulate interaction between different
bodies, i.e. contact, was introduced by Bardenhagen et al. (2000). In this method, the
velocities of defined bodies are compared with a domain velocity (i.e. a multi-valued
velocity field), and defines contact when these two velocities are not equal. When they
are not equal, constraints on the normal and tangential kinematics are given, such that
the bodies cannot penetrate each other and that the tangential behaviour can be defined
based on constitutive behaviour, e.g. Coulomb friction. In this way, Bardenhagen et al.
(2000) was able to simulate frictional slip behaviour within the MPM framework. Later,
many case studies and improvements have been presented (Bardenhagen et al. 2001,
Zhang et al. 2006, Li et al. 2009, Nairn 2013, Ma et al. 2014, Pantev 2016, González Acosta
et al. 2018, Homel & Herbold 2017, Müller & Vargas 2019). Most of this work has been
implemented using an explicit scheme, in fitting with the method of solving the equations
of motion in these publications, and has advantages in the simplicity of implementation.
However, versions of MPM which solve the equations of motion implicitly (e.g. Guilkey &
Weiss 2003, Wang et al. 2016b) have been recently developed, which include the advan-
tages typically associated with implicit solutions, i.e. a longer timestep. Therefore, the
development of an implicit contact scheme is beneficial.

Some work regarding implicit contact in MPM has been reported where, in line with
contact methods used in implicit FEM, Lagrange Multipliers (Chen et al. 2017) or the
Penalty Method (Liu & Sun 2020) were used. Nevertheless, these techniques diverge from
the methods used to compute contact in explicit MPM. In this chapter, an implicit contact
algorithm is presented adapting the classical equations used in the explicit approach
(Bardenhagen et al. 2000) to the implicit scheme and considering the Newton-Raphson
iterative procedure. Moreover, to demonstrate the accuracy and performance of the
solution proposed, three benchmarks and two geotechnical problems are introduced.
Finally, comparative remarks are presented including also the computing performance,
followed by some recommendations to increase the accuracy of the simulations.

4.2. CONTACT FORMULATION
The contact formulation relies on the equations of motion presented in the previous
chapter, which are solved for a series of defined separate bodies, with the interactions
(contact) between them being included in the equations of equilibrium as additional
external forces. The bodies may be pre-defined (as in the examples here), or identified
by the program to allow for the separation or joining of bodies. The original contact
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procedures in MPM (Bardenhagen et al. 2000) used two steps to simulate contact: (i)
the velocity field sharing step, and (ii) the contact force evaluation step. In this work,
an extra (proximity detection) step to ensure mesh independency has been included,
using a distance limit to activate the contact. In the velocity sharing step, the velocities
are interpolated to the nodes to detect if any of the bodies may be interacting (which
is possible if two or more bodies interpolate velocities to the same node). Using the
individual nodal velocities of each body and the combined domain velocities (i.e. the
nodal velocities accumulated from all material points in the domain), velocity sharing is
detected at node i if

vi,C −vi,bod 6= 0 (4.1)

where

vi,C =
nb∑

bod=1

m̄i,bodvi,bod

m̄i,C
(4.2)

m̄i,C =
nb∑

bod=1
m̄i,bod (4.3)

where vi,C is the nodal combined velocity accounting for all bodies in the domain,vi,bod

is the nodal velocity of each independent body, m̄i,C is the combined nodal mass, bod
denotes the body, nb the number of bodies and in the problem. If eq. 4.1 is true for any
node i, the proximity detection rule is then evaluated. This proximity condition is

d
(
Xic

p,bod1 ,Xic
p,bod2

)
≤ dmin (4.4)

where Xic
p,bod1 and Xic

p,bod2 are the coordinates of the closest material points p from each

body (bod1 and bod2) to the possible contact node ic, d is the distance between Xi
p,bod1

and Xi
p,bod2, and dmin is the minimum distance required to active the contact. Note that

dmin should have a maximum value of the cell size to ensure mesh independence, but has
no minimum. Also, in eq. 4.4, only the contact between two bodies (bod1 and bod2) is
considered, and the formulation to account for contact at a single node by more bodies
is not included. If the velocity and proximity conditions are satisfied (i.e. eq. 4.1 and eq.
4.4), it is then necessary to evaluate if the bodies are approaching each other (contact
evaluation step). This last condition is relevant because, if the bodies are separating
(i.e. the first two conditions are true but the bodies are moving in opposite directions),
interaction is considered not to be taking place; otherwise it would add energy into the
system. This step is formulated as
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(
vi,bod −vi,C

) ·ni,bod > 0 (4.5)

where ni,bod is the unit normal vector of the body at the contact node. The normal vector
can be computed using different approaches (Nairn 2013), but in this work, the approach
described in Huang et al. (2011) is used, which is

ni,1 =−ni,1 =
(
n̄i,1 − n̄i,2

)∣∣n̄i,1 − n̄i,2
∣∣ (4.6)

and

n̄i,bod =
∑ngp

g=1∇Nmg∣∣∣∑ngp
g=1∇Nmg

∣∣∣ (4.7)

where the normal n̄ is the individual normal of the body bod around node i, in which the
direction is governed by the mass mg concentrated at the (central) Gauss position, and
ngp is the number of (central) Gauss position with concentrated mass mg around node i.
Note that the normal n̄ can be inconsistent (i.e. may not be perpendicular) to the surface
of the body due to the irregular distribution of mg around node i. This inconsistency
can be lessened by using n, the normal direction at node i in which the influence of the
neighbour body is considered. Furthermore, to compute n̄, bi-linear or GIMP SF gradients
can be used as the results are identical. Figure 4.1 illustrates the different variables during
contact between body A and body B, and highlights the difference between n̄ and n.

Figure 4.1: Contact variables

If eqs. 4.1, 4.4, and 4.5 are true, contact is deemed to occur, and contact conditions
must be applied by assigning contact forces. To do so, first the corrected nodal velocities
of each body are calculated to avoid interpenetration. Hence,

∗vic,bod = vic,bod −
[(

vic,bod −vic,C
) ·nic,bod

]
nic,bod (4.8)

where ∗vic,bod, is the corrected nodal velocity, and ic represents the contact node. Then,
the normal contact force is computed as
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Fnc
ic,bod = m̄ic,bod

[(∗vic,bod −vic,bod
) ·nic,bod

]
nic,bod

∆t
(4.9)

where Fnc
ic,bod is the nodal normal contact force. The tangential force required to ensure

non-slip (stick) conditions is calculated as

Fstick
ic,bod = m̄ic,bodnic,bod ×

[(
vic,bod −vic,C

)×nic,bod
]

∆t
(4.10)

where Fstick
ic,bod is the frictional force required to ensure non-slip conditions. The frictional

force, obeying Coulomb’s theory, is then

Ffric
ic,bod =

Fstick
ic,bod∣∣∣Fstick
ic,bod

∣∣∣min
(
µ

∣∣∣Fnc
ic,bod

∣∣∣ ,
∣∣∣Fstick

ic,bod

∣∣∣) (4.11)

where Ffric
ic,bod is the final frictional force between bodies, µ is the friction coefficient which

depends on the material characteristics, the quotient ensures that the direction of the
force opposes the relative motion, and the min function determines the magnitude of
the force. Finally, if contact occurs, nodal accelerations are no longer computed using eq.
2.14, since the contact loads should be included as

āt
bod =

Fext,t
bod −Fint,t

bod +Fnd,t
bod −Ffric,t

bod

mt
bod

(4.12)

4.3. EXPLICIT AND IMPLICIT CONTACT ALGORITHM

4.3.1. EXPLICIT CONTACT ALGORITHM

The implementation of contact using the explicit scheme is straightforward. Table 4.1
shows the algorithm of the explicit scheme including the contact steps. Several minor
steps are omitted, such as the activation of the boundary conditions and the computation
of the material point local coordinates, in order to maintain the algorithm simplicity.
The square brackets located at the left side of the figure indicate a loop for each body;
i.e. the combination of steps should be repeated for each body before continuing with
the following steps. The plastic iteration loop is indicated, but the procedures are not
elaborated; the reader is directed to Smith et al. (2013) and Sloan et al. (2001) where the
plastic procedures are described in detail. Note that, similar to the block benchmark
presented in Section 2.7, the contact at the boundaries occurs due to the fixed boundary,
which prevents the displacement of the block, causing the development of strain energy
which pushes the block upwards.
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Table 4.1: Steps followed in the explicit MPM scheme considering contact{
Evaluate nodal force and mass (eqs. 2.10 or 3.13, 2.11 or 3.14, and 2.12):

Fext,t
i,bod, Fint,t

i,bod, and m̄t
i,bod

Evaluate combined velocity (eq. 4.2): vt
i,C{

Estimate new contact velocities (eq. 4.8): ∗vt
ic,bod{

Estimate contact and frictional forces (eqs. 4.9 and 4.11): Fnc
ic,bod and Ffric

ic,bod{
Estimate nodal accelerations (eqs. 2.14 or 4.12): āt

i,bod{
Update material point velocity at time t+∆t (eq. 2.15): vt+∆t

p{
Update nodal velocities (eq. 2.18): v̄t+∆t{
Estimate material point trial stresses (eq. 2.17 or 3.16): σtrial

p

Loop 1: if Y(σtrial
p ) > 0: return stresses to the yield surface Y

Plastic iteration loop

IF Y(σtrial(t+∆t)
p ) = 0: EXIT Loop 1

END Loop 1{
Update material point stresses after plasticity σt+∆t

p =σtrial(t+∆t)
p{

Update material point positions (eq. 2.16): xt+∆t
p

4.3.2. IMPLICIT CONTACT ALGORITHM
To simulate contact using the implicit scheme, the same approach as in the explicit
scheme is used. Newmark’s time integration technique and the Newton-Raphson method
are used, so the equations used to estimate contact must be updated in each iteration step.
Moreover, if contact occurs, it is assumed that it persists throughout the Newton-Raphson
iterative process, i.e. between times t and t+∆t. Considering these assumptions, the
equations used to update nodal velocities during the iterative procedure are then

kvt+∆t
ic,C =

nb∑
bod=1

m̄ic,bodvt+∆t
ic,bod

m̄ic,C
(4.13)

and

k∗vt+∆t
ic,bod = vt+∆t

ic,bod −
[(

vt+∆t
ic,bod −vt+∆t

ic,C

)
·nic,bod

]
nic,bod (4.14)

the contact loads are computed as

kFnc,t+∆t
ic,bod =

m̄ic,bod

[(
∗vt+∆t

ic,bod −vt+∆t
ic,bod

)
·nic,bod

]
nic,bod

∆t
(4.15)

with the tangential force to ensure sticking conditions calculated as

kFstick,t+∆t
ic,bod =−

m̄ic,bodnic,bod ×
[(

vt+∆t
ic,bod −vt+∆t

ic,C

)
×nic,bod

]
∆t

(4.16)
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and the frictional force

kFfric,t+∆t
ic,bod =

Fstickt+∆t
ic,bod∣∣∣Fstick,t+∆t
ic,bod

∣∣∣min
(
µ

∣∣∣Fnc,t+∆t
ic,bod

∣∣∣ ,
∣∣∣Fstick,t+∆t

ic,bod

∣∣∣) (4.17)

Note that these equations are similar to those used in the explicit scheme, with the
exception that the nodal combined velocities vt+∆t

ic,bod are updated every iteration, which
leads to a new set of corrected velocities and nodal forces. Finally, if contact occurs, the
incremental displacements should be computed using

K̄bod
kūi,bod =k−1

(
Fext

i,bod −Fkin
i,bod −Fint

i,bod +Fnc
ic,bod −Ffric

ic,bod

)t+∆t
(4.18)

Table 4.2: Steps followed in the implicit MPM scheme considering contact{
Evaluate nodal mass, velocities and accelerations (eqs. 2.12, 2.13 and 2.34):

m̄t
i,bod, v̄t

i,bod and āt
i,bod{

Evaluate nodal external loads and stiffness (eqs. 2.10 or 3.13 and 2.31 or 3.15):

Fext,t
i,bod and K̄t

bod

Evaluate combined velocity (eq. 4.2): vt
i,C{

Initialize ūt+∆t
ic,bod = 0, vt+∆t

ic,bod = v̄t
i , Fnc,t+∆t

ic,bod = 0 and Ffric,t+∆t
ic,bod = 0

Loop 1: over the number of iteration steps{
Evaluate nodal internal loads (eq. 2.11 or 3.14): Fint,t

i,bod{
Evaluate nodal kinetic loads (eq. 2.11 or 3.14): Fkin,t

i,bod{
Estimate contact and frictional forces (eqs. 4.9 and 4.11): Fnc

ic,bod and Ffric
ic,bod{

Estimate incremental displacements (2.30 or 4.18):ūt+∆t
i,bod{

Update nodal velocities (eq. 2.28):v̄t+∆t
i,bod

Evaluate combined velocity (eq. 4.13): vt
i,C{

Estimate new contact velocities (eq. 4.14): ∗vt+∆t
ic,bod{

Estimate material point trial stresses (eq. 2.38 or 3.17): σtrial
p

Loop 2: if Y(σtrial
p ) > 0: return stresses to the yield surface Y

Plastic iteration loop

IF Y(σtrial(t+∆t)
p ) = 0: EXIT Loop 1

END Loop 2

IF convergence is true (eq. 2.33) or the maximum number of iterations is reached: exit Loop 1{
Update material point stresses after plasticity σt+∆t

p =σtrial(t+∆t)
p{

Update material point variables (eqs. 2.35, 2.36 and 2.37): at+∆t
p , vt+∆t

p and xt+∆t
p
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Table 4.2 shows the steps followed to simulate contact using the implicit scheme.
It should be noted that the vector of external forces Fext and the stiffness matrix K̄ are
evaluated at time t+∆t outside the iteration loop, as both remain constant throughout the
iterative procedure. The modified Newton-Raphson is used, in which the stiffness matrix
is kept constant during the iterative procedure. The small time steps used to capture the
kinematics ensure that this results in a reasonable solution.

4.4. APPLICATION AND EVALUATION OF CONTACT METHODS

4.4.1. BENCHMARK PROBLEMS
To evaluate the performance of the implicit contact method, three plane strain bench-
marks are analysed and compared against the explicit solution, as well as against the
analytical, and FEM solutions where available. The first two benchmarks (i.e. a collision
and a 1D vibrating bar) are used to study energy conservation. The first benchmark consi-
ders a contact occurring instantaneously between two blocks, and the second considers
contact which persists throughout the whole simulation. The third benchmark is the
simulation of a block sliding on a rigid surface, and is used to analyse the interaction
between bodies when considering frictional forces. Each benchmark was simulated using
DM-GC and four equally spaced material points per background element, which were
initially positioned at the local coordinates ξ=±0.5 and η=±0.5 (see Appendix A)

COLLISION BENCHMARK

In Figure 4.2, the initial configuration of the collision benchmark is shown. The bench-
mark consists of two square blocks (A and B) of size 0.6 m, moving freely towards each
other through a background mesh with a mesh spacing of ∆x =∆y = 0.20 m. Each block
has an initial horizontal velocity of 0.5 m/s. The properties of both blocks are Young’s
modulus, E = 500 kPa, Poisson’s ratio, υ= 0.45, and unit weight, γ= 20 kN/m3. The tole-
rance values used in the Newton-Raphson iterative procedure, and to establish contact,
are tol = 1.0×10−8 (eq. 2.33) and dmin = 0.2 m, respectively. Gravity forces have not been
considered.

Figure 4.2: Collision benchmark
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Figure 4.3, shows the results of the collision in terms of total energy (TE), for both the
explicit and the implicit schemes. In Figure 4.3a, for the explicit scheme, it is observed
that, at the moment of the collision (tc), the energy decreases significantly (by 17%)
and, depending on the time step used, the total energy either continues decreasing
or stays almost constant after the collision. Figure 4.3b shows that, using the implicit
scheme, the total energy behaves in a similar way to the explicit solution, except that some
oscillation of the energy is observed after the collision. This oscillations are attributed to
not capturing accurately internal waves due to the large time step used, which is 10 times
greater than that used with the explicit scheme, for almost the same performance.

(a)

(b)

Figure 4.3: Energy conservation after collision using a) the explicit scheme, and b) the implicit scheme

Additionally, Figure 4.4 and Table 4.3 demonstrates the energy conservation and
computational time required to complete each simulation with respect to the mesh
(element) size for the implicit scheme. The study of energy conservation is performed
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using a time step of ∆t = 1.0×10−4 s, and mesh sizes of 0.20, 0.10 and 0.05 m. Also, an
additional curve (solid line with markers) computed using a mesh size of 0.05 m and
a time step of ∆t = 1.0×10−5 s is added to Figure 6 to study the effects of reducing the
time step and the mesh size simultaneously. The contact tolerance values used are the
maximum values for the mesh, i.e. dmin = 0.20, 0.10 and 0.05, respectively. It is observed
that the drop of energy at the point of contact decrease with the reduction of the mesh
size, improving the conservation of energy. Furthermore, by reducing the mesh size and
time step together, the drop of energy and the oscillations after contact reduces drastically,
reinforcing the theory that the oscillations in 4.3b were caused due to the large time step
used. Nonetheless, despite of the improvement of the results, some reduction in energy is
still observed. The analysis of the computational time is performed considering the time
steps, ∆t = 1.0×10−5 s, and, ∆t = 1.0×10−4 s, for the explicit and the implicit scheme,
respectively. It is observed that the computational time needed to complete a simulation
grows substantially with the reduction of the mesh size. Nevertheless, the time relation
is almost constant, being that the implicit solution is on average 30% faster than the
explicit solution. Finally, the Courant number (CN) indicates that the conditions of each
simulation (i.e. material properties, mesh size and time steps) are adequate (i.e. CN < 1).

Figure 4.4: Energy conservation with implicit scheme using different mesh sizes

Table 4.3: Collision benchmark computational time

Mesh size (m)
Computational time

∆t implicit / ∆t implicit Courant number
Implicit Explicit

0.2 2 3 0.67 0.01

0.1 5 7 0.71 0.03

0.05 21 31 0.68 0.06

0.02 224 330 0.68 0.15

The reason for the decrease of energy observed in Figure 4.3 and 4.4 is the incon-
sistency between the contact loads and the internal loads developed at the contact
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(Fnc 6= Fint). One method to prevent this inconsistency between the contact and internal
forces is to compute the contact loads as a function of the internal loads developed by
each body at the contact (Xiao-Fei et al. 2008). At the contact interface, the normal acce-
leration of each body can be assumed to be equal (i.e. at

i,A ·nii,A =−at
i,B ·nii,B ). Hence,

from Newton’s second law, it is established that

mi,A
(
ai,A ·ni,AB

)= Fint
i,A ·ni,A −Fnc

i (4.19)

mi,B
(
ai,B ·ni,AB

)= Fint
i,B ·ni,B +Fnc

i (4.20)

which leads to

Fnc
i,A =

(
mi,B Fint

i,A −mi,A Fint
i,B

)
·ni,AB(

mi,A +mi,B
) =−Fnc

i,B (4.21)

where Fnc
i,A and Fnc

i,B are the contact forces between the bodies as a function of the inter-
nal forces developed. In Figure 4.5, the energy conservation of the collision benchmark is
plotted using eq. 4.21 to compute the contact loads, a step size of∆t = 1.0×10−5 s, a mesh
of size of∆x =∆y = 0.20 m, and the explicit scheme. It is seen that the energy conservation
improves considerably because the contact loads and the internal loads are equivalent.
However, this approach should be implemented with caution since the contact forces
are dependent on the material point stresses which are known to suffer from numerical
oscillations, leading to a oscillations of the contact loads. Since stress oscillation problems
are typical in MPM, in order to implement eq. 4.21 in any problem more complicated
than this example, further improvements are needed. Additionally, the implementation
of this contact technique using the implicit scheme is not straightforward due to the
interdependence of the internal and contact loads and the iterative nature of the implicit
scheme. Since these improvements needed to implement this technique in both solutions
schemes are beyond the scope of this thesis, all remaining examples have been computed
using the initial approach.

Figure 4.5: Energy conservation during block collision with explicit scheme

1D BAR BENCHMARK

This benchmark is similar to other 1D vibration benchmarks, except that this 1D bar
is made up of two bars (bodies A and B), where interaction occurs due to the contact
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forces at the interface between the two bodies. Initially, the bodies have zero internal
stresses, but, due to the gravity force, they compress as soon as they are allowed to
move. The equations of motion are calculated separately for the two bodies and the
interaction between them is calculated via the contact forces. Figure 4.6 shows a sketch
of the benchmark, including the dimensions of the bars and the boundary conditions.
Each bar has a height of H1 = H2 = 5 m and a width of L = 1 m. The size of the mesh
is, ∆x =∆y = 0.25 m. The properties of both bars are Young’s modulus, E = 1000 kPa,
Poisson’s ratio, υ= 0.35, and unit weight, γ= 15kN/m3. The tolerance values used in the
Newton-Raphson iterative procedure and the contact distance are tol = 1.0×10−8 and
dmin = 0.25 m, respectively.

Figure 4.6: 1D bar benchmark background mesh, where each element was initially filled with 4 material points

Figures 4.7 and 4.8 shows the sum of the total energy of each 1D bar and the displa-
cement of the top material point throughout 3 seconds of simulation using several time
steps for both solution schemes, respectively. Furthermore, FEM results are included,
which are considered as a reference solution. As can be observed in Figure 4.7a, by re-
ducing the time step, the energy conservation is improved. The largest drop of energy
is during compression, when most of the penetration occurs. Using the smallest time
step of ∆t = 1.0−5 s, the loss of energy is the lowest (4.7 % after 3 seconds). On the other
hand, using the largest time step, ∆t = 1.0−4, the loss of energy is considerable (22.5 %
after 3 seconds). Consistent with the calculated loss of energy, Figure 4.7b shows that the
top material point is unable to reach its original position when a large time step used.
In contrast, when the smallest time step is used, results are nearly equal to FEM results
(i.e. accurate). This is because the computed contact loads can adjust satisfactorily to the
change of internal forces and velocities of each body during contact when smaller time
step are used, restricting the penetration of the bodies. When the implicit scheme is used
(Figure 4.8), the results for energy conservation and material point position are similar to
those using the explicit scheme, based on each implicit simulation using a time step 10
times larger than in the explicit simulation.
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(a)

(b)

Figure 4.7: a) Sum of the Total energy of each 1D bar using the explicit scheme, and b) displacement of the top
material point

(a)

(b)

Figure 4.8: a) Sum of total energy of each 1D bar using the implicit scheme, and b) displacement of the top
material point
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SLIDING BENCHMARK

In this benchmark, a block under gravity loading is located on a flat surface and slides.
Figure 4.9 shows a sketch of the problem. Body A is a rigid surface and a body B slides
over body A due to the gravity load (g) which is rotated by θ= 15o to the vertical. The
lengths of the two bodies are L1 = 1.5 m and L2 = 6 m, respectively, and the height of each
body is, H1 = H2 = 0.75 m. The mesh size is ∆x =∆y = 0.25 m, and body A is fixed at the
bottom boundary and at the vertical boundaries. The elastic properties of the bodies are
Young’s modulus, EA = 5000 kPa and EB = 1000 kPa, in which EA and EB refer to body A
and B, respectively. The Poisson’s ratio and unit weight for both bodies is, ν = 0.35 and
γ= 20kN/m3, respectively. Two simulations using two different friction factors, µ = 0 and
µ = 0.15, have been performed, and the results are compared with the analytical solution
of (Jiang & Yeung 2004). Time steps of ∆t = 5.0×10−5 s and ∆t = 5.0×10−4 s were used for
the explicit and the implicit simulations, respectively. The tolerance values used in the
Newton-Raphson iterative procedure and the contact distance are tol = 1.0−8 and dmin =
0.25, respectively.

Figure 4.9: schematic of the sliding benchmark

Figure 4.10 shows the results of the benchmark over two seconds of sliding. It is seen
that the simulated results using the explicit and the implicit schemes are similar to the
analytical solution, indicating that the friction between the bodies is accurate. Figure 4.11
shows the contact loads distribution at the interface of body A and B considering µ= 0.15.
The load distribution of Figure 4.11a corresponds to the initial state of the simulation, in
which the block has not moved. In this case, the normal load Fnc is constant at the centre
of the block and drops close to the corners. Also, the frictional load Ffric is maximum
at 1m and minimum at 0.25 m, indicating that the frictional force is developing from
right to left due to the weight of body B and the inclined gravity force. Then, Figure 4.11b
shows the instant in which body B begins to slide. In this case, the frictional loads are
constant below body B, indicating that the frictional force is fully developed. Additionally,
the results obtained using the explicit and the implicit schemes are similar. The reader is
directed to the work of Oden & Pires (1984) in which a similar simulation is performed.
Note that, due to the differences in the simulation conditions, results are not the same.
Nevertheless, similarities can be observed, as the distribution of the normal and frictional
load before the movement of the block.

Figures 4.12, 4.13 show the average of the normal and tangent loads below body B
during the sliding considering also µ= 0.15. It is observed that both loads are close and
oscillate around the analytical solution (which is computed considering static conditions).
These oscillations are caused mainly by the bouncing and vibrations of body B during
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the sliding. This is more evident in the explicit results which contain larger magnitude of
oscillations

Figure 4.10: Sliding simulation using the explicit and the implicit scheme

(a) (b)

Figure 4.11: Normal Fnc and tangent Ffric contact loads below body B a) before displacement and b) after
displacement

Figure 4.12: Interface normal force (Fnc)
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Figure 4.13: Interface tangent force (Ffric)

4.4.2. GEOTECHNICAL APPLICATIONS
Two plane strain geotechnical problems are simulated using both the explicit and the
implicit contact solutions. The first problem consists of a shallow foundation that pene-
trates into the soil due to an increase in gravitational loading applied to the foundation.
The second problem consists of a vertical cutting that, after failing, slides and collides
against a wall. In these problems, the Young’s modulus used for the rigid elements (i.e. the
foundation and the wall) are lower than the actual values for such elements. The intention
of this is to permit the bending of the rigid bodies rather to keep them undeformable, to
demonstrate the capabilities of the method.

FOUNDATION

This problem involves a foundation slab that penetrates into an incompressible, linear
elastic, perfectly plastic von Mises soil, with a rough interface, i.e. no tangential slip is
allowed. The initial stresses in the soil are computed as σy =γsoilhy and σx =σZ = K0σy

where γsoil = 17.5kN/m3 is the soil unit weight, hy is the depth of the material point
below the soil surface, and K0 = 0.7 is the coefficient of earth pressure at rest. The elastic
parameters of the soil are Young’s modulus, Esoil = 5.0×103kPa, and Poisson’s ratio, νsoil

= 0.49, and its undrained shear strength is Su = 10 kPa. The slab Young’s modulus and
Poisson’s ratio are Eslab = 1.0×104kPa and νslab = 0.45, respectively.

Figure 4.14 shows the geometry and boundary conditions of the problem. The slab
dimensions are thickness, H1 = 0.6 m, and width, 2L1 = 4.0 m, (only half of the foundation
has been modelled), while the modelled soil domain has a depth of H2 = 4.0 m and a
width of L2 = 7.0 m, respectively. The vertical boundaries of the domain are fixed in
the horizontal direction, whereas the bottom boundary is fixed in both directions. The
mesh comprises four noded square elements of size ∆x =∆y = 0.20 m, and there are
initially four MPs in each element. Based on the results of the benchmark analyses, the
time steps selected for the explicit and implicit simulations were, ∆texpl = 1.0×10−5 and
∆timpl = 1.0×10−4 s, respectively.
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The pressure exerted by the slab on the soil has been applied by increasing the self-
weight of the slab by gravitational loading; i.e. by assuming the density of the slab to be
ρslab = 3000kg/m3 and increasing the gravity from zero at a rate of 1 g/s while keeping
the gravity of the soil constant at 1g. Finally, the tolerance value used in the Newton-
Raphson iterative procedure and the contact distance are tol = 1.0×10−8 and dmin = 0.20
m, respectively.

Figure 4.14: Foundation problem

Figure 4.15 shows the results for the foundation problem after a settlement of 0.20 m
using the implicit scheme (with similar results being obtained with the explicit scheme).
In Figure 4.15a, the plastic deviatoric strain contours indicate a failure mechanism re-
sembling the failure described in Terzaghi (1943), while Figure 4.15b, shows the shear
stresses developed. By comparing both parts of the figures, it is seen that the larger plastic
deviatoric strains develop in zones where the shear stresses shift from positive values to
negative. It is also evident that, due to the soil yielding and the use of a large Poisson’s
ratio, some checker-board oscillation occurs, as is typical for von Mises incompressible
materials using bi-linear elements. The reader is referred to Coombs et al. 2018 and
González Acosta et al. 2019, where the volumetric locking problem has been studied.

Figure 4.16, shows the pressure(PL)-displacement responses computed using the
explicit and implicit schemes plotted against two analytical solutions of Terzaghi (1943).
Both of these solutions for the bearing capacity consider rough contact between the soil
and foundation. However, one solution does not include any overburden load (Q1 = SuNc),
whereas the second solution does (Q2 = SuNc +γsoilDf, where Df is the depth of the base
of the foundation). The pressure load between the slab and the soil is computed from
the contact forces (Fnc) and the size of the foundation. As can be seen, despite the stress
oscillations observed in Figure 4.15a, the maximum simulated bearing capacity of the soil
is close to both analytical solutions, especially the second solution in which the influence
of the deformation has been included (via the overburden component).
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Figure 4.15: a) Plastic deviatoric strain after failure and, b) shear stresses after failure

Figure 4.16: Pressure-displacement curves up to a settlement of 0.2 m using both explicit and implicit schemes
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VERTICAL CUTTING

This problem consists of a vertical cutting that fails due to self-weight and then hits
a protection wall. Figure 4.17 shows a schematic of the initial state of the problem,
including the boundary conditions. As for the previous example, the initial stress states in
the vertical cutting and the protection wall are computed using the depth of each material
point from the surface of each structure (i.e. hy1 and hy2, respectively); and the unit
weights and earth pressure coefficients of the soil and the wall, γsoil = 18.0 kN/m3, k0−soil

= 0.7 and γwall = 25.0kN/m3, k0−wall = 0.5, respectively. To generate the initial stresses in
the vertical cut, a static step is applied in which the movement of the material points
is prevented. This step causes large localised shear stresses to develop at the toe of the
vertical cut, which cause the triggering of the landslide when the material points are
released. The boundary conditions, are that both bodies are fully fixed at the base, and
the soil is also fixed in the horizontal direction at the left-hand vertical boundary. The
height and width of the modelled soil domain and the protection wall are H1 = 2.5 m and
L1 = 6.0 m, and H2 = 1.0 m and L2 = 0.8 m, respectively. The distance between the soil and
the wall is L3 = 1.0 m, and the element size is ∆x =∆y = 0.10 m.

The elastic parameters of the soil and the wall are Young’s moduli Esoil = 1.0×103 kPa
and Ewall = 3.0×103 kPa, and Poisson’s ratios µsoil = 0.38 and µwall = 0.30, respectively. The
soil is modelled as a linear elastic, linear strain-softening Von Mises material, with a peak
cohesion cp = 14 kPa, a residual cohesion, cr = 5 kPa, and a softening modulus, Hs = -18
kPa (see Wang et al. 2016b for details of the constitutive model). The wall is simulated as a
linear elastic material. The time steps selected for the explicit and the implicit simulations
are, ∆texpl = 5.0×10−5 and ∆timpl = 5.0×10−4 s, respectively. The tolerance value used in
the Newton-Raphson iterative procedure and the contact distance are tol = 1.0×10−8 and
dmin = 0.1 m, respectively.

Figure 4.17: Vertical cut and protection wall (mesh indicative and not scaled)

Figure 4.18 shows the distribution of plastic deviatoric strains in the vertical cut, and
the distribution of deviatoric stresses in the wall, after a) 0.8, b) 1.25 and c) 2.4 seconds
in the implicit simulation. Figure 4.18a shows a moment after the vertical cut has failed,
with the soil mass moving downwards and to the right, and increasing its kinetic energy
before the collision. Figure 4.18b shows the instant at which the contact load and the
internal deviatoric stresses in the wall are a maximum. Figure 4.18c shows the end of the
simulation, when the wall has partially recovered its position. It can be seen that, due
to the adopted proximity detection rule, the two bodies are closely connected during
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Figure 4.18: Collision simulation after a) 0.8, b) 1.25, and c) 2.4 seconds. Plastic deviatoric strains are shown in
the soil, and deviatoric stresses are shown in the wall

Figure 4.19 shows the average pressure at the wall surface and the deviatoric stress
at the wall base. The pressure in Figure 4.19a has been computed by adding the contact
force from each contact node and dividing it by the wall height H2. The deviatoric stress
(q) in Figure 4.19b has been computed, using the principal stresses, as

q =
√

(σ1 −σ2)2 + (σ1 −σ3)2 + (σ2 −σ3)2

p
2

(4.22)

The material points selected to compute the deviatoric stress are those inside four
elements at the bottom left corner of the wall (Figure 4.19b). These points were chosen
because, in this section of the wall, the deviatoric stress is a maximum. It is observed that
the results in Figure 4.19 are consistent with each other, in that the maximum deviatoric
stress occurs at the same time as the maximum contact pressure. Also, due to the elastic
behaviour of the wall, an oscillatory behaviour is observed.



4.4. APPLICATION AND EVALUATION OF CONTACT METHODS

4

93

(a)

(b)

Figure 4.19: a) Contact pressure at the wall surface, and b) deviatoric stress at the base of the wall

4.4.3. COMPUTATIONAL TIME

The time steps used and the computational times recorded for the simulations from
Sections 4.4.1 and 4.4.2 are presented, to further assess the capability of the implicit solu-
tion. Note that the time steps chosen for the geotechnical simulations were based on the
results obtained from the benchmarks (i.e. the largest time steps which returned accurate
results). They were compiled using Intel Parallel Studio XE, and run on a computer with
an Intel Xeon E5-1620 processor and 16 GB RAM. However, it should be noted that no
special effort was made to optimize the code (e.g. no parallel computing), which means
that the installed RAM was not exploited to its maximum capacity.

Table 4.4 summarises the implicit/explicit time step relationship, computation time
(CT), and memory usage (MU) between the simulations. It is observed that, in most of
the simulations (i.e. except the block collision simulation), the time step used for the
implicit simulations is 10 times larger than the time step used for the explicit simulations.
Due to the use of a larger time step, the computation time is smaller (in most of the
simulations) when using the implicit solution. The reason for the larger computation
time in the foundation simulation is the incompressibility of the soil, which leads to more
iterations in order to reach equilibrium. However, in more realistic simulations, where
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contact only occurs during part of the simulation, the implicit algorithm should lead
to substantial computation time savings. Finally, it is observed that the memory usage
is almost the same with both formulations. This is because the implicit scheme uses
the skyline storage technique, which is highly effective in manipulating the data during
the simulations. Nevertheless, when the simulated problems contain a large number of
points (e.g. the foundation and soil-wall collision problems), the differences in memory
usage are more evident.

Table 4.4: Time step relationship, computation time and memory usage for each simulation

Problem

analysed

Implicit ∆t /

Explicit ∆t

Explicit

CT (min)

Implicit

CT (min)

Explicit

MU (MB)

Implicit

MU (MB)

Block collision 5 1.93 0.42 1.9 2.1

1D vibration bar 10 11.64 3.6 3 3.5

Sliding block 10 8.4 2.27 2.3 2..5

Foundation

settlement
10 305 335 66.8 76.6

Soil-wall

collision
10 94.33 68.26 80.9 86.6

4.5. CONCLUSIONS
In this Chapter, an implicit contact solution was developed for MPM, based on existing
explicit procedures and using the Newton-Raphson iterative procedure and Newmark’s
time integration scheme. The relative performance of the formulation with respect to
an explicit scheme was investigated through analysing three benchmark problems. It
was shown that the results obtained using the explicit and implicit methods were almost
identical. It was observed that both methods dissipate energy in a similar manner due to
an inconsistency between the contact loads and the increment of material point stresses,
which is proportional to both the time step and mesh size discretisation. Moreover, it
was observed that by reducing the time step and mesh size to realistically small sizes, a
reasonable energy conservation can be achieved. The ability of the method for simula-
ting geotechnical problems was demonstrated through the analysis of foundation slab
settlement in a cohesive soil, in which the failure mechanism and the bearing capacity
obtained were similar to Terzaghi’s analytical solution, and through the analysis of the
collision of a mass of soil against a protection wall. Finally, it was shown that the simu-
lation using the implicit approach is faster when the contact loads in the problem are
moderate; otherwise, the computational time can be similar to the explicit approach.
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5
STUDY OF LANDSLIDES AND THE

INTERACTION WITH STRUCTURES

USING IMPLICIT MPM

In this Chapter, the implicit contact technique developed in Chapter 4 is studied by simula-
ting soil-structure interaction problems and a landslide. First, the behaviour of a retaining
structure is studied during the impact of a mass of soil, for different foundation conditions.
In this simulation, structural behaviour in the context of rotation, sliding, pull-out and
overturning is observed, and both passive and active soil failures occur. Then, a landslide
triggered by construction procedures is analysed, in which a combination of deep and
shallow complex failure mechanisms are observed.

Parts of this chapter appear in González Acosta et al. 2020.
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5.1. INTRODUCTION
Landslides are natural hazards in which a large mass of debris, mud or rock moves down-
slope at a range of velocities. The triggering causes are diverse; usually a landslide is
activated because of (i) the rapid loss of material strength, as occurs when the pore
pressure in the soil increases during extreme rainfall (Wang & Sassa 2003, Collins &
Znidarcic 2004, Moriwaki et al. 2004, Iverson et al. 2015, Wang et al. 2018), or (ii) the
rapid application of external loads, as occurs during earthquakes (Rodrıguez et al. 1999,
Nakamura et al. 2014, Li et al. 2012). Nonetheless, the occurrence of slow landslides,
in which movement can take place over several days or years, is also possible. These
landslides are usually undergoing creep (Van Asch 1984, Van Asch & Van Genuchten 1990,
Furuya et al. 1999), or the complex geometric and geologic characteristics of the site
prevents fast sliding of the soil (Rico et al. 1976). In Figure 5.1, typical slope failures are
illustrated. Figure 5.1a shows a retrogressive failure, in which an initial shear band (SB 1)
develops, causing the material to slide (FV 1). Then, if the down-slope material cannot
support the imbalance in loads of the backslope, a new SB develops, causing the slide of
another block of material (FV 2). This process can repeat several times, causing multiple
slope failures. In Figure 5.1b, a translational failure is observed, in which a segment of
material detaches and moves a short or large distance. In contrast with the retrogressive
failure, the mass of soil affected is larger and further sequential failures may not occur.
Some of the most typical slope failure types are described in Locat et al. (2011) and Vardon
et al. (2017). Moreover, Wang et al. (2016a) showed that failures are often a combination
of multiple mechanisms.

(a)

SB 1

SB 2

FV 1

FV 2
FV 1

(b)

SB 

Figure 5.1: a) scheme of a retrogressive failure, and b) scheme of a translation failure (after Locat et al. 2011)
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Regardless of the type of failure or triggering cause, damage to infrastructure and/or
loss of human lives are possible. It is estimated that landslides are responsible for around
17% of fatalities due to natural hazards, most of them being in America (North, Central and
South) and China, and economic losses scale to several billions USD annually (Kjekstad &
Highland 2009). In order to mitigate possible damage caused by landslides, it is important
to develop tools capable of simulating real geotechnical scenarios in which slope failure
or landslides can occur, including interaction with neighbouring structures.

The finite element method (FEM) is a numerical technique frequently used to study ge-
otechnical problems, such as slope stability and the interaction with protection/retaining
structures (Cai & Bathurst 1995, Chen & Martin 2002, Mishra et al. 2017). Nevertheless,
in FEM, the connectivity between the mesh and the domain is essential and does not
allow for the simulation of large deformations, thereby reducing the range of problems
that can be studied. To date, numerous papers have reported the use of MPM to simulate
interaction between landslides and structures (Mast et al. 2014, Li et al. 2016, Dong et al.
2017, Conte et al. 2019). Nevertheless, these attempts have generally failed to depict a
realistic landslide simulation and the interaction with surrounding structures, due to the
use of (i) unrealistic initial conditions (which leads to implausible failure triggers), (ii)
simplified solution procedures (which ignore a realistic contact simulation), and (iii) poor
stress recovery techniques (which reduces the accuracy of the simulations).

In this section, the procedures developed in Sections 3.2 and Chapter 4 (i.e. DM-GC
and the implicit contact method) are used to study the use of the implicit contact MPM
for geotechnical problems.

5.2. APPLICATION OF THE IMPLICIT CONTACT METHOD
The proposed implicit contact method is applied to two plane strain geotechnical pro-
blems. The first problem consists of a vertical cutting, which fails under self-weight and
collides against a rigid wall. The second problem consists of a large slope, which fails, due
to the removal of material and inadequate construction of retaining structures, dragging
all neighbouring structures in the failure. In both problems, the progressive failure of the
soil and the response of the structures after contact are investigated.

5.2.1. VERTICAL CUT
A 2D elasto-plastic vertical cut has been simulated using a von Mises constitutive mo-
del incorporating post-peak softening (Wang et al., 2016b), which, after failure, collides
against a rigid wall. Figure 5.2 shows the generic problem domain (including dimensions
in meters) and boundary conditions. This problem has been analysed twice, by conside-
ring two different geometries. In the first simulation, the wall is founded on the ground
surface (i.e. s = 0), and the foundation soil layer is shallow (h2 = 0.25 m). In the second
simulation, the foundation soil layer is deeper (h2 = 1.0 m), and the rigid wall is founded
at a depth of s = 0.5 m. The background mesh element size is ∆x =∆y = 0.05 m and each
element contains initially four equally distributed material points (i.e. at the centre of
each element quadrant).
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The unit weights of the soil and the wall are γs = 18 kN/m3 and γw = 20 kN/m3, res-
pectively. The elastic parameters for the soil are Young’s modulus, E = 1.0×103 kPa and
Poisson’s ratio, υ= 0.35, and the peak shear strength parameters for the soil cut and foun-
dation soil are spv = 10 kPa and spf = 30 kPa, respectively. The residual shear strength
and the softening modulus are the same for both soils, and are equal to sr = 3 kPa and
Hs =−30 kPa, respectively. The elastic parameters for the rigid wall are E = 1.0×104 kPa
and υ= 0.38.

At the left and right boundaries of the domain, the nodes are on rollers to avoid
displacement in the horizontal direction, whereas the nodes are fully fixed at the bottom
boundary. The initial stresses in the domain were generated by linearly increasing the
gravity load. During these steps, the kinematics were not considered and the material
points stayed in their original positions (i.e. no movement was allowed). After the gravity
load had reached its maximum value, the kinematics were included, and the material
points were released. Then, due to the development of large shear stresses at the cutting
toe and the low strength of the material, the failure was triggered. The failure process was
modelled using a time step of ∆t = 1.0×10−4 s for the simulation.

=2

=1

=2.5 =3.5

=0.5

=1

=0.5

=1

Figure 5.2: Vertical cut sketch (not to scale; dimensions in meters)

Figure 5.3 shows the interaction between the vertical cut and the rigid wall, by way of
the plastic deviatoric strain and deviatoric stress distributions, for the simulation with
no wall foundation. Note that the deviatoric stress range is fixed to maximum of 25 kPa,
allowing a better visualization of the stresses in the vertical cut. In Figure 5.3a and 5.3b,
the initial condition of the simulation is shown (at the instant the material points are
released). It is seen that the material points have not yet moved, although there is a stress
concentration at the base of the cut. In Figure 5.3c and 5.3d, the simulation at the instant
of the contact (t = 0.7 s) is shown. At this stage of the analysis, the shear band already
traverses the height of the vertical cut and a large block of soil is moving towards the
retaining structure. In Figure 5.3e and 5.3f, the simulation has reached time t = 1 s. In this
case, the contact has already occurred and, due to the kinematic forces applied by the soil,
the wall is being pushed and slides to the right. It is seen that a large portion of soil close
to the contact zone undergoes plasticity due to the large contact forces developed. Finally,
Figure 5.3g and 5.3h show the final step of the simulation corresponding to time t = 3 s. By
this stage of the analysis the rigid wall has fallen over after being pushed a considerable
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distance. Furthermore, at the base of the wall, the soil and the wall are not in contact and
the soil has formed a circular scarp. This occurred during the fall of the wall, due to the
rotational movement of the wall pushing the soil away.

Figure 5.4 shows the results of the simulation with the wall foundation and a deeper
soil foundation. In Figure 5.4a and 5.4b, the initial plastic deviatoric strains and deviatoric
stresses are shown, while Figure 5.4c and 5.4d shows the stresses and strains at the initia-
tion of contact (t = 0.8 s). At this point, the results are similar to the previous simulation
(as expected), but the contact occurs 0.1 s later. This time difference is attributed to the
inclusion of the foundation, which has a small influence on the growing velocity of the
failure mechanism. In Figure 5.4e and 5.4f, the results during the contact at a time of t = 1
s are quite different from the previous simulation. It is seen that the rigid wall, rather than
sliding, rotates because of the support given by the foundation soil. A small zone in the
foundation soil at the back of the wall develops into a passive failure wedge, and the wall
separates from the soil in areas where tension would occur, highlighting the advantage of
using the contact algorithm. Finally, at the end of the simulation (Figures 5.4g and 5.4h)
the wall is not far from its original position and is able to prevent further movement of
the failed soil mass.

Finally, note that an interface is observed (i.e. a notable difference of deviatoric
stresses) between the vertical cut and the foundation soil. This interface is cased by
the different peak strengths of the two materials. During an increment of the gravity
load, the material of the vertical cut reaches its maximum shear strength, preventing
further increment of the deviatoric stress. On the other hand, the deviatoric stresses in
the foundation soil keep increasing.
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Figure 5.3: Slope initial state (a, b), slope at the instant of collision, t = 0.7 s (c, d), slope during collision, t = 1 s (e,
f), and final configuration (g, h), showing contours of plastic deviatoric strain and deviatoric stress
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Figure 5.4: Slope initial state (a, b), collision instant t = 0.8 s (c, d), interaction at time t = 1 s (e, f), and final
configuration (g, h), showing contours of plastic deviatoric strain and deviatoric stress
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In Figures 5.5 and 5.6, the magnitude of the contact loads developed at the wall
surface during the collision and the displacement of the wall, respectively, are shown for
the second simulation. Figure 5.5a shows the contact loads before the collision. In this
case, the loads are caused only by the self weight of the wall and the soil, since collision
has not yet occurred. Figure 5.5b shows the contact loads at the instant of the collision
(t = 0.8 s); since the area of the contact is small and the velocity of the soil is large, the
contact loads are high. Figure 5.5c shows the evolving situation during the collision at
time t = 1 s. In this case, since the soil begins to accumulate at the wall, the contact loads
are distributed and the magnitudes reduce. It is also seen that, at the base of the wall
on the left side, there are large forces due to the rotation of the wall. Finally, Figure 5.5d
shows the final position of the wall (t = 1.5 s). In this case, the contact loads have reduced
since the velocity of the material is equal to zero (i.e. the kinetic forces are equal to zero).
It should be noted that the magnitudes of the vectors representing the contact loads have
different ranges in each sub-figure to enhance visualisation.

(a) (b)

(c) (d)

Figure 5.5: a) initial contact loads, b) contact loads at instant of collision (t = 0.8 s), c) distributed contact loads (t
= 1 s), d) contact loads at the end of the simulation. Note the different scaling in each sub-figure
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In Figure 5.6, the average horizontal displacement of four material points at the top of
the wall (labeled mps) is plotted for both simulations. The selected material points are
located at the centre of the wall. As observed, the displacement of the surface wall is at
least twice as big as the displacement of the embeded wall. At the end of the simulations,
the maximum displacements are dS

max = 1.59 m and dE
max = 0.67 m, for the surface and

embedded walls, respectively. The simulations were run using an Intel Xeon E5-1620
processor and completed in 9 hours and 4 minutes for the problem considering the wall
at the surface (using 11,040 material points), and in 12 hours and 55 minutes for the
problem considering the embedded wall (using 18,400 material points).
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Figure 5.6: Rigid wall horizontal displacement

5.2.2. LANDSLIDE
The analysis of an initially stable slope, which undergoes several construction phases
before failure, has been performed. The soil follows the same type of constitutive be-
haviour as in the previous example. Also, a depth dependent strength is included, in
which the peak shear strength increases linearly with the depth, from sp = 15 kPa at the
soil surface to sp = 80 kPa at the base of the soil layer. The residual cohesion and the
softening modulus are sr = 5 kPa and Hs =−30 kPa, respectively. The elastic parameters
for the soil are Young’s modulus, E = 1.5×103 kPa, and Poisson’s ratio, υ= 0.40. The elastic
parameters for the structural elements are E = 5.0×104 kPa, and υ= 0.35.

In Figure 5.7, the main features of the slope are shown, including the construction
stages and dimensions (in meters). Figure 5.7a shows the initial slope, comprising a single
homogeneous soil layer of constant depth H1. The element size is ∆x =∆y = 0.5 m, and
each element initially contains four equally distributed material points. The entire layer
is supported by a rigid material, simulated by the fixed bottom boundary. Figure 5.7b
indicates the excavation process, which involves three steps: (i) excavation 1 (exc - 1) at a
distance L4 from the top of the slope, (ii) excavation 2 (exc - 2) at a distance L5 from the
first excavation, and (iii) excavation 3 (exc - 3) at a distance L6 from the second excavation.
Finally, Figure 5.7c shows the wall foundation depths and geometry of the structure. The
thickness of the columns and floors of the structure are 0.75 m and 1.0 m, respectively.
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(a)

L  =452 L  =503L  =20 1

H  =12 1

H  =20 2

(b)

exc - 1

exc - 2

exc - 3

H =4.54

H =5.45

L =10.254 L =155 L =116 L =8.757

H =4.53

W-1

W-2

W-3

(c)

H  =2.5 6

H  =2.5 7

H  =1 8

H  =8 9

L  =6 8

Figure 5.7: a) Slope dimensions, b) construction stages, and c) building and wall foundations. Note unequal
scales to enable better visualisation; dimensions in meters

The excavation procedure and the installation of the structural elements was simula-
ted as follows. Each excavation was executed by removing columns of material points,
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in 50 steps, in which each column had a width of one element. Figure 5.8 shows an
example of the excavation procedure. Note that this example is only illustrative, and that
the dimensions are not the same as in the simulation. These excavations were executed
sequentially, i.e. after excavation exc - 1 was completed, exc - 2 began. Each retaining
wall is inserted in a single step by changing the properties of ground material points to
structural material points. The insertion of each wall is performed at the same time as the
removal of the last portion of soil in each excavation. The thickness of each retaining wall
is equal to 1.5 m. To reduce the impact of inserting a wall in a single step, an initial wall
gravity of gini = 0.3g is used. This wall gravity is increased in increments of∆g = 1.0×10−4

g in each time step until reaching 1g. The structure is placed in a single step by adding
material points in the domain. Similar to the retaining walls, the initial structure gravity
is gini = 0.3g and this is increased in increments of ∆g = 1.0×10−4g each time step until
reaching 1g. The time step used for the simulation is ∆t = 1.0×10−4 s.

(a)

Initial

(b)

100 steps

(c)

200 steps

(d)

Final

Figure 5.8: a) Initial slope, b) after two excavation steps, c) after four excavation steps, and d) excavation
finalized, including installation of retaining wall (depicted by black material points)

The initial stresses in the slope are assigned in a single step using a static approach (i.e.
by removing the kinematics), i.e. σy = γsoilhy and σx =σyK0, in which γsoil is the soil unit
weight equal to 17.5kN/m3, hy is the vertical distance between the soil surface and the
material point, and K0 is the coefficient of earth pressure at rest equal to 0.7. Meanwhile,
the material points are kept in their original positions (i.e. no movement allowed) in
this step. After the first step, the material points are free to move, including during the
construction steps.

Figures 5.9 and 5.10 show the plastic deviatoric strains and the deviatoric stresses,
respectively, during the landslide. The results observed are obtained from the instant after
concluding the construction process (i.e. excavations, installation of retaining walls and
structure) until the end of the landslide. Figure 5.9a shows the instant immediately after
including the structure, in which plastic strains are not visible yet. Nonetheless, Figure
5.10a shows a large concentration of shear stresses below the walls. Figure 5.9b shows
the simulation after 0.7 s. It is observed that the wall W-3 at the base of the slope begins
to rotate, separating from the soil behind it. This is a consequence of both the weight of
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the structure, which increases the horizontal pressure applied to the wall, and the lack of
support on the downslope side. Moreover, the soil pushing the wall W-3 moves, thereby
causing the movement of wall W-2, which, at the same time, develops plastic strains at its
base. Additionally, Figure 5.10b shows that, at the soil-boundary interface, large shear
stresses develop due to the movement of the soil, and small plastic regions start initiating
at this interface. Since it was the inclusion of the building that caused the wall W-3 to
fall over, and thereby the subsequent soil displacements and development of large shear
stresses at the soil-boundary interface, it can be stated that the building triggered the
landslide.

Figure 5.9c shows the simulation after 1.1 s. It is seen that the wall W-3 has rotated
a considerable distance, and that the soil behind the wall begins to slide downwards.
The movement of the soil triggers further shear bands, at the base of each wall and at
the soil-boundary interface. It is also seen that the structure is tilting and that walls W-1
and W-2 are separating from the soil. Figure 5.10c shows that the plastic strains at the
soil-boundary interface extend almost the whole length of the inclined boundary, and
that the plastic strains at the base of the walls have grown significantly, reaching almost
the soil surface.

Figure 5.9d shows the simulation after 1.75 s. It is seen that the wall W-3 has fallen
over, allowing the soil behind to slide more freely. The shear bands have extended to
the soil surface, except for between the middle and bottom walls where the shear band
connects the bases of both walls, and numerous shallow failures (which exhibit typical
rotational mechanisms) have formed. Figure 5.10d shows that the deviatoric stresses at
the soil-boundary interface length have dropped to residual values. Besides, it is seen
that deviatoric stresses are still large at the leading edge end of the bottom shear band,
which indicates that the plastic strains are still developing.

In Figure 5.9e and 5.10e, it is seen that the shear band at the base of the soil layer now
exceeds the length of the slope, to form a translational failure mechanism which encloses
the multiple shallow failures. The walls W-1 and W-2, and the structure, are being dragged
by the soil, while the wall W-3 is being pushed away in front of the landslide. In addition,
due to the large kinematic forces, another shear band begins to grow at the base of the
horizontal section of the slope. Finally, Figures 5.9f and 5.10f show the final step, in which
the soil has reached nearly static conditions. It is seen that most of the soil is in the plastic
condition, and that it exhibits numerous failure surfaces. The shear band at the base of
the horizontal section of the slope has grown enough to reach the soil surface at the end
of the domain. Note that the right vertical boundary causes the vertical growth of the
plastic shear band at this location, which would not occur had a larger horizontal domain
been used. Finally, it is seen that all the structures have ended up buried in the ground.
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Figure 5.9: Landslide plastic deviatoric strains after a) 0.14 s, b) 0.7 s, c) 1.1 s, d) 1.75 s, e) 3.05 s, and f) 10 s
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Figure 5.10: Landslide simulation and deviatoric stresses after a) 0.14 s, b) 0.7 s, c) 1.1 s, d) 1.75 s, e) 3.05 s, and f)
10 s
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Figure 5.11 shows the displacements and velocities of the structures, which were
obtained from an average of the results from four material points located at the centre
of each structure (denoted with a solid circle in Figure 5.11a). In Figure 5.11a, the dis-
placement of each structure is shown, with the labels A, B, C, D, E and F indicating the
times corresponding to the results shown in parts (a) to (f) of Figures 5.9 and 5.10). It is
observed that, after 10 seconds, the structures have moved nearly 50 meters. The vertical
wall nearest the bottom of the slope (S3) has moved the furthest because it has fewest
obstacles in front of it. Similar results are observed in Figure 5.11b, in which the vertical
wall S3 reaches the maximum velocity (close to 10 m/s), whereas the rest of the structures
reach similar velocities (around 6 m/s). The type of information illustrated in Figure 5.11
is necessary to evaluate the consequences of a landslide. This simulation was completed
in 215 hours with a total of 25,766 material points, and used the same processor as in the
vertical cutting problem.
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Figure 5.11: a) Displacements, and b) velocities of the structures
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5.3. CONCLUSION
The DM-GC technique developed in Chapter 3 has been combined with the implicit
contact formulation developed in Chapter 4 to simulate complex geotechnical problems.
The method was able to capture realistic soil-structure interaction and a large variety and
combination of failure modes. It was demonstrated that the interaction between the soil
and multiple structures is possible. The method was able to capture some interesting
features such as the sliding and rotation of structures pushed by the soil, the develop-
ment of passive and active soil failure mechanisms, and the combination of rotational
and translational slope failures, thereby validating the technique for the assessment of
protection structures against the consequences of landslides.
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6.1. CONCLUDING REMARKS
In this thesis, an investigation into the accuracy of the material point method (MPM) was
presented, along with developments to make the method more useful in practice. It was
demonstrated that basic MPM is able to simulate mechanical behaviour while conser-
ving energy and momentum. Moreover, large deformation problems can be simulated,
exhibiting reasonably realistic behaviour. Nevertheless, it was clear that MPM accuracy
was far from desired levels, particularly in calculating the stresses. Therefore, further
solutions were needed, not only to reduce the well-known numerical inaccuracies, but
also to extend the available solutions to more efficient (and typically used) numerical
schemes (i.e. from explicit to implicit).

Focusing on limitations of the numerical accuracy of MPM, a comprehensive analysis
of the causes was carried out. In addition, several developments were made: (i) the
composite material point method (CMPM), a technique which increases the solution
domain when recovering stresses in order to improve the accuracy over using linear
shape functions; (ii) double mapping (DM) procedures, which improve the accuracy of
integration procedures, which has a particular influence on the stiffness matrix used
in implicit MPM; and (iii) implicit contact procedures, in which an existing explicit
methodology was extended and elaborated for implicit schemes to allow the interaction
of bodies.

These improvements were tested against several analytical and numerical solutions,
as well as used in simulations of complex geotechnical problems. These verification and
test simulations demonstrated the advantages of the new developments, both in terms
of the accuracy of the results, and in terms of the computational performance, both of
which are valuable factors to consider for numerical simulations. The main achievements
and conclusions of the research are summarised as follows.

6.1.1. MPM INACCURACIES AND CAUSES
It was found that MPM suffered from three main inaccuracies: the first (which is men-
tioned frequently in literature) due to the material points crossing cell boundaries, the
second due to inaccurate numerical integration, and the third due to inaccurate stress
recovery.

These inaccuracies were investigated for the explicit, implicit and quasi-static MPM
variants. It was demonstrated that all of these schemes are broadly able to simulate
mechanical and geotechnical problems, returning similar results (in terms of stresses
and deformations) while conserving mass and energy. It was, however, also shown that
the stresses oscillate, which limits substantially the use of history dependent constitutive
models. It was demonstrated that some of these problems can be partially addressed
through some minor changes, such as implementing a background stiffness, or by solving
problems in terms of incremental stresses rather than total stresses. Nevertheless, these
enhancements are neither generally applicable or rigorouos, nor can they fully solve the
inaccuracies.

6.1.2. MPM IMPROVEMENTS TO INCREASE ACCURACY
To enhance basic MPM, two techniques were developed: CMPM and DM-G. CMPM im-
proved the calculated material point stresses by using a higher order and larger solution
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domain to interpolate material stresses and strains. DM-G improved integration and
interpolation by adopting the GIMP method developed previously, which includes a mate-
rial point domain (allowing it to influence more than one element) and a double mapping
procedure which improves the numerical integration by using Gauss point locations. This
virtually eliminates cell crossing errors and integration errors. By combining CMPM with
DM-G procedures (DM-GC), the accuracy is improved throughout the entire solution.

The enhancement of MPM using DM-GC was demonstrated through axisymmetric
and 1D benchmarks problems. Furthermore, the improvements were tested in a geotech-
nical vertical cutting problem, with good results obtained. It was observed that the mean
and deviatoric stress distributions and the stiffness distributions inside the vertical cutting
were smooth, even after a considerable deformation. Also, a series of stress path plots
showed that the stresses inside the elastic and plastic regions in the vertical cutting do
not drastically oscillate (as in standard MPM), but followed a smooth path. Inaccuracies
were observed to remain in the regions of the analysis that had substantial plasticity, such
as in shear bands.

6.1.3. MPM IMPLICIT CONTACT

A methodology to simulate contact between different bodies was developed and imple-
mented, based on an existing explicit scheme. The method uses equations developed for
the explicit scheme to detect contact and calculate contact forces, whilst the velocities
computed from Newmark’s time scheme are used to update contact forces during the
Newton–Raphson iterative procedure. An additional condition based upon the inter-
partical distance has been added, which makes the contact algorithm mesh independent.
Via a number of benchmarks the efficiency of the method was demonstrated. In most
cases, the computational time was substantially reduced while keeping the same accuracy
as the explicit solution. To demonstrate the geotechnical applicability of the develop-
ments, two geotechnical problems were also investigated: (i) a vertical cutting colliding
against a rigid wall, and (ii) the penetration of a shallow footing through the soil. Both
simulations demonstrated a realistic soil-structure interaction, exhibiting (in the footing
problem) results close to the Terzaghi analytical bearing capacity solution.

6.1.4. GEOTECHNICAL SIMULATIONS USING IMPROVED MPM
It was shown that realistic geotechnical simulations could be simulated with the develo-
ped method. Two important types of geotechnical problems, i.e. landslides and protection
structures, were analysed. These simulations contained complex geotechnical behaviour
and involved construction stages, material seperating and re-joining, elasto-plasicity and
extremely large deformations.

Due to the use of the contact algorithm, an extensive number of failure mechanisms
were allowed to develop. In particular, passive and active failure mechanisms were
observed at the soil-structure interface. The sliding and separation of the structures
with respect to the soil were captured, as well as the ability of structures to transfer
load to different soil volumes. Most typical slope failure mechanisms were observed,
including circular, retrogressive and translational failures. In addition, by including the
DM-GC technique, a large number of shear bands growing at the soil-structure and soil-
boundary interface were able to be captured, rather than the more diffuse failure zones
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often observed when using traditional MPM. Finally, through these simulations, it is
observed that risk assessment studies can be performed, in which loads and forces acting
on structures, run-out distances and overall damages can be assessed.

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH
To further develop the accuracy and practical use of the material point method, further
improvements are recommended. These are:

• Further include the deformation of the material point domain in the method. DM-G
shows considerable improvement in the accuracy of the simulations. Nevertheless,
since this solution uses GIMP SFs to perform mapping and integration procedu-
res, the shape of the material point support domain is important. In this thesis,
compression or extension of the support domain was considered, but further defor-
mations, such as rotation and shearing, were ignored. Methods such as CPDI can
deal with any sort of distortion of the support domain, indicating that CPDI could
be combined with the methods developed here to increase the accuracy of MPM
further. Additionally, recent studies have demonstrated that CPDI can be imple-
mented using unstructured meshes, also giving the opportunity of implementing
DM-G together with unstructured meshes.

• Large deformation constitutive models need to be further developed and laboratory
calibration tests are needed. In this thesis, the von Mises constitutive model was
used to simulate every geotechnical problem. The results obtained were realistic,
and comparable to analytical solutions where available, but it is evident that more
complex constitutive models are needed to represent more accurately complex soil
behaviour. Prior to the work contained in this thesis, stress oscillations in MPM
meant that there was little chance of accurately using advanced constitutive models,
but considering the improvements reached in this thesis, the use of advanced
constitutive models is now a possibility.

• The energy conservation behaviour of the contact algorithm needs to be improved.
The results obtained with the implicit contact algorithm developed in this thesis
were acceptable; similar to the results obtained with the explicit solution and, in
most of the cases, with an improvement in the computational time. Nevertheless, it
was observed that a drop in energy occurs at the instant of contact. As mentioned,
this is attributed to the inconsistency between the internal loads and the contact
loads. Since the internal loads resulting from the change of material point stresses
during contact are not equal to the contact loads computed from the change of
velocity, an inconsistency occurs, which results in a drop of energy. Including the
change of internal forces in the formulation to improve the accuracy of the results is
not an easy task, since the stress oscillation problem would interfere in the accuracy
of the results, and even the improvements presented in this thesis do not solve this
problem completely. Nevertheless, it is believed that this enhancement is needed
to improve accuracy.

• Include multi-phase material behaviour. The research developed in this thesis uses
a single-phase material (i.e. the water and air phases are not considered), which can
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be seen as unrealistic since, in nature, most of the soil contains at least one other
phase. One of the main disadvantages of including these phases, besides the elabo-
rated formulation, is that the water phase can cause large stress oscillations, leading
to highly inaccurate results. Nevertheless, it is believed that the developments
in this thesis (and in a possible combination with other techniques to diminish
volumetric locking) could reduce such oscillations, allowing the implementation of
multi-phase material behaviour.

• Develop efficient parallel computational solutions. It was observed that using the
implicit solution scheme, an improvement in the computational time is obtained.
Nevertheless, if large domains are simulated with relatively small elements, the
computational time increases, taking, in some cases, several days to reach the final
solution. This is a consequence of dynamic simulations (made up of many steps)
and of the additional mapping steps in MPM. Unfortunately, these simulation ti-
mes are not feasible in most engineering projects. It is therefore recommended
to develop advanced coding structures, such as parallel computing, in which se-
veral segments of the codes can be solved simultaneously, thereby reducing the
computational time. This is compatible with standard desktop computers, which
typically contain several processing cores. To further speed up the computation,
GPU programming could be used.

• Ensuring mesh independence. Since MPM codes are based on FEM codes, the same
mesh dependency inaccuracies are observed, especially when there is softening
in constitutive models. It has been observed that localisations occur during the
simulations, and that mesh dependence influences the outcome. Implementation
techniques such as regularisation are recommended to address this issue.
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A.1. PLANE STRAIN AND AXISYMMETRIC MATRICES
Figure A.1 shows the isoparametric element and the local coordinates (η, ξ)

�

�

1

2

4

3

(-1,-1)

(-1,1) (1,1)

(1,-1)

Figure A.1: Isoparametric parent element and coordinates

For plane strain conditions, the four noded element N, B, and J matrices are

N =
[

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
(A.1)

B =


∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y
∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

 (A.2)

[J] =
[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(A.3)

where the Cartesian coordinates are defined as

x = N1x1 +N2x2 +N3x3 +N4x4 (A.4)

y = N1y1 +N2y2 +N3y3 +N4y4 (A.5)

and

N1 = 1

4
(1−ξ)(1−η); N2 = 1

4
(1−ξ)(1+η);

N3 = 1

4
(1+ξ)(1+η); N4 = 1

4
(1+ξ)(1−η); (A.6)

where the subscript indicates the node number. Then, the D matrix is computed as

D = E(1−υ)

(1+υ)(1−2υ)


1 υ

1−υ 0
υ

1−υ 1 0

0 0 1−2υ
2(1−υ)

 (A.7)

The elastic relationship between stresses and strains (σ= Dε) is
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
σx

σy

σx y

= E

(1+ν)(1−2ν)


1−ν ν 0

ν 1−ν 0

0 0 1−2ν
2



εx

εy

εx y

 (A.8)

where the vector of strains (ε= Bū) is


εx

εy

εx y

=


∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y
∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x y

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x





ūx,1

ūy,1

ūx,2

ūy,2

ūx,3

ūy,3

ūx,4

ūy,4



(A.9)

The vector of strains using CMPM extended domain (i.e. ε= B2ūext) is computed as


εx

εy

εx y

=


∂N1
∂x 0 · · · ∂Nn

∂x 0

0 ∂N1
∂y · · · 0 ∂Nn

∂y
∂N1
∂y

∂N1
∂x · · · ∂Nn

∂y
∂Nn
∂x





ūx,1

ūy,1

ūx,2

...

ūy,n−1

ūx,n

ūy,n


(A.10)

where n is the number of nodes in the extended domain as shown in Figure A.2. Note that
the extended domain can be constructed using square arrays of C2 elements, where C > 1.

Figure A.2: Extended domain for a material point using an array of 32 elements

For axisymmetric conditions, cylindrical coordinates are used, and after integration over
one radian the stiffness matrix becomes

K =
nmp∑
p=1

BaxT(xp)Dax
p Bax(xp) |J|Wrp (A.11)
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The element (nodal) internal forces Fint are

Fint =
nmp∑
p=1

σax
p Bax(xp) |J|Wrp (A.12)

and the element (nodal) external forces Fext considering only gravity are

Fext =
nmp∑
p=1

ρpNT(xp)g |J|Wrp (A.13)

where

Bax =


∂N1
∂r 0 ∂N2

∂r 0 ∂N3
∂r 0 ∂N4

∂r 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y
∂N1
∂y

∂N1
∂r

∂N2
∂y

∂N2
∂r

∂N3
∂y

∂N r
∂r

∂N4
∂y

∂N4
∂r

N1
r 0 N2

r 0 N3
r 0 N4

r 0

 (A.14)

Dax = E(1−υ)

(1+υ)(1−2υ)


1 υ

1−υ 0 υ
1−υ

υ
1−υ 1 0 υ

1−υ
0 0 1−2υ

2(1−υ) 0
υ

1−υ
υ

1−υ 0 1

 (A.15)

where Bax refers to the axisymmetric strain-displacement matrix, Dax refers to the stress-
strain matrix, and rp is the radial distance between the sampling point and the axisym-
metric axis. In both cases (plane strain and axisymmetric conditions) the matrix of SF N
remains the same.
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A.2. ANALYTICAL AXISYMMETRIC SOLUTION
The radial, tangential and axial stress distributions (σr, σθ and σy, respectively) in the
wall of a hollow cylinder at a radius r from the cylinder axis are computed as

σr = A

r2 +2Ψ (A.16)

σtheta =− A

r2 +2Ψ (A.17)

σy = 4νΨ (A.18)

where A andΨ are constants given by

A = 2(1−2ν)Ψr2
e (A.19)

Ψ= EA1

2(1+ν)(1−2ν)
(A.20)

in which A1 is a function of the boundary conditions. For a cylinder that is fxed at the
external boundary (re) and loaded at the internal boundary by a pressure ps,

A1 = ps(1+ν)(1−2ν)

r2
eE

(
− (1−2ν)

r2
i

− 1
r2

e

) (A.21)
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B.1. DOUBLE MAPPING PROCEDURES
Table B.1 summarises the steps to perform stiffness integration using DM techniques
(DM-MPM and DM-G). It is highlighted that both the DM and DM-G techniques follow
the same steps. Making the following minor modifications, it is possible change between
DM and DM-G: (i) Loop 3 loops ’over the material points affecting the element’, which
can be either all material points in the element (cmp) or all material points with support
domain in the element (smp), for DM and DM-G respectively, (ii) the nodal shape function
H̄i represents Ni or Sip∗ , for the DM and DM-G respectively, and (iii) the material point
weight value W̄ represents W∗ or W, for DM and DM-G respectively. Summarising, SM
uses cmo, Ni and W∗, whereas DM-G uses smp, Sip∗ and W.

Table B.1: Summary of steps followed to perform DM stiffness integration

Kv = zero

Loop 1: over all elements

Kel = zero

Loop 2: over the elements Gauss points (ngauss)

Dg = zero

Evaluate N(xg) = zero

Evaluate Bg

Loop 3: over the material points affecting the element

Compute Dp

Evaluate H̄(xp)

Dg = Dg +Dp
∑nn

i=1 Ni(xg)H̄i(xp)

END Loop 3

Kel = Kel +BT
g DgW̄Bg |J|WFE

END Loop 2

Assemble Kel into Kv

END Loop 1

In Table B.2, the stress recovery steps are shown considering CMPM. It is highlighted
that all matrices are related to the patch used, so are larger than in regular MPM. For
example, for 4 noded elements the patch is 4x4 nodes, instead of 2x2.

To demonstrate the computational performance of the DM-G algorithm (which has
a higher computational cost when compared to DM), a series test were conducted on
square meshes, with the results presented in Figure B.1. The test consisted of computing
the stiffness of meshes made up of 50, 75, 100, 150, and 200 elements per side, with each
element filled with 4 equally distributed MPs. Each stiffness cycle was computed 200
times to obtain an accurate mean value of the time taken. In Figure B.1, the relationship
between computational time using DM-G and regular MPM is plotted as a function of
the number of equations. It is observed that the relationship is almost constant, with
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DM-G taking about 50% longer than regular MPM. However, the overall increase of
computational time for the problem studied is close to 5%, although this is dependent on
the solver and characteristics of the problem solved.

Table B.2: Stress recovery steps using CMPM

Loop 1: over all elements

Construct ∆ūext

Loop 2: over all the material points inside the element

Evaluate ∇NC
local - (using the derivatives of Eq. 3.11 or Eq. 3.12)

Evaluate
[
Jmp

]=∇NC
localx

C

Compute ∇NC
local =

[
Jmp

]−1∇NC
local

Construct BC(xp)

Compute ∆σp - (Eq. 3.17)

IF (Fyield > 0) THEN

Use FEM procedures to compute plastic strains and return stresses

to the yield surface

END IF

END Loop 2

END Loop 1
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Figure B.1: Relationship between the computational times using DM-G and typical MPM





NOTATION

ACRONYMS

SB Shear band

CDPI Convected domain particle interpolation

CMPM Composite material point method

DDMP Dual domain material point

DM Double mapping

DM-C Double mapping using CMPM

DM-G Double mapping using GIMP shape functions

DM-GC Double mapping using GIMP shape functions and
CMPM

FEM Finite element method

FE Finite element

FV Failure volume

GIMP Generalized interpolation material point

GM Gauss mapping

KE Kinetic energy

MP Material point

MPM Material point method

PE Potential energy

SD Material point support domain

SE Strain energy

SF Shape function

TE Total energy

UL Updated Lagrangian

LATIN SYMBOLS

a Acceleration vector

ap Material point acceleration

ā Vector of nodal accelerations

A Constant derived from the axisymmetric solution

A1 Constant derived from the axisymmetric boundary
condition
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b Body forces

B Strain-displacement matrix

Bax Strain-displacement matrix for axisymmetric do-
main

BC Strain-displacement matrix for CMPM patch

Bd Elastic matrix at the Gauss point

Bi Elastic matrix at the node i

Bp Elastic matrix at the sampling point

Bax
p Elastic matrix at the sampling point for axisymmetric

domain

bod Bodie

cp Soil peak cohesion

cr Soil residual cohesion

C Subscript denotating combined values

cmp Current number of material points in the element

d Distance between the element boundary and the
axisymmetric internal boundary

dmin Minimum distance requited to activate contact

dS
max,dS

max Surface and embeded wall maximum displacement

D Material elastic matrix

Dp Material point elastic matrix

E Young’s modulus

elmp Material points affecting an element

Fext Vector of external nodal forces

Ffric Vector of nodal frictional forces

Fint Vector of internal nodal forces

Fint
mag Internal nodal force magnitude

Fnc Vector of nodal contact forces

Fstick Trial vector of nodal frictional forces

FVM Von Mises yield function

Fint
x Nodal internal force in the horizontal direction

Fint
y Nodal internal force in the vertical direction

Fyield Yield function

g Gravity vector

H Height of the vertical cut benchmark

H̄ Matrix of shape functions, representing either N or
matrix of S∗

ip
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Hs Softening modulus

i Subscript representing nodal values

ic Subscript representing contact node

J Jacobian matrix

Jmp Jacobian matrix computed using material points
shape functions derivatives

|J| Jacobian matrix determinant

k Iteration number

K Stiffness matrix

Kel Element stiffness matrix

Kmag Stiffness matrix magnitude

Kx Diagonal entry of the stiffness matrix corresponding
to the horizontal degree of freedom

Ky Diagonal entry of the stiffness matrix corresponding
to the vertical degree of freedom

Kv Global stiffness matrix

K0 Coefficient of earth pressure at rest

lp Half of the material point support domain

L Length of the vertical cut benchmark

M Mass matrix

mg Mass concentrated at the central Gauss position

mp Material point mass

Mx Diagonal entry of the mass matrix corresponding to
the horizontal degree of freedom

My Diagonal entry of the mass matrix corresponding to
the vertical degree of freedom

n̄ Normal direction vector of one body

n Normal direction vector considering neighbouring
bodies

N Shape function

N Matrix of shape functions

Ni Nodal shape function

ngauss Number of Gauss points in the element

nmp Number of material points inside an element

nn Number of nodes

NC
global Matrix of global CMPM shape functions

NC
local Matrix of local CMPM shape functions
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Ni CMPM shape functions, where i is the C-continuity

Ni Matrix of CMPM shape functions, where i is the C-
continuity

omp Original number of material points in the element

ps Appliedpressure on the boundary of the axisymme-
tric benchmark

r Distance between the cylinder axis and any point
inside the cylinder wall

re Outer boundary of the axisymmetric benchmark

ri Internal boundary of the axisymmetric benchmark

rmp1 Radial position of a material point at the boundary
of the axisymmetric benchmark

rp Radial position of a material point

s Internal boundary of the axisymmetric benchmark

ss Traction at the surface

ss
p Material point traction force

sp Soil peak shear strength

sr Soil residual shear strength

smp Number of material points with a support domain
inside an element

Sip GIMP shape functions

S∗
ip Local GIMP shape functions

su Soil shear strength

t Superscript denoting value at current time step

tol Newton-Raphson tolerance

tc Instant of contact

t+∆t Superscript denoting value at next time step

u Virtual displacement

ū Vector of nodal displacements

ūext Vector of nodal displacements in the extended do-
main using CMPM

v Velocity vector

v̄ Vector of nodal velocities
∗v Corrected nodal velocity vector

V Body volume

Vp Material point volume

vp Material point velocity
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W Material point integration

WFE Weight associated with the Gauss point

W∗ Modified material point integration weight

W̄ Material point weight, representing either W or W∗

xC Nodal coordinates of the CMPM patch

xg Gauss position

xp Material point position

Y Yield function

GREEK SYMBOLS

α Newmark time stepping parameter

χp Characteristic function

δ Newmark time stepping parameter

δu Test function in terms of displacement

δū Incremental displacement

δε Test function in terms of strains

δv̄ Vector of nodal test function velocities

δmpl Material point domain

∆q Incremental deviatoric stress

∆ps Incremental applied pressure on the boundary of the
axisymmetric benchmark

∆r Mesh radial dimension for the axisymmetric domain

∆σp Stress increment vector at the material point

∆σm Incremental mean stress

∆t Time step

∆ū Vector of incremental nodal displacement

∆y Mesh vertical dimension

∆x Mesh horizontal dimension

ε Vector of incremental strain

εe Vector of incremental elastic strain

εp Vector of incremental plastic strain

εp Vector of material point incremental strain

γs Soil unit weight

γw Wall unit weight

Γ Body surface

λ Plastic strain increment

µ Friction coefficient
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η Vertical position in local coordinates

ν Poisson’s ratio

ρ Density

ρp Material point density

Ψ Constant derived from the axisymmetric solution

σ Cauchy stress tensor

σA Analytical radial stress

σax Cauchy stress tensor for axisymmetric domain

σL Stress inside a linear axisymmetric element

σQ Stress inside a quadratic axisymmetric element

σθ Tangential stress

σr Radial stress

σy Vertical stress

σxy shear stress

Ω Simulation domain

Ωp Material point support domain

ξ Horizontal position in local coordinates
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