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UAV Celestial Navigation with Automatic Light Pollution

Adaptation

Janvi Seth 4645987
Technical University of Delft

Abstract— Uncrewed Aerial Vehicles (UAVs) increas-
ingly require Global Navigation Satellite System (GNSS)-
independent positioning for operation in contested or
infrastructure-denied environments. This paper presents
a vision-based celestial navigation system with automatic
adaptation to light pollution through dynamic star cata-
log selection. The algorithm employs Dynamic Distance-
Ratio (DDR) pattern matching with novel polar-star rejection
and consensus-driven magnitude refinement to robustly iden-
tify observable stars under varying environmental conditions.
Evaluation on 200 synthetic night-sky images demonstrates
substantially improved star identification robustness com-
pared to fixed-catalog baselines, achieving 71.5% recall at
visual magnitude 7 (Bortle 3) and maintaining non-zero per-
formance under severe light pollution (27.6% recall at magni-
tude 5.0 and 4.5% at magnitude 4.5), where the baseline fails
entirely. Across higher limiting magnitudes (6.5-8.0), the
adaptive method consistently attains 71.5-82.5% recall. In-
cluding misidentifications, the end-to-end system achieves a
median geolocation error of 6.80 km, supporting coarse global
localization, GNSS integrity monitoring, and long-duration
drift bounding in GNSS-denied environments. These re-
sults indicate that adaptive catalog selection significantly
extends the operational envelope of celestial navigation into
light-polluted conditions previously considered infeasible.

Keywords— Celestial Navigation, UAV, GNSS-denied,
Star Identification, Pattern Matching, Light Pollution,
Dynamic Distance-Ratio

1. Introduction

UAVs are increasingly deployed in mission-critical ap-
plications including defense operations, environmen-
tal monitoring, and industrial inspection, where re-
liable positioning is fundamental to operational suc-
cess [1]. While GNSS provides worldwide coverage
with meter-level accuracy, its dependence on weak
Radio Frequency (RF) signals renders it vulnerable to
both intentional and unintentional interference. Re-
cent European assessments document a pronounced
increase in jamming and spoofing events, with measur-
able operational impacts on aviation systems and flight
efficiency [2]. These developments underscore an op-
erational gap: UAVs require positioning solutions that
maintain functionality in GNSS-degraded or denied
environments.

Multiple GNSS-independent approaches have emerged
to address this challenge, each exploiting different envi-
ronmental features or infrastructure. Visual Place Recog-
nition (VPR) leverages deep neural networks to match
onboard imagery against geo-referenced databases,
achieving decimeter-scale accuracy in densely mapped
urban environments [3]. However, VPR performance
degrades substantially under large viewpoint changes,
seasonal variations, or operations in unmapped regions.
These limitations constrain its use to well-characterized
areas with up-to-date reference data. RF-beacon net-
works provide decimeter- to centimeter-level position-
ing through trilateration from known anchor positions,
but deployment requires extensive infrastructure instal-
lation, calibration, and maintenance of line-of-sight
geometry [4]. Terrain-Referenced Navigation (TRN)
correlates onboard sensor measurements with digi-
tal elevation models to estimate position, with modern
vision-based implementations achieving sub-hundred-
meter accuracy over textured terrain at appropriate
altitudes [5] [6]. Yet TRN exhibits sensitivity to terrain
characteristics, requiring sufficient geometric variation
and feature density for reliable correlation.

Figure 1: Example of UAV night operations where celestial

navigation is applicable. Image illustrates typical low-light

conditions under which vision-based Celestial Navigation
Systems (CNS) must operate [7].

While these methods demonstrate impressive perfor-
mance within their operational envelopes, each relies
on specific environmental preconditions. VPR requires
comprehensive prior mapping, RF-beacons demand
deployed infrastructure, and TRN depends on terrain
observability and texture. CNS offers a conceptually
independent alternative that remains globally avail-
able without active emissions, ground infrastructure, or
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prior mapping. Unlike terrain- or infrastructure-based
techniques, celestial positioning exploits the predictable
geometry of stellar positions, a resource that is passive,
universally accessible, and invariant to terrestrial con-
ditions. For UAV operations requiring kilometer-scale
waypoint navigation, integrity monitoring of GNSS so-
lutions, or coarse reacquisition before GNSS handover,
celestial navigation provides a complementary capabil-
ity that functions independently of infrastructure avail-
ability or environmental mapping. Moreover, celestial
methods enable night operations (Figure 1) in scenarios
where daylight-dependent techniques like VPR and
TRN become unavailable or severely degraded, expand-
ing operational flexibility in contested or infrastructure-
denied environments.

Recent work has demonstrated the feasibility of strap-
down vision-based CNS on low-cost UAV platforms [8],
although the reported position errors remain at the
kilometer scale under realistic conditions, substantially
larger than alternative methods operating within their
preferred regimes. The combination of comparatively
coarse accuracy and a clear geometric foundation makes
CNS a compelling target for algorithmic improvement.
While stars are not always visible due to factors such as
the day-night cycle and cloud cover, this paper demon-
strates that the primary challenge in vision-based celes-
tial navigation lies in the robustness of star identification
under varying environmental conditions. Through our
findings, we show that the true bottleneck in reliable
navigation arises from the difficulty in consistently
identifying stars amidst dynamic and degraded en-
vironmental factors, rather than from the geometric
visibility of stars themselves.

The Star Identification Challenge In small fields of
view and under environmental degradation such as
light pollution or cloud cover, the stars actually visible
in a captured image form a strict and unpredictable
subset of those geometrically predicted to lie within the
camera footprint. A UAV operating over a dark rural
area may observe 2,000+ stars to magnitude 7.5, while
the same platform over an urban center detects fewer
than 30 bright stars above magnitude 4.0 [9]. Motion
blur, atmospheric extinction, and sensor noise further
confound pattern formation. Traditional star identifi-
cation algorithms assume a fixed catalog size, leading
to catastrophic failure when the assumed catalog mis-
matches the actual scene [10]. Sparse catalogs miss faint
stars needed for pattern uniqueness, while dense cata-
logs introduce false match candidates that overwhelm
voting schemes. Since identification errors propagate
directly to position error [11], robust performance de-
mands adaptive catalog selection that automatically
adjusts to observed stellar density.

This thesis addresses the star identification robustness

challenge by developing an adaptive pattern-matching
framework that dynamically selects magnitude-limited
star catalogs based on environmental observability. The
approach builds upon the DDR matching principle [12],
which encodes rotation-invariant geometric features,
inter-star angular distances and relative bearing angles,
around reference stars and retrieves candidates through
voting over a precomputed catalog index. While Dai
et al. [12] demonstrate DDR’s effectiveness for star iden-
tification in controlled scenarios, their work does not
address environmental adaptivity or provide a com-
plete navigation pipeline. This thesis implements the
full celestial localization system from first principles, in-
cluding catalog preprocessing, synthetic sky rendering,
star detection, DDR-based pattern matching with novel
extensions, and geometric position optimization. The
implementation introduces three key innovations: (1)
consensus-driven magnitude refinement that dynam-
ically matches catalog density to scene observability,
(2) Polar-star Rejection (PR) that eliminates geomet-
rically degenerate high-declination matches, and (3)
Similarity-based Iteration (SI) reference selection that
systematically explores the detected star set when initial
matching confidence is insufficient.

i. Contributions
The primary contributions of this thesis are summarized
as follows:

¢ Adaptive catalog selection mechanism: A novel
consensus-driven magnitude-refinement mecha-
nism is introduced to robustify star matching un-
der light-polluted or low-visibility conditions. By
estimating the effective limiting magnitude from
the observed stellar density, the algorithm dynam-
ically selects an appropriate magnitude-limited
catalog. This allows DDR matching to operate
only on stars that are realistically observable in
the scene, substantially improving identification
robustness in the presence of light pollution and
atmospheric attenuation.

¢ Polar-star rejection strategy: Implementation of a
geometric filtering technique that identifies and re-
jects high-declination stars exhibiting degenerate
position constraints, reducing systematic localiza-
tion bias.

¢ Similarity-based iterative matching: Develop-
ment of an adaptive reference-star selection algo-
rithm that iteratively explores the detected star set
to improve identification robustness under sparse
visibility conditions.

¢ Comprehensive evaluation framework: Genera-
tion of synthetic datasets using both photorealistic
rendering (Stellarium) and noise-free geometric
projection (Yale catalog), enabling controlled vali-
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dation across varying environmental conditions.

ii. Report Outline

The remainder of this report is structured as follows.
Section 2 introduces the preliminaries of celestial coor-
dinate systems and the forward celestial model, estab-
lishing the mathematical foundation for position esti-
mation. Section 3 formalizes the celestial localization
problem, introducing the observation model, star cata-
log hierarchy, and the inverse mapping from observed
star patterns to geographic position. Section 4 details
the proposed methodology, including catalog prepro-
cessing with magnitude stratification, synthetic dataset
generation using dual-source validation, image-based
star detection, DDR pattern matching with adaptive
catalog selection, and nonlinear position estimation
through Levenberg-Marquardt optimization. Section 5
presents experimental results on synthetic Stellarium
imagery, including identification recall metrics, posi-
tion accuracy statistics, ablation studies quantifying
individual component contributions, and sensitivity
analyses across varying light pollution conditions. Sec-
tion 6 discusses the interpretation of results, systematic
limitations including computational complexity and
rendering biases, and operational considerations for
field deployment. Section 7 concludes the report and
outlines directions for future work, including real-world
validation, computational optimization, and sensor fu-
sion with inertial measurements.

2. Preliminaries

Before formalizing the mathematical framework, it is
instructive to consider the fundamental principle un-
derlying celestial navigation. When an observer stands
at a specific location on Earth at a particular time, they
see a unique configuration of stars in the sky above
them. This configuration is determined by three factors:
the observer’s latitude, their longitude, and the time of
observation [13]. Conversely, if one can identify which
stars are visible and measure their positions in the sky,
it becomes possible to work backwards to determine
one’s location on Earth. This inverse problem forms the
basis of celestial navigation and has guided mariners
for centuries [14].

The challenge lies in bridging two fundamentally differ-
ent coordinate systems. Catalogued stars are defined
in the equatorial frame by Right Ascension (RA) and
Declination (Dec), which is fixed relative to Earth’s rota-
tion axis and, apart from slow effects such as precession
and proper motion, remains effectively constant over
human timescales [15]. Observers, however, perceive
the sky in the horizontal coordinate system, where po-
sitions are described relative to the local horizon and
cardinal directions (azimuth and altitude). As Earth
rotates, encoded locally by the Ist! (Ist!), equatorial co-

ordinates map to the local horizon, so a time-stamped
star image provides strong constraints on the observer’s
geodetic latitude and longitude. The transformation be-
tween these systems directly encodes both geographic
position and observation time.

Your zenith

North celestial
pole

Your
horizon

Earth’s
equator

Celestial
equator

Figure 2: Illustration of the celestial sphere from Fraknoi et al. [16].
Stars are treated as fixed on a sphere surrounding Earth. The
apparent rotation of the sky around the pole arises from Earth’s own
rotation.

1. Forward Celestial Model

Let Scat = {si}f\ici“ denote the Star Catalog used for ce-
lestial localization. Each element s; € Scat represents a
cataloged star defined by its equatorial coordinates and

apparent magnitude,
si = (a;, 6;, m;),

where a; € [0,2n) is the right ascension, 6; € [-F, §
is the declination, and m; < 6.5 denotes the visual
magnitude range covered by the Yale Bright Star Cata-
log (YBSC).

For an observer located at geodetic coordinates (¢, A)
and observation time t, the apparent position of each
star s; in the local horizon system is described by its
altitude a; and azimuth A;, with

(Ai,ai) € 10,2m) X [-71/2, /2].

The transformation from equatorial to horizontal coor-
dinates is given by the following relations [17]:

sina; = sin ¢ sin 0; + cos ¢ cos 6; cos H; (2.1)

—sin H; cos d;
tanA; = 2.2
an A sin 6; cos ¢ — cos §; sin ¢ cos H; (2.2)

where H; is the hour angle of the star,

H; =LST(t,A) —a;, H;e€(-m, n] (2.3)
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and LST(¢, A) denotes the local sidereal time, which
depends on the observer’s longitude and the Earth’s
rotation at time .

Figure 2 illustrates the geometric relationship encoded
in these equations. Stars are treated as fixed on the
celestial sphere surrounding Earth, with their positions
described by equatorial coordinates (RA a,Dec 0). As
Earth rotates, the celestial sphere appears to revolve
around the celestial pole, causing each star’s hour an-
gle H to increase continuously with time (Equation
2.3). The transformation from equatorial to horizontal
coordinates (Equations 2.1-2.2) projects this rotating
celestial configuration onto the observer’s local horizon,
where altitude a represents elevation above the hori-
zon and azimuth A indicates direction relative to true
north. This apparent motion—the rising and setting of
stars—directly encodes both the observer’s geographic
position and the time of observation.

Equations 2.1-2.3 together define the forward celestial
model g, which maps the observer’s geographic posi-
tion and observation time to the set of apparent star
positions in the local horizon system:

g: (P, A, t) = {(Ai,a;) | si € Scat} (2.4)

The conversion from horizontal coordinates (A, a) to
a unit line-of-sight vector V; is obtained through the
standard spherical-to-Cartesian transformation used in
positional astronomy [18]:

cosa-sinA
D = |cosa-cosA (2.5)
sina

These unit vectors V; represent the same star directions
on the unit sphere and are later used for geometric
localization.

3. Problem Formulation

In the absence of GNSS signals, the objective of this
work is to estimate the geodetic coordinates (latitude ¢
and longitude A) of an observer UAV from a single im-
age of the night sky acquired at a known Coordinated
Universal Time (UTC) time ¢. Building on the forward
celestial model introduced in the preliminaries, this
section formalizes the corresponding inverse problem:
determining the observer’s location from the observed
stellar configuration.

1. Observation Model and Star Hierarchy

A captured image I(x, y) undergoes star detection to
produce a set of observed centroids in pixel coordinates:

Pobs = {P] }]Ail = {(uj/ Uj) }j\il (3.1)

Each detected pixel observation p; can be projected to
a unit direction vector in the camera frame using the
known camera intrinsic matrix K [19]:

rQbs _ K_l[ui,'(]i, 1]T

T T 00,17 e
The fundamental challenge is that s represents only
a partial, noisy view of the catalog. The relationship
between observed detections and the full stellar catalog
is structured by environmental and sensor constraints,
formalized as a hierarchy of nested subsets:

Svis(ﬁb/)\/t} €) C Sgeom(ﬂbr/\/t) C St (3.3)

Here:

* Scat is the complete star catalog containing all cat-
aloged stars with their equatorial coordinates and
magnitudes.

* Sgeom((, A, t) contains stars that are geometrically
visible above the horizon at location (¢, A) at time
t: Sgeom((P/ A, t) = {Si € Scat | ai((Pl A, t) > 0}

e Suis(¢, A, t; €) contains the subset of geometrically
visible stars that are additionally bright enough
to be detected under environmental conditions
¢ (e.g., limiting magnitude mj;y, atmospheric ex-
tinction, light pollution): Syis(p, A, t;¢) = {s; €
Sgeom((Pr/\r t) | m; < mym(e)}

The detected set Pops in pixel space corresponds to an
unknown subset of Syjs in catalog space. Critically, Pobs
may be incomplete due to missed detections (star blend-
ing, clouds, detection threshold) and may contain false
positives (noise or artifacts). While P, is operationally
represented in pixel coordinates, the catalog subsets
Scat; Sgeom, and Syis are all defined in celestial coordi-
nates. This distinction is fundamental: the localization
problem requires bridging these two representations.

ii. The Inverse Problem: Celestial Localiza-
tion

The localization task requires establishing which cata-
log star {s;} each observed detection {p;} corresponds
to. This star identification problem can be formatted
through a correspondence mapping C:

C : Pobs — Scat U {0} (3.4)

where C(p;) = s; indicates that pixel detection p; is iden-
tified as catalog star s;, and C(p;) = 0 indicates a false
positive detection with no valid catalog match. A valid
correspondence must satisfy geometric consistency: if
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Pixel Coordinates

Detection + Noise

-

Star Pattern Matching (DDR)

Pobs Svuis

Limiting Magnitude

Celestial Coordinates

#onE
o Geometric
Constraint

Sgenm Scat

Figure 3: Hierarchy of star catalog subsets in the celestial localization problem. The complete catalog (Scat) is progressively
filtered by geometric visibility (Sgeom) and environmental observability (Syis). The detected set Pqps, represented in pixel space,
corresponds to a noisy, incomplete subset of Sy;s as described in Section 3- 1.

pj < si, then the observed direction r;’bs should align

with the predicted direction ¥;(¢, A, t) from the true
observer location. This is achieved with the following
transform constraint:

17 % Ream - ¥i(@, A, 1) (3.5)
where Ream represents the camera’s orientation relative
to the local East-North-Up (ENU) frame. The corre-
spondence problem is challenging because: (1) the sets
Svis and Sgeom depend on the unknown observer coor-
dinates (¢, A), creating a circular dependency; (2) only
M = |Pgps| stars are detected, where M < |Scat|, and M
may be smaller than |Sy;s| due to missed detections; (3)
without absolute orientation or position information,
multiple catalog configurations may appear geomet-
rically similar; and (4) detection errors, atmospheric
effects, and false positives degrade correspondence
quality.

The correspondence problem can be addressed by ex-
ploiting geometric invariants rather than absolute ce-
lestial positions. The approach recognizes that certain
geometric relationships between stars are preserved
regardless of the observer’s unknown location or cam-
era orientation [20] [21]. Specifically, for any pair of
stars s; and sk in the catalog, their angular separation
depends only on their intrinsic equatorial coordinates,
not on (¢, A). Similarly, the relative bearing angles
between stars form rotation-invariant patterns. Given
a reference detection p, € Pgps and its neighboring de-
tections {px} within the field of view, one can compute
observable geometric features. Consistent with the
neighbourhood-based pattern-matching paradigm de-
scribed in Spratling and Mortari [11], we formalise the
observed and catalog star patterns using local geometric
feature sets:

Fobs(pr) = {(Ork, Bri) | px € neighbors(p,)}  (3.6)

where 0,k is the angular distance from p, to px and
Brk is the relative bearing angle. For each catalog star

s; € Scat, an analogous pattern can be precomputed
from catalog coordinates:

Fea(si) = {(0};, Biy) | sk € neighbors(s;)}  (3.7)

The star identification problem then reduces to finding
the catalog star s* whose geometric pattern best matches
the observed pattern:

s" =arg max similarity(Fops(pr), Feat(s:)) (3.8
5i€Ocat

where the similarity metric quantifies geometric agree-
ment between patterns, typically through voting
schemes that count matching feature pairs within toler-
ance thresholds. This pattern-based approach enables
correspondence establishment without prior knowl-
edge of (¢, A), though it assumes sufficient stellar den-
sity and distinct geometric configurations to avoid am-
biguities.
Once a set of correspondences {(pj, s;)} is established
via pattern matching, the observer location can be es-
timated by finding (¢, A) that minimizes the angular
discrepancy between observed and predicted star direc-
tions [5,17]. The overall celestial localization task can
be summarized as the mapping:

fx,y),t) - (@A) (3.9)

where f(-) represents the full computational pipeline
that includes: (1) star detection from the image, (2) iden-
tification of catalog correspondences, and (3) geometric
optimization to estimate position. For a hypothesized
observer position (¢, 1) and known time ¢, the pre-
dicted star directions i;(¢, A, t) are obtained using the
forward model. The goal is to find the observer coordi-
nates that minimize the mean angular error between
the observed and predicted directions:

(¢, A) = arg H(;l}{l % 2 o (arccos (Oi((p, A t)- r?bs))
(3.10)
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where N is the number of matched star correspon-
dences used in the optimization. where p(-) is a robust
loss function that reduces the effect of mismatched or
noisy detections. Longitude A primarily governs the
rotational alignment of the observed sky through the
sidereal-time term, while latitude ¢ determines the alti-
tude distribution of the celestial sphere. Together, these
parameters uniquely define the observer’s position on
Earth. The optimization is inherently nonlinear due to
the trigonometric relationships in Equations (2.1)—(2.3),
and non-convex with potential local minima, particu-
larly at high latitudes where the celestial pole geometry
becomes degenerate.

The celestial localization problem can be formally stated
as follows. Given a single image I(x, y) of the night sky,
observation time ¢ (UTC), camera intrinsic parameters
K, camera orientation Ream (known or approximately
zenith-pointing), and star catalog Scat = {(a;, 0;, m;)},
the objective is to determine observer geodetic coordi-
nates (¢, A) such that: (1) a geometrically consistent
correspondence C : Pophs — Scat is established via star
pattern matching, (2) the predicted star directions from
(¢, A) align with observed directions according to the
optimization criterion in Equation 3.10, and (3) the
solution is robust to detection noise, correspondence
errors, and environmental uncertainty. This problem
decomposes into two coupled subproblems: the corre-
spondence problem (identifying which catalog stars are
observed via geometric pattern matching) and the esti-
mation problem (computing the location that explains
those observations through nonlinear optimization).
Known quantities include observation time ¢ (from
UAV clock), camera calibration matrix K, and detected
star centroids Pops. Unknown quantities are observer
coordinates (¢, A) [primary objective], environmental
conditions ¢, and true correspondences C. The method-
ology in Section 4 details the algorithms used to jointly
solve both components of this coupled inverse problem.

4. Methodology

This section describes the complete computational
pipeline for estimating the observer’s geographic po-
sition from a single nighttime image. The approach
addresses the fundamental challenge that the number
and brightness of visible stars varies unpredictably
with environmental conditions. A city sky may reveal
only ~365 bright stars while a suburban location shows
~2110 or more [9]. Traditional star identification algo-
rithms assume a fixed catalog, leading to catastrophic
failure when the assumed catalog mismatches the ac-
tual scene [10]. The proposed adaptive methodology
dynamically selects the appropriate magnitude-limited
catalog based on observed stellar density, then employs
geometric pattern matching to identify stars without
requiring absolute orientation or position knowledge.

The pipeline consists of catalog preprocessing, synthetic
data generation, image-based star detection, DDR-based
pattern matching, and geometric position estimation.
Figure 4 illustrates the overall data flow in the imple-
mented system. Importantly, the entire pipeline was
implemented entirely from scratch, as no existing code-
base or datasets were available for this task.

1. Star Catalog Preprocessing

The YBSC serves as the celestial reference, containing
9,110 stars with equatorial coordinates (RA, Dec) and
visual magnitudes [22]. To enable efficient pattern
matching under varying observability conditions, the
catalog undergoes magnitude-stratified preprocessing.

To emulate different sky-visibility regimes, the catalog
is stratified by visual magnitude thresholds that reflect
the environmental observability under varying light
pollution levels. Twenty-six discrete catalog subsets are
generated corresponding to visual magnitude thresh-
olds myis € {2.0,2.1,2.2,...,4.4,4.5} in increments of
0.1 magnitude.

Pattern Database Construction: For each catalog sub-
set, a pattern database is precomputed by selecting
each star as a potential reference and encoding its
neighborhood geometry. Given a reference star s, and
radius Field of View (FOV), neighboring stars within
this angular distance are identified using great-circle
separation [23]:

0, = arccos(sin 0, sin 8y + cos O, cos O cos(a, — ay))
(4.1)

For each reference-neighbor pair, two features are com-
puted: (1) angular distance 6, and (2) distance ratio
Pk = Ork/Omax, where Omax is the maximum neighbor
distance. Additionally, relative bearing angles between
neighbors are encoded to form a complete geometric
descriptor.

Look-Up Table (LUT) Construction: To enable rapid
candidate retrieval during online matching, the pattern
database is indexed into a discretized lookup table.
The continuous feature space (0, p) is quantized us-
ing bin sizes Ag = 0.5° and A, = 0.02, derived from
empirical analysis of detection noise characteristics.
Each LUT entry maps to a list of catalog star identi-
fiers whose patterns contain features within that bin,
enabling voting-based matching with O(1) retrieval
complexity per feature.

Density Statistics: For each magnitude-limited catalog,
the mean neighbor count within rroy is computed and
stored. These statistics enable automatic LUT selection
during matching by comparing detected star density to
precomputed catalog densities (Section III-iv).
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Figure 4: Overview of the data flow and processing pipeline.

ii. Synthetic Dataset Generation

Two complementary datasets were constructed pro-
grammatically: a photorealistic Stellarium dataset and
a noise-free Yale-projection dataset.

1. Stellarium Dataset

Using the Stellarium planetarium engine, sky images
are rendered for randomly sampled global locations
and UTC timestamps. The renderer incorporates atmo-
spheric extinction, sky brightness, and image artifacts,
producing highly realistic nighttime conditions. Image
generation is automated via Stellarium’s HTTP remote
control APL

Each rendered image is paired with precise metadata,
including:

¢ latitude and longitude,
¢ timestamp (UTC),
e camera orientation,

* optical parameters (FOV and image resolution).

This dataset simulates real-world UAV imaging condi-
tions, including imperfections introduced by projection,
atmospheric modeling, and rendering. Notably, subse-
quent analysis revealed systematic biases in Stellarium’s
camera projection model (Section 6-iii), motivating the
parallel Yale dataset for controlled validation.

2. Yale-Projection Dataset

To isolate algorithmic performance from rendering
noise, YBSC stars are projected directly into pixel coor-
dinates using:

* equatorial — horizontal coordinate conversion,
¢ ENU transformation based on the metadata,
¢ the pinhole camera projection model.

Only stars above the horizon are retained. The result-
ing skymaps provide exact, noise-free ground truth for
star detection and DDR matching, enabling controlled
evaluation and fine-grained analysis of each pipeline
component.
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iii. Star Detection

Given an image I(x, y), star detection extracts pixel
centroids: Pobs = {(1;, ZJ]‘)}M j=1 Images are converted
to grayscale, Heads-Up Display (HUD) overlays are
masked, and a flood-fill algorithm identifies connected
bright components above a brightness and area thresh-
old. Each connected component is reduced to a centroid,
representing a detected star.

1v. Pattern Matching with Adaptive Cata-

log Selection
Traditional CNS pipelines assume a fixed magnitude-
limited catalog [24]. However, the number of visible
stars in UAV imagery varies sharply with light pollu-
tion, atmospheric transparency, exposure time, and
noise [25] [26]. To handle this, the present work intro-
duces a three-stage adaptive LUT selection mechanism:

1. Density-based LUT estimation,
2. Similarity-based probing across adjacent LUTs,
3. Consensus-driven refinement.

This forms one of the thesis’s primary technical contri-
butions.

1. Density-Based LUT Estimation

The observed stellar density is estimated by counting
neighbors within the field-of-view radius in pixel space.
This density is compared with each catalog subset’s
precomputed density. The LUT whose density most
closely matches the observed density is chosen as the
initial hypothesis.

2. Similarity-Based LUT Probing
Next, DDR matching is performed against:

¢ the density-suggested LUT,
e its brighter and dimmer neighboring LUTs,
¢ and the current consensus-preferred LUT, if any.

For each LUT, the DDR matching routine computes a
normalized similarity score, quantifying the geometric
agreement between the observed pattern and catalog
patterns. The LUT yielding the highest similarity score
becomes the provisional selection.

3. Consensus-Driven Refinement

A running history stores magnitude choices and sim-
ilarity scores from successful matches. Once enough
high-similarity matches accumulate, a stable consen-
sus magnitude limit emerges. If the consensus LUT
achieves similarity comparable to the provisional best,
it overrides the selection. When the consensus becomes
highly stable (exceeding 80%), the algorithm enters
fast-consensus mode, skipping LUT probing entirely.

This process yields a robust, visibility-adaptive cata-
log selection mechanism tailored to the observed star
density in each frame.

v. Geographic Position Estimation

Once a catalog correspondence has been established,
the identified star provides a geometric constraint link-
ing the observer’s geodetic coordinates (¢, ) to the
measured image-ray direction. The observed pixel lo-
cation is converted to a unit line-of-sight vector in the
camera frame using the calibrated intrinsic matrix (3.2).
This vector is then rotated into the local ENU frame
(3.5) using the camera attitude provided by Stellarium
metadata.

For the matched catalog star, its catalog coordinates
(a, 0) are propagated from the catalog epoch to the
time of observation using the full chain of astrometric
corrections implemented in the solver: proper motion,
precession, nutation, and annual aberration [27]. The
corrected coordinates (a’, §’) are then mapped to ap-
parent azimuth—elevation through the forward celestial
model introduced in Section 2.

The location estimate is obtained by solving for the
observer coordinates (¢, A) that minimise the angular
discrepancy between the predicted and observed star
directions as equation 3.10 states. A two-stage optimi-
sation is employed. A coarse grid search over latitude
and longitude provides an initial estimate, followed by
iterative refinement using a Levenberg—Marquardt [28]
update. The solver jointly minimises errors in azimuth
and elevation and incorporates atmospheric refraction
(Bennett model [29]), ensuring consistency between
the predicted apparent elevation and the measured
ray direction. The final output is the geodetic position
(¢, A) that yields maximal agreement with the observed
stellar geometry.

5. Results

1. Dataset Overview and Test Conditions
The proposed adaptive celestial navigation algorithm
was evaluated on synthetic datasets of 200 star field
images generated using Stellarium planetarium soft-
ware (Version 24.4) [30]. The dataset was designed
to simulate diverse observing conditions encountered
in real-world UAV operations, with systematic varia-
tion across geographic, temporal, and environmental
parameters.

* Geographic Coverage: Test locations were ran-
domly sampled from a uniform distribution span-
ning latitudes ¢ € [-90°,4+90°] and longitudes
A € [-180°, +180°], ensuring coverage of Earth’s
surface including challenging high-latitude re-
gions near the celestial poles.
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¢ Temporal Coverage: Observation timestamps
were sampled uniformly between 1 January 2000
and 31 December 2025 and restricted to times
when the solar altitude was below < —6° (nautical
twilight or darker [31]), ensuring stars are observ-
able while providing coverage across all seasons
and local times.

¢ Camera Configuration: Allimages were generated
with a 120° horizontal field of view at 1080x720
pixel resolution, simulating wide-angle optics typ-
ical of UAV navigation cameras. The camera was
configured as zenith-pointing with a north-aligned
azimuth, representing an idealized strap-down
mounting configuration.

* Environmental Conditions: Multiple synthetic
datasets were generated at discrete limiting visual
magnitude levels (8.0, 7.5, 7.0, 6.5, ..., 4.5, 4.0).
For each magnitude threshold, a sparate set of
200 Stellarium images was generated, enabling
controlled analysis across systematically varying
stellar densities.

* Ground Truth: For each synthetic observation,
Stellarium recorded precise metadata including
geodetic coordinates (latitude, longitude), UTC
timestamp, and camera orientation parameters,
enabling quantitative evaluation of position esti-
mation accuracy via geodesic distance comparison.

1. Star Identification and Position Estima-

tion Performance
Although the algorithm was tested across all limiting
magnitude levels, detailed performance analysis in this
section focuses on the representative limiting visual
magnitude of 7. This choice is justified by three factors:

1. Alignment with prior research: Teague and Chahl
[8] report that low-cost UAV cameras reliably de-
tect stars up to magnitude 6-7. Dai et al. [12]
similarly use catalogs filtered to < 6 mag for DDR-
based identification. Focusing on a limiting visual
magnitude 7 thus aligns with the typical sensitivity
range used in prior celestial navigation studies.

2. Realistic star-density regime: Magnitude 7 pro-
vides a balanced scene density representative of
practical UAV night-sky imaging. Brighter lim-
its (m < 6) yield too few stars for stable pattern
formation, while fainter limits (m > 7.5) create
unrealistically dense fields given sensor noise, ex-
posure constraints, and atmospheric extinction.

3. Most informative for evaluating adaptivity: At
this intermediate density, enough stars are present
to exercise the adaptive reference selection and
polar-star rejection logic, without the trivial (dense)
or degenerate (sparse) cases seen at the extremes.

Definition — Recall. Since ground-truth star iden-
tities are unavailable in the Stellarium dataset, recall
is evaluated indirectly through localization accuracy.
A detection is counted as correctly identified
when the resulting position error is below 10 km,
consistent with the confidence—error relationship
shown in this section.

An important consideration in evaluating baseline
performance is the influence of polar star detections.
The baseline (non-adaptive) algorithm occasionally
matched high-declination stars (near the celestial pole,
|6] > 75°) which led to degenerate position solutions.
If one were to exclude these polar-star cases from the
baseline’s results, the baseline’s recall on the remaining
images would increase (for instance, from 39.0% on all
200 images to 43.5% on the 177 non-polar images). At
first glance this suggests an improved baseline perfor-
mance; however, such post-hoc filtering introduces two
biases that make the comparison unfair:

1. Sample size asymmetry: Removing images with
polar-star matches reduces the number of test cases
for the baseline (from 200 to 177 in this example),
whereas the adaptive algorithm (which internally
rejects polar matches) was evaluated on the full set
of 200 images. This creates unequal denominators
and artificially inflates the baseline’s success rate.

2. Masking of algorithmic deficiency: The funda-
mental issue is not whether polar stars are present
in the image, but whether the algorithm identifies
them as matches. The baseline’s 23 polar iden-
tifications represent algorithmic failures, cases
where the system selected geometrically degener-
ate matches that should have been rejected. Re-
moving these cases from evaluation obscures this
failure mode rather than accounting for it.

For these reasons, all performance metrics are reported
on the complete 200-image set for each method, without
excluding difficult cases. This ensures a fair comparison
between the adaptive system (which inherently avoids
certain failure cases) and the baseline (which would
otherwise require result filtering).

Under the magnitude 7 test scenario (Table 1.1), the
adaptive algorithm achieved a 71.5% star identification
recall across all 200 images, whereas the baseline (fixed-
catalog) algorithm managed only 39.0% recall. In other
words, the adaptive approach successfully localized in
nearly 72% of the trials, versus 39% for the conventional
baseline. This 32.5 percentage point improvement in
recall demonstrates the effectiveness of incorporating
dynamic catalog selection and geometric filtering into
the star identification process. Among the images that
were successfully localized by each algorithm, the adap-
tive approach also attained higher accuracy: the median
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Table 1.1: Ablation study results showing recall rate, computation time, and median localization error across algorithmic

configurations at magnitude 7. SI: Similarity-based Iteration; PR: Polar-star Rejection.

Configuration Recall (%) | Computation Time (s) | Median Error (km)
Baseline Algorithm 39.0 5.64 13.80
Baseline + SI 42.5 47.21 11.96
Baseline + SI + PR 41.5 52.62 10.47
Adaptive Algorithm 71.5 5.23 6.80

position error of its solutions was 6.80 km, which is
a 50.7% reduction compared to the baseline’s median
error of 13.80 km (see Table 1.1). These results indicate
that adaptivity not only increases the success rate but
also improves the solution precision for this dataset.

Table 1.2 quantifies the relationship between match con-
fidence and position accuracy. Frames with confidence
scores between 0.40-0.60 exhibited median errors of
6.87 km with a 33.8% failure rate (error >10 km). Perfor-
mance improved in the 0.60-0.80 range (median error
7.11 km, 24.0% failure rate), though surprisingly the
>0.80 range showed slightly higher median error (7.31
km) with a 29.2% failure rate. This counter-intuitive
result at very high confidence may reflect a few incor-
rectly identified stars. When a star is misidentified,
its position is essentially arbitrary, leading to large er-
rors in the position estimate despite high confidence.
The single low-confidence match (<0.40) resulted in
catastrophic failure (5,875.8 km error). This strong cor-
relation between confidence and accuracy validates the
normalized vote metric as a reliable quality indicator
for autonomous mission planning.

Table 1.2: Position error and failure rate stratified by DDR match
confidence score. Failure is defined as localization error >10 km.

Confidence Range  Count  Median Error (km)  Failure Rate

< 0.40 1 5,875.8 100.0%
0.40-0.60 71 6.87 33.8%
0.60-0.80 104 7.11 24.0%
> 0.80 24 7.31 29.2%

To isolate the contribution of each algorithmic innova-
tion, we examine the ablation results in more detail. All
experiments used identical test data, catalog prepro-
cessing, and optimization parameters, varying only the
presence of adaptive components.

Algorithmic Configurations (Ablation Studies):

* Baseline Algorithm: Implements the core star
identification via DDR pattern matching against
a fixed star catalog (mim = 4.0). It selects refer-
ence stars in a single pass (based purely on image
centrality) and performs no iterative refinement
or special filtering. This represents a traditional
star-ID approach assuming known environmental
conditions.

* Baseline + SI: Adds Similarity-based Iteration to
the baseline. When initial matching confidence
falls below threshold 7. = 0.45, the algorithm iter-
atively attempts alternative reference candidates
from the detected star set until sufficient identifi-
cation reliability is achieved. This configuration
retains the fixed catalog assumption but addresses
low confidence through adaptive reference selec-
tion.

¢ Baseline + SI + PR: Incorporates Polar-star Rejec-
tion on top of SI. High-declination catalog matches
(|6] > 75°) are filtered because near-pole stars ex-
hibit vanishing altitude variation with observer
latitude, rendering position estimation geometri-
cally degenerate. Such matches trigger an auto-
matic reference reselection (to avoid the near-polar
degeneracy where changes in latitude produce
minimal changes in observed angles for stars near
the celestial pole). This configuration still uses the
fixed catalog but now incorporates both of the new
strategies to improve reliability.

¢ Adaptive Algorithm: This is the full proposed sys-
tem, integrating all components: (1) Dynamic Cata-
log Selection,the star catalog’s magnitude limit is
adjusted on the fly based on the observed star den-
sity, using a consensus-driven refinement to find
the appropriate limit, (2) Similarity-based Iteration
for robust reference star selection under ambigu-
ous or low-density conditions, and (3) Polar-star
Rejection for filtering out geometrically degenerate
matches. The adaptive algorithm automatically
tunes itself to the environmental conditions in
each image while maintaining efficiency through
consensus convergence (rather than brute-force
testing of all possibilities).

1i. Sensitivity to Environmental Condi-

tions
To further evaluate robustness, we analyzed the algo-
rithm’s performance across the range of sky brightness
conditions represented in our datasets. In practical
terms, this is a sensitivity analysis with respect to light
pollution and observability. We systematically varied
the limiting visual magnitude of the star field (which
directly controls how many stars are detectable in the
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image). Astronomically, the limiting magnitude defines
the faintest stars visible. Higher limits (e.g. 7.5-8.0)
correspond to dark sky conditions where even very dim
stars can be seen, whereas lower limits (e.g. 5.0 or 4.0)
correspond to bright, light-polluted urban skies where
only the brightest stars remain detectable [32]. For inter-
pretability, we map each limiting-magnitude setting to
its approximate Bortle sky class, which describes overall
night-sky quality rather than a strict magnitude thresh-
old. For example, a limiting magnitude of ~7.5-8.0
corresponds roughly to Bortle Classes 1-3 (excellent
dark-sky conditions), while a limiting magnitude of
~5.0 corresponds to about Bortle 7-8 (heavy urban light
pollution).

Figure 5 summarizes the star identification recall
achieved by the Adaptive algorithm (with dynamic
catalog, SI, and PR) versus the Baseline algorithm (fixed
mag 4.0 catalog) across all these environmental con-
ditions. The adaptive approach maintains high recall
over the full range of sky qualities, whereas the base-
line’s performance drops off sharply as light pollution
increases. In particular:

¢ Dark sky conditions (bortle 1-2): Under very dark
skies with abundant visible stars, both algorithms
achieve high recall rates above 70%. The adaptive
approach reaches 82.5% recall at Bortle 1 and 81%
at Bortle 2, while the baseline achieves 74.5% and
71% respectively. In these pristine conditions, the
baseline’s fixed catalog proves adequate, as suffi-

cient bright stars remain visible for reliable pattern
matching. The adaptive algorithm demonstrates
modest improvements of 8-10 percentage points
by effectively applying SI and PR while using a
similar selected catalog as the baseline

Rural/Suburban conditions (bortle 3-5): A dra-
matic divergence emerges as conditions degrade.
At Bortle 3 (limiting magnitude ~7.0), the adaptive
algorithm maintains 71.5% recall while the base-
line drops precipitously to 39%. This crossover
marks the critical threshold where dynamic cata-
log selection becomes essential. As light pollution
intensifies to Bortle 4 (magnitude ~6.5), the base-
line collapses to just 3% while the adaptive sustains
71.5% recall. By Bortle 5 (magnitude ~6.0), the
adaptive algorithm achieves 61% recall compared
to the baseline’s 2%. This regime represents the
critical operational envelope for UAV navigation
in populated areas, where catalog adaptation tran-
sitions from advantageous to absolutely necessary.

Urban conditions (bortle 6-8): Under heavy light
pollution, where only the brightest stars remain
detectable, the adaptive approach maintains opera-
tional capability while the baseline fails completely.
At Bortle 6 (limiting magnitude ~5.5), the adaptive
algorithm achieves 49% recall compared to the
baseline’s 1%. At Bortle 7 (magnitude =5.0), the
adaptive maintains 27.6% recall while the baseline
reaches 0%, the baseline becomes entirely non-

Recall vs Light Pollution
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Figure 5: Recall comparison of the Adaptive Algorithm and Baseline Algorithm across varying Bortle classes, with detailed
analysis in Section 5- ii focusing on Bortle 3 (Magnitude 7) conditions.
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functional. Even at Bortle 8 (magnitude ~4.5), the
adaptive algorithm sustains 4.5% recall, whereas
the baseline remains at 0%. At Bortle 9 (magnitude
~4.0), both algorithms fail as too few stars remain
visible for any reliable pattern matching.

Computational Time vs Light Pollution
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Figure 6: Average computation time of the Adaptive and Baseline
algorithms across varying Bortle classes. Dark skies increase
runtime for the Adaptive method due to higher star density, whereas
light-polluted conditions reduce the workload, making it
comparable to or faster than the Baseline.

The performance trends reveal a fundamental opera-
tional trade-off. In pristine conditions (Bortle 1-2), the
baseline’s simpler fixed-catalog approach proves com-
petitive, achieving 88-90% of the adaptive algorithm’s
recall. However, this narrow performance gap masks a
critical vulnerability: the baseline exhibits catastrophic
degradation once conditions exceed Bortle 2. The tran-
sition from Bortle 2 to Bortle 3 sees the baseline’s recall
plummet from 71% to 39%, while the adaptive algo-
rithm maintains stable 71.5% performance. Beyond
Bortle 4, the baseline becomes operationally unusable,
sustaining less than 3% recall. In contrast, the adaptive
algorithm demonstrates graceful degradation across
the full environmental spectrum. While its recall does
decline from 82.5% at Bortle 1 to 27.6% at Bortle 7, it
maintains functional capability throughout. This ex-
tended operational envelope is critical for real-world
UAV deployment, where environmental conditions can-
not be guaranteed and may vary substantially during
a single mission. The adaptive algorithm’s ability to
sustain 27.6% recall at Bortle 7, where the baseline
achieves zero, represents the difference between opera-
tional capability and complete system failure in urban
environments.

In addition to identification success, we examined the
computational efficiency of each algorithm under vary-
ing conditions. Figure 6 illustrates the average pro-
cessing time per image for the adaptive and baseline
methods as a function of sky brightness. A clear trade-
off emerges. Under star-rich dark sky conditions, the

adaptive algorithm incurs significantly higher compu-
tation time than the baseline, because it must process a
much larger catalog and often perform iterative match-
ing. In our tests, the adaptive system analyzes several
times more stars than the baseline in dark conditions,
leading to longer runtimes. However, as light pollution
increases (fewer stars visible), the adaptive algorithm’s
workload decreases. It automatically restricts the star
catalog to the sparse visible set, which cuts down the
pattern-matching complexity. By the time we reach the
most light-polluted scenarios, the adaptive algorithm’s
average runtime per image drops below that of the base-
line. In those cases, the baseline doesn't gain any speed
advantage from the simpler sky, since it still performs
its fixed set of operations, whereas the adaptive method
is effectively doing less work on the small set of stars.
In summary, the adaptive system pays a computational
cost in pristine conditions (where it processes more data
than necessary for the baseline), but becomes compara-
bly efficient in poor conditions, all while maintaining
far superior recall. This adaptivity in computation is an
advantageous side-effect. The algorithm expends effort
proportional to the complexity of the scene, and in the
very scenarios where the baseline is fastest (because
there are few stars, but also few navigation cues) the
adaptive method is actually both fast and accurate.

6. Discussion

The experimental results validate the central premise
that adapting to environmental conditions is essential
for robust UAV celestial navigation across realistic oper-
ational scenarios. While the results section documented
substantial performance improvements. 71.5% recall
versus 39.0% for the baseline at magnitude 7, with
an even more dramatic divergence in light-polluted
conditions. This discussion examines the deeper impli-
cations of these findings for system design, deployment
strategy, and the broader role of celestial navigation in
GNSS-denied operations.

i. The Necessity of Environmental Adapta-
tion

The performance divergence between adaptive and

baseline algorithms reveals that environmental adap-

tation is not an incremental enhancement but a funda-

mental architectural requirement. Three observations

support this conclusion.

First, the existence of a sharp performance threshold
near Bortle 34 (limiting magnitude 6.0-6.5) indicates
that fixed-catalog approaches operate within a narrow
margin of environmental tolerance. A system tested un-
der pristine dark-sky conditions may exhibit acceptable
performance during validation, yet fail catastrophically
when deployed in even moderately light-polluted envi-
ronments. This brittleness poses significant operational
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risk. Missions planned assuming dark-sky performance
may encounter complete navigation failure when at-
mospheric conditions degrade or when route planning
necessitates transit through populated areas. The adap-
tive algorithm eliminates this vulnerability by treating
environmental conditions as an observable variable
rather than a design constant.

Second, the graceful degradation exhibited by the adap-
tive system, maintaining 27.6% recall at Bortle 7 where
the baseline achieves zero, demonstrates that catalog
adaptation extracts meaningful navigation capability
from severely constrained observability. This is not
merely a performance optimization but an expansion
of the operational envelope into conditions previously
considered infeasible for celestial navigation. For mis-
sions where alternatives are unavailable (no GNSS, no
terrain features, no visual landmarks), even 27.6% suc-
cess rate provides intermittent position updates that
can bound Inertial Measurement Unit (IMU) drift and
enable mission continuation.

Third, the computational efficiency characteristics sug-
gest that adaptation provides compounding benefits. In
the precise conditions where environmental challenges
are greatest (sparse star visibility, high uncertainty), the
adaptive algorithm becomes computationally efficient
by restricting its search space. The adaptive system
expends maximum effort when conditions permit and
automatically reduces complexity when resources are
constrained. A fixed-catalog system, by contrast, main-
tains constant computational load regardless of whether
that effort produces useful results.

1i. Interpreting the Ablation Study: Compo-

nent Contribution

The ablation results illuminate which algorithmic in-
novations contribute to robustness and under what
conditions. Dynamic catalog selection emerged as the
dominant factor, contributing approximately 30 per-
centage points of recall improvement. This finding
was initially surprising, intuitively, one might expect SI
(which explicitly addresses detection incompleteness)
or PR (which eliminates geometric degeneracy) to be
more impactful. However, the result makes sense upon
reflection: if the algorithm attempts to match observed
stars against an inappropriate catalog (too dense or too
sparse), no amount of iterative refinement can recover
correct correspondences. The catalog selection problem
is foundational, other innovations address second-order
effects.

SI contributed modestly (+3.5 percentage points) at
substantial computational cost (8.4x runtime increase).
This suggests SI is most valuable as a fallback mecha-
nism rather than a primary strategy. In the majority
of cases where initial reference selection succeeds, SI

provides no benefit and merely delays the result. How-
ever, in the subset of cases where initial matching fails
due to unfortunate reference star selection (e.g., the
brightest detected star happens to be near an edge or
in a sparse region), SI enables recovery. This pattern,
low average benefit but high value in edge cases, sug-
gests SI should be implemented with early termination.
If initial matching achieves sufficient confidence, skip
iterative exploration entirely.

PR demonstrated a subtle but critical contribution.
While it did not dramatically increase overall recall,
it eliminated a specific failure mode that produced sys-
tematic rather than random errors. The baseline’s 11.5%
incidence of polar identifications means that roughly
one in nine images would produce a solution with arbi-
trarily large latitude uncertainty. For an autonomous
system, such systematic failures are more problematic
than random noise because they appear geometrically
consistent (high confidence) while being fundamen-
tally wrong. The value of PR lies not in average-case
performance but in eliminating a tail risk that could
compromise mission safety.

1i1. Calibration, Projection Models, and Ac-

curacy Limits

Beyond the performance metrics, the experiments also
revealed a subtle but important point regarding system
calibration and accuracy. We observed an unexpected
phenomenon. The highest-confidence star matches did
not always yield the lowest errors. In fact, the dataset
showed that images with an extremely high identifica-
tion confidence (> 0.80) sometimes produced slightly
larger median position errors than those with more
moderate confidence (0.6-0.8). This counter-intuitive
result prompted a closer examination of the imaging ge-
ometry and revealed a bias in the synthetic data genera-
tion. Stellarium was configured for a 120° field-of-view
to simulate a wide-angle lens, however, upon com-
parison with the Yale catalog’s projections, it became
clear that Stellarium’s effective FOV was not exactly as
specified. The rendered images were more “zoomed
out” than a true 120° projection. This mis-calibration
meant that stars near the edges of the Stellarium images
had greater positional errors than anticipated, because
the assumed camera model in the algorithm did not
perfectly match Stellarium’s projection. In essence,
there was a slight discrepancy between how Stellarium
mapped celestial coordinates to pixel coordinates and
how our algorithm thought the mapping should be.
As a result, some high-confidence solutions were actu-
ally using subtly incorrect geometry, especially if they
involved stars toward the periphery of the image.
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Figure 7: Comparison between a raw Stellarium render (top) and its
corresponding YBSC projection (bottom). The mismatch between
Stellarium’s projection and the algorithm’s camera model introduces
peripheral geometric distortion, explaining why some
high-confidence matches yield higher localisation error.

To mitigate this, we performed an offline camera model
tuning for the Stellarium dataset. We adjusted the
preprocessing pipeline (specifically, the image scaling
and normalization steps) to better align the Stellarium-
generated star positions with the expected 120° projec-
tion. These tuning adjustments substantially improved
the consistency of the star maps. After calibration, the
algorithm’s estimated FOV more closely matched Stel-
larium’s, and the projection errors for stars at the image
edges were reduced. This correction was crucial for
ensuring that the localization error truly reflected algo-
rithmic performance rather than a simulator artifact.

1v. Operational Context and Mission Inte-

gration

The results indicate that the demonstrated system is best
regarded as an auxiliary, infrastructure-independent
sensor within a multi-sensor navigation suite rather
than a drop-in replacement for GNSS. With a median
geolocation error of approximately 6.8 km, celestial
fixes are well suited to coarse waypoint-level routing,
periodic bounding of IMU drift during long-range tran-
sits, and continuity or integrity monitoring for TRN,
vision-, or GNSS-based solutions, particularly during
night operations over unstructured terrain.

A critical operational prerequisite is an upward-looking
camera with unobstructed sky view. While the algo-
rithm assumes a zenith-pointing configuration, prac-
tical UAV deployments must account for platform at-

titude variations, which can be addressed through
IMU-based attitude knowledge or gimbal stabilization.
Forward- or downward-looking cameras used for visual
odometry or terrain navigation cannot provide celestial
observations, necessitating either a dedicated zenith
camera or a multi-axis gimbal system that can reorient
during celestial update cycles. This hardware require-
ment distinguishes celestial navigation from terrain-
or feature-based methods and must be factored into
system integration decisions.

At the same time, residual camera-calibration and
projection-model errors, together with the finite as-
trometric accuracy of the star catalog, impose a hard
accuracy floor. At the wide fields of view typical
for UAVs, a one-pixel centroiding error can trans-
late into kilometre-scale position offsets, such that
the method is not appropriate for terminal guidance,
obstacle-proximity manoeuvres, or other applications
requiring sub-hundred-metre precision. The value
proposition of celestial navigation therefore lies in di-
versification rather than displacement, as a low-rate
absolute positioning input that exploits independent ob-
servables and failure modes, it enhances the resilience
of integrated architectures that fuse GNSS, IMU, visual
odometry, and TRN.

v. Limitations and Validity Constraints

Several limitations constrain the generalizability of
these findings. First, evaluation used synthetic imagery
with known ground truth but imperfect realism. Stellar-
ium rendering incorporates atmospheric extinction and
sky brightness, but does not model (thin) clouds, opti-
cal aberrations, or sensor-specific noise characteristics.
Real-world performance may degrade relative to syn-
thetic results if these factors prove significant. Second,
the assumption of known camera orientation simpli-
fies the problem substantially. Operational systems
must either integrate an IMU for attitude knowledge
or implement lost-in-space pattern recognition that
jointly solves for position and orientation. The latter
is computationally expensive and may not be feasible
for real-time UAV applications. IMU integration intro-
duces drift in attitude knowledge, which propagates to
position error through the coordinate transformations.
Quantifying this effect requires hardware-in-the-loop
testing. Third, motion blur during image exposure was
not addressed. UAV platform motion during typical
0.5-2 second exposures will streak star images, degrad-
ing centroid accuracy and potentially causing missed
detections. The magnitude of this effect depends on
platform stability and exposure duration, factors that
trade against each other, since shorter exposures reduce
blur but also reduce signal-to-noise ratio for faint stars.
Fourth, the PR threshold (|6] > 75°) was chosen heuris-
tically. While this eliminates geometric degeneracy
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in mid-latitude regions, it may be overly conservative
(rejecting useful stars) or insufficiently conservative
(permitting marginal matches) depending on latitude
and required accuracy. A more principled approach
would compute condition numbers for the position
estimation Jacobian and reject matches that exceed a
specified threshold, adapting the rejection criterion to
the geometric configuration rather than using a fixed
declination cutoff.

7. Conclusion

This thesis has demonstrated that robust vision-based
celestial navigation in variable environments requires
dynamic adaptation to observability conditions. The de-
veloped system achieves this through three integrated
innovations: consensus-driven magnitude refinement
that automatically adjusts catalog density to match visi-
ble stellar populations, PR that eliminates geometrically
degenerate solutions, and SI matching that maintains
identification robustness under sparse detection condi-
tions.

Evaluation on 200 synthetic images spanning pristine to
heavily light-polluted skies validates the approach. Un-
der dark rural conditions (Bortle 3, limiting magnitude
7), the adaptive algorithm achieves 71.5% identification
recall compared to 39.0% for conventional fixed-catalog
matching, while simultaneously reducing median local-
ization error by 50.7% (6.80 km versus 13.80 km). More
critically, the system sustains operational capability
throughout the environmental spectrum: maintaining
27.6% recall at Bortle 7 (urban/suburban) where base-
line methods achieve zero, and extending marginally
functional operation to Bortle 8 (4.5% recall) despite
only the brightest stars remaining visible.

These results address a central challenge identified
throughout prior work on autonomous celestial navi-
gation: that robust star identification, rather than the
subsequent geometric estimation, constitutes the pri-
mary bottleneck for reliable operation in lost-in-space
scenarios. The literature consistently treats star identifi-
cation as a distinct and unresolved problem, devoting
entire algorithmic studies to correspondence establish-
ment under limited fields of view, sparse observations,
and environmental degradation, while assuming that at-
titude or position estimation becomes well-conditioned
once correct correspondences are available. By ex-
plicitly adapting to environmental uncertainty instead
of assuming fixed observability conditions, the pro-
posed system demonstrates resilience across regimes
in which traditional fixed-catalog approaches exhibit
catastrophic failure rather than graceful degradation.

The achieved localization accuracy remains substan-
tially coarser than GNSS or visual SLAM under fa-
vorable conditions and is therefore not suitable for

precision waypoint following or terminal guidance. In-
stead, the demonstrated performance supports coarse
global localization, GNSS integrity monitoring, and
periodic bounding of inertial drift in GNSS-denied en-
vironments, where absolute position estimates on the
order of several kilometers can still provide operational
value. The limitations revealed through synthetic vali-
dation, particularly sensitivity to camera calibration and
wide-angle projection errors, underscore the necessity
of real-world flight testing with calibrated hardware.
The reported 6.80 km median error should be inter-
preted as an upper bound on algorithmic performance
under idealized detection and known camera param-
eters. Operational accuracy will depend critically on
sensor quality, optical characterization, and environ-
mental effects not fully captured in synthetic rendering.

i. Future Work

Hardware Integration and Flight Testing Real-world
validation on physical UAV platforms remains the crit-
ical next step. This requires integration with flight
control systems, power management, and thermal con-
siderations. Flight testing under varied weather condi-
tions, atmospheric turbulence, and actual urban light
pollution will reveal performance characteristics not
captured in synthetic simulation. Particular attention
must be paid to vibration isolation of the imaging sensor,
as it directly impact star detection reliability [33].

Attitude Estimation and Motion Compensation The
current implementation assumes known camera ori-
entation from Stellarium metadata. Operational sys-
tems must either integrate with an IMU for attitude
knowledge, or perform autonomous attitude estimation
by identifying stars and solving Wahba'’s problem to
recover the camera orientation from matched star direc-
tion vectors [34]. IMU fusion introduces additional com-
plexity, as gyroscope drift must be bounded through
periodic celestial attitude updates, while accelerometer
measurements provide complementary information for
altitude estimation. Motion blur during image expo-
sure presents a related challenge: UAV platform motion
during typical 0.5-2 second exposures can streak star
images, shifting measured centroids and thereby de-
grading attitude accuracy. Mitigation strategies include
active gimbal stabilization, shorter exposures with in-
creased sensor gain, or computational de-blurring using
IMU-measured motion during exposure.

Multi-Frame Temporal Fusion Current performance
is evaluated on single-frame solutions. Sequential es-
timation over multiple images would enable Kalman
filtering or particle filtering approaches that explicitly
model process noise (platform dynamics) and mea-
surement noise (identification uncertainty). Temporal
fusion offers two advantages: statistical averaging re-
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duces random error, and consistency checking across
time rejects transient misidentifications that appear geo-
metrically valid in single frames but exhibit impossible
motion [35].

Sensor Fusion Architectures Integration with com-
plementary positioning modalities, such as visual
odometry, TRN, and magnetometer-based heading,
would enable a resilient hybrid navigation system suit-
able for GNSS-degraded or denied UAV operations.
Conventional visual odometry provides high-precision
relative motion estimates but degrades in low-light
or night-time conditions and suffers from unbounded
drift without external corrections [36]. Recent work
investigates infrared and thermal cameras for odome-
try under darkness, showing improved robustness in
low-visibility environments but continued sensitivity
to scene structure and thermal contrast [37]. CNS,
provides an absolute global reference with coarse accu-
racy, while TRN offers position estimates when reliable
geospatial databases are available. An unified prob-
abilistic fusion framework that dynamically weights
each modality based on environmental conditions and
estimated uncertainty is therefore essential to maximize
availability and robustness across operational UAV sce-
narios [38].

Computational Optimization Beyond algorithmic ro-
bustness, the current prototype leaves substantial head-
room for computational optimisation. The adaptive
matcher in its Python implementation requires on the
order of 5-50 s per frame depending on configura-

tion (Table 1.1), with runtime dominated by high-level
Python loops in DDR feature extraction and repeated
JSON-backed LUT queries. Re-implementing star de-
tection and pattern construction in C++ with vectorised
CPU instructions (e.g., NEON/AVX), and loading cata-
log data into contiguous in-memory arrays at start-up,
would substantially reduce interpreter and parsing over-
head [39], [40]. On platforms with embedded GPUs,
star detection can be expressed as convolution and
reduction operations that map naturally to CUDA or
OpenCL [41]. Since SI evaluates candidate reference
subsets independently, it is amenable to coarse-grained
parallelisation across CPU cores or GPU threads [42].
Combined with confidence-based early termination,
this trades a modest increase in mismatch probabil-
ity for a significant reduction in worst-case runtime,
consistent with real-time embedded design principles
[43].
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