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UAV Celestial Navigation with Automatic Light Pollution
Adaptation

Janvi Seth 4645987

Technical University of Delft

Abstract— Uncrewed Aerial Vehicles (UAVs) increas-
ingly require Global Navigation Satellite System (GNSS)-
independent positioning for operation in contested or
infrastructure-denied environments. This paper presents
a vision-based celestial navigation system with automatic
adaptation to light pollution through dynamic star cata-
log selection. The algorithm employs Dynamic Distance-
Ratio (DDR) pattern matching with novel polar-star rejection
and consensus-driven magnitude refinement to robustly iden-
tify observable stars under varying environmental conditions.
Evaluation on 200 synthetic night-sky images demonstrates
substantially improved star identification robustness com-
pared to fixed-catalog baselines, achieving 71.5% recall at
visual magnitude 7 (Bortle 3) and maintaining non-zero per-
formance under severe light pollution (27.6% recall at magni-
tude 5.0 and 4.5% at magnitude 4.5), where the baseline fails
entirely. Across higher limiting magnitudes (6.5–8.0), the
adaptive method consistently attains 71.5–82.5% recall. In-
cluding misidentifications, the end-to-end system achieves a
median geolocation error of 6.80 km, supporting coarse global
localization, GNSS integrity monitoring, and long-duration
drift bounding in GNSS-denied environments. These re-
sults indicate that adaptive catalog selection significantly
extends the operational envelope of celestial navigation into
light-polluted conditions previously considered infeasible.

Keywords— Celestial Navigation, UAV, GNSS-denied,

Star Identification, Pattern Matching, Light Pollution,

Dynamic Distance-Ratio

1. Introduction
UAVs are increasingly deployed in mission-critical ap-

plications including defense operations, environmen-

tal monitoring, and industrial inspection, where re-

liable positioning is fundamental to operational suc-

cess [1]. While GNSS provides worldwide coverage

with meter-level accuracy, its dependence on weak

Radio Frequency (RF) signals renders it vulnerable to

both intentional and unintentional interference. Re-

cent European assessments document a pronounced

increase in jamming and spoofing events, with measur-

able operational impacts on aviation systems and flight

efficiency [2]. These developments underscore an op-

erational gap: UAVs require positioning solutions that

maintain functionality in GNSS-degraded or denied

environments.

Multiple GNSS-independent approaches have emerged

to address this challenge, each exploiting different envi-

ronmental features or infrastructure. Visual Place Recog-

nition (VPR) leverages deep neural networks to match

onboard imagery against geo-referenced databases,

achieving decimeter-scale accuracy in densely mapped

urban environments [3]. However, VPR performance

degrades substantially under large viewpoint changes,

seasonal variations, or operations in unmapped regions.

These limitations constrain its use to well-characterized

areas with up-to-date reference data. RF-beacon net-

works provide decimeter- to centimeter-level position-

ing through trilateration from known anchor positions,

but deployment requires extensive infrastructure instal-

lation, calibration, and maintenance of line-of-sight

geometry [4]. Terrain-Referenced Navigation (TRN)

correlates onboard sensor measurements with digi-

tal elevation models to estimate position, with modern

vision-based implementations achieving sub-hundred-

meter accuracy over textured terrain at appropriate

altitudes [5] [6]. Yet TRN exhibits sensitivity to terrain

characteristics, requiring sufficient geometric variation

and feature density for reliable correlation.

Figure 1: Example of UAV night operations where celestial

navigation is applicable. Image illustrates typical low-light

conditions under which vision-based Celestial Navigation

Systems (CNS) must operate [7].

While these methods demonstrate impressive perfor-

mance within their operational envelopes, each relies

on specific environmental preconditions. VPR requires

comprehensive prior mapping, RF-beacons demand

deployed infrastructure, and TRN depends on terrain

observability and texture. CNS offers a conceptually

independent alternative that remains globally avail-

able without active emissions, ground infrastructure, or
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prior mapping. Unlike terrain- or infrastructure-based

techniques, celestial positioning exploits the predictable

geometry of stellar positions, a resource that is passive,

universally accessible, and invariant to terrestrial con-

ditions. For UAV operations requiring kilometer-scale

waypoint navigation, integrity monitoring of GNSS so-

lutions, or coarse reacquisition before GNSS handover,

celestial navigation provides a complementary capabil-

ity that functions independently of infrastructure avail-

ability or environmental mapping. Moreover, celestial

methods enable night operations (Figure 1) in scenarios

where daylight-dependent techniques like VPR and

TRN become unavailable or severely degraded, expand-

ing operational flexibility in contested or infrastructure-

denied environments.

Recent work has demonstrated the feasibility of strap-

down vision-based CNS on low-cost UAV platforms [8],

although the reported position errors remain at the

kilometer scale under realistic conditions, substantially

larger than alternative methods operating within their

preferred regimes. The combination of comparatively

coarse accuracy and a clear geometric foundation makes

CNS a compelling target for algorithmic improvement.

While stars are not always visible due to factors such as

the day-night cycle and cloud cover, this paper demon-

strates that the primary challenge in vision-based celes-

tial navigation lies in the robustness of star identification

under varying environmental conditions. Through our

findings, we show that the true bottleneck in reliable

navigation arises from the difficulty in consistently

identifying stars amidst dynamic and degraded en-

vironmental factors, rather than from the geometric

visibility of stars themselves.

The Star Identification Challenge In small fields of

view and under environmental degradation such as

light pollution or cloud cover, the stars actually visible

in a captured image form a strict and unpredictable

subset of those geometrically predicted to lie within the

camera footprint. A UAV operating over a dark rural

area may observe 2,000+ stars to magnitude 7.5, while

the same platform over an urban center detects fewer

than 30 bright stars above magnitude 4.0 [9]. Motion

blur, atmospheric extinction, and sensor noise further

confound pattern formation. Traditional star identifi-

cation algorithms assume a fixed catalog size, leading

to catastrophic failure when the assumed catalog mis-

matches the actual scene [10]. Sparse catalogs miss faint

stars needed for pattern uniqueness, while dense cata-

logs introduce false match candidates that overwhelm

voting schemes. Since identification errors propagate

directly to position error [11], robust performance de-

mands adaptive catalog selection that automatically

adjusts to observed stellar density.

This thesis addresses the star identification robustness

challenge by developing an adaptive pattern-matching

framework that dynamically selects magnitude-limited

star catalogs based on environmental observability. The

approach builds upon the DDR matching principle [12],

which encodes rotation-invariant geometric features,

inter-star angular distances and relative bearing angles,

around reference stars and retrieves candidates through

voting over a precomputed catalog index. While Dai

et al. [12] demonstrate DDR’s effectiveness for star iden-

tification in controlled scenarios, their work does not

address environmental adaptivity or provide a com-

plete navigation pipeline. This thesis implements the

full celestial localization system from first principles, in-

cluding catalog preprocessing, synthetic sky rendering,

star detection, DDR-based pattern matching with novel

extensions, and geometric position optimization. The

implementation introduces three key innovations: (1)

consensus-driven magnitude refinement that dynam-

ically matches catalog density to scene observability,

(2) Polar-star Rejection (PR) that eliminates geomet-

rically degenerate high-declination matches, and (3)

Similarity-based Iteration (SI) reference selection that

systematically explores the detected star set when initial

matching confidence is insufficient.

i. Contributions
The primary contributions of this thesis are summarized

as follows:

• Adaptive catalog selection mechanism: A novel

consensus-driven magnitude-refinement mecha-

nism is introduced to robustify star matching un-

der light-polluted or low-visibility conditions. By

estimating the effective limiting magnitude from

the observed stellar density, the algorithm dynam-

ically selects an appropriate magnitude-limited

catalog. This allows DDR matching to operate

only on stars that are realistically observable in

the scene, substantially improving identification

robustness in the presence of light pollution and

atmospheric attenuation.

• Polar-star rejection strategy: Implementation of a

geometric filtering technique that identifies and re-

jects high-declination stars exhibiting degenerate

position constraints, reducing systematic localiza-

tion bias.

• Similarity-based iterative matching: Develop-

ment of an adaptive reference-star selection algo-

rithm that iteratively explores the detected star set

to improve identification robustness under sparse

visibility conditions.

• Comprehensive evaluation framework: Genera-

tion of synthetic datasets using both photorealistic

rendering (Stellarium) and noise-free geometric

projection (Yale catalog), enabling controlled vali-
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dation across varying environmental conditions.

ii. Report Outline
The remainder of this report is structured as follows.

Section 2 introduces the preliminaries of celestial coor-

dinate systems and the forward celestial model, estab-

lishing the mathematical foundation for position esti-

mation. Section 3 formalizes the celestial localization

problem, introducing the observation model, star cata-

log hierarchy, and the inverse mapping from observed

star patterns to geographic position. Section 4 details

the proposed methodology, including catalog prepro-

cessing with magnitude stratification, synthetic dataset

generation using dual-source validation, image-based

star detection, DDR pattern matching with adaptive

catalog selection, and nonlinear position estimation

through Levenberg-Marquardt optimization. Section 5

presents experimental results on synthetic Stellarium

imagery, including identification recall metrics, posi-

tion accuracy statistics, ablation studies quantifying

individual component contributions, and sensitivity

analyses across varying light pollution conditions. Sec-

tion 6 discusses the interpretation of results, systematic

limitations including computational complexity and

rendering biases, and operational considerations for

field deployment. Section 7 concludes the report and

outlines directions for future work, including real-world

validation, computational optimization, and sensor fu-

sion with inertial measurements.

2. Preliminaries
Before formalizing the mathematical framework, it is

instructive to consider the fundamental principle un-

derlying celestial navigation. When an observer stands

at a specific location on Earth at a particular time, they

see a unique configuration of stars in the sky above

them. This configuration is determined by three factors:

the observer’s latitude, their longitude, and the time of

observation [13]. Conversely, if one can identify which

stars are visible and measure their positions in the sky,

it becomes possible to work backwards to determine

one’s location on Earth. This inverse problem forms the

basis of celestial navigation and has guided mariners

for centuries [14].

The challenge lies in bridging two fundamentally differ-

ent coordinate systems. Catalogued stars are defined

in the equatorial frame by Right Ascension (RA) and

Declination (Dec), which is fixed relative to Earth’s rota-

tion axis and, apart from slow effects such as precession

and proper motion, remains effectively constant over

human timescales [15]. Observers, however, perceive

the sky in the horizontal coordinate system, where po-

sitions are described relative to the local horizon and

cardinal directions (azimuth and altitude). As Earth

rotates, encoded locally by the lst! (lst!), equatorial co-

ordinates map to the local horizon, so a time-stamped

star image provides strong constraints on the observer’s

geodetic latitude and longitude. The transformation be-

tween these systems directly encodes both geographic

position and observation time.

Figure 2: Illustration of the celestial sphere from Fraknoi et al. [16].

Stars are treated as fixed on a sphere surrounding Earth. The

apparent rotation of the sky around the pole arises from Earth’s own

rotation.

i. Forward Celestial Model
Let 𝒮cat = {𝑠𝑖}𝑁cat

𝑖=1
denote the Star Catalog used for ce-

lestial localization. Each element 𝑠𝑖 ∈ 𝒮cat represents a

cataloged star defined by its equatorial coordinates and

apparent magnitude,

𝑠𝑖 = (𝛼𝑖 , 𝛿𝑖 , 𝑚𝑖),

where 𝛼𝑖 ∈ [0, 2𝜋) is the right ascension, 𝛿𝑖 ∈ [−𝜋
2
, 𝜋

2
]

is the declination, and 𝑚𝑖 ≤ 6.5 denotes the visual

magnitude range covered by the Yale Bright Star Cata-

log (YBSC).

For an observer located at geodetic coordinates (𝜙,𝜆)
and observation time 𝑡, the apparent position of each

star 𝑠𝑖 in the local horizon system is described by its

altitude 𝑎𝑖 and azimuth 𝐴𝑖 , with

(𝐴𝑖 , 𝑎𝑖) ∈ [0, 2𝜋) × [−𝜋/2,𝜋/2].

The transformation from equatorial to horizontal coor-

dinates is given by the following relations [17]:

sin 𝑎𝑖 = sin 𝜙 sin 𝛿𝑖 + cos 𝜙 cos 𝛿𝑖 cos𝐻𝑖 (2.1)

tan𝐴𝑖 =
− sin𝐻𝑖 cos 𝛿𝑖

sin 𝛿𝑖 cos 𝜙 − cos 𝛿𝑖 sin 𝜙 cos𝐻𝑖
(2.2)

where 𝐻𝑖 is the hour angle of the star,

𝐻𝑖 = LST(𝑡 ,𝜆) − 𝛼𝑖 , 𝐻𝑖 ∈ (−𝜋,𝜋] (2.3)
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and LST(𝑡 ,𝜆) denotes the local sidereal time, which

depends on the observer’s longitude and the Earth’s

rotation at time 𝑡.

Figure 2 illustrates the geometric relationship encoded

in these equations. Stars are treated as fixed on the

celestial sphere surrounding Earth, with their positions

described by equatorial coordinates (RA 𝛼,Dec 𝛿). As

Earth rotates, the celestial sphere appears to revolve

around the celestial pole, causing each star’s hour an-

gle H to increase continuously with time (Equation

2.3). The transformation from equatorial to horizontal

coordinates (Equations 2.1-2.2) projects this rotating

celestial configuration onto the observer’s local horizon,

where altitude a represents elevation above the hori-

zon and azimuth A indicates direction relative to true

north. This apparent motion—the rising and setting of

stars—directly encodes both the observer’s geographic

position and the time of observation.

Equations 2.1–2.3 together define the forward celestial
model 𝑔, which maps the observer’s geographic posi-

tion and observation time to the set of apparent star

positions in the local horizon system:

𝑔 : (𝜙,𝜆, 𝑡) ↦→ {(𝐴𝑖 , 𝑎𝑖) | 𝑠𝑖 ∈ 𝒮cat} (2.4)

The conversion from horizontal coordinates (𝐴, 𝑎) to

a unit line-of-sight vector v̂𝑖 is obtained through the

standard spherical-to-Cartesian transformation used in

positional astronomy [18]:

𝑣̂ =


cos 𝑎 · sin𝐴
cos 𝑎 · cos𝐴

sin 𝑎

 (2.5)

These unit vectors v̂𝑖 represent the same star directions

on the unit sphere and are later used for geometric

localization.

3. Problem Formulation
In the absence of GNSS signals, the objective of this

work is to estimate the geodetic coordinates (latitude 𝜙
and longitude 𝜆) of an observer UAV from a single im-

age of the night sky acquired at a known Coordinated

Universal Time (UTC) time 𝑡. Building on the forward

celestial model introduced in the preliminaries, this

section formalizes the corresponding inverse problem:

determining the observer’s location from the observed

stellar configuration.

i. Observation Model and Star Hierarchy

A captured image 𝐼(𝑥, 𝑦) undergoes star detection to

produce a set of observed centroids in pixel coordinates:

𝒫obs = { 𝑝 𝑗 }𝑀𝑗=1
= { (𝑢𝑗 , 𝑣 𝑗) }𝑀𝑗=1

. (3.1)

Each detected pixel observation 𝑝 𝑗 can be projected to

a unit direction vector in the camera frame using the

known camera intrinsic matrix 𝐾 [19]:

robs

𝑖 =
𝐾−1[𝑢𝑖 , 𝑣𝑖 , 1]T
∥𝐾−1[𝑢𝑖 , 𝑣𝑖 , 1]T∥

(3.2)

The fundamental challenge is that 𝒫obs represents only

a partial, noisy view of the catalog. The relationship

between observed detections and the full stellar catalog

is structured by environmental and sensor constraints,

formalized as a hierarchy of nested subsets:

𝒮vis(𝜙,𝜆, 𝑡; 𝜀) ⊆ 𝒮geom(𝜙,𝜆, 𝑡) ⊆ 𝒮cat (3.3)

Here:

• 𝒮cat is the complete star catalog containing all cat-

aloged stars with their equatorial coordinates and

magnitudes.

• 𝒮geom(𝜙,𝜆, 𝑡) contains stars that are geometrically

visible above the horizon at location (𝜙,𝜆) at time

𝑡: 𝒮geom(𝜑,𝜆, 𝑡) = {𝑠𝑖 ∈ 𝒮cat | 𝑎𝑖(𝜑,𝜆, 𝑡) > 0}
• 𝒮vis(𝜙,𝜆, 𝑡; 𝜀) contains the subset of geometrically

visible stars that are additionally bright enough

to be detected under environmental conditions

𝜀 (e.g., limiting magnitude 𝑚lim, atmospheric ex-

tinction, light pollution): 𝒮vis(𝜑,𝜆, 𝑡; 𝜀) = {𝑠𝑖 ∈
𝒮geom(𝜑,𝜆, 𝑡) | 𝑚𝑖 < 𝑚lim(𝜀)}

The detected set 𝒫obs in pixel space corresponds to an

unknown subset of 𝒮vis in catalog space. Critically, 𝒫obs

may be incomplete due to missed detections (star blend-

ing, clouds, detection threshold) and may contain false

positives (noise or artifacts). While 𝒫obs is operationally

represented in pixel coordinates, the catalog subsets

𝒮cat, 𝒮geom, and 𝒮vis are all defined in celestial coordi-

nates. This distinction is fundamental: the localization

problem requires bridging these two representations.

ii. The Inverse Problem: Celestial Localiza-
tion

The localization task requires establishing which cata-

log star {𝑠𝑖} each observed detection {𝑝 𝑗} corresponds

to. This star identification problem can be formatted

through a correspondence mapping 𝒞 :

𝒞 : 𝒫obs → 𝒮cat ∪ {∅} (3.4)

where𝒞(𝑝 𝑗) = 𝑠𝑖 indicates that pixel detection 𝑝 𝑗 is iden-

tified as catalog star 𝑠𝑖 , and 𝒞(𝑝 𝑗) = ∅ indicates a false

positive detection with no valid catalog match. A valid

correspondence must satisfy geometric consistency: if
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Figure 3: Hierarchy of star catalog subsets in the celestial localization problem. The complete catalog (𝒮cat) is progressively

filtered by geometric visibility (𝒮geom) and environmental observability (𝒮vis). The detected set 𝒫
obs

, represented in pixel space,

corresponds to a noisy, incomplete subset of 𝒮vis as described in Section 3– i.

𝑝 𝑗 ↔ 𝑠𝑖 , then the observed direction robs

𝑗
should align

with the predicted direction v̂𝑖(𝜑,𝜆, 𝑡) from the true

observer location. This is achieved with the following

transform constraint:

robs

𝑗 ≈ Rcam · v̂𝑖(𝜑,𝜆, 𝑡) (3.5)

where Rcam represents the camera’s orientation relative

to the local East-North-Up (ENU) frame. The corre-

spondence problem is challenging because: (1) the sets

𝒮vis and 𝒮geom depend on the unknown observer coor-

dinates (𝜑,𝜆), creating a circular dependency; (2) only

𝑀 = |𝒫obs| stars are detected, where 𝑀 ≪ |𝒮cat|, and 𝑀
may be smaller than |𝒮vis| due to missed detections; (3)

without absolute orientation or position information,

multiple catalog configurations may appear geomet-

rically similar; and (4) detection errors, atmospheric

effects, and false positives degrade correspondence

quality.

The correspondence problem can be addressed by ex-

ploiting geometric invariants rather than absolute ce-

lestial positions. The approach recognizes that certain

geometric relationships between stars are preserved

regardless of the observer’s unknown location or cam-

era orientation [20] [21]. Specifically, for any pair of

stars 𝑠𝑖 and 𝑠𝑘 in the catalog, their angular separation

depends only on their intrinsic equatorial coordinates,

not on (𝜑,𝜆). Similarly, the relative bearing angles

between stars form rotation-invariant patterns. Given

a reference detection 𝑝𝑟 ∈ 𝒫obs and its neighboring de-

tections {𝑝𝑘} within the field of view, one can compute

observable geometric features. Consistent with the

neighbourhood-based pattern-matching paradigm de-

scribed in Spratling and Mortari [11], we formalise the

observed and catalog star patterns using local geometric

feature sets:

ℱobs(𝑝𝑟) = {(𝜃𝑟𝑘 , 𝛽𝑟𝑘) | 𝑝𝑘 ∈ neighbors(𝑝𝑟)} (3.6)

where 𝜃𝑟𝑘 is the angular distance from 𝑝𝑟 to 𝑝𝑘 and

𝛽𝑟𝑘 is the relative bearing angle. For each catalog star

𝑠𝑖 ∈ 𝒮cat, an analogous pattern can be precomputed

from catalog coordinates:

ℱcat(𝑠𝑖) = {(𝜃′
𝑖𝑘 , 𝛽

′
𝑖𝑘) | 𝑠𝑘 ∈ neighbors(𝑠𝑖)} (3.7)

The star identification problem then reduces to finding

the catalog star 𝑠∗ whose geometric pattern best matches

the observed pattern:

𝑠∗ = arg max

𝑠𝑖∈𝒮cat

similarity(ℱobs(𝑝𝑟),ℱcat(𝑠𝑖)) (3.8)

where the similarity metric quantifies geometric agree-

ment between patterns, typically through voting

schemes that count matching feature pairs within toler-

ance thresholds. This pattern-based approach enables

correspondence establishment without prior knowl-

edge of (𝜑,𝜆), though it assumes sufficient stellar den-

sity and distinct geometric configurations to avoid am-

biguities.

Once a set of correspondences {(𝑝 𝑗 , 𝑠𝑖)} is established

via pattern matching, the observer location can be es-

timated by finding (𝜑,𝜆) that minimizes the angular

discrepancy between observed and predicted star direc-

tions [5,17]. The overall celestial localization task can

be summarized as the mapping:

𝑓 : (𝐼(𝑥, 𝑦), 𝑡) ↦→ (𝜑̂, 𝜆̂) (3.9)

where 𝑓 (·) represents the full computational pipeline

that includes: (1) star detection from the image, (2) iden-

tification of catalog correspondences, and (3) geometric

optimization to estimate position. For a hypothesized

observer position (𝜑,𝜆) and known time 𝑡, the pre-

dicted star directions r̂𝑖(𝜑,𝜆, 𝑡) are obtained using the

forward model. The goal is to find the observer coordi-

nates that minimize the mean angular error between

the observed and predicted directions:

(𝜑̂, 𝜆̂) = arg min

𝜑,𝜆

1

𝑁

𝑁∑
𝑖=1

𝜌
(
arccos

(
v̂𝑖(𝜑,𝜆, 𝑡) · robs

𝑖

))
(3.10)
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where 𝑁 is the number of matched star correspon-

dences used in the optimization. where 𝜌(·) is a robust

loss function that reduces the effect of mismatched or

noisy detections. Longitude 𝜆 primarily governs the

rotational alignment of the observed sky through the

sidereal-time term, while latitude 𝜑 determines the alti-

tude distribution of the celestial sphere. Together, these

parameters uniquely define the observer’s position on

Earth. The optimization is inherently nonlinear due to

the trigonometric relationships in Equations (2.1)–(2.3),

and non-convex with potential local minima, particu-

larly at high latitudes where the celestial pole geometry

becomes degenerate.

The celestial localization problem can be formally stated

as follows. Given a single image 𝐼(𝑥, 𝑦) of the night sky,

observation time 𝑡 (UTC), camera intrinsic parameters

K, camera orientation Rcam (known or approximately

zenith-pointing), and star catalog 𝒮cat = {(𝛼𝑖 , 𝛿𝑖 , 𝑚𝑖)},
the objective is to determine observer geodetic coordi-

nates (𝜑̂, 𝜆̂) such that: (1) a geometrically consistent

correspondence 𝒞 : 𝒫obs → 𝒮cat is established via star

pattern matching, (2) the predicted star directions from

(𝜑̂, 𝜆̂) align with observed directions according to the

optimization criterion in Equation 3.10, and (3) the

solution is robust to detection noise, correspondence

errors, and environmental uncertainty. This problem

decomposes into two coupled subproblems: the corre-

spondence problem (identifying which catalog stars are

observed via geometric pattern matching) and the esti-

mation problem (computing the location that explains

those observations through nonlinear optimization).

Known quantities include observation time 𝑡 (from

UAV clock), camera calibration matrix K, and detected

star centroids 𝒫obs. Unknown quantities are observer

coordinates (𝜑,𝜆) [primary objective], environmental

conditions 𝜀, and true correspondences 𝒞 . The method-

ology in Section 4 details the algorithms used to jointly

solve both components of this coupled inverse problem.

4. Methodology
This section describes the complete computational

pipeline for estimating the observer’s geographic po-

sition from a single nighttime image. The approach

addresses the fundamental challenge that the number

and brightness of visible stars varies unpredictably

with environmental conditions. A city sky may reveal

only ~365 bright stars while a suburban location shows

~2110 or more [9]. Traditional star identification algo-

rithms assume a fixed catalog, leading to catastrophic

failure when the assumed catalog mismatches the ac-

tual scene [10]. The proposed adaptive methodology

dynamically selects the appropriate magnitude-limited

catalog based on observed stellar density, then employs

geometric pattern matching to identify stars without

requiring absolute orientation or position knowledge.

The pipeline consists of catalog preprocessing, synthetic

data generation, image-based star detection, DDR-based

pattern matching, and geometric position estimation.

Figure 4 illustrates the overall data flow in the imple-

mented system. Importantly, the entire pipeline was

implemented entirely from scratch, as no existing code-

base or datasets were available for this task.

i. Star Catalog Preprocessing
The YBSC serves as the celestial reference, containing

9,110 stars with equatorial coordinates (RA, Dec) and

visual magnitudes [22]. To enable efficient pattern

matching under varying observability conditions, the

catalog undergoes magnitude-stratified preprocessing.

To emulate different sky-visibility regimes, the catalog

is stratified by visual magnitude thresholds that reflect

the environmental observability under varying light

pollution levels. Twenty-six discrete catalog subsets are

generated corresponding to visual magnitude thresh-

olds 𝑚vis ∈ {2.0, 2.1, 2.2, . . . , 4.4, 4.5} in increments of

0.1 magnitude.

Pattern Database Construction: For each catalog sub-

set, a pattern database is precomputed by selecting

each star as a potential reference and encoding its

neighborhood geometry. Given a reference star 𝑠𝑟 and

radius Field of View (FOV), neighboring stars within

this angular distance are identified using great-circle

separation [23]:

𝜃𝑟𝑘 = arccos(sin 𝛿𝑟 sin 𝛿𝑘 + cos 𝛿𝑟 cos 𝛿𝑘 cos(𝛼𝑟 − 𝛼𝑘))
(4.1)

For each reference-neighbor pair, two features are com-

puted: (1) angular distance 𝜃𝑟𝑘 and (2) distance ratio

𝜌𝑘 = 𝜃𝑟𝑘/𝜃max, where 𝜃max is the maximum neighbor

distance. Additionally, relative bearing angles between

neighbors are encoded to form a complete geometric

descriptor.

Look-Up Table (LUT) Construction: To enable rapid

candidate retrieval during online matching, the pattern

database is indexed into a discretized lookup table.

The continuous feature space (𝜃, 𝜌) is quantized us-

ing bin sizes Δ𝜃 = 0.5◦ and Δ𝜌 = 0.02, derived from

empirical analysis of detection noise characteristics.

Each LUT entry maps to a list of catalog star identi-

fiers whose patterns contain features within that bin,

enabling voting-based matching with 𝑂(1) retrieval

complexity per feature.

Density Statistics: For each magnitude-limited catalog,

the mean neighbor count within 𝑟FOV is computed and

stored. These statistics enable automatic LUT selection

during matching by comparing detected star density to

precomputed catalog densities (Section III-iv).
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Figure 4: Overview of the data flow and processing pipeline.

ii. Synthetic Dataset Generation
Two complementary datasets were constructed pro-

grammatically: a photorealistic Stellarium dataset and

a noise-free Yale-projection dataset.

1. Stellarium Dataset
Using the Stellarium planetarium engine, sky images

are rendered for randomly sampled global locations

and UTC timestamps. The renderer incorporates atmo-

spheric extinction, sky brightness, and image artifacts,

producing highly realistic nighttime conditions. Image

generation is automated via Stellarium’s HTTP remote

control API.

Each rendered image is paired with precise metadata,

including:

• latitude and longitude,

• timestamp (UTC),

• camera orientation,

• optical parameters (FOV and image resolution).

This dataset simulates real-world UAV imaging condi-

tions, including imperfections introduced by projection,

atmospheric modeling, and rendering. Notably, subse-

quent analysis revealed systematic biases in Stellarium’s

camera projection model (Section 6-iii), motivating the

parallel Yale dataset for controlled validation.

2. Yale-Projection Dataset
To isolate algorithmic performance from rendering

noise, YBSC stars are projected directly into pixel coor-

dinates using:

• equatorial → horizontal coordinate conversion,

• ENU transformation based on the metadata,

• the pinhole camera projection model.

Only stars above the horizon are retained. The result-

ing skymaps provide exact, noise-free ground truth for

star detection and DDR matching, enabling controlled

evaluation and fine-grained analysis of each pipeline

component.
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iii. Star Detection
Given an image 𝐼(𝑥, 𝑦), star detection extracts pixel

centroids: 𝒫obs = {(𝑢𝑗 , 𝑣 𝑗)}𝑀 𝑗=1 Images are converted

to grayscale, Heads-Up Display (HUD) overlays are

masked, and a flood-fill algorithm identifies connected

bright components above a brightness and area thresh-

old. Each connected component is reduced to a centroid,

representing a detected star.

iv. Pattern Matching with Adaptive Cata-
log Selection

Traditional CNS pipelines assume a fixed magnitude-

limited catalog [24]. However, the number of visible

stars in UAV imagery varies sharply with light pollu-

tion, atmospheric transparency, exposure time, and

noise [25] [26]. To handle this, the present work intro-

duces a three-stage adaptive LUT selection mechanism:

1. Density-based LUT estimation,

2. Similarity-based probing across adjacent LUTs,

3. Consensus-driven refinement.

This forms one of the thesis’s primary technical contri-

butions.

1. Density-Based LUT Estimation
The observed stellar density is estimated by counting

neighbors within the field-of-view radius in pixel space.

This density is compared with each catalog subset’s

precomputed density. The LUT whose density most

closely matches the observed density is chosen as the

initial hypothesis.

2. Similarity-Based LUT Probing
Next, DDR matching is performed against:

• the density-suggested LUT,

• its brighter and dimmer neighboring LUTs,

• and the current consensus-preferred LUT, if any.

For each LUT, the DDR matching routine computes a

normalized similarity score, quantifying the geometric

agreement between the observed pattern and catalog

patterns. The LUT yielding the highest similarity score

becomes the provisional selection.

3. Consensus-Driven Refinement
A running history stores magnitude choices and sim-

ilarity scores from successful matches. Once enough

high-similarity matches accumulate, a stable consen-

sus magnitude limit emerges. If the consensus LUT

achieves similarity comparable to the provisional best,

it overrides the selection. When the consensus becomes

highly stable (exceeding 80%), the algorithm enters

fast-consensus mode, skipping LUT probing entirely.

This process yields a robust, visibility-adaptive cata-

log selection mechanism tailored to the observed star

density in each frame.

v. Geographic Position Estimation
Once a catalog correspondence has been established,

the identified star provides a geometric constraint link-

ing the observer’s geodetic coordinates (𝜙,𝜆) to the

measured image-ray direction. The observed pixel lo-

cation is converted to a unit line-of-sight vector in the

camera frame using the calibrated intrinsic matrix (3.2).

This vector is then rotated into the local ENU frame

(3.5) using the camera attitude provided by Stellarium

metadata.

For the matched catalog star, its catalog coordinates

(𝛼, 𝛿) are propagated from the catalog epoch to the

time of observation using the full chain of astrometric

corrections implemented in the solver: proper motion,

precession, nutation, and annual aberration [27]. The

corrected coordinates (𝛼′ , 𝛿′) are then mapped to ap-

parent azimuth–elevation through the forward celestial

model introduced in Section 2.

The location estimate is obtained by solving for the

observer coordinates (𝜙,𝜆) that minimise the angular

discrepancy between the predicted and observed star

directions as equation 3.10 states. A two-stage optimi-

sation is employed. A coarse grid search over latitude

and longitude provides an initial estimate, followed by

iterative refinement using a Levenberg–Marquardt [28]

update. The solver jointly minimises errors in azimuth

and elevation and incorporates atmospheric refraction

(Bennett model [29]), ensuring consistency between

the predicted apparent elevation and the measured

ray direction. The final output is the geodetic position

(𝜙̂, 𝜆̂) that yields maximal agreement with the observed

stellar geometry.

5. Results
i. Dataset Overview and Test Conditions
The proposed adaptive celestial navigation algorithm

was evaluated on synthetic datasets of 200 star field

images generated using Stellarium planetarium soft-

ware (Version 24.4) [30]. The dataset was designed

to simulate diverse observing conditions encountered

in real-world UAV operations, with systematic varia-

tion across geographic, temporal, and environmental

parameters.

• Geographic Coverage: Test locations were ran-

domly sampled from a uniform distribution span-

ning latitudes 𝜙 ∈ [−90
◦ ,+90

◦] and longitudes

𝜆 ∈ [−180
◦ ,+180

◦], ensuring coverage of Earth’s

surface including challenging high-latitude re-

gions near the celestial poles.
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• Temporal Coverage: Observation timestamps

were sampled uniformly between 1 January 2000

and 31 December 2025 and restricted to times

when the solar altitude was below < −6
◦

(nautical

twilight or darker [31]), ensuring stars are observ-

able while providing coverage across all seasons

and local times.

• Camera Configuration: All images were generated

with a 120° horizontal field of view at 1080x720

pixel resolution, simulating wide-angle optics typ-

ical of UAV navigation cameras. The camera was

configured as zenith-pointing with a north-aligned

azimuth, representing an idealized strap-down

mounting configuration.

• Environmental Conditions: Multiple synthetic

datasets were generated at discrete limiting visual

magnitude levels (8.0, 7.5, 7.0, 6.5, . . . , 4.5, 4.0).

For each magnitude threshold, a sparate set of

200 Stellarium images was generated, enabling

controlled analysis across systematically varying

stellar densities.

• Ground Truth: For each synthetic observation,

Stellarium recorded precise metadata including

geodetic coordinates (latitude, longitude), UTC

timestamp, and camera orientation parameters,

enabling quantitative evaluation of position esti-

mation accuracy via geodesic distance comparison.

ii. Star Identification and Position Estima-
tion Performance

Although the algorithm was tested across all limiting

magnitude levels, detailed performance analysis in this

section focuses on the representative limiting visual

magnitude of 7. This choice is justified by three factors:

1. Alignment with prior research: Teague and Chahl

[8] report that low-cost UAV cameras reliably de-

tect stars up to magnitude 6–7. Dai et al. [12]

similarly use catalogs filtered to ≤ 6 mag for DDR-

based identification. Focusing on a limiting visual

magnitude 7 thus aligns with the typical sensitivity

range used in prior celestial navigation studies.

2. Realistic star-density regime: Magnitude 7 pro-

vides a balanced scene density representative of

practical UAV night-sky imaging. Brighter lim-

its (𝑚 ≤ 6) yield too few stars for stable pattern

formation, while fainter limits (𝑚 ≥ 7.5) create

unrealistically dense fields given sensor noise, ex-

posure constraints, and atmospheric extinction.

3. Most informative for evaluating adaptivity: At

this intermediate density, enough stars are present

to exercise the adaptive reference selection and

polar-star rejection logic, without the trivial (dense)

or degenerate (sparse) cases seen at the extremes.

Definition — Recall. Since ground-truth star iden-
tities are unavailable in the Stellarium dataset, recall
is evaluated indirectly through localization accuracy.
A detection is counted as correctly identified

when the resulting position error is below 10 km,

consistent with the confidence–error relationship

shown in this section.

An important consideration in evaluating baseline

performance is the influence of polar star detections.

The baseline (non-adaptive) algorithm occasionally

matched high-declination stars (near the celestial pole,

|𝛿| > 75
◦
) which led to degenerate position solutions.

If one were to exclude these polar-star cases from the

baseline’s results, the baseline’s recall on the remaining

images would increase (for instance, from 39.0% on all

200 images to 43.5% on the 177 non-polar images). At

first glance this suggests an improved baseline perfor-

mance; however, such post-hoc filtering introduces two

biases that make the comparison unfair:

1. Sample size asymmetry: Removing images with

polar-star matches reduces the number of test cases

for the baseline (from 200 to 177 in this example),

whereas the adaptive algorithm (which internally

rejects polar matches) was evaluated on the full set

of 200 images. This creates unequal denominators

and artificially inflates the baseline’s success rate.

2. Masking of algorithmic deficiency: The funda-

mental issue is not whether polar stars are present

in the image, but whether the algorithm identifies

them as matches. The baseline’s 23 polar iden-

tifications represent algorithmic failures, cases

where the system selected geometrically degener-

ate matches that should have been rejected. Re-

moving these cases from evaluation obscures this

failure mode rather than accounting for it.

For these reasons, all performance metrics are reported

on the complete 200-image set for each method, without

excluding difficult cases. This ensures a fair comparison

between the adaptive system (which inherently avoids

certain failure cases) and the baseline (which would

otherwise require result filtering).

Under the magnitude 7 test scenario (Table 1.1), the

adaptive algorithm achieved a 71.5% star identification

recall across all 200 images, whereas the baseline (fixed-

catalog) algorithm managed only 39.0% recall. In other

words, the adaptive approach successfully localized in

nearly 72% of the trials, versus 39% for the conventional

baseline. This 32.5 percentage point improvement in

recall demonstrates the effectiveness of incorporating

dynamic catalog selection and geometric filtering into

the star identification process. Among the images that

were successfully localized by each algorithm, the adap-

tive approach also attained higher accuracy: the median
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Table 1.1: Ablation study results showing recall rate, computation time, and median localization error across algorithmic

configurations at magnitude 7. SI: Similarity-based Iteration; PR: Polar-star Rejection.

Configuration Recall (%) Computation Time (s) Median Error (km)
Baseline Algorithm 39.0 5.64 13.80

Baseline + SI 42.5 47.21 11.96

Baseline + SI + PR 41.5 52.62 10.47

Adaptive Algorithm 71.5 5.23 6.80

position error of its solutions was 6.80 km, which is

a 50.7% reduction compared to the baseline’s median

error of 13.80 km (see Table 1.1). These results indicate

that adaptivity not only increases the success rate but

also improves the solution precision for this dataset.

Table 1.2 quantifies the relationship between match con-

fidence and position accuracy. Frames with confidence

scores between 0.40–0.60 exhibited median errors of

6.87 km with a 33.8% failure rate (error ≥10 km). Perfor-

mance improved in the 0.60–0.80 range (median error

7.11 km, 24.0% failure rate), though surprisingly the

>0.80 range showed slightly higher median error (7.31

km) with a 29.2% failure rate. This counter-intuitive

result at very high confidence may reflect a few incor-

rectly identified stars. When a star is misidentified,

its position is essentially arbitrary, leading to large er-

rors in the position estimate despite high confidence.

The single low-confidence match (<0.40) resulted in

catastrophic failure (5,875.8 km error). This strong cor-

relation between confidence and accuracy validates the

normalized vote metric as a reliable quality indicator

for autonomous mission planning.

Table 1.2: Position error and failure rate stratified by DDR match

confidence score. Failure is defined as localization error ≥10 km.

Confidence Range Count Median Error (km) Failure Rate

< 0.40 1 5,875.8 100.0%

0.40–0.60 71 6.87 33.8%

0.60–0.80 104 7.11 24.0%

> 0.80 24 7.31 29.2%

To isolate the contribution of each algorithmic innova-

tion, we examine the ablation results in more detail. All

experiments used identical test data, catalog prepro-

cessing, and optimization parameters, varying only the

presence of adaptive components.

Algorithmic Configurations (Ablation Studies):

• Baseline Algorithm: Implements the core star

identification via DDR pattern matching against

a fixed star catalog (𝑚lim = 4.0). It selects refer-

ence stars in a single pass (based purely on image

centrality) and performs no iterative refinement

or special filtering. This represents a traditional

star-ID approach assuming known environmental

conditions.

• Baseline + SI: Adds Similarity-based Iteration to

the baseline. When initial matching confidence

falls below threshold 𝜏𝑐 = 0.45, the algorithm iter-

atively attempts alternative reference candidates

from the detected star set until sufficient identifi-

cation reliability is achieved. This configuration

retains the fixed catalog assumption but addresses

low confidence through adaptive reference selec-

tion.

• Baseline + SI + PR: Incorporates Polar-star Rejec-

tion on top of SI. High-declination catalog matches

(|𝛿| > 75
◦
) are filtered because near-pole stars ex-

hibit vanishing altitude variation with observer

latitude, rendering position estimation geometri-

cally degenerate. Such matches trigger an auto-

matic reference reselection (to avoid the near-polar

degeneracy where changes in latitude produce

minimal changes in observed angles for stars near

the celestial pole). This configuration still uses the

fixed catalog but now incorporates both of the new

strategies to improve reliability.

• Adaptive Algorithm: This is the full proposed sys-

tem, integrating all components: (1) Dynamic Cata-
log Selection,the star catalog’s magnitude limit is

adjusted on the fly based on the observed star den-

sity, using a consensus-driven refinement to find

the appropriate limit, (2) Similarity-based Iteration
for robust reference star selection under ambigu-

ous or low-density conditions, and (3) Polar-star
Rejection for filtering out geometrically degenerate

matches. The adaptive algorithm automatically

tunes itself to the environmental conditions in

each image while maintaining efficiency through

consensus convergence (rather than brute-force

testing of all possibilities).

iii. Sensitivity to Environmental Condi-
tions

To further evaluate robustness, we analyzed the algo-

rithm’s performance across the range of sky brightness

conditions represented in our datasets. In practical

terms, this is a sensitivity analysis with respect to light

pollution and observability. We systematically varied

the limiting visual magnitude of the star field (which

directly controls how many stars are detectable in the
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image). Astronomically, the limiting magnitude defines

the faintest stars visible. Higher limits (e.g. 7.5–8.0)

correspond to dark sky conditions where even very dim

stars can be seen, whereas lower limits (e.g. 5.0 or 4.0)

correspond to bright, light-polluted urban skies where

only the brightest stars remain detectable [32]. For inter-

pretability, we map each limiting-magnitude setting to

its approximate Bortle sky class, which describes overall

night-sky quality rather than a strict magnitude thresh-

old. For example, a limiting magnitude of ∼7.5–8.0

corresponds roughly to Bortle Classes 1–3 (excellent

dark-sky conditions), while a limiting magnitude of

∼5.0 corresponds to about Bortle 7–8 (heavy urban light

pollution).

Figure 5 summarizes the star identification recall

achieved by the Adaptive algorithm (with dynamic

catalog, SI, and PR) versus the Baseline algorithm (fixed

mag 4.0 catalog) across all these environmental con-

ditions. The adaptive approach maintains high recall

over the full range of sky qualities, whereas the base-

line’s performance drops off sharply as light pollution

increases. In particular:

• Dark sky conditions (bortle 1–2): Under very dark

skies with abundant visible stars, both algorithms

achieve high recall rates above 70%. The adaptive

approach reaches 82.5% recall at Bortle 1 and 81%

at Bortle 2, while the baseline achieves 74.5% and

71% respectively. In these pristine conditions, the

baseline’s fixed catalog proves adequate, as suffi-

cient bright stars remain visible for reliable pattern

matching. The adaptive algorithm demonstrates

modest improvements of 8–10 percentage points

by effectively applying SI and PR while using a

similar selected catalog as the baseline

• Rural/Suburban conditions (bortle 3–5): A dra-

matic divergence emerges as conditions degrade.

At Bortle 3 (limiting magnitude ≃7.0), the adaptive

algorithm maintains 71.5% recall while the base-

line drops precipitously to 39%. This crossover

marks the critical threshold where dynamic cata-

log selection becomes essential. As light pollution

intensifies to Bortle 4 (magnitude ≃6.5), the base-

line collapses to just 3% while the adaptive sustains

71.5% recall. By Bortle 5 (magnitude ≃6.0), the

adaptive algorithm achieves 61% recall compared

to the baseline’s 2%. This regime represents the

critical operational envelope for UAV navigation

in populated areas, where catalog adaptation tran-

sitions from advantageous to absolutely necessary.

• Urban conditions (bortle 6–8): Under heavy light

pollution, where only the brightest stars remain

detectable, the adaptive approach maintains opera-

tional capability while the baseline fails completely.

At Bortle 6 (limiting magnitude ≃5.5), the adaptive

algorithm achieves 49% recall compared to the

baseline’s 1%. At Bortle 7 (magnitude ≃5.0), the

adaptive maintains 27.6% recall while the baseline

reaches 0%, the baseline becomes entirely non-

Figure 5: Recall comparison of the Adaptive Algorithm and Baseline Algorithm across varying Bortle classes, with detailed

analysis in Section 5– ii focusing on Bortle 3 (Magnitude 7) conditions.
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functional. Even at Bortle 8 (magnitude ≃4.5), the

adaptive algorithm sustains 4.5% recall, whereas

the baseline remains at 0%. At Bortle 9 (magnitude

≃4.0), both algorithms fail as too few stars remain

visible for any reliable pattern matching.

Figure 6: Average computation time of the Adaptive and Baseline

algorithms across varying Bortle classes. Dark skies increase

runtime for the Adaptive method due to higher star density, whereas

light-polluted conditions reduce the workload, making it

comparable to or faster than the Baseline.

The performance trends reveal a fundamental opera-

tional trade-off. In pristine conditions (Bortle 1–2), the

baseline’s simpler fixed-catalog approach proves com-

petitive, achieving 88–90% of the adaptive algorithm’s

recall. However, this narrow performance gap masks a

critical vulnerability: the baseline exhibits catastrophic

degradation once conditions exceed Bortle 2. The tran-

sition from Bortle 2 to Bortle 3 sees the baseline’s recall

plummet from 71% to 39%, while the adaptive algo-

rithm maintains stable 71.5% performance. Beyond

Bortle 4, the baseline becomes operationally unusable,

sustaining less than 3% recall. In contrast, the adaptive

algorithm demonstrates graceful degradation across

the full environmental spectrum. While its recall does

decline from 82.5% at Bortle 1 to 27.6% at Bortle 7, it

maintains functional capability throughout. This ex-

tended operational envelope is critical for real-world

UAV deployment, where environmental conditions can-

not be guaranteed and may vary substantially during

a single mission. The adaptive algorithm’s ability to

sustain 27.6% recall at Bortle 7, where the baseline

achieves zero, represents the difference between opera-

tional capability and complete system failure in urban

environments.

In addition to identification success, we examined the

computational efficiency of each algorithm under vary-

ing conditions. Figure 6 illustrates the average pro-

cessing time per image for the adaptive and baseline

methods as a function of sky brightness. A clear trade-

off emerges. Under star-rich dark sky conditions, the

adaptive algorithm incurs significantly higher compu-

tation time than the baseline, because it must process a

much larger catalog and often perform iterative match-

ing. In our tests, the adaptive system analyzes several

times more stars than the baseline in dark conditions,

leading to longer runtimes. However, as light pollution

increases (fewer stars visible), the adaptive algorithm’s

workload decreases. It automatically restricts the star

catalog to the sparse visible set, which cuts down the

pattern-matching complexity. By the time we reach the

most light-polluted scenarios, the adaptive algorithm’s

average runtime per image drops below that of the base-

line. In those cases, the baseline doesn’t gain any speed

advantage from the simpler sky, since it still performs

its fixed set of operations, whereas the adaptive method

is effectively doing less work on the small set of stars.

In summary, the adaptive system pays a computational

cost in pristine conditions (where it processes more data

than necessary for the baseline), but becomes compara-

bly efficient in poor conditions, all while maintaining

far superior recall. This adaptivity in computation is an

advantageous side-effect. The algorithm expends effort

proportional to the complexity of the scene, and in the

very scenarios where the baseline is fastest (because

there are few stars, but also few navigation cues) the

adaptive method is actually both fast and accurate.

6. Discussion
The experimental results validate the central premise

that adapting to environmental conditions is essential

for robust UAV celestial navigation across realistic oper-

ational scenarios. While the results section documented

substantial performance improvements. 71.5% recall

versus 39.0% for the baseline at magnitude 7, with

an even more dramatic divergence in light-polluted

conditions. This discussion examines the deeper impli-

cations of these findings for system design, deployment

strategy, and the broader role of celestial navigation in

GNSS-denied operations.

i. The Necessity of Environmental Adapta-
tion

The performance divergence between adaptive and

baseline algorithms reveals that environmental adap-

tation is not an incremental enhancement but a funda-

mental architectural requirement. Three observations

support this conclusion.

First, the existence of a sharp performance threshold

near Bortle 3–4 (limiting magnitude 6.0–6.5) indicates

that fixed-catalog approaches operate within a narrow

margin of environmental tolerance. A system tested un-

der pristine dark-sky conditions may exhibit acceptable

performance during validation, yet fail catastrophically

when deployed in even moderately light-polluted envi-

ronments. This brittleness poses significant operational
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risk. Missions planned assuming dark-sky performance

may encounter complete navigation failure when at-

mospheric conditions degrade or when route planning

necessitates transit through populated areas. The adap-

tive algorithm eliminates this vulnerability by treating

environmental conditions as an observable variable

rather than a design constant.

Second, the graceful degradation exhibited by the adap-

tive system, maintaining 27.6% recall at Bortle 7 where

the baseline achieves zero, demonstrates that catalog

adaptation extracts meaningful navigation capability

from severely constrained observability. This is not

merely a performance optimization but an expansion

of the operational envelope into conditions previously

considered infeasible for celestial navigation. For mis-

sions where alternatives are unavailable (no GNSS, no

terrain features, no visual landmarks), even 27.6% suc-

cess rate provides intermittent position updates that

can bound Inertial Measurement Unit (IMU) drift and

enable mission continuation.

Third, the computational efficiency characteristics sug-

gest that adaptation provides compounding benefits. In

the precise conditions where environmental challenges

are greatest (sparse star visibility, high uncertainty), the

adaptive algorithm becomes computationally efficient

by restricting its search space. The adaptive system

expends maximum effort when conditions permit and

automatically reduces complexity when resources are

constrained. A fixed-catalog system, by contrast, main-

tains constant computational load regardless of whether

that effort produces useful results.

ii. Interpreting the Ablation Study: Compo-
nent Contribution

The ablation results illuminate which algorithmic in-

novations contribute to robustness and under what

conditions. Dynamic catalog selection emerged as the

dominant factor, contributing approximately 30 per-

centage points of recall improvement. This finding

was initially surprising, intuitively, one might expect SI

(which explicitly addresses detection incompleteness)

or PR (which eliminates geometric degeneracy) to be

more impactful. However, the result makes sense upon

reflection: if the algorithm attempts to match observed

stars against an inappropriate catalog (too dense or too

sparse), no amount of iterative refinement can recover

correct correspondences. The catalog selection problem

is foundational, other innovations address second-order

effects.

SI contributed modestly (+3.5 percentage points) at

substantial computational cost (8.4× runtime increase).

This suggests SI is most valuable as a fallback mecha-

nism rather than a primary strategy. In the majority

of cases where initial reference selection succeeds, SI

provides no benefit and merely delays the result. How-

ever, in the subset of cases where initial matching fails

due to unfortunate reference star selection (e.g., the

brightest detected star happens to be near an edge or

in a sparse region), SI enables recovery. This pattern,

low average benefit but high value in edge cases, sug-

gests SI should be implemented with early termination.

If initial matching achieves sufficient confidence, skip

iterative exploration entirely.

PR demonstrated a subtle but critical contribution.

While it did not dramatically increase overall recall,

it eliminated a specific failure mode that produced sys-

tematic rather than random errors. The baseline’s 11.5%

incidence of polar identifications means that roughly

one in nine images would produce a solution with arbi-

trarily large latitude uncertainty. For an autonomous

system, such systematic failures are more problematic

than random noise because they appear geometrically

consistent (high confidence) while being fundamen-

tally wrong. The value of PR lies not in average-case

performance but in eliminating a tail risk that could

compromise mission safety.

iii. Calibration, Projection Models, and Ac-
curacy Limits

Beyond the performance metrics, the experiments also

revealed a subtle but important point regarding system

calibration and accuracy. We observed an unexpected

phenomenon. The highest-confidence star matches did

not always yield the lowest errors. In fact, the dataset

showed that images with an extremely high identifica-

tion confidence (> 0.80) sometimes produced slightly

larger median position errors than those with more

moderate confidence (0.6–0.8). This counter-intuitive

result prompted a closer examination of the imaging ge-

ometry and revealed a bias in the synthetic data genera-

tion. Stellarium was configured for a 120
◦

field-of-view

to simulate a wide-angle lens, however, upon com-

parison with the Yale catalog’s projections, it became

clear that Stellarium’s effective FOV was not exactly as

specified. The rendered images were more “zoomed

out” than a true 120
◦

projection. This mis-calibration

meant that stars near the edges of the Stellarium images

had greater positional errors than anticipated, because

the assumed camera model in the algorithm did not

perfectly match Stellarium’s projection. In essence,

there was a slight discrepancy between how Stellarium

mapped celestial coordinates to pixel coordinates and

how our algorithm thought the mapping should be.

As a result, some high-confidence solutions were actu-

ally using subtly incorrect geometry, especially if they

involved stars toward the periphery of the image.
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Figure 7: Comparison between a raw Stellarium render (top) and its

corresponding YBSC projection (bottom). The mismatch between

Stellarium’s projection and the algorithm’s camera model introduces

peripheral geometric distortion, explaining why some

high-confidence matches yield higher localisation error.

To mitigate this, we performed an offline camera model

tuning for the Stellarium dataset. We adjusted the

preprocessing pipeline (specifically, the image scaling

and normalization steps) to better align the Stellarium-

generated star positions with the expected 120
◦

projec-

tion. These tuning adjustments substantially improved

the consistency of the star maps. After calibration, the

algorithm’s estimated FOV more closely matched Stel-

larium’s, and the projection errors for stars at the image

edges were reduced. This correction was crucial for

ensuring that the localization error truly reflected algo-

rithmic performance rather than a simulator artifact.

iv. Operational Context and Mission Inte-
gration

The results indicate that the demonstrated system is best

regarded as an auxiliary, infrastructure-independent

sensor within a multi-sensor navigation suite rather

than a drop-in replacement for GNSS. With a median

geolocation error of approximately 6.8 km, celestial

fixes are well suited to coarse waypoint-level routing,

periodic bounding of IMU drift during long-range tran-

sits, and continuity or integrity monitoring for TRN,

vision-, or GNSS-based solutions, particularly during

night operations over unstructured terrain.

A critical operational prerequisite is an upward-looking

camera with unobstructed sky view. While the algo-

rithm assumes a zenith-pointing configuration, prac-

tical UAV deployments must account for platform at-

titude variations, which can be addressed through

IMU-based attitude knowledge or gimbal stabilization.

Forward- or downward-looking cameras used for visual

odometry or terrain navigation cannot provide celestial

observations, necessitating either a dedicated zenith

camera or a multi-axis gimbal system that can reorient

during celestial update cycles. This hardware require-

ment distinguishes celestial navigation from terrain-

or feature-based methods and must be factored into

system integration decisions.

At the same time, residual camera-calibration and

projection-model errors, together with the finite as-

trometric accuracy of the star catalog, impose a hard

accuracy floor. At the wide fields of view typical

for UAVs, a one-pixel centroiding error can trans-

late into kilometre-scale position offsets, such that

the method is not appropriate for terminal guidance,

obstacle-proximity manoeuvres, or other applications

requiring sub-hundred-metre precision. The value

proposition of celestial navigation therefore lies in di-

versification rather than displacement, as a low-rate

absolute positioning input that exploits independent ob-

servables and failure modes, it enhances the resilience

of integrated architectures that fuse GNSS, IMU, visual

odometry, and TRN.

v. Limitations and Validity Constraints
Several limitations constrain the generalizability of

these findings. First, evaluation used synthetic imagery

with known ground truth but imperfect realism. Stellar-

ium rendering incorporates atmospheric extinction and

sky brightness, but does not model (thin) clouds, opti-

cal aberrations, or sensor-specific noise characteristics.

Real-world performance may degrade relative to syn-

thetic results if these factors prove significant. Second,

the assumption of known camera orientation simpli-

fies the problem substantially. Operational systems

must either integrate an IMU for attitude knowledge

or implement lost-in-space pattern recognition that

jointly solves for position and orientation. The latter

is computationally expensive and may not be feasible

for real-time UAV applications. IMU integration intro-

duces drift in attitude knowledge, which propagates to

position error through the coordinate transformations.

Quantifying this effect requires hardware-in-the-loop

testing. Third, motion blur during image exposure was

not addressed. UAV platform motion during typical

0.5–2 second exposures will streak star images, degrad-

ing centroid accuracy and potentially causing missed

detections. The magnitude of this effect depends on

platform stability and exposure duration, factors that

trade against each other, since shorter exposures reduce

blur but also reduce signal-to-noise ratio for faint stars.

Fourth, the PR threshold (|𝛿| > 75
◦
) was chosen heuris-

tically. While this eliminates geometric degeneracy
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in mid-latitude regions, it may be overly conservative

(rejecting useful stars) or insufficiently conservative

(permitting marginal matches) depending on latitude

and required accuracy. A more principled approach

would compute condition numbers for the position

estimation Jacobian and reject matches that exceed a

specified threshold, adapting the rejection criterion to

the geometric configuration rather than using a fixed

declination cutoff.

7. Conclusion
This thesis has demonstrated that robust vision-based

celestial navigation in variable environments requires

dynamic adaptation to observability conditions. The de-

veloped system achieves this through three integrated

innovations: consensus-driven magnitude refinement

that automatically adjusts catalog density to match visi-

ble stellar populations, PR that eliminates geometrically

degenerate solutions, and SI matching that maintains

identification robustness under sparse detection condi-

tions.

Evaluation on 200 synthetic images spanning pristine to

heavily light-polluted skies validates the approach. Un-

der dark rural conditions (Bortle 3, limiting magnitude

7), the adaptive algorithm achieves 71.5% identification

recall compared to 39.0% for conventional fixed-catalog

matching, while simultaneously reducing median local-

ization error by 50.7% (6.80 km versus 13.80 km). More

critically, the system sustains operational capability

throughout the environmental spectrum: maintaining

27.6% recall at Bortle 7 (urban/suburban) where base-

line methods achieve zero, and extending marginally

functional operation to Bortle 8 (4.5% recall) despite

only the brightest stars remaining visible.

These results address a central challenge identified

throughout prior work on autonomous celestial navi-

gation: that robust star identification, rather than the

subsequent geometric estimation, constitutes the pri-

mary bottleneck for reliable operation in lost-in-space

scenarios. The literature consistently treats star identifi-

cation as a distinct and unresolved problem, devoting

entire algorithmic studies to correspondence establish-

ment under limited fields of view, sparse observations,

and environmental degradation, while assuming that at-

titude or position estimation becomes well-conditioned

once correct correspondences are available. By ex-

plicitly adapting to environmental uncertainty instead

of assuming fixed observability conditions, the pro-

posed system demonstrates resilience across regimes

in which traditional fixed-catalog approaches exhibit

catastrophic failure rather than graceful degradation.

The achieved localization accuracy remains substan-

tially coarser than GNSS or visual SLAM under fa-

vorable conditions and is therefore not suitable for

precision waypoint following or terminal guidance. In-

stead, the demonstrated performance supports coarse

global localization, GNSS integrity monitoring, and

periodic bounding of inertial drift in GNSS-denied en-

vironments, where absolute position estimates on the

order of several kilometers can still provide operational

value. The limitations revealed through synthetic vali-

dation, particularly sensitivity to camera calibration and

wide-angle projection errors, underscore the necessity

of real-world flight testing with calibrated hardware.

The reported 6.80 km median error should be inter-

preted as an upper bound on algorithmic performance

under idealized detection and known camera param-

eters. Operational accuracy will depend critically on

sensor quality, optical characterization, and environ-

mental effects not fully captured in synthetic rendering.

i. Future Work
Hardware Integration and Flight Testing Real-world

validation on physical UAV platforms remains the crit-

ical next step. This requires integration with flight

control systems, power management, and thermal con-

siderations. Flight testing under varied weather condi-

tions, atmospheric turbulence, and actual urban light

pollution will reveal performance characteristics not

captured in synthetic simulation. Particular attention

must be paid to vibration isolation of the imaging sensor,

as it directly impact star detection reliability [33].

Attitude Estimation and Motion Compensation The

current implementation assumes known camera ori-

entation from Stellarium metadata. Operational sys-

tems must either integrate with an IMU for attitude

knowledge, or perform autonomous attitude estimation

by identifying stars and solving Wahba’s problem to

recover the camera orientation from matched star direc-

tion vectors [34]. IMU fusion introduces additional com-

plexity, as gyroscope drift must be bounded through

periodic celestial attitude updates, while accelerometer

measurements provide complementary information for

altitude estimation. Motion blur during image expo-

sure presents a related challenge: UAV platform motion

during typical 0.5–2 second exposures can streak star

images, shifting measured centroids and thereby de-

grading attitude accuracy. Mitigation strategies include

active gimbal stabilization, shorter exposures with in-

creased sensor gain, or computational de-blurring using

IMU-measured motion during exposure.

Multi-Frame Temporal Fusion Current performance

is evaluated on single-frame solutions. Sequential es-

timation over multiple images would enable Kalman

filtering or particle filtering approaches that explicitly

model process noise (platform dynamics) and mea-

surement noise (identification uncertainty). Temporal

fusion offers two advantages: statistical averaging re-
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duces random error, and consistency checking across

time rejects transient misidentifications that appear geo-

metrically valid in single frames but exhibit impossible

motion [35].

Sensor Fusion Architectures Integration with com-

plementary positioning modalities, such as visual

odometry, TRN, and magnetometer-based heading,

would enable a resilient hybrid navigation system suit-

able for GNSS-degraded or denied UAV operations.

Conventional visual odometry provides high-precision

relative motion estimates but degrades in low-light

or night-time conditions and suffers from unbounded

drift without external corrections [36]. Recent work

investigates infrared and thermal cameras for odome-

try under darkness, showing improved robustness in

low-visibility environments but continued sensitivity

to scene structure and thermal contrast [37]. CNS,

provides an absolute global reference with coarse accu-

racy, while TRN offers position estimates when reliable

geospatial databases are available. An unified prob-

abilistic fusion framework that dynamically weights

each modality based on environmental conditions and

estimated uncertainty is therefore essential to maximize

availability and robustness across operational UAV sce-

narios [38].

Computational Optimization Beyond algorithmic ro-

bustness, the current prototype leaves substantial head-

room for computational optimisation. The adaptive

matcher in its Python implementation requires on the

order of 5–50 s per frame depending on configura-

tion (Table 1.1), with runtime dominated by high-level

Python loops in DDR feature extraction and repeated

JSON-backed LUT queries. Re-implementing star de-

tection and pattern construction in C++ with vectorised

CPU instructions (e.g., NEON/AVX), and loading cata-

log data into contiguous in-memory arrays at start-up,

would substantially reduce interpreter and parsing over-

head [39], [40]. On platforms with embedded GPUs,

star detection can be expressed as convolution and

reduction operations that map naturally to CUDA or

OpenCL [41]. Since SI evaluates candidate reference

subsets independently, it is amenable to coarse-grained

parallelisation across CPU cores or GPU threads [42].

Combined with confidence-based early termination,

this trades a modest increase in mismatch probabil-

ity for a significant reduction in worst-case runtime,

consistent with real-time embedded design principles

[43].
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