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Network-Aware Locality Scheduling for
Distributed Data Operators in Data Centers

Long Cheng, Member, IEEE, Ying Wang, Member, IEEE, Qingzhi Liu, Dick H.J. Epema, Cheng Liu, Ying
Mao, Member, IEEE, and John Murphy, Senior Member, IEEE

Abstract—Large data centers are currently the mainstream infrastructures for big data processing. As one of the most fundamental
tasks in these environments, the efficient execution of distributed data operators (e.g., join and aggregation) are still challenging current
data systems, and one of the key performance issues is network communication time. State-of-the-art methods trying to improve that
problem focus on either application-layer data locality optimization to reduce network traffic or on network-layer data flow optimization
to increase bandwidth utilization. However, the techniques in the two layers are totally independent from each other, and performance
gains from a joint optimization perspective have not yet been explored. In this paper, we propose a novel approach called NEAL
(NEtwork-Aware Locality scheduling) to bridge this gap, and consequently to further reduce communication time for distributed big data
operators. We present the detailed design and implementation of NEAL, and our experimental results demonstrate that NEAL always
performs better than current approaches for different workloads and network bandwidth configurations.

Index Terms—data locality; coflow scheduling; distributed operators; data centers; big data; SDN; metaheuristic
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1 INTRODUCTION

W ITH the continuous growth of data volumes in vari-
ous domains, large computing systems such as data

centers have been built across the globe to store and process
massive datasets. As the core operations in these systems,
distributed data operators such as join and aggregation are
widely used for big data computing. For example, analytical
queries are always composed of a set of joins, and a log often
needs to be joined with reference data such as information
about users as a part of the large-scale log analysis [1].

Up to now, the efficient execution of distributed data
operators are still challenging current systems. One of the
main reasons is that the typical execution of a distributed
data operator contains a data redistribution process. This
process always involves transferring large amounts of data
over networks [2], which can consume tremendous net-
work resources and results in long communication time.
Actually, in recent years, as the performance of CPUs has
grown much faster than network bandwidth, the network
has become a performance bottleneck to computation, even
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in a single data center [3]. Moreover, some recent works
have shown that distributed data operators in expensive
analytical queries can spend more than half of their comple-
tion time on data transfers [4]. In such conditions, effective
optimization of the execution of the operators, which can
minimize network communication time, becomes increas-
ingly desirable.

Reducing the volume of data transferred over networks
is an efficient way to speed up distributed data operators [5].
The main reason is that, for both low-end and high-end
platforms, communication reduction would directly result
in a faster execution [2], [4]. From that basis, various efficient
approaches have been proposed in the data management
domain [6], [7]. Their general idea is to move small data
chunks rather than large ones in an execution using data
locality scheduling. For instance, track-join [5] has adopted
a fine-grained scheduling, which can search all possible op-
portunities for reducing network traffic in a join execution.
Although all the approaches are shown to be efficient, an
application-layer optimization of network traffic does not
necessarily lead to optimal communication time. This is
because when computing nodes use the network without
any coordination, the utilization of network bandwidth can
be very poor [8].

To improve network communication for big data ap-
plications, various network-aware scheduling frameworks
have been proposed for data center environments [9], [10].
However, all the approaches mainly work on reducing or
balancing the utilization of network resources of a system.
Therefore, they actually cannot characterize the possible
optimal communication time for an application. On the
other hand, with the focus on improving communication
time, data flow scheduling over the abstraction coflow [11],
is being studied in the domain of data communications.
Rather than individual flows, coflow scheduling focuses
on minimizing the completion time of the slowest flow
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Fig. 1. Difference data locality scheduling plans (SP) for an aggregation over three nodes.

in a job. Since the data redistribution process of a dis-
tributed data operator can be modeled as a coflow, i.e.,
an n-to-n communication pattern, we can directly apply
the relevant coflow scheduling techniques to accelerate its
executions [11], [12]. However, almost all the current coflow
scheduling approaches focus on optimizing communica-
tion time under the condition that the source and desti-
nation nodes of each data flow have been given. Namely,
their designs are decoupled from application-layer locality
scheduling. In such scenarios, the communication time of a
distributed operator with a coflow scheduling will be still
suboptimal (we demonstrate this problem with examples in
Section 2).

In this work, we present a novel scheduling approach
called NEAL (NEtwork-Aware Locality scheduling), which
aims to reduce the communication time of distributed
data operators such as join and aggregation as much as
possible in data center environments. Generally, NEAL
is a cross-layer scheduler which can seamlessly combine
the application-layer locality scheduling and network-layer
flow scheduling to optimize data flow parallelism. More-
over, different from existing network-aware schedulers, the
optimization process in NEAL is driven directly by the
possible communication time rather than the status of a net-
work, such as network resource utilization. We provide the
detailed design and implementation of NEAL and conduct
extensive performance evaluation with a large number of
emulations and simulations.

The main contributions of this paper are summarized as
follows:

• We demonstrate that a distributed operator can
achieve additional performance gains on communi-
cation time by considering coflow scheduling in its
data locality scheduling process.

• We propose NEAL, an approach which seamlessly
combines data locality scheduling and data flow
scheduling for distributed operator execution. We
introduce the performance model of NEAL and also
present its system design with a detailed implemen-
tation based on a metaheuristic.

• We compare NEAL with the current approaches and
experimentally show that NEAL can always achieve
better network communication time for distributed
data operators in the presence of different workloads
and network bandwidth configurations.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background with a motivating
example of this work. We present the design of NEAL in

Section 3 and its detailed implementation in Section 4. We
carry out extensive evaluation of our approach in Section 5.
We report the related work in Section 6 and conclude this
paper in Section 7.

2 BACKGROUND AND MOTIVATION

Distributed data operators, such as joins and aggregations,
can be broadly decomposed into an initial data redistribu-
tion stage followed by a local computing process [6]. The
latter process does not contain any inter-machine commu-
nication, for the purpose of this work, we will only study
the former phase. Without loss of generality, we assume the
input data is in the form of key-value pairs, and we will
only focus on handling the keys with regarding to locality
scheduling.

In the following, we first briefly introduce the data
locality and coflow scheduling techniques. Then, we demon-
strate the advantage of combining data locality and network
communication through a motivating example.

2.1 Data Locality Scheduling

Data locality scheduling is mainly used to generate a plan
including the node destinations of data tuples to be trans-
ferred over a network. To show the details of relevant tech-
niques, an example of three possible scheduling plans for an
aggregation (a general case without the consideration of any
functions like sum, count, etc.) over a three-node system is
demonstrated in Fig. 1. There, each tuple is represented by
its key, and the superscript of each key means its appearing
frequency. For instance, 13 means that there are three tuples
with the key 1. Also, the dashed arrows mean the scheduled
results, i.e., the destination node of each tuple.

Fig. 1(a) shows the details of the most commonly used
hash-based method. There, a very simple hash function
is used to assign the destination for each tuple, i.e., the
hash value of a key is a modulus of the value of key and
the number of nodes. Fig. 1(b) and Fig. 1(c) demonstrate
two other scheduling plans for the agggregation operator
respectively, and their only difference is on how to assign the
desitination for the key 2. If we quantify the network traffic
by the number of tuples moved to remote nodes, then the
cost of three scheduling methods is 8, 7 and 6 respectively.
From an application angle (e.g., [5], [7]), the schedule plan
SP2 will be considered as the optimal solution and chosen
by underlying systems for the final execution, because it
transfers less data than other two approaches.
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Fig. 2. Optimal coflow scheduling for SP1 and SP2 with different network configurations. The vertical height of filled bars indicates the bandwidth.

2.2 Coflow Scheduling
The coflow abstraction is used to define a group of parallel
data flows that are related to each other and also share a
common performance goal (e.g., shuffle flows in MapRe-
duce) [13]. To optimize the communication time for big data
applications, we need to optimize their data communication
at a coflow rather than an individual level. This is because
the network communication time depends on the coflow
completion time (CCT), instead of the time to complete an
individual flow in the coflow [12].

An individual flow within a coflow can be defined by
a tuple in the form of [src, des, v], where src and des are
the source and destination nodes, and v > 0 is the flow
volume [14]. In fact, coflows have been shown to be able
to express most communication patterns in data parallel
applications including distributed data operators [13]. For
example, the data flows generated by the plan SP2 in
Fig. 1(c) can be seen as a coflow with three individual data
flows (the keys 1 and 2 moving from Node 1 to Node 2
will generate a single data flow in real executions because
their source and destination are the same). In this case,
we will be able to use coflow scheduling to improve the
communication time for the parallel data flows generated
in a distributed data operator. As demonstrated in Fig. 2(a),
the optimal network communication time of SP2 will be 4
using an optimal coflow scheduling.

2.3 Motivation of NEAL
To optimize communication time for a distributed data oper-
ator, we can first use data locality scheduling to reduce net-
work traffic and then use coflow scheduling to optimize net-
work communications. However, the communication time
of a distributed data operator would be suboptimal within
such a scheme. The main reasons are: (1) the data locality
scheduling focuses on an application-layer optimization,
which is actually not communication-time aware; and (2)
the coflow scheduling assumes that the detailed information
(i.e., [src, des, v]) of each data flow is known before a coflow
starts [11], [12], [14]. Namely, the relevant network-layer
optimization has not realized that the locality scheduling
could actually impact the final communication time.

To illustrate the above problem, here we give an example
on applying coflow scheduling to the plans SP1 and SP2

depicted in Fig. 1 respectively. We assume that each node
(i.e., network port Pi) transfers one data tuple in one time
unit, and we use a bandwidth-based model [12] to describe
the coflow scheduling. Namely, bandwidth is assigned in a
way that all data flows are ended at the same time point.

As shown in Fig. 2(a) and Fig. 2(b), using an optimal
coflow scheduling, a sub-optimal application-layer plan
SP1 can even lead to better performance on network com-
munications, i.e., the CCT of SP1 is 3, which is smaller
than the 4 achieved by SP2. This means that the under-
lying data system should choose SP1 as the data locality
scheduling plan rather than the optimal plan SP2. In fact,
this decision could change again when the available net-
work bandwidth between nodes is not the same, such as
that part of bandwidth is consumed by the other services.
As shown in Fig. 2(c), if the port P2 can only transfer a
half data tuple in one time unit for the aggregation, then
the optimal communication time for SP1 will be 6 while
SP2 will be still 4. Namely, we should choose SP2 rather
than SP1 for the execution. In such scenarios, our question
is: to achieve the best possible communication time for a
distributed data operator, how should we perform the data
locality scheduling? Actually, our examples have implied
that, to minimize the CCT cost, data locality scheduling
at application-layer should be jointly considered with the
network-layer data flow scheduling, which motivates our
design as below.

3 THE NEAL APPROACH

In this section, we introduce the NEAL approach by leverag-
ing the emerging coflow scheduling. Specifically, we present
its system architecture design in an SDN (software-defined
networking) data center environment [15].

In addition to that SDN becomes increasingly popular in
data centers in recent years [16], we have two other main
motivations for the choice of SDN in our design: (1) The
coflow scheduling in NEAL can be easily realized in terms
of system development. Namely, we can manually assign
the bandwidth for each link with SDN, and we do not need
to develop a complex system like Varys [11], in which the
Varys master and daemons are required for coflow schedul-
ing; and (2) The available network resources of a system
like bandwidth are visible with SDN, which allows NEAL to
work in a network with different bandwidth configurations.

3.1 Architecture

A system view of the proposed NEAL in an SDN data
center is demonstrated in Fig. 3. The main components
include a NEAL scheduler which contains a NEAL analyzer
and a scheduling solver, a cluster with a large amount of
computing nodes, and an SDN network which consists of
an OpenFlow controller and some OpenFlow switches [15].
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For a given data application, such as an analytical query,
its data processing will be decomposed into a set of dis-
tributed data operators. For each operator, a performance
model on optimizing its communication time is constructed
by the NEAL Analyzer, based on the data and network
information collected by its two components: (1) a data
information manager (DIM) and (2) a network information
manager (NIM). The same as a traditional distributed data
management system, DIM maintains a global view of the
meta-data of all data relations stored in the cluster, such
as key appearing frequency on each node. For NIM, it is
responsible for communicating with the OpenFlow con-
troller to collect network resource usage information like
the available bandwidth of each link.

The generated optimization model will be forwarded to
a scheduling solver (described in Section 4) to calculate an
optimized scheduling plan for data redistribution, which in-
cludes: (1) the destination node information for data tuples
on each node, and (2) the assigned network bandwidth for
each link of data flows generated by (1). Specifically, follow-
ing the plan, the Openflow controller assigns the bandwidth
for each communication link, and each computing node
sends its local data chunks to the targeted remote nodes,
and all the data transferring is done in parallel.

3.2 SDN in NEAL
SDN [15] is essentially a centralized networking paradigm,
and the OpenFlow is a standard communication interface
among the layers of an SDN architecture [17]. The network
control functions of an SDN network are located at a set of
control entities called OpenFlow controllers, and the data
forwarding plane is located at packet-processing devices for
operating the requests from OpenFlow controllers. Com-
pared to traditional networking control approaches, SDN
can provide per-flow control based on the attributes of
packet headers.

The SDN architecture has many features, such as flow-
based forwarding, dynamic flow rules, traffic monitor-
ing [18], etc. In our system, the OpenFlow controller has

to communicate with the NIM and the plan executor to
update network information and receive network control
commands respectively. In these processes, we mainly take
the advantages of two key properties of SDN as follows.

Decoupled control plane and data plane. Network operators
can be easily deployed, configured, and managed on Open-
Flow controllers without setting any packets-processing de-
vices. Therefore, bandwidth assignment plans generated by
NEAL can be deployed in the Openflow controller in our
system to simplify its network management. For example, in
the case of a re-configuration requirement for the network,
e.g., to execute a new data operator, we just need to adjust
the controller rather than all the network devices.

Flow control. Quality of Service (QoS) [19] is the capa-
bility of a network to provide the required performance
for a specific network traffic, such as bandwidth, delay,
and loss. Most existing QoS solutions work in best-effort
services, and their control on finer-granular traffic is limited.
In comparison, the control plane of SDN architecture has
an abstract view of the whole network, and it can obtain
global network status, such as network resources, events,
and packets [19] [20]. Based on these information, fine-
grained policies can be then defined and applied per-flow
to each networking entity. NEAL works on the basis of flow
bandwidth assignment. Therefore, SDN provides NEAL a
more flexible approach to control network flows and guar-
antee the bandwidth QoS.

3.3 Optimization Model

To describe the detailed optimization process of a dis-
tributed operator in the NEAL scheduler, we take the ag-
gregation as an example and use the follow model: There
are n computing nodes and the input tuples on each node
have been partitioned into p parts. For a general case, we
assume that the partitioning is based on the hash values
of keys. The hash value of the k-th part is k, and the size
of the data at node i is hik. We denote an individual data
partition at a node as a chunk and a group of data chunks
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TABLE 1
Table of notations

Notation Meaning

τ network communication time
n number of computing nodes
p number of data partitions

xjk decision variable whether the k-th partition
is assigned to node j

hik size of the k-th data chunk on node i
fij data flow from node i to node j
bij transmission bandwidth assigned to fij
vij size of data flow fij
Lij link set of data flow fij
Rl available bandwidth of link l
ri avail. bandwidth for the physical port of node i

with a same hash value (from all the nodes) as a partition.
For example, in Fig. 1, the 13 is a data chunk on the Node 1,
and the group of 13 and 16 is a partition of the input data. In
an aggregation operator, tuples at each node with the same
hash value will be assigned to a same node to implement
the final local computing. Therefore, we can use a decision
variable xjk ∈ {0, 1} to indicate whether a data partition k
is assigned to the node j. Namely, xjk = 1 represents that
partition k is assigned to node j, and xjk = 0 means not.
Moreover, we use fij to indicate the data flow generated by
data movement from node i to node j, the size of which is
vij , the assigned bandwidth for the transmission is bij , and
the set of its communication links is Lij . Obviously, this
model contains both application-layer scheduling for data
locality assignment (i.e., xjk) and network-layer scheduling
for data communication (i.e., bij). For the convenience of our
presentation, we use the notations as listed in Table 1.

We only compute the network communication cost for
the data moved to a remote node, since a local movement
will not consume any network resources. Based on a given
data locality scheduling plan, we can get all the information
of each individual data flow, i.e., its source, destination,
volume and the network resource status (i.e., the available
bandwidth for its link). In this case, the problem on mini-
mizing network communication time τ for an aggregation
can be represented as to minimize the CCT of the coflow
composed by all the responsible individual data flows.
Namely, we have the optimization model as below.

P1 : minimize τ (1)

subject to:

τ =
vij
bij

(1.1)

vij =

p∑
k=1

hikxjk ∀i, i 6= j (1.2)

∑
l∈Lij

bij ≤ Rl ∀i, i 6= j (1.3)

n∑
j=1

xjk = 1 ∀k (1.4)

xjk ∈ {0, 1} ∀j, k (1.5)

As demonstrated in Fig. 2(b), using a bandwidth-based
model, the communication time for each flow fij is the same
in an optimal coflow scheduling. The value τ can be calcu-
lated by the flow size vij divided by the assigned bandwidth
bij for its communication link, as presented in Eq. (1.1). The
size of the flow fij is computed by summarizing the size
of all the data chunks transferred from node i to j, i.e.,
Eq. (1.2). In the data communication process, the consumed
bandwidth of a link (by all the individual data flows) should
be smaller than its available bandwidth. This constraint is
presented in Eq. (1.3).

The link set Lij can be used to characterize the topology
of the underlying network, and we can use such information
to optimize the routing for all the data flows. However, such
a scheduling will be outside the scope of this work. For
our purpose, a star topology network is used in our design.
Namely, in our network model, each link set contains two
links in a node-switch-node way. From this basis, the con-
straint Eq. (1.3) can be represented by:

n∑
j=1,j 6=i

bij ≤ ri ∀i (1.3.1)

n∑
i=1,i6=j

bij ≤ rj ∀j (1.3.2)

Namely, for each computing node, the consumed band-
width of all its output and input links should not be larger
than the available bandwidth of its physical port.

For a given τ , we know that the bandwidth bij for each
flow is directly proportional to its volume vij from Eq. (1.1),
i.e., bij =

vij
τ . If we apply bij and the statement of vij

presented in Eq. (1.2) to Eq. (1.3.1) and (1.3.2), then we have:
n∑

j=1,j 6=i

1

τ

p∑
k=1

hikxjk ≤ ri ∀i (1.3.3)

n∑
i=1,i6=j

1

τ

p∑
k=1

hikxjk ≤ rj ∀j (1.3.4)

The available bandwidth for each link in our network is
collected (or assigned) by the Openflow Controller. There-
fore, each ri (∀i ∈ [1, n]) is a constant for a given data opera-
tor. From the basis of Eq. (1.3.3) and (1.3.4), our optimization
problem P1 can be then converted into the P2:

P2 : minimize τ (2)

subject to:
n∑

j=1,j 6=i

p∑
k=1

hik
ri
xjk ≤ τ ∀i (2.1)

n∑
i=1,i6=j

p∑
k=1

hik
rj
xjk ≤ τ ∀j (2.2)

(1.3) and (1.4)

It is hard to solve the optimization problem P1 directly,
since the programming is not only nonlinear, but also has
binary integer variables. Regardless, as the model P2 shows,
our optimization problem actually can be transformed into
a mixed integer linear programming (MILP) problem. This
is because both the available bandwidth ri of each node
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(port) i is a constant and the size of each data chunk hij
will be also a constant for a given data partitioning method.
In this condition, we only have the binary integer variables
xjk, and we will be able to get an approximately optimal
solution for the problem.

To speed up the parallel execution of a data operator in
a distributed system, we have tried to minimize the time of
the possible slowest data flow generated by the operator.
This makes our optimization problem look like a load
balancing (LB) problem. However, it should be noted that
our work is a coflow-based problem rather than a LB-based
problem. The main difference is that coflow scheduling
aims to optimize the parallelism of data flows to minimize
communication time, and LB focuses on balancing the re-
source utilization (e.g., bandwidth). Therefore, they are two
different types of problems having different objectives.

Generally, in our performance model, xij is associated
with the data locality and we have used the knowledge of
underlying networks (i.e., available bandwidth and possible
communication time) to help us to optimize the data locality
scheduling. This also the reason why we call our method as
NEtwork-Aware Locality scheduling.

3.4 Distributed Join within NEAL

The presented NEAL scheduling model is built on the basis
of an aggregation process. We can apply the model to
distributed joins. For a join between two relations R and
S , we denoteRi and Si are the tuples ofR and S on node i
respectively. With a hash partitioning, the partitions with a
hash value k areRik and Sik respectively. Then, we can treat
the sum of theRik and Sik as hik in our optimization model
P1 and on that basis to get an optimized locality scheduling
plan. However, the performance improvement brought by
such a plan could be limited, especially when data skew
appears in a relation. The reason is that transferring skewed
tuples will bring in heavry network traffic and also result in
network hot spots [6], i.e., a large number of skewed tuples
are flushed into a few nodes.

As skew occurs naturally in big data applications and
joins [6], a large number of techniques have been proposed
to against data skew in join executions [6], [7], [21], [22].
Among them, we have chosen the PRPD (partial redistribu-
tion & partial duplication [21]) in our approach. The reason
is that PRPD is highly efficient and very simple to imple-
mentation, and the method has been adopted by many data
systems (e.g., Teradata [21], Microsoft [7] and Oracle [23]).
The core idea of PRPD is: the large number of skewed
tuples in a relation are kept locally and not transferred at
all, instead, just a very small number of non-skewed tuples
from another relation are broadcast to all other nodes.

For a general case, we assume that only S is skewed
here1. Following the PRPD, we extend our optimization
model P1 for joins by replacing Eq.(1.2) with the two equa-

1. Note that uniform-skewed joins are the core part of join executions,
and the skewed-skewed joins can be processed in a similar way.

tions as below.

v′ij =

p∑
k=1,k∈H

|Rik| ∀i, i 6= j (1.2.1)

vij = v′ij +

p∑
k=1,k/∈H

(|Rik|+ |Sik|)xjk ∀i, i 6= j (1.2.2)

Here, H is the set of hash values of the skewed keys, |Rik|
and |Sik| are the size of Rik and Sik respectively. In this
condition, v′ij means the size of the data flow generated by
the duplication behavior from node i to j, and it will be
considered as an initial value to calculate the vij for the
flow fij , as presented by Eq. (1.2.2).

The above skew handling method focuses on the pro-
cessing of skewed data, we can treat it as a pre-processing
before our scheduling. It means that the value of each v′ij
will be a constant, and thus we can convert the optimiza-
tion model of a join to a MILP problem similared to the
problem P2, and consequently to get an optimal data lo-
cality scheduling plan. In fact, serveral efficient approaches
have been proposed for the pre-processing (e.g., bifocal-
sampling [24]), and various results in real big data appli-
cations have shown its overhead can be ignored, compared
to the performance improvement it brings [25]. Moreover,
we will apply the PRPD strategy to handle data skew in all
the approaches in our evaluation. In such scenarios, we just
assume that the skew is known for a given input and will
not consider its detailed overhead in this work.

4 IMPLEMENTATION OF NEAL
In this section, we describe the detailed implementation of
NEAL based a metaheuristic approach.

4.1 Metaheuristics-based Formulation
As we have described, the data locality scheduling opti-
mization for both the aggregation and join operator can
be converted into the MILP problem as presented in the
optimization model P2. It is obvious that our optimization
is more complex than a single coflow scheduling, which
actually can be mapped to an open-shop scheduling prob-
lem [11], [26], [27], of which the computational complexity
is NP-hard2. From a theoretical perspective, our problem
solving time is exponential time. Therefore, the scheduling
process could bring in a heavy overhead for an application:
(1) an analytical job always contains multiple distributed
operators; and (2) for each operator, when the number of
nodes n and the number of data partitions p are large, the
problem instances will get too large to be solved in a timely
manner.

Although we can use an optimizer such as Gurobi to
solve the problem, we propose an implementation based
on a metaheuristic algorithm in this work. We have two
main considerations here: (1) Metaheuristic algorithms are
shown to be able to provide better scalability compared
to an optimizer, since they can solve much larger prob-
lem instances than an optimizer in reasonable time; and
(2) We have plans to extend our model in more complex

2. For three or more nodes, or three or more data partitions, with
varying transmission times, in our problem.
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environments (e.g., complex network topology) and more
complex cases (e.g., with multiple objectives) in our future
work. In this case, it will be hard to use an optimizer to
solve the relevant problems. In comparison, we can simply
extend a metaheuristics-based implementation to deal with
them. Moreover, using a heuristics would make our solution
simpler and easier to implement and deploy in a computing
system. In fact, metaheuristics have been used in SDN data
centers to solve various optimization problem [28], [29], [30]

To fit a metaheuristic, we reformulate the optimization
model P2 as P3 in Eq. (3). There, F is a fitness function,
Oi and Ii mean the communication time of each node on
sending and receiving data respectively. In this case, our
target becomes to minimize the value of F .

P3 : F = max
∀i∈[1,n]

{Oi, Ii} (3)

subject to:

Oi =
n∑

j=1,j 6=i

p∑
k=1

hik
ri
xjk ∀i (3.1)

Ij =
n∑

i=1,i6=j

p∑
k=1

hik
rj
xjk ∀j (3.2)

To date, various metaheuristic algorithms have been
proposed, such as the the genetic algorithm (GA) and the
swarm intelligence algorithms like ACO and PSO (details
see the survey [31]). We choose one of the latest meta-
heuristics – the whale optimization algorithm (WOA) [32]
in our implementation. The algorithm is nature-inspired by
the humpback hunting method (i.e., bubble-net predation).
Because of this unique optimization mechanism, WOA can
provide a good global search capability, which makes it
become popular in various engineering problems such as
cloud task scheduling [33].

4.2 An Overview of WOA

In the WOA algorithm, a whale (or search agent) in the
search space is considered as a candidate solution, and
the WOA utilizes a set of search agents to determine the
global optimal solution. For a given optimization problem,
the searching process of WOA starts with a set of random
solutions, and each solution is updated by the optimization
rules until the end condition is met. The WOA algorithm
can be divided into three main stages: encircling preying,
bubble-net attack and search for prey. There mathematical
representations are given as below.

4.2.1 Encircling Preying

In the initial stage, search agents do not know the optimal
location in the search space when the prey is surrounded.
In WOA, the current best solution is considered as the
target prey and the whale closest to the prey is considered
as the best search agent. Then, other individual whales
may approach the target prey and gradually update their
locations. This behavior is represented as:

~D = |C × ~X∗(t)− ~X(t)| (4.1)

~X(t+ 1) = ~X∗(t)−A× ~D (4.2)

TABLE 2
Terminology Mapping between Whale Forage and NEAL Scheduling

Whale Forage NEAL Scheduling

individual whale scheduling problem
foraging process optimal solution search process
whale position a solution X for Fopt
leader whale optimal solution X∗ for F
fitness of whale value of F

Here, ~D indicates the distance vector from the search agent
to the target prey, t is the current iteration number, ~X∗ is the
local optimal solution and ~X is the position vector. C and A
are the coefficient vectors and their calculations are defined
as:

C = 2× r (4.3)

A = 2a× r − a (4.4)

The r is a random number between 0 and 1, and a represents
a linear decremented value from 2 to 0 based on the number
of iteration t.

4.2.2 Bubble-net Attack (Exploitation Phase)

The behavior of whales’ bubble-net attack is modeled based
on two ideas: (1) Shrinking encircling. From Eq. (4.2), we can
see that the whales will shrink their encircling when |A| < 1.
This means that the individual whales will approach the
whale in the current best position, i.e., swim around the
prey in a gradual contraction of a circle. The larger the value
of |A| is, the bigger steps the whales will take, and vice
verse; and (2) Spiral position updating. Each individual whale
first calculates its distance from the current optimal whale
and then moves in a spiral shaped path. The mathematical
model of the position update process is described as:

~X(t+ 1) = ~D′ × elb × cos(2πl) + ~X∗(t) (4.5)

where ~D′ = | ~X∗(t)− ~X(t)| is a vector indicating the distance
from the individual whale to the best whale (current best
found), b is a constant and l is a random number with the
value between -1 and 1.

In order to mimic the two behaviors in a simultaneous
way, it is assumed that the possibility of a whale updating
its location based on the contraction path and the spiral path
is 0.5 respectively.

4.2.3 Search for Prey (Exploration Phase)

To ensure that a global optimal solution can be achieved,
the search agents are pushed away from each other when
|A| > 1. In this case, the position of the current optimal
search agent will be replaced by a randomly selected search
agent, and the responsible mathematical model is

~X(t+ 1) = ~Xr −A× |C × ~Xr − ~X(t)| (4.6)

where ~Xr is a position vector of the randomly selected
search agent.
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4.3 WOA-based Implementation
The NEAL optimization problem described in Section 4.1
can be translated to the whale foraging problem with pre-
emption as summarized in Table 2: An individual whale
corresponding to the given scheduling task and the whale
foraging process is the optimal solution searching process.
In a search, a whale has a position corresponding to the
scheduling problem has a solution Xpn, which is a p × n
matrix representing the values of all the decision variables
xij . The position of the leader whale in a search means the
current optimal solution, and the fitness value of the whale
is the current optimal value of F . On this basis, we can get
an optimized solution for our NEAL problem with the WOA
algorithm.

The detailed implementation of NEAL scheduling using
WOA is presented in Algorithm 1. The input information
includes the number of nodes, the number of data partitions,
the size of each data chunk and the available bandwidth for
each network port (node). First, the position of each search
agent is randomly generated (line 1), and each of the posi-
tions is then converted into a solution to the optimization
problem (line 2). Then, the fitness value for each solution is
computed based on Eq. (3), and the solution X∗ with the
minimal value will be stored (lines 3-4). After that, the itera-
tion process is commenced to refine the optimal solution. In
each iteration t, the position of each search agent is updated
based on the mathematical equations (4.1) - (4.6) designed in
the WOA algorithm (lines 7-17). The updated positions are
then converted into solutions to calculate the fitness values
in the current iteration (lines 19-20). The current optimal
solution X∗ will be updated based on the achieved minimal
fitness value, and it will be used to update the positions
for the search agents in the next iteration, when required.
This process will be repeated until the final iteration is
reached. The final optimal X∗ is then output as the optimal
data locality plan. With Eq. (1.1) and (1.2), we calculate the
value of each bij (lines 24 -25). This optimal scheduling
plan including the assignments of data locality and network
bandwidth will be delivered to the underlying system for
the execution of the given distributed data operator.

A specified optimization: In a conventional WOA imple-
mentation, all the initial positions of search agents are
randomly generated. Different from that, we have employed
a specified optimization in Algorithm 1 for our implemen-
tation: one of the positions is initialized with the solution
from the hash-based scheduling. Namely, the k-th data
chunk on each node is assigned to node k. Since the hash-
based scheduling is the most commonly used approach,
this initialization will provide useful knowledge for all the
search agents and consequently to improve the accuracy of
the optimal solution and enhance the global development
capability of the algorithm, compared to a random one.
Also, it should be noticed that we can get the hash-based
plan directly without bringing in any overhead.

4.4 Overhead of Implementation
Compared to a conventional data locality scheduling ap-
proach, our WOA-based NEAL implementation could bring
in more overhead for the execution of data operators. How-
ever, we argue that its overhead can be actually ignored. The

Algorithm 1 WOA-based implementation of NEAL
Input: n, p, hik, ri
Output: xjk, bij

1: Randomly initialize position P i for each agent i
2: Convert each P i into Xi

3: Calculate Fi for each Xi by Eq. (3)
4: Store X∗ as best search agent
5: while t < Itermax do
6: for each search agent do
7: Update the values of a, r, A, C, l, rand
8: if rand < 0.5 then
9: if |A| < 1 then

10: Update current position with Eq.(4.1)
11: else|A| ≥ 1
12: Select a random agent Xr

13: Update current position by Eq.(4.6)
14: end if
15: else rand ≥ 0.5
16: Update the position by Eq.(4.5)
17: end if
18: end for
19: Convert each position to Xi

20: Calculate fitness value of each agent by Eq. (3)
21: Update the value of X∗

22: t++
23: end while
24: Output X∗ as xjk, the fitness value of X∗ as τ
25: Calculate vij based on xjk by Eq. (1.2)
26: Calculate bij based on τ by Eq. (1.1)

main reason is that the communication of data operators is
not short-lived. For instance, as we will demonstrate in the
experimental results in Section 5, the communication may
take hundreds or even thousands of seconds to complete. In
this case, it is worth it to pay for the optimization to get more
performance benefits. Moreover, one of the core motivations
of metaheuristics is to get an approximate optimal solution
in a reasonable time. From the Algorithm 1, we can see
that the overhead of our implementation depends on the
number of search agents and the number of iterations in
the WOA algorithm as well as the the number of nodes and
data partitions in our optimization model. Therefore, we can
choose a small number of search agents and iterations in
practice to reduce the overhead when required.

The WOA algorithm actually has demonstrated its
performance advantages in a benchmark test including
29 mathematical optimization problems and 6 structural
design problems [32]. For our implementation, we have
recorded the convergence and overhead for each test we
have conducted in our experiments in Section 5. In detail,
we have set the number of search agents to 10 and perform
our implementation using MatlabR2018b on a commodity
laptop with an Intel i7-8550U CPU running at 1.80GHz
(code link see Section 5). Since all the results have demon-
strated a similar characteristic, we just report some typical
ones in Fig. 4 as a reference for readers. For the conver-
gence results, the normalized value is the communication
time achieved by NEAL dividing by that achieved by the
hash-based scheduling. We have set 100 iterations in our
implementations and here we report the first 25 for the
readability of the results. We can see that the converge of
our searching process is very quick and can be done in less
than 10 iterations. Moreover, the runtime of each iteration is
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around 0.039 sec for 20 nodes (60 data partitions) and about
3 secs for 100 nodes, and these overheads can be ignored
compared to achieved performance improvements (e.g., up
to 60%).

From the results, we can also observe that the overhead
is about 30 secs for each iteration when the number of
nodes reaches 200 (6000 data partitions). The overhead is
significant but still reasonable. This is because the number
of the possible locality scheduling plans is 2006000, and
the search space of which is large. To reduce the overhead
for such kind of large problems, we can apply various
strategies to speed up the WOA implementation. For ex-
ample, we can easily parallelize the WOA following the
BSP model [34], since the computation of each search agent
is totally independent from each other in each iteration.
Specifically, the execution of WOA is compute-bound and
the computing tasks are represented by the mathematical
equations (4.1)-(4.6). In comparison, the size of the used
arrays and matrices in memory will be fixed, since we
only need to update the related values (e.g., lines 7, 10,
13 and 16 in Algorithm 1) during the execution. For a
straightforward parallelism, in each iteration, we can assign
the computing tasks of each agent (lines 7-17 in Algorithm 1)
to a core (or a machine). Moreover, advanced approaches
with parallelism over GPU and FPGA [35], [36] as well as
effective convergence strategies [37] are also available for
metaheuristics. Although we can integrate these approaches
in NEAL, the details will be outside the scope of this work.
In addition, it should be noticed that, in real cases, a system
optimizer will be able to get the possible cost of scheduling
and network communication for each candidate approach,
and then choose the best one for executions.

In fact, with a low enough overhead, NEAL can be also
applied in a dynamic network environment, i.e., the avail-
able bandwidth varies with time. In this condition, we can
let the SDN controller periodically check the available band-
width and forward the information to NEAL, to guarantee
that the data transmission is optimal in each time period.
In this work, the same as almost all the research works
on distributed joins [5], [6], [7], we are concentrated on
optimizing communication time in a static network, i.e., the
available bandwidth for a data operator has been given by
an SDN controller at a global level, and the detailed results
of which will be presentation in the following section.

5 EVALUATION

In this section, we evaluate the performance of NEAL
through approximate testbed and simulation-based exper-
iments. The code we have used in this section is available at
https://github.com/longcheng11/NEAL. A detailed guid-
ance on how to generate data and how to run the code is
also provided there.

5.1 Experimental Framework
We compare the performance of NEAL with the commonly
used solutions on the executions of distributed data oper-
ators. The results of aggregations demonstrate the similar
characteristics as distributed joins. For simplicity of presen-
tation, we just report the results of distributed joins in this
section. As summarized in Table 3, we divide the solutions
into five schemes, based on the used scheduling techniques.

1. In relation to locality scheduling, the Hash there
means the most commonly used hash-based ap-
proach [21]. Namely, after the hash partitioning, each
data chunk is assigned to a node based on its respon-
sible hash value. The Min is a scheduling approach
focusing on reducing network traffic. Namely, we
will examine all the possible destinations for each
data partition and choose the one that can make
the network traffic minimal. The detailed scheduling
is similar to the locality-aware operation described
in the work [2]. Namely, after data partitioning, we
explore data locality at a per-partition level. For each
data chunk in a partition, we set its destination to a
node, which contains the most number of tuples.

2. For network scheduling, the free flow means that
data flows compete the available bandwidth in a fair
way. The Coflow means that we apply optimal coflow
scheduling to the generated parallel data flows and
guarantee that their CCT is minimized.

Moreover, we have applied the commonly used skew han-
dling technique PRPD [21] to all the five approaches, to
guarantee a fair comparison in the presence of data skew.

TABLE 3
Commonly used approaches and comparison to NEAL

Scheme Locality Scheduling Network Scheduling
Hash-1 Hash free flow
Min-1 Min free flow
Hash-2 Hash Coflow
Min-2 Min Coflow
NEAL NEAL Coflow

Generally, the schemes Hash-1 and Min-1 represent the
techniques studied the data management domain (e.g., [21],
[5]), which seldom consider underlying network communi-
cations. The schemes Hash-2 and Min-2 represent the ap-
proaches studied in the area of data communications. They
focus on optimize CCT time for given data flows, generated
by application-layer data locality scheduling. Specifically,
Min-2 represents the current approaches focusing on opti-
mizing both network traffic and network communication
time for given data operators, but in a decoupled way. In con-
trast, to improve communication time, our approach adopts
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a co-optimization way, i.e., NEAL seamlessly combines data
locality and data communication by formulating it as a joint
optimization problem.

5.1.1 Methodology
For a given workload and network bandwidth configura-
tion, we measure the communication time of a distributed
join based on an approximate testbed emulation and a set
of large simulations. (1) Our emulations are based on the
Mininet [38], which is a network emulator for OpenFlow
based software defined networks. (2) In terms of coflow
simulations, the CoflowSim used in Varys [11] and Aalo [39]
can not be applied to our case, because we can not set
bandwidth values in the software. In such a condition, we
have developed a simulator using Matlab based on the
bandwidth-based model [12], which can provide theoretical
communication time for a coflow.

There are three inputs for each test in our experiments:
(1) the volume of data flow between each node, (2) the
assigned bandwidth for each data flow, and (3) the available
bandwidth for each port. The former two inputs are in the
form of an n×n matrix respectively. They can be generated
by a given scheduling scheme as described in Table 3. The
third input is in the form of an array with size n. Moreover,
we have used the widely used TPC-H benchmark [40] to
generate test workloads, and evaluated three aspects that
may affect the performance of NEAL: (1) the number of
computing nodes (hosts), (2) the data distribution over
computing nodes, and (3) the data skew of a dataset.

5.1.2 Workloads
We select two large relations CUSTOMER and ORDER from
TPC-H and perform the join operators based on their
CUSTKEY. The scaling factor of TPC-H is set to 600, and
the number of tuples in the two relations is 90 millions
and 900 millions correspondingly. To get the volume of a
data flow easily in a scheduling process, we set the payload
of each tuple to a fixed value. In this case, we can get
the volume by counting the number of tuples. We set the
value to 10 Bytes to in our testbed experiments and 100
Bytes in our large simulations, which leads to around 10GB
and 100GB input size respectively. The generated data is
uniformly distributed, and the size of data chunks in each
partition would be very closed to each other for a given hash
partitioning. To evaluate our approach in more complex
conditions, we make the difference of the size more obvious:
for each partition, we let the size of included data chunks
follow the Zipfian distribution over the n nodes based on
their node id (referred to as zipf ). Moreover, as data skew
(referred to as skew) is quite common in data applications,
in order to control the skewness in our tests, similar to many
current works such as [21], we randomly choose a portion
of data and change their CUSTKEY to a specified value. For
example, we randomly choose 10% of the tuples and set
their key to 1, which will make the skewness to 10%. In
this way, we can easily identify on-going experiments and
capture the essence of data skew.

5.1.3 General Setup
There are two parameters for the test datasets, we set
zipf to 0.8 and skew to 20% as default. Moreover, with-

out loss of generality, we just use a simple hash function
f(k) = k mod p to partition data tuples, and set p to
a value which is 3 times the number of used nodes in
each test. To demonstrate that NEAL can always perform
better than other approaches in various network bandwidth
configurations, we randomly generate an array to set the
available bandwidth of each port assigned for a single data
operator to a value between 0 and 1Gbps in each test3. For
the parameters used in the WOA-based implementation, as
we have discussed in Section 4.4, we have set the number of
search agents to 10 and the maximum number of iterations
to 100 for NEAL .

5.2 Approximate Testbed Emulations using Mininet

5.2.1 Emulation Setup

We deploy Mininet on the virtual Ubuntu 64-bit OS of a local
machine. The virtual machine runs on on VMWare Worksta-
tion 12 Player. To gurantee the emulation procedures are not
affected by the performance of the machine and the results
are close to real hardware experiments, we set the resources
of the virtual machine, including bandwidth, processors and
RAM, much larger than the total resources required in the
experiment [41] [42]. The virtual machine is set to 16G RAM
and 8 Intel(R) Core(TM) i7-6700HQ CPUs on 2.60GHz. The
internal bandwidth of the virtual Ubuntu system is around
50.0 Gbps. We use random data to transfer between nodes,
which does not involve any data processing and storage
before and after data transmission.

The aim of the experiment is to test the scheduling
of data flow among hosts in SDN networks. Following
our model, we use a star topology, in which all the hosts
link to a central switch. We use an Open vSwitch in the
network, which is a kernel-level virtual software switch. An
OpenFlow reference controller is connected to the switch.
In the Coflow experiments, to set up the flow among hosts
according to the optimal values, we do not limit the band-
width of physical link between the switch and each host.
Instead, we make TCP link for each data flow and set the
bandwidth for each TCP link based on iPerf3 library [43]. In
the free flow experiments, we set the bandwidth of physical
link between the switch and each host to a generated value.
After that, we make TCP link between each pair of hosts
without assigning the bandwidth.

Although the emulated environment cannot fully catch
all the properties of a real-world network system, we believe
the resulting error between our emulation and a real-world
system is quite limited. We explain the reasons from the
software and hardware aspect respectively as follows.

Software: Mininet [38] is a networking emulator provid-
ing a network testbed for developing OpenFlow application
prototypes. The emulated entities by Mininet include vir-
tual hosts, switches, controllers, links, etc. The entities use
Linux kernel, real network stack, and standard Unix/Linux
network applications. Specifically, the hosts in Mininet use
Linux network software, and thus each of them can be

3. The bandwidth arrays we have generated in our test are available
at the link of our code. Readers can also set the bandwidth range or
distribution in the source code based on their own interests.
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TABLE 4
Performance comparison with different network bandwidth configurations

Exp./Alg.
Network Traffic (GB) Mininet time (s) Matlab time (s)

HASH Min NEAL HASH-1 MIN-1 HASH-2 MIN-2 NEAL HASH-2 MIN-2 NEAL
Exp-1 6.64 5.21 6.28 985.01 2575.29 877.15 2374.04 699.15 866.31 2318.28 682.65
Exp-2 6.64 5.21 6.57 1011.17 117.04 981.55 65.45 30.16 958.49 63.81 29.34
Exp-3 6.64 5.21 6.31 2018.44 5359.83 1876.74 5022.05 1480.25 1832.65 4904.26 1445.45
Exp-4 6.64 5.21 6.69 88.06 167.57 59.36 71.94 54.95 57.82 70.18 53.54
Exp-5 6.64 5.21 6.52 37.57 99.06 18.5 44.04 15.26 17.94 42.88 14.8

considered as a Linux machine. Moreover, the used pro-
gram, for each OpenFlow controller, switch, and host, can
be directly deployed to a real hardware system.

Hardware: The hardware resources in a real-world system
are much more powerful than the emulated hardware in
a virtual machine. However, the emulated network band-
width and computing speed will not lead to significant
performance difference, compared to a real system. There
are two main reasons: (1) The bandwidth allocated in the ex-
perimental network is smaller than the internal bandwidth
of the virtual system (50 Gpbs). In the meantime, we use
SDN architecture to set bandwidth for each flow. Therefore,
the available bandwidth for each traffic in our emulation
environment is the same as a real-world system; and (2)
Although the CPU speed of the virtual machine is lower
than a real-world server, the speed is enough for performing
bandwidth assignment in a controller. In addition, we focus
on optimizing communication time. The relevant operations
on computing such as data partitioning have been pre-
processed. Therefore, the CPU speed of the virtual machine
does not affect the result validation.

5.2.2 Experimental Results
As a proof of concept, we set the number of computing
nodes to 10 and use the 10GB dataset with the default
parameters. We run our experiments five times with five
different network bandwidth configurations, and the results
of network traffic and communication time for each ap-
proach are presented in Table 4. It can be observed that
Hash and Min transfer the same number of tuples over
five different networks respectively. The reason is their
data locality scheduling is independent from underlying
networks. In comparison, the network traffic of NEAL is
different in the presence of different network conditions,
demonstrating that our method is indeed network-aware
and its data locality plan can adjust the changes of the
network. Moreover, we can see that Min transfers less data
than other approaches for a given workload, which shows
its advantages on network traffic reduction.

For the communication time over Mininet, we can see
that Hash-2 and Min-2 can always perform faster than Hash-
1 and Min-2 respectively. This means that a network-layer
optimization data flow scheduling can indeed speed up data
communications. Compared to Hash-2, Min-2 sometimes
performs much faster (i.e., Exp-2) and sometimes performs
much slower (i.e., Exp-1 and Exp-3). Considering that net-
work traffic of Min is smaller than Hash, these results
imply that minimizing network traffic will not necessary
lead to an optimal communication time, and we should
consider underlying networks when we perform data lo-

cality scheduling. Compared to Hash-2 and Min-2, we can
see that NEAL always performs the best. Specifically, it
achieves 1.3× and 3.4× speedups over Hash-2 and Min-2
respectively in Exp-1, and 32.5× and 2.2× in Exp-2.

5.3 Large-scale Simulations using Matlab

For our purpose of this work, we will only compare the
performance of Hash-2, Min-2 and NEAL in the following.
Before that, we first compare the results we have got by
Matlab with Mininet for the tests in Section 5.2. As shown
in Table 4, the emulated time for transmitting data flow
is a little longer than the theoretical value by Matlab. The
main reason is that, in Mininet, packets on data plane are
exchanged among switches and hosts. Also, the controllers
exchange packets on control plane with switches. These
process will consume extra time in data transmission. From
another perspective, these results also demonstrate the ef-
fectiveness of our simulation using Matlab.

We use 100GB data and evaluate the three approaches
in three different scenarios as described in Section 5.1.1.
In each scenario, we perform five tests with five randomly
generated network bandwidth configurations.

Varying number of nodes. We compare the performance
of Hash-2, Min-2 and NEAL by varying the number of
nodes, from 20 to 200. The results of the network traffic
and network communication time are presented in Figure 5.
There, the Min-2 approach transfers the least amount of
data over networks, because it focuses on reducing network
traffic in join executions. Moreover, we can see that NEAL
sometime has more network traffic while sometime has less,
compared to Hash-2. The reason is that Hash-2 just simply
redistributes all the data chunks, while NEAL is able to
explore part of data locality based on the constraints in
our optimization model, and such data locality could even
lead more network traffic due to the different bandwidth
configuration of each port.

Looking at the communication time, it can been that
NEAL always performs the best by varying the number
of computing nodes, and its performance advantage some-
times is significant. For example, in Exp-A with 50 nodes,
the communication time of NEAL is 667 secs while Min-2
is 4105 secs. In Exp-B, NEAL uses 4236 secs while Hash-
2 takes 10489 secs on data communication. The main rea-
son is that NEAL generates a data locality plan based on
the network bandwidth information, and thus the network
congestion can be efficiently decreased. In contrast, Min-2
just transfers data chunks to a node with the largest size
for each data partition while Hash-2 simply assigns data
chunks based on their hash values. Both the approaches
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Fig. 5. Performance comparison by varying the number of nodes with different network bandwidth configurations (zipf=0.8, skew=20%).

could results in significant network congestion for the ports
with a small bandwidth. Based on these results, we can
see that focusing on network traffic reduction sometimes
could result in a very poor join performance. In comparison,
we have considered optimizing data locality based on the
possible network communication time, and thus our NEAL
can always perform better than the other two techniques.

With different Zipf factors. We examine the efficiency of
each method over 100 nodes with increasing the parameter
zipf from 0 to 1. As shown in Figure 6, similar to the
above results, Min-2 transfers less data than the other two
approaches. Moreover, its network traffic is decreasing with
increasing the value of the Zipf factor. The reason is that the
large data chunks become even larger with the increment
of zipf, and such large chunks are kept locally in Min-2. In
terms of network communication time, it can be observed
again that Min-2 performs sometimes better and sometimes
worse than Hash-2, and the NEAL approach always per-
forms the best in all the cases. In some experiments, NEAL
can achieve significant speedups compared to the Min-2
and Hash-2 methods. For example, in Exp-H, NEAL is 5.3×
faster than Min-2 when the Zipf factor is 0, and 4.8× faster
than Hash-2 when the factor is 1.

Over various skews. We evaluate the performance of
the three approaches over 100 nodes with various skews,
increasing from 0 to 40%. The results are presented in
Figure 7. It can be seen that the network traffic of the three
approaches decreases with increasing the skew. The reason
is that the skew handling technique we have adopted in
the three methods can effectively reduce the network traffic.
Moreover, Min-2 has less network traffic than the other two
approaches, demonstrating its strong capability on network

traffic reduction once again. The results of the network
communication time are also very similar to the previous
ones, i.e., NEAL performs the best all the time, and it can
achieve obvious speedups in many cases. For instance, in
Exp-N, it performs 1.9× faster than Hash-2 and 3.9× than
Min-2 when the skewness is 10%.

5.4 Brief summary and discussion
Based on all the above results, we can see that application-
layer optimization techniques on data locality scheduling
can efficiently reduce or even minimize network traffic.
However, because the approaches have not considered the
underlying network communication, their communication
performance could be very poor in distributed systems,
such as the Min approach we have studied here. In con-
trast, we propose a network-aware optimization for locality
scheduling, thus NEAL can always perform better on net-
work communications than current techniques for different
network bandwidth configurations.

We focus on optimizing the parallel execution of data
operators in this work. Besides the join and aggregation
as we have described, NEAL can be used to speed up the
communication of many other distributed data operators,
e.g., groupby, sortby, outer joins, etc. Since all these data
operators are the fundamental units for big data processing,
it is expected that we can use NEAL to speed up various
data applications. For example, in a data warehouse, users
would frequently want to execute a distributed join over
large datasets to combine and analyse the datasets collected
from different sources [44].

Generally, NEAL can be applied directly to the appli-
cations, in which data operators can be performed in a
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Fig. 6. Performance comparison by varying the Zipf factor with different network bandwidth configurations (100 nodes, skew=20%).
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Fig. 7. Performance comparison with different network bandwidth configurations by varying the data skewness (100 nodes, zipf=0.8).

sequential way. For instance, a data pipeline or a query
with a left/right-deep tree execution plan. The reason is
that each data operator under the NEAL scheme is executed
independently, i.e., each operator can use and maintain its

own link bandwidth. For more complex workloads, such
as performing multiple concurrent coflows generated by
different data operators, NEAL does not guarantee the
globally optimal performance. Moreover, we have limited
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our research on network communications and have not con-
sidered the CPU time on each node in this work, such as that
data flows actually can start at different time points in real
applications. However, the model we have proposed in this
work can be easily extended to the cases using the existing
coflow scheduling techniques (e.g., the online multi-coflow
model in [14]). In such scenarios, we believe that NEAL
has laid a solid theoretical and practical foundation for the
development of a network-aware optimization system for
big data processing.

6 RELATED WORK

Distributed join processing: As the most essential tasks in
data center environments, distributed data operators such
as joins and aggregations can incur significant time costs
and hence improving their execution efficiency would have
a significant impact on the overall performance of big data
processing and analytics [6].

The research on optimizing the parallel execution of data
operators is mainly done in the fields of data management
and data engineering. To reduce network traffic and/or im-
prove load-balancing, a large number of methods, mainly on
distributed joins, have been proposed in the past years [5],
[6], [7], [21], [22], [45]. For example, some recent works focus
on optimizing network traffic by careful data partitioning
and placement [4], [5], [8], [46]. Although these approaches
have been shown to be efficient, their designs are totally
independent from networks. As we have studied in this
work, when network is unaware for an approach, the per-
formance of the method could be poor, even in the condition
that an optimal coflow scheduling has been employed. On
the other hand, NEAL works under the condition that data
partitioning has been given (such as the hash partitioning
we have used in this work). In this scenario, NEAL is
orthogonal to those approaches that they can improve the
partitioning used as input for NEAL. Additionally, although
several works [44] have realized that networks should be
considered when performing distributed joins, the proposed
approach focuses on dynamical data partitioning to handle
the skew of networks rather than how to effectively utilize
network resources as we have studied in this work.

Coflow scheduling: A lot of work has been done on flow-
level optimization for data communications in data centers
prior to the concept of coflow. However, because of their
agnostic on the existence of coflows, many of them have
been shown to be actually harmful to the performance of
data applications [14]. Current research on coflow schedul-
ing aims to minimize the average CCT cost or meet coflow
deadlines [11]. Advanced approaches such as [39], [12], [14]
have been proposed to handle online coflows and complex
network topology. All of them are based on the assumption
that the source and destination of each data flow have been
given. Namely, their schemes are totally independent from
application-layer optimization. As we have demonstrated
in this work, this kind of design has reduced the possible
performance gains for distributed data operators, which can
actually benefit from turning data flows with data locality
scheduling. Compared to this, NEAL has considered the
impact of data locality, and thus it can always achieve better
communication time. From another perspective, NEAL is

based on the coflow model. Therefore, advanced coflow
techniques such as multi-coflow scheduling can be applied
to our approach, to enhance its applicability on handling
more complex workloads and network configurations.

Network-aware scheduling: To speed up big data process-
ing, various network-aware scheduling frameworks have
been proposed in recent years [9], [10], [47], [48]. Their main
idea is to coordinate the placement of data and tasks so that
the system resource utilization (e.g., server or network) can
be reduced, such as that the freed up bandwidth can be used
by other running jobs in a cluster. For instance, the Map
Task Scheduling (MTS) method proposed in the work [10]
aims to balance cross-node network load in a data shuffle
process, which is very similar to the data redistribution
process in a join. Its main idea is to make sure that the
total size of shuffled data from a node is not higher than
a threshold. Obviously, MTS can improve network com-
munication time because of the balancing of the utilization
of network links. Although NEAL is a also network-aware
scheduler, it is different from all these techniques in two
aspects. (1) Optimization objective: NEAL aims to optimize
(i.e., minimize) but not to reduce the communication time,
which can be actually a byproduct of other optimization
such as the reduction of network traffic or resource utiliza-
tion of a system. (2) Methodology: the locality scheduling in
NEAL is based on the possible communication time, i.e., the
optimal communication time will be fixed for a give locality
scheduling plan. In comparison, other approaches are based
on the status of a network such as network traffic or network
resource utilization, and they actually have not reached the
level of coflow or data flow parallelism for communication
time optimization.

SDN for data management: Software-defined networking
(SDN) [15] is widely considered as the technology for net-
work management of the next generation networks. SDN
aims to provide an open interfaces for efficiently developing
network control programs [49]. Compared with traditional
networking structure, SDN has more flexibility and less
complexity in networking flow management [50]. Given
these properties and advantages, more and more imple-
mentation of data-center networks and wide-area networks
utilizes SDN architecture [16] [51]. Currently, SDN has been
applied to big data management [52], [53]. For example, the
work [52] presents a method that be able to adaptively select
an optimal query plan based on the information provided
by the network before a query execution. However, these
techniques just focus on using SDN to move data in a
distributed way. Namely, at each specified time point, they
just move data from a node to another node, but not like the
problem we have studied in this work, in which the data
from different nodes moves in a parallel way. We should
notice that parallel cases (e.g., coflows) are very common in
large-scale data applications, since data sets from different
resources are always loaded in computation nodes in a
parallel way so that the loaded data can undergo further
downstream processing as quickly as possible.

Metaheuristics algorithms: To find an approximately op-
timal solution for our optimization problem, we have
adopted a metahuersitc in our implementation. In fact,
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metaheuristics algorithms have received increasing atten-
tion in recent years on optimization problems [54]. The
reason is that they are shown to be highly effective and
can find optimal solutions in polynomial time rather than
exponential time, compared to conventional methods [55],
[37]. Currently, some commonly used metahuristics mainly
include the genetic algorithm (GA) [56] and swarm in-
telligence algorithms, such as the ant colony optimization
(ACO) [57] and the particle swarm optimization (PSO) [58].
These optimization algorithms are derived from the simula-
tions of biological population evolutions, and they can solve
complex global optimization problems through cooperation
and competition among individuals [59], [60]. We have used
the latest WOA algorithm [32] in our implementation with
a very lightweight optimization, and our experiments have
shown that our method can always achieve better solutions
on data locality scheduling compared to the current tech-
niques.

Differences from our previous work: This paper builds
upon our earlier work [61]. Besides the rephrasing, we
have introduced a new research problem with four main
new innovations: (1) We have extended our problem to a
case with more complex network configurations, i.e., the
available bandwidth for each network link is different rather
than the same in [61]. (2) To handle the new problem,
we have provided a system solution in a software-defined
networking data center environment. (3) Because of the
complexity of the new problem, the idea of our previous
heuristic algorithm cannot be applied to the optimization
model in this work. Therefore, we have proposed a new
metaheuristic-based implementation for NEAL with a spec-
ified optimization. This makes our method easy to imple-
ment and deploy in data center systems and also guarantees
that an approximately optimal data locality scheduling plan
can be achieved in reasonable time. (4) For the new research
problem with newly proposed implementation, we have
conducted a totally new experimental evaluation over a
emulator and a simulator with complex network bandwidth
configurations. Moreover, we also have applied an efficient
data skew handling technique to all the competitors for a
more fair comparison.

7 CONCLUSION

In this paper, we have proposed NEAL, a novel cross-
layer optimization approach which aims to improve the
communication time for distributed data operators in data
center systems. We have presented the detailed design and
implementation of NEAL, and conducted a detailed per-
formance evaluation using approximate testbed emulations
with Mininet and large-scale simulations with Matlab. Our
experimental results have shown that the proposed NEAL
can indeed outperform current approaches on network com-
munications, in the presence of different workloads and
network bandwidth configurations.

To our knowledge, this is the first work to analyze the
joint optimization opportunity of applying coflow schedul-
ing to data locality scheduling for the execution optimiza-
tion of distributed data operators. We believe that various
big data analytics applications will benefit from our designs.
Our future work mainly lies in extending our optimization

model to more complex workloads (e.g., online queries),
more complex networks (e.g., Fat-tree topology [62]) by
integrating routing, and more complex computing environ-
ments (e.g., Cloud [22]). Our long term goal is to develop
a network-aware query execution system which can be
always highly efficient and adaptive in the presence of
different query workloads and network configurations in
large-scale distributed scenarios.
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