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Abstract

Introduction: Knee osteoarthritis (KOA) is a degenerative joint condition that affects both the medial
and lateral femoral condyles, and is a leading cause of pain and reduced mobility worldwide. Low-impact
exercises such as cycling are increasingly explored, as cycling reduces knee joint contact forces (KJCF)
compared to high-impact activities, making it a suitable option for preserving joint health. Understanding
the distribution of KJCF across the medial and lateral condyles during cycling is crucial for informing
effective exercise interventions.

Objective: This study aims to validate an existing musculoskeletal cycling model using experimental
electromyography (EMG) data, and to extend it to estimate the distribution of the tibiofemoral compres-
sive force (TFC) across the medial and lateral condyles.

Methods: Eleven healthy recreational cyclists (mean age: 25.7 ± 1.7 years) participated in lab-based
cycling trials. Reflective markers and EMG sensors captured lower limb kinematics and muscle activity
at varying cadences (70–90 RPM) and power outputs (80–120 W).
The musculoskeletal cycling model of Clancy et al. (2023) in OpenSim was modified to include separate
medial and lateral knee compartments. A publicly available dataset was used to scale the modified
model and run inverse kinematics (IK), static optimisation (SO), and joint reaction force (JRF) analysis.
Predicted muscle activation was evaluated using five matched comparison pairs and cross-correlation
analysis. Finally, the modified model was used to estimate the distribution of TFC across the medial and
lateral condyles throughout the crank cycle.

Results: The modified model produced near-identical results compared to the original model in both
muscle activation (R > 0.99) and total TFC (R > 0.98), verifying themodel modifications. Model-predicted
muscle activations showed the highest correlation with EMG data for the vastus medialis (VM) (R = 0.88–
0.99) and the vastus lateralis (VL) (R = 0.84–0.99). Lower correlations were observed for the rectus
femoris (RF), gastrocnemii (GL, GM), biceps femoris (BF), and semitendinosus (ST). In all subjects,
lateral TFC consistently exceeded medial TFC throughout most of the crank cycle.

Conclusion: This thesis successfully estimated compartmental TFC during cycling without affecting the
muscle activations or total TFC predictions. Comparison with EMG data showed variable agreement,
reflecting modelling limitations and inter-subject variability. The results provide valuable insight into
asymmetrical knee joint loading during cycling and illustrate the potential of musculoskeletal modelling
to guide more targeted rehabilitation strategies for individuals with KOA.
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1
Introduction

Osteoarthritis (OA) is a degenerative joint condition that causes pain, swelling, and stiffness, leading
to reduced mobility of the joint [1]. It is the most common form of arthritis, affecting more than 7%
of the global population [2]. The knee joint is among the most frequently affected joints [2, 3]. Knee
Osteoarthritis (KOA) usually develops in middle age and is a prevalent cause of disability, contributing
to a decline in overall quality of life [4]. Globally, approximately 650 million people over the age of 40 are
suffering from KOA [5], and this number is projected to increase by 75% by 2050 [2]. As KOA continues
to affect a growing number of individuals, the associated burden on healthcare systems is expected to
grow correspondingly [6], underscoring the need for effective symptom management strategies to help
maintain patients’ quality of life.

The progression of KOA is strongly influenced by joint loading, which accelerates cartilage wear and
degeneration [5, 7]. Knee cartilage is thought to adapt to repetitive loading patterns of activities such as
walking, maintaining its structure through balanced mechanical and biological responses [8]. However,
disruptions in regular loading patterns due to injury, altered gait, or excessive load can subject cartilage to
stress in regions not conditioned to bear it, triggering degeneration and contributing to KOA progression
[8]. A key factor influencing these abnormal loading patterns is body mass. Individuals with higher body
mass indices (BMI), such as those who are overweight or obese, face greater mechanical loads on the
knee, increasing their risk of KOA. Within the knee joint, both the medial and lateral condyles can be
affected [9], however, the medial compartment is most commonly involved. This vulnerability has been
attributed to the higher mechanical loads placed on the medial side during standard movement patterns
such as walking [10]. As a result, the medial compartment has become a primary focus of biomechanical
and clinical research [11, 12].

An improved understanding of compartment-specific mechanical load disctribution is not only relevant
for research but also critical for informing treatment strategies, especially in the absence of a cure for
KOA. While surgical interventions such as knee replacements remain a common option, they are costly,
invasive, and associated with substantial risks, including reduced range of motion (ROM), post-operative
stiffness, and joint pain [13, 14]. Therefore, delaying surgery and prioritizing non-invasive treatment
strategies is essential [15].

In this context, the Osteoarthritis Research Society International (OARSI) recommends exercise therapy
as a primary treatment for KOA due to its proven effectiveness and non-invasive nature [16]. Managing
KOA through exercise therapy helps stabilize the knee by strengthening the surrounding muscles [17].
However, not all types of physical activity are suitable. High impact joint exercises, such as soccer,
tennis, and long-distance running, can increase joint loading and pain, as well as the risk of developing or
worsening KOA [11, 18]. In other words: exercise is beneficial, but too much weight-bearing activity can
be detrimental. This highlights the need for low-impact exercises that provide the benefits of movement
without placing too high loads on the knee.

Cycling is such an activity, offering joint loading that is safer for the knee compared to high-impact exer-
cises, and an effective way to stay active [19, 20, 21]. Research has demonstrated that cycling reduces
knee pain and disability among KOA patients, and helps improve impairments such as decreased ROM
and muscle strength [4, 19, 22]. These benefits make cycling advantageous for knee health and KOA
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1.1. Knee joint contact forces 2

patients [21, 23].

Furthermore, research indicates that lifelong recreational cycling can reduce the risk of symptomatic
KOA by nearly 50% [24], emphasizing its potential as a non-pharmacological intervention for KOA man-
agement. In the Netherlands, cycling is widely practiced and commonly incorporated into rehabilitation
programs to strengthen the knees and help individuals maintain a higher quality of life over longer periods
[25, 26].

1.1. Knee joint contact forces
While clinical studies have demonstrated the benefits of cycling for individuals with KOA, the biomechan-
ical mechanisms underlying these benefits remain poorly understood [27]. In particular, the distribution
of knee joint contact forces (KJCF) during cycling remains largely unknown [28], especially regarding the
compressive forces across the medial and lateral condyles. Given that KOA can affect either the medial
or lateral condyle, understanding how KJCF are distributed across these condyles during a low-impact
activity like cycling may help clarify the role of cycling in mitigating condyle-specific KOA progression.

To better understand the distribution of KJCF during cycling, it is first important to consider the anatomical
structure of the knee and the types of KJCF involved.

The knee is a complex weight-bearing joint [29], subjected to dynamic loads due tomultidirectional forces
during cycling [30]. Structurally, the knee joint consists of two primary articulations: the patellofemoral
joint (between the patella and femur) and the tibiofemoral joint (between the tibia and femur) [31, 32].
Both joints experience compressive and shear KJCF during cycling. Analyzing these forces is crucial
because of their role in weight bearing, joint stability, injury mechanisms, and the progression of KOA [33].
KJCF can be categorized into patellofemoral compressive force (PFC), tibiofemoral compressive force
(TFC), and tibiofemoral shear force (TFS) (Figure 1.1). TFS can be directed in both the anterior/posterior
and medial/lateral directions. While patellofemoral shear forces (PFS) are present during cycling, they
are generally of lower magnitude and are considered to have limited clinical relevance [34].

Figure 1.1: Schematic representation of lower limb motion during cycling and the associated knee joint contact forces (KJCF)
The figure illustrates the patellofemoral compressive force (PFC), tibiofemoral compressive force (TFC), and tibiofemoral shear

force (TFS) acting in this figure in the anterior–posterior direction at the knee joint, adapted from Bini et al. [35].

The magnitude and distribution of KJCF vary depending on the type of activity. For example, high-
impact activities such as tennis can generate peak TFC up to four times body weight [36], whereas
cycling typically produces peak TFC between 0.3 and 2 times body weight [30, 36, 37].

Despite the relevance of the PFC, TFC, and TFS, most existing cycling studies focus primarily on the
total components of these forces. In particular, TFC and TFS are not distinguished between the medial
and lateral condyles [22, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. In addition, most of these studies
focus on performance optimisation in professional or recreational athletes rather than on mechanical
loading patterns relevant to clinical populations [41, 43, 45, 46, 48]. Consequently, it remains unclear
whether cycling imposes asymmetric loads on the medial and lateral condyles, limiting our ability to
assess its relevance for KOA management.
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1.2. Musculoskeletal modelling
Direct insights into KJCF are obtained through in-vivo measurements using instrumented joint implants,
for example during gait analysis [49, 50, 51, 52]. To our knowledge, only one study has reported in-
vivo KJCF during cycling [22]. Because direct measurements are generally not feasible, especially
in healthy individuals or large-scale studies, musculoskeletal modelling has become a powerful non-
invasive alternative for estimating KJCF [53]. By integrating external forces with muscular activity, these
models enhance rigid body kinematics in biomechanical research and allow for simulating KJCF with
improved physiological relevance [28, 54]. This has also led to increasing interest in musculoskeletal
models that distinguish between medial and lateral KJCF.

Based on a model of Rajagopal et al. [55], several studies have sought to investigate the KJCF in the
medial and lateral tibiofemoral condyles during walking. Lerner et al. were the first to incorporate sep-
arate medial and lateral knee compartments into a musculoskeletal model, analyzing KJCF distribution
during gait [56]. In their model, they introduced frontal plane alignment bodies to represent individual
differences in varus and valgus knee alignment. Additionally, they modified the knee joint of Delp et
al. [57] and divided it into two parallel condyles. This work laid the foundation for later studies that
improved medial-lateral load estimations, by enabling larger knee and hip flexion ranges [58, 59] and by
incorporating more realistic muscle tendon properties [60, 61].

Despite these advancements, they have only been applied to gait analysis rather than cycling. Several
musculoskeletal models have been used to study KJCF during cycling, such as the one from Clancy et
al. [47]. Their model estimated the TFC of 16 participants using kinematic and kinetic data from previous
studies [62, 63]. However, it did not explicitly model the medial and lateral compartments separately, and
validation of the estimated muscle activity was not possible due to the lack of recorded electromyography
(EMG) data.

Accurate estimation of internal forces requires careful modelling of muscle activity, as muscle forces
significantly influence KJCF during movement [64]. In cycling specifically, co-contraction of muscles
around the knee has been observed [65], further increasing KJCF. Furthermore, increased muscle co-
contraction has been observed in individuals with KOA and is thought to be both a consequence of joint
degeneration and a potential contributor to its progression [64, 66]. This highlights the importance of ac-
curately estimating muscle activation patterns when studying joint loading and OA-related biomechanics.
To accurately estimate these internal forces, musculoskeletal models are used to simulate muscle ac-
tivity and joint mechanics. Validating model-predicted muscle activations against EMG data is essential
for accurately estimating internal joint loading during cycling [67].

Given the compartment-specific nature of KOA, accurate biomechanical modelling of medial and lateral
condyle loading is critical. To evaluate the effects of cycling on individuals with compartmental KOA,
musculoskeletal models must estimate condyle-specific KJCF rather than total KJCF alone. Without this
structural distinction, simulated KJCF fails to capture potentially important differences in load distribution
across the knee joint.

This study therefore has two primary objectives. First, it aims to validate the previously discussed mus-
culoskeletal cycling model developed by Clancy et al. through comparison with experimental EMG data.
Second, it aims to enhance this model by incorporating medial-lateral condyle separation and estimate
the distribution of KJCF during cycling. Together, these developments will provide a more realistic and
clinically relevant understanding of force distribution across the knee joint during cycling.

To address these objectives, this study aims to answer the following research questions:

RQ1. How accurately does themusculoskeletal cyclingmodel by Clancy et al. predict muscle activations,
when validated against EMG data from comparable subjects?

RQ2. How are total tibiofemoral compressive forces (TFC) distributed across the medial and lateral
compartments during cycling, as estimated using a compartment-specific musculoskeletal model?



2
Methodology

To address the research objectives, a cycling laboratory environment was developed to enable the col-
lection of controlled experimental data. Marker trajectories and surface EMG signals were recorded
during cycling trials and used to validate the original musculoskeletal model by Clancy et al. (research
question 1). Following validation, the model was enhanced to include separate medial and lateral knee
compartments. Muscle activations and total TFC predicted by the modified model were compared to the
outputs of the original model, to verify the modifications. These enhancements enabled the estimation
of KJCF separately at the medial and lateral condyles (research question 2) (Figure 2.1).

Figure 2.1: Flow chart of the methodology. 1a. Inverse kinematics (IK) with the original model (of Clancy et al. [47]) and marker
trajectory data (1b.) from the online dataset. 2a. Static optimisation (SO) with pedal reaction force (PRF) data (2b.) from the
online dataset. 2c. Retrieved muscle activations (MA). 3a. Compared MA of the online dataset with electromyography (EMG)
data (3b.) from experimental data for similar subjects. 4. Validated the original model (research question 1 (RQ1). 5. Updated
original model with medial and lateral compartments and created the modified model. 6a. Ran IK with modified model but with
the same marker trajectory data (6b.) as in 1b. 7a. SO with PRF (7b.). 7c. Retrieved MA. 8a. Resulting MA compared with MA
from the original model (8b.) to be able to verify the modifications (8c.). 9a. Combined IK, MA and PRF (9b.) in OpenSim’s joint
reaction force (JRF) analyse tool to compute the knee joint contact forces (KJCF). 10. Plotted mean and standard deviation of

the total, medial, and lateral tibiofemoral compressive force (TFC) during a crank cycle (RQ2).

4
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2.1. Experiment protocol
2.1.1. Participants
Eleven participants (age: 25.7± 1.7 years, mass: 76.4± 12.6 kg, height: 182.6± 8.4 cm) were recruited
for the experiments. All participants were recreational cyclists, and cycled at least 1.5 hours per week.
This study exclusively included healthy individuals, and excluded participants who self-reported knee
pain or lower-extremity injuries during the past month. Detailed anthropometric data for each participant
are provided in Appendix C. Each participant gave their informed consent to participate in this study.
The experimental protocol was approved by the Human Research Ethics Committee (HREC) of the
Technical University of Delft. The experimental protocol can be found in Appendix E. The experiments
were conducted in the Motion Biomechanics and Imaging (MOBI) lab in the Erasmus Medical Center in
Rotterdam.

2.1.2. Optical motion capture
To follow the cycling kinematics of each participant, reflective markers were placed on the lower extrem-
ities using the Conventional Gait Model 2.4 (CGM) markerset [68, 69] (Appendix A). Two markers were
placed on the crank and one on the extension of the pedal, to define the foot-pedal interaction, and to
retrieve the position of the pedal in space (Figure 2.2). The marker trajectories were recorded by 12
infrared cameras (VICON Vero, Oxford, United-Kingdom) and analysed using Nexus Software (v15.9).
A detailed description of the development of the MOBI lab can be found in Appendix D.

Figure 2.2: Tacx Neo bike in the MOBI lab environment. Reflective pedal markers on the crank axis, the crank arm, and a rigid
plate connected to the pedal.

2.1.3. Bike setup
A Neo Tacx bike was used, with a crank arm length of 172.5 mm, which is considered standard [70]. For
vertical saddle positioning, a method by Holmes et al. was used [71]. The knee angle was measured
when the pedal was at Bottom Dead Centre (BDC), to ensure proper configuration of the saddle height.
According to this method, the knee must be flexed between 25° and 30°, which has been related to
reduced knee joint load [72] and improved energy efficiency in cycling [73].

The horizontal handlebar position was adjusted to create an approximate 70-90° angle between the
torso and upper arms. Participants were then encouraged to provide feedback to fine-tune the handlebar
position to their preference [63].

The horizontal saddle position was based on recommendations from the Tacx Neo bike general guide-
lines [74]. When the right pedal was at Top Dead Centre (TDC), the patella of the right knee should be
directly above the centre of the right pedal (Table 2.1).

No instrumented pedals were used in this study to measure the pedal reaction forces (PRF). Although
an attempt was made to estimate the PRF after the experiments (Appendix H), they were ultimately
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excluded from the scope of this study.

Bike Parameter Set Value
Crank arm length 172.5 mm
Vertical saddle position Knee flexion angle between 25° and 30°
Horizontal saddle position Patella should be directly above the centre of

the pedal when the pedal is at BDC
Vertical handlebar position The handlebar is set at the same height as the

saddle
Horizontal handlebar position 70-90° angle between the torso and upper

arms

Table 2.1: Bike fitting parameters with their set values.

2.1.4. EMG
EMG-sensors of Cometa [75] were used, which were placed on the participant using the ’Surface Elec-
tromyography for the Non-Invasive Assessment of Muscles’ (SENIAM) guidelines [76]. These placement
recommendations include guidelines for 30 muscles, ensuring consistent and reliable EMG recordings.
Sensors were placed on seven muscles of the right leg: Rectus femoris (RF), vastus lateralis (VL), vas-
tus medialis (VM), gastrocnemius lateralis (GL), gastrocnemius medialis (GM), biceps femoris (BF), and
semitendinosus (ST) (Appendix E). These muscles were selected based on their major impact on KJCF
during cycling [77, 78]. Since we are only interested in the KJCF of the right leg, the muscle activations
of the left leg were not measured.

2.1.5. Experimental protocol
Participants performed a brief 2-minute warm-up at a self-chosen cadence and power output to famil-
iarize themselves with the setup. The main cycling session involved nine 30 seconds intervals, each
at varying cadences between 70 and 90 RPM and power levels between 80 and 120 watts (Table 2.2),
designed to simulate a range of typical cycling intensities without causing fatigue [22]. With the Tacx
Training app, the power output was set, and the bike automatically adjusted the gears and resistance to
match this set power output at each cadence. The participant only had to keep their cadence constant
during the interval. Cadence and the power output were saved in the Garmin Connect app [79]. After
each interval there was enough time to change the cadence. Finally, the participants performed a maxi-
mum sprint at 200 watts. This maximum sprint will later be used as the participant’s maximum voluntary
contraction, to normalize the EMG data [60].

Table 2.2: Experimental Cycling Conditions

Phase Cadence (RPM) Power Output (W)
Warm-up (2 min) Self-chosen Self-chosen

Set 1 (30 sec each)
70 80
80 80
90 80

Rest (30 sec) - -

Set 2 (30 sec each)
70 100
80 100
90 100

Rest (30 sec) - -

Set 3 (30 sec each)
70 120
80 120
90 120

Rest (10 sec) - -
Max Sprint Trial (5 sec) Self-chosen 200
Cool-down Self-chosen Self-chosen
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2.2. Datasets
For this study, two types of dataset were used:

1. The online dataset used by Clancy et al. [47].
2. The experimental dataset collected from the cycling experiments (Chapter 2.1).

The online dataset is collected in a study by Gatti et al. [62, 63]. The bike fit in this study by Gatti et al.
used a crank arm length of 172.5 mm and set the saddle height at 109% of the inseam length [63]. The
same method was used to determine handlebar position, and they also used flat pedals, although they
secured the feet with Velcron straps. PRF were collected at 450 Hz using pedals that measure three
Degree of Freedom (DOF) forces and moments (Science To Practice, Ljubljana, Slovenia).

All participants cycled at their preferred cadence and at a power output that kept their heart rate (HR)
within 70-75% of their age-predicted maximum. Kinematic data were recorded using 12 infrared cam-
eras (Raptor-4, Motion Analysis Corporation, Santa Rosa, CA, USA), and the participants in this online
dataset were equipped with 40 reflective markers.

2.3. Data analysis
The motion capture and EMG data were time-synchronized and recorded using Nexus, and saved as
C3D files. The motion capture files were converted to readable .trc files to ensure compatibility with
OpenSim. Marker trajectory data were filtered with a low-pass Butterworth filter with a 6 Hz cutoff fre-
quency.

The raw EMG signals were filtered using a Butterworth band-pass filter (20–400 Hz, 1st order) to remove
movement artifacts and high-frequency noise. The filtered signals were rectified and low-pass filtered
(6 Hz, 2nd order) to get smooth activation envelopes. Each raw muscle EMG signal was normalized by
the maximum value of that specific muscle measured during the maximal sprint trial, which represented
the maximum voluntary contraction [60].

To analyse EMG patterns in relation to the crank cycle, the TDC’s were identified from the CrankDistR
and PedalR marker trajectories. Ten full crank cycles, between 15.0 and 25.0 seconds, were extracted
by identifying the highest vertical (Y) position of the pedal markers, corresponding to the TDC’s.

The exact TDC timings for each condition are listed in Appendix C (Table C.3). These ten cycles were
used to compute the mean and standard deviation of the EMG activation profiles.

2.4. Musculoskeletal model development
The musculoskeletal model used in this study was built in OpenSim [53], an open-source musculoskele-
tal modelling platform. It integrates a medial-lateral knee joint model into a lower-body musculoskeletal
model used for cycling studies (Figure 2.3).
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Figure 2.3: Flow chart detailing the studies used for the musculoskeletal model development methodology. The green blocks
indicate the workflow of studies used for integrating the medial and lateral condyles of the knee [56]. The blue blocks indicate

the workflow of studies used that resulted in the model of Clancy et al. (2023) [47], which was used as the Original Model for this
study. The purple block represents the final Modified Model used in this study.

The lower-body musculoskeletal model developed by Clancy et al. [47] forms the basis of our model. It
is based on the model of Lai et al. [80] which extended the Rajagopal et al. model [55] to allow larger
hip (up to 120◦) and knee (up to 140◦) flexion ranges. Standard gait models do not account for these
extreme flexion ranges, but these are typical ranges for the upstroke phase of cycling [80]. The original
Clancy model includes the pelvis and lower extremities, and was designed to estimate the total TFC
during cycling.

To enable compartment-specific analysis of TFC, the medial and lateral knee joint structure developed
by Lerner et al. [56] (Figure 2.4) were first incorporated into the Rajagopal-Lai-Uhlrich model, which
already included realistic muscle–tendon properties and high-flexion ranges. This enhanced model was
then integrated into the Clancy et al. cycling model framework, enabling simulation of both total and
compartment-specific KJCF during cycling.

Figure 2.4: Knee model with medial and lateral condyles, adapted from Lerner et al. [56].
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The knee model components (bodies, joints, and constraints) were incorporated into the original model
(Figure 2.3). Before integrating the two models, the combined model of LernerRajahopalLaiUhlrich was
scaled to match the subject specific model of Clancy et al.
After scaling, five bodies (femoral_condyle, sagittal_articulation_frame, medial_compartment,
lateral_compartment, and tibial_plateau) and five joints (femur_weld, medial_revolute, lateral_
revolute, medial_weld, and tibial_plateau_weld) were added to each leg. Finally, a weld constraint
was used to attach the lateral compartment to the tibial plateau [56]. This constraint is needed, because
two joints in the knee would over-constrain the model and prevent simulation. It does not matter which
condyle is constrained: using a weld constraint on either of the two keeps the knee as a one-DOF joint
in the sagittal plane. The two weld joints at the femur and tibia were added to model subject-specific
varus/valgus angles (Figure 2.4). The patellofemoral and walker_knee joints were modified to make
sure the child and parent frames were correctly adjusted to the new bodies in the knee. (Figure 2.5).

Figure 2.5: OpenSim topology of the modified model.

The Computed Muscle Control (CMC) actuators file from Rajagopal et al. [55] was used as a basis for
the reserve actuator settings. To improve tracking accuracy, additional reserve actuators were added to
the following coordinates: mtp_angle_reserve, subtalar_angle_reserve, knee_angle_beta_reserve,
med_cond_adduction_reserve, lat_cond_adduction_reserve (Appendix F).
Adding reserve actuators to all model coordinates helps ensure that the system can better reproduce
the experimental motion data, particularly in cases where muscle forces alone are insufficient to fully
drive the model.

The cycling model of Clancy et al. implemented a pelvis-saddle interaction, to simulate a realistic mass-
distribution over the bicycle [47]. Because the body weight of a biker is mainly carried by the saddle of
the bike [81], six actuators are modelled at the pelvis-saddle interaction. Although upper extremities can
influence lower limbmuscle recruitment and joint contact forces [82, 83], especially at high power outputs
[84], our study focuses exclusively on the lower extremities. Including the upper body would increase
model complexity and computational cost without adding value for the steady-state, submaximal cycling
conditions examined in this study.

The final modified model is a lower-limb model, with 16 DOF (6 pelvis, 3 hip, 1 knee, 1 ankle), 23 bodies,
23 joints, and 80 actuators.
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2.5. Validation of the original model of Clancy et al.
2.5.1. Validation of predicted muscle activations
The processed EMG data were used to validate the original musculoskeletal model. To ensure compa-
rability, we analysed ten consecutive crank cycles within the time window of 120-130 seconds with the
same method as for EMG analysis (Section 2.3).

The original marker setup from the online dataset was used, which is different from the experimental
CGM 2.4 marker model (Appendix B). The original model and the marker trajectory data served as
inputs for the inverse kinematics (IK) tool in OpenSim that computes joint kinematics. Higher tracking
weights were assigned to markers on bony landmarks and on the knee.

This kinematic data again served as input for the static optimisation (SO) tool, together with the PRF
data [47, 62, 63] and the reserve actuator settings.

Since muscle forces cannot be measured directly, SO is used to estimate them. The human body has
more muscles than DOF, so there is no unique solution to produce the required joint torques. This is
known as the muscle redundancy problem. The SO tool in OpenSim estimates muscle activations by
minimizing the sum of squared activations at each time step:

min

N∑
i=1

a2i (2.1)

where ai is the activation of muscle i, and N is the total number of muscles. This cost function assumes
that the body chooses the most efficient coordination strategy by minimizing the overall muscle effort.
Since our participants performed steady-state, sub-maximal cycling, this is a reasonable assumption
and provides a good estimate of how muscles were likely activated during the task [85].

To compare the models predicted muscle activations with measured EMG, five subjects were selected
from both the Gatti et al. dataset and our own experimental data, based on similar anthropometric data,
cycling cadence and power output. This resulted in five comparisons between subjects from each group,
where the predicted muscle activations were compared to the normalized experimental EMG data (Table
2.3).

Table 2.3: Comparison pairs of Gatti et al. and MOBI lab participants

PAIR 1: Gatti P11 MOBI P06

Age (years) 32 25
Sex Female Female
Height (cm) 163.1 174.1
Weight (kg) 54.2 57.5
Cadence (RPM) 78 80
Power (W) 94 100

PAIR 2: Gatti P03 MOBI P03

Age (years) 21 25
Sex Male Male
Height (cm) 171.2 176.6
Weight (kg) 74.2 76.6
Cadence (RPM) 83 80
Power (W) 120 120

PAIR 3: Gatti P04 MOBI P10

Age (years) 23 30
Sex Female Female
Height (cm) 166.2 174.0
Weight (kg) 61.1 60.3
Cadence (RPM) 92 90
Power (W) 81 80

PAIR 4: Gatti P05 MOBI P09

Age (years) 28 25
Sex Male Male
Height (cm) 195.4 186.3
Weight (kg) 90.8 86.3
Cadence (RPM) 84 80
Power (W) 136 120

PAIR 5: Gatti P08 MOBI P07

Age (years) 24 25
Sex Male Male
Height (cm) 173.0 178.0
Weight (kg) 66.5 68.5
Cadence (RPM) 90 90
Power (W) 117 120
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2.5.2. Cross-correlation analysis between EMG and model predictions
To quantitatively assess the agreement between the processed EMG signals and the muscle activation
profiles predicted by both the original and modified musculoskeletal models, a cross-correlation analy-
sis was conducted. This method quantifies the similarity in both the timing and shape of the signals,
providing a more objective alternative to visual comparison of the muscle activations [86].

For each comparison pair, cross-correlation coefficients (R-values) were computed for the seven mus-
cles measured during the experiments.

A zero-lag normalised cross-correlation from Steel et al. [87] was used, calculated as:

R =

∑N
i=1 xiyi√∑N

i=1 x
2
i

√∑N
i=1 y

2
i

(2.2)

where xi and yi are the respective values of the EMG and model prediction signals at time point i, and
N = 100 represents the number of points in the normalised crank cycle.

Cross-correlation returns a value between 0 and 1, with 1 indicating perfect agreement in signal shape
and timing. The calculation is mathematically equivalent to a dot product between two normalised vec-
tors. This approach is unaffected by uniform scaling (i.e., changes in signal amplitude without altering
shape) and is most sensitive to differences in timing. When timing is similar, it also captures differences
in shape [86].

2.6. Verification of the modified model
To verify that the modifications to the model did not affect the estimated muscle activations and total
TFC, the modified model was tested under the same conditions. The same IK settings were applied to
calculate joint kinematics based on the updated model structure (Figure 2.1). Using this IK solution, SO
was run, again with the same settings. The muscle activations of the modified model were compared
to the ones from the original model, using the same comparison pairs (Table 2.3) and cross-correlation
equation (Equation 2.2).

2.6.1. Knee joint contact force estimation
TFC was estimated using OpenSim’s Joint Reaction Force (JRF) analysis tool, which computes the
KJCF through a Newton–Euler approach. This integrates inverse dynamics, segmental accelerations,
and muscle forces to estimate internal joint loading [87]. In this study, the total TFC was modelled as a
point load acting on the tibial plateau, with the medial and lateral components acting on the respective
femoral condyles.

Only the TFC was used for analysis, as compressive forces at the tibiofemoral joint represent the domi-
nant component of the KJCF and are more clinically relevant in the context of KOA, as discussed earlier.
The TFC estimated from the original model was compared to that of the updated model to verify the
newly implemented modifications. Subsequently, the total TFC was distributed into medial and lateral
components by determining how much of the total joint load was transmitted through each condyle [56].
These medial and lateral TFC values were used in all subsequent analyses.
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Results

3.1. Verification of modified model
3.1.1. Muscle activations
Across all sevenmuscles, the modified model producedmuscle activations that closely matched those of
the original model (Figure 3.1). Cross-correlation coefficients between the modified and original models
consistently exceeded 0.99 across all five participants and seven muscles (Table 3.1). These consis-
tently high R-values indicate that the timing and shape of the predicted activations remained almost
unchanged. This confirms that the model modifications introduced minimal differences in activation
timing, supporting the robustness of the modified model.

12
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Figure 3.1: Comparison over ten consecutive cycles of simulated muscle activation and normalized EMG for comparison pairs 1
- 5. The muscles analysed are the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), gastrocnemius lateralis (GL),
gastrocnemius medialis (GM), biceps femoris (BF), and semitendinosus (ST). Shaded areas indicate one standard deviation
over ten crank cycles. The green line represents the mean EMG recordings ± 1SD; the blue line shows the mean activation
predicted by the original mode ± 1SD; the red line shows the mean activation predicted by the modified model ± 1SD. Note:

The high baseline activation of the GL in pair 4 is because this sensor showed visible noise during measurement.
Pair mappings: Pair 1 – Gatti P11 & MOBI P06, Pair 2 – Gatti P03 & MOBI P03, Pair 3 – Gatti P04 & MOBI P10, Pair 4 – Gatti

P05 & MOBI P09, Pair 5 – Gatti P08 & MOBI P07.
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Table 3.1: Cross-correlation coefficients (R-values) comparing measured EMG to the
muscle activations predicted by the original model, and the muscle activations predicted by

the original model to those by the modified model.

Muscle Pair EMG vs. Original Modified vs. Original

Rectus Femoris 1 0.427 0.999
2 0.865 0.999
3 0.738 0.998
4 0.885 0.999
5 0.897 0.999

Vastus Lateralis 1 0.836 1.000
2 0.972 1.000
3 0.985 1.000
4 0.926 0.993
5 0.869 1.000

Vastus Medialis 1 0.878 1.000
2 0.966 1.000
3 0.981 1.000
4 0.992 0.993
5 0.903 1.000

Gastrocnemius Lateralis 1 0.858 0.996
2 0.881 0.992
3 0.712 1.000
4 0.754 0.992
5 0.841 1.000

Gastrocnemius Medialis 1 0.487 0.990
2 0.638 0.994
3 0.660 1.000
4 0.583 0.994
5 0.741 1.000

Biceps Femoris 1 0.693 1.000
2 0.706 0.999
3 0.649 0.998
4 0.515 0.998
5 0.712 0.999

Semitendinosus 1 0.710 0.998
2 0.868 0.998
3 0.478 1.000
4 0.797 1.000
5 0.762 1.000

Pair mappings: Pair 1 – Gatti P11 & MOBI P06, Pair 2 – Gatti P03 & MOBI P03, Pair 3 –
Gatti P04 & MOBI P10, Pair 4 – Gatti P05 & MOBI P09, Pair 5 – Gatti P08 & MOBI P07.

3.1.2. Total tibiofemoral compressive force
The total TFC predicted by the original and modified model showed high agreement across all five
participants. The curves produced by the two models closely overlapped throughout the crank cycle,
with minimal differences in shape or magnitude (Figure 3.2). Cross-correlation coefficients ranged from
0.980 to 0.998 (Table 3.2). The overlap in TFC suggests that the model modifications did not affect the
overall joint loading dynamics during the crank cycle. This further verifies the musculoskeletal model
modifications.

3.2. Muscle activation: EMG vs model predictions
Muscle activations predicted by the original musculoskeletal model were compared to surface EMG
measurements across seven right leg lower limb muscles (Figure 3.1, Table 3.1).

The VL and VM show good agreement between EMG recordings and model-predicted activations, both
in excitation timings and activation shape across all participants. This observation is supported by the
consistently high cross-correlation values (Table 3.1), with R-values often exceeding 0.95.
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Table 3.2: Cross-correlation coefficients (R-values) between the predicted total tibiofemoral compressive force (TFC) by the
modified and the original model for each participant.

Pair Participant Cross-correlation (R− value)
1 P11 0.997
2 P03 0.992
3 P04 0.993
4 P05 0.980
5 P08 0.998

In contrast, larger discrepancies were observed for the RF, GL, GM, BF, and ST, both qualitatively
(Figure 3.1) and quantitatively (Table 3.1). The GM, in particular, showed the weakest correlation with
R-values ranging from 0.49 to 0.74, indicating considerable variation between predicted and measured
activity. These relatively low R-values can be explained by two key mismatches: a consistent timing
lag of 5–10% in the model-predicted activation, and differences in activation shape. While the model
predicts a double peak for all participants, the EMG signals display only a single peak in pairs 1, 2, and
5.

The GL demonstrated a characteristic double-peak pattern in the EMG across all participants. The
models replicated this pattern well in most cases, though there is again a lag of approximately 5-10%.
In pair 4, visual inspection revealed noise in the EMG signal of the GL. This noise is only partly reflected
in the correlation coefficient (R = 0.75), which remains relatively high despite visible distortion in the
EMG signal.

The ST also showed underpredicted activations and yielded lower R-values (0.48–0.86), particularly for
pairs 1 and 3, where EMG recordings showed an earlier peak in activation compared to other EMG
results. While the model predicted consistent activation timing just after BDC across all participants, the
EMG data showed inter-subject variability in activation onset, contributing to the reduced correlation.

Qualitatively, the RF and BF activations differed substantially between EMG and model predictions.
While EMG patterns were relatively consistent across participants, and the model outputs also showed
internal consistency, the mismatch between EMG and modelled activations was considerable. This
mismatch was particularly evident in participant pair 4.

Both the RF and BF exhibit broad, sustained, and relatively low-amplitude activation in the EMG signals
for this pair. However, the model markedly overestimates activation in both muscles, which display
sharper and higher peaks. These inconsistencies may be linked to Gatti P05’s higher body mass and
power output during the cycling trials, which likely required different muscle recruitment patterns. The
SO approach may struggle under such high-load conditions or with heavier participants, resulting in poor
alignment with the EMG data from the lighter, matched participant (MOBI P09).

Further discrepancies arise in the ST activation, which is functionally synergistic with the BF. The model
consistently underestimates activation in the ST while overestimating it in the BF. The cross-correlation
results do not fully reflect this discrepancy, as both muscles exhibit moderate R-values. For the ST, the
moderate R-values are primarily due to differences in the timing of peak activation between model pre-
dictions and EMG. In the case of the BF, moderate R-values result from the model predicting sharp, early
activation peaks that do not align with the timing or shape of the EMG data, which varies substantially
between participants.

3.3. Medial and lateral tibiofemoral compressive forces
There was considerable variation in peak total TFC across participants, ranging from –756 ± 127 N to
–2133 ± 246 N (Table 3.3). Across all participants, the lateral TFC remained greater than the medial TFC
throughout most of the crank cycle (Figure 3.3). This suggests that during cycling, the lateral condyle
contributes more to the total compressive load than the medial condyle. On average, the lateral TFC
was –837 N, compared to –513 N in the medial compartment (Table 3.3).

A primary peak in total TFC is observed just after TDC, consistent across participants and aligned with
expectations based on the power phase of cycling. In pair 4, a second peak appears just after BDC,
which is barely seen in other participants. This additional peak likely results from the elevated muscle
activity of RF and BF during this phase of the crank cycle (Figure 3.1, Section 3.2).
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Figure 3.2: Total tibiofemoral compressive force (TFC), expressed in the tibial (child) frame. The plots show the mean TFC ±
1SD over ten consecutive crank cycles for each participant, comparing the modified model (solid blue) and the original model by
Clancy et al. (dashed orange). The bottom right subplot shows the total TFC curves for all participants using the modified model,

highlighting inter-individual variability in magnitude and timing across the crank cycle.

A smaller local peak in total TFC is observed at BDC across all participants. Although the magnitude of
this peak varies, it is most pronounced in pairs 3, 4, and 5 (P04, P05, and P08). In these participants,
the lateral TFC component deviates substantially from the medial component around BDC, indicating
asymmetrical tibiofemoral joint loading (Figure 3.3). These lateral-dominant fluctuations influence the
shape of the total TFC profile during this phase and may reflect subject-specific differences in pedalling
mechanics or neuromuscular coordination. These differences are consistent with earlier observations of
inter-subject variability in muscle activation patterns, particularly in the BF, which has a notable influence
on lateral TFC.

The total TFC represents the direct sum of the medial and lateral components at each point in the crank
cycle for all participants. This confirms that total TFC is represented as the sum of medial and lateral
components at each crank angle.
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Table 3.3: Peak total tibiofemoral compressive force (TFC) for each participant (± SD), along with the corresponding medial and
lateral TFC values at the time of peak total TFC. The final row shows the average across all five participants.

Participant Pair Total TFC (N) Medial TFC (N) Lateral TFC (N)
P11 1 −1216± 212 −491± 77 −725± 136
P03 2 −756± 127 −334± 46 −422± 83
P04 3 −1113± 184 −465± 66 −648± 120
P05 4 −2133± 246 −656± 90 −1477± 184
P08 5 −1533± 101 −621± 37 −912± 64

Average – −1350 −513 −837

Figure 3.3: Tibiofemoral compressive force (TFC) for all comparison pairs, expressed in the tibial (child) frame. Each plot shows
the mean ± SD of total (blue), medial (cyan), and lateral (pink) TFC over ten consecutive crank cycles. The bottom-right subplot
presents the medial and lateral TFC curves for all participants individually, highlighting consistent lateral loading dominance and

inter-subject variability in joint load distribution throughout the crank cycle.



4
Discussion

This study combined musculoskeletal modelling with experimental data to estimate the TFC and their
distribution across the medial and lateral condyle during cycling. The primary goal was to validate an
existing musculoskeletal model by Clancy et al. [47] and enhance its knee complexity by incorporating
medial and lateral condyles. The development of the laboratory environment demonstrates a strong
potential for future in-hospital cycling research. The modified musculoskeletal model produced results
consistent with the original model, while the added complexity to the knee joint provided novel insights
into the distribution of TFC, such as consistently higher loads observed on the lateral condyle.

4.1. Modified musculoskeletal model
4.1.1. Verification
The modified model showed very similar muscle activation patterns (R > 0.99) and total TFC (R > 0.98)
compared to the original model. The minor differences are mainly due to added joint constraints and
small knee and patellofemoral joint alignment translations. In particular, changes to the parent frames
of certain joints may have caused slight alterations in joint positioning.

4.1.2. Model performance compared to EMG
Muscle excitation timing
The predicted muscle excitation timings differed from the EMG data, particularly for the gastrocnemius
muscles (GL and GM), where modelled activation lagged by approximately 5–10%. This is consistent
with previous findings [80]. Several factors may explain these discrepancies. First, the two datasets
included different subjects with potentially varying cycling techniques and neuromuscular control strate-
gies. Although cadences and power outputs were matched closely between datasets, the minor differ-
ences could be a reason for significant differences in muscle excitation.

Second, differences in bike fitting between the datasets, such as saddle height and overall bike setup,
likely influenced joint kinematics, particularly hip and knee flexion angles (Appendix I). These kinematic
variations can affect joint moments and muscle recruitment, directly impacting the estimated KJCFs.

Moreover, in cycling, the downward force of one leg passively contributes to lifting the opposite pedal
during the upstroke. This mechanical interdependence reduces the need for active muscle effort in the
pulling leg. However, the model treats each leg’s motion independently and does not account for this
passive assistance. As a result, it likely overestimates muscle activation during the pull phase, particu-
larly in hip and knee flexors that would not need to generate as much force under realistic conditions.

Passive force omission
SO does not model passive forces or activation dynamics [88]. Passive muscle forces are generated
from the tissue’s mechanical properties, such as muscle fibres and connective tissue tension. Unlike
active forces, passive forces do not require metabolic energy to produce force [89]. The activation
dynamics represent the physiological delay between neural excitation and themuscle force development
[67, 90]. The absence of passive force modelling and activation dynamics in SO impacts the timing and
magnitude of predicted activations, reducing physiological realism [67]. In addition, EMG signals are
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subject to processing delays and signal noise and reflect neural excitation rather than muscle activation,
making direct comparison with SO outputs challenging.

In the absence of passive force modelling, SO relies solely on active muscle forces to generate joint
torques. This limitation leads to higher simulated muscle activations compared to those observed in
EMG data. For example, passive forces typically assist with hip flexion (± 80◦) around TDC [47], and
their omission requires compensatory higher activations of hip flexors and synergistic muscles, altering
physiological muscle recruitment patterns, such as the activation of the RF or the iliopsoas muscles.

When iliopsoas activation approaches its maximum capacity (Appendix G), the RF compensates by acti-
vating more than is physiologically realistic (Figure 3.1). However, since the RF is also a knee extensor,
this leads to unintended knee extension torque at a time when the knee should remain flexed (approx-
imately between 270◦ and 360◦ crank angle) [91]. This, in turn, leads to additional activation of knee
flexors such as the BF to counteract the extension torque, creating artificial co-contraction and increas-
ing the modelled TFC. This co-contraction elevates the TFC, a pattern consistent with prior simulation
studies [43], but is not observed in experimental EMG data. In the EMG data, the RF shows minimal
activity during this phase of the cycle (Figure 3.1, Figure 3.3).

Maximal isometric force
Maximal isometric force (MIF) in OpenSim is a parameter representing a muscle’s force-generating
capacity, which is proportional to its physiological cross-sectional area (PCSA). The musculoskeletal
model used in this study assigns identical MIF to all subjects, irrespective of differences in body mass
or segmental inertia [47]. For example, the RF muscle is assigned a fixed MIF of 2192 N. Although
anthropometric scaling adjusts limb dimensions, muscle strength properties are not individually adapted.
As a result, heavier individuals require greater RF muscle activation to achieve hip flexion during cycling,
as previously observed by Michaud et al. [92].

Reserve actuator activation
When maximal activation is reached and is still insufficient to meet the required torque, the model resorts
to reserve actuators to enforce the kinematics (Appendix G). This compensation is particularly evident
in pair 4, where participant P05 from the online dataset exhibits abnormally high RF and BF activations,
accompanied by elevated reserve actuator activity during the upstroke phase. In contrast, participants
P11, P03, P04, and P08 show reserve actuator usage within normal ranges (Appendix G) [67]. This
suggests that the abnormal reserve actuators use primarily results from the heavier body mass and
insufficient passive support in P05.

Monoarticular vs. biarticular muscles
The closer match (R = 0.84 - 0.99) for monoarticular muscles (VM and VL) suggests that SO approaches
can accurately predict muscles primarily acting at a single joint, whereas the biarticular muscles (RF, GM,
GL, BF, and ST), involved inmulti-joint coordination and dynamic control, are less accurately represented
(R = 0.43 - 0.90). The VM and VL exhibited more straightforward and consistent activation patterns,
reflecting their primary role in generating knee extension torque. In contrast, the activation patterns
of biarticular muscles were more variable across subjects and crank positions. This greater variability
likely reflects the complex functional role of biarticular muscles in regulating the distribution of net joint
moments and external force directions during cycling [93].

Muscle redundancy problem
Different motor control strategies can activate different muscles (muscle redundancy problem), poten-
tially leading to variations in KJCF, even when kinematics and kinetics remain the same. This may
explain the differences observed in the EMG data between participants. This raises questions about
the reliability of SO approaches in cycling [27]. The SO method used in this study minimizes the sum of
squared muscle activations (Equation 2.1), treating all muscles equally in the cost function. For example,
ST has a smaller MIF (591 N) compared to other muscles that contribute to hip extension, such as the
BF (1313 N) and semimembranosus (2201 N). As a result, it is typically recruited later, which explains
its lower peak activation and delayed excitation. This pattern of size-based recruitment may also affect
other muscles during cycling, although the effects might be less pronounced than in the case of the ST.
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4.1.3. Internal validation
Inter-subject variability
There is considerable inter-subject variability for the EMG measurements and the model predictions.
The five participants cycled at different cadences and power outputs, which affected joint loading and
muscle demand. These differences led to noticeable variations in predicted muscle activation patterns
and KJCF.

EMG performance
We observed a muscle recruitment pattern in which peak activation occurred first in the RF, followed
by the vastii muscles, then the hamstrings (ST and BF), and finally, the gastrocnemii muscles. This
sequence is consistent with findings from previous studies [34, 65, 94, 95, 96, 97].

The GL consistently exhibited a double-peak activation pattern across all participants in the EMG record-
ings and model predictions. Although a timing lag of approximately 5–10% was observed, the shape
of the predicted activation aligned well with the measured data. This consistency suggests a relatively
stable neuromuscular strategy for GL across subjects. By comparison, the GM showed greater variabil-
ity in EMG profiles. Some participants (pairs 3 and 4) displayed a double peak pattern, whereas others
(pairs 1, 2, and 5) showed only a single, more dominant peak just before BDC (Figure 3.1).

The first peak, located just before BDC, likely corresponds to plantarflexion during the power phase of the
pedal stroke. The presence of a second peak in some participants may be linked to knee flexion during
the upstroke, indicating inter-individual differences in muscle coordination strategies. This interpretation
is consistent with prior observations that activation around BDC in the hamstrings and gastrocnemii can
be associated with a backward-pushing motion, which may vary between individuals depending on their
cycling technique [97].

The higher overall EMG amplitude observed for GM, compared to GL, aligns with its greater PCSA, as
previously reported [98]. This anatomical distinction likely contributes not only to its force-generating
potential but also to the variability in its activation shape and magnitude across subjects.

Finally, the observed differences between GM and GL activation patterns underscore their distinct neu-
romechanical roles and control profiles [98]. While the GL appears to follow a more uniform activa-
tion strategy across participants, the GM seems to be more sensitive to variations in individual cycling
technique, joint kinematics, or motor control preferences. These findings reinforce the importance of
considering both anatomical and neuromotor factors when interpreting inter-subject variability in EMG
data.

Static optimisation performance
The predicted muscle activations using SO show good agreement with earlier modelling studies. In
particular, the excitation and activation patterns are consistent with the SO-based predictions reported
by Menard et al. [43] and with CMC outputs from Lai et al. [80]. Clancy et al. [47] used the OpenSim
Moco tool to generate muscle-driven simulations to estimate muscle forces, which is a different approach
than in this study (Appendix K). However, similar muscle activations were observed, consistent with other
direct collocation methods [99].

4.2. Knee joint contact force estimation
4.2.1. Total tibiofemoral compressive force
Peak total TFC force magnitudes varied considerably across the five participants (Table 3.3). The group
mean peak TFC of 1350 N aligns well with values reported in previous simulation and musculoskeletal
modelling studies [34, 46, 47, 62]. The two participants cycling at 80 and 100 W exhibited peak TFC
values that closely correspond to those measured in vivo using instrumented joint implants under similar
conditions (75–95 W) [22].

Muscle forces are the primary contributors to TFC and other KJCF [100, 101]. Previous studies have
shown that fluctuations in muscle force patterns can significantly affect the magnitude of the KJCF [102].
In particular, peak TFC has been closely associated with the force output of knee flexor muscles, mainly
the BF [43]. This trend is also evident in our results, where increased BF activity corresponds with higher
TFC values. This is specifically visible for participant P05 (pair 4).

In general, higher power outputs correspond with higher measured PRF and muscle activations, leading
to increased joint moments and TFC. Peak TFC magnitudes are observed in participants P05 and P08
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(Table 3.3), exhibiting higher knee and ankle flexion moments and a pronounced hip abduction moment
(Appendix J). Participant P03, who cycled at a similar cadence and power output but showed the lowest
peak TFC, is particularly interesting. This is likely explained by a combination of more efficient pedalling
mechanics (Figure J.2) and lower joint moments, which are linked to reduced muscle activations. P03
also shows lower hip flexion angles (Appendix I), which is associated with reduced model-predicted
activations of the VM, VL, RF, and BF (Figure 3.1, pair 2), as also noted by Dorel et al. [103]. Around
BDC, BF activation is particularly low compared to other participants, likely because the more extended
hip position places the muscle in a lengthened state with reduced mechanical advantage, limiting its
contribution to hip extension. This pattern aligns with the lower TFC observed in P03, making them a
clear outlier in the group with a plausible biomechanical explanation.

4.2.2. Medial and lateral tibiofemoral compressive force
Across all participants, the lateral condyle contributed more to the total TFC than the medial condyle.
This is interesting, as in gait analysis, this is the other way around [104, 105]. The VL shows higher
activation than the VM, which aligns with its substantially greater MIF (5149 N vs. 2748 N). Furthermore,
the GL is less activated than the medial head, which is consistent with the higher MIF of the GM (3116 N
vs. 1575 N). This suggests that muscle activation patterns generally reflect the force-generating capacity
of the individual muscles, as expected from the cost function (Equation 2.1). Overall, the greater strength
of the VL indicates that more force is likely transmitted through the lateral side of the knee, potentially
influencing TFC distribution.

4.3. Limitations
4.3.1. Musculoskeletal model
Comparability
When analysing the comparison between the EMG results and the model’s predicted muscle activations
(Chapter 3, Figure 3.1), it should be noted that these data were collected from different subjects, cycling
under slightly different conditions, on different bike setups, and in separate laboratory environments.
Likewise, conclusions about the generalisability of the TFC results (Chapter 3, Figure 3.3) must consider
that subjects in pairs 1–5 cycled at varying cadences (80 or 90 RPM) and power outputs (80, 100, or
120W). Future studies should use EMG and model-predicted data from the same subjects cycling under
identical conditions and in the same controlled environment to improve comparability. Consequently, full
validation of the model predictions against EMG data was constrained by the methodological differences
in this study.

In addition, the cross-correlation used to quantify the similarity in muscle activation should be interpreted
cautiously. The method is sensitive to excitation timing but also influenced by signal characteristics such
as low overall activation or unfiltered noise. When the EMG or the predicted muscle activation remains
near zero, the R-value may still appear high. Likewise, unfiltered noise in the EMG signal can inflate the
correlation, giving a misleading impression of agreement with the model prediction.
Finally, only five comparison pairs were available for analysis, which limits the strength of the findings.
While clear trends were observed, the small sample size prevents definitive conclusions from being
drawn based on this study alone.

Musculoskeletal model
The original model is based on a 75-kg and 170-cm tall male subject [55]. This model does not accurately
represent every subject of the study. Particularly female subjects, whose bony structure and muscle
properties differ from those of male subjects [106]. Model personalisation was limited to anthropometric
scaling of this male reference model [43]. Current studies are working on personalised models, including
better representation of the female musculoskeletal systems [107].

Motion capture and soft tissue artefacts
Kinematic data were obtained through skin-mounted markers, which are prone to soft tissue artefacts
(STA) [108, 109, 110]. These artefacts, caused by skin and muscle motion relative to the underlying
bone, introduce errors in joint angle estimation, particularly in dynamic movements like cycling. This
affects the accuracy of IK, and therefore of SO and KJCF estimation. STA tend to be more severe in
individuals with higher BMI [111], which is especially relevant in clinical populations such as people with
KOA.While standard filtering techniques reduce noise, they cannot fully eliminate STA. New approaches
that minimize the influence of STA, such as the MiKneeSoTA approach [110], could lead to more precise
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measurements of knee joint rotations and translation. Furthermore, accurate bone tracking methods
such as fluoroscopy may be needed to improve the validity of kinematic input in future studies.

1-DOF knee model
The model used a knee joint with one degree of freedom (DOF), representing flexion-extension (FE)
in the sagittal plane, consistent with other studies [47, 55, 80]. Although the model adds anatomical
detail via medial and lateral condyles, the knee model used in this study is still constrained to a single
movement plane. In reality, the knee functions as a six DOF joint. To better match in-vivomeasurements,
the DOF should be increased to three. Recent research shows that a three-DOF knee model, capable of
FE, internal-external (IE), and abduction-adduction (Abd-Add), improves physiological accuracy [112].

Tibiofemoral shear forces
The model used in this study does not estimate the tibiofemoral shear force (TFS). In the original knee
model used for this study [56], TFS was also not reported. This is a critical omission, as shear forces may
contribute significantly to cartilage degeneration and KOA progression [113, 114, 115, 116]. Although
TFS is generally the smallest component of KJCF [22, 38], their association with cartilage shear stress
and degeneration suggests they may play a more influential role than previously assumed [117]. The
absence of shear force analysis during cycling, especially given the dynamic loading patterns, leaves a
crucial gap in our understanding of how cycling affects knee joint mechanics.

In the model setup, the medial condyle was connected to the tibial plateau using a weld joint, while the
lateral condyle was attached via a weld constraint. In this configuration, all shear forces were transmitted
through the medial side, with no force distributed through the lateral condyle. When the setup was
reversed (applying the weld joint to the lateral condyle and the weld constraint to the medial), the entire
shear load shifted to the lateral side. This indicates that weld constraints could not transmit shear forces,
whereas weld joints could do this. Due to this limitation in the model’s force distribution mechanics, TFS
could not be reliably analysed and was therefore excluded from the scope of this thesis.

Optimisation
As discussed, SO disregards activation dynamics and passive muscle fibre forces [88], potentially lim-
iting physiological realism [67]. This study employed the baseline cost function of SO (Equation 2.1),
which minimizes the sum of squared muscle activations, treating all muscles equally. In contrast, Clancy
et al. [47] proposed an enhanced approach by incorporating an additional objective to minimize TFC.
Their results significantly improved the accuracy of predicted joint contact forces.

Similarly, Gatti et al. [62] presented an alternative strategy by assigning different weighting factors to
individual muscles during optimisation (Equation 4.1).

min

N∑
i=1

cia
2
i (4.1)

where ci is an integer weighting constant for each muscle, ai is the activation of muscle i, and N is the
total number of muscles [87].

While most muscles in the method of Gatti et al. [62] retained a weighting factor of one, the hamstrings
and gastrocnemii muscles were weighted by factors of three and seven, respectively. This adjustment
allowed the optimisation to reproduce experimentally measured muscle activation patterns more accu-
rately. Implementing a similar weighted optimisation approach may enhance the agreement between
predicted and experimental EMG data, particularly for muscles that span two joints (bi-articular), which
have shown to be challenging to model accurately.

4.3.2. Experimental setup: MOBI lab
This study was conducted under controlled conditions at the Motion Biomechanics and Imaging (MOBI)
lab in the Erasmus Medical Center to ensure reproducibility.

Participants
We recruited healthy participants for this concept study to establish a baseline under controlled condi-
tions. Although cycling is widely prescribed in rehabilitation for individuals with KOA, there is limited data
on their cycling biomechanics. In gait, KOA patients show distinct kinematic and kinetic patterns com-
pared to healthy individuals [118], suggesting that similar differences may also appear during cycling.
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This underlines the need for future research involving KOA populations to inform clinical applications
accurately.

Experimental protocol
This study uses a crank arm length of 172.5 mm, which is a standard length [70]. Although variations
in crank length can influence biomechanical factors, such as hip and knee flexion angles, minor ad-
justments (approximately 5 mm) are unlikely to significantly impact the study’s outcomes [119] and are
therefore not investigated.

Cadence and power output were recorded using the Garmin Connect app [79], which provides data
per second. However, for detailed biomechanical analysis, higher-resolution data is preferred. Since
kinematic and PRF data are available per frame, having cadence and power output at the same reso-
lution would allow a better understanding of how moment-to-moment changes in force and movement
influence mechanical output.

Saddle and handlebar heights were set consistently across participants, but the exact measurements
were not noted. This means the setup cannot be reconstructed accurately from the marker data, limiting
reproducibility and the ability to compare setups across participants or sessions.

The EMG data were normalised using the maximal sprint trial. However, this trial was performed at a
fixed power output of 200 watts. During the experiments, it became clear that most participants struggled
more with the high cadences than the power output. As a result, the trial likely did not represent aan
actual maximal voluntary contraction for all muscles.

4.4. Future work
This study was built on the work of Clancy et al. [47], who were among the first in cycling biomechanics
to freely share their musculoskeletal models and the kinematic and kinetic data. This open collaboration
sets a standard for future work. Future research should prioritise sharing their data to enhance our
understanding of cycling biomechanics, enabling others to validate findings and improve models.

4.4.1. Musculoskeletal model
Solver
Future work regarding the musculoskeletal model should consider another optimisation tool which does
not disregard passive forces and activation dynamics. A different type of solver that is already widely
used in OpenSim and includes passive forces is Computed Muscle Control (CMC). This solver is, how-
ever, computationally expensive [120]. A promising alternative is the Residual Muscle Reduction (RMR)
solver, currently being developed by Belli et al. [88]. The RMR solver incorporates constraints on JRF
as explicit linear functions of muscle activations, directly modelling joint stability. Furthermore, RMR is
computationally more efficient than CMC and considers passive forces and activation dynamics.

EMG-informed musculoskeletal modelling
Another key improvement involves the use of EMG-informed musculoskeletal models. As discussed in
Chapter 3.2, the predicted muscle activations did not fully match the experimental EMG data. Since
muscle activation directly influences joint loading, EMG-informed approaches will likely offer more ac-
curate and subject-specific estimations. These models can better account for co-contraction [121] and
variability in muscle recruitment strategies. Recent studies, including in cycling [27], support this direc-
tion. Future studies could benefit from adopting EMG-informed modelling approaches, which may offer
more physiologically realistic muscle force estimations than SO [122].

Increasing DOF knee model
Future work should explore implementing a three-DOF knee joint model to improve the physiological ac-
curacy of joint mechanics. Recent developments, such as the ellipsoidal bi-condylar model by Hörmann
et al. [112], enable FE, IE rotation, and Abd-Abb by modelling the medial and lateral condyles separately
based on anatomical geometry. This approach improves alignment with in vivo fluoroscopic data without
requiring the complexity of the full six-DOF models. Integrating such a model would allow for more real-
istic KJCF estimations, especially in the context of patient-specific knee anatomy, where differences in
bone- shape and alignment influence how forces are distributed across the joint. Future studies should
test whether this modelling approach can resolve the limitations in TFS estimation identified in this study.
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Outside laboratory measurements
Experiments can only be done within a laboratory setting, and future work should explore ways to move
outside of the laboratory environment as well. Recent studies show the potential of estimating PRF
with a machine learning model based on the crank angle, cadence, power output, and participant’s
weight and height [123]. In parallel, smartphone-based motion capture systems such as OpenCap are
becoming increasingly advanced [124]. However, these approaches are not yet accurate enough to
estimate personalised KJCF. Further research is needed to improve the accuracy before they can replace
laboratory settings.

4.4.2. Towards a hospital-based cycling laboratory
Several methodological improvements are recommended to improve the reproducibility and accuracy of
future cycling studies in the laboratory.

First, the laboratory setup should be thoroughly documented. A standardised protocol for bike configura-
tion is essential, including accurate measurements of saddle height and handlebar position. Additionally,
markers should be placed on the bike frame itself to precisely track the bike’s position and orientation in
space across trials. Feet should always be securely attached to the pedals, preferably clipless shoes, to
minimise unwanted foot motion in the medial-lateral and anterior-posterior directions. This attachment
should position the ball of the foot over the centre of the pedal, following best-practice guidelines [72].

Future studies should use pedals capable of measuring three-DOF forces and moments. Instrumented
pedals would enable the direct comparison of model-predicted muscle activations with EMG data from
the same trial, overcoming the limitations in cross-subject comparisons encountered in this study. Fur-
thermore, kinematic and kinetic data should be time-synchronised, ideally with automated triggering
when a specific marker position is detected (i.e. when the crank reaches TDC).

A combination with fluoroscopy is proposed to increase accuracy further and go behind conventional
motion capture. Combining motion capture with fluoroscopy provides a more accurate assessment of
joint kinematics by overcoming the STA associated with motion capture alone [125]. This combination
could allow for precise measurement of bone movements during cycling, especially in early-stage KOA.
Importantly, knee anatomy varies considerably between individuals [126], limiting biomechanical find-
ings’ generalisability. A combined modelling approach, using fluoroscopy, musculoskeletal modelling,
and finite element method (FEM) simulations, could provide a more personalised understanding of joint
loading. Finally, in an ideal initial test setup, patients with knee implants fitted with strain gauges could
provide ground-truth force data, closing the loop between simulation and reality.

Ultimately, we propose the development of a hospital-based cycling laboratory where patients can un-
dergo biomechanical assessment and receive personalised rehabilitation guidance. Conducting the
study within a hospital setting would allow patients to complete data collection and evaluation in a sin-
gle visit, reducing clinical burden. The lab would combine kinematic, kinetic, EMG, and anthropometric
measurements for patient-specific analysis. Such a setup would bridge the gap between biomechanical
research and clinical application, supporting more targeted and effective rehabilitation strategies.
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Conclusion

This thesis contributes to the development of a novel musculoskeletal cycling model that estimates
compartment-specific KJCF. Building upon the model proposed by Clancy et al. [47], and incorporating
anatomically distinct medial and lateral condyles adapted from Lerner et al. [56], this work enables the
first estimations of TFC distribution across the knee joint during cycling. The analysis of compartmental
load distribution offers new insights into the potential role of cycling in mitigating the progression of
condyle-specific KOA. Furthermore, this study lays the groundwork for more cycling research in clinical
environments, potentially complementing gait analysis within biomechanical rehabilitation programs.

Themodifiedmodel maintained performance comparable to the original model, achieving cross-correlation
values over 0.99 for predicted muscle activations and producing similar total TFC estimates. Validation
of the model predictions against EMG data showed strong agreement for the VL (R = 0.84–0.99) and
VM (R = 0.88–0.99), while larger discrepancies were observed for the bi-articular muscles. Full valida-
tion of the model predictions against EMG data was therefore not possible, as differences in subjects,
methodology, and experimental conditions limited direct comparability.

Notably, this study is the first to demonstrate that cycling consistently loads the lateral condyle more
than the medial condyle across all participants, in contrast to well-established gait loading patterns.
This novel finding may reshape how cycling is applied in rehabilitation, providing a potential low-impact
intervention strategy to target compartment-specific KOA. The experimental setup developed for this
study was successfully implemented across eleven sessions, confirming the feasibility of conducting
controlled cycling studies with kinematic and EMG data.

While the model relied on simplified joint mechanics, static optimisation, and only five comparison pairs
analysis, these limitations are acknowledged and provide direction for future studies. Recommended
improvements include adopting other (EMG-informed) solvers, integrating additional degrees of freedom
in the knee, and enhancing subject-specific modelling. These efforts will be crucial in advancing towards
a hospital-based cycling laboratory capable of delivering personalised KJCF profiles.

In conclusion, this research presents an important first step towards clinical cycling studies that account
for compartment-specific TFC estimation. These early findings form the foundation for future research,
both in terms of musculoskeletal model refinement and targeted clinical applications.
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A
Marker placement

The following section explains how optical motion capture markers were placed before the experiment,
according to the CGM2.4 marker placement guidelines [127]. A total of 34 markers were placed [128].
This appendix does not elaborate on the positioning of the pedal markers.

Figure A.1: Marker placement for standard CGM2.4 model [128].

Pelvis markers
Left and Right Posterior Superior Iliac Spine (LPSI, RPSI)

• Place the markers over the posterior superior iliac spine bilaterally.
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Left and Right Anterior Superior Iliac Spine (LASI, RASI)
• Place the markers over the anterior superior iliac spine bilaterally.

Thigh markers
Left and Right Lateral Thigh (LTHI, RTHI)

• Place the markers halfway down the lateral thigh.
• Use the ASIS markers and the epicondyle markers to define the length of the femur.

Left and Right Thigh Anterior Proximal (LHTAP, RHTAP)
• Place the markers one-third down the anterior thigh.
• Use the ASIS markers and the epicondyle markers to define the length of the femur.

Left and Right Thigh Anterior Distal (LHTAD, RHTAD)
• Place the markers two-thirds down the anterior thigh.
• Use the ASIS markers and the epicondyle markers to define the length of the femur.

Knee markers
Left and Right Lateral Epicondyle (LKNE, RKNE)

• Place the markers over the most prominent aspect of the lateral epicondyle.

Left and Right Medial Epicondyle (LKNM, RKNM)
• Place the markers over the most prominent aspect of the medial epicondyle.

Tibia markers
Left and Right Lateral Lower Leg (LTIB, RTIB)

• Place the markers halfway down the lateral lower leg.
• Use the femoral epicondyle and malleoli markers to define the length of the tibia.

Left and Right Tibia Anterior Proximal (LTIAP, RTIAP)
• Place the marker 2 cm distal to the tibial tubercle.

Left and Right Tibia Anterior Distal (LTIAD, RTIAD)
• Halfway down the tibia’s crest.

Foot and Ankle markers
Left and Right Lateral Malleolus (LANK, RANK)

• Place the markers so that the distal tip of the baseplate lines up with the most distal aspect of the
malleolus.

Left and Right Medial Malleolus (LMED, RMED)
• Place the markers so that the distal tip of the baseplate lines up with the most distal aspect of the
malleolus.

Left and Right Heel (LHEE, RHEE)
• Place the top of the baseplate so that it is over the most prominent aspect of the posterior calca-
neus.

Left and Right 2nd Metatarso-Cuneiform Joint (LTOE, RTOE)
• Place the middle of the marker over the metatarso-cuneiform joint in the center of the metatarsal.

Left and Right 5th Metatarsophalangeal Joint (LVMH, RVMH)
• Place the center of the baseplate on the line of the fifth metatarsophalangeal joint (dorsal aspect).
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Left and Right 1st Metatarsophalangeal Joint (LFMH, RFMH)
• Place the markers at the first metatarsophalangeal joint on the dorsal aspect.

Left and Right 2nd Metatarsophalangeal Joint (LSMH, RSMH)
• Place the markers at the second metatarsophalangeal joint so that they are centered over the
bone.



B
Marker based model adjustments

To ensure compatibility of our method with both the online dataset and our own experimental setup,
two different marker models were implemented. One model replicates the marker positions used in the
publicly available dataset from Gatti et al. [62, 63], while the other uses marker placements based on
the Conventional Gait Model (CGM) (Appendix A), which aligns with our motion capture protocol using
Nexus software.

Figure B.1 illustrates the difference between these twomarker models. In each case, the model is shown
after scaling (left) and after running Inverse Kinematics (right) with the right pedal at TDC. These visual-
izations highlight how the same musculoskeletal framework can be adapted to accommodate different
marker configurations, ensuring consistency across data sources.

(a) The generic model using marker positions from Gatti et al. [62, 63].
Left: after scaling. Right: after Inverse Kinematics with right pedal on

top dead centre (TDC).

(b) The generic model using marker positions from the Conventional
Gait Model (CGM). Left: after scaling. Right: after Inverse Kinematics

with right pedal on top dead centre (TDC).

Figure B.1: Comparison of the generic models developed for this study. (a) shows the model based on Gatti et al., and (b)
shows the model based on CGM2.4.
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C
Participant data

C.1. All participants
Gatti et al. participants

Participant Age (years) Sex Height (cm) Weight (kg) Cadence (RPM) Power (W)
P01 29 Female 169.0 60.4 77 60
P02 22 Male 182.2 92.3 80 107
P03 21 Male 171.2 74.2 83 120
P04 23 Female 166.2 61.1 92 81
P05 28 Male 195.4 90.8 84 136
P06 27 Male 181.7 77.3 90 216
P07 41 Male 188.1 79.4 92 161
P08 42 Male 173.0 66.5 90 117
P09 26 Male 179.8 76.1 75 156
P10 19 Male 183.5 89.3 85 160
P11 32 Female 163.1 54.2 78 94
P12 31 Male 183.7 91.5 80 116
P13 44 Male 191.6 83.0 90 199
P14 42 Female 159.8 56.7 86 40
P15 31 Female 168.5 57.1 85 144
P16 35 Male 179.6 78.0 89 208

Table C.1: Cycling and anthropometric data of participants from the dataset [62, 63] used by Clancy et al. [47].

MOBI lab participants

Participant Age Sex Height Weight Cycling / Week Knee Ankle Inseam
(years) (cm) (kg) (h) (km) Width (mm) Width (mm) Length (cm)

P01 25 Male 193.0 79.1 5 80 103.0 78.6 105.0
P02 28 Male 185.9 76.7 5 50 93.3 69.8 95.5
P03 25 Male 174.8 76.6 4 60 98.8 71.5 89.0
P04 30 Female 176.8 69.5 2 50 96.8 67.0 95.0
P05 24 Male 184.3 79.9 3.5 80 110.2 73.7 98.0
P06 25 Female 174.1 57.5 5 55 89.2 64.9 88.5
P07 25 Male 178.8 68.5 6 50 97.9 65.1 93.0
P08 26 Female 176.0 80.3 1.5 40 117.1 72.3 94.5
P09 25 Male 198.0 86.3 7 100 111.0 70.4 108.5
P10 25 Female 174.0 60.3 4 30 96.8 66.2 91.0
P11 25 Male 193.3 106.1 2 40 106.2 75.3 103.5

Table C.2: Cycling and anthropometric data of participants from the experiments in the MOBI laboratory.
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C.2. Selected participants for comparison 39

C.2. Selected participants for comparison
Pair Participant 1st TDC (15-25s) Condition
Pair 1 MOBI06 15.45 80 RPM - 100 W
Pair 2 MOBI03 15.64 80 RPM - 120 W
Pair 3 MOBI10 15.21 90 RPM - 80 W
Pair 4 MOBI09 15.08 80 RPM - 120 W
Pair 5 MOBI07 15.22 90 RPM - 120 W

(a) Selected participants from the MOBI experiments, including the first detected Top Dead Centre (TDC) within the time frame of 15-25
seconds.

Pair Participant 1st TDC (120-130s) TDC after 10 cycles Condition
Pair 1 Gatti P11 120.03 127.80 78 RPM - 94 W
Pair 2 Gatti P03 120.53 127.88 83 RPM - 120 W
Pair 3 Gatti P04 120.57 127.06 92 RPM - 81 W
Pair 4 Gatti P05 120.53 127.92 84 RPM - 136 W
Pair 5 Gatti P08 120.62 127.23 90 RPM - 117 W

(b) Selected participants from the online dataset of Gatti et al. [62, 63], including the first and the tenth detected Top Dead Centre (TDC)
within the time frame of 120-130 seconds.

Table C.3: Selected participants, including the detected Top Dead Centre (TDC).



D
Development of the MOBI-cycling

laboratory

To develop the hospital-based cycling laboratory, the following key hardware components were required:

1. A bike with adjustable saddle and handlebars, capable of measuring cadence and power output.
2. Instrumented pedals for measuring 3D forces and moments, with the ability to synchronise kinetic

and kinematic data.
3. A motion capture system using retroreflective markers
4. Electromyography (EMG) sensors

Neo Tacx bike setup
A Neo Tacx Bike was borrowed from the Bicycle Lab at TU Delft. The saddle and handlebars were
adjustable both horizontally and vertically. The crank arm length could also be adjusted, with fixed
positions at 170 mm, 172.5 mm, or 175 mm.

The bike was positioned on the treadmill (Figure D.1), with its midline aligned along the laboratory’s
z-axis. Integrated fans responded dynamically to the power output during pedalling.

Connection to the Garmin Connect app [79] via Bluetooth allowed for control over resistance and gear
settings, enabling fine-tuned power output adjustments.

Figure D.1: Cycling setup with the bike on the treadmill, and two motion capture cameras are mounted on tripods: one in front
and one behind the bike
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Instrumented pedals for pedal reaction force analysis
Interviews have been held with Sensix (Poitiers, France), on the possibility of using two instrumented
pedals for measuring the pedal reaction force (PRF) during cycling. Unfortunately, these were not pos-
sible to arrange in the short term.

As an alternative, instrumented pedals from the University of Twente were tested (Figure D.2). These
can be connected via analogue cables to the lab computer. Despite the proper setup, the force-torque
sensors did not register any output when the load was applied. Consequently, this option was aban-
doned.

Ultimately, an attempt was made to estimate the PRF (Appendix H). However, this approach introduced
additional complications, and PRF analysis was therefore excluded from the final scope of this study.

Figure D.2: Sandals with two force-torques sensors below the sole

Markers and motion capture system
The laboratory was already equipped with 12 motion capture cameras (VICON Vero, Oxford, United-
Kingdom) and retroreflective markers. Ten cameras were fixed to the laboratory walls. Two additional
cameras were mounted on tripods (see Figure D.1) and placed in front and behind the bike to improve
visibility of medial ankle and knee markers, particularly near the Bottom Dead Centre (BDC), where
occlusion was likely.

The motion capture was analysed using Nexus Software (v15.9).

EMG Cometa Mini45
Electromyography (EMG) sensors of Cometa (Mini45) were borrowed from the Gait Analysis Laboratory
of the TU Delft. These sensors wirelessly transmitted signals to a Bluetooth amplifier, which was con-
nected via an analogue signal interface box (Figure D.3a) and a Weidmüller connector (Figure D.3b) to
the laboratory computer. The EMG voltage could be directly read out with the Nexus Software, including
time-synchronisation with the kinematic motion capture data from Vicon.
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(a) The analog signal interference box from Cometa. (b) The analog signals from the analog
signal interference box into the
Weidmüller connector (orange).

Figure D.3: Analog signal interference box and Weidmüller connector to analyse the EMG data.



E
Experimental protocol

This document describes the procedure each participant will follow during the experiment.

The aim of this study is to investigate medial and lateral knee loading during cycling by analysing knee
joint contact forces under different conditions. Eleven healthy adult participants will participate in this
study. The experiment will be conducted in the MOBI lab at the Erasmus Medical Centre, a motion
capture lab established within the Convergence collaboration of TU Delft and Erasmus MC. TUD and
EMC supervisors are actively involved in the lab and this experiment and collaborate closely on the
project.

The project will be part of the LOAD project, a multidisciplinary collaboration involving, among others,
TU Delft and Erasmus MC. The LOAD project focuses on determining what constitutes healthy stress
for an individual with knee osteoarthritis and how patients can be guided to move healthy.

When participants arrive, they will be given an introduction to the study and have time to review, ask
questions about, and sign the informed consent form. Next, small, lightweight motion capture markers
will be placed on specific anatomical landmarks, such as the hip, thigh, and lower leg, to accurately
track the motion of your joints during the activity, in alignment with the Conventional Gait Model (CGM)
guidelines.

Additionally, seven electromyography (EMG) sensors will be attached to the skin of the right leg over
the following muscles: The rectus femoris, vastus lateralis, vastus medialis, gastrocnemius lateralis,
gastrocnemius medialis, biceps femoris, and semitendinosus.

These non-invasive sensors measure the electrical activity of muscles as they contract during cycling.
Please note that some skin hair may need to be gently removed in the sensor areas to ensure proper
contact and accurate readings. This setup enables precise data capture on joint movement and muscle
performance, providing a detailed understanding of biomechanics during the activity.

Participants will perform a brief 2-minute warm-up at a self-chosen cadence and power output to famil-
iarize themselves with the setup. The main cycling session will involve nine 30-seconds intervals, each
at varying cadences between 70 and 90 RPM and power levels between 80 and 120 W, designed to
simulate a range of typical cycling intensities without causing fatigue.

Data collected from the optical motion capture system will be integrated with a musculoskeletal model
to calculate knee joint contact forces, offering insights into the distribution of loads across the medial
and lateral compartments of the knee during cycling. The EMG data will be used for validation purposes
of the model. To normalize the EMG data, the participants are instructed to perform 2 squat jumps and
finish the measurements with a cycling sprint on the bike.

Lab preparation
1. Turn on the Vicon system
2. Relocate the bike to the correct position
3. Connect the bike to electricity
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4. Connect the app with the bike via Bluetooth
5. Put a sheet over the research bench
6. Prepare a box with: 36 markers, tape, measuring tape, and an electronic caliper (schuifmaat),

angle measurement device
7. Prepare a box with all the EMG equipment: shaving foam, shaver, tape, emg-sensors 1 to 8
8. Prepare the consent form with a pen
9. Remove everything that could be recognized as a marker
10. Calibrate the camera’s
11. Define the ground/zero, by placing the wand on the treadmill

Participant
1. Pick up the participant from the entrance
2. Introduce Wouter
3. Explain briefly what you are going to do today
4. Change clothes (sport socks, tight sports/cycling shorts, sport shirt)
5. Show the participant the consent form and let him/her sign it
6. Measure the weight of the participant
7. Measure the height of the participant
8. Measure the ankle width
9. Measure the knee width
10. Measure the leg length
11. Set the saddle height so that the knee is in a 25-30 degree flexion angle
12. Set the handlebar at the same height as the saddle
13. Set the horizontal saddle position so that the patella is in line with the crank axis
14. Set the horizontal handlebar position so that the torso is at 90 degrees with the upper arms when

the hands are on top of the handlebar
15. Remove the hairs and put alcohol on the skin where the EMG sensors will be placed
16. Place EMG sensors on the:

a. Rectus Femoris
b. Vastus Lateralis
c. Vastus Medialis
d. Gastrocnemius Lateralis
e. Gastrocnemius Medialis
f. Biceps Femoris
g. Semitendinosus
h. Reserve

17. Place the markers together with Wouter
18. Make a picture of the lower extremities with markers and EMG for postprocessing purposes

Static and dynamic trial
1. Place the participant behind the treadmill
2. Place the participant on the treadmill close to the bike
3. Perform a static trial behind the bike
4. Let the participant perform a squat jump to measure the maximum voluntary contraction of the

participant
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5. Perform a static trial over the bike
6. Perform a dynamic trial by getting on the bike and start cycling
7. Make sure the participant can move freely without cables being overthrown and markers falling off
8. Make a picture of the cycling position with all the markers and EMG for postprocessing purposes

Experiment
1. Make the participant warm up for 2 minutes on a self-chosen cadence
2. 30s of cycling on:

• cadence = 70 RPM and power output = 80 W
3. 30s rest, switching conditions
4. 30s of cycling on:

• cadence = 80 RPM and power output = 80 W
5. 30s rest, switching conditions
6. 30s of cycling on:

• cadence = 90 RPM and power output = 80 W
7. 30s rest, switching conditions
8. 30s of cycling on:

• cadence = 70 RPM and power output = 100 W
9. 30s rest, switching conditions
10. 30s of cycling on:

• cadence = 80 RPM and power output = 100 W
11. 30s rest, switching conditions
12. 30s of cycling on:

• cadence = 90 RPM and power output = 100 W
13. 30s rest, switching conditions
14. 30s of cycling on:

• cadence = 70 RPM and power output = 120 W
15. 30s rest, switching conditions
16. 30s of cycling on:

• cadence = 80 RPM and power output = 120 W
17. 30s rest, switching conditions
18. 30s of cycling on:

• cadence = 90 RPM and power output = 120 W
19. 10s of rest switching the power output to 200W
20. 5s sprint on 200W and self-chosen cadence:

• Cadence = self-chosen and power output = 200W
21. 30s of cooling down on a self-chosen cadence and power output
22. Total cycling time = 11.5 minutes
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Round-up
1. Remove the bike from the treadmill
2. Calibrate the treadmill
3. Perform a slow squat on the treadmill
4. Perform a fast squat on the treadmill
5. Perform a jump squat on the treadmill
6. Remove the emg sensors and place them back in the box
7. Put the emg-sensors back in the charger
8. Remove the markers and place them back in a box
9. Save the consent form in a map with all the other consent forms
10. Save the data collection forms in a map with all the other data collection forms



F
Reserve actuator settings

Listing F.1: Reserve actuator settings file used for Static Optimisation with the Modified Model. This file is an expansion of the
CMC actuator file of Rajagopal et al.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <OpenSimDocument Version="30000">
3 <ForceSet name="LowerBodyReserveActuators">
4 <defaults >
5 <CoordinateActuator name="default">
6 <min_control >-Inf</min_control >
7 <max_control >Inf</max_control >
8 <coordinate ></coordinate >
9 <optimal_force >100</optimal_force >
10 </CoordinateActuator >
11 </defaults >
12 <objects >
13 <PointActuator name="FX">
14 <body>pelvis </body>
15 <point >-0.073 -0.02525 0</point>
16 <direction >1 -0 -0</direction >
17 <optimal_force >100</optimal_force >
18 <min_control >-Inf</min_control >
19 <max_control >Inf</max_control >
20 </PointActuator >
21 <PointActuator name="FY">
22 <body>pelvis </body>
23 <point >-0.073 -0.02525 0</point>
24 <direction >-0 1 -0</direction >
25 <optimal_force >100</optimal_force >
26 <min_control >-Inf</min_control >
27 <max_control >Inf</max_control >
28 </PointActuator >
29 <PointActuator name="FZ">
30 <body>pelvis </body>
31 <point >-0.073 -0.02525 0</point>
32 <direction >-0 -0 1</direction >
33 <optimal_force >100</optimal_force >
34 <min_control >-Inf</min_control >
35 <max_control >Inf</max_control >
36 </PointActuator >
37 <TorqueActuator name="MX">
38 <bodyA>pelvis </bodyA>
39 <bodyB>ground </bodyB>
40 <axis>1 -0 -0</axis>
41 <optimal_force >150</optimal_force >
42 <min_control >-Inf</min_control >
43 <max_control >Inf</max_control >
44 </TorqueActuator >
45 <TorqueActuator name="MY">
46 <bodyA>pelvis </bodyA>
47 <bodyB>ground </bodyB>
48 <axis>-0 1 -0</axis>
49 <optimal_force >150</optimal_force >

47
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50 <min_control >-Inf</min_control >
51 <max_control >Inf</max_control >
52 </TorqueActuator >
53 <TorqueActuator name="MZ">
54 <bodyA>pelvis </bodyA>
55 <bodyB>ground </bodyB>
56 <axis>-0 -0 1</axis>
57 <optimal_force >150</optimal_force >
58 <min_control >-Inf</min_control >
59 <max_control >Inf</max_control >
60 </TorqueActuator >
61 % ------------ (Coordinate Actuators Start Here) ------------
62 <CoordinateActuator name="hip_flexion_r_reserve">
63 <min_control >-Inf</min_control >
64 <max_control >Inf</max_control >
65 <coordinate >hip_flexion_r </coordinate >
66 <optimal_force >2.5</optimal_force >
67 </CoordinateActuator >
68 <CoordinateActuator name="hip_adduction_r_reserve">
69 <min_control >-Inf</min_control >
70 <max_control >Inf</max_control >
71 <coordinate >hip_adduction_r </coordinate >
72 <optimal_force >5</optimal_force >
73 </CoordinateActuator >
74 <CoordinateActuator name="hip_rotation_r_reserve">
75 <min_control >-Inf</min_control >
76 <max_control >Inf</max_control >
77 <coordinate >hip_rotation_r </coordinate >
78 <optimal_force >1</optimal_force >
79 </CoordinateActuator >
80 <CoordinateActuator name="knee_angle_r_reserve">
81 <min_control >-Inf</min_control >
82 <max_control >Inf</max_control >
83 <coordinate >knee_angle_r </coordinate >
84 <optimal_force >1</optimal_force >
85 </CoordinateActuator >
86 <CoordinateActuator name="ankle_angle_r_reserve">
87 <min_control >-Inf</min_control >
88 <max_control >Inf</max_control >
89 <coordinate >ankle_angle_r </coordinate >
90 <optimal_force >1</optimal_force >
91 </CoordinateActuator >
92 <CoordinateActuator name="hip_flexion_l_reserve">
93 <min_control >-Inf</min_control >
94 <max_control >Inf</max_control >
95 <coordinate >hip_flexion_l </coordinate >
96 <optimal_force >2.5</optimal_force >
97 </CoordinateActuator >
98 <CoordinateActuator name="hip_adduction_l_reserve">
99 <min_control >-Inf</min_control >
100 <max_control >Inf</max_control >
101 <coordinate >hip_adduction_l </coordinate >
102 <optimal_force >5</optimal_force >
103 </CoordinateActuator >
104 <CoordinateActuator name="hip_rotation_l_reserve">
105 <min_control >-Inf</min_control >
106 <max_control >Inf</max_control >
107 <coordinate >hip_rotation_l </coordinate >
108 <optimal_force >1</optimal_force >
109 </CoordinateActuator >
110 <CoordinateActuator name="knee_angle_l_reserve">
111 <min_control >-Inf</min_control >
112 <max_control >Inf</max_control >
113 <coordinate >knee_angle_l </coordinate >
114 <optimal_force >1</optimal_force >
115 </CoordinateActuator >
116 <CoordinateActuator name="ankle_angle_l_reserve">
117 <min_control >-Inf</min_control >
118 <max_control >Inf</max_control >
119 <coordinate >ankle_angle_l </coordinate >
120 <optimal_force >1</optimal_force >
121 </CoordinateActuator >
122 <CoordinateActuator name="mtp_angle_r_reserve">
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123 <min_control >-Inf</min_control >
124 <max_control >Inf</max_control >
125 <coordinate >mtp_angle_r </coordinate >
126 <optimal_force >1</optimal_force >
127 </CoordinateActuator >
128 <CoordinateActuator name="mtp_angle_l_reserve">
129 <min_control >-Inf</min_control >
130 <max_control >Inf</max_control >
131 <coordinate >mtp_angle_l </coordinate >
132 <optimal_force >1</optimal_force >
133 </CoordinateActuator >
134 <CoordinateActuator name="subtalar_angle_r_reserve">
135 <min_control >-Inf</min_control >
136 <max_control >Inf</max_control >
137 <coordinate >subtalar_angle_r </coordinate >
138 <optimal_force >1</optimal_force >
139 </CoordinateActuator >
140 <CoordinateActuator name="subtalar_angle_l_reserve">
141 <min_control >-Inf</min_control >
142 <max_control >Inf</max_control >
143 <coordinate >subtalar_angle_l </coordinate >
144 <optimal_force >1</optimal_force >
145 </CoordinateActuator >
146 <CoordinateActuator name="knee_angle_r_beta_reserve">
147 <min_control >-Inf</min_control >
148 <max_control >Inf</max_control >
149 <coordinate >knee_angle_r_beta </coordinate >
150 <optimal_force >1</optimal_force >
151 </CoordinateActuator >
152 <CoordinateActuator name="knee_angle_l_beta_reserve">
153 <min_control >-Inf</min_control >
154 <max_control >Inf</max_control >
155 <coordinate >knee_angle_l_beta </coordinate >
156 <optimal_force >1</optimal_force >
157 </CoordinateActuator >
158 <CoordinateActuator name="med_cond_adduction_r_reserve">
159 <min_control >-Inf</min_control >
160 <max_control >Inf</max_control >
161 <coordinate >med_cond_adduction_r </coordinate >
162 <optimal_force >1</optimal_force >
163 </CoordinateActuator >
164 <CoordinateActuator name="med_cond_adduction_l_reserve">
165 <min_control >-Inf</min_control >
166 <max_control >Inf</max_control >
167 <coordinate >med_cond_adduction_l </coordinate >
168 <optimal_force >1</optimal_force >
169 </CoordinateActuator >
170 <CoordinateActuator name="lat_cond_adduction_r_reserve">
171 <min_control >-Inf</min_control >
172 <max_control >Inf</max_control >
173 <coordinate >lat_cond_adduction_r </coordinate >
174 <optimal_force >1</optimal_force >
175 </CoordinateActuator >
176 <CoordinateActuator name="lat_cond_adduction_l_reserve">
177 <min_control >-Inf</min_control >
178 <max_control >Inf</max_control >
179 <coordinate >lat_cond_adduction_l </coordinate >
180 <optimal_force >1</optimal_force >
181 </CoordinateActuator >
182 % ------------------------------------------------------------
183 </objects >
184 </ForceSet >
185 </OpenSimDocument >
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G
Reserve actuator and other muscle

activations

Figure G.1: Mean ± 1SD of the reserve actuator activations for ten consecutive crank cycles. For subject Gatti P05, increased
reserve actuator activations are observed, particularly during the upstroke phase. Subject P11, P03, P04, P08 reserve actuators

show low and stable activations.
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Figure G.2: Model-predicted Iliopsoas activation across five participants from the online dataset. High activations are observed
in multiple cases, especially during the upstroke phase.



H
Pedal reaction force estimation

This appendix outlines a detailed description on the methods used to try to estimate the Pedal Reac-
tion Forces (PRF). These forces represent the PRF that we could not measure due to broken sensors
during the experiments (Appendix D). A detailed description of the estimation process is provided for
transparency and reproducibility purposes.

H.1. Available data and constraints
• Marker-based motion capture (joint angles, marker positions)
• Average Cadence and Power Output
• Mesh file of crank body
• Mesh file of bike frame body

H.1.1. Adding crank + bike frame

Figure H.1: Incorporation of the crank and frame bodies into the OpenSim musculoskeletal model. From left to right: Static
cycling position model, Static cycling position with feet constrained to crank body, Static cycling body with feet constraint to crank

body and crank body attached to frame body, which is locked with respect to the ground.
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H.1.2. PointOnLineConstraints between the feet and the pedals
The following PointOnLine constraints were added to the ConstraintsSet of the modified musculoskeletal
model.

Listing H.1: PointOnLineConstraint setup for the left and the right foot-pedal interaction
1 <PointOnLineConstraint name="constraintR">
2 <!--Path to a Component that satisfies the Socket 'line_body' of type PhysicalFrame.-->
3 <socket_line_body>/bodyset/bracket</socket_line_body>
4 <!--Path to a Component that satisfies the Socket 'follower_body' of type PhysicalFrame.--

>
5 <socket_follower_body>/bodyset/toes_r</socket_follower_body>
6 <!--Direction of the line specified in the line body frame.-->
7 <line_direction_vec>0 0 1</line_direction_vec>
8 <!--The default point on the line specified in the line body frame.-->
9 <point_on_line>0 0.14999999999999999 -0.17249999999999999</point_on_line>
10 <!--The point on (and specified in) the follower body constrained to the line.-->
11 <point_on_follower> -0.050000000000000003 0 0</point_on_follower>
12 </PointOnLineConstraint>
13

14 <PointOnLineConstraint name="constraintL">
15 <!--Path to a Component that satisfies the Socket 'line_body' of type PhysicalFrame.-->
16 <socket_line_body>/bodyset/bracket</socket_line_body>
17 <!--Path to a Component that satisfies the Socket 'follower_body' of type PhysicalFrame.--

>
18 <socket_follower_body>/bodyset/toes_l</socket_follower_body>
19 <!--Direction of the line specified in the line body frame.-->
20 <line_direction_vec>0 0 1</line_direction_vec>
21 <!--The default point on the line specified in the line body frame.-->
22 <point_on_line>0 -0.157 0.17249999999999999</point_on_line>
23 <!--The point on (and specified in) the follower body constrained to the line.-->
24 <point_on_follower> -0.050000000000000003 0 0</point_on_follower>
25 </PointOnLineConstraint>
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H.1.3. Topology overview

(a) Topology with crank and joint

(b) Topology with bike frame body, crank and joints

Figure H.2: Comparison of topologies
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H.2. Attempted approaches
H.2.1. Static optimisation
A crank body and a frame body were added to the musculoskeletal model (Figure H.2). The objective
was to get static optimisation (SO) running with the two PointOnLine constraints between the feet and
the pedals enforced (Listing H.1). During the application of SO in OpenSim, two recurring errors were
observed:

1. Muscle activations reached or approached their maximum of 1, indicating that the muscles were
not strong enough to produce the required joint torques.

2. Acceleration-level constraint violations occurred in constrained coordinates.

The first issue is straightforward to resolve by increasing the maximal isometric force of the muscles.
This would allow the optimisation problem to converge, though at the cost of physiological realism. The
second issue, however, is more fundamental.

SO attempts to minimize muscle activation while tracking both marker positions and coordinate acceler-
ations. These accelerations are computed as the second derivative of the marker trajectories obtained
from Inverse Kinematics (IK). When no constraints are active in the model, this generally works well.
In that case, the solver is able to track both markers and accelerations rather well (normal constraint
violation = ±10e−13).

However, once the PointOnLine constraints are introduced, the optimisation problem becomes over-
constrained. The solver is now pulled in three directions: matching marker trajectories, matching coor-
dinate accelerations, and satisfying constraints.

The root of the problem lies in how accelerations are derived. Because SO calculates coordinate ac-
celerations by differentiating marker positions, any minor error in the marker trajectories gets amplified.
This is particularly problematic for coordinates involved in the constraints (such as ankle_angle_r and
ankle_angle_l), where even small mismatches in marker data lead to large discrepancies in the esti-
mated accelerations.

Even though constraints are defined in the model, SO does not strictly enforce them. That is, it does
not solve them as hard equality constraints within the optimisation process. Instead, it operates under
the assumption that the kinematics already satisfy the constraints reasonably well, and continues with
its optimisation. In practice, this means that SO seems to try to respect the constraints, but lacks the
mechanism to actively enforce them. This leads to instability when the constraints, marker data, and
computed accelerations are even slightly inconsistent. This is likely what caused the optimisation to fail
at each time frame.

Reducing the assembly tolerance (e.g. from 10−5 to 10−3) was tested in an attempt to alleviate the issue,
but this did not prevent SO from failing.

H.2.2. Computed Muscle Control
Computed Muscle Control (CMC) was used as an alternative to SO. Unlike SO, CMC does attempt to
actively satisfy kinematic constraints during the simulation. Additionally, CMC is more robust to incon-
sistencies in the Inverse Kinematics (IK) solution that often cause SO to fail.

Different from SO, which operates on a frame-by-frame basis, CMC performs a forward simulation that
generates a continuous, muscle-driven motion. It accounts for muscle activation dynamics and tendon
compliance, which makes it more physiologically accurate, but also more complex and computationally
expensive.

An important benefit of CMC is the <use_fast_optimisation_target> option, which was set to false
in this case. This setting allowed the solver to approximate desired accelerations rather than strictly
enforcing them, providing greater robustness in constrained models.

Despite these advantages, CMC also failed to produce a stable solution. The solver also struggled
to simultaneously track the desired kinematics, respect the constraints, and enforce realistic muscle
activation dynamics. This is likely due to the model being overconstrained and the experiments being
conducted inconsistently (different bike/saddle/handlebar locations).
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To illustrate this, the pelvic translations were plotted for three different motion files, see Figure H.6, H.7
and H.8.

The figure shows large differences in pelvis translations across three cases:

1. IK solution without any crank or PointOnLine constraints (IK solution as used in the rest of the
study).

2. IK solution with the crank body and the two PointOnLine constraints enforced.
3. CMC solution with the crank body and the two PointOnLine constraints enforced.

These deviations highlight how the body is forced to compensate for inconsistencies between the kine-
matics, constraints, and muscle dynamics.

• Figure H.3 (Pelvis Tilt): The blue IK solution remains the most consistent and physiologically
reasonable across the full cycle. It shows regular oscillations with a clear and stable amplitude.
The orange (IK with crank and constraints) and green (CMC with constraints) solutions follow a
broadly similar waveform but have a reduced amplitude and tend to lean more backwards.

These differences suggest that the added constraints restrict natural pelvis tilt and introduce coor-
dination errors not present in the reference model.

• Figure H.4 (Pelvis List): Pelvis list should oscillate around zero during cycling to reflect balanced
lateral motion. The blue IK solution does this correctly. The orange and green lines show a strong
positive bias, with the pelvis consistently hanging to the right. This is likely due to scaling errors
or joint placement mismatches—making it harder for the model to reach the right pedal. As a
result, the pelvis tilts further to compensate, and the constraints force it into this offset. It’s not
physiological, and it refers to problems with how the constraints are set up.

• Figure H.5 (Pelvis Rotation): The constrained IK solution exaggerates the movement slightly,
while the CMC trace swings more widely and erratically.

• Figure H.6 (Vertical Translation, pelvis_ty): The vertical position of the pelvis should remain
stable. The IK solutions achieves this. The CMC solution shows exaggerated vertical motion.
This suggests that the pelvis-saddle interaction is not being enforced properly in forward dynamics.
Constraints are either too loose or ineffective.

• Figure H.7 (Medial-Lateral Translation, pelvis_tx): The blue IK model holds the pelvis close to
the midline, as it should, because the bike was place at 0 w.r.t. the ground frame. The orange
solution introduces minor drift. The green CMC trace shows wide side-to-side swings that are not
realistic.

• Figure H.8 (Anterior-Posterior Translation, pelvis_tz): The IK outputs maintains a steady po-
sition, as expected for anterior-posterior movement during seated cycling. The constrained IK
solution does show an unnatural double-peak pattern.

These comparisons illustrate that while CMC roughly follows the motion derived from IK, it adds sub-
stantial movement in directions that are otherwise constrained or suppressed in the IK solutions. This
behavior confirms that CMC introduces more natural but less restricted dynamics, which can become
problematic if the model lacks proper constraint definition or mechanical grounding.
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Figure H.3: Comparison of pelvis tilt over time between IK and CMC solutions.

Figure H.4: Comparison of pelvis list over time between IK and CMC solutions.

Figure H.5: Comparison of pelvis rotation over time between IK and CMC solutions.
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Figure H.6: Comparison of vertical pelvis translation (pelvis_ty) over time between IK and CMC solutions.

Figure H.7: Comparison of medial-lateral pelvis translation (pelvis_tx) over time between IK and CMC solutions.

Figure H.8: Comparison of anterior-posterior pelvis translation (pelvis_tz) over time between IK and CMC solutions.

Incorporation of external torque
To address the instability and solver failures, we explored adding an external torque to the crank. Initially,
we assumed this would not be necessary, since the crank is constrained and we hypothesized that
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the model should be able to simulate the motion without an explicit torque input. However, adding
an external torque becomes more intuitive when considering the nature of the crank setup. Without
an actual reaction force from the pedal, the legs are effectively floating during the downward phase
of the motion. The model compensates by generating large co-contractions to create artificial stability,
resulting in unrealistic muscle forces and control instability. With Computed Muscle Control (CMC), a
torque representing the resistance of the system can be added, which results in a reaction force at the
foot-pedal joint. These reaction forces represent the missing pedal reaction forces. We could estimate
the torque with the average power output (Equation H.1).

τ =
P

ω
=

100

8.38
≈ 11.93Nm (H.1)

External torque file
As a first approach, we used the ExternalForce object to apply torque data from a .mot file. This file
was linked through an XML configuration and referenced in the CMC tool via the external loads setting
(Listing H.2).

Listing H.2: External torque setup using ExternalForce
1 <?xml version="1.0" encoding="UTF-8"?>
2 <OpenSimDocument Version="30000">
3 <InverseDynamicsTool name="both_pedal_forces">
4 <objects>
5 <ExternalForce name="crank">
6 <torque_identifier>right_torque_</torque_identifier>
7 <data_source_name>pedal_torque.mot</data_source_name>
8 </ExternalForce>
9 </objects>
10 <groups/>
11 <datafile>pedal_torque.mot</datafile>
12 <external_loads_model_kinematics_file/>
13 <lowpass_cutoff_frequency_for_load_kinematics>6</

lowpass_cutoff_frequency_for_load_kinematics>
14 </InverseDynamicsTool>
15 </OpenSimDocument>

The torque data in this file was based on an average estimate derived from cycling power. Despite this
straightforward setup, no visible effect was observed in either Inverse Dynamics or CMC.

Prescribed force addition to the model
Next, we tried a more direct method using the PrescribedForce object in the OpenSim model (List-
ing H.3). This should, in theory, always be enforced during the simulation. A constant torque of
−11.93Nm (Equation H.1) was applied to the crank in the z-direction. This torque was applied con-
sistently over time and was not tied to a time-varying signal. The expected result was improved stability
in the model and more realistic muscle behavior. Unfortunately, the torque had no measurable effect in
either ID or CMC.

Listing H.3: PrescribedForce setup for crank torque
1 <PrescribedForce name="crank_torque">
2 <applied_to_body>crank</applied_to_body>
3 <point>0 0 0</point>
4 <force_expressed_in_body>crank</force_expressed_in_body>
5 <point_expressed_in_body>crank</point_expressed_in_body>
6

7 <force_functions>
8 <Constant name="fx"><value>0</value></Constant>
9 <Constant name="fy"><value>0</value></Constant>
10 <Constant name="fz"><value>0</value></Constant>
11 </force_functions>
12

13 <torque_functions>
14 <Constant name="tx"><value>0</value></Constant>
15 <Constant name="ty"><value>0</value></Constant>
16 <Constant name="tz"><value>-11.93</value></Constant>
17 </torque_functions>
18 </PrescribedForce>
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A possible explanation is that the crank is not mechanically connected to the feet via joints, but in this
setup only through constraints. In OpenSim, constraints might not create a valid force transmission path
like joints do. As a result, the torque cannot propagate up the kinetic chain to affect the foot or knee.
For this to work, a physical connection would be needed (e.g., a pin or weld joint), but adding such a
joint would introduce a closed kinematic loop. This is something OpenSim does not support and would
require a fundamental restructuring of the model.

Furthermore, a welded connection would also be physically unrealistic, as the foot naturally moves
relative to the pedal during cycling.

Additionally, another limitation is that using only kinematics to estimate the PRF gives the minimum
kinetics needed to produce the motion, without capturing shear forces or other losses during propulsion.
This can give a misleading picture of how forces act on the knee joint. Because of these issues, this
method is unlikely to be useful for further analysis.

In conclusion, although adding an external or prescribed torque seemed like the most direct and logical
fix, neither method solved the instability. The problem appears to lie in themismatch between themodel’s
structure and its ability to transfer external torques to the legs. Fixing this would require restructuring
the models topology entirely.

H.3. Recommendations
If, for any reason, PRF need to be estimated through musculoskeletal modelling rather than measured
directly, the following steps are recommended.

Naturally, using instrumented pedals capable of measuring 6-DOF forces remains the most reliable and
accurate method for capturing PRFs. However, when such equipment is unavailable, a simulation-based
approach can be applied, similar to how it is tried in this study, but with the following considerations:

1. Use CMC. Rather than SO, CMC better handles dynamic constraints and muscle activation dy-
namics. CMC offers more stability and realism in muscle-driven simulations, especially when con-
straints are involved.

2. Reconsider the connection between feet and pedals. In order for external torques or reaction
forces to propagate through the kinetic chain, the feet might need to be mechanically connected
to the pedals using a joint (e.g., a pin joint). This requires rebuilding the model topology to avoid
a closed-loop system and to maintain a valid kinematic chain.

3. Improve motion capture setup. Future experiments should include markers on the bike (frame,
crank, and pedals) to accurately define the position and orientation of the bike in space. In addition,
the height of the bike frame, as well as the vertical and horizontal position of the handlebar and
the saddle, should be measured and documented accurately.

4. Machine learning model approach. Finally, recent research proved that Machine Learning mod-
els are able to predict PRF, using only the crank angle, cadence, power output, and participants’
weight and height at each time frame as input [123].

These improvements are necessary to reconstruct the experimental setup and ensure valid simulation
results. In this project, these data were unfortunately not captured, as the decision to estimate PRFs
using musculoskeletal modelling was made at the last moment.
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Kinematics

(a) Hip flexion angles (right leg) (b) Knee flexion angles (right leg)

Figure I.1: Mean hip and knee flexion angles of the right leg over one crank cycle (0°–360°) for five participants, averaged
across 10 crank cycles. Both joints show a cyclic flexion-extension pattern. Participant P03 stands out with distinctly lower hip

flexion throughout the cycle, while knee flexion shows consistent trends but varying peak angles across individuals.
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Kinetics

J.1. Joint moments

(a) Hip flexion moment. Flexion moment is positive. (b) Knee flexion moment. Flexion moment is positive.

(c) Ankle flexion moment. Flexion moment is positive. (d) Hip abduction moment. Abduction moment is positive (frontal
plane).

Figure J.1: Joint moments (mean over 10 crank cycles) for five participants across one crank revolution (0°–360°). Data
includes (a) hip flexion, (b) knee flexion, (c) ankle flexion, and (d) hip abduction moments. All moments were estimated using

OpenSim inverse dynamics based on filtered kinematics (6 Hz) and pedal reaction force data.
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J.2. Pedal reaction forces

(a) Tangential PRF (Y direction): positive forces act in the direction of crank rotation, contributing to forward crank
torque.

(b) Radial PRF (X direction): positive forces act outward along the
crank arm, away from the crank axis; negative forces act inward.

(c) Mediolateral PRF (Z direction): positive forces act laterally (away
from the bike midline); negative forces act medially (toward the

midline).

Figure J.2: Mean pedal reaction forces (PRF over one crank cycle (0°–360°) for five participants, averaged over 10 cycles. (a)
Tangential forces dominate the contribution to crank torque and show the most pronounced inter-individual differences, primarily
due to variations in power output and cadence. (b) Radial and (c) mediolateral forces provide insight into additional loading

components that do not directly contribute to crank rotation but influence joint and muscle loading.
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Comparison of OpenSim workflows

Figure K.1: Comparison of the OpenSim modelling workflows used by Clancy et al. and the current study. The original workflow
employed a residual reduction algorithm (RRA) and motion optimisation (Moco) to refine kinematics and estimate joint reaction
forces (JRF), while the current study uses a streamlined pipeline combining inverse kinematics (IK), static optimisation (SO), and
direct JRF estimation. The adapted workflow enables compartment-specific force analysis while maintaining alignment with the

original validation framework.
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