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SUMMARY 

Introduction and research approach 
The outbreak of the COVID-19 pandemic and the resulting corona crisis has had a profound impact on 

mobility in the Netherlands and in the entire world. The measures authorities implemented against 

the virus since March 2020 significantly disrupted activity-travel behavior. Companies have been 

advised to let their employees work from home (WFH) as much as possible. Education has been held 

online as much as it is feasible. Sectors such as retail and horeca have been constantly changing their 

opening times and even providing online and delivery services to halt the spread of the virus. However, 

sectors considered essential cannot let their workforce out of their workplaces, for example the food 

and healthcare sectors. Consequently, different sectors take different measures, and a radical change 

in mobility patterns has been observed.  

The changes in activity decisions (e.g., activity type, duration), travel decisions (e.g., mode, 

accompanying persons), and interacting activity/travel decisions (e.g., departure time, activity start 

time, location) due to the COVID-19 pandemic can significantly change the way the mobility system 

works. Therefore, it is essential to review policies related to the pandemic and mobility. Those policies 

must ensure smooth traffic flow between regions, low congestion levels within cities, proper modal 

usage, and, most importantly, safety against the spread of the virus. To make appropriate adjustments 

in policies, the expected effects in the system should be investigated and their processes understood. 

Travel demand models can be useful tools for estimating, exploring, and understanding these effects. 

This research focuses on predicting, modeling, and analyzing changes in the activity-travel behavior of 

individuals in the Rotterdam-The Hague Metropolitan Area (MRDH in Dutch), the Netherlands, during 

the COVID-19 pandemic and assess their effects on mobility. 

Nowadays, transport policy questions have become more complex and require a wider range of 

responses with higher levels of detail (Castiglione et al., 2014). For that reason, activity-based models 

(ABMs), which are the last generation and most sophisticated travel demand models, have become 

more widely used in practice because they work at a disaggregate person-level rather than a more 

aggregate zone-level such as the trip-based models. In this study, it is decided to use the activity-based 

modeling approach to investigate the effects of changes in activity-travel behavior on mobility. That 

said, the primary question to be answered by this research is the following: 

What are the effects of the changes in activity-travel behavior during events such as COVID-19 on 

mobility in the Rotterdam-The Hague Metropolitan Area, the Netherlands, and how can these effects 

be estimated, predicted, and analyzed through activity-based modeling? 

The first step in answering this question is to conduct a literature review on the topic to identify the 

activity-travel behavior changes that may be expected due to the COVID-19 pandemic. From this 

review, three major impacts of COVID-19 on activity-travel behavior are pointed out: (1) a shift from 

onsite to online activities, (2) re-spacing and re-timing of travel patterns, and (3) a modal shift towards 

the car and active modes. Second, research is done to learn and investigate how ABMs can be used 

(and improved) to better explain changes in activity-travel behavior in events such as the COVID-19 

pandemic. From this review, it is concluded that the main improvements in ABMs should be: (1) the 

incorporation of in-home activity planning and (2) the collection and usage of more detailed data 

about planning and scheduling of in-home activities and out-home activity frequency. 
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The next step in this research is the development of an activity-based modeling framework that is 

capable of incorporating the abovementioned improvements. This framework is developed following 

the principles of FEATHERS, a travel demand ABM developed by Bellemans & Kochan (2016). The main 

goal of this framework is to provide objective assessments of changes in activity-travel behavior during 

emergency situations by simulating what-if scenarios that make predictions in terms of journeys and 

mobility density, given certain assumptions about aspects that play a role in such emergency 

situations. In this study, however, the framework is used to simulate stages of the COVID-19 pandemic 

that already happened. This is done to validate the framework's performance by comparing its 

outcomes with data counts and outcomes of other studies and sources. 

It is important to state that the modeling framework developed in this study is not a full ABM. To be 

used, it requires some outputs of ABMs as inputs. For instance, it uses as a starting point the schedules 

generated by ABMs to estimate new schedules for the population by considering other types of data 

such as the weekly frequency at which agents perform different activities and modal shifts during 

emergency situations (e.g. during the COVID-19 pandemic). 

Model design 
An overview of the modular structure of the modeling framework is presented in Figure S-1. In total, 

the model has four data inputs, named synthetic population, activity frequency values, modal shift 

values and baseline schedules. While the synthetic population and the baseline schedules are ready 

inputs that come from the outputs of existing ABMs, the activity frequency values and modal shift 

values are inputs containing activity-travel behavior data for the stages/scenarios in analysis. 

To simulate the activity-travel behavior of agents, the model takes into account different sets of 

variables and attributes. For instance, each agent in the population can choose between a set of six 

activity types to perform and seven transport modes to travel. Thus, different background 

characteristics such as age, gender and level of education are used to estimate these decisions for 

different agent types. In this study, the work sector of the population is introduced, which was not 

used before by FEATHERS. The work sector attribute helps to estimate which agents would work on-

site and which work from home. 

The modeling framework is broken down into three steps, namely Activity module, Modal shift 

module and Schedules adjustment module. First, the Activity module calculates the number of agents 

that do out-home activities taking into account the activity and agent types. For example, for a certain 

population, it estimates how many people are going shopping and how many people are not. That is 

done for all the different combinations of activity and agent types. Second, the Modal shift module 

estimates how many trips are performed in a certain scenario taking into account the transport modes 

used to travel and a modal shift between these modes. Finally, the Schedules adjustment module re-

estimates the daily schedules of the population based on the estimations of the two previous modules. 

The outputs of the model are new schedules, which are the baseline schedules but with adjustments. 

They represent the daily activity-diary of the population considering new activity-travel behavior. 

From these new schedules, which represent different scenarios, indicators are generated to make 

comparisons between scenarios and the baseline scenario.  
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Figure S-1 - Schematic overview of the modeling framework components, their functionalities, and their inputs 

MRDH case study & results 
The modeling framework is applied to a case study for the Rotterdam-The Hague Metropolitan Area 

(MRDH), the Netherlands. The motivation to use this region as a case study is because TNO, one of 

the companies collaborating with this work, has several ongoing projects in this region and the ABM 

FEATHERS was already used to estimate schedules for the MRDH population. The case study 

developed has as objective the estimation of changes in activity-travel behavior of travelers in the 

MRDH during different stages of the COVID-19 pandemic and the assessment of the effects of such 

changes on mobility.  

In total, four stages of the COVID-19 pandemic are investigated and compared to a baseline stage, 

which is a period before the pandemic. These stages are presented in Table 1. The reason to select 

these stages is that they represent different moments of the COVID-19 pandemic and the strength of 

the measures applied against it, which are shown in Table 1. 

Table 1 - Stages of COVID-19 analyzed in the case study 

Stage Period Description 
Workplace closure 

measures* 
School closure 

measures* 
Stay-at-home 
restrictions* 

Baseline Sep-19 Normal behavior No measures No measures No measures 

1 Mar-20 Intelligent lockdown Required for some Required (all levels) 
Required (except 

essentials) 

2 Jul-20 Summer Relaxations Required for some Recommended Recommended 

3 Oct-20 Semi Lockdown Required for some Recommended Recommended 

4 Jan-21 Strict lockdown 
Required for all but 

key workers 
Required (all levels) 

Required (except 
essentials) 

*Source: COVID-19 Stringency Index in the Netherlands (Ritchie et al., 2021) 
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From the model outcomes, several insights about the impacts of COVID-19 on mobility in the MRDH 

are derived. The main insights of the case study are: 

• During the pandemic, on average, there are 68% fewer tours compared to before the 

pandemic. The most affected age groups are elders (>65) and youngers (25-45). 

• Home-Other-Home is the most frequent tour in the schedules, and walking/touring is the 

most preferred activity, especially during the lockdowns. 

• A positive movement towards active modes is observed for all stages. On average, the share 

of walking increased 7.35% compared to before the pandemic. 

• During the pandemic, more than half of the MRDH population is a fully home-stayer, which is 

six times more than before the pandemic. 

• During the pandemic, on average, there are 58% fewer work trips compared to before the 

pandemic. In the strict lockdown (stage 4), there are 80% fewer work trips. 

• The total commuting traveled distance decreased around 58%. 

• Active commuting is more attractive than public transport or car. On average, its share 

increased more than 50% compared to before the pandemic. 

• More than 60% of onsite workers worked from home. For essential sectors such as the 

healthcare sector, the number of on-site workers is the highest for all stages (between 74% 

and 99%) while for non-essential sectors such as the office sector the number of on-site 

workers is the lowest (between 2% and 35%). 

Conclusions 
The findings of this research are used to answer the primary research question. First, the main factors 

that cause changes in activity-travel behavior were identified. These are the fear of infection and the 

policy measures regarding the closure of workplaces and schools, and stay-at-home restrictions. 

Second, the activity-travel behavior expected changes were identified. These are the shift from onsite 

to online activities, the re-spacing and re-timing of travel patterns, and the modal shift towards the 

car and active modes. Third, a literature review on activity-based modeling identified necessary 

improvements in ABMs to better model activity-travel behavior in emergency situations such as the 

COVID-19 pandemic. These are the incorporation of in-home activity planning and the collection and 

usage of more detailed data about planning and scheduling of in-home activities and out-home activity 

frequency. 

One of the outcomes of this research is the development of an activity-based travel demand modeling 

framework which has been used in this study to analyze the effects of changes in activity-travel 

behavior on mobility in a case study for the MRDH in the Netherlands. The modeling framework 

provides an innovative approach to study the impacts of changes in activity-travel behavior caused by 

emergency situations such as the COVID-19 pandemic in a disaggregated manner. It combines the 

outputs of ABMs and a mix of aggregated and disaggregated data of changes in in-home and out-home 

activity frequencies and re-estimates the daily schedule of individuals considering factors and 

attributes that were not considered before, such as the weekly frequency at which agents do different 

activities and the sector where agents work. 
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With the outcomes of the case study simulations, insights about the effects on mobility were identified 

and compared to real data counts and results of other studies. The conclusion is that the vast majority 

of the model outcomes proved to be in line with the results of other sources.  

From a theoretical point of view, the modulation of the modeling framework seems to be ideal, but 

the type of data needed is hard to obtain. Because of that, some of the input data used in the study 

case (e.g. modal shift values) are aggregated data, and this sometimes distorted the disaggregated 

outcomes. However, this imposed limited restrictions when simulating the different case study stages. 

Recommendations 
Some key recommendations emerge from this research. Regarding the modeling framework and the 

data inputs, three main improvements are recommended. The first improvement is to enable 

increment the number of trips per schedule. As it is now, the model is limited to only remove trips 

from the baseline schedules. This limits the investigation of what-if and future scenarios, for which it 

is important to re-estimate the schedules of individuals’ including the addition of new trips. The 

second improvement is to collect more data about in-home and activity frequency to better estimate 

changes in the daily schedule of agents. The third improvement is to collect more disaggregated data 

about modal shifts while considering different types of agents and the motive for traveling. 

Concerning further research, it would be beneficial to assign the results of the case study to the V-

MRDH 2.0 network. That linkage will enable to re-estimate individuals’ routes based on feedback with 

network constraints, and will also generate more mobility indicators such as traffic flows and levels of 

congestion. Another recommendation is to use the framework to simulate what-if and future 

scenarios concerning the COVID-19 pandemic. For instance, the model can be used to predict mobility 

changes when a particular sector is fully opened/closed. To do that, one should run the model 

considering different sets of input assumptions such as the activity frequency and the modal shift 

values. Those inputs can be estimated using different sets of policy measures, for instance, using the 

COVID-19 stringency indexes which are estimated by Ritchie et al. (2021). 
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1. INTRODUCTION 

1.1. MOTIVATION 
The outbreak of the COVID-19 pandemic and the resulting corona crisis has had a profound impact on 

mobility in the Netherlands and in the entire world. The first measures authorities implemented 

against the virus around March 2020 and all those measures that followed significantly disrupted 

activity-travel behavior. Companies have been advised to let their employees work from home (WFH) 

as much as possible. Education has been being held online as much as is feasible. Sectors such as retail 

and horeca have been constantly changing their opening times and even providing online and delivery 

services to stop the spread of the virus. However, sectors considered essential cannot let their 

workforce out of their workplaces, for example the food and healthcare sectors. Consequently, 

different sectors take different measures, and a radical change in mobility patterns has been observed. 

This report focuses on predicting, modeling and analyzing changes in the activity-travel behavior of 

individuals in the Netherlands during different stages of the corona virus crisis and assess their effects 

on mobility. 

The changes in activity decisions (e.g., activity type, duration), travel decisions (e.g., mode, 

accompanying persons), and interacting activity/travel decisions (e.g., departure time, activity start 

time, location) can change the way the mobility system works. Therefore, it is essential to review 

policies related to mobility. Those policies must ensure smooth traffic flow between regions, low 

congestion levels within cities, proper modal usage, and, most importantly, safety against the spread 

of the virus. To make appropriate adjustments in policies, the expected effects in the system should 

be investigated and their processes understood. Models can be useful tools for estimating, exploring, 

and understanding these effects.    

Researchers worldwide have been using different types of models to analyze the impacts of COVID-

19 on mobility. Epidemiological models have been used to investigate how the virus may spread in 

public transport systems (Krishnakumari & Cats, 2020). Metapopulation disease transmission models 

have been used to project the global impact of travel limitations on the spread of the pandemic 

(Chinazzi et al., 2020). Aggregated travel demand models have been used to explore and forecast the 

consequences of the pandemic on road traffic (Knoope & Francke, 2020) and public transport usage 

(Bakker et al., 2020). However, up to now, besides the study of Müller et al. (2021), no other studies 

modeling the impact of COVID-19 on mobility on an individual level have been published.  

Therefore, it is of interest to investigate the impact of COVID-19 measures and changed attitudes of 

different groups of people, and over different periods or stages. With this, it is possible to understand 

travel behavior considering characteristics and aspects that cannot be seen in macroscopic analysis 

and that change over time. ABMs (activity-based models) are disaggregated travel demand models 

that can model individual behavior according to specific characteristics and conditions, and that can 

help make a good estimation of the changes in activity-travel patterns and traffic flows.  

The main strength of ABMs is that they explain people's movements by the activities they undertake. 

That is consistently simulated per individual, considering preferences and combinations of motives 

and modes of transport within a travel chain (de Romph et al., 2019). These features make it possible 

to analyze, for instance, different scenarios about how the mobility of individuals from particular 

working sectors is affected during the pandemic or how frequently different types of travelers go 

shopping compared to the pre-pandemic period. These scenarios can be chosen as extreme cases and 

vary in different aspects, such as the change towards working from home within an entire industry 
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sector or when shops function with limited capacity and narrower opening hours. An ABM model can 

provide insights in disaggregated aspects such as rates of trips and tours per activity and modal split 

and in more aggregated aspects such as link volumes and levels of congestion if connected to a 

transport network. The concept, strengths and weaknesses of travel demand models, particularly of 

ABMs, are presented and discussed in detail in section 2.2. 

1.2. RESEARCH PROBLEM 
As the pandemic and associated policy measures strongly influence the way people travel, it is 

important to understand the effects of COVID-19 on passenger mobility and what actions should policy 

makers take to mitigate its effects.  

The learning cycle developed by the Netherlands Organisation for Applied Scientific Research (TNO, 

2020) and presented in Figure 1 can be used to investigate the impacts of COVID-19 on mobility by 

learning from experience. Measures such as physical and social distancing, lockdowns and curfews are 

constantly being implemented, and they are continually being strengthened or relieved based on what 

is observed (Ritchie et al., 2021). As a consequence, institutions and consultancy firms are continually 

collecting data to update information such as working conditions, the frequency of onsite and online 

activities, and also mobility pattern changes (Cats & Hoogendoorn, 2020). This information then is 

used by policymakers to adjust policies and make interventions whenever necessary. Then, as the 

figure suggests, the next step in this cycle would be to use models capable of predicting the impact of 

travel behavior changes on the transportation system and use its outcomes to help making informed 

decisions (TNO, 2020). 

The COVID-19 pandemic is not the first time that a public health crisis has had a wide impact on the 

traffic system. For example, the SARS (Severe Acute Respiratory Syndrome) epidemic in 2003, which 

first spread in China, caused more than 50% of transit ridership reduction in major Chinese cities 

(Wang et al., 2020). However, tools capable of modeling individuals in such a level of detail were 

relatively new by that time, and scenarios such as the corona crisis were never investigated in such a 

way before.  

 

Figure 1-1 - Learning cycle of actions taken against COVID-19 pandemic (Source: TNO, 2020) 
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If the outcomes of such a situation cannot be investigated and understood, society will be severely 

impacted when a crisis such as the COVID-19 pandemic occurs again. Using models capable of 

investigating the impacts of pandemics on mobility can help to make adjustments in policies and to 

monitor the effectiveness of measures such as lockdowns and physical distancing. Therefore, this 

study aims to provide more information about the impacts of COVID-19 on mobility and to contribute 

to the academic research of the activity-based modeling approach.  

1.3. RESEARCH OBJECTIVE AND SCOPE 
Given the motivations stated in section 1.1 and the research problem of section 1.2, the objective of 

this research is to explore changes in activity-travel behavior during the COVID-19 pandemic and to 

assess their effects on mobility by using the activity-based travel modeling approach. 

Due to resource constraints, in this research, no existing ABMs will be used to do estimations. Instead, 

a (travel demand) modeling framework which follows the principles of activity-based modeling will be 

developed. This framework will be used to do estimations for a case study in the Rotterdam-The Hague 

metropolitan area (MRDH), the Netherlands.   

A common procedure in travel demand modeling is to assign the outputs of ABMs to a network to 

estimate indicators such as flow patterns and levels of congestion. However, due to time constraints, 

network assignment is out of the scope of this study. Hence, this study focuses only on modeling and 

analyzing travel demand.  

1.4. RESEARCH QUESTIONS 
To achieve the objective of this research, the following questions are defined. The primary question 

is: 

What are the effects of the changes in activity-travel behavior during events such as COVID-19 on 

mobility in the Rotterdam-The Hague Metropolitan Area, the Netherlands, and how can these effects 

be estimated, predicted, and analyzed through activity-based modeling? 

The secondary questions are: 

a) What activity-travel behavior changes may be expected due to the COVID-19 pandemic? 
b) How can activity-based models be used (and improved) to better explain changes in activity-

travel behavior in events such as COVID-19? 
c) What effects can be expected on mobility during the different stages of the pandemic and 

what factors influence these effects?  

d) What is the added value of the modeling framework developed in this study to investigate the 
effects of changes in activity-travel behavior on mobility?  

1.5. RESEARCH APPROACH 
There are six main research steps in this study. Table 2 provides an overview of the research flow 

process, indicating the steps in which each research question is answered. 

In research step 1, theories about activity-travel behavior are explored to investigate the existing 

literature on the factors that influence changes in activity-travel behavior, particularly in the case of 

the COVID-19 pandemic.  
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Table 2 - Research flow overview 

Research step Method Output Referred research question 

1 Investigate how the COVID-19 
pandemic might affect activity-
travel behavior 

Literature study; 
Tracked local and 
international media 

Conceptual framework; 
Travel behavior theory; 
Effects of COVID-19 on 
activity-travel behavior 

a) What activity-travel behavior changes 
may be expected due to the COVID-19 
pandemic? 

2 
Explore activity-travel behavior 
during COVID-19 in the 
Netherlands  

Data exploration; 
exploratory analysis 

Guidelines for 
developing the modeling 
framework; Data for the 
case study; 

 

3 Investigate usage of activity-
based models for the study; find 
resources for modeling 

Literature study; 
Applied research; 
Resources allocation 

Modeling framework 
development 

b) How activity-based models can be used 
(and improved) to better explain changes 
in activity-travel behavior in events such 
as COVID-19? 

4 Estimate the effects of changes 
in activity-travel behavior on 
mobility in the case study area 

Model application; 
Quantitative analysis;             

Quantitative analysis of 
COVID-19 stages 

c) What effects can be expected on 
mobility during the different stages of the 
pandemic and what factors influence 
these effects? 

5 Assess stages’ indicators and 
discuss the results 

Literature study; 
Qualitative analysis;  

Qualitative analysis of 
COVID stages; discussion 
of results based on 
literature and other data 
sources 

What are the effects of the changes in 
activity-travel behavior during events such 
as COVID-19 on mobility in the Rotterdam-
The Hague Metropolitan Area, the 
Netherlands, and how can these effects be 
estimated, predicted, and analyzed 
through activity-based modeling?  

6 Evaluate the performance of 
the model developed. Discuss 
future improvements 

Subjective 
perspective 

Thoughts and 
conclusions about the 
model performance and 
recommendations for 
improvement 

d) What is the added value of the 
modeling framework developed in this 
study to investigate the effects of changes 
in activity-travel behavior on mobility? 

 

In research step 2, exploratory research is carried out to find the type of data that will be used in the 

study. This step is necessary because the type of data provides important guidelines for developing 

the model framework.  

In research step 3, research is done about the principles of activity-based travel demand modeling and 

the usage of ABMs to explore activity-travel behavior changes and their effects on mobility. Then, 

based on the insights of research steps 1, 2, and 3, an activity-based modeling framework is developed.  

In research step 4, the modeling framework is applied for a case study about the impacts of COVID-19 

for different periods in the Netherlands.  

In research step 5, the results of the case study are analyzed and compared to a pre-pandemic period. 

This study refers to existing publications to validate these results. 

Finally, in research step 6 the performance of the modeling framework developed for this study is 

evaluated and recommendations for improvements are provided. 

1.6. READING GUIDE 
This report is organized as follows. Chapter 2 presents a literature review about the impacts of COVID-

19 in activity-travel behavior, as well as an overview of the activity-based modeling approach and their 

usage to assess the impacts of changes in activity-travel behavior on mobility. Chapter 3 provides a 

discussion about the methods chosen to be used in this study. Chapter 4 presents and explains the 

modeling framework developed for this study. Chapter 5 introduces the case study and describes in 

detail the data that is used. Chapter 6 presents and analyzes the results of the case study. Finally, 

chapter 7 answers the research questions, presents recommendations for model improvement and 

policy makers, and suggestions for future research.  
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2. LITERATURE REVIEW 

This chapter presents the literature review. Section 2.1 discusses the potential changes in activity-

travel behavior caused by COVID-19. Section 2.2 gives an overview of the activity-based modeling 

approach. Section 2.3 discusses the usage of ABMs to study activity-travel behavior and discusses 

possible model improvements to better investigate activity-travel behavior in events such as the 

corona virus pandemic. After the discussion of these subjects, section 2.4 defines the scientific gaps 

to be filled by this research. 

2.1. UNDERSTANDING ACTIVITY-TRAVEL BEHAVIOR CHANGES CAUSED BY COVID-19 
As defined by Koppelman & Wen (2000), activity-travel behavior refers to the complicated decision-

making process of travelers before starting and during a trip, regarding choices in travel mode, route, 

departure time, destination, and the type of activity. Throughout the years, activity-travel behavior 

has been extensively studied to tackle urban issues such as social inequalities (Scheiner, 2010) and 

traffic congestions (Kim & Kwan, 2019). However, since 2020 a special focus has been given to COVID-

19 since it has been reshaping activity-travel behavior and drastically changing our daily routines. 

Van Wee (2020) explores the various theories and conceptual models that explain how displacement 

behavior comes about. He also defines important determinants for activity and travel behavior 

changes and uses them to explore the possible long-term influences of COVID-19 on activity-travel 

behavior. He concludes that long-term effects of COVID-19 are likely for a variety of reasons, ranging 

from breaking habitual behavior, changing attitudes, and increasing the commute distance through 

relocation or job changes, to the emergence of a new balance in costs and benefits of travel versus 

online activities.  

In another study exploring the potential travel behavior changes due to the COVID-19 pandemic, 

Oirbans (2021) highlights three major impacts of COVID-19 on travel behavior: a shift from onsite to 

online activities, re-spacing and re-timing of travel patterns, and modal shift towards active modes. 

Indeed, the spread of the COVID-19 virus has resulted in unprecedented measures restricting travel 

and activity participation in many countries (de Vos, 2020). Avoiding social contact and the fear of 

contamination completely changed the number and types of onsite activities people perform and how 

people reach these activities (de Haas et al., 2020). It also led to short-term changes in people’s 

lifestyles, amount of teleworking and teleshopping, mode choice preference, the value of time, among 

others (de Palma & Vosough, 2021). As a result, the demand for travel reduced considerably and a 

significant shift from public transport (PT) to cars and active modes was also noticed (Taale et al., 

2021). 

The COVID-19 crisis has a major impact on working life too. People lost their jobs during the pandemic 

but there were significant changes also for those who continued to work. Various COVID-19 measures 

were taken by companies, but the extent to which this was done differs according to the type of work 

and sector. Field research conducted by Rod et al. (2021) about working conditions during the corona 

crisis in the Netherlands indicates that temporary workers, younger workers, and workers of lower 

and intermediate education levels more often worked on location, while elders and workers of higher 

education levels more often worked from home. Thus, employees in the healthcare, retail, 

construction and transport sectors more often worked on location, while employees in the education 

and office sectors more often worked from home. Those observations indicate that it is important to 

consider different groups of people when studying the impacts of COVID-19 on daily routines. 
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The abovementioned changes in activity-travel behavior and their effects on mobility can be studied 

using travel demand models. Trip-based and tour-based models are travel demand models that have 

been used for a long time to assess mobility changes, but their inability to work at a disaggregate 

person-level is an issue (Castiglione et al., 2014). To analyze changes at a disaggregated level, ABMs 

are the most prominent travel demand models. In the next section, the concepts of travel demand 

models, particularly ABMs, are introduced and their functionalities are explained. 

2.2. UNDERSTANDING ACTIVITY-BASED MODELING 
Activity-based models are the last generation of travel demand models. Travel demand models use 

current travel behavior to predict future travel patterns from a sample of behavior data. In general, 

they assist decision-makers in making informed transportation planning decisions.  

The first generation of travel demand models consists of trip-based models, which use the individual 

person trip as the fundamental unit of analysis and assume that all trips are made independently 

(Castiglione et al., 2014). An ABM differs from a trip-based model because it introduces the notion of 

activity and not trip, and considers tours1 as the unit to model instead of isolated trips (Kochan, 2013). 

Thus, it can represent each person’s activity and travel choices across the entire day, considering the 

types of activities the individual needs to participate in and setting the priorities for scheduling these 

activities (Castiglione et al., 2014). 

The type of travel model that is appropriate to use is dependent on the particular questions being 

asked by decision-makers. Nowadays, transport policy questions became more complex and require 

a wider range of responses with higher levels of detail (Castiglione et al., 2014). For that reason, ABMs 

have become more widely used in practice because they work at a disaggregate person-level rather 

than a more aggregate zone-level such as trip-based models. 

The central focus of the ABMs is whether, when, and where to participate in activities and for how 

long. They are based on behavioral theories about how people make decisions about activity 

participation in the presence of constraints. Because they represent decisions and the resulting 

behavior more realistically, they are often better at representing how policies or other changes will 

affect people’s travel behavior (Castiglione et al., 2014).  

The structure and components of the majority of ABMs are similar, but they may differ according to 

the study purposes. Figure 2-1 depicts the typical component sections of ABMs and these components 

are explained in this section. 

The inputs to develop and apply ABMs include household travel survey information, economic and 

demographic information about the spatial distribution of employment and households, and 

representations of transportation networks (Castiglione et al., 2014). Household travel surveys 

contain detailed information about whether, where, how, and when individuals and households 

travel. For ABMs, all the survey data must be internally consistent across all the individuals in each 

household.  

In the ABM system, households and persons are used as the core decision-making units, making 

choices about key considerations such as the type and amount of activities that occur or the location 

of key destinations such as work or school. Population synthesis is used to create the lists of 

households and persons, or synthetic populations, that are the basis for simulating these choices 

(Castiglione et al., 2014). 

 
1 A tour is a series of trips beginning and ending at home (Kochan, 2013). 
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Long-term choices are choices that influence day-to-day travel behavior but are not made daily, like 

for example the decision of where to live or the possession of a car. These decisions are considered 

because they can significantly influence the availability and attractiveness of different scheduling 

choices that create the daily activity and travel pattern (Castiglione et al., 2014). 

The day activity patterns (DAP) component is where the model system designs vary most widely across 

practical implementations (Castiglione et al., 2014). The common feature of all those designs, 

however, is that the main focus of the day-pattern models is tour generation. Regardless of the exact 

sequence and specification of choices that are simulated, the main output is the number of tours that 

each individual makes for several different activities and tour purposes. 

The tour & trip details component is where the choices of location, time-of-day (ToD), and transport 

mode of trips and tours are estimated. For this component, it is necessary to have information about 

the land use and the transport network (Bellemans & Kochan, 2016). 

 

Figure 2-1 - Typical activity-based model structures (adapted from Castiglione et al., 2014) 

The outputs of an ABM are the so-called predicted schedules. The predicted schedules are sets of 

activity-trip diaries estimated per agent. Figure 2-2 exemplifies the schedule of an individual for a full 

day. In total, there are 5 trips between 4 locations. The arrows represent the trips and the rectangles, 

the locations. The 1st  trip starts at home and has the work location as a destination. Then, after work 

has finished, the 2nd trip is to a shopping mall and after that the 3rd trip is to return home. From home, 

there is a 4th trip to the gym and then a 5th trip returning home. The block on the bottom of the figure 

shows the timeline of the schedule. It shows the activity start time and duration, the trip start time 

and duration, and the transport mode used. The agent uses a different transport mode for the 

different tours. In this example, the agent uses a car for the 1st tour and a bike for the 2nd. 
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Figure 2-2 -  Example of the predicted schedule of an agent 

Once there is a series of predicted schedules that contain activities and trips for all agents in the study 

area, then these outputs can be used to create some indicators such as transport mode shares, 

distances traveled, and the number of trips per person. This is possible because ABMs are always 

embedded within an integrated model system in which there is an interaction between the demand 

model, which predicts the demand for travel, and network models, which predict how this demand 

affects the performance of the transportation network supply (Castiglione et al., 2014). It is also 

possible to determine the patterns of flow and levels of congestion in the network using a traffic 

assignment or to use the outputs as input to other specialized models, such as emissions (Kochan, 

2013) or transport safety models (Bellemans & Kochan, 2016). Thus, it can make any kind of 

segmentation in the population to determine indicators for specific groups of persons. For example, 

it is possible to tabulate commuter rail riders by income, by age, by gender, by the number of trips on 

a tour, or by any other category included in the synthetic population or the results. The ability to 

tabulate the results in this way enhances the analyst’s ability to understand how projects and policies 

affect different categories of people (Travel Forecasting Resource, 2014). 

2.3. STUDYING ACTIVITY-TRAVEL BEHAVIOR USING ABMS 
Some of the major impacts of COVID-19 on activity-travel behavior have been discussed in section 2.1. 

Home reclusion due to the fear of infection, the acceleration of teleworking and the shift from onsite 

to online activities are some of the most notable changes. With exception of the fear of infection, 

these changes in activity-travel behavior are not exclusive to the COVID-19 situation. They have 

already been studied over time, and the pandemic has been working as a trigger in their acceleration 

(Van Wee, 2020). 

Some of these changes in activity-travel behavior have also been studied using activity-based 

modeling. Concerning teleworking, for instance, Pirdavani et al. (2014) assessed the road safety 

impacts of teleworking policies by using an activity-based transportation model framework to produce 

detailed exposure metrics. The results of their research show a traffic safety benefit of teleworking 

since they reduced the total vehicle kilometers traveled by 3.15%. Acknowledging remote and in-

home activities, Shabanpour et al. (2018) enhanced their ABM to plan and schedule a joint model of 
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in-home and out-of-home activities. Their results indicated that the estimated joint models 

outperformed the independent models in terms of goodness-of-fit and prediction accuracy.  

The number of studies using ABMs that include in-home activities, however, is limited. As discussed 

by Shabanpour et al. (2018), the role of in-home activities in the process of planning and scheduling 

of individuals’ daily activities has been traditionally ignored because of two reasons: (1) in-home 

activities are not directly involved with trips; and (2) data sources that provide required details on 

planning and scheduling these activities are scarce. However, considering the interchangeable nature 

of out-of-home and in-home activities, and the significant effects that they have on each other, 

ignoring in-home activities may result in an overestimated frequency and duration of out-of-home 

activities, which may lead to inconsistent and unrealistic activity schedules (Shabanpour et al., 2018). 

Another common issue in activity-based modeling is the lack of usage of multiple-day travel datasets. 

Applying one-day observation data in travel demand modeling provides an inadequate basis for an 

understanding of complex travel behavior to predict the impact of travel demand management 

strategies (Tajaddini et al., 2020). Multiple-day data are needed to refine this process. For example, 

the study of Medina (2018) used smart cards of public transport to identify temporal weekly patterns 

of primary activities performed by public transport users in Singapore, and as continuous travel data 

from the same user during a week could be extracted, work-leisure cycles could be recognized. To 

better estimate the daily activity patterns, it is important to investigate the capacity of a typical week 

in capturing rhythms in activity-travel behavior (Nurul Habib et al., 2008). 

In conclusion, with the increase of in-home and online activities summed up to the fear of infection 

caused by the corona virus crisis, it is of great importance to incorporate in-home activities in studies 

of planning and scheduling individuals’ daily activities. Thus, multiple-day travel datasets might be 

better options to explain the frequency in which agents perform activities. And to do so, it is also 

necessary to collect data that can better explain such behaviors. For instance, by creating surveys that 

ask the frequency that individuals telework (Hooftman, et al., 2020), or how often they do out-home 

activities (KiM, 2020). 

2.4. SCIENTIFIC GAP 
This research is related to the novel corona virus, a pandemic that is changing the world in many 

aspects. There is a growing number of studies on the impacts of the pandemic on the transportation 

sector (e.g. Knoope & Francke, 2020; Zhang & Hayashi, 2020; Kuiper et al., 2020; Tirachini & Cats, 

2020; Hendrickson & Rilett, 2020; Beck et al., 2020) – and more specifically, travel behavior (e.g. 

Shakibaei et al., 2021; Huang et al., 2020; Pandey, 2020; Williamson et al., 2020, Shamshiripour et al., 

2020). However, at the time of writing this report, there is a lack of studies using travel demand models 

to study the effects on passenger mobility on the individual level. The only study found is from Müller 

et al. (2021), which combined the principles of activity-based modeling with an epidemiological model 

to understand the contributions of different activity types to the infection dynamics over time.  

As discussed in the previous sections, ABMs are useful tools to analyze changes in activity-travel 

behavior and assess its effects on mobility. However, to model the changes in activity-travel behavior 

discussed in the literature review using ABMs, some adjustments are needed. The most notable 

conclusions that arise from the literature overview of changes in activity-travel behavior during 

COVID-19 and the usage of ABMs to study these changes are: (1) the need to incorporate in-home 

activity planning in the modeling; and (2) to collect and use more detailed data on planning and 

scheduling of in-home activities and out-home activity frequency. 
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Given the necessity of understanding the impacts of COVID-19 on mobility and the degree of detail 

that ABMs can work, this study aims at using the activity-based modeling approach to estimate 

changes in activity-travel behavior, particularly in activity frequency and in-home activities, and assess 

their effects on mobility. 
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3. METHODOLOGY 

From the previous chapter, it has been concluded that ABMs are useful tools to estimate changes in 

activity-travel behavior and their effects on mobility. That is because nowadays, transport policy 

questions became more complex and require a wider range of responses with higher levels of detail 

(Castiglione et al., 2014). For that reason, activity-based models (ABMs), which are the last generation 

and most sophisticated travel demand models, have become more widely used in practice because 

they work at a disaggregate person-level rather than a more aggregate zone-level such as the trip-

based models. 

However, it has also been discussed that to use ABMs to model the changes in activity-travel behavior 

discussed in the literature review, some model and input adjustments are needed. The approach 

presented in chapter 2, section 2.3, discusses the necessity of ABMs to incorporate in-home activities 

in the process of planning and scheduling individuals’ daily activities (Shabanpour et al., 2018). 

For this study, however, no ABMs were available for usage, only their outputs. Therefore, it has been 

decided to build a new (specialized) travel demand activity-based modeling framework. 

This new modeling framework (or just ‘model’) uses the outputs of ABMs as input. Thus, it is 

specialized because it is capable of analyzing changes in activity-travel behavior and assess their 

effects on mobility by estimating the frequency that individuals perform on-site activities and 

teleworking during events such as the COVID-19 pandemic. To calibrate the model, the estimates of 

travel demand and related choices output by the model will be compared to observed real-world data. 

To validate the model, keys metrics will be identified, and comparisons between model estimates and 

observed data that have not been used in the model estimation will be made. Furthermore, it is 

important to mention that the modeling framework has been built to study the impacts of COVID-19 

as an initial purpose. Therefore, the methods and the data (formats) were designed taking into 

account the data availability and the limitations imposed by it in the Netherlands. 

In the next chapter, the modeling framework is presented and described in detail.  
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4. MODEL DESIGN 

In order to answer the research questions formulated in chapter 1, section 1.3, and explore the 

scientific gaps discovered in chapter 2, section 2.4, a modeling framework has been developed. This 

framework is used to estimate changes in the daily schedules of agents of a determined study area 

and assess the effect of these changes on mobility both at an aggregated and disaggregated level. It 

uses as a starting point the predicted schedules (outputs) of ABMs to estimate new schedules. The 

model has been written using the programming language Python. 

In this chapter, the modeling framework is presented. Section 4.1 discusses the applicability of the 

model. Section 4.2 presents the modeling framework and introduces its modules, inputs and outputs. 

Section 4.3 describes the model inputs in great detail. Section 4.4 explains each of the model 

components. Finally, section 4.5 provides considerations about the model and also describes its 

limitations. 

4.1. APPLICABILITY 
The goal of the model is to provide objective assessments of changes in activity-travel behavior during 

emergency situations. Thus, it should be able to evaluate alternative policies that are difficult to test 

using aggregated travel demand models. For example, the model should provide more robust 

capabilities and sensitivities for assessing the impact of the increase of in-home activities or changes 

in the frequency of out-home activities on individuals’ daily schedules. 

The application of the model is meant to be wide. By running the model with different sets of input 

assumptions representing different scenarios, analysts should be able to predict and evaluate 

differences between these scenarios using a broad range of metrics and answer decision makers’ key 

questions such as 

• What mobility changes can be expected when opening/closing a particular sector? 

• What is the effect of spreading physical (work/study) meetings over the week? 

• What mobility changes can be expected with the incorporation of in-home activities in the 

schedule generation? 

• Where are bottlenecks expected under the influence of (corona) measures? 

The modeling framework should be used to estimate what-if scenarios that make predictions in terms 

of journeys and mobility density, given certain assumptions about aspects that play a role in 

emergency situations such as the COVID-19 pandemic. These scenarios can be defined and calculated 

by considering the severity of policy measures for different sectors and during different periods. For 

instance, the COVID-19 stringency indexes created by Ritchie et al. (2021) are used to predict and 

analyze the outcomes of the case study developed in this report. These stringency indexes are 

measures of the severity of policy measures such as school and workplace closures, restrictions on 

public transport, and stay-at-home requirements. The values are scaled to a value from 0 to 100 (100 

= strictest) and can be used to estimate the model inputs to define and predict future scenarios. 

Recommendations for the development of future scenarios are further discussed in chapter 7, section 

7.4. 
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4.2. MODELING FRAMEWORK 
An overview of the modular structure of the proposed model is presented in Figure 4-1. In the 

remainder of this section, the functionality of the modules with their inputs and outputs are 

introduced. 

 

Figure 4-1 – Schematic overview of the modeling framework components, their functionalities, and their inputs 

ABMs require assembling a diverse set of data. These data reflect travel behavior, regional 

demographics, land use, network configuration, and network performance (Castiglione et al., 2014). 

In total, the model has four data inputs: 

Input 1: Synthetic population is the population of the study area. It contains information about every 

agent, for example their age, gender, and level of education. This input is explained in greater detail 

in section 4.3.1. 

Input 2: Activity frequency values are data about the frequency in which agents do out-home 

activities, broken down by activity type and by type of agent. This is a data format created especially 

for the model. This input is explained in greater detail in section 4.3.2. 

Input 3: Modal shift values are data about the change of mode of transport. For example, switching 

from public transport to bike trips. This input is explained in greater detail in section 4.3.3. 

Input 4: The baseline schedules are the outputs of ABMs that are used as input for the model. These 

outputs are schedules predicted for the same synthetic population, but using other data. They are 



 
 

27 
 

used as baseline to create scenarios because they provide the initial information about individuals’ 

trips and tours, such as the activity locations, start and end time, duration, transport mode, etc. They 

also provide the initial modal share that is used to estimate modal shift. This input is explained in 

greater detail in section 4.3.4. 

The modeling framework is broken down into three steps: 

Step 1: the Activity module estimates how many trips are performed taking into account the type of 

agent and activity type. Detailed explanation in section 4.4.1. 

Step 2: the Modal shift module estimates how many trips are performed taking into account the 

transport mode. Detailed explanation in section 4.4.2. 

Step 3: the Schedules adjustment module removes or adds from the tours the trips that are (not) 

performed and adjusts the schedules based on the new set of trips. Detailed explanation in section 

4.4.3. 

The outputs of the model are new schedules, or adjusted schedules, which represent the daily activity-

diary of the population considering activity-travel behavior for different periods or situations. From 

these new schedules, indicators are generated to compare scenarios and provide insights into the 

results.  

4.3. INPUTS 
The data required for the development of the model come from exogenous sources. Exogenous 

information includes demographic assumptions, household travel surveys, and processed travel 

behavior data. Thus, this model has been built primarily to study the impacts of COVID-19. Therefore, 

the data formats of the model were designed taking into account the type of data available at the 

time. 

When data were sought for the research, COVID-19 was relatively new and little microdata was 

publicly available. There was an attempt to get access to some mobility microdata from private 

organizations, but mainly aggregated data were shared. Hence, due to these circumstances, the idea 

for the research turned out to be a mix of aggregated and disaggregated data to make estimations at 

an individual level. 

In this chapter, the model inputs are described in detail. Section 4.3.1 provides information about the 

synthetic population. Section 4.3.2 describes the activity frequency values. Section 4.3.3 explains the 

modal shift values. Finally, section 4.3.4 depicts the baseline schedules. 

4.3.1. Synthetic population  

The synthetic population is a dataset with agents per zone and is a key input to most ABMs for 

forecasting the behavior of the households and agents in the modeled area (Bhat & Koppelman, 1999). 

Each agent is classified according to its demographic attributes. Table 3 provides an example of how 

a synthetic population list is structured.  

There is a big variety of demographic attributes that ABMs can use. Examples are age, gender, driving 

license, paid work, household size, household number of cars, degree of urbanization, and so on. Using 

this variety of controls produces a synthetic population that is representative of the actual population 

along all of these dimensions, and thus allows all of these variables to be used as explanatory variables 

in the model (Castiglione et al., 2014). Table 4 presents the list of categories of each of the attributes 
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listed in the example of Table 3. Each agent in the synthetic population must have a unique value for 

each of the attributes. 

 

Table 3 - Synthetic population list example 

agent_id location_id age_person gender education working_sector 

1 2 3 1 4 1 

2 5 3 1 3 3 

3 11 3 2 4 5 

4 28 3 2 4 0 

5 14 3 2 3 0 

6 55 4 1 4 4 

7 2 4 1 3 6 

8 11 4 2 3 2 

9 5 4 2 4 1 

10 11 5 1 4 2 

11 2 5 1 1 2 

12 2 5 1 4 0 

 

 

Table 4 - Demographic attributes of the synthetic population 

Attribute Value Description Unit 

agent_id 0-N Unique ID of agent - 

location_id 0-7740 Zone where agent lives Zone number 

gender - Gender of person - 

1 Male 
 

2 Female - 

age_person - Age group of person - 

1 Age < 15 - 

2 Age >=15 & Age < 25 - 

3 Age >= 25 & Age < 45 - 

4 Age >= 45 & Age < 65 - 

5 Age >= 65 - 

education - Highest education obtained - 

1 Primary - 

2 Lower - 

3 Secondary - 

4 Higher - 

5 Other - 

working_sector - Sector which the person works - 

0 Not working - 

1 Industry and production - 

2 Healthcare - 

3 Retail - 

4 Education - 

5 Office - 

6 Other - 

 



 
 

29 
 

4.3.2. Activity frequency values 

The activity frequency values are new information assigned to the synthetic population. It tells with 

which frequency each agent performs each of the activity types in a one-week period. The idea to use 

frequency tables as inputs for the model came from looking at studies published by KIM (2020) about 

the frequency that agents do outdoor activities before and during the corona crisis. Table 5 presents 

an example of how the activity frequency tables are structured. In this example, people answer the 

number of times they go shopping in a week. The answers are split per age group. From the figure, it 

can be derived for example that 80% of agents in age group 1 go shopping once a week, while 5% go 

twice, and only 5% go more than three times in a week.  

Table 5 - Frequency tables input example 

Activity Age 0 days 1 day 2 days 3 days 4 days 5 days 6 days 7 days All 

Shopping 1 10% 80% 5% 4% 1% 0% 0% 0% 100% 

2 0% 92% 4% 4% 0% 0% 0% 0% 100% 

3 1% 85% 6% 6% 1% 1% 0% 0% 100% 

4 0% 84% 7% 7% 2% 0% 0% 0% 100% 

5 0% 75% 10% 11% 1% 1% 2% 0% 100% 

 

In total, there are six activity types in the model: work, business, bring/get, education, shopping and 

other2. For each of these activities, a frequency table is created. Table 6 exemplifies the characteristics 

required to structure the frequency tables for each activity type.  

With regard to the attributes, for the non-work-related activity types data (bring/get, education, 

shopping and other), agents are classified by age. For the work-related activity types data (work and 

business), agents are classified by age, gender and work sector. 

Another characteristic that distinguishes activity types is the number of times people usually perform 

them in a denominated period. For the model, the period in consideration is a full week (seven days). 

It is assumed that the majority of the population performs work, business and education activities 

only during weekdays, while for other activities (bring/get, shopping, other) there is not a standard 

pattern. Therefore, the model assumes that an agent can perform work, business and education 

activities 0 to 5 days a week and for the other activities an agent can perform them 0 to 7 days a week. 

Table 6 - Characteristics of activity frequency tables 

Activity type Attributes Days 

Work Age x gender x sector 0,1,2,3,4,5 

Business Age x gender x sector 0,1,2,3,4,5 

Bring/get Age 0,1,2,3,4,5,6,7 

Education Age 0,1,2,3,4,5 

Shopping Age 0,1,2,3,4,5,6,7 

Other Age 0,1,2,3,4,5,6,7 

 

 
2 The activity named Other include activities such as visit someone, touring/walk, do sports, personal care, other leisure 

activities or a different purpose 
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4.3.3. Modal shift values 

The modal shift values are data provided by third parties about the change of mode of transport when 

performing trips. For example, switching from public transport to bike to go to work. This data is used 

by the modal shift module to estimate the number of trips that shift from one mode to another and 

to estimate the number of trips that will not be performed anymore. 

This data is structured in a table format, such as the made-up example provided in Table 7. The rows 

are the percentage of trips that one mode gives to another mode, and the columns are the percentage 

of trips that one mode takes from another mode. In this made-up example, there is a significant shift 

from public transport to bike and car (3.2% and 4.10% of the original PT trips, respectively). 

Table 7 - Modal shift values format example 

From\To Walk Bike E-bike Car Car passenger On demand PT 

Walk - 0,50% 0,00% 0,80% 0,00% 0,00% 0,10% 

Bike 0,50% - 0,10% 0,80% 0,00% 0,00% 0,00% 

E-bike 0,00% 0,00% - 0,00% 0,00% 0,00% 0,00% 

Car 1,40% 0,90% 0,00% - 0,00% 0,00% 0,40% 

Car passenger 0,00% 0,00% 0,00% 0,00% - 0,10% 0,00% 

On demand 0,00% 0,00% 0,00% 0,00% 0,00% - 0,00% 

PT 0,30% 3,20% 0,00% 4,10% 0,40% 0,10% - 

 

4.3.4. Baseline schedules 

As stated previously, the baseline schedules are the outputs of ABMs that are used as inputs for the 

model. Figure 4-2 gives an example of how the baseline schedules look like. Every row is an activity 

performed by an agent, and the columns are trip information regarding that activity. Table 8 presents 

the attributes of the example of Figure 4-2. 

In Figure 4-2, it is shown the daily schedule of agents 1, 7, and 13. Each agent has one tour, that can 

be identified in the ‘activity type’ column: 

• Agent 1: home-shopping-home (1-6-1) 

• Agent 2: home-other-bring/get-home (1-7-4-1) 

• Agent 3: home-other-home (1-7-1) 

 

Figure 4-2 - Baseline schedules format example 
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The upcoming columns provide information about where (which zone) the activity is taking place, 

what time the activity starts (in minutes), how long it takes (in minutes), the transport mode used, the 

origin zone, what time the trip starts (in minutes), the trip duration (in minutes) and the trip distance 

(in kilometers). 

Table 8 - Schedules attributes example 

Attribute Value Description Unit 

agent_id 0-N Unique ID - 

activity_type - The type of activity a person is going 
to do at the destination 

- 

 
1 Home -  
2 Work -  
3 Business -  
4 Bring/get -  
5 Education -  
6 Shopping -  
7 Other - 

activity_location 0-7740 Zone where activity takes place Zone 
number 

activity_start_time 180-1619 Start of activity in minutes since 
midnight 

minute 

activity_duration 1-1440 Length of activity minute 

trip_transport_mode - Main transport mode of the whole 
trip 

- 

 
1 Walk -  
2 Bike -  
3 E-bike -  
4 Car driver -  
5 Car passenger -  
6 Shared on-demand -  
7 Public transport - 

trip_origin 0-7740 Zone where traveler departed Zone 
number 

trip_destination 0-7740 Zone where traveler arrives Zone 
number 

trip_start_time 180-1619 Start of trip in minutes since midnight minute 

trip_duration 0-N Length of trip minute 

trip_distance 0-N Distance of trip km 

4.4. MODELING STEPS 
In this section, the modeling steps of the model are explained in detail. The model is divided into three 

parts. The first part is the Activity module and it is described in section 4.4.1. The second is the Modal 

shift module, which is explained in section 4.4.2. The third is the Schedules adjustment module, which 

is described in section 4.4.3. Together with the explanation of each module, an example is presented 

to better illustrate how they work.  

4.4.1. Activity frequency module 

This module calculates the number of agents that do out-home activities (for each activity type) in the 

modeled day. For example, for a certain population, it estimates how many people are going shopping 

and how many people will not. That is done for all the different activity types.  
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An important consideration about this module is that it calculates the activity frequency for the 

scenarios and also for the baseline scenario. Then, the difference between the activity frequency of a 

scenario and the baseline scenario (scenario divided by baseline scenario) is used to change the 

baseline schedules and estimate the schedules for the scenario. In other words, the model takes the 

difference between the activity frequency of one scenario and the activity frequency of the baseline 

scenario and applies this difference in the already existing baseline schedules to estimate the 

schedules for that scenario. 

In section 4.4.1.1, a framework of the activity frequency module is presented and its modeling 

sequence is explained in detail. In section 4.4.1.2, an example of how the model works is provided. 

4.4.1.1. Description 

In Figure 4-3, the framework of the activity frequency module is depicted. The principle of the module 

is as follows: for every scenario, first, it distributes the activity frequency values (f) for the population 

(u) to estimate how many agents have a certain activity frequency value (v). Second, it estimates how 

many agents are going to do each of the activity types in the modeled day (e). Third, it takes the 

difference between the number of agents doing activities of one scenario compared to the number of 

agents doing activities in the baseline scenario (𝑒 𝑒0)⁄ , and this difference is the number of agents that 

are going to do activities for that scenario (r). 

 

Figure 4-3 - Activity frequency module framework 

Mathematically, for every scenario w, activity type a, and agent type t, are assumed. Then, f is the 

probability of an agent of having activity frequency p, and F is the summation of all activity frequency 

probabilities: 

 
𝐹𝑤𝑎𝑡 = ∑ 𝑓𝑤𝑎𝑡𝑝 = 1

𝑃

𝑝∈𝑃

          ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 

 

(1) 
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From the total population U we estimate the share of agents u with agent type t:  

 
𝑈 = ∑ 𝑢𝑡

𝑡

𝑡∈𝑇

         ∀  𝑡 ∈ 𝑇 

 

(2) 

Then, the product of the population ut and the activity frequency fwatp is the share of agents v that 

have a certain activity frequency f:  

 
𝑣𝑤𝑎𝑡𝑝 =  𝑓𝑤𝑎𝑡𝑝 ∗ 𝑢𝑡          ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃 

 
(3) 

Next, the following condition variables Cap = {ca1, ca2, ca3, …, cap} are considered, where a is the activity 

type, p is the activity frequency and C is the probability that the agent does this activity in one day. 

For activities work, business and education, the agent can travel 0-5 days in one week. For activities 

bring/get, shopping and other, the agent can travel 0-7 days in one week. For instance, a person that 

works two days per week in the office has a 40% chance of working in the office in one day (2/5=0.4). 

In summary: for activities that the maximum number of days is five, the probabilities of doing the 

activity in one day are [c0, c1, c2, c3, c4, c5] = [0%, 20%, 40%, 60%, 80%, 100%]. If the maximum number 

of days is seven, then [c0, c1, c2, c3, c4, c5, c6, c7] = [0%, 14.3%, 28.6%, 42.9%, 57.2%, 71.5%, 85.8%, 

100%]. 

Then, the product of the share of agents v and their corresponding probability c is the number of 

agents e of type t and probability p that does the activity type a in one day: 

 
𝑒𝑤𝑎𝑡𝑝 =  𝑣𝑤𝑎𝑡𝑝 ∗ 𝑐𝑎𝑝          ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃 

 
(4) 

Next, the sum of the number of agents e is the total number of agents E of type t that do the activity 

in one day: 

 
𝐸𝑤𝑎𝑡 = ∑ 𝑒𝑤𝑎𝑡𝑝

𝑃

𝑝∈𝑃

          ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 

 

(5) 

Finally, the quotient between the total number of agents E for one scenario and the baseline scenario 

is the difference r  between them: 

 
𝑟𝑤𝑎𝑡 =  

𝐸𝑤𝑎𝑡

𝐸0𝑎𝑡
          ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 

 
(6) 

The difference r is called the ‘reduction coefficient’, which is the number of agents that will do 

activities in that scenario, for every different activity type and agent type. The reduction coefficient is 

used in the next module, together with the modal shift values, to estimate the number of activities 

that will be done in a scenario taking into account the transport mode used to travel.  

4.4.1.2. Example activity frequency module 

In this example, the number of agents doing activity ‘shopping’ for the fictional scenario 1 is calculated. 

Table 9 shows the activity frequency values of shopping activity for the baseline scenario and scenario 

1. Table 10 presents the population U split by age category. The probabilities C of doing shopping 

activity in one day in a week are [c0, c1, c2, c3, c4, c5, c6, c7] = [0%, 14.3%, 28.6%, 42.9%, 57.2%, 71.5%, 

85.8%, 100%].  
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Table 9 – Activity frequency example: activity frequency values “fwat” 

Activity Scenario Age 0 days 1 day 2 days 3 days 4 days 5 days 6 days 7 days All 

Shopping Baseline 1 0.00% 92.20% 3.90% 3.90% 0.00% 0.00% 0.00% 0.00% 100% 

2 0.00% 92.20% 3.90% 3.90% 0.00% 0.00% 0.00% 0.00% 100% 

3 0.00% 85.70% 6.85% 6.85% 0.15% 0.15% 0.15% 0.15% 100% 

4 0.00% 86.00% 6.65% 6.65% 0.20% 0.20% 0.15% 0.15% 100% 

5 0.00% 75.20% 11.45% 11.45% 0.48% 0.48% 0.48% 0.48% 100% 

1 1 77.90% 20.80% 0.65% 0.65% 0.00% 0.00% 0.00% 0.00% 100% 

2 77.90% 20.80% 0.65% 0.65% 0.00% 0.00% 0.00% 0.00% 100% 

3 68.30% 26.30% 2.70% 2.70% 0.00% 0.00% 0.00% 0.00% 100% 

4 75.50% 20.30% 1.60% 1.60% 0.35% 0.35% 0.15% 0.15% 100% 

5 80.60% 14.30% 2.40% 2.40% 0.15% 0.15% 0.00% 0.00% 100% 

 

Table 10 - Activity frequency example: population split per age category “ut” 

Age ut Population 

1 17% 612419 

2 12% 453897 

3 26% 949871 

4 27% 994489 

5 18% 638823 

Total 100% 3649499 

 

The share of agents v with certain activity frequency f is estimated using equation 3. The results are in 

Table 11. In this table, it can be observed that in the baseline scenario most agents go shopping only 

once a week while in scenario 1 most agents do not go shopping at all. 

Table 11 – Activity frequency example: share of agents with certain activity frequency “vwat” 

Activity Scenario Age 0 days 1 day 2 days 3 days 4 days 5 days 6 days 7 days 

Shopping Baseline 1 0.00% 15.47% 0.65% 0.65% 0.00% 0.00% 0.00% 0.00% 

2 0.00% 11.47% 0.49% 0.49% 0.00% 0.00% 0.00% 0.00% 

3 0.00% 22.31% 1.78% 1.78% 0.04% 0.04% 0.04% 0.04% 

4 0.00% 23.44% 1.81% 1.81% 0.05% 0.05% 0.04% 0.04% 

5 0.00% 13.16% 2.00% 2.00% 0.08% 0.08% 0.08% 0.08% 

1 1 13.07% 3.49% 0.11% 0.11% 0.00% 0.00% 0.00% 0.00% 

2 9.69% 2.59% 0.08% 0.08% 0.00% 0.00% 0.00% 0.00% 

3 17.78% 6.85% 0.70% 0.70% 0.00% 0.00% 0.00% 0.00% 

4 20.57% 5.53% 0.44% 0.44% 0.10% 0.10% 0.04% 0.04% 

5 14.11% 2.50% 0.42% 0.42% 0.03% 0.03% 0.00% 0.00% 

 

The share of agents e of activity type t with probability c that does shopping activity in the modeled 

day is estimated using equation 4. The total share of agents E per type t doing shopping activity is 

estimated using equation 5. The results are in Table 12. Note that in column Ewat are the shares of the 

population that go shopping on the modeled day, and this number is significantly lower in scenario 1 

than in the baseline scenario, which means that very few people in scenario 1 will go shopping. 
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Table 12 – Activity frequency example: share of agents that do activity in the modeled day "ewatp" and "Ewat" 

Activity Scenario Age 0 days 1 day 2 days 3 days 4 days 5 days 6 days 7 days Ewat 

Shopping Baseline 1 0.00% 2.21% 0.19% 0.28% 0.00% 0.00% 0.00% 0.00% 2.68% 

2 0.00% 1.64% 0.14% 0.21% 0.00% 0.00% 0.00% 0.00% 1.99% 

3 0.00% 3.19% 0.51% 0.76% 0.02% 0.03% 0.03% 0.04% 4.58% 

4 0.00% 3.35% 0.52% 0.78% 0.03% 0.04% 0.04% 0.04% 4.79% 

5 0.00% 1.88% 0.57% 0.86% 0.05% 0.06% 0.07% 0.08% 3.57% 

1 1 0.00% 0.50% 0.03% 0.05% 0.00% 0.00% 0.00% 0.00% 0.58% 

2 0.00% 0.37% 0.02% 0.03% 0.00% 0.00% 0.00% 0.00% 0.43% 

3 0.00% 0.98% 0.20% 0.30% 0.00% 0.00% 0.00% 0.00% 1.48% 

4 0.00% 0.79% 0.12% 0.19% 0.05% 0.07% 0.04% 0.04% 1.30% 

5 0.00% 0.36% 0.12% 0.18% 0.02% 0.02% 0.00% 0.00% 0.69% 

 

Next, the reduction coefficient r for each agent type t is calculated using equation 6. The results are 

presented in Table 13. The information from this table can be read as follows: in the baseline scenario 

(E0), 2.68% of the population does shopping trips, while in scenario 1 (E1) that number is only 0.58%. 

Hence, the quotient between 0.58% and 2.68% is 21.53%, which is the share of the population that 

will do shopping trips in scenario 1 (r1).  

Table 13 – Activity frequency example: reduction coefficient "rwat" 

Age E0 E1 r1 

1 2.68% 0.58% 21.53% 

2 1.99% 0.43% 21.53% 

3 4.58% 1.48% 32.29% 

4 4.79% 1.30% 27.15% 

5 3.57% 0.69% 19.35% 

 

4.4.2. Modal shift module 

The modal shift module estimates how many trips will be performed in a scenario taking into account 

the transport modes used to travel and a modal shift between these modes. In section 4.4.2.1, a 

framework of the modal shift module is presented and its modeling sequence is explained in detail. In 

section  4.4.2.2, an example of how the model works is provided. 

4.4.2.1. Description 

The framework of the modal shift module is depicted in Figure 4-4. The principle of this module is as 

follows: First, the initial number of trips per transport mode (z) is extracted from the baseline 

schedules. Second, the number of trips per transport mode that will still be done (n) is estimated using 

the initial number of trips per transport mode (z) and the reduction coefficient (r). Third, the number 

of trips shifted between modes (g) is calculated using the modal shift values (s) of the scenario and 

taking into account the initial number of trips per transport mode (z). Fourth, the new number of trips 

that will be done per transport mode (h) is estimated by adding g to n. Finally, the difference between 

the initial number of trips per transport mode (z) and the new number of trips that will still be done 

per transport mode (h) is the share, in percentage, of trips to keep in the schedules for the scenario 

(k).  
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Figure 4-4 - Modal shift module framework 

Mathematically, for every scenario w, activity type a, and agent type t, are assumed. Then, z is the 

number of trips by each transport mode v and Z is the summation of the trips of all transport modes:   

 𝑍𝑤𝑎𝑡 =  ∑ 𝑧𝑤𝑎𝑡𝑣

𝑉

𝑣∈𝑉

         ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (7) 

Then, the product of the number of trips z of each transport mode and the reduction coefficient r 

estimated in the activity frequency module is the number of trips n that will be done by each transport 

mode in the scenario: 

 
𝑛𝑤𝑎𝑡𝑣 =  𝑧𝑤𝑎𝑡𝑣 ∗  𝑟𝑤𝑎𝑡         ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 

 
(8) 

Next, the number of trips shifted between transport modes (g) is estimated. To do so, the modal shift 

values s of each mode are multiplied by the initial number of trips of each mode z, and ∆g of a 

transport mode is the difference between the number of trips taken from other modes and the 

number of trips given other modes. In these equations, v is the current transport mode and q are the 

other transport modes alternatives: 

 𝑔𝑤𝑎𝑡𝑣 =  ∑ ∆𝑔𝑤𝑎𝑡𝑣

𝑉

𝑣∈𝑉

        ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (9) 
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And 
 

  

 
∆𝑔𝑤𝑎𝑡𝑣 = (𝑠𝑤𝑎𝑡𝑞𝑣 ∗ 𝑧𝑤𝑎𝑡𝑗) − (𝑠𝑤𝑎𝑡𝑣𝑞 ∗ 𝑧𝑤𝑎𝑡𝑣)     ∀ 𝑤 ∈ 𝑊, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑣, 𝑗 ∈ 𝑉  

 
(10) 

Then, the sum of the number of trips n that will be done by each transport mode and the result of the 

number of trips shifted between transport modes g is the new number of trips h that will be done by 

each transport mode: 

 ℎ𝑤𝑎𝑡𝑣 =  𝑛𝑤𝑎𝑡𝑣 +  𝑔𝑤𝑎𝑡𝑣 (11) 

 

Finally, the quotient between the new number of trips that will be done h and the initial number of 

trips z is the share of trips to keep in the schedules k (for each transport mode): 

 
𝑘𝑤𝑎𝑡𝑣 =  

ℎ𝑤𝑎𝑡𝑣 

𝑧𝑤𝑎𝑡𝑣
 

 
(12) 

The share of trips to keep in the schedules, which will be referred to as the “k value”, is given in 

percentage and is used in the schedules adjustment module to estimate the schedules for the 

scenarios. 

4.4.2.2. Example modal shift module 

In this example, the k value of activity ‘shopping’ for one agent type is calculated. The reduction 

coefficient r is assumed to be 0.6. For simplicity, the example only takes into account four transport 

modes: walk, bike, car and PT. Table 14 presents the made-up example of modal shift values s. From 

the table, it can be derived that public transport gives 3%, 5% and 10% of its trips to walk, bike and 

car, respectively. 

Table 14 – Modal shift example: modal shift values 

Modal shift values ‘s’ 

Gives to \ Takes from Walk Bike Car PT 

Walk - 0.00% 0.00% 0.00% 

Bike 0.00% - 0.00% 0.00% 

Car 0.00% 0.00% - 0.00% 

PT 3.00% 5.00% 10.00% - 

 

Table 15 shows the results of the calculations. Column z shows the initial number of trips for each 

transport mode, which has been extracted from the baseline schedules using equation 7. Column n 

shows the number of trips n that will be done by each transport mode, which is calculated using 

equation 8. Columns g1 and g2 are the numbers of trips taken from other modes and given to other 

modes, which are calculated using equations 9 and 10, respectively. Column h is the new number of 

trips that will be done by each transport mode, which is calculated using equation 10. Finally, column 

k is the k value, which is calculated using equation 12. 

The reduction coefficient r of the example is 0.6 or 60%. That means that 60% of the trips of all 

transport modes will be done and 40% of the trips will not be done anymore. For example, from the 

initial 500 trips done walking, only 300 will be done and 200 will not be done anymore. Then, the 

number of trips taken from and given to other modes is calculated. The only transport mode that gives 

trips to other modes is public transport, which gives 144 of its trips to the other modes. 
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Next, the k value is calculated by dividing the new number of trips h by the initial number of trips z 

(equation 12). Note that walk, bike and car increased their k value from 60% to 65%, 64% and 64%, 

respectively, while public transport decreased its k value from 60% to 42%. That means that when 

estimating the schedules of this scenario, for example, 65% of the walk trips that are in the baseline 

schedules will be kept, and 42% of the public transport trips will be kept.  

Table 15 - Modal shift calculation example: estimation of k values of transport modes for shopping activity 

Mode Initial 
number 
of trips 

(z) 

Initial 
modal 
share  

Number 
of trips 
kept (n) 

Number 
of trips 

removed  

Trips 
taken 
(g1) 

Trips 
given 
(g2) 

New 
number 
of trips 

(h) 

Percentage 
of trips to 

keep in 
schedules (k) 

New 
modal 
share 

New 
modal 
share* 

Walk 500 11,63% 300 200 24 0 324 65% 12,56% 7,5% 

Bike 1000 23,26% 600 400 40 0 640 64% 24,81% 14,9% 

Car 2000 46,51% 1200 800 80 0 1280 64% 49,61% 29,8% 

PT 800 18,60% 480 320 0 144 336 42% 13,02% 7,8% 

Do not travel - - - - - - - -  40,0% 

*including ‘Do not travel’ category 

Note also that in the second column of Table 15 is the initial modal share, and in the two last columns 

are the new modal share and the new modal share considering trips that are not done anymore. In 

the initial modal share, no trips were assigned to ‘do not travel’, and in the new modal share it can be 

seen that 40% of all trips were then assigned to ‘do not travel’, and the remaining 60% were 

distributed within the transport mode alternatives. To better visualize what happens in this example, 

Figure 4-3 depicts the share of trips that were shifted between transport modes and given to ‘do not 

travel’. 

 

Figure 4-5- Modal shift example: Initial modal share and new modal share after estimations using the reduction coefficient 
and the modal shift values 
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4.4.3. Schedule adjustment module 

This module re-estimates the daily schedules of the synthetic population using the k values and adjusts 

tours whenever activities and trips are removed. In section 4.4.3.1, a framework of the schedules 

adjustment module is presented and its modeling sequence is explained. In section 4.4.3.2, an 

example of how the model works is provided. 

4.4.3.1. Description 

The framework of the activity frequency module is depicted in Figure 4-6. The principle of this module 

is as follows: First, the baseline schedules are read to identify the initial agents’ schedules and trip 

details. Second, random numbers x on the interval [0,1] are uniformly distributed for all agents. Third, 

for every activity trip in the schedule of an agent, his random number x is compared to his 

corresponding k value. If x < k, the agent keeps the activity trip in the schedule; if x > k, then the agent 

removes the activity trip from the schedule. An important observation about this module is that, in 

order to ensure a different set of results every time a scenario is estimated, no random seeds are used 

to generate the random numbers. 

Once the decision to remove or keep activity trips is done for all the trips in the schedules, then the 

model adjusts the remaining trips and tours so that they still look consistent. To do so, the model 

identifies where the activity trip has been removed and, whenever necessary, updates details such as 

trip origin, trip start time, trip duration, activity start time, activity duration, and transport mode. The 

process of adjusting the remaining schedules is explained in detail in the example of the next section.  

 

Figure 4-6 - Schedule adjustment module framework 

4.4.3.2. Example schedule adjustment module 

The following example shows the modeling sequence of the schedule adjustment module to estimate 

how the schedule of an agent is estimated from the baseline schedules. 

Table 16 is the initial schedule for one workday of an agent labeled 43. The unit of time is minutes and 

the unit of distance is kilometers. This agent does seven trips and a total of three tours: 1-4-7-6-1 (tour 

1), 1-7-1 (tour 2) and 1-6-1 (tour 3). As explained before, tours are chains of trips that start and end at 

home. Agent 43 starts his day at home (activity type = 1) at his house (first activity location = 2). The 

ABM used to estimate the baseline schedules generates a home activity as a starting point for every 

agent, which starts at minute 180, and since this is not a trip, it assigns a default value of -2 for trip 

transport mode, trip origin, and trip destination. 

Next, it is assumed that the model estimated that agent 43 will not do activity ‘Other’ (activity 7) in 

his workday. That means that indexes 2 and 5 of Table 16 are deleted (colored in red) and the schedule 

of this agent now has only five trips and two tours: 1-4-6-1 (tour 1) and 1-6-1 (tour 2). Note that the 

second tour (1-7-1) is completely removed because index 5 has activity 7 (which is deleted) and 

therefore index 6 is also deleted because the agent does not need to travel at all.  
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Table 16 – Schedules adjustment example: initial schedule of agent 43 

index agent 
id 

activity 
type 

activity 
location 

activity 
start 
time 

activity 
duration 

trip 
transport 

mode 

trip 
origin 

trip 
destination 

trip 
start 
time 

trip 
duration 

trip 
distance 

0 43 1 2 180 290 -2 -2 -2 0 0 0 

1 43 4 612 480 15 4 2 612 470 10 6 

2 43 7 191 502 15 4 612 191 495 7 4 

3 43 6 1242 577 105 1 191 1242 517 60 5 

4 43 1 2 687 17 4 1242 2 682 5 2 

5 43 7 580 720 45 2 2 580 704 16 4 

6 43 1 2 781 407 2 580 2 765 16 4 

7 43 6 1389 1200 15 4 2 1389 1188 12 9 

8 43 1 2 1226 394 4 1389 2 1215 11 9 

 

With the removal of these trips from the schedule, it is then necessary to make some adjustments so 

the schedules remain consistent. In this example, when index 2 is removed, the activity location of 

index 1 becomes the trip origin of index 3. Therefore, the trip route needs to be re-estimated, and 

that changes the trip start time, the trip duration, the trip distance and the activity start time of index 

3. Hence, it can be concluded that once one or more trips are removed from a tour, the rest of the 

tour needs to be adjusted. To do so, some premises are established: 

i. When the first trip of a tour is removed, the agent waits at home until it is time to travel to 

the new first trip of the tour (Figure 4-7). 

 

Figure 4-7 - Schedule adjustment module: first premise 

ii. When one or more trips are removed from a tour, all the subsequent activities of this tour are 

done earlier so that the agent arrives at home earlier (Figure 4-8). 

 

Figure 4-8 - Schedule adjustment module: second premise 

iii. The activity duration never changes, except for home activity. 

The rules to update an index vary according to the activity type. If activity type = 1 (home), a certain 

command sequence is applied. If activity type ≠ 1, then another command sequence is applied. 
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Table 17 shows how the schedule of agent 43 becomes after adjusting the remaining trips of the 

schedule. The values from this table can be compared to the values of Table 16 to check the difference 

between before and after the adjustment. The colored cells are the attributes that have been 

adjusted. Considering that the grey rows are already deleted, they are kept in the table just to illustrate 

how the schedule is adjusted.  

In the example, activity 7 of the 1st tour is deleted, so it changes from 1-4-7-6-1 to 1-4-6-1. Taking into 

account premise ii, the agent does activity 6 earlier and arrives at home earlier as well. Then, the 2nd 

tour is totally removed (1-7-1), so the agent does not travel, and instead, he waits at home (premise 

i) until he starts the 3rd tour (1-6-1). 

Table 17 – Schedules adjustment example: adjusted schedules of agent 43 

index agent 
id 

activity 
type 

activity 
location 

activity 
start 
time 

activity 
duration 

trip 
transport 

mode 

trip 
origin 

trip 
destination 

trip 
start 
time 

trip 
duration 

trip 
distance 

0 43 1 2 180 290 -2 -2 -2 0 0 0 

1 43 4 612 480 15 4 2 612 470 10 6 

2 43 7 191 502 15 4 612 191 495 7 4 

3 43 6 1242 577 105 1 191 1242 517 60 5 

4 43 1 2 687 501 4 1242 2 682 5 2 

5 43 7 580 720 45 2 2 580 704 16 4 

6 43 1 2 781 407 2 580 2 765 16 4 

7 43 6 1389 1200 15 4 2 1389 1188 12 9 

8 43 1 2 1226 394 4 1389 2 1215 11 9 

 

To better understand the example, index 3 is referred to as “i” and indexes 1 and 4 are referred to as 

“i-1” and “i+1”, respectively. To update index 3, the command sequence for activity type ≠ 1 is 

performed: 

a. Update trip_origini → replace by activity_locationi-1 (green cell) 

b. Update trip_start_timei → activity_start_timei-1 + activity_durationi-1 (pink cell) 

c. Update trip_durationi → LOS between trip_origini and trip_destinationi (blue cell) 

d. Update activity_start_timei → trip_start_timei + trip_durationi (orange cell) 

Then, the next index is 4 and the activity type = 1, which is the end of the tour.  Index 4 is referred as 

“i” and indexes 3 and 5 are referred as “i-1” and “i+1”, respectively. To update this index, the command 

sequence for activity type = 1 is performed: 

e. Update trip_start_timei → activity_durationi-1 + trip_durationi-1 (yellow cell) 

f. Update activity_start_timei → trip_start_timei + trip_durationi (cyan cell) 

g. Update activity_durationi → trip_start_timei+1– activity_start_timei (red cell) 

Home activity is always the last activity of a tour or the last activity of a schedule. Therefore, two other 

rules are used to update home activity: 

h. When all the tours of an agent are removed, he stays at home for the entire day. Hence, the 

activity duration of home activity is updated to 1440 minutes. 

i. The activity duration of the last activity of the schedule of an agent is equal to 1440 minutes 

subtracted by the activity start time.  

These are the command sequences to update the schedules in the model. The product of these 

adjustments is the schedules for the scenarios, which is the final output of the model. 
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4.5. LIMITATIONS AND CONSIDERATIONS 
In this section, some limitations and considerations about the model are highlighted. As explained in 

chapter 3, this model has been built to study the impacts of COVID-19 as an initial purpose. Therefore, 

the methods and data formats designed for the model were structured taking into account the 

availability of data and resources by the time this study was planned. 

i. The model is not a full ABM, but a model that uses the output from ABMs as inputs to estimate 

new outputs. Therefore, the schedules estimated by the model are still similar to the baseline 

schedules but with several modifications and adjustments.  

ii. Describing in a simplified way, one of the functions of the model is to estimate if agents still 

travel to do activities or if they do not travel and stay at home. Hence, the model cannot add 

new trips to the schedules, only remove them. That means that scenarios will always have 

fewer trips than the baseline scenario. 

iii. Because the model uses a microsimulation approach at the person-day level, it is subject to 

some degree of simulation variation. However, when performing many runs for the same 

scenario, the aggregated performance measures within these runs should be consistent. 

Therefore, when running the results of scenarios, a run statistical formula must be used to 

define the appropriate minimum number of runs to ensure consistency. 

iv. To calibrate the model, the estimates of travel demand and related choices output by the 

model should be compared to observed real-world data. The calibration of the demand model 

components is primarily based on household travel survey data, which can provide necessary 

information describing observed activity patterns, and choices of destination, mode, and time. 

Other sources of calibration can be count databases or transit agency reporting. The 

calibration of the model also must include sensitivity testing to ensure that the model 

responds plausibly to changes in model inputs and that these changes are reasonably 

consistent with real-world outcomes (Castiglione et al., 2014). 

v. To validate the model, keys metrics are identified, and comparisons between model estimates 

and observed data that have not been used in the model estimation are made.   
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5. CASE STUDY 

The case study developed for this study has as objective the estimation of changes in activity-travel 

behavior of travelers in the MRDH, the Netherlands, during different stages of the COVID-19 pandemic 

and the assessment of the effects of such changes on mobility. This is done to validate the framework's 

performance by comparing its outcomes with data counts and outcomes of other studies and sources. 

In this chapter, the case study is presented. Section 5.1 introduces the area of study. Section 5.2 

defines the COVID-19 stages that are analyzed. Section 5.3 describes the data inputs of the model. 

5.1. CASE STUDY: ROTTERDAM-THE HAGUE METROPOLITAN AREA 
The area of study is the Rotterdam-The Hague metropolitan area (MRDH), the Netherlands, which 

encompasses the cities of Rotterdam and The Hague as well as 21 other municipalities. These are the 

yellow and orange areas shown in Figure 5-1. The area has a population of approximately 2.7 million. 

There are around 1.3 million jobs and 13.5% of the Dutch population work there (Metropoolregio 

Rotterdam-Den Haag, 2021a).  

 

Figure 5-1 - The Rotterdam-The Hague metropolitan area (MRDH) 

The motivation to use this region as a case study is because TNO, which is one of the companies 

collaborating with this study, has several ongoing projects in this region. One of them is the Urban 

Tools Next project (UTN) (de Romph et al., 2019). In this project, it is investigated the extent to which 

ABMs can be used to gain insight into the effects of various developments and interventions around 



 
 

44 
 

mobility in the MRDH. To do so, an ABM prototype was made for the region. The ABM software used 

in this study is FEATHERS (Bellemans et al., 2010), which is an acronym for Forecasting Evolutionary 

Activity-Travel of Household and their Environmental Repercussions. FEATHERS is a full 

implementation of an ABM and has been used to estimate the schedules for the MRDH population. 

Those schedules were estimated for a period before the outbreak of the COVID-19 pandemic when 

travel decisions were not affected by it. Therefore, it was decided to use the schedules predicted by 

FEATHERS as the baseline schedules for this case study.  

5.2. DEFINING COVID-19 STAGES 
Four stages of the corona crisis are defined to run the model, as well as the baseline stage. These 

stages are designed and intended to showcase the differences in activity-travel behavior in different 

moments of the pandemic in the MRDH. Therefore, the stages’ inputs vary in the activity frequency 

that agents have for different activity types and also in the modal shift values according to the period 

in analysis. Real data inputs have been used to estimate the different stages, and the data sources, as 

well as the inputs, are presented and described in the next section. In total, five stages are considered 

and they are presented in Table 18. These are the baseline or stage 0 (September 2019), stage 1 

(March 2020), stage 2 (July 2020), stage 3 (October 2020) and stage 4 (January 2021). For reasons of 

clarity, the phases are strictly separated, where in reality there is clearly a more gradual evolving 

situation. 

The motivation to select these stages is because they represent different moments of the impacts of 

COVID-19 and the measures applied against it. Figure 5-2 shows the number of hospital admissions 

over time in the Netherlands during the pandemic (Rijksoverheid, 2021). In March 2020, the first wave 

of COVID-19 started in the Netherlands, with the number of hospital admissions reaching more than 

400 admissions per day. That is when the intelligent lockdown (Kuiper et al., 2020) was implemented 

(Stage 1). Then, around July 2020 the number of admissions decreased and measures against the 

corona virus were relaxed (Muhlberg, 2020) (Stage 2). However, a second wave started in October 

2020 and a partial lockdown came into effect (Government of the Netherlands, 2020) (Stage 3). In the 

upcoming months, the high number of hospital admissions became stable, and by January 2021 a strict 

lockdown (Government of the Netherlands, 2021b) was implemented together with the curfew (Stage 

4).  

 

Figure 5-2 - Timeline of the number of hospital admissions due to COVID-19 in the Netherlands (Source: Rijksoverheid, 2021) 
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Another way to distinguish COVID-19 stages is by differing the strength of measures applied during 

the pandemic. The Oxford Corona virus Government Response Tracker (OxCGRT) created the COVID-

19 Stringency Index (Ritchie et al., 2021), which tracks the impact of the pandemic across different 

countries and subject areas. In Table 18, the strength of Dutch policy responses to the pandemic on 

workplace closure, school closure, and stay-at-home restrictions are presented in the last three 

columns, respectively, according to the COVID-19 Stringency Index. There are four levels of policy 

measures strength for workplace and school closures. These are: (1) no measures, (2) recommended 

to close, (3) required for some to close, (4) required for all but key workers to close. For stay-at-home 

restrictions, there are also four levels, namely: (1) no measures, (2) recommended to stay-at-home, 

(3) required (except essentials) to stay-at-home and (4) required (few exceptions) to stay-at-home. 

Table 18 – Stages of COVID-19 analyzed in the case study 

Stage Period Description 
Workplace closure 

measures* 
School closure 

measures* 
Stay-at-home 
restrictions* 

Baseline Sep-19 Normal behavior No measures No measures No measures 

1 Mar-20 Intelligent lockdown Required for some Required (all levels) 
Required (except 

essentials) 

2 Jul-20 Summer Relaxations Required for some Recommended Recommended 

3 Oct-20 Semi Lockdown Required for some Recommended Recommended 

4 Jan-21 Strict lockdown 
Required for all but 

key workers 
Required (all levels) 

Required (except 
essentials) 

*Source: COVID-19 Stringency Index in the Netherlands (Ritchie et al., 2021) 

5.3. DATA 
In this section, the data used to estimate the different COVID-19 stages is presented and described in 

detail. Section 5.3.1 describes the data sources and gives an overview of which data is used for each 

module. Section 5.3.2 describes the synthetic population of the study area. Section 5.3.3 describes the 

baseline schedules. Section 5.3.4 presents the activity frequency values. Section 5.3.5 presents the 

modal shift values. Finally, section 5.3.6 discusses the constraints imposed by the data. 

5.3.1. Data sources 

In total, the model has four data inputs. These are the activity frequency values, the modal shift values, 

the synthesized population and the baseline schedules. These inputs come from five different data 

sources as shown in Table 19. In this section, each of these data sources is presented and an 

explanation about how the data is derived is given. 

Table 19 - Input data sources of the case study 

Data source Data type Input for which module Input usage 

1 KIM Activity frequency data in 
the form of frequency 
tables 

Activity module Estimate non-work-related activity 
frequency values 

2 TNO W&HT WFH frequency microdata Activity module Estimate work-related frequency values 

3 DAT.Mobility Modal shift values Modal shift module Estimate the modal shift between modes 

4 TNO SUMS Synthetic population list Activity module Estimate the number of agents performing 
activities in the simulations 

5 Hasselt University Baseline schedules Schedules adjustment module Estimate new schedules 
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The first data source is KIM (Netherlands Institute for Transport Policy Analysis), which provided 

longitudinal data of surveys they conduct on mobility behavior in the Netherlands during the 

pandemic (de Haas, Hamersma, et al., 2020a, 2020c, 2020b). Their microdata is only publicly accessible 

after two years of their collection. However, they kindly provided some frequency tables (macro data) 

with interesting data about the weekly frequency people do outdoor activities (groceries, shopping, 

catering, sports, visit friends and others) and the location where people attend education. The data 

was broken down by age group. In total, there are longitudinal data collected for a period before 

COVID (September 2019) and three COVID periods: March 2020, July 2020 and January 2021. This data 

is input for the activity module to estimate the frequency of non-work-related activities. 

The second data source is TNO’s Work Health Technology department (TNO W&HT), which provided 

longitudinal data from their study named National Survey on Working Conditions COVID-19 (NEA-

COVID). In their study, they investigate the quality of work and employment in the Netherlands. It 

contains information about workers’ work conditions, job type, the number of hours worked in the 

office and also from home, and their industry sector. Their datasets are private but since TNO also 

sponsors this study, they allowed its use. They provided raw microdata that has been processed during 

this study. The data process is explained in section 5.3.4. In total, there are longitudinal data collected 

for three periods: September 2019 (pre-COVID), July 2020, and October/November 2020. This data is 

input for the activity module to estimate the frequency of work-related activities. 

The third data source is DAT.Mobility, which provided a workbook with data from the Nederlands 

Verplaatsingspanel (NVP). NVP is a large-scale source of information about travel behavior, motives 

and background characteristics of the Dutch (DAT.Mobility, 2021). Their workbook contains processed 

aggregates on observed travel behavior from March 2020 to the present. Several indicators have been 

elaborated, such as number of trips, travel times, distance traveled, modal shifts and peak hours. For 

each indicator, data are available for the modes of car, bike, walking and public transport. For this case 

study, only the modal shift data has been used. This data is input for the modal shift module to 

estimate the modal shift between modes. 

The fourth data source is TNO’s Sustainable Urban Mobility and Safety (SUMS), which provided the 

synthetic population for the study area (de Romph et al., 2019). This data is input for the activity 

frequency module to estimate the number of agents that perform activities in the simulations.  

The fifth and final data source is the University of Hasselt, Belgium, which provided the baseline 

schedules generated by their ABM FEATHERS (Bellemans et al., 2010). These baseline schedules were 

generated for the synthetic population provided by TNO for a period before the COVID-19 pandemic. 

This data is input for the schedules adjustment model to estimate schedules for each stage. 

In Table 20 an overview of data sources used to estimate the different COVID-19 stages of the study 

case is presented. The ‘work activity data’ column shows the data sources of the activity frequency 

values of activities work and business. The ‘non-work activities data’ column shows the data sources 

of the activity frequency values of activities bring/get, shopping, education and others. For stage 3, 

there were no measurements of ‘non-work activity data’, so the average between the percentages of 

stages 2 and 4 for all activity types was considered. The ‘modal shift data’ column shows the periods 

of the modal shift data used from the NVP data of DAT.Mobility. 

Note that for the ‘work activity data’ of stages 1 and 4 and, the data source is described as ‘perception’. 

For this stages, TNO didn’t collect data. Therefore, it was decided to estimate the percentages for 

these stages based on how essential workers of different sectors are (McNicholas & Poydock, 2020) 

and the strength of work-related policy measures for the correspondent periods (Ritchie et al., 2021). 
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By essential workers, it is meant that the employees of a certain sector are required to work on-site. 

According to the study of McNicholas & Poydock (2020), the majority of essential workers during the 

COVID-10 pandemic are employed in healthcare, food & agriculture, and industrial & production 

sectors, while the minority of essential workers are in the office sector and in (most of) the retail 

sector. Therefore, for sectors considered essential, the percentage of home workers has been 

estimated lower compared to the sectors considered non-essential. The values estimated for these 

two stages are described in detail in section 5.3.4. 

Table 20 - Overview of the data sources of the case study 

Stage Period Description Work activity data Non-work activities data Modal shift data 

Baseline  Sep-20 Normal behavior TNO Wave 0 KiM 0 Weeks 10-11, 2020 

1 Mar-20 Intelligent lockdown Perception KiM 1 Weeks 13-14, 2020 

2 Jul-20 Summer Relaxations TNO Wave 1 KiM 2 Weeks 29-30, 2020 

3 Oct-20 Semi Lockdown TNO Wave 2 Average KiM 2 & KIM 4 Weeks 42-43, 2020 

4 Jan-21 Strict lockdown Perception KiM 4 Weeks 03-04, 2021 

5.3.2. Synthetic population 

The synthetic population of the case study has been developed by TNO for the MRDH (de Romph et 

al., 2019). The study area has a population of approximately 3.65 million. This number is higher than 

the population of the MRDH because the population of nearby external areas is also included since 

they also make trips to the model area. 

A synthetic population can have many demographic attributes, and that depends on the study 

purposes and also on the data availability. For this case study, the synthetic population is classified 

using four different attributes: gender, education, age and work sector. That is because the activity 

frequency values input data had only these four attributes. If there were more, they could have been 

used. Table 21 presents the categories of each of the four demographic attributes. Please note that 

there are two other attributes, ‘agent_id’ and ‘location_id’, that identify each agent in the population 

and the zone where this agent lives.  

The graphs of Figure 5-3 show how the population is distributed per each demographic attribute. 

Attributes age, gender and education are classified taking into account the 3.65 million inhabitants of 

the study area. The attribute work sector takes into account only the workers of the study area, which 

are approximately 1.24 million. 
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Table 21 – Demographic attributes of the synthetic population of the case study 

Attribute Value Description Unit 

agent_id 0-N Unique ID of agent - 

location_id 0-7740 Zone where agent lives Zone 
number 

gender - Gender of person - 

1 Male 
 

2 Female - 

age_person - Age group of person - 

1 Age < 15 - 

2 Age >=15 & Age < 25 - 

3 Age >= 25 & Age < 45 - 

4 Age >= 45 & Age < 65 - 

5 Age >= 65 - 

education - Highest education obtained - 

1 Primary - 

2 Lower - 

3 Secondary - 

4 Higher - 

5 Other - 

working_sector - Sector which the person works - 

0 Not working - 

1 Industry and production - 

2 Healthcare - 

3 Retail - 

4 Education - 

5 Office - 

6 Other - 

 

 

Figure 5-3 - Synthetic population distribution per different attributes 
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From all the demographic attributes of the case study, the work sector is the only attribute that was 

not previously included in the synthetic population of FEATHERS. For this study, this attribute has been 

estimated and included in the synthetic population due to its importance in modeling commuting 

behavior. In the remainder of this section, the addition of the work sector attribute to the synthetic 

population is explained. 

The work sector is added to the population using data from the Central Agency of Statistics of the 

Netherlands (CBS). Their data contain information of employee jobs for the Dutch population, such as 

the type of job and work sector (CBS, 2020). From their datasets, data about the work sector of 

individuals in the MRDH are extracted and distributed to the synthetic population. Due to permission 

constraints, the distribution of work sectors for the synthetic population is done at a regional level, 

which means that all the zones of the study area have the same work sector distributions. However, 

it would be better to have these distributions at the zonal level to have more accurate results. 

In total, there are 70 work sectors in CBS datasets. However, it is decided for this study to group these 

sectors into 6 smaller groups to limit the number of possible agent type combinations. The six sectors 

considered in the case study are: (1) industry and production, (2) healthcare, (3) retail, (4) education, 

(5) office, (6) other. The ‘other’ sector includes sectors such as transportation, sports and recreation, 

and other service activities. 

These sectors are distributed to the synthetic population according to the number of workers of each 

zone. Figure 5-3 indicates the share of different work sectors in the MRDH. For example, if a zone has 

100 inhabitants that are workers, then sixteen of these workers will be from the industry & production 

sector, fifteen will be workers from the healthcare sector, and so on. 

5.3.3. Baseline schedules 

The baseline schedules used as input for the study case have been developed by TNO and the 

University of Hasselt by the use of the ABM FEATHERS (Bellemans & Kochan, 2016). The network used 

to build the baseline schedules is the modal that is used by MRDH, the V-MRDH 2.0 (MRDH, 2021b). 

The ABM FEATHERS has been used for a synthetic population in the V-MRDH regions 1 to 5. These are 

the non-green areas shown on the right of Figure 5-4, also referred to as the model area or the internal 

area. This application contains almost all trips made from internal to internal, but only a part of the 

trips from internal to external areas, external to internal areas and external-external traffic. The 

farther away the zones are from the MRDH, the larger the fraction of external-related trips. For this 

study, all the schedules within regions 1 to 5 are considered. 
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Figure 5-4 – MRDH study area (left); V-MRDH (right): schedules for areas 1 to 5: yellow, orange, light blue, dark blue and 
purple 

Table 22 presents the attributes included in the (baseline) schedules of the case study. In total, the 

study area has 7740 zones. There are 7 different activity types and 7 different transport mode 

alternatives. The unit of time is minutes. The unit of distance is kilometers.  

Table 22 - Schedules attributes of the case study 

Attribute Value Description Unit 

agent_id 0-N Unique ID to identify agents - 

activity_type - The type of activity a person is going to do 
at the destination 

- 

 
1 Home - 

 
2 Work - 

 
3 Business - 

 
4 Bring/get - 

 
5 Education - 

 
6 Shopping - 

 
7 Other - 

activity_location 0-7740 Zone where activity takes place Zone number 

activity_start_time 180-1619 Start of activity in minutes since midnight minute 

activity_duration 1-1440 Length of activity minute 

trip_transport_mode - Main transport mode of the whole trip - 
 

1 Walk - 
 

2 Bike - 
 

3 E-bike - 
 

4 Car driver - 
 

5 Car passenger - 
 

6 Shared on-demand - 
 

7 Public transport - 

trip_origin 0-7740 Zone where traveler departed Zone number 

trip_destination 0-7740 Zone where traveler arrives Zone number 

trip_start_time 180-1619 Start of trip in minutes since midnight minute 

trip_duration 0-N Length of trip minute 

trip_distance 0-N Distance of trip km 
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5.3.4. Activity frequency values 

The activity frequency values used for this case study comes from data provided by KIM (de Haas, 

Hamersma, et al., 2020c, 2020a, 2020b) and TNO W&HT (Hooftman et al., 2021; Hooftman, Bouwens, 

et al., 2020; Hooftman, Hengel, et al., 2020). The data provided by KIM was already provided in the 

desired structure, while the data provided by TNO W&HT needed to be processed. Thus, for some 

stages, there was no data available from these two data sources so they were estimated using a 

different approach. 

Section 5.3.4.1 describes the activity frequency value tables used in the case study. Section 5.3.4.2 

discusses the steps to process the NEA-COVID data. Section 5.3.4.3 explains the approach taken to 

estimate data for stages that there was no NEA-COVID data available. 

5.3.4.1. Activity frequency tables 

The activity frequency values are inputs in the format of tables. For this case study, there are six 

activity types available (see Table 22) and for each activity type, there is an activity frequency table. 

For activity types ‘work’ and ‘business’, three attributes are used to categorize agents: age, gender 

and work sector. Age has 5 categories, gender has 2, and work sector has 7 (including agents that do 

not work), which means that there are 70 different combinations of agent types. For activity types 

‘education’, ‘shopping’, ‘bring/get’ and ‘other’, only the age attribute is used, so there are 5 different 

combinations of agent types.  

The activity frequency value tables of all the stages considered in this case study are presented in 

Appendix A. 

An important aspect of this case study is that the tables for activity ‘education’ are not in the format 

of 0-5 days as explained in chapter 4, section 4.3.2. Instead, agents have three frequency options: ‘full 

online’, ‘partial online’, and ‘full on campus’. That is because the data provided by KIM only considered 

these options in their survey. ‘Full online’ means that the student does not travel to study, ‘partial 

online’ means that the student has a 50% chance of traveling to study per day, and ‘full on campus’ 

means that the student has a 100% chance of traveling to study per day. 

5.3.4.2. NEA-COVID data processing 

As explained before, NEA-COVID data comes from the study conducted by TNO W&TH (Hooftman et 

al., 2021; Hooftman, Bouwens, et al., 2020; Hooftman, Hengel, et al., 2020) about the quality of work 

and employment in the Netherlands during the COVID-19 pandemic. It contains information about 

workers’ work conditions, job type, the number of hours worked in the office and also from home, 

and their industry sector. 

The steps to process the data from TNO W&TH are as follows: first, the attributes that were useful for 

the project were identified. For this study, it is of interest to use attributes that can help to explain the 

frequency in which workers work from home, but taking into account the behavior of different groups 

of people, such as their age and work sector. Therefore, from the dataset, the following attributes 

were selected: agent ID, stage, gender, age, education, industry sector, number of hours worked per 

week in their job contract (‘Worked_hours’), number of hours worked from home per week 

(‘WFH_hours’), job change (if they changed job during the pandemic), and working conditions (not 

working, working only at the office, working only at home, and working both at the office and at 

home). The other attributes were filtered out, as well as rows that had invalid or empty cells. 

The ‘working conditions’ attribute indicates whether agents are currently working or from where they 

work (from home or from the office). That already splits the population into workers and non-workers. 

From the ‘Worked_hours’ and ‘WFH_hours’ attributes, it is possible to estimate how many hours 
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people work per week and also the share of hours that they work at the office and at home. The range 

of Worked_hours and WFH_hours values is broad and sometimes uncommon (e.g. 7, 9, 21, 65, 70 

hours a week). According to Hooftman et al. (2020), sometimes people might not have understood 

the question well and filled something like the number of hours they feel they work instead of their 

contract hours. Therefore, for simplicity, it was decided to group Worked_hours and WFH_hours 

attributes into categories as presented in Table 23. For this categorization, we assume that a person 

can work a maximum of five days a week, and one day of work is less or equal to eight work hours. 

Hence, the variables Worked_hours and WFH_hours are transformed into the variables Worked_days 

and WFH_days, respectively. 

Table 23 – Categorization of number of days worked 

Hours worked per week Days of work per week (max = 5) 

0 0 

<8 1 

9-16 2 

17-24 3 

25-32 4 

>32 5 

 

Then, from the difference between the Worked_days and WFH_days, the number of days an agent 

commute to work every week can be estimated. That is the attribute Work_trip_days. The processed 

data at this stage is presented in Figure 5-5. It has the background variables of agents, as well as the 

period it has been collected. 

 

Figure 5-5 - NEA-COVID processed data example 

When all agents of the dataset have their Work_trip_day attribute, then the activity frequency tables 

are generated. The data processed from NEA-COVID is available for the baseline stage and stages 2 

and 3. 

5.3.4.3. Data estimation for stages 1 and 4 

As explained in section 5.3.1, there were no inputs of work activity data available for stages 1 and 4, 

and they were estimated based on how essential workers of different sectors are (McNicholas & 

Poydock, 2020) and the strength of work-related policy measures for the correspondent periods 

(Ritchie et al., 2021). Sectors considered non-essential (retail, office, education) have fewer on-site 

workers while sectors considered essential (industry & production, healthcare) have more.  

In Table 24 the estimated share of on-site workers for each working sector during stages 1 and 4 is 

presented. In the Netherlands, the recommendation during stage 1 was to work from home as much 

as possible while in stage 4 the requirement was for all but key workers to work from home.  

As explained in section 5.2, there are four levels of workplace closure restrictions. Stage 1 was in the 

second level of restrictions, while stage 4 was in the fourth. Therefore, for non-essential sectors in 

stage 1, it is decided to assign 25% of workers to work on-site, and a bit less (10%) to the office sector 

since that is the sector that more often works from home (CBS, 2020). For essential jobs, the 

ID Period Gender Age Education Paid_work Sector Work_condition Worked_hours WFH_hours Worked_days WFH_days Work_trip_days

0 2919030 0 2 4 1 3 1 1 32 0 4 0 4 days

1 2919030 1 2 4 1 0 1 0 0 0 0 0 0 days

2 2919052 0 1 3 2 3 1 1 40 0 5 0 5 days

3 2919052 1 1 3 2 0 1 0 0 0 0 0 0 days

4 2919052 2 1 3 2 3 1 3 40 10 5 2 3 days

5 2919056 0 1 4 1 3 1 1 40 0 5 0 5 days
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healthcare sector is assigned 100% since they were highly required during the pandemic, and 50% is 

assigned to the industry & production sector since this sector is broad and not all of it can be 

considered essential. For stage 4, it is decided to reduce even more the numbers for non-essential 

jobs and the industry & production sector, since only key workers were allowed to work on-site. The 

healthcare sector is the only sector to keep the same percentage as in stage 1. 

Table 24 – Share of on-site workers estimated for stages 1 and 4 of the case study 

Sector Stage 1 (intelligent lockdown)  Stage 4 (strict lockdown) 

Industry & production 50% 10% 

Healthcare 100% 100% 

Retail 25% 10% 

Education 25% 2% 

Office 10% 2% 

Other 25% 10% 

Workplace closure 
during COVID-19    

(Ritchie et al., 2021) 
Required for some Required for all but key workers 

 

5.3.5. Modal shift values 

The modal shift values used for this case study come from data provided by DAT.Mobility (2021). They 

calculate the amount of time that a population sample spends traveling using different transport 

modes on a weekly basis. Then, the time difference between the same modes in week X and week Y 

is calculated. This yields transport modes with a surplus of travel time, and transport modes with a 

deficit of travel time. For example, if an agent travels 20 minutes by car in week X, and 10 minutes in 

week Y, then 10 minutes go from car to car. Then, the remaining 10 minutes (surplus) is distributed 

evenly among the modes with a deficit. This is done for all the transport mode categories. 

For this case study, the time difference to define the modal shift is calculated considering a week 

before the pandemic (Week 10, 2020) and weeks during the pandemic. Table 25 presents the weeks 

chosen to use the modal shift data provided by DAT.Mobility.  

Table 25 - Weeks chosen to use the modal shift data provided by DAT.Mobility 

Stage Period Description Modal shift data 

Baseline Sep-20 Normal behavior Week 10, 2020 

1 Mar-20 Intelligent lockdown Weeks 13-14, 2020 

2 Jul-20 Summer Relaxations Weeks 29-30, 2020 

3 Oct-20 Semi Lockdown Weeks 42-43, 2020 

4 Jan-21 Strict lockdown Weeks 03-04, 2021 

 

Table 26 presents the modal shift values considered for the different stages. The rows are the 

percentage of trips that transport mode gives to other modes and the columns are the percentage of 

trips that they take from other modes.  

To use this data for this case study, two important aspects need to be considered. The first aspect is 

that this data is aggregated and there is no distinction in the modal shift values between different 

activity or agent types. Therefore, the same values are used for all activities and agents. The second 

aspect is that these datasets did not include transport modes e-bike, car passenger and on-demand 

services. Hence, only walk, bike, car and public transport were considered for the modal shift. 
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Table 26 - Modal shift values of the different stages (data source: DAT.Mobility) 

Stage 1 (intelligent lockdown)  Stage 3 (semi lockdown) 

To\From Walk Bike Car PT  To\From Walk Bike Car PT 

Walk - 0,20% 0,40% 0,00%  Walk - 0,50% 0,60% 0,10% 

Bike 0,50% - 0,70% 0,00%  Bike 0,50% - 0,90% 0,10% 

Car 1,20% 1,00% - 0,10%  Car 1,80% 1,80% - 0,10% 

PT 0,30% 0,10% 0,40% -  PT 0,40% 0,20% 0,70% - 

           
Stage 2 (summer relaxations)  Stage 4 (strict lockdown) 

To\From Walk Bike Car PT  To\From Walk Bike Car PT 

Walk - 0,30% 1,00% 0,00%  Walk - 0,20% 0,80% 0,10% 

Bike 0,60% - 1,00% 0,10%  Bike 0,50% - 1,10% 0,10% 

Car 1,60% 1,50% - 0,20%  Car 2,00% 0,90% - 0,10% 

PT 0,30% 0,10% 0,80% -  PT 0,30% 0,10% 0,60% - 

 

5.3.6. Data constraints 

The data available for this case study imposes some constraints to the model and some limitations to 

the level of detail of the results. In this section, those constraints and limitations are presented and 

explained. 

i. As explained in section 5.3.2, the work sector attribute has been added to the synthetic 

population of this study because it was not previously included. It has been distributed at a 

regional level. However, it would be better to distribute it at the zonal level to capture more 

mode detailed insights about distinguished zones. 

ii. There was no initial information about who in the synthesized population was working from 

home in the pre-pandemic period. Therefore, for stage 0 only agents that have work trips in 

the baseline schedules are considered workers. Then, when running the other stages, agents 

that do not have work trips are considered home workers. 

iii. The activity frequency values provided by KIM about non-work-related activities only use the 

demographic attribute ‘age’ to classify agents. With more combinations of attributes, the 

model would be able to consider way more different types of persons and provide a more 

detailed estimation. 

iv. The data provided by TNO H&WT about work-related activities uses demographic attributes 

age, gender, education and work sector to classify agents. For the proposed model, however, 

only age, gender and work sector attributes were considered because the number of different 

combinations of agents was too big and some classes of agents did not have a sufficient 

number of observations (n > 30). 

v. The modal shift values provided by DAT.Mobility only considers transport modes walk, bike, 

car and public transport. However, in the case study of this research, there are three other 

transport modes (e-bike, car passenger and on-demand services). Therefore, for the modal 

shift estimations, these three modes do not shift trips with other modes.  
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6. RESULTS 

Based on the principles defined in the previous chapters, the modeling framework is used to predict 

the schedules of the MRDH population for the different COVID-19 stages described in chapter 5. Each 

stage offers a wide set of results and outcomes that provide a picture of the displacement patterns 

down to the individual level. Insights into which impact applies to which class of persons are therefore 

possible. It is precise because of the very wide range of results that a full quantitative reporting of all 

figures is outside the focus of this study. The most relevant tables are presented in this chapter. 

When doing the exploratory analysis, it is important to keep in mind that no unambiguous explanation 

can be drawn up for various aspects. After all, the current circumstances concerning falling back from 

demand to travel are unseen in various areas, and there is no framework or numerical substantiation 

for the changed behavior. For example, it is clear that greatly increased homeworking leads to fewer 

trips, but no historical law can be found that explains exactly how large this proportion is. It can only 

fall back on current observations. In this respect, these analyzes do not intend to precisely quantify 

and predict the proportion of working from home or activity frequency in itself, but rather the impact 

of a predetermined level of them on activity-travel patterns. For this reason, the stages are based on 

survey data and assumptions of certain levels. The exploratory analyzes are essentially what-if 

exercises that make predictions in terms of journeys and mobility density, given certain assumptions 

about aspects that play a role in the COVID-19 pandemic. 

As a reminder of chapter 4, section 4.5, because the model uses a microsimulation approach at the 

person-day level, it is subject to some degree of simulation variation. However, it is important to check 

if the aggregated results do not vary significantly. In order to do that, the model runs each stage five 

times and calculates the standard deviation for each stage. The calculated standard deviation for 

stages 1, 2, 3 and 4 are 0.0, 2.5x10-3, 0.0, and 0.01, respectively. These standard deviation values are 

low and confirm that five runs are an appropriate number to have consistency in the results. The next 

step then was to take the average of the outcomes of the five runs and those values are used for 

analysis in this chapter. 

The results chapter is divided into two sections. Section 6.1 provides insights into the implications of 

COVID-19 on activity-travel behavior. For the different COVID-19 stages, differences are analyzed in 

the number of tours, modal share, number of trips per activity type, the complexity of tours, and the 

number of home stayers. Section 6.2 provides insights into the implications of COVID-19 on work and 

commuting behavior. It is analyzed the number of work trips, modal share, traveled distance per 

mode, number of onsite workers (and therefore the number of homeworkers), and also a spatial 

analysis about the number of onsite workers per zone in the area. Finally, section 6.3 provides an 

overview of the results. 

6.1. IMPLICATIONS OF COVID-19 ON ACTIVITY-TRAVEL BEHAVIOR 
As discussed in the literature review, activity-travel behavior changed significantly because of COVID-

19. In this section, several activity-travel and mobility indicators are presented and the main findings 

are discussed. 

6.1.1. Number of tours 

Table 27 presents the results of the number of tours, also split by age group; and the changes of modal 

share for the different stages. The last four columns provide a percent difference comparison of stages 

and the baseline stage (S0). 
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The way policy measures are implemented affects directly the activity behavior of travelers. For stages 

1 (intelligent lockdown) and 4 (strict lockdown), more strict policy measures regarding social distance 

were implemented (Schlosser et al., 2020), and as a consequence, fewer trips and tours were 

observed. During the intelligent lockdown, a decrease of 67% in the total number of tours is observed 

while during the strict lockdown it decreased around 69%. For stage 2 (summer relaxations), there is 

a decrease of 36% compared to the pre-pandemic, but it is still around two times higher than during 

the intelligent lockdown. For stage 3 (semi lockdown), the total number of tours dropped 48%, which 

is 20% less than the summer relaxations, but around 40% more than the strict lockdown. 

Table 27 – Results of the total number of tours and modal share 

 S0 S1 S2 S3 S4 % S1 % S2 % S3 % S4 

Total tours 4,919,061 1,635,742 3,144,483 2,571,188 1,529,054 -66.7 -36.1 -47.7 -68.9 

Tours age 1 (<15) 945,214 363,263 563,712 426,224 280,800 -62 -40 -55 -70 

Tours age 2 (15-25) 592,140 178,251 286,605 237,077 146,250 -70 -52 -60 -75 

Tours age 3 (26-45) 1,346,111 486,595 966,001 806,635 453,104 -64 -28 -40 -66 

Tours age 4 (46-65) 1,334,787 452,202 918,332 781,630 419,816 -66 -31 -41 -69 

Tours age 5 (>65) 700,809 155,431 409,834 319,622 229,084 -78 -42 -54 -67 

Modal share walk 17.71% 18.32% 18.77% 18.21% 20.73% 3.5 6.0 2.8 17.1 

Modal share bike 22.01% 23.21% 21.46% 21.53% 20.73% 5.4 -2.5 -2.2 -5.8 

Modal share e-bike 2.96% 2.96% 2.98% 3.02% 3.01% 0.0 0.8 2.0 1.7 

Modal share car 37.80% 35.96% 37.89% 38.14% 35.75% -4.9 0.2 0.9 -5.4 

Modal share passenger 10.23% 10.21% 10.24% 9.95% 11.41% -0.2 0.1 -2.8 11.5 

Modal share on demand 0.10% 0.10% 0.09% 0.09% 0.10% -1.1 -7.8 -11.0 1.0 

Modal share PT 9.19% 9.24% 8.56% 9.07% 8.27% 0.5 -6.8 -1.2 -10.0 

 

Even though the results show people of all age groups to be less active outdoors, it is also interesting 

to analyze these indicators for different age groups because the reasons for that may vary. During the 

intelligent lockdown (S1), which was the first lockdown implemented, no one knew how to behave 

against the virus spread, so no considerable differentiation between age groups can be observed. A 

decrease between 62% and 68% is observed in the number of tours for all ages of S1. The highest 

decrease in the number of tours is observed for people in age groups 2 (15-25) and 5 (<65), with 

decreases of 70% and 78%, respectively. The reasons for having more elder people traveling less might 

be due to the recommendations of the government about the risk groups for the corona virus (RIVM, 

2021), where they state that elder people and people with comorbidities were more vulnerable to the 

virus. During the summer relaxations (S2), some other patterns can be observed. While a decrease of 

around 28-31% of tours is observed for people in age groups 3 (25-45) and 4 (45-65), an interesting 

decrease of 52% is seen for people in age group 2. This can be explained by the fact that this group 

used to be more active in terms of participating in activities such as sports and going out before the 

corona virus. In addition, they are more likely to be affected in terms of work (more flexible and 

temporary contracts) and education (de Haas et al., 2020). In the strict lockdown (S4), the number of 

tours for all ages decreased similarly, ranging between 66% and 75%. That was the moment where all 

sectors were closed and the curfew was implemented (Government of the Netherlands, 2021b). 

6.1.2. Modal share 

The modal share also provides interesting results within stages. Although the total volume of trips has 

been greatly reduced in all stages, plotting all trips in relative modal share does not decrease its 
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importance. The modal shift values applied in the model improve the estimations of modal shares for 

the different stages. Table 27 shows the results.  

As discussed in the literature review, during the corona crisis a positive movement towards active 

modes would be a natural behavior to avoid social contact (Oirbans, 2021). For all stages, an increase 

between 3% to 6% is observed for walking trips, except for the strict lockdown S4 where it increases 

around 17%. Surprisingly, the share of bike decreased in stages 2, 3 and 4. A reason for that might be 

a modal shift between active modes since the modal share of walking trips increased significantly. On 

the other hand, the share of e-bike slightly increased for the same stages. According to the study of 

MuConsult (2021), the share the e-bike during 2020 has gained travel share particularly due to 

shopping and leisure activities.  

Concerning public transport, as expected, the share of public transport decreased in stages 2, 3 and 4. 

However, it peculiarly increased 0.5% in stage 1. For cars, the share decreased around 5% in stages 1 

and 4 and slightly increased in stages 2 and 3.  

The decrease of bike share in three stages and the increase of PT share in stage 1 were not expected. 

The reasons for these outcomes in modal shift can be technically (partially) explained. In our model, 

the removal of trips is done in two steps. In the first step, the number of trips to be removed is evenly 

distributed for all the transport modes. As a result, modes with higher shares will have more trips 

removed than modes with lower shares. Second, the modal shift values are shifted between modes, 

and the number of trips shifted is based on the total number of trips of each mode before the 

reduction. Therefore, once the number of trips is evenly reduced for all transport modes, the modal 

share becomes more sensitive if a high number of trips is shifted between modes. Hence, the removal 

of trips together with the shift between modes can directly influence the final modal share, and for 

some cases, the final modal share can present unusual results. In the PT case of stage 1, the cause for 

the increase in its share might be because there was a substantial decrease in the total number of 

trips by car, which is the mode with the highest modal share. Thus, for this particular stage, car gives 

almost 3.3% of its trips to other modes. Therefore, that particular reduction affects directly the modal 

share, including the share of modes that are expected to reduce. In conclusion, the modal share does 

not mean that a particular mode has more trips being performed; what it actually means is that for 

some modes, the number of trips reduction is higher than for other modes. 

6.1.3. Number of trips per activity type 

Regarding the motives why people perform trips, Table 28 presents the particular outcomes of each 

stage. The last four columns provide a percent difference comparison of the stages and the baseline 

stage (S0). 

The total number of trips for the stages decreased linearly to the number of tours presented in Table 

27. Fewer trips were observed for the strict lockdown S4 (only 29.1%), followed closely by the 

intelligent lockdown S1 (30.7%). The summer relaxation S2 period had the most number of trips of all 

stages (61.6%), but it is still 38.4% less than the pre-pandemic stage. 

With regard to the activity types, for some stages, the number of work-related trips decreased more 

than of non-work-related trips, and for other stages the opposite happened. In S1 and S4, work-related 

trips decreased more than non-work-related trips. In S2, the other way around. A reason for that is 

the strength of related policies measures during these periods. According to Ritchie et al. (2021), work-

related policy measures were stronger in the periods of stages 1 and 4 compared to non-work-related 

policy measures. During stage 2, however, both work-related and non-work-related policies were at 

the same moderate level. 
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Table 28 – Results of the total number of trips per activity type 

 S0 S1 S2 S3 S4 % S1 % S2 % S3 % S4 

Total trips 10,991,221 3,379,440 6,766,033 5,440,005 3,171,583 -69.3 -38.4 -50.5 -71.1 

Trips home 4,919,061 1,635,742 3,144,483 2,571,188 1,529,054 -67 -36 -48 -69 

Trips work 1,317,889 439,978 780,462 743,768 268,148 -67 -41 -44 -80 

Trips business 95,676 29,731 56,522 53,391 16,359 -69 -41 -44 -83 

Trips bring/get 514,864 142,965 385,048 256,297 127,574 -72 -25 -50 -75 

Trips education 892,288 334,060 316,394 207,675 99,338 -63 -65 -77 -89 

Trips shopping 1,230,405 311,288 855,301 570,591 286,020 -75 -30 -54 -77 

Trips other 2,021,038 485,675 1,227,824 1,037,095 845,090 -76 -35 -49 -58 

 

During the intelligent lockdown (S1), there is a certain equilibrium in the decrease of trips among all 

the activity types. The decreases ranged between 63% and 76%. In the summer relaxations (S2), 

however, those numbers are contrasting. The highest drop in the number of trips is seen for work-

related (41%) and education trips (65%), while for shopping and other activities the drop remained 

low (30% and 35%, respectively). A reason for that is that leisure-related measures have been relaxed 

during the summer (Muhlberg, 2020) while the recommendation of work-related policies was to work 

from home as much as possible (Chelsea & Mulder, 2021). Thus, in stage 2 the education sector was 

on vacation.   

During the semi-lockdown (S3), as the number of people admitted at hospitals started to increase 

(Figure 5-2), new policies were implemented to stop the virus’ spread. During this stage, the number 

of work trips did not change much compared to the summer relaxations (only 3%), but the number of 

education trips reduced almost to three-quarters of the pre-pandemic conditions. This continuous 

reduction can be explained by the fact that institutions have adapted their methodologies to hold 

education classes online as much as possible with the beginning of the new semester (Boztas, 2020). 

The number of shopping trips also decreased significantly compared to S2 (from 30% to 54%) and even 

more in the strict lockdown S4 (77%). The cause for those drops could be the stricter policy measures 

for shopping and the increase of acceptability of the population for online shopping (Silicon Canals, 

2020).  

The number of trips for all activities types has been noticeably reduced during the strict lockdown 

phase (S4). New measures against COVID-19 were implemented, like the curfew (Government of the 

Netherlands, 2021b), and people were strongly advised to leave their houses only for essential 

motives. The only activity type that the decrease is less than 80% is the ‘other’ category (i.e. walking, 

doing sports). That is because the lockdown implemented by the government only allowed people to 

leave their houses for walking, doing individual sports or other essential motives (Government of the 

Netherlands, 2021a). 

6.1.4. Number of home-stayers 

Due to fear of infection and strict measures against COVID-19, many people stopped leaving their 

homes during the pandemic. In Table 29 it is presented the number of home-stayers for the different 

stages. (Fully) Home-stayers are people that did not leave their houses. The last five columns are the 

percentage of home-stayers compared to the total population that falls in the same (age) group. 

In a macroscopic overview, the number of home-stayers varies considerably for the different stages. 

From the 3.65 million agents of the study area, around 368 thousand (10%) were home-stayers during 

the pre-pandemic (S0). That number rose to 2.23 million (61%) during the intelligent lockdown S1. 
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During the summer relaxations S2, that number dropped to 1.28 million (35%) and in the semi 

lockdown, it rose to 1.58 million (43%). During the strict lockdown, 2.33 million (63%) of the population 

did not have any trips during the day. These numbers can be explained. During the strict lockdown 

where everything was closed, one of the only alternatives for people (and allowed by the policies 

implemented) was to go for a walk or do individual sports (NL Times, 2021). Therefore, even though 

in stage 4 only 63% of the population did not have any tours, the other 37% might have had few trips 

or tours, like for example going only for a short walk during the entire day. 

Table 29 – Results of the number of fully-home stayers; also split by age group 

       % of the population 

Population Home-stayers S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 

3,649,499 Total home-stayers 368,057 2,232,918 1,280,282 1,589,906 2,333,662 10 61 35 44 64 

612,419 Age 1 (<15) 34,307 308,210 200,943 276,838 373,132 6 50 33 45 61 

453,897 Age 2 (15-25) 34,785 292,979 217,063 250,836 322,055 8 65 48 55 71 

949,871 Age 3 (26-45) 74,504 538,195 261,973 329,357 569,896 8 57 28 35 60 

994,489 Age 4 (46-65) 92,394 598,757 298,307 368,586 634,474 9 60 30 37 64 

638,823 Age 5 (>65) 132,067 494,777 301,996 364,289 434,105 21 77 47 57 68 

 

6.1.5. Complexity of tours 

Table 30 presents indicators about the types of tours present in the schedules. The percentage of 

single tours (i.e. tours with only one activity) is predominant in stage 0, with around 81% of the total 

share. During the pandemic, the predominance of single tours increased significantly in all stages, 

reaching 94% of the share of all tour types in stage 1. The most preferred tour among the population 

is home-other-home tour, which is around 25,3% of the tours in stage 1 and almost 50% of the tours 

in stage 4. As discussed before, the reason for an increase in the number of ‘other’ activities is due to 

the lockdown implemented by the government, in which people were allowed to leave their houses 

only for essential activities like walking, doing individual sports or other essential motives 

(Government of the Netherlands, 2021a). 

The appearance of different tour types varied significantly for the different stages. In stage 0, there 

were more than 2500 tour types, which means that many tours were multi-activity tours (i.e. tours 

with more than one activity). However, the number of different tour types dropped almost 50% in the 

summer relaxations S2 and around 82% during the intelligent lockdown S1 and the strict lockdown S4, 

which means that people preferred less complex tours during the pandemic. 

Table 30 – Results of tour-related performance indicators 

 S0 S1 S2 S3 S4 % S1 % S2 % S3 % S4 

Total number of tours* 4,919,061 1,635,742 3,144,483 2,571,188 1,529,054 -66.7 -36.1 -47.7 -68.9 

% of single tours 81% 94% 87% 90% 93% 16 7 11 14 

Home-Other-Home tours 25,3% 25,6% 28,7% 31,7% 47,7% 1 13 25 88 

Average tours per agent 1,45 1,06 1,21 1,14 1,06 -27 -17 -21 -27 

Number of different tour types 2648 489 1269 861 405 -82 -52 -67 -85 

*Excluding stay at home tours 
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6.2. IMPLICATIONS OF COVID-19 ON WORK AND COMMUTING BEHAVIOR 
As discussed in the literature review, the commuting behavior of different groups of people changed 

significantly because of COVID-19. In this section, several commuting indicators are presented and the 

main findings are discussed. 

6.2.1. Number of work trips 

Table 31 presents the results of the total number of work trips, changes in modal share and total 

distance traveled per transport mode. The last four columns provide a percent difference of stages 

and the baseline stage (S0). 

The decrease in the total number of work trips observed in the stages is distinct. The decrease in the 

strict lockdown S4 is the highest (80%) whereas in summer relaxations S2 and semi lockdown S3 the 

number of work trips decreased two times less than in S4. Clearly, the work-related policy measures 

during S4 were more restrictive than the measures imposed during S2 and S3, which means that more 

people started to work from home (Hooftman, Bouwens, et al., 2020). 

Table 31 – Results of commuting behavior: number of work trips; modal share; distance traveled per mode 

 S0 S1 S2 S3 S4 % S1 % S2 % S3 % S4 

Total work trips 1,317,889 439,978 780,462 743,768 268,148 -67 -41 -44 -80 

Modal share walk 4.9% 6.9% 6.4% 6.6% 9.9% 40.8 30.6 34.7 102.0 

Modal share bike 17.9% 18.9% 18.7% 19.1% 20.4% 5.6 4.5 6.7 14.0 

Modal share e-bike 3.6% 3.7% 3.6% 3.6% 3.8% 2.8 0.0 0.0 5.6 

Modal share car 52.9% 49.5% 51.1% 50.6% 45.6% -6.4 -3.4 -4.3 -13.8 

Modal share passenger 2.6% 2.8% 2.6% 2.6% 3.1% 7.7 0.0 0.0 19.2 

Modal share on demand 0.0% 0.0% 0.0% 0.0% 0.0% 0.0 0.0 0.0 0.0 

Modal share PT 18.1% 18.2% 17.6% 17.5% 17.2% 0.6 -2.8 -3.3 -5.0 

Distance traveled (KM) Total 22,915,991 7,531,628 13,322,785 12,686,805 4,435,438 -67 -42 -45 -81 

KM walk 161,066 77,627 127,584 124,258 68,212 -52 -21 -23 -58 

KM bike 967,765 343,221 599,137 586,276 211,710 -65 -38 -39 -78 

KM e-bike 273,749 96,044 163,273 154,696 58,967 -65 -40 -43 -78 

KM car 14,927,186 4,760,178 8,605,575 8,175,093 2,679,981 -68 -42 -45 -82 

KM passenger 742,929 267,710 443,703 422,975 180,046 -64 -40 -43 -76 

KM on demand 1,517 626 923 835 343 -59 -39 -45 -77 

KM PT 5,841,779 1,986,221 3,382,591 3,222,671 1,236,179 -66 -42 -45 -79 

 

6.2.2. Modal share for commuting 

The modal share presented in Table 31 shows that for all stages, workers preferred active commuting 

to PT or car trips. In stages 1, 2 and 3, the modal shares of walk and bike increased around 30% and 

5% respectively, and in stage 4 they increased three times more than that. Meanwhile, drops have 

been observed mainly in the car and PT shares. These results follow similar conclusions as the 

measures collected by Taale et al. (2021) about the transport modes used for commuting during the 

pandemic. 

6.2.3. Total traveled distance for commuting 

Analysis of traveled distance on the MRDH network provides a picture of the traffic on the roads. The 

total traveled distance in stage 0 is around 23 thousand kilometers. That number dropped to 7.5 
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thousand during the intelligent lockdown S1 and dropped to less than 4.5 thousand during the strict 

lockdown S4.  

Relatively speaking, the use of public transport and car show the largest decrease. For car, the 

decrease in the total traveled distance is higher than any other mode in all stages. In the strict 

lockdown S4, that drop reached 82%. According to the model results, on average, the number of 

kilometers for car commuting decreased 59% compared to 2019. A reason for that decrease in car 

use, according to MuConsult (2021), is because the number of days that workers in the Netherlands 

travel to work by car in 2020 decreased by 15% compared to 2019.  

For public transport, the decreases are also high in all stages, especially in S4 where a decrease of 79% 

is observed. Interestingly, the drops for walking are much lighter compared to those. In S2 and S3, the 

walking drops are relatively small (around 20-23%) while for all the other modes the drops are about 

40%.  

6.2.4. Number of on-site and home workers 

The measures against COVID-19 resulted in a decrease in people working on site. Table 32 presents 

the number of onsite workers for the different stages. This number is given as onsite workers because, 

as explained in section chapter 5, section 5.3.6, there was no data about which people in the synthetic 

population were home workers. Therefore, it was assumed that in the baseline stage, all the agents 

that had work trips were onsite workers and that the agents that did not commute anymore were 

then considered home workers. 

According to the model results, in the baseline stage, around 1.24 million people are onsite workers. 

That is around 30% of the MRDH population. During the intelligent lockdown S1, 66% of them were 

working from home (or did not work at all). During the summer relaxations S2 and the semi lockdown 

S3, around 40-42% were working from home. In the strict lockdown S4, almost 80%. From the model 

results, it can be derived that, on average, more than 60% of onsite workers worked from home during 

the pandemic. Interestingly, this result is in line with the Dutch National Traveler Survey 2020 reported 

by MuConsult (2021) for the Ministry of Infrastructure and Water Management of the Netherlands 

about trends in mobility, which states that comparing April 2020 and October 2020 (stages 1 and 3 of 

the case study), commuters have started to travel more and work less from home (42% in stage 3 and 

69% in stage 1). 

Table 32 – Results of the number of onsite workers; also split per working sector 

 S0 S1 S2 S3 S4 % S1 % S2 % S3 % S4 

Total onsite workers 1,246,074 424,034 752,697 717,212 256,426 -66% -40% -42% -79% 

Onsite workers Industry 194,691 99,379 133,934 122,813 20,300 -49% -31% -37% -90% 

Onsite workers Healthcare 188,503 186,629 159,825 158,451 186,218 -1% -15% -16% -1% 

Onsite workers Retail 207,774 53,769 137,883 124,839 21,588 -74% -34% -40% -90% 

Onsite workers Education 79,141 20,525 59,248 75,124 1,796 -74% -25% -5% -98% 

Onsite workers Office 414,430 21,729 170,713 142,845 9,589 -95% -59% -66% -98% 

Onsite workers Other 161,535 42,003 91,093 93,139 16,936 -74% -44% -42% -90% 

 

The number of on-site workers can also be presented spatially. Figure 6-1 depicts the number of onsite 

workers for the different zones in the study area. The zones in dark purple are zones that have more 

workers. The cities of Rotterdam, Delft and The Hague are mainly dark purple, while the surrounding 

zones have less number of workers. In the figure, it can be seen that in stages 2 and 3, the number of 
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onsite workers is very similar and not that different compared to the baseline stage. In stages 1 and 

4, however, apart from the city of Rotterdam, all the other zones presented a significant decrease in 

the number of onsite workers. 

With respect to the different work sectors that people work in, some interesting findings can be seen. 

In many moments of the COVID-19 pandemic, the recommendations of work-related policies were to 

let employees work from home as much as possible, with exception of essential jobs (Ritchie et al., 

2021). Therefore, besides the healthcare and the industry & production sector, all the other sectors 

decreased significantly the number of onsite workers for all the stages. The biggest contrast can be 

observed in the strict lockdown S4, where only 1% of the healthcare sector works from home while 

98% of office workers were working from home. Actually, the number of office workers working from 

home is the highest for all stages, ranging in between 59% and 98%. These results follow the same 

outcomes presented in the study of CBS (2020), where it is pointed out that telecommuting was most 

prevalent among employees with ICT (information and communications technology) occupations. 

The results of onsite workers in the education sector presented some unexpected outcomes. While in 

stages 1 and 4 the number of home workers is high (74% and 98%, respectively), the number of 

homeworkers in stage 3 is only 5%. The results in stage 3 do not seem to reflect the reality since online 

classes have been prioritized since the beginning of the pandemic, and even though schools were open 

until mid-December, the number of on-site workers of the education sector should not be that high 

(95%). Nonetheless, these numbers do not mean that there were many education trips for the period, 

as can be seen in Table 28.  

For the retail sector and other3 sectors, the drops were similar in most stages. In the intelligent 

lockdown S1, almost 75% of onsite workers worked from home. That number rose to 90% in the strict 

lockdown S4. For these sectors, working from home is relatively hard because a large fraction of jobs 

is ‘contact professions’, so whether they have worked onsite or did not work at all. That is also what 

the study of the European Commission (2021) indicates, in which it is stated that between the end of 

2019 and the end of 2020, the sectors in which job losses were seen most clearly are travel, food and 

hotel service, culture, sport and recreation, and the temporary employment sectors.  

 
3 The ‘other’ sector includes sectors such as Transportation, Sports and Recreation and other service activities 
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Figure 6-1 - The number of onsite workers by TAZ in the baseline stage (left) and in the COVID-19 stages (right)

The Hague 

Delft 

Rotterdam 
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6.2.5. Level of on-site work crowdedness 

The level of on-site work crowdedness per zone in the MRDH region has also been estimated for each 

stage. By level of on-site work crowdedness is meant how busy is a zone considering the total number 

of jobs available in that zone and the number of workers that commute to that zone. For example, if 

a zone has 50 jobs and 40 people commuted to that zone, the level of work crowdedness of that zone 

is 80%. 

The left picture in Figure 6-2 depicts the number of jobs of each zone in the MRDH region. This data 

was provided together with the synthesized population. Note that apart from The Hague, Delft and 

Rotterdam, the region of the port of Rotterdam also has a high number of jobs.  

The right picture in Figure 6-2 presents the level of on-site work crowdedness considering the work 

trips of the baseline schedules. From this picture, it can be seen that the busiest areas are mainly city 

areas. Note that the port of Rotterdam region has low levels of on-site work crowdedness, which could 

mean that the number of trips to the port is underestimated. 

Figure 6-3 shows the relative change of the level of on-site work crowdedness of each COVID-19 stage 

compared to the baseline stage. From these pictures, it is clear that the relative changes vary between 

each stage. However, it is not clear if the relative changes are significant between zones in the same 

stage. 

There are two reasons to explain these homogeneous patterns. The first reason is that the number of 

work trips and their origins and destinations is estimated based on travel surveys, and sometimes the 

samples of these travel surveys do not fully capture all displacement patterns. From Figure 6-2, it can 

be observed that even though the port of Rotterdam has a high number of jobs, the level of on-site 

work crowdedness in the baseline stage is very low. That means that the training data used to estimate 

the baseline schedules probably did not capture a significant number of working trips going to some 

zones with an elevated number of jobs, such as the port of Rotterdam. 

The second reason is that the work sector of agents was not used to estimate the work trips in the 

baseline schedules. As explained in chapter 5, section 5.3, the work sector attribute was included in 

this study after the estimation of the baseline schedules. However, to better estimate the location of 

work trips, first, the work sector of the agents should be estimated, and then the work location of the 

agents should be estimated based on their work sector and the job characteristics of the zones. 
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Figure 6-2 - Number of jobs per zone in the MRDH (left) and level of on-site work crowdedness of baseline stage (right) 

 

 

Figure 6-3 - Relative change of level of on-site work crowdedness of each stage compared to the baseline stage 
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6.3.  INSIGHTS ON RESULTS 
In this section, the main insights about the analyzes of results of sections 6.1 and 6.2 are highlighted. 

Number of tours: During the pandemic, on average, there were 68% fewer tours compared to before 

the pandemic. During the intelligent lockdown S1 (March 2020) elders are the most affected (78% 

fewer tours) while during the strict lockdown S4 (January 2021) youngers are the most affected (75% 

fewer tours). 

Modal share: A positive movement towards active modes has been observed during the pandemic. 

Compared to before the pandemic, on average, the shares of walking trips and e-bike increased 7.3% 

and 1.1%, respectively, while the share of the bike decreased 1.27%. For public transport and car, an 

average decrease of 4.3% and 2.3% have been observed. 

Number of trips per activity type: The drops in the number of trips per activity type do not follow 

similar trends during different stages and depend on the strength of different policy measures. For 

stages 1 and 4, the highest decreases in the number of trips are observed for work and educational 

trips while in stages 2 and 3 it is for shopping trips. That can be explained by the fact that leisure-

related measures were relaxed during the summer while the recommendations to work from home 

as much as possible were still strong. 

Number of home-stayers: On average, more than half of the MRDH population is a fully home-stayer 

during COVID-19. Before the pandemic, only 10% of people were fully home-stayers. During stage 4, 

the most strict regarding stay-at-home restrictions, that number rose to 61%. That number is not 

higher because many people left their houses for short walks during the day. 

Complexity of tours: Single-activity tours are still predominant. Before the pandemic, 80% of all tours 

were single tours, and during the pandemic, that number rose to almost 94%. Home-Other-Home is 

the most frequent tour and walking/touring and individual sports are the most preferred activities. 

Number of work trips: During the pandemic, on average, there were 58% fewer work trips compared 

to before. In stage 4, the decrease is 80%, which is two times higher than during stage 2 (summer 

relaxations). 

Modal share for commuting: Active commuting is more attractive than public transport and car trips. 

It increased more than 30% for all stages, and the average increase is more than 50%. Only car and 

public transport modal shares decreased for commuting trips (decrease averages of 9% and 2.6%, 

respectively).  

Total traveled distance for commuting: During the pandemic, on average, the total commuting 

traveled distance decreased around 58%. The highest decreases are in the car and public transport 

trips (both around 59%) while for walking it is only 38%. 

Number of on-site and home workers: On average, more than 60% of onsite workers worked from 

home during the pandemic. For essential sectors  the healthcare sector, the number of on-site workers 

is still high (ranging between 74% and 99%) while for non-essential sectors such as the office sector 

the number of on-site workers is low (ranging between 2% and 34%). 

Level of on-site work crowdedness: There is a clear difference in the level of on-site work 

crowdedness between stages, but it is not possible to provide insights within zones in each stage 

because most zones presented similar patterns.  
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. CONCLUSIONS 
This research aimed to use the activity-based modeling approach to assess the effects of changes in 

activity-travel behavior on mobility caused by the COVID-19 pandemic. In this section, the questions 

posed in the introduction are revisited, and an answer is formulated. The primary question is: 

What are the effects of the changes in activity-travel behavior during events such as COVID-19 on 

mobility in the Rotterdam-The Hague Metropolitan Area, the Netherlands, and how can these effects 

be estimated, predicted, and analyzed through activity-based modeling? 

The answer to the primary research question is formulated by answering the secondary research 

questions one by one and then summarizing. 

a) What activity-travel behavior changes may be expected due to the COVID-19 pandemic? 
 

In the literature review presented in chapter 2 section 2.1, it has been concluded that effects of COVID-
19 on activity-travel behavior are likely for a variety of reasons, including breaking habitual behavior, 
changing attitudes, and increasing the commute distance through relocation or job changes, to the 
emergence of a new balance in costs and benefits of travel versus online activities. The three major 
impacts of COVID-19 on activity-travel behavior are (1) a shift from onsite to online activities, (2) re-
spacing and re-timing of travel patterns, (3) a modal shift towards the car and active modes. 
 
b) How can activity-based models be used (and improved) to better explain changes in activity-travel 

behavior in events such as COVID-19? 
 
In the literature review presented in chapter 2, section 2.2, an overview of the activity-based modeling 

approach is given. ABMs are analysis tools that provide a systematic framework for representing how 

travel demand changes in response to different input assumptions. ABMs work at a disaggregate 

person-level, which allows representing greater variation across the population and consequently 

better represent how investments, policies, or other changes will affect people’s travel behavior. 

However, to model the changes in activity-travel behavior due to the COVID-19 pandemic, some 

adjustments are needed. 

As stated in chapter 2, section 2.1, and answered in research question a, the COVID-19 pandemic 

serves as a trigger to accelerate the shift from onsite to online activities, for example teleworking and 

online shopping. And due to the fear of infection, those online activities turned out to be in-home 

activities. However, as discussed in chapter 2, section 2.2, most ABMs do not incorporate in-home 

activity planning in the modeling. Therefore, to improve ABMs and make them better tools to explain 

changes in activity-travel behavior in events such as COVID-19, it is important to: (1) build models that 

incorporate in-home activity planning and (2) to collect and use more detailed data about planning 

and scheduling of in-home activities and out-home activity frequency. The modeling framework 

developed in this study can be considered as a good step in the improvement of activity-based 

modeling.  
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c) What effects can be expected on mobility during the different stages of the pandemic and what 

factors influence these effects?  

In chapter 5, four stages of COVID-19 in the MRDH of the Netherlands have been identified. Then, the 

proposed model was used to estimate mobility patterns for each stage. Next, in chapter 6, those 

stages were analyzed and insights about their outcomes discussed.  

From the literature of chapter 2 and the discussions of chapter 6, it has been concluded that the main 

factors that influence changes in activity-travel behavior and consequently differences in mobility 

patterns are: (1) the fear of infection caused by the virus and (2) the strength of policy measures 

concerning workplace closure, school closure, and stay-at-home restrictions. These factors have been 

used to motivate the outcomes derived from the model estimations.  

From the model outcomes, several insights about the effects of COVID-19 on mobility have been 

derived. These insights are discussed in detail in chapter 6. The main insights derived from the model 

outcomes for the MRDH case study are: 

• During the pandemic, on average, there are 68% fewer tours compared to before the 

pandemic. The most affected age groups are elders (>65) and youngers (25-45). 

• Home-Other-Home is the most frequent tour in the schedules, and walking/touring is the 

most preferred activity, especially during the lockdowns. 

• A positive movement towards active modes is observed for all stages. On average, the share 

of walking increased 7.35% compared to before the pandemic. 

• During the pandemic, more than half of the MRDH population is a fully home-stayer, which is 

six times more than before the pandemic. 

• During the pandemic, on average, there are 58% fewer work trips compared to before the 

pandemic. In the strict lockdown (stage 4), there are 80% fewer work trips. 

• The total commuting traveled distance decreased around 58%. 

• Active commuting is more attractive than public transport or car. On average, its share 

increased more than 50% compared to before the pandemic. 

• More than 60% of onsite workers worked from home. For essential sectors such as the 

healthcare sector, the number of on-site workers is the highest for all stages (between 74% 

and 99%) while for non-essential sectors such as the office sector the number of on-site 

workers is the lowest (between 2% and 35%). 

d) What is the added value of the modeling framework developed in this study to investigate the 

effects of changes in activity-travel behavior on mobility?  

The modeling framework provides an innovative approach to study the impacts of changes in activity-

travel behavior caused by emergency situations such as the corona crisis in a disaggregated manner. 

It combines the outputs of ABMs and a mix of aggregated and disaggregated data of changes in in-

home and out-home activity frequencies and re-estimates the daily schedule of individuals taking into 

account factors that were not considered before. 

The case study developed for the model focused on analyzing different stages of COVID-19. With that, 

it was possible to check if the model estimations are in line with data counts and results of other 

studies. The conclusion is that the vast majority of the model outcomes are similar to what other 
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studies estimate. However, some of the outcomes (e.g. total distance traveled, public transport modal 

share) showed contrast. This was expected because it is the first time that this modeling framework is 

being used, and it still requires some calibration. The calibration of the demand model components 

could be done using household travel survey data but also count databases or transit agency 

reportings. 

One of the biggest advantages of the modeling framework is the extension of the synthetic population 

by the introduction of the work sector attribute. The baseline schedules generated by the ABM 

FEATHERS did not use the work sector in their estimations before. With this attribute included, it was 

possible to link the modeling with policy interventions related to specific six different working sectors. 

The work sector attribute helped to estimate, for instance, which agents work on-site and which work 

from home. 

From a theoretical point of view, the modulation of the modeling framework seems to be ideal, but 

the type of data needed is hard to obtain. Because of that, some of the input data used in the study 

case (e.g. modal shift values) is aggregated data, and this sometimes distorted the disaggregated 

outcomes. However, this imposed limited restrictions when simulating different stages. 

Finally, another important consideration is that existing ABMs are more robust and have more 

sophisticated methodologies than the proposed modeling framework. If an ABM was available for this 

research, then probably the first approach would be to incorporate in-home activity planning in the 

existing ABM and use COVID-19 related data to estimate the new schedules. 

Circling back to the primary research question, this question can be answered taking into account the 

answers to the secondary research questions. First, the main factors that cause changes in activity-

travel behavior have been identified (fear of infection, policy measures regarding close of workplace, 

school, and stay-at-home restrictions). Second, the activity-travel behavior expected changes have 

been identified (shift from onsite to online activities, re-spacing and re-timing of travel patterns and 

modal shift towards active modes). Third, a literature review on activity-based modeling identified the 

improvements necessary in ABMs to model activity-travel behavior in situations such as the COVID-

19 pandemic. The product of this review is the creation of an activity-based modeling framework that 

has been used in this study to analyze the effects of changes in activity-travel behavior on mobility in 

a case study for the MRDH in the Netherlands. Finally, with the outcomes of the simulations, insights 

about the effects on mobility have been identified and compared to real data counts and outcomes 

of other studies. From the discussion of results in chapter 6, the model estimations proved to be in 

line with the majority of estimations of other sources. However, due to some data and modeling 

limitations, it is clear that there is space for improving the model, the data inputs and therefore the 

accuracy of the results. These improvements are discussed in the further sections of this chapter.  

7.2. RECOMMENDATIONS FOR MODEL IMPROVEMENTS 
This research identified possible improvements to the modeling framework and the quality of the data 

inputs. 

Concerning the modeling framework, two main improvements are recommended. The first 

improvement is to enable increment the number of trips per schedule. As it is now, the model is 

limited to only remove trips from the baseline schedules. This limits the investigation of exit and future 

scenarios, for which it is important to re-estimate the schedules of individuals’ including the addition 

of new trips. To incorporate this feature, one should investigate how to create a linkage between the 

generation of schedules of the ABM with the adjustment of schedules of the modeling framework. 
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The second improvement is to link the modeling framework to a network to provide feedback 

between the travel demand estimation and the network assignment. Due to time constraints, the 

linkage of the proposed modeling framework to the MRDH network (the V-MRDH 2.0) did not happen. 

Therefore, this study was limited to demonstrate the power of the model mainly to estimate travel 

demand and not on network assignment. That linkage will enable to re-estimate individuals’ routes 

based on feedback with network constraints. 

Concerning the data inputs, three main improvements are recommended. The first improvement is to 

consider more demographic variables when estimating individuals’ decisions. As discussed in chapter 

4, section 4.3, the type of data used in the model can limit the level of detail of the outcomes. Some 

of the activity frequency data used in the case study only considered the ‘age’ attribute to classify 

agents. That is a problem that can occur due to the scarcity of data. The second improvement is to 

collect and use more data about in-home and activity frequency. The third improvement is to collect 

more disaggregated data about modal shifts, but considering the type of agent and the motive for 

traveling.  

The modal shift values used in the case study are aggregated, which means that the same values have 

been used to estimate modal shifts for all the different agents and activity types. The problem with 

using aggregated data, in this case, is that the initial modal share for different agent and activity types 

can vary significantly within each other. For example, when the modal share of a certain mode is very 

small and giving trips to other modes would result in a negative modal share. Therefore, it is more 

suitable to have modal shift values categorized by agent and activity type so that the estimations can 

be more accurate. 

Another improvement to the model (and to ABMs in general) is the usage of multiple-day travel 

datasets. As discussed in chapter 2, section 2.3, applying one-day observation data in travel demand 

modeling provides an inadequate basis for understanding complex travel behavior to predict the 

impact of travel demand management strategies Tajaddini et al. (2020). Therefore, it is important to 

incorporate features that can investigate the capacity of a typical week in capturing rhythms in 

activity-travel behavior. 

7.3. RECOMMENDATIONS FOR POLICY MAKERS 
The modeling framework developed in this study is useful for policymakers for several reasons. As 

compared to the traditional ABMs, the effects of COVID-19 on activity-travel behavior and related 

measures can be studied in more detail. Decisions on whether or not to implement measures can be 

based on the model as presented, as the model generates effects as expected and is sufficiently 

consistent with the literature. Furthermore, by linking the modeling framework to a transport 

network, it should be possible to explore other traffic implications such as levels of congestion, travel 

time savings, or to assess implications on accessibility. Moreover, it should be possible to transfer the 

model to other regions due to its generic structure. However, it is necessary to have data with the 

same or greater level of detail than those presented in the case study. 

Overall, maintaining a close and constant relationship with transportation modeling experts is critical 

for offering the most accurate and relevant treatments in terms of the use of various modes of 

transportation. Because the virus is constantly evolving, reactions must be developed and modified in 

real-time. 
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7.4. RECOMMENDATIONS FOR FUTURE RESEARCH 
This section presents the study’s recommendations and suggestions for future research. There are 

many ways in which to extend this research to better understand and predict changes in activity-travel 

behavior and their effects on mobility. 

The first recommendation is to assign the results of the case study to the V-MRDH 2.0 network to 

generate more mobility indicators such as traffic flows and levels of congestion and provide more 

insights into the effects of COVID-19 on mobility in the MRDH. 

The second recommendation is that, considering that the model has shown a satisfactory performance 

for the case study and its outcomes were similar to what has been observed by other studies, it now 

should be used to define and calculate what-if and future scenarios concerning the COVID-19 

pandemic. For instance, the model can be used to predict mobility changes when a particular sector 

is fully opened/closed. To do that, one should run the model considering different sets of input 

assumptions such as the activity frequency and the modal shift values. Those inputs can be estimated 

using different sets of policy measures, for instance, using the COVID-19 stringency indexes which are 

estimated by Ritchie et al. (2021). 

The third recommendation is to perform identical research for other regions within the Netherlands 

and compare the results with the results of the MRDH. Thus, the framework could be used to explore 

potential implications of COVID-19 on a wider scale, for example, the whole Netherlands. 

The last recommendation is to use more disaggregated data about out-home and in-home activity 

frequency. Thus, this data should be collected as multiple-day travel datasets to capture the activity-

travel behavior of agents in more than one day (e.g. weekly periods) to make better and more 

consistent estimations of the activity pattern of agents. 
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APPENDIX A: ACTIVITY FREQUENCY TABLES OF THE CASE STUDY 

This appendix contains the activity frequency tables used in the MRDH case study. Table 33 presents 

the activity frequency values for the work activity. For this activity, three attributes are used to classify 

agents (A = age, G = gender, and S = work sector). Table 34 presents the activity frequency values for 

the business activity. The same three attributes are used to classify agents. Finally, Table 35 presents 

the activity frequency values for shopping and bring/get, other and education activities. For those 

activity types, only attribute age (A) is used to classify agents. All the values are presented in 

percentage. 
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Table 33 - Work activity frequency values (in %). Columns: A = age; G = gender; S = sector 

WORK ACTIVITY 

      STAGE 0 (PRE-PANDEMIC) STAGE 1 (INTELLIGENT LOCKDOWN) STAGE 2 (SUMMER RELAXATIONS) STAGE 3 (SEMI LOCKDOWN) STAGE 4 (STRICT LOCKDOWN) 

A G S 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 

2 1 1 0,0 17,8 15,6 6,7 8,9 51,1 50,0 8,9 7,8 3,3 4,4 25,6 47,2 0,0 13,9 5,6 2,8 30,6 58,6 6,9 10,3 3,4 0,0 20,7 90,0 1,8 1,6 0,7 0,9 5,1 

2 1 2 0,0 29,4 23,5 5,9 17,6 23,5 0,0 29,4 23,5 5,9 17,6 23,5 28,6 14,3 21,4 14,3 0,0 21,4 25,0 0,0 8,3 0,0 16,7 50,0 0,0 29,4 23,5 5,9 17,6 23,5 

2 1 3 0,9 25,5 46,7 8,0 8,5 10,4 75,2 6,4 11,7 2,0 2,1 2,6 54,1 10,9 19,7 3,8 4,9 6,6 63,6 7,0 10,5 2,8 4,9 11,2 90,1 2,5 4,7 0,8 0,8 1,0 

2 1 4 6,3 25,0 6,3 18,8 37,5 6,3 76,6 6,3 1,6 4,7 9,4 1,6 58,3 8,3 0,0 16,7 0,0 16,7 77,8 0,0 0,0 0,0 11,1 11,1 98,1 0,5 0,1 0,4 0,8 0,1 

2 1 5 3,7 14,8 24,7 3,7 18,5 34,6 95,2 0,7 1,2 0,2 0,9 1,7 63,3 16,7 1,7 0,0 1,7 16,7 67,3 13,5 1,9 1,9 0,0 15,4 98,1 0,3 0,5 0,1 0,4 0,7 

2 1 6 0,0 4,5 22,7 18,2 18,2 36,4 75,0 1,1 5,7 4,5 4,5 9,1 60,0 5,0 10,0 10,0 5,0 10,0 63,2 5,3 0,0 5,3 0,0 26,3 90,0 0,5 2,3 1,8 1,8 3,6 

2 2 1 0,0 7,7 23,1 7,7 23,1 38,5 50,0 3,8 11,5 3,8 11,5 19,2 30,0 0,0 25,0 5,0 10,0 30,0 50,0 6,3 12,5 0,0 12,5 18,8 90,0 0,8 2,3 0,8 2,3 3,8 

2 2 2 2,9 8,6 16,2 21,0 33,3 18,1 2,9 8,6 16,2 21,0 33,3 18,1 24,4 9,3 12,8 14,0 26,7 12,8 28,2 2,6 5,1 14,1 33,3 16,7 2,9 8,6 16,2 21,0 33,3 18,1 

2 2 3 0,4 25,0 48,2 11,2 5,4 9,8 75,1 6,3 12,0 2,8 1,4 2,4 65,1 4,7 15,1 6,5 2,6 6,0 71,0 4,1 10,0 6,3 3,6 5,0 90,0 2,5 4,8 1,1 0,5 1,0 

2 2 4 0,0 11,5 17,3 17,3 34,6 19,2 75,0 2,9 4,3 4,3 8,7 4,8 35,6 2,2 8,9 8,9 24,4 20,0 25,6 2,6 7,7 7,7 17,9 38,5 98,0 0,2 0,3 0,3 0,7 0,4 

2 2 5 0,9 18,1 29,3 8,6 23,3 19,8 95,0 0,9 1,5 0,4 1,2 1,0 62,0 7,6 16,3 5,4 2,2 6,5 75,6 2,3 4,7 7,0 1,2 9,3 98,0 0,4 0,6 0,2 0,5 0,4 

2 2 6 0,0 21,4 17,9 21,4 17,9 21,4 75,0 5,4 4,5 5,4 4,5 5,4 62,5 12,5 12,5 0,0 0,0 12,5 62,5 4,2 8,3 8,3 4,2 12,5 90,0 2,1 1,8 2,1 1,8 2,1 

3 1 1 1,1 3,6 3,0 6,1 33,9 52,3 50,6 1,8 1,5 3,0 16,9 26,2 26,8 9,1 7,2 3,8 4,5 48,7 30,7 9,0 6,7 4,9 3,0 45,7 90,1 0,4 0,3 0,6 3,4 5,2 

3 1 2 2,5 3,3 0,8 18,3 38,3 36,7 2,5 3,3 0,8 18,3 38,3 36,7 11,6 7,0 9,3 9,3 26,7 36,0 17,2 6,9 5,7 12,6 20,7 36,8 2,5 3,3 0,8 18,3 38,3 36,7 

3 1 3 1,0 2,6 6,1 9,6 32,8 47,9 75,2 0,6 1,5 2,4 8,2 12,0 26,3 3,5 9,0 3,9 9,8 47,5 32,2 4,7 7,1 5,2 7,6 43,1 90,1 0,3 0,6 1,0 3,3 4,8 

3 1 4 1,4 3,2 14,1 26,5 38,2 16,6 75,4 0,8 3,5 6,6 9,5 4,2 30,0 9,9 12,1 11,2 14,8 22,0 14,6 5,2 6,8 7,8 19,3 46,4 98,0 0,1 0,3 0,5 0,8 0,3 

3 1 5 2,4 4,1 4,2 14,5 45,1 29,7 95,1 0,2 0,2 0,7 2,3 1,5 51,4 11,0 8,9 3,7 3,4 21,6 61,8 8,6 5,6 2,6 3,7 17,7 98,0 0,1 0,1 0,3 0,9 0,6 

3 1 6 2,2 3,0 5,2 7,5 33,6 48,5 75,6 0,7 1,3 1,9 8,4 12,1 25,7 11,9 6,9 5,9 12,9 36,6 36,6 3,2 5,4 3,2 11,8 39,8 90,2 0,3 0,5 0,7 3,4 4,9 

3 2 1 0,7 2,8 6,3 32,6 34,7 22,9 50,3 1,4 3,1 16,3 17,4 11,5 42,0 12,5 11,6 12,5 9,8 11,6 36,5 20,2 11,5 9,6 7,7 14,4 90,1 0,3 0,6 3,3 3,5 2,3 

3 2 2 0,8 4,9 12,1 39,3 32,1 10,8 0,8 4,9 12,1 39,3 32,1 10,8 14,4 7,5 10,7 25,7 29,2 12,5 14,1 5,4 12,2 26,3 29,8 12,2 0,8 4,9 12,1 39,3 32,1 10,8 

3 2 3 1,9 3,0 9,3 30,5 30,9 24,5 75,5 0,7 2,3 7,6 7,7 6,1 26,7 7,8 6,3 22,3 19,9 17,0 34,9 7,2 7,2 20,0 18,5 12,3 90,2 0,3 0,9 3,0 3,1 2,5 

3 2 4 2,2 7,4 24,1 34,6 23,4 8,3 75,5 1,9 6,0 8,7 5,9 2,1 24,2 11,0 10,3 22,1 18,1 14,3 14,0 5,1 8,5 26,0 26,9 19,5 98,0 0,1 0,5 0,7 0,5 0,2 

3 2 5 1,7 3,8 9,4 29,6 39,4 16,1 95,1 0,2 0,5 1,5 2,0 0,8 51,5 15,4 9,5 5,1 8,1 10,5 64,1 10,7 7,7 4,9 6,6 6,0 98,0 0,1 0,2 0,6 0,8 0,3 

3 2 6 4,3 5,0 10,1 29,5 32,4 18,7 76,1 1,3 2,5 7,4 8,1 4,7 50,0 9,8 10,8 5,9 15,7 7,8 50,5 9,2 10,1 8,3 14,7 7,3 90,4 0,5 1,0 2,9 3,2 1,9 

4 1 1 0,5 1,9 3,0 5,0 33,9 55,8 50,2 0,9 1,5 2,5 17,0 27,9 22,5 5,5 6,9 4,6 6,9 53,5 26,5 6,2 6,7 3,9 8,2 48,6 90,0 0,2 0,3 0,5 3,4 5,6 

4 1 2 2,5 5,0 11,6 16,1 42,7 22,1 2,5 5,0 11,6 16,1 42,7 22,1 18,0 6,6 15,0 9,0 22,8 28,7 18,5 6,8 10,3 13,7 21,9 28,8 2,5 5,0 11,6 16,1 42,7 22,1 

4 1 3 0,7 3,3 5,0 11,8 29,1 50,0 75,2 0,8 1,2 3,0 7,3 12,5 25,7 5,4 7,8 4,2 6,3 50,7 35,2 7,0 5,1 3,5 6,7 42,5 90,1 0,3 0,5 1,2 2,9 5,0 

4 1 4 2,5 6,0 13,9 32,8 30,2 14,6 75,6 1,5 3,5 8,2 7,5 3,7 34,4 13,1 9,6 8,9 13,3 20,6 18,9 7,2 8,6 11,0 17,7 36,6 98,0 0,1 0,3 0,7 0,6 0,3 

4 1 5 4,2 3,2 6,4 20,5 40,3 25,3 95,2 0,2 0,3 1,0 2,0 1,3 52,6 11,3 7,9 3,9 5,1 19,2 56,6 10,8 7,1 3,5 4,1 17,9 98,1 0,1 0,1 0,4 0,8 0,5 

4 1 6 0,9 4,9 7,1 14,7 31,9 40,5 75,2 1,2 1,8 3,7 8,0 10,1 31,9 5,4 7,8 7,8 7,0 40,1 28,1 5,6 7,2 5,2 12,0 41,8 90,1 0,5 0,7 1,5 3,2 4,0 

4 2 1 1,1 4,5 10,7 30,5 31,1 22,0 50,6 2,3 5,4 15,3 15,5 11,0 36,0 4,7 16,0 17,3 8,7 17,3 37,2 9,3 14,0 14,7 12,4 12,4 90,1 0,5 1,1 3,1 3,1 2,2 

4 2 2 1,3 5,2 21,5 40,9 25,6 5,5 1,3 5,2 21,5 40,9 25,6 5,5 15,2 7,2 16,8 31,1 23,9 5,9 18,1 6,6 14,4 30,8 23,9 6,1 1,3 5,2 21,5 40,9 25,6 5,5 

4 2 3 2,9 5,0 12,5 28,0 38,2 13,4 75,7 1,2 3,1 7,0 9,5 3,4 23,0 5,5 13,1 19,3 23,4 15,7 27,6 5,5 7,9 21,7 24,8 12,6 90,3 0,5 1,3 2,8 3,8 1,3 

4 2 4 3,1 7,8 24,1 35,2 22,9 6,9 75,8 1,9 6,0 8,8 5,7 1,7 26,8 10,0 11,8 17,8 20,2 13,3 15,7 6,2 10,4 22,6 26,8 18,4 98,1 0,2 0,5 0,7 0,5 0,1 

4 2 5 3,7 4,7 16,2 31,5 32,0 11,9 95,2 0,2 0,8 1,6 1,6 0,6 55,4 10,9 10,8 8,4 7,5 7,0 60,0 12,2 8,0 6,9 7,8 5,1 98,1 0,1 0,3 0,6 0,6 0,2 

4 2 6 3,8 4,4 24,7 35,7 18,7 12,6 76,0 1,1 6,2 8,9 4,7 3,2 43,4 7,7 16,1 15,4 7,7 9,8 37,1 11,3 18,5 13,9 8,6 10,6 90,4 0,4 2,5 3,6 1,9 1,3 

5 1 1 4,9 9,8 14,6 12,2 19,5 39,0 52,4 4,9 7,3 6,1 9,8 19,5 42,4 15,2 6,1 9,1 6,1 21,2 80,6 0,0 3,2 9,7 3,2 3,2 90,5 1,0 1,5 1,2 2,0 3,9 

5 1 2 7,1 7,1 0,0 28,6 14,3 42,9 7,1 7,1 0,0 28,6 14,3 42,9 75,0 0,0 8,3 8,3 0,0 8,3 83,3 0,0 0,0 8,3 0,0 8,3 7,1 7,1 0,0 28,6 14,3 42,9 

5 1 3 0,0 12,2 31,7 14,6 14,6 26,8 75,0 3,0 7,9 3,7 3,7 6,7 77,1 8,6 0,0 2,9 0,0 11,4 64,9 5,4 2,7 10,8 5,4 10,8 90,0 1,2 3,2 1,5 1,5 2,7 

5 1 4 0,0 18,4 22,4 20,4 20,4 18,4 75,0 4,6 5,6 5,1 5,1 4,6 72,1 9,3 4,7 4,7 0,0 9,3 79,1 4,7 7,0 7,0 2,3 0,0 98,0 0,4 0,4 0,4 0,4 0,4 

5 1 5 2,9 5,7 31,4 14,3 20,0 25,7 95,1 0,3 1,6 0,7 1,0 1,3 70,0 8,3 11,7 3,3 3,3 3,3 82,8 3,1 6,3 0,0 3,1 4,7 98,1 0,1 0,6 0,3 0,4 0,5 

5 1 6 0,0 11,8 41,2 17,6 17,6 11,8 75,0 2,9 10,3 4,4 4,4 2,9 50,0 3,6 21,4 10,7 10,7 3,6 72,7 6,1 6,1 12,1 3,0 0,0 90,0 1,2 4,1 1,8 1,8 1,2 

5 2 1 12,5 0,0 0,0 25,0 37,5 25,0 56,3 0,0 0,0 12,5 18,8 12,5 60,0 20,0 0,0 20,0 0,0 0,0 100,0 0,0 0,0 0,0 0,0 0,0 91,3 0,0 0,0 2,5 3,8 2,5 

5 2 2 7,7 3,8 38,5 30,8 19,2 0,0 7,7 3,8 38,5 30,8 19,2 0,0 65,4 3,8 11,5 11,5 7,7 0,0 90,9 0,0 9,1 0,0 0,0 0,0 7,7 3,8 38,5 30,8 19,2 0,0 

5 2 3 0,0 0,0 33,3 50,0 0,0 16,7 75,0 0,0 8,3 12,5 0,0 4,2 25,0 0,0 25,0 25,0 25,0 0,0 50,0 0,0 16,7 16,7 16,7 0,0 90,0 0,0 3,3 5,0 0,0 1,7 

5 2 4 3,2 9,7 32,3 22,6 12,9 19,4 75,8 2,4 8,1 5,6 3,2 4,8 62,5 6,3 3,1 9,4 9,4 9,4 73,3 3,3 3,3 10,0 10,0 0,0 98,1 0,2 0,6 0,5 0,3 0,4 

5 2 5 4,5 9,1 9,1 27,3 27,3 22,7 95,2 0,5 0,5 1,4 1,4 1,1 58,8 5,9 5,9 11,8 11,8 5,9 76,2 4,8 4,8 4,8 9,5 0,0 98,1 0,2 0,2 0,5 0,5 0,5 

5 2 6 0,0 0,0 22,2 11,1 33,3 33,3 75,0 0,0 5,6 2,8 8,3 8,3 71,4 14,3 0,0 0,0 0,0 14,3 85,7 0,0 14,3 0,0 0,0 0,0 90,0 0,0 2,2 1,1 3,3 3,3 
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Table 34 - Business activity frequency values (in %). Columns: A = age; G = gender; S = sector 

BUSINESS ACTIVITY 

      STAGE 0 (PRE-PANDEMIC) STAGE 1 (INTELLIGENT LOCKDOWN) STAGE 2 (SUMMER RELAXATIONS) STAGE 3 (SEMI LOCKDOWN) STAGE 4 (STRICT LOCKDOWN) 

A G S 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 0 d 1 d 2 d 3 d 4 d 5 d 

2 1 1 50,0 8,9 7,8 3,3 4,4 25,6 75,0 4,4 3,9 1,7 2,2 12,8 73,6 0,0 6,9 2,8 1,4 15,3 79,3 3,4 5,2 1,7 0,0 10,3 95,0 0,9 0,8 0,3 0,4 2,6 

2 1 2 50,0 14,7 11,8 2,9 8,8 11,8 50,0 14,7 11,8 2,9 8,8 11,8 64,3 7,1 10,7 7,1 0,0 10,7 62,5 0,0 4,2 0,0 8,3 25,0 50,0 14,7 11,8 2,9 8,8 11,8 

2 1 3 50,5 12,7 23,3 4,0 4,2 5,2 87,6 3,2 5,8 1,0 1,1 1,3 77,0 5,5 9,8 1,9 2,5 3,3 81,8 3,5 5,2 1,4 2,4 5,6 95,0 1,3 2,3 0,4 0,4 0,5 

2 1 4 53,1 12,5 3,1 9,4 18,8 3,1 88,3 3,1 0,8 2,3 4,7 0,8 79,2 4,2 0,0 8,3 0,0 8,3 88,9 0,0 0,0 0,0 5,6 5,6 99,1 0,3 0,1 0,2 0,4 0,1 

2 1 5 51,9 7,4 12,3 1,9 9,3 17,3 97,6 0,4 0,6 0,1 0,5 0,9 81,7 8,3 0,8 0,0 0,8 8,3 83,7 6,7 1,0 1,0 0,0 7,7 99,0 0,1 0,2 0,0 0,2 0,3 

2 1 6 50,0 2,3 11,4 9,1 9,1 18,2 87,5 0,6 2,8 2,3 2,3 4,5 80,0 2,5 5,0 5,0 2,5 5,0 81,6 2,6 0,0 2,6 0,0 13,2 95,0 0,2 1,1 0,9 0,9 1,8 

2 2 1 50,0 3,8 11,5 3,8 11,5 19,2 75,0 1,9 5,8 1,9 5,8 9,6 65,0 0,0 12,5 2,5 5,0 15,0 75,0 3,1 6,3 0,0 6,3 9,4 95,0 0,4 1,2 0,4 1,2 1,9 

2 2 2 51,4 4,3 8,1 10,5 16,7 9,0 51,4 4,3 8,1 10,5 16,7 9,0 62,2 4,7 6,4 7,0 13,4 6,4 64,1 1,3 2,6 7,1 16,7 8,3 51,4 4,3 8,1 10,5 16,7 9,0 

2 2 3 50,2 12,5 24,1 5,6 2,7 4,9 87,5 3,1 6,0 1,4 0,7 1,2 82,5 2,4 7,5 3,2 1,3 3,0 85,5 2,0 5,0 3,2 1,8 2,5 95,0 1,3 2,4 0,6 0,3 0,5 

2 2 4 50,0 5,8 8,7 8,7 17,3 9,6 87,5 1,4 2,2 2,2 4,3 2,4 67,8 1,1 4,4 4,4 12,2 10,0 62,8 1,3 3,8 3,8 9,0 19,2 99,0 0,1 0,2 0,2 0,3 0,2 

2 2 5 50,4 9,1 14,7 4,3 11,6 9,9 97,5 0,5 0,7 0,2 0,6 0,5 81,0 3,8 8,2 2,7 1,1 3,3 87,8 1,2 2,3 3,5 0,6 4,7 99,0 0,2 0,3 0,1 0,2 0,2 

2 2 6 50,0 10,7 8,9 10,7 8,9 10,7 87,5 2,7 2,2 2,7 2,2 2,7 81,3 6,3 6,3 0,0 0,0 6,3 81,3 2,1 4,2 4,2 2,1 6,3 95,0 1,1 0,9 1,1 0,9 1,1 

3 1 1 50,6 1,8 1,5 3,0 16,9 26,2 75,3 0,9 0,8 1,5 8,5 13,1 63,4 4,5 3,6 1,9 2,3 24,3 65,4 4,5 3,4 2,4 1,5 22,8 95,1 0,2 0,2 0,3 1,7 2,6 

3 1 2 51,3 1,7 0,4 9,2 19,2 18,3 51,3 1,7 0,4 9,2 19,2 18,3 55,8 3,5 4,7 4,7 13,4 18,0 58,6 3,4 2,9 6,3 10,3 18,4 51,3 1,7 0,4 9,2 19,2 18,3 

3 1 3 50,5 1,3 3,1 4,8 16,4 24,0 87,6 0,3 0,8 1,2 4,1 6,0 63,1 1,8 4,5 2,0 4,9 23,7 66,1 2,4 3,6 2,6 3,8 21,6 95,0 0,1 0,3 0,5 1,6 2,4 

3 1 4 50,7 1,6 7,1 13,3 19,1 8,3 87,7 0,4 1,8 3,3 4,8 2,1 65,0 4,9 6,1 5,6 7,4 11,0 57,3 2,6 3,4 3,9 9,6 23,2 99,0 0,0 0,1 0,3 0,4 0,2 

3 1 5 51,2 2,0 2,1 7,2 22,6 14,9 97,6 0,1 0,1 0,4 1,1 0,7 75,7 5,5 4,5 1,9 1,7 10,8 80,9 4,3 2,8 1,3 1,9 8,9 99,0 0,0 0,0 0,1 0,5 0,3 

3 1 6 51,1 1,5 2,6 3,7 16,8 24,3 87,8 0,4 0,7 0,9 4,2 6,1 62,9 5,9 3,5 3,0 6,4 18,3 68,3 1,6 2,7 1,6 5,9 19,9 95,1 0,1 0,3 0,4 1,7 2,4 

3 2 1 50,3 1,4 3,1 16,3 17,4 11,5 75,2 0,7 1,6 8,2 8,7 5,7 71,0 6,3 5,8 6,3 4,9 5,8 68,3 10,1 5,8 4,8 3,8 7,2 95,0 0,1 0,3 1,6 1,7 1,1 

3 2 2 50,4 2,4 6,0 19,7 16,1 5,4 50,4 2,4 6,0 19,7 16,1 5,4 57,2 3,8 5,3 12,8 14,6 6,2 57,1 2,7 6,1 13,2 14,9 6,1 50,4 2,4 6,0 19,7 16,1 5,4 

3 2 3 50,9 1,5 4,6 15,2 15,4 12,3 87,7 0,4 1,2 3,8 3,9 3,1 63,3 3,9 3,2 11,2 10,0 8,5 67,4 3,6 3,6 10,0 9,2 6,2 95,1 0,1 0,5 1,5 1,5 1,2 

3 2 4 51,1 3,7 12,0 17,3 11,7 4,1 87,8 0,9 3,0 4,3 2,9 1,0 62,1 5,5 5,2 11,0 9,0 7,1 57,0 2,5 4,3 13,0 13,5 9,7 99,0 0,1 0,2 0,3 0,2 0,1 

3 2 5 50,8 1,9 4,7 14,8 19,7 8,1 97,5 0,1 0,2 0,7 1,0 0,4 75,8 7,7 4,7 2,5 4,0 5,3 82,1 5,3 3,8 2,5 3,3 3,0 99,0 0,0 0,1 0,3 0,4 0,2 

3 2 6 52,2 2,5 5,0 14,7 16,2 9,4 88,0 0,6 1,3 3,7 4,0 2,3 75,0 4,9 5,4 2,9 7,8 3,9 75,2 4,6 5,0 4,1 7,3 3,7 95,2 0,3 0,5 1,5 1,6 0,9 

4 1 1 50,2 0,9 1,5 2,5 17,0 27,9 75,1 0,5 0,7 1,2 8,5 13,9 61,2 2,8 3,5 2,3 3,5 26,7 63,2 3,1 3,4 1,9 4,1 24,3 95,0 0,1 0,1 0,2 1,7 2,8 

4 1 2 51,3 2,5 5,8 8,0 21,4 11,1 51,3 2,5 5,8 8,0 21,4 11,1 59,0 3,3 7,5 4,5 11,4 14,4 59,2 3,4 5,1 6,8 11,0 14,4 51,3 2,5 5,8 8,0 21,4 11,1 

4 1 3 50,4 1,7 2,5 5,9 14,6 25,0 87,6 0,4 0,6 1,5 3,6 6,3 62,8 2,7 3,9 2,1 3,1 25,4 67,6 3,5 2,5 1,7 3,3 21,3 95,0 0,2 0,2 0,6 1,5 2,5 

4 1 4 51,2 3,0 7,0 16,4 15,1 7,3 87,8 0,7 1,7 4,1 3,8 1,8 67,2 6,5 4,8 4,5 6,7 10,3 59,4 3,6 4,3 5,5 8,9 18,3 99,0 0,1 0,1 0,3 0,3 0,1 

4 1 5 52,1 1,6 3,2 10,3 20,1 12,7 97,6 0,1 0,2 0,5 1,0 0,6 76,3 5,7 3,9 2,0 2,5 9,6 78,3 5,4 3,6 1,8 2,0 8,9 99,0 0,0 0,1 0,2 0,4 0,3 

4 1 6 50,5 2,5 3,5 7,4 16,0 20,2 87,6 0,6 0,9 1,8 4,0 5,1 66,0 2,7 3,9 3,9 3,5 20,0 64,1 2,8 3,6 2,6 6,0 20,9 95,0 0,2 0,4 0,7 1,6 2,0 

4 2 1 50,6 2,3 5,4 15,3 15,5 11,0 75,3 1,1 2,7 7,6 7,8 5,5 68,0 2,3 8,0 8,7 4,3 8,7 68,6 4,7 7,0 7,4 6,2 6,2 95,1 0,2 0,5 1,5 1,6 1,1 

4 2 2 50,7 2,6 10,8 20,4 12,8 2,7 50,7 2,6 10,8 20,4 12,8 2,7 57,6 3,6 8,4 15,6 12,0 2,9 59,1 3,3 7,2 15,4 11,9 3,1 50,7 2,6 10,8 20,4 12,8 2,7 

4 2 3 51,5 2,5 6,3 14,0 19,1 6,7 87,9 0,6 1,6 3,5 4,8 1,7 61,5 2,7 6,6 9,7 11,7 7,8 63,8 2,8 3,9 10,8 12,4 6,3 95,1 0,2 0,6 1,4 1,9 0,7 

4 2 4 51,6 3,9 12,1 17,6 11,4 3,5 87,9 1,0 3,0 4,4 2,9 0,9 63,4 5,0 5,9 8,9 10,1 6,6 57,9 3,1 5,2 11,3 13,4 9,2 99,0 0,1 0,2 0,4 0,2 0,1 

4 2 5 51,8 2,3 8,1 15,8 16,0 6,0 97,6 0,1 0,4 0,8 0,8 0,3 77,7 5,5 5,4 4,2 3,8 3,5 80,0 6,1 4,0 3,5 3,9 2,6 99,0 0,0 0,2 0,3 0,3 0,1 

4 2 6 51,9 2,2 12,4 17,9 9,3 6,3 88,0 0,5 3,1 4,5 2,3 1,6 71,7 3,8 8,0 7,7 3,8 4,9 68,5 5,6 9,3 7,0 4,3 5,3 95,2 0,2 1,2 1,8 0,9 0,6 

5 1 1 52,4 4,9 7,3 6,1 9,8 19,5 76,2 2,4 3,7 3,0 4,9 9,8 71,2 7,6 3,0 4,5 3,0 10,6 90,3 0,0 1,6 4,8 1,6 1,6 95,2 0,5 0,7 0,6 1,0 2,0 

5 1 2 53,6 3,6 0,0 14,3 7,1 21,4 53,6 3,6 0,0 14,3 7,1 21,4 87,5 0,0 4,2 4,2 0,0 4,2 91,7 0,0 0,0 4,2 0,0 4,2 53,6 3,6 0,0 14,3 7,1 21,4 

5 1 3 50,0 6,1 15,9 7,3 7,3 13,4 87,5 1,5 4,0 1,8 1,8 3,4 88,6 4,3 0,0 1,4 0,0 5,7 82,4 2,7 1,4 5,4 2,7 5,4 95,0 0,6 1,6 0,7 0,7 1,3 

5 1 4 50,0 9,2 11,2 10,2 10,2 9,2 87,5 2,3 2,8 2,6 2,6 2,3 86,0 4,7 2,3 2,3 0,0 4,7 89,5 2,3 3,5 3,5 1,2 0,0 99,0 0,2 0,2 0,2 0,2 0,2 

5 1 5 51,4 2,9 15,7 7,1 10,0 12,9 97,6 0,1 0,8 0,4 0,5 0,6 85,0 4,2 5,8 1,7 1,7 1,7 91,4 1,6 3,1 0,0 1,6 2,3 99,0 0,1 0,3 0,1 0,2 0,3 

5 1 6 50,0 5,9 20,6 8,8 8,8 5,9 87,5 1,5 5,1 2,2 2,2 1,5 75,0 1,8 10,7 5,4 5,4 1,8 86,4 3,0 3,0 6,1 1,5 0,0 95,0 0,6 2,1 0,9 0,9 0,6 

5 2 1 56,3 0,0 0,0 12,5 18,8 12,5 78,1 0,0 0,0 6,3 9,4 6,3 80,0 10,0 0,0 10,0 0,0 0,0 100,0 0,0 0,0 0,0 0,0 0,0 95,6 0,0 0,0 1,3 1,9 1,3 

5 2 2 53,8 1,9 19,2 15,4 9,6 0,0 53,8 1,9 19,2 15,4 9,6 0,0 82,7 1,9 5,8 5,8 3,8 0,0 95,5 0,0 4,5 0,0 0,0 0,0 53,8 1,9 19,2 15,4 9,6 0,0 

5 2 3 50,0 0,0 16,7 25,0 0,0 8,3 87,5 0,0 4,2 6,3 0,0 2,1 62,5 0,0 12,5 12,5 12,5 0,0 75,0 0,0 8,3 8,3 8,3 0,0 95,0 0,0 1,7 2,5 0,0 0,8 

5 2 4 51,6 4,8 16,1 11,3 6,5 9,7 87,9 1,2 4,0 2,8 1,6 2,4 81,3 3,1 1,6 4,7 4,7 4,7 86,7 1,7 1,7 5,0 5,0 0,0 99,0 0,1 0,3 0,2 0,1 0,2 

5 2 5 52,3 4,5 4,5 13,6 13,6 11,4 97,6 0,2 0,2 0,7 0,7 0,6 79,4 2,9 2,9 5,9 5,9 2,9 88,1 2,4 2,4 2,4 4,8 0,0 99,0 0,1 0,1 0,3 0,3 0,2 

5 2 6 50,0 0,0 11,1 5,6 16,7 16,7 87,5 0,0 2,8 1,4 4,2 4,2 85,7 7,1 0,0 0,0 0,0 7,1 92,9 0,0 7,1 0,0 0,0 0,0 95,0 0,0 1,1 0,6 1,7 1,7 
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Table 35 - Activity frequency values of scenarios (in %): Shopping & bring/get (Left); Other (Center); Education (right) 

SHOPPING & BRING/GET ACTIVITIES  OTHER ACTIVITY  EDUCATION ACTIVITY 

                        

STAGE 0 (PRE-PANDEMIC)  STAGE 0 (PRE-PANDEMIC)  STAGE 0 (PRE-PANDEMIC) 

Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age Full online Partial Full on campus 

1 0,00 92,20 3,90 3,90 0,00 0,00 0,00 0,00  1 0,00 60,21 18,33 18,33 0,79 0,79 0,79 0,79  1 5,00 20,00 75,00 

2 0,00 92,20 3,90 3,90 0,00 0,00 0,00 0,00  2 0,00 60,21 18,33 18,33 0,79 0,79 0,79 0,79  2 10,00 15,00 75,00 

3 0,00 85,70 6,85 6,85 0,15 0,15 0,15 0,15  3 0,00 68,99 14,28 14,28 0,62 0,62 0,62 0,62  3 25,00 25,00 50,00 

4 0,00 86,00 6,65 6,65 0,20 0,20 0,15 0,15  4 0,00 73,55 12,15 12,15 0,54 0,54 0,54 0,54  4 25,00 25,00 50,00 

5 0,00 75,20 11,45 11,45 0,48 0,48 0,48 0,48  5 0,00 72,03 12,69 12,69 0,65 0,65 0,65 0,65  5 20,00 15,00 65,00 

                        

STAGE 1 (INTELLIGENT LOCKDOWN)  STAGE 1 (INTELLIGENT LOCKDOWN)  STAGE 1 (INTELLIGENT LOCKDOWN) 

Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age Full online Partial Full on campus 

1 77,90 20,80 0,65 0,65 0,00 0,00 0,00 0,00  1 75,06 12,63 5,59 5,59 0,54 0,54 0,03 0,03  1 46,67 33,33 20,00 

2 77,90 20,80 0,65 0,65 0,00 0,00 0,00 0,00  2 75,06 12,63 5,59 5,59 0,54 0,54 0,03 0,03  2 61,67 33,33 5,00 

3 68,30 26,30 2,70 2,70 0,00 0,00 0,00 0,00  3 76,62 12,70 4,50 4,50 0,63 0,63 0,21 0,21  3 61,67 33,33 5,00 

4 75,50 20,30 1,60 1,60 0,35 0,35 0,15 0,15  4 81,26 11,31 3,03 3,03 0,36 0,36 0,34 0,34  4 61,67 33,33 5,00 

5 80,60 14,30 2,40 2,40 0,15 0,15 0,00 0,00  5 87,25 7,64 1,96 1,96 0,26 0,26 0,35 0,35  5 61,67 33,33 5,00 

                        

STAGE 2 (SUMMER RELAXATIONS)  STAGE 2 (SUMMER RELAXATIONS)  STAGE 2 (SUMMER RELAXATIONS) 

Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age Full online Partial Full on campus 

1 29,30 60,80 4,75 4,75 0,20 0,20 0,00 0,00  1 38,04 37,91 11,05 11,05 0,84 0,84 0,14 0,14  1 33,01 57,49 9,50 

2 29,30 60,80 4,75 4,75 0,20 0,20 0,00 0,00  2 38,04 37,91 11,05 11,05 0,84 0,84 0,14 0,14  2 78,50 11,95 9,55 

3 24,60 63,60 5,15 5,15 0,55 0,55 0,20 0,20  3 34,86 40,79 11,12 11,12 0,77 0,77 0,29 0,29  3 78,50 11,95 9,55 

4 29,80 61,50 3,65 3,65 0,50 0,50 0,20 0,20  4 42,60 40,48 7,65 7,65 0,42 0,42 0,40 0,40  4 78,50 11,95 9,55 

5 44,40 42,50 5,70 5,70 0,55 0,55 0,30 0,30  5 50,37 32,86 7,59 7,59 0,49 0,49 0,32 0,32  5 78,50 11,95 9,55 

                        

STAGE 3 (SEMI LOCKDOWN)  STAGE 3 (SEMI LOCKDOWN)  STAGE 3 (SEMI LOCKDOWN) 

Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age Full online Partial Full on campus 

1 51,40 42,30 3,05 3,05 0,10 0,10 0,00 0,00  1 49,35 29,90 9,35 9,35 0,76 0,76 0,27 0,27  1 56,51 36,25 7,25 

2 51,40 42,30 3,05 3,05 0,10 0,10 0,00 0,00  2 49,35 29,90 9,35 9,35 0,76 0,76 0,27 0,27  2 84,25 10,98 4,78 

3 49,30 43,25 3,25 3,25 0,38 0,38 0,10 0,10  3 45,69 32,64 9,75 9,75 0,76 0,76 0,33 0,33  3 86,75 8,48 4,78 

4 54,10 40,20 2,38 2,38 0,38 0,38 0,10 0,10  4 54,71 30,87 6,33 6,33 0,51 0,51 0,37 0,37  4 86,75 8,48 4,78 

5 60,50 31,35 3,55 3,55 0,38 0,38 0,18 0,18  5 59,92 25,79 6,18 6,18 0,58 0,58 0,39 0,39  5 89,25 5,98 4,78 

                        

STAGE 4 (STRICT LOCKDOWN)  STAGE 4 (STRICT LOCKDOWN)  STAGE 4 (STRICT LOCKDOWN) 

Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d  Age Full online Partial Full on campus 

1 73,50 23,80 1,35 1,35 0,00 0,00 0,00 0,00  1 60,66 21,88 7,65 7,65 0,69 0,69 0,39 0,39  1 80,00 15,00 5,00 

2 73,50 23,80 1,35 1,35 0,00 0,00 0,00 0,00  2 60,66 21,88 7,65 7,65 0,69 0,69 0,39 0,39  2 90,00 10,00 0,00 

3 74,00 22,90 1,35 1,35 0,20 0,20 0,00 0,00  3 56,51 24,49 8,38 8,38 0,75 0,75 0,38 0,38  3 95,00 5,00 0,00 

4 78,40 18,90 1,10 1,10 0,25 0,25 0,00 0,00  4 66,82 21,26 5,02 5,02 0,61 0,61 0,34 0,34  4 95,00 5,00 0,00 

5 76,60 20,20 1,40 1,40 0,20 0,20 0,05 0,05  5 69,47 18,72 4,77 4,77 0,68 0,68 0,47 0,47  5 100,00 0,00 0,00 
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