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Abstract

Parkinson’s disease (PD) is a neurodegenerative
disorder characterized by motor function loss and
potential mental and behavioral changes. The iden-
tification of biomarkers in the gut microbiota of PD
patients can significantly aid in fast and accurate di-
agnosis. This study investigates the application of
machine learning (ML) models, including Logistic
Regression (LR), Random Forest (RF), and Support
Vector Machines (SVM), to discover biomarkers in
the gut metagenomic data of PD patients. The ML
models were optimized using various feature selec-
tion techniques, and a comparative analysis of the
most influential species in sample discrimination
was conducted to verify potential PD-associated
biomarkers. The results demonstrate that all three
ML models exhibit moderate performance, indicat-
ing their limited discriminatory power. However,
the comparison of significant species across dif-
ferent classifiers demonstrates substantial overlap
and indicates PD-associated species that align with
existing literature findings. These outcomes pro-
vide promising evidence that LR, RF, and SVM
classifiers can effectively identify biomarkers for
PD. However, confounding analysis on a small
subset of the dataset failed to identify meaningful
PD-associated species. Therefore, caution is ad-
vised when interpreting the findings of ML model,
considering factors such as classifier performance,
dataset limitations, potential biases, influence of
feature selection methods, and inherent model dif-
ferences. We validate the potential usefulness of
ML approaches for biomarker discovery and high-
light areas for further investigation into building a
sufficiently accurate ML model for PD diagnosis.

1 Introduction

The human microbiome is a vast collection of genes which,
due to its unique composition, can be viewed as our ’other
genome’, and has recently gained interest for the identifica-
tion of biomarkers for human diseases (Hajjo et al., 2022).
Biomedical research has investigated the relationship be-
tween changes in the gut flora and changes in host immu-
nity (Thursby and Juge, 2017). These studies observed a di-
vergence from the normal microbiome composition when the
host is affected by diseases ranging from chronic gastroin-
testinal diseases to neurodevelopmental disorders.

One of the diseases that has been of interest for biomarker
discovery is Parkinson’s disease (PD) (Wallen et al., 2022;
Bedarf et al., 2017; Qian et al., 2020; Mao et al., 2021; Bok-
tor et al., 2023). PD is a neurodegenerative disorder that af-
fects the central nervous system, leading to motor function
loss and potential mental and behavioral changes. However,
diagnosing PD, especially in its early stages, is challeng-
ing due to the inaccuracies associated with clinical diagno-
sis, confirmed through postmortem neuropathological assess-
ment (Adler et al., 2021). Adler et al. (2021) explain that fac-
tors such as disease duration, responsiveness to dopaminergic

medication, and the presence of PD-associated motor symp-
toms have shown some impact on diagnostic accuracy, but it
remains a significant challenge. In this context, the discovery
of biomarkers in the gut microbiota of PD patients holds great
potential for facilitating fast and accurate diagnosis.

Previous studies have already verified a significant differ-
ence in the gut microbiota of patients with PD compared to
healthy controls (Wallen et al., 2022; Mao et al., 2021; Bedarf
et al., 2017; Qian et al., 2020; Boktor et al., 2023). Several
of these studies have already utilized the recently introduced
shotgun metagenomic sequencing approach, which enables
taxonomical profiling of all microbial genomes within a sam-
ple (Quince et al., 2017). Using this technique, Wallen et al.
(2022) found that both at genus and species level the dys-
biosis in the PD gut microbiome appeared to involve about
30% of the tested taxa. After analyzing the possible effect of
other factors such as alcohol or laxative usage, Wallen et al.
(2022) also confirmed that 32 species were exclusively asso-
ciated with PD. These findings provide compelling evidence
of a significant distinction between samples of PD and control
subjects. However, it is important to note that the methods
used for identifying these relevant species continue to vary
within the field.

This research involves a comparison of multiple Machine
Learning (ML) models that have been used in the process of
PD biomarker discovery before, namely Logistic Regression
(LR) by Bedarf et al. (2017), Random Forest (RF) by Mao
et al. (2021) and Support Vector Machines (SVM) by Qian
et al. (2020). However, none of these studies have obtained
their results based on these ML models, but solely use their
performances to corroborate their findings.

The main objective of this research is to evaluate the use-
fulness of ML methods in discovering biomarkers for PD.
This is done by determining and comparing the effectiveness
of LR, RF and SVM in classifying PD patients based on the
metagenomic profiles of their gut samples. Additionally, this
research aims to identify the most influential species in sam-
ple discrimination, which can potentially serve as biomarkers
for PD. By corroborating the findings with existing literature,
we intend to validate the usefulness of ML approaches for
biomarker discovery.

2 Materials and methods

2.1 Metagenomic data collection, availability and
preprocessing

The dataset used is from a previous study conducted by
Wallen et al. (2022). The data is derived from shotgun
metagenomic sequencing samples and has been through qual-
ity control and taxonomic profiling, to quantify the presence
of various species within the samples. This dataset comprises
samples obtained from 490 individuals diagnosed with PD
and 234 neurologically healthy control subjects. Although
slightly unbalanced, the substantial size of the study pro-
vides an advantage over smaller datasets. The study is ac-
companied by extensive subject metadata encompassing var-
ious factors such as age, sex, lifestyle, presence of other dis-
eases, medication usage, and more. Importantly, all the data,
including the subject metadata, is publicly available with-



out any restrictions and can be accessed at Zenodo [https:
//zenodo.org/record/7246185].

Before conducting any analysis, the dataset underwent pre-
processing steps. Initially, it contained relative abundances
for all taxonomical levels, but only species-level data was ex-
tracted for further analysis. The dataset contained five swab
samples that have been removed. Subsequently, a filtering
process was applied to retain species present in over 5% of the
samples, resulting in a final set of 259 species. This filtering
approach aligns with the methodology used in the study by
Wallen et al. (2022), from which the data was sourced. It was
assumed that species present in less than 5% of the samples
may not have significant importance. Notably, the removed
species accounted for an average abundance of only 2.1% per
sample, indicating their relatively minor contribution to the
overall dataset.

2.2 Machine learning models used for
classification

The ML methods Logistic Regression (LR) (Yu et al., 2011),
Random Forest (RF) (Breiman, 2001) and Support Vector
Machines (SVM) (Cortes and Vapnik, 1995) have been used
for classification. These classifiers were based on the scikit-
learn Python library implementation (version 1.2.2) (Pe-
dregosa et al., 2011), with initial default settings utilized for
LR and RF. However, for the SVM classifier, the kernel pa-
rameter was specifically set to employ a linear kernel. This
choice was made to ensure the availability of feature impor-
tance scores needed for species ranking, which non-linear
SVMs do not straightforwardly provide.

Classifier Hyperparameters
C:0.0,0.1,0.2, ..., 10.0
LR Penalty: 11, 12, elasticnet, none
Solver: newton-cg, Ibfgs, liblinear, sag, saga
RE n_estimators: 0, 5, 10, ..., 500
max_depth: 0, 5, 10, ..., 500
SVM C: 0.% 0.1, 02, .., 10.0
ernel: linear

Table 1: The grid values used for hyperparameter tuning of the LR,
RF and SVM models.

Hyperparameter tuning was conducted on all classifiers
before making predictions, in order to optimize their per-
formance. Again, the scikit-learn Python library was used
for this purpose, employing the RandomizedSearchCV ob-
ject. Table 1 presents the grid values used for hyperparam-
eter tuning. The tuning was based on the ”f1 macro” metric,
aiming to strike a balance between correctly identifying pos-
itive instances (recall) and minimizing false positives (preci-
sion). Stratified 5-fold cross-validation was utilized within
the RandomizedSearchCV object by passing a StratifiedK-
Fold object from the same library, with the shuffle attribute
set to "True”. To ensure result reproducibility, both the Ran-
domizedSearchCV and StratifiedKFold objects were assigned
a random state of 42.

2.3 Feature selection

Feature selection techniques were applied to enhance clas-
sifier performance. Three specific methods were employed:
Recursive Feature Elimination (RFE) (Guyon et al., 2002),
Mean Decrease Accuracy (MDA) (Han et al., 2016), and
Minimum Redundancy Maximum Relevance (MRMR) (Ding
and Peng, 2003). The choice of these techniques was based
on previous usage within the PD biomarker research field
(Huang et al., 2023; Mao et al., 2021; Qian et al., 2020).

RFE and MDA were performed using the scikit-learn
Python library implementation (version 1.2.2) (Pedregosa
et al., 2011). RFE was performed using the built-in RFE ob-
ject. For MDA the permutation_importance object was used,
with a fixed random state of 42. MRMR was performed using
the mrmr_selection Python library (version 0.2.7) (Mazzanti,
2021). All three methods were set to maintain only the 50
most relevant features, which had been found to result in the
best performance by manual inspection.

The workflow of the feature selection
approach, using 5-fold cross-validation
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Figure 1: The workflow of the feature selection approach. (A) Ini-
tially, the dataset is divided into a training set and a test set with
a ratio of 70/30. (B) Subsequently, 5-fold cross-validation is con-
ducted on the training set, incorporating feature selection in each
fold to obtain prediction outcomes and feature importance scores.
(C) Lastly, the final feature set is constructed and the performance
of the classifiers is evaluated on the holdout test set.

Figure 1 depicts the procedure for feature selection. Ini-
tially, the dataset is split into a 70% training set and a 30% test
set. Subsequently, 5-fold cross-validation is conducted on the
training set using the StratifiedKFold object from the scikit-
learn Python library, with a random state set to 42. Within
each fold, a portion of the data is separated to serve as a vali-
dation set. Feature selection is then applied using the training
data. The selected features are then used to train the classifier,
after which feature importance scores are extracted using ei-
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ther the coef- or feature_importance_ attributes of the respec-
tive model. These scores indicate the relevance of the feature
during classification and have subsequently been adjusted by
multiplying them by the accuracy score obtained from pre-
dicting the validation set. By following this approach we aim
to tune the features based on the accuracy of the model. The
final feature set is constructed by averaging the scores across
all folds, assigning zero importance to features not selected in
a particular fold, and then selecting the top 50 features. This
final feature set is then used to train the optimized model. Fi-
nally, the performance of the classifier is evaluated by predict-
ing the holdout test set. In both the cross-validation and final
evaluation stages, hyperparameter tuning is performed before
training the model in order to optimize its performance. This
entire procedure is employed for each individual classifier.

2.4 Performance evaluation

Bootstrapping was employed to obtain a robust evaluation of
the overall performances of the ML models. This technique
involved averaging the model performances over ten runs us-
ing different random states for the train-test splits, as depicted
in step A of Figure 1. The train-test splits were conducted
using the train_test_split object from the scikit-learn Python
library. The random states ranged from O to 100 with incre-
ments of ten. This approach helps capture the overall perfor-
mance and provides insights into the stability of the models
across different random splits.

The impact of feature selection on performance was as-
sessed using three key metrics: accuracy, F1 score, and the
area under the precision-recall curve (AUPRC). These met-
rics collectively provide a comprehensive evaluation of the
model’s performance. Accuracy measures the overall correct-
ness of predictions, while F1 score aims to minimize both
false positives and false negatives. Additionally, AUPRC
summarizes the classifier’s overall ability to identify positive
instances while maintaining a high precision, which is partic-
ularly valuable in imbalanced datasets.

The accuracy and F1 score were calculated using the accu-
racy_score and fI _score functions available in the scikit-learn
Python library. The formulas for accuracy and F1 score are
as follows:

R TP + TN
ccuracy =
Y= TP+ FP+ TN + FN
2 x TP
F1 Score = X

2 x TP + FP + FN

Where TP represents true positives, TN represents true neg-
atives, FP represents false positives, and FN represents false
negatives.

The final evaluation of the classifier’s performance is pre-
sented as the precision-recall (PR) curve. The PR curves and
their corresponding AUPRC value have been calculated using
the precision_recall_curve and auc functions available in the
scikit-learn Python library.

Statistical tests were used to validate the significance of
relative performances. Paired t-tests were used since the tests
were conducted on the same train-test splits resulting in a
sample dependence. A total of twelve tests were performed,

comparing the performances of LR, RF, and SVM with differ-
ent feature selection methods and between classifiers. The p-
values were adjusted for multiple testing using the Bonferroni
method. This statistical approach validated the effectiveness
of feature selection techniques in enhancing classifier perfor-
mances. In some cases, when ten runs did not provide a clear
significance, the bootstrapping range was increased to 300,
resulting in thirty runs to reduce variability.

Additionally, Mann-Whitney U tests were performed to
compare variability within the data of the PD and control
groups. Again, the p-values were adjusted for multiple test-
ing using the Bonferroni method. The use of Mann-Whitney
U tests allowed for a comprehensive analysis of group vari-
ability and helped identify significant differences between the
PD and control groups. Both the paired t-tests and the Mann-
Whitney U tests have been performed using the SciPy Python
library (version 1.10.1) (Virtanen et al., 2020).

The figures within this paper illustrating classifier perfor-
mances and important findings were generated using either
the Matplotlib Python library (version 3.7.1) (Hunter, 2007)
or the Seaborn Python library (version 0.12.2) (Waskom,
2021).

2.5 Comparison of important species

The possible PD-associated species have been elicited by ex-
amining the most influential features in sample discrimina-
tion. This has been done by extracting feature importance
scores using the coef_ and feature_importance_ attributes of
the respective models. These scores indicate the relevance
of the feature during classification. We decided to compare
the results of multiple runs to obtain a more reliable result,
accounting for the observed variability between runs. Ten
runs of the optimized models were conducted, using random
states ranging from O to 100 with increments of ten. The av-
erage feature importance has been used to rank the species.
For models employing feature selection, we verified the re-
liability of the species by assessing their consistency in the
selected feature sets. In models without feature selection, we
checked for outliers by examining the standard deviation of
the scores. We compared the top 15 ranked species from all
classifiers and compared the results with existing literature.

3 Results and discussion

3.1 T-SNE data visualization indicates substantial
similarity between the PD and control groups

To gain insights into the distribution and separability of the
data, t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Hinton and Roweis, 2002) was utilized as a visualization
technique. In the t-SNE plot displayed in Figure 2, it is ob-
served that the points related to PD patients and controls show
an almost complete overlap. No apparent patterns or distinct
groups could be observed, indicating a lack of clear separa-
tion between the two groups.

To assess the extent of overlap, the locations of the PD and
control groups in the two-dimensional space were analyzed.
The mean and standard deviation of their locations are sum-
marized in Table 2. Statistical p-values were calculated using
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Figure 2: The two-dimensional t-SNE visualizing major overlap be-
tween the PD and control groups. No apparent patterns or distinct
groups could be observed, indicating a lack of clear separation be-
tween the two groups.

a Mann-Whitney U test to determine the significant similar-
ity between the dimensions of the two groups. Both p-values
were found to be below the 0.05 significance threshold, in-
dicating a substantial similarity. This finding suggests a lim-
ited variability between the PD and control groups, making
it challenging to differentiate the two groups based solely on
the current dataset.

PD Control
Dimension | Mean STD | Mean STD | p-values
Dimension 1 | -042 7.35 | 0.77 6.49 0.036
Dimension2 | 0.74 793 | -1.05 6.94 | 0.0044

Table 2: Mean and standard deviation (STD) of the t-SNE dimen-
sionality reduction for PD and control groups. The p-values indicate
a significant similarity between the locations of the two groups, sug-
gesting a lack of clear separation. However, greater standard devi-
ation associated with the PD point suggests more variability within
this group.

However, Table 2 does show a slightly greater standard de-
viation associated with the PD points, observed as a slight
dispersion among the points associated with PD patients in
Figure 2. This dispersion suggests some variability within the
PD group, potentially indicating the presence of subgroups
or variations within the PD population. Further investigation
is necessary to explore the underlying factors contributing to
this dispersion and to assess their potential implications for
disease heterogeneity or progression.

3.2 Performance evaluation of optimized LR, RF,
and SVM classifiers suggest limited
discriminatory power and bias due to dataset
imbalance

We conducted an evaluation of three ML models, namely
Logistic Regression (LR) (Yu et al., 2011), Random Forest
(RF) (Breiman, 2001), and Support Vector Machine (SVM)
(Cortes and Vapnik, 1995). Our objective was to investigate
the effectiveness of these ML models in accurately classify-

ing PD patients based on their metagenomic samples and po-
tentially uncovering important PD biomarkers through fea-
ture importance analysis during the classification process.
Upon optimizing all classifiers using various feature selec-
tion techniques, our findings indicate that the discriminatory
power between PD and control cases is limited. Although the
RF model exhibited the best performance among all classi-
fiers, it displayed a tendency to overestimate PD cases, which
could potentially be attributed to the imbalance of the dataset.

To optimize the performance of the classifiers, three fea-
ture selection methods were employed: Recursive Feature
Selection (RFE) (Guyon et al., 2002), Mean Decrease Ac-
curacy (MDA) (Han et al., 2016) and Minimum Redundancy
Maximum Relevance (MRMR) (Ding and Peng, 2003). We
compared the performance of the classifiers with and without
these feature selection techniques using accuracy, F1 score,
and Area Under the Precision-Recall Curve (AUPRC) val-
ues. The results, summarized in Table 3, show that RF
did not benefit from any feature selection method, while LR
and SVM exhibited improved performances, particularly with
MRMR, although the differences were small. This indicates
that MRMR effectively selected informative features relevant
for classification.

To assess the significance of these improvements, we con-
ducted Bonferroni-corrected paired t-tests, with the observa-
tions indicated in Table 3. It is important to interpret these im-
provements with caution, as increased test size was necessary
to obtain clear evidence of significance. The results suggest
that MRMR did not have a major impact on the performances,
but some metrics showed significance. Therefore, we decided
to continue the biomarker identification process with MRMR
feature selection applied to both the LR and SVM classifiers,
while no feature selection technique was selected for RF.

PR Curve for optimal models
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Figure 3: The PR curves illustrate the performance of LR, RF and
SVM in classifying PD patients (positive label). LR, RF, and SVM
achieved AUPRC values of 0.80, 0.86, and 0.79, respectively. Base-
line lies at 0.68 which is the partition of PD cases in the dataset,
representing a random classifier. All classifiers exhibit moderate dis-
criminatory power, with RF performing best.

To interpret the performances of the optimized classifiers
in distinguishing PD patients, we used precision-recall (PR)
curves and calculated the corresponding AUPRC values. As
shown in Figure 3, LR, RF, and SVM achieved AUPRC val-



Without FS RFE MDA MRMR
LR RF SVM | LR RF SVM | LR RF SVM LR RF SVM
Accuracy | 0.65 0.70 0.63 | 0.64 0.70 0.64 | 0.67 0.70 0.65 | 0.67 ** 0.71 0.66 **
Fl score | 0.74 081 0.71 | 0.74 080 0.73 | 0.77 0.81 0.75 | 0.77** 0.81 0.76 *
AUPRC | 078 086 0.78 | 079 084 0.78 | 0.78 0.84 0.78 | 0.80* 0.85 0.79 **

Table 3: Comparison of classifier performances with and without feature selection (FS) techniques. Only MRMR exhibited a significant
improvement, although small, verified using paired t-testing with Bonferroni correction. One asterisk (*) indicates a significant p-value
observed after 10 bootstrapped runs, while two asterisks (**) indicate significance observed after increasing to 30 runs to decrease variance

between test samples.

ues of 0.80, 0.86, and 0.79, respectively. These values indi-
cate that RF performs better than both LR (paired t-test, p-
value = 0.0014) and SVM (paired t-test, p-value = 0.0004)
in accurately identifying positive instances while minimiz-
ing false positives. However, it is important to interpret the
overall predictive power with caution. The AUPRC values,
although relatively high, should be considered in comparison
to the baseline value of 0.68, which represents the partition of
PD cases among the entire dataset and therefore exhibits the
performance of a random classifier. The classifiers only per-
form between 0.12 to 0.18 percent better than this baseline
value, suggesting that the ability to distinguish PD patients
given the current dataset remains limited.

The moderate performances observed across all classifiers
in this study can likely be partially attributed to the limited
sample size of the data. Considering the high dimensionality
of metagenomic data, the limited number of samples might
not provide an adequate amount of training data for the ML
models to effectively capture the complex and non-linear re-
lationships present. As a result, the statistical power of the
models may be compromised, leading to moderate perfor-
mance outcomes.
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Figure 4: Confusion matrix for the classification performance of
the RF classifier exhibits an overestimation of PD values. Approxi-
mately 9% of the total samples are classified as being control, while
the true distribution lies at 32%.

Furthermore, it is crucial to take into account the influence
of dataset imbalance on the classification performance. Im-
balanced datasets can pose challenges for classification mod-
els as they tend to bias the models towards the majority class
and may lead to lower performance metrics for the minority
class. In our study, the dataset exhibits an imbalance, with
the PD group being over-represented. The consequences of
this imbalance can be observed in Figure 4, which depicts the

confusion matrix for the RF classifier. It can be observed that
only 19 cases are classified as control, which accounts for ap-
proximately 9% of the total samples, contrasting with the true
distribution of 32%. This discrepancy further emphasizes the
impact of dataset imbalance on the classifier’s performance.

Considering the limitations imposed by the dataset size and
imbalance, it is important to interpret the classification re-
sults cautiously and explore methods to mitigate the effects of
dataset imbalance in future analyses. The PR curve analysis
provides valuable insights into the performance of the classi-
fiers, especially in scenarios with imbalanced datasets, which
in this case indicates moderate performance on all classifiers
with RF performing best.

3.3 Results align with existing literature and
validate the usefulness of LR, RF and SVM in
identifying biomarkers for PD

Building upon previous studies investigating metagenomic
data in PD patients (Wallen et al., 2022; Bedarf et al., 2017;
Qian et al., 2020), our objective was to validate the effective-
ness of LR, RF, and SVM classifiers in identifying such PD
biomarkers. To achieve this, we optimized these classifiers
and identified the species deemed highly important during the
classification process. Our findings reveal a significant over-
lap between the identified species and the results reported in
the existing literature. This observation also strengthens the
reliability and relevance of the identified species as potential
biomarkers for PD.

The analysis involved a comparative examination of the
most influential species in discriminating the samples during
classification. Given the comparable performances of the ML
models, we considered that identifying biomarkers based on
consensus between the models would yield more reliable re-
sults. Consistency in feature selection was assessed through
multiple runs, and the averaged results were considered to re-
duce variability. The overlap between the top fifteen species
of each classifier, particularly those also found in existing lit-
erature, are presented in Figure 5. Species with significant
changes in relative abundance were confirmed using Mann-
Whitney U testing with Bonferroni correction. By retraining
the models with only these fifteen species, notable improve-
ments were observed in the LR and SVM classifiers, with
AUPRC values of 0.88 and 0.86 respectively, while the RF
classifier maintained a stable AUPRC value of 0.85. These
findings confirm that these specific species alone possess sig-
nificant discriminatory power for their respective classifiers,
affirming their association with PD.



Comparison of the fifteen most important
species selected by LR, RF and SVM
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Figure 5: Comparison of the top fifteen highly important features
selected by LR, RF, and SVM classifiers reveals a substantial over-
lap. The species indicated represent biomarkers previously reported
in the literature. The asterisk (*) denotes a confirmed significance in
relative abundance change between the PD and control groups.

Our analysis revealed that LR and SVM classifiers exhib-
ited an almost complete overlap in the top-rated species, all
of which have previously been associated with PD according
to the study by Wallen et al. (2022). These species were con-
sistently selected by the MRMR feature selection, with all but
three being present in eight to ten runs. Notably, Clostridium
hylemonae and Scardovia wiggsiae, which did lack consis-
tency, have however been identified as associated with PD
in multiple previous studies (Wallen et al., 2022; Mao et al.,
2021). Additionally, Mao et al. (2021) has supported the as-
sociation of Alistipes indistinctus and Lactobacillus salivar-
ius with PD, both of which were selected by the LR and SVM
classifiers.

Furthermore, among the nine species with the highest en-
richment or depletion reported by Wallen et al. (2022), the
unanimously selected species included three of them: Acti-
nomyces oris, Ruthenibacterium lactatiformans and Blau-
tia wexlerae. Two more species, Enterococcus avium and
Ruminococcaceae bacterium D5, were selected by the LR
and SVM classifiers, and three additional species, Bifidobac-
terium dentium, Roseburia intestinalis and Bifilobacterium
dentium, were chosen by the RF classifier. Only Streptococ-
cus mutans was failed to be detected by any of the classi-
fiers, along with the other seven PD-associated Streptococcus
species.

Our ML analysis did not corroborate the results from the
study by Bedarf et al. (2017), except for the species Pre-
votella copri. We did not find substantial evidence supporting
the influence of Akkermansia muciniphila, Alistipes shahii,
Eubacterium biforme or Clostridium saccharolyticum, which
aligns with the conclusions drawn by Wallen et al. (2022), the
source of our data. This disparity in results could potentially

be attributed to differences in taxonomic profiling techniques
(MOCAT?2 vs. MetaPhlAn3) or the geographical locations
(Bonn, EU vs. Deep South, US) of the research and its par-
ticipants.

Overall, our findings provide compelling evidence that LR,
RF and SVM classifiers are capable of identifying biomarkers
for PD. This is supported by the substantial overlap observed
between the identified features and the existing literature.
The species that demonstrated consensus among all classifiers
consistently exhibited a strong association with PD. This ob-
servation also strengthens the reliability and relevance of the
previously identified species as potential biomarkers for PD.

However, the process of biomarker identification solely
based on ML classification encounters various challenges.
The quality and representativeness of input data are cru-
cial for reliable model performance, necessitating large-scale
datasets with detailed metadata. In this study, limitations
arise from the relatively small sample size and dataset imbal-
ance. Metagenomic analysis involves high-dimensional data
due to the multitude of species present, thus a larger dataset
would provide more reliable and robust results. Additionally,
dataset imbalance can impact model performance, leading to
overfitting and the selection of features without genuine asso-
ciations with the target disease. It is worth noting that the RF
classifier in this research has shown an overestimation of PD
cases, likely due to this dataset imbalance. While its top-rated
features mostly align with existing literature, five unrelated
species were also selected, highlighting the need for cautious
interpretation when relying solely on ML-based approaches.

Another challenge in ML analysis for biomarker discovery
is the involvement of feature selection or dimensionality re-
duction techniques. The success of these methods depends on
the identification of relevant features that are informative for
the classification task. However, in complex biological sys-
tems, identifying the most discriminative features associated
with a specific disease can be difficult due to various factors
such as inter-individual variability, genetic heterogeneity, and
environmental influences.

In the context of this research, the impact of feature selec-
tion methods can be observed, particularly with the applica-
tion of MRMR only to the LR and SVM classifiers. Each
feature selection technique has its own criteria for selecting
relevant features, which could explain the almost complete
overlap of selected species between the LR and SVM classi-
fiers, as well as the lack of overlap with the RF classifier, as
depicted in Figure 5. It is important to consider that the dif-
ferent classifiers may inherently work in distinct ways, which
also may contribute to these differences in results.

In conclusion, while ML analysis shows promise for
biomarker discovery, the inherent difficulties in identifying
new biomarkers through this approach should be acknowl-
edged. Addressing these challenges requires careful data se-
lection, study design and a comprehensive understanding of
the underlying biology. While ML models may identify po-
tential biomarkers based on statistical associations, further
experimental validation is necessary to confirm their biologi-
cal relevance and clinical significance. It is crucial to interpret
the results cautiously and consider the limitations and relative
performances of the classifiers in order to avoid overgeneral-



ization or misinterpretation of the findings.

3.4 Confounding analysis demonstrates low model
performances and fails to align with existing
literature

A similar process has been conducted on the dataset exclud-
ing confounding factors relating to using alcohol, laxatives,
pain medication, depression medication, anxiety medication,
mood medication, probiotics, antihistamines, and sleep aids.
This resulted in a significantly smaller dataset consisting of
107 samples, with 38 control subjects and 69 PD subjects.
The models’ performances on the reduced dataset demon-
strated minimal discriminatory power, and there was limited
overlap between the identified species and existing literature.

The LR, RF, and SVM models achieved AUPRC perfor-
mance values of 0.71, 0.72, and 0.71, respectively, which
indicated limited ability to discriminate between PD and
control cases compared to the baseline random classifier
(AUPRC of 0.64). Despite applying feature selection tech-
niques, statistical analysis failed to demonstrate significant
improvement.

However, after retraining the models using only the fifteen
selected species, noticeable improvements were observed
across all classifiers. The AUPRC values for LR, RF, and
SVM increased to 0.85, 0.85, and 0.82, respectively, accom-
panied by an approximately 10% improvement in accuracy.
Although these findings suggested a significant association
between these species and PD, they lacked supporting evi-
dence from existing literature.

Comparison of the top-rated species among all classifiers
revealed an overlap between LR and SVM classifiers, with
eight common species, but only five were associated with
PD of which two were exclusively PD-related according to
Wallen et al. (2022). Three species showed consensus across
all classifiers, but only one was previously identified as a
biomarker, namely Ruminococcaceae bacterium D5, which
was however also associated with laxative usage. The results
of the RF classifier exhibited no further overlap with those of
LR and SVM, identifying only four species in existing liter-
ature, with one being exclusively PD-related. The LR classi-
fier matched three exclusively PD-related species, while the
SVM classifier identified two. Interestingly, the SVM clas-
sifier found an association with Akkermansia muciniphila, as
reported by Bedarf et al. (2017).

Considering the relatively low performances of the mod-
els and the lack of confirmation from existing literature, it is
evident that the LR, RF, and SVM models struggle to detect
meaningful correlations. This limitation is likely due to the
small dataset size which is known to have a major impact on
ML model performances.

4 Responsible research

Responsible research practices are crucial for ensuring the
integrity and validity of scientific studies. This section ad-
dresses four key considerations in conducting responsible re-
search within the context of the current study.

Data source and attribution: The data utilized in this
study is obtained from a previous study conducted by Wallen

et al. (2022), and proper attribution and acknowledgment of
the original data source are essential to upholding research in-
tegrity. Transparency regarding the origin of the data fosters
collaboration and ensures that credit is given to the appropri-
ate researchers. However, it is crucial to acknowledge that the
data cannot be verified for the authenticity and uniqueness of
individual participants and relies on the credibility and relia-
bility of the researchers who provided the data.

Addressing biases: To maintain objectivity and validity in
the research, it is important to be aware of and mitigate biases.
Confirmation bias, which favors information that confirms
preexisting beliefs, is a potential bias in this study because
the results are compared to existing literature to confirm that
the ML models behave successfully. To mitigate it, the results
were compared only at the end of the process, while remain-
ing objective during model optimization and training without
favoring the inclusion of previous PD-associated species.

Additionally, the sampling process employed to collect the
data might have introduced selection biases, whether con-
scious or unconscious. For example, the study focuses on
a single geographical location, failing to obtain a totally gen-
eralizable result. Mitigating this bias has however been con-
sidered outside of the scope of this research, and has been
considered further research.

Lastly, survivorship bias, which influences us to focus on
the characteristic of the best-performing outcome and fail to
consider other perspectives, has been mitigated. This has
been done by not solely focusing on the best-performing
model (RF), but also considering results from LR and SVM
to obtain a more reliable outcome.

Sample size and sampling limitations: The sample size of
the data used in this study may be too small for the high di-
mensionality of the data, affecting the statistical power and
generalizability of the findings. The unequal distribution of
PD and control subjects in the dataset should also be acknowl-
edged, which introduces bias by potentially overestimating
PD cases. The potential impacts of these sampling limita-
tions have been carefully considered during result interpreta-
tion and are discussed in detail in section 3.

Reproducibility and data Accessibility: Ensuring the re-
producibility of research findings is a fundamental aspect of
responsible research. In line with this principle, the data used
in this research is easily accessible and findable at Zenodo
[https://zenodo.org/record/7246185].

Furthermore, this report places significant emphasis on
a detailed explanation of the materials and methods, as
explained in section 2. Every step leading to the obtained
results has been meticulously described, including the
specific Python libraries and objects utilized, as well as any
modified input parameters. Random states have been em-
ployed and provided for transparency. By providing such a
comprehensive methodology and ensuring data accessibility,
this study promotes reproducibility and facilitates research
validation.

Incorporating these responsible research practices, includ-
ing acknowledging data sources, addressing biases, consider-
ing sample size and sampling limitations, and promoting data


https://zenodo.org/record/7246185

accessibility, enhances the transparency and reliability of the
study.

5 Conclusion

This research aimed to evaluate the effectiveness of machine
learning (ML) models in discovering biomarkers for Parkin-
son’s disease (PD). An analysis of Logistic Regression (LR),
Random Forest (RF), and Support Vector Machines (SVM)
ML models was conducted, comparing their most influen-
tial species in sample discrimination. This work provided an
overview of the species that exhibited consensus among mul-
tiple classifiers, reinforcing the possible significance of these
species as biomarkers by corroborating the findings with ex-
isting literature. This observation has strengthened the relia-
bility of ML model approaches for biomarker analysis.

This research revealed that given our current dataset, in-
cluding 490 PD patients and 234 healthy controls, all clas-
sifiers exhibit moderate performance in distinguishing be-
tween PD and control cases, indicating limited discrimina-
tory power. Although the RF model exhibited the best per-
formance, it displayed a tendency to overestimate PD cases,
potentially due to dataset imbalance. This overfitting of the
data might have caused the selection of species without gen-
uine associations with PD. Caution should be exercised in in-
terpreting the results, considering the limitations and relative
performances of the classifiers to avoid overgeneralization or
misinterpretation.

Despite achieving moderate performance, LR, RF, and
SVM classifiers provided compelling evidence of their capa-
bility to identify PD biomarkers. This is supported by the sub-
stantial overlap observed between the identified species and
the existing literature. The species that demonstrated consen-
sus among all classifiers consistently exhibited a strong asso-
ciation with PD. This observation further supports the relia-
bility and relevance of those species as potential biomarkers.
However, confounding analysis failed to corroborate previ-
ous findings but also exhibited very limited classifier perfor-
mances, likely due to the limited size of the remaining subset
of the data.

Although these results overall provide promising evidence
of the usefulness of ML models for PD biomarker discov-
ery, research into this subject is only in the early stages and
needs further investigation before it can be used for a fast
and reliable diagnosis. The limitations of ML models, such
as reliance on input data, overfitting, bias, and interpretabil-
ity challenges, must be acknowledged. These limitations also
emphasize that validation of the results based on biological
relevance and clinical significance of the potential biomark-
ers is essential.

To develop a sufficiently accurate ML model for PD di-
agnosis, several requirements must be met. These include
a comprehensive and balanced dataset with metagenomic
profiles of a large number of PD and control subjects, ac-
companied by detailed subject metadata to account for con-
founding factors. Furthermore, given the current inaccu-
racies in clinical diagnosis, incorporating postmortem neu-
ropathological assessment would be valuable in order to re-
duce the risk of misleading results due to the misclassification

of metagenomic data. Moreover, considering additional fac-
tors such as disease duration, medication responsiveness, and
PD-associated motor symptoms could potentially enhance the
ML analysis, as previous research has indicated their positive
impact on diagnostic accuracy. Finally, enhancing the inter-
pretability of the model’s decision-making process would aid
in result verification and its validation of biological relevance.

Based on the requirements for an accurate and useful
model, several suggestions for future research can be pro-
posed. One of the key recommendations is conducting a
large-scale clinical trial that collects a balanced metage-
nomic dataset including both PD patients and healthy con-
trols, which can subsequently be verified through postmortem
neuropathological assessment. It is important to ensure diver-
sity among the trial participants in terms of age, sex, and race
to achieve a more generalizable model for PD biomarker dis-
covery. By achieving high and unbiased performances on ML
classifiers, this comprehensive dataset can serve as a valuable
framework for biomarker discovery using ML approaches.
Research into the influence of including data on various typi-
cal PD symptoms on ML performance should be analyzed.

Furthermore, it is essential to expand research beyond the
LR, RF, and SVM models discussed in this study. A thor-
ough review of existing ML models should be undertaken
to assess their relevance and potential in high-dimensional
metagenomic analysis. This broader exploration will con-
tribute to a more comprehensive understanding of the avail-
able ML models and their applicability in this field.

In summary, ML models have the potential to identify
biomarkers for PD, but their application requires careful con-
sideration of dataset characteristics, study design, and the
need for experimental validation. The findings of this re-
search contribute to the understanding of ML approaches for
biomarker discovery in PD and highlight areas for further in-
vestigation.
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