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BAYESIAN ESTIMATION FOR DECISION-DIRECTED STOCHASTIC CONTROL

1. De bij luchtverkeersgeleiding in gebruik zijnde primaire en
secundaire radar-systemen leveren data waarvan de informatie-
inhoud op dit moment zeer onvolledig wordt benut. Een vrij
volledige benutting is mogelijk door te schatten volgens
Bayes op basis van een dynamisch vliegtuigmodel waarvan de
toestandsruimte hybride is.

2. De gebruikelijke instelling van radar-plot-extractoren
volgens het Neyman-Pearson criterium (vaste vals alarm Kkans)
is niet optimaal voor luchtverkeersgeleiding.

3. Het toekennen van een octrooi op een biologische variéteit
is een vorm van kolonisatie in de 2le eeuw.

4. Indien het EEG landbouwbeleid de afgelopen 30 jaar voor
Afrika had gegolden, dan had dat werelddeel geen
ontwikkelingshulp nodig gehad. .

5. Een overheid wiens milieubeleid zo'n 20 jaar achter loopt bij
de noodkreten uit de milieubeweging misleidt het publiek door
Zzich milieu-bewust te profileren.

6. Door de regering van Zuid Afrika wordt de beéindiging van 27
jaar onterechte vrijheidsberoving van één man voorgespiegeld
als ware het de opheffing van het 35 jaar durende
apartheidsregime voor de meerderheid van zijn bevolking.

7. Een verbod op het dragen van een hoofddoek als godsdienstige
uiting is in strijd met het recht op vrijheid van godsdienst.

8. Een grondwet die het gebruik van godslasteringen verbiedt en
de vrijheid van godsdienst gebiedt, impliceert een verbod op
het belasteren van andermans god; met zijn boek "De
duivelsverzen" overtrad Rushdie de Nederlandse wet.

9. Niemand zou het in zijn hoofd halen om de plaatsen Enschede,
Hengelo (Ov.), Delft, Pijnacker en Naaldwijk samen te voegen
tot één gemeente, maar de Nederlandse Antillen worden al
tientallen jaren gedwongen een nog vreemdere bestuurlijke
samenvoeging in stand te houden. g

Nieuwkoop, mei 1990 ) . Henk Blom
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p.25, line 16: delete ", N,",

p.31, 2nd line after (19) should refer to "(13) and (14)",
p.32, 6th line: change "H" into "I",

p.37, first line below (iii): delete "run"

p.38, window in fig.6: change "b" and “c" into “"ii" and "iii",
p.39, window in fig.8: change "b" and "c" into "ii" and "iii",
p.53, 7th line: change "(10.a)" into "(10.b)",

p.57, 6th line: change »p~l* into "p",

p.60, (iv), change "i.i.d." into "conditionally independent”,
p.61, change eqg. (27) into: cOv[wt|6t+1=6,6t=ﬂ,xt+ll

= Covixg|e=nl-A(t,6,mRr(t+1,0,mAT(t,0,m), (27)
p.61, 3rd par., 2nd line, insert "not" before "conditionally"
p.61, 3rd par., 4th line, insert "also" at end of line '
p.61, 3rd par., 6th line, delete "in law equivalent”
p.61, 3rd par., 7th line, change “proposition 6.2" into “th. 6.1"
p-61, 3rd par., insert at end: ", while this need not hold true
for the in law equivalent time-reversed equations:"

p.61, (iv), change "i.i.d." into "conditionally independent”,
p.61, change (iv) into: C°V[wt|9t+1=°'et="'xt+ll =
= Covix,|6,=nl-A(t,8,n)Cov(x,q10¢,1=0)AT(t,0,m).

p.102, (27.c): insert the term "_ﬁt,eﬂx,aTHx,eit,Bdt"’
p.138, change "Olsder, 10,19" into “"Olsder, 9,19"

p.141, line 4: change. "wiskundig aanpak” into "wiskundige aanpak"
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CHAPTER I

INTRODUCTION

1 Decision-directed stochastic control

For the estimation problem to be studied in this thesis, we need
a mathematical characterization of decision-directed stochastic
control. This chapter provides that characterization and outlines
the present study.

An illustrative example of decision-directed stochastic control
is air traffic control. Air traffic control has at its disposal
the flightplan of each aircraft under surveillance, listing,
amongst others, all altitude changes to be executed at particular
way-points. To execute an altitude change the pilot switches the
flight regime from altitude hold to climb (or descend) and, on
reaching the appropriate altitude, back to altitude hold. If, for
example, the reaching of a waypoint is too early/late (due to
e.g. unexpected meteorological conditions) or a pilot fails in
switching the flight regime appropriately, it may lead to a
conflict with another aircraft. Air traffic control monitors the
situation and must decide whether and when to interfere with the
actions of a pilot. Unfortunately, air traffic control only
receives imperfect aircraft state observations. This implies that
the latter decision has to be made under some level of
uncertainty about the appropriateness of the regime switchings.
Air traffic control may decrease the probability of making an
erroneous decision by waiting for new observations. However, the
risk of such a waiting is that there remains no time left for
resolving the conflict.

This type of desision-making occurs for many other stochastic
control problems. Other examples are: control of robots in an
uncertain environment (Saridis, 1983), control of flexible
manufacturing systems (Kimemia and Gershwin, 1983), control of a
solar thermal receiver (Sworder and Rogers, 1983), control of an
unstable aircraft (Looze et al., 1984), control of large space
structures (Williams and Montgomery, 1985), control of electric
power distribution networks (Malhame and Chong, 1985). A common
property of these decision-directed control systems is that they
are event-driven, where the events consist of switchings between
operational regimes.

From the controller's point of view, an operational regime is
determined by a combination of two types of modes: the process
mode and the control mode. Associated with each process mode are
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different process properties. Associated with each control mode
is a different control law. A switching of a process mode is
either intentional (e.g. a switching according to a process plan)
or is unintentional (e.g. due to a sudden occurrence). An
unintentional switching of the process mode is either according
to an internal occurrence (e.g. a sudden failure of a system
component) or according to an exogenous occurence (e.g. a sudden
change of the environmental conditions). A general property of
processes with decision-directed control is that the state of
such processes consists of two components; an R'-valued component
(the plant state) and a discrete-valued component (the process
mode) . Hence, from a mathematical point of view processes with a
decision-directed control have a hybrid state space.

The ideal reaction of a controller to an unintentional switching
of the process mode would be that it is immediately followed by
a switching to a control mode that compensates the unintentional
switching of the process mode (e.g. a failure of a system
component leads to an immediate repair or replacement of that
component). There are two reasons why such an ideal reaction is
in general not a feasible control policy. Firstly, in many cases,
the controller has imperfect information about the present
process mode, so that the detection and identification of an
unintentional switching of the process mode may be delayed, or
may even be false. Secondly, a return to the previous operational
regime, through switching the control mode such that the
unintentional process mode switching is compensated, is in
general simply impossible.

If the ideal reaction is not a feasible control policy, then the
best we can do is to develop a control policy such that the
controlled system performs optimally w.r.t. some appropriate
optimality criterion. In view of the uncertainties involved, the
mathematical theory developed for such problems is known as
stochastic control theory (Fleming and Rishel, 1975; Dynkin and
Yushkevich, 1979; Krylov, 1980; Bensoussan and Lions, 1984;
Borkar, 1989). This theory applies to a mathematically well
defined class of processes: controlled Markov processes.

A stochastic process is called a Markov process if its "future"
is conditionally independent of its “"past" given its “present".

A stochastic process is called a controlled Markov process if it
is conditionally Markov given the control. Hence, to study
decision-directed control within the theory of stochastic
control, we assume that the process under control is a controlled
Markov process, the (Markov) state space of which is hybrid, i.e.
a product of a discrete set and a Euclidean space.

To give an idea of the type of results that can be obtained by
this abstract approach, we start with some elementary hybrid
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state Markov processes that may be controlled through
decision-directed control. Although our interest is both in
continuous—-time and discrete-time models, the examples mentioned
are discrete-time. First, in section 2, we present an example of
optimal decision-~directed control in case of complete mode
observations: the so called jump linear quadratic Gaussian (JLQG)
control problem. Next, in section 3, we increase the complexity
of that problem by assuming that the mode observations are
imperfect, and argue that for optimal control this problem may be
divided into two independent subproblems:
- Evaluating a so called superstate process while receiving
partial process mode observations,
- Controlling that superstate process while receiving perfect
superstate observations.
Since the degree of difficulty of each of these subproblems is
significant, this thesis is restricted to the study of the first
subproblem. To that end, in section 4, we formulate the
evaluation of the superstate of a hybrid state Markov process as
a Bayesian estimation problem. The approach is general enough to
cover the evaluation of the superstate of any of the decision-
directed control examples mentioned in the beginning. Finally, in
section 5, we present summaries of the studies on Bayesian
estimation and hybrid state modelling in this thesis.

The recent monograph of Mariton (1990) gives a comprehensive
overview of the material touched upon in this chapter.

2 Jump linear quadratic control

Assume that we want to apply an R™-valued feedback process {ut]
to control an RM-valued plant state process {xt}, satisfying

Kepqp = A(OL) X + B(OI Wi, + ClO )up,q, (1.a)
or
Kppp = A0 q)Re + BBy )W,y + - I P (1.b)

where 6, assumes values in MCN (N is the set of natural numbers),
{wt} is a sequence of i.i.d. Gaussian vectors independent of Xg
and {et}, while {at} is a finite state Markov process of which
the transition probability matrix is known.

At moment t, the pair (xt'et) represents the hybrid state of the
system; X, is the plant state and 6 is the process mode. The
pair {xt,etl is a conditional Markov process given the control.
Hence, {xt,et] is a controlled Markov process.

In this section, we consider the optimal control of (1l.a) under
the assumption of receiving linear Gaussian observations [yt} of
the plant state {xt} and complete observations of the process
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mode letl. But before doing that, we consider the situation of
receiving complete observations of both the plant state and the
process mode. Given the assumption that the observations up to
and including t, say Y = a{ys;sst), are complete in the sense
that Y 2 a{xs,es: s<t]}, then the optimal control policy is a
Markov control policy (or Markov strategy), which means that the
"future" optimal control is conditionally independent of all
"past" if the "present" Markov state is given (Blumenthal and
Getoor, 1968; Krylov, 1980). For system (l.a) this means

2 Markov CP
(yt,ut) —— (xt,et) —_— (ut+1).

Undaer the additional assumption that the cost criterium is
expectation of a quadratic form in (x,u), the optimal control
policy for system (l.a) has been characterized as being of jump
linear quadratic Gaussian (JLQG) type (Blair and Sworder, 1975:
Morozan, 1979; Chizeck et al., 1986; Ji and Chizeck, 1988). The
assocjated optimal control policy is of the following form:

Upyq = Flog, t)x,, (2)

where the mapping F is defined by the solution of a system of
coupled matrix-Riccati equations; for each element of M one such
Riccati equation. Remarkably, the mapping F is not influenced by
the noise coefficient B, as the system of coupled matrix-Riccati
equations does not involve the noise coefficient B. If A, B and C
are time-invariant, if the time—-horizon is infinite and if the
solution is stable, then F(.,t) is invariant w.r.t. t. A similar
result is known for system (l1.b) (Birdwell et al., 1978, 1986).

Our next step is to replace the assumption of receiving complete
observations of the plant state X, by the assumption of receiving
linear Gaussian observations of Xy . Then the control policy of
(2) no longer applies, and we need another approach. The linear
Gaussian observations of the plant state X¢ and the complete
observations of the system mode 6y, allow a transformation of
system (l.a) into a Kalman filter form;

~

X+l
with: Xe & Elxe 1Y, U b,
while [vt} is an innovation process and Ke forms the solution of
an appropriate matrix Riccati equation that is governed by oles:
s<t}. With this, and a replacement of all terms in the
expectation of quadratic cost by conditional expectation terms
(see Davis, 1977), it can easily be found that the optimal

A(et)xt + Kt+1vt+1 + C(ot)ut+1, (3)

control of (3), given (;t,ot), is the certainty equivalent (CE)
version of the optimal control of (l.a) given (xt,et) (Mariton,
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1987b; Chizeck and Ji, 1988). Hence, the optimal control policy
consists of Kalman filtering followed by a certainty equivalent
(CE) Markov control policy:

Kalman -~ CE Markov CP\
(yt'ut) —) (et:xt) 4 (ut+1)

The latter simply means that the optimal control satisfies

Upyq = Flog, t)x,, (4)

where F is equivalent to the one in (2). To make the connection
with a decision-directed control system explicit, we express (4)
as a function of the control mode K¢ and the conditional
expectation of Xyt

Upyq = Flkp 0 t) %, (5.a)
which is optimal if
Keyp = O¢- (5.b)

Subgstitution of (5.a) in (l.a) yields the following decision-
directed control system:

Xpgp = AO)X, + B(O )W 1 + CO)F(Ky,q t)Xy, (6)

where the assumption of having complete mode observation implied
that the optimal control mode {xtl satisfies (5.b).

A similar JLQG solution has been recovered for the continuous
time situation (Krasovskii and Lidskii, 1961; Florentin, 1961;
Lidskii, 1963; Wonham, 1970; Sworder, 1969, 1972b; Mariton, 1986,
1987a,b, 1988). Despite all these continuous-time results, their
formal derivation involves the solution of some serious
mathematical problems, due to the fact that the optimal control
{ut} is singular, i.e. has discontinuities (Rishel, 1975a,b,
1977; Boel and Varaiya, 1977; Davis and Elliott, 1977; Kushner
and DiMasi, 1978; Akella and Kumar, 1986).

Changing any of the other JLQG assumptions leads to optimal

control policies, of which explicit determination is often very

difficult (Sworder, 1976). However, many of these policies still

involve a switching of the control mode, as is illustrated by

studies of the following additional complications:

- Limited renewal capability (Ratner and Luenberger, 1969;
Sworder, 1970; Sworder and Kazangey, 1972; Sworder, 1983),

- Unknown transition probabilities (Pierce and Sworder, 1971:;
sworder, 1972a; Ji and Chizeck, 1989),

- State dependent transition probabilities (Sworder and Robinson,
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1973; Kushner and DiMasi, 1978; Chizeck, 1984; Sreenath and
Chizeck, 1988),

- Time-optimal control (Olsder and Suri, 1980),

- Semi-Markovian {otl (Sworder, 1980; Mariton, 1989a),

- Non-linear system equations (Sworder and Rogers, 1983; Sworder
and Chou, 1985, 1986),

- Non-quadratic cost (Akella and Kumar, 1986).

3 Control under imperfect mode observations

The assumption of having perfect observations of the process mode
[et] is totally unrealistic in many practical cases. A more
realistic assumption is that the observations of the process mode
are corrupted by noise. It is clear that, under such an
assumption, the derivation of the certainty equivalent Markov
control policy of section 2 no longer applies, even when the
process mode is not switching. From an abstract point of view,
however, there still exists a Markov control policy that is
optimal. To show that, we introduce the concept of a superstate.
With the superstate of a Markov state we mean the conditional
distribution of that Markov state, given the past and present
observations (and controls). If the Markov state is hybrid, then
we call the superstate hybrid. Instead of evolving in the hybrid
space R!'xM, a hybrid superstate evolves in the space of
real-valued functions on R"xM. The interesting point is that,
under quite general conditions, the resulting superstate process
is a controlled Markov process (Gertner and Rappaport, 1977;
Rishel, 1981, 1986; Hijab, 1983, 1987; Caines and Chen, 1985;
Caines, 1988; Borkar, 1989). Hence, upon replacing all terms in
the expected cost by their conditional expectations, it can
readily be seen that an optimal control of K¢ is equivalent to an
optimal Markov control of the superstate. Hence, the optimal
control policy can be represented by two subsequent steps; the
first step is to determine the hybrid superstate while the second
step is to determine the optimal Markov control of that hybrid

superstate, u« :
XKeoOp | Yp Uy

Superstate evaluation Superstate CP
(Y, uy) > u > (ug,q)
KpoOp | Y U

This splits the study of optimal control under partial process

mode observations into two independent studies:

- Evaluation of the hybrid superstate through determination of
the conditional distribution of the hybrid Markov state,

- Evaluation of the optimal control through determining the
optimal Markov control policy for the hybrid superstate.

Solving either one of these two subproblems is very difficult.
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The evaluation of the hybrid superstate is the subject of the
following chapters, while the determination of good hybrid
superstate control policies will not explicitly be considered.
There is little motivation to start a thorough study on the
evaluation of a hybrid superstate, while it is not clear that
good hybrid superstate control policies might be recovered. To
make ourselves easy on that score, we notice that there already
exist some interesting control policies which may use the
eventual results of a study on evaluating a hybrid superstate. To
give a quick review of these policies, we first notice that,
under imperfect process mode observations, the control input has
in general a dual effect; besides controlling the plant state it
may also assist in identifying the process mode. Determining an
optimal control with such a dual effect is very complicated
because the control input that provides optimal assistance in
system identification may differ significantly from the control
that is optimal if the present process mode was perfectly
identified. (Feldbaum, 1965; Aoki, 1967; Astrom, 1970; Bar-Shalom
and Tse, 1976). As a result, there only are some marginal results
in determining an optimal dual control policy (Bar-Shalom and
Sivan, 1969; Tse and Bar-Shalom, 1973; Saridis, 1977; Wenk and
Bar-Shalom, 1980; Griffiths and Loparo, 1985; Casiello and
Loparo, 1985). Presently, all practically useful control policies
are suboptimal, and in general passive in their assistance to
identifying the process mode. The latter class of control
policies are those of the so called open loop feedback type
(Aoki, 1967; Bar-Shalom and Tse, 1976), which means that the
control policy is determined under the assumptions that no future
observations will be available, although all observations made
will be used for estimation.

Three well known examples of, in some way optimal, open loop
feedback control policies for system (l.a) are the robust control
policy of Ladde and Siljak (1983), the multiple model adaptive
control (MMAC) policy (Deshpande et al., 1973; Athans et al, 1977;
Hijab, 1986) and the mode switching control (or reconfiguration
control) policy; Looze et al., 1984; Basseville, 1986):

- The certainty equivalent version of the robust control policy
of Ladde and Siljak (1983) for system (l.a) satisfies

Up,q = F'(t) x¢. (7)
with F'(t) an optimal feedback matrix.

~ The MMAC policy for system (l.a) satisfies

ut+1 = 12" pt,l F(irt) xt'i' (8)
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. P 1A} =i
where: Pt,i e P[Gt—llyt.ut}.

Xe,i

>

E{thyt'ut'6t=l} ’
while F is equivalent to the one in (2) or (4).

- The mode switching control policy for (l.a) reads:

u = F(k ) ; ' (9.a)
t+1 t+1 t ke

i}

Kesl D(xt'Pt,l""'Pt,N)' (9.b)
where F is equivalent to the one in (2) or (4), while D is a
decision function mapping MxRN into M. Preferrably, the
parametrization of the decision function D is optimized, which
can be done with the help of the theory of optimal mode
sawitching (Doshi, 1981; Lenhart and Belbas, 1983). Since the
latter approach is a very difficult one, the practical solution
to determining a parametrization of the decision function is
largely done through evaluation and experimentation (Kerr,
1983; Chow and Willsky, 1984; Adams and Gross, 1984; Looze et
al., 1984: Eterno et al., 1985; Williams and Montgomery, 1985;
Loparo et al., 1987a,b; Mariton, 1989b).

-~

We need to evaluate the processes b Et,i and ;t,i’ for all ieM,
to implement the open loop feedback control policies above. This
evaluation can be done through mabping the superstate, for each
t, appropriately into R, RN and R"xM, respectively. Of the open
loop feedback control policies above, the mode switching control
policy is the only one which switches the control mode tepd.
Since this switching is based on making a decision, mode switching
control is of decision-directed type. It has been shown that such
a decision-~directed control policy may vield a far better control
than the robust control policy (Mariton and Bertrand, 1986).
Another interesting observation is that the open loop feedback
approach to system (1l.a) leads to controls that are (passively)
adaptive: this always is the case for the MMAC and the mode
switching control approaches, while if the estimation of {xe) is
adaptive it also is the case for the robust control approach.

4 Bayesian estimation of hybrid state Markov processes

The series of studies in the following chapters is directed to
the evolution of the superstate of a decision-directed control
process. For this, a hybrid state controlled Markov process is
considered as a general model of a process with decision-directed
control. The problem of the '‘evolution of the superstate of a
Markov process is a problem of Bayesian estimation, i.e. the
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determination of the conditional distribution of the state of a
Markov process. In a discrete-time setting, the theory of
Bayesian estimation can be found in Jazwinski (1970) or Maybeck
(1979, 1982). For completeness, we give a short outline of
Bayesian estimation.

Given a discrete index set T, a Markov process [k} with state
space E, an observations process [yt} with state space Y, and two
arbitrary time points v and s, the Bayesian estimation problem is
to determine the conditional distribution u Y under the

viJg
following assumptions:

- The initial distribution # (.) and the transition measure

u (.lg) are given for all t and all E€E. Moreover, these
Eeeplty
measures admit density-mass functions.

~ The present observation is conditionally independent of all
past observations, given the present state of the Markov
process. Moreover, the measure u (.]g) is given for all ¢

Yelte
and t, and admits a density-mass function.

There are three types of problems in Bayesian estimation of Ev
given Yg: we call it Bavesian filtering if s=v, Bayesian
prediction if s<v and Bayesian smoothing if s>v. Of these types,
Bayesian filtering plays the key role.

The Bayesian filtering problem may be presented as a sequence of
identical subproblems, each of which consists of evolution of the
conditional distribution from one moment in time to the next
moment in time, i.e. from t to t+l. Moreover, each of these
subproblems consists of solving the following two subsequent
steps:

- The unconditional evolution of (.) to «u (.),
EelYy EeeplYe
which is characterized by a Chapman-Kolmogorov equation.

- The conditional update of &« (.) to «u (.), which
ErerlYe Eee1 Y1
is characterized by Bayes formula.

It is obvious that the Bayesian prediction problem may be reduced
to a Bayesian filtering problem. The simplest approach is to
exploit the fact that the conditional distribution of ¢, given
Yg witp s<v, be equivalent to the conditional distribution of £,
given Y ., generated by a modified observations process [y',]
being defined through
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Y't(@) yt(w), t<s,

ne up

Y'¢ (o) vgle), t>s.

The result of this transformation is that the modified
observations process {y'tl satisfies the assumptions necessary
for Bayesian filtering.

During the evaluation of a particular stochastic control policy
in practice, we often like to reconstruct the true trajectory of
the controlled process. Therefore, it is necessary to estimate
the trajectory more accurately than is possible through Bayesian
filtering. Such a more accurate estimation can be realized
through Bayesian smoothing. It is interesting to notice that
there are several approaches to reducing the Bayesian smoothing
problem to a Bayesian filtering problem. One approach is to
exploit the fact that the conditional distribution of Xy given
Y., with s>v, is equivalent to the conditional distribution of

X'g given Y, if {x"¢} is defined by:
A
X't(u) = Xt(u), t<v,
I
x'p (o) = x,(0), t>v.

With this, the Bayesian smoothing problem reduces to one of
Bayesian filtering of the pair {xt,x't}.

An intuitively more appealing approach is to exploit the fact
that the Markov property is invariant with respect to the time
direction. With this, the Bayesian smoothing problem reduces to
Bayesian filtering both in forward and in reverse-time direction
and merging the two filtering results. An additional complication
of this approach is to characterize the Markov process {x¢] in
time-reversed direction.

In the following chapters, several aspects of these Bayesian
estimation problems will be studied, both in a discrete-time
setting and a continuous-time setting. The series of studies
starts with Bayesian filtering for discrete-time hybrid state
Markov processes, in chapter II. Next, chapter III studies the
time-reversal of a discrete-time hybrid state Markov process,
with application to smoothing. After these discrete-time results,
the study continues in a continuous-time setting. First, in
chapter IV, with the modelling of continuous-time hybrid state
Markov processes. Next, in chapter V, with continuous-time hybrid
state Bayesian filtering. The continuous-time material in
chapters IV and V requires some background on the theory of
discontinuous stochastic processes, which is provided in the
appendices following chapter V.
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5 Summaries of chapters II through V

II. The Interacting Multiple Model algorithm.

An important problem in filtering for discrete-time linear
systems with Markovian switching coefficients (dynamic Multiple
Model systems) is the one of management of hypotheses, which is
necessary to limit the computational requirements. A novel
approach to hypotheses merging is presented for this problem. The
novelty lies in the timing of hypotheses merging. When applied to
the problem of filtering for a linear system with Markovian
coefficients this yields an elegant way to derive the Interacting
Multiple Model (IMM) algorithm. Evaluation of the IMM algorithm
makes clear that it performs very well at a relatively low
computational load. These results imply a significant change in
the practical application of approximate Bayesian filtering for
systems with Markovian coefficients.

III. Time-reversal with application to smoothing

The reversal in time of a stochastic difference equation in a
hybrid space, with a Markovian solution, is presented. The
reversal is obtained by a martingale approach, which previously
led to reverse time forms for stochastic equations with
Gauss-Markov or diffusion solutions. The reverse time equations
follow from a particular non-canonical martingale decomposition,
while the reverse time equations for Gauss-Markov and diffusion
solutions followed from the canonical martingale decomposition.
The need for this non-canonical decomposition stems from the
hybrid state space situation. Moreover, the non-Gaussian discrete
time situation leads to reverse time equations that incorporate a
Bayesian estimation step. The latter step is carried out for
linear systems with Markovian switching coefficients, and the
result is shown to provide the solution to the problem of fixed-
interval smoothing. For an application of this smoothing approach
to a trajectory with sudden manoeuvers, simulation results are
given to illustrate the practical use of the reverse time
equations obtained.

IV. Continuous-time hybrid state Markov processes.

A remarkably general subclass of hybrid state Markov procesgses is
formed by the so called Piecewise Deterministic (PD) Markov
processes. In contrast to most other hybrid state processes, they
exclude diffusion, but include a jump reflecting boundary, a
random jump rate and hybrid jumps. With the latter we mean jumps
of the Euclidean valued process component that anticipate a
simultaneous switching of the discrete-valued process component.
As such, they cover a wide variety of non-diffusion Markov
processes. Because PD processes are defined in a pathwise way,
they provide a framework to study the control of non-diffusion
processes along the same lines as that of diffusions.
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An important generalization is to include diffusion in PD
processes. To that end, we present quasi-left continuous PD
Markov processes as pathwise unique solutions of an Ité
stochastic differential equation (SDE) on a hybrid space, which
is driven by a Poisson random measure. Since such an SDE permits
the inclusion of diffusion, this approach leads to a large
variety of hybrid state Jump diffusion Markov processes,
represented by pathwise unique SDE solutions.

V. Filtering of continuous-time hybrid state processes.

In this chapter, we consider the problem of evaluating the
conditional distribution of a quasi-left continuous hybrid state
Markov process. From a mathematical point of view, the theory for
such an evolution is well developed. Unfortunately, for
non-trivial hybrid state Markov processes, the dimensionality of
a Bayesian filter is too large to allow for straightforward
practical application. For applications, we are interested in
low-dimensional approximations of the conditional distribution.
In this chapter, we develop a particular such approximation {the
Interacting Multiple Model filter) for linear systems with
randomly switching coefficients, and we show its relation with
the discrete-~-time IMM algorithm.
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CHAPTER II

THE INTERACTING MULTIPLE MODEL ALGORITHM

1 Introduction

In this chapter we present the Interacting Multiple Model (IMM)
algorithm as an approximate Bayesian filter for a linear system
with Markovian switching coefficients. For this, we mainly
consider the for filtering commonly studied equations,

Ky = A‘et)xt—l + B(et)wt' tef{1,2,..}, (1)
Yi H(B ) xe + G(B )V, (2)

where {yt} is the observed process taking values in RW, {etl is a
finite state Markov chain taking values in MCN according to a
known initial distribution and a transition matrix m, [xt} assumes
values in RD, [utl and {vt} are sequences of i.i.d. standard
Gaussian vectors, {at], {wt}, [vt) and x, are independent, while,
for every 6, G(e)G(e)T is non-degenerate.

With N denoting the cardinality of M, after t steps in time there
are Nt possible path hypotheses for {et}. Hence, if we assume
that x5 has a Gaussian density. then the exact Bayesian filter is
a Multiple Model (MM) filter with a bank of Nt Kalman filters,
one for each hypothesis, and a system to compute the desired
output of the filter. If II is sparse, some of the Nt hypotheses
have zero probability and can be pruned, which reduces the
complexity of the algorithm. But, only if I is a permutation
matrix the complexity does not grow with time. The problem is to
avoid the growth of the number of hypotheses in an efficient way.

This hypotheses management problem is also known for several
other filtering situations (Pattipati and Sandell, 1983; Chong et
al., 1982; Makowski et al., 1984; Mori et al., 1986; Blom, 1986;
Stirling, 1987). All these problems have stimulated the
development of a large variety of approximation methods during
the last two decades, a review of which is given in section 2.
For our problem the majority of these are techniques that reduce
the number of Gaussian hypotheses, by pruning and/or merging of
hypotheses. These algorithms, however, lack good performance at
modest computational load in too many situations. In view of this
unsatisfactory situation and the practical importance of better
solutions, the filtering problem for (1), (2) needed further study.

One item that has not received much attention in the past is the
timing of hypotheses reduction. It is common practice to reduce
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the number of Gaussian hypotheses immediately after a measurement
update. Indeed, on first sight there does not seem to be a better
moment. However, in two recent publications, (Blom, 1984b;
Andersson, 1985), this point has been exploited to develop,
respectively, the so called IMM (Interacting Multiple Model) and
AFMM (Adaptive Forgetting through Multiple Models) algorithms.
The latter exploits pruning to reduce the number of hypotheses,
while the IMM exploits merging. The IMM algorithm was the reason
for a further evaluation of the timing of hypotheses reduction.
In section 3, a novel approach to hypotheses merging is presented
for a dynamic MM situation, which leads to an elegant derivation
of the IMM algorithm. In section 4, Monte Carlo simulations are
presented to judge the state of the art in filtering for systems
with Markovian switching coefficients after the introduction of
the IMM algorithm. Next, in section 5, the IMM algorithm is
applied to tracking a suddenly accelerating object.

Parts of this chapter appeared in Blom and Bar-Shalom (1988). For
an extension of the IMM algorithm to the semi-Markov switching
coefficient case see Campo et al. (1988). For studies of the
situation that the matrices N, A or B are partly known, see
Tugnait (1982b), Hagglund (1984) and Yang et al. (1989).

2 Review of approximations in dynamic MM estimation

To escape from the intractability of the exact solution we may
proceed in two ways. We may avoid the problem by approximating
the linear system with Markovian coefficients by a system for
which finite filtering algorithms exist, or we may follow the
more basic path and apply hypotheses management techniques. We
briefly review these approaches and their resulting algorithms.

Model approximations

This path has led to algorithms for approximated models of the
system with Markovian coefficients. The most relevant ones are
the so called modified Multiple Model (modified MM) algorithm,
the Modified Gain Extended Kalman (MGEK) filter (Song and Speyer,
1983) and detection-filtering methods (Willsky et al., 1980,
Basseville and Benveniste, 1986; White and Speyer, 1987). The
latter stands for the running of one single filter, the
parameters and estimates of which are adjusted upon the detection
of an additive signal in the filter residue. To apply this to a
system with Markovian switching coefficients, that system has to
be approximated by a system with additive residue changes that
are sequentially detectable (Perriot-Mathonna, 1984; Willsky,
1984). For the modified MM approach we have to adopt the
approximation NM=I, i.e. no mode switching, and subsequently we
have to bound the weights in the associated MM algorithm from
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below (Willsky et al., 1980. To apply the MGEK approach, the
Markov coefficients have to be approximated by a Markov process
in an Euclidian space, after which the filtering can be done by a
MGEK filter (Marcus and Westwood, 1984; Westwood, 1984).

Hypotheseg reduction techniques

These can be classified in: heuristic pruning, unlikely
hypotheses pruning, fixed depth hypotheses merging and adaptive
hypotheses merging. The application of any of these reduction
techniques leads to an algorithm, which consists of a bank of
Kalman filters, a hypotheses weights evaluation system and a
hypotheses reduction system. Heuristic pruning is the most simple
approach; apply at some moments in time some heuristic rule to
prune hypotheses. For an overview of the main heuristic pruning
rules see Pattipati and Sandell (1983) and Chong, Mori, Tse and
Wishner (1982). A well known example is the rule to save only a
fixed number, N, of the most likely hypotheses. Application of
this rule immediately after a measurement update yields the class
of Detection Estimation (DE) algorithms (Tugnait, 1982a).

The unlikely hypothegis pruning means that pruning is only done
for those hypotheses that have a zero probability of becoming the
most likely hypothesis in future. Methods using this approach are
gquite scarce. One such method is based on a Viterbi-like approach
(Bruneau, 1982). Unfortunately, the number of unpruned hypotheses
may still increase rapidly with time.

Hypotheses merging implies that a weighted sum of two or more
Gaussian hypotheses is approximated by one single Gaussian
hypothesis. Fixed depth hvypotheses merging means that only those
hypotheses are merged for which the Markov chain paths are
equivalent during the recent past of some fixed depth. The
complexity of the resulting algorithms does not grow with time,
which makes them useful for real time application. Fixed depth
hypotheses merging based algorithms have mainly been developed
during the seventies. For an overview of these algorithms see
Tugnait (1982a). The most important ones are the so called GPB
{Generalized Pseudo Bayes) algorithms. A GPB algorithm with Nk
Kalman filters in its bank preserves after each measurement
update the different hypotheses over the last (k~1) steps in time
(kz1). For short we write GPB(k) or GPBk. Performance comparisons
of GPBk algorithms of low order (k=1,2,3) have been made by
Tugnait (1982a), by Marcus and Westwood (1984), by Weiss (1983)
and by Smith and Makov (1980). In their examples the GPB2
algorithm performs significantly better than the GPB1 algorithm,
and almost as good as the GPB3 algorithm. Adaptive hypotheses
merging implies that only those hypotheses are merged which do
not differ too much. To quantify such a difference several
distance measures have been proposed (See Pattipati and Sandell,
1983, Weiss et al., 1983, and Deacon and Atherton, 1985). A still
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open problem is which distance measure to choose in a particular
situation. For systems with Markovian coefficients it is useful
to separate these adaptive merging techniques into two classes
(Weiss, 1983). In the first class the merging, at moment t, is
restricted to Gaussian hypotheses that are equivalent about O¢:
while in the second class hypotheses that differ about 6, can be
merged. For systems with Markovian coefficients the latter
implies in general that the Markov property of the pair (X 0¢)
is not fully exploited. Presently the proposed distance measures
are such that the resulting adaptive merging techniques are
mainly of the second type. For systems with Markovian coefficients
we need distance measures such that the resulting adaptive
merging techniques of the first class become truly available.

Performance comparison

A general comparison of the different types of algorithms is
hampered by the analytical complexity of the problem (Weiss et
al., 1983, Washburn et al., 1985). Therefore the available
comparisons of the different types of algorithms mainly rely on
Monte Carlo simulations for specific examples. In this way the
GPB algorithms have been compared both with the DE filters and
with the modified MM algorithm and MGEK filter. The references
for these comparisons are respectively Tugnait (1982a), Westwood
(1984) and Marcus and Westwood (1984). Their main criterion of
comparison was the RMS error in the estimate of b

Willsky et al. (1980) compared detection-filtering methods with
the modified MM algorithm, where their main criterion was fast
decision making. These comparisons indicated that if its
complexity can be handled, the GPB2 algorithm is a good choice,
as it performs almost optimally. Furthermore it appeared that if
the implemen-tation of N“ Kalman filters is too complex, the best
thing left is to accept an often significantly lower performance
and to choose either a DE filter with less than N2 Kalman filters,
the GPB1 algorithm, the heuristically modified MM algorithm, the
MGEK filter or a detection-filtering method of low enough
complexity. The available comparisons indicate that the modified
MM algorithm is in general a less good choice, while the other
four algorithms rank best in performance for different situations.

In practice, for many applications an algorithm with N2 Kalman
filters is too complex, and we have to choose one of the
alternatives. According to the preceding discussion, this often
leads to a significantly lower performance, which situation is
not satisfactory for many practical applications. The expectation
is that the above sketched situation will improve by the further
development of the adaptive merging techniques (Weiss et al.,
1983). Recently (Blom, 1984b) a new fixed depth merging algorithm
(IMM) has been introduced that improves the above gituation.
Namely, it yields almost the performance of the GPB2 algorithm
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for the cost of the GPB1l algorithm. In the next section this IMM
algorithm is derived using a novel hypothesis merging approach.
The novelty lies in an alternative timing of hypothesis merging.

3 Timing of hypotheses reduction

To show the possibilities of timing the hypotheses reduction, we
start with a filter cycle from one measurement update up to and
including the next measurement update, under the assumption that
the conditional distribution of our hybrid state Markov process
admits a conditional density-mass function. As such, we consider
a cycle of recursions for the evolution of the conditional
density-mass of (xt'et)' Globally, this cycle reads as follows:

P p .
Ryo1:0¢-11Y¢ HeOpl¥p g

p P .
XeeOpl¥Ypy o XeeOplYy
with ¥, _; = olyg: s<t-1}.

Since {xt,ot} is a Markov process, transition I is specified by a
Chapman-Kolmogorov equation;
(.) =t Zp (.1x.,1).
RY 1 X¢,0¢lXp_ 1:0¢ .
-P (x,1)dx.
Xp_1:0¢-11Y%3

p
XpoOp Y g

Since xo,{et},{vt] and (w.} are independent, a characterization
of transition II follows from (2) and Bayes formula;
P (x,0) = p (x,0).
XeeOglYe YelXeOp o Yeq
p (x,8) / p .
Xes0p 1Y q Yel¥-y

For output purposes we may use the following equations:

p (x) = 2 p (x,1),
xtlyt ieM xt'°t|yt
P (i) = I, p (x,i) ax,
etlyt R xt'etlyt
and, if p (i) > 0,
O¢iYy
(x]i) = p (x,1) / p (i).

X 10, Yy Xe 0| Yy 0,19
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To allow for a more detailed evaluation of timing hypotheses
reduction, we next decompose transitions I and II. The result
is a more detailed cycle of recursions;

Ch.-Kolm.
P mmmm————— > P 1] (3)
O¢-11Y% O¢l¥p_q
if p (i) = 0 prune hypothesis 0.=1,
6¢l¥Yeq
Mixing
< 2 > p . (4)
Kp_110¢-1:Y¢ 4 Re-110¢:Y
Evolution
P mmeemee— > p . (5)
Xe_qpl0p:Ye g XelOg Y q
Bayes
< J e > P . (6)
6¢l¥ 4 O lYe
Bayes
p . ommm———- > p . (7)
XelOp Y g Xelog. Yy

Let us take a closer look at the characterization of the detailed
cycle above. Characterizations of steps (6) and (7) follow
immediately from the Chapman-Kolmogorov equation of transition II
and the law of total probability. A characterization of step (5)
follows from the evolution of system (1). The Chapman-Kolmogorov
equation for the Markov chain, [et], characterizes (3);

p (i) = 3 ©m p (3). (8)
O¢l¥eq JEM 13 6¢_q1Yey

The remaining problem is to characterize transition (4).
For this we start with the law of total probability,

(x|i) = 2 p (x[3,4).
Ke-110¢: ¥ JEM Xy 116¢_1,0¢ Yy

.p (jli). (9)
Op-q10¢ Yy

As 6, is conditionally independent of Xy_q given Or_1, We obtain

o] (x|j.i) = p (x]3), all ieM. (10)
Ke-110¢_1.0¢. Y q Kpoql0¢_q

Moreover, since 6 is conditionally independent of yt—l given
Op_1. We obtain
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p (jli) = my; p (i) / p (i).
3
Op-1l0¢ ¥ 6e-11Y% 0¢lYeoy

Substitution of this and (10) in (9) yields the desired
characterization of transition (4),

p (xji) = £ m p (3).
Re 106081 jeM i3 ey 1Y 4
-p (x{3) / p (1), (11)
Re-110¢-1/¥1 O¢lYeq

which can be seen as a "mixing" of conditional densities of type
. Notice that this "mixing" in (11) is explicitly

Xe110¢-3:Y¢ .

related to the underlined properties of the process lxt,etl.

According to the detailed filtering cycle there are, at any
moment in time, N densities on R® and N scalars. Unfortunately,
the densities on R are rarely Gaussian. Even if the initial
densities px " (.]1i), i€eM, are Gaussian, a realization of

o} (.Ig) gs in general a mixture of Nt
xtlet.yt

Explicit recursions for the resulting Nt+1 individual Gaussians
and their weights can simply be obtained from the above filter
cycle. Obviously the N times increase of the number of Gaussians
during each filter cycle is caused by (4) only.

weighted Gaussians.

In the sequence of elementary transitions, (3) through (7)., we
can apply a hypotheses reduction either after (4), after (5) or
after (7). We review these reduction timing possibilities for the
fixed depth merging hypotheses reduction. This fixed depth
merging approach implies that the Gaussian hypotheses, for which
the Markov chain paths are equivalent during the recent past of
some fixed depth, are merged in one moment-matched Gaussian
hypothesis. The degrees of freedom in applying this fixed depth
merging approach are the choice of the depth, 4 (21), and the
moment of application; after (4), after (5) or after (7).

If the application is immediately after each measurement update
pass, (7), depth d>1 yields the GPB(d+l1l) algorithm (Tugnait,
1982a; Weiss, 1983). If the application is immediately after the
mixing pass (4), the resulting algorithms are the IMM algorithm,
for d=1, and the GPB(22) algorithms, for d22. If the application
is immediately after pass (5), the resulting algorithms are
disguised but more complex versions of the IMM and GPB(>2)
algorithms. In the next section we derive the IMM algorithm by
applying the fixed depth merging approach with depth, d=1, after
each pass of (4). ’
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4 The IMM algorithm

Each cycle of the IMM algorithm consists of the following four
steps, the first three of which are illustrated in figure 1.

HomeOmmmmmmm e (e mm e e e -
%11 P, 1 B, N RN Pia
Interaction AN
Jy Filer
for
(4]
Kalman Kalman
VNN ot | " | gen NN\

Fig. 1 The IMM algorithm

Step 1

o

Starting with the N weights Py 1.4 P (i), the N means

0¢-11Y¢—3
~ fa
Xe-1,i = E{xt_llet_1=i,yt_1l and the N associated covariances

Rt—l,i' one computes the mixed initial condition for the filter
matched to et=i, according to the following equations:

P =T n P (12)
t.i jEM ij t-1,3
if Pt =0 prune hypothesis 6,=i,
' 1
X =% m P X /P (13)
t-1.,1 jeM ij t-1.,3j t-1.3 t,i
- - A % T
R = % O P (R 4 [x - % 10..171 /7 7
t-1,i JjeM ij t-1,3 t-1,3 t-1,3 t-1,3 t.i
(14)
Step 2

Each of the N pairs ﬁt-l,i' ﬁt-l,i is used as input to a Kalman
filter matched to 6 =i. Time-extrapolation yields

vy X
= A(l)xt'i'

»
(24
-

[l

Ak AT+ ByBWT,
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and then, measurement updating yields

Xe,i = Xg,i * K, jlyg-HE)xe 41,

- R - o T
Re,i = Ry, — Ky ¢Re jHDT,
with
Kj ¢ = HIDR, ; DR jH)T+ere () T17L.
Step 3

The N weights ?t i are updated from the innovations of the N
Kalman filters,

~ _ —% T -1
P =c.P .lQ I expl-%v Q v (15)
t,i t.i t,i t.i t,i t,1i
with ¢ denoting a normalizing constant,
Vp,i = Yo H(i)xt,i, (16)
= T T
Qt,l = H(i)Rt,iH (i) + G(1)G (1). (17)
Step 4

For output purpose, Xy and Rt are computed according to

x = £ P x (18)
t ieM t,i t,i

-~ - - ~ ~ T

R = 2 P [R +[x -x1(..11. (19)
t ieM t,i ¢t,i t,i t

Only step 1 is typical for the IMM algorithm. Specifically the
mixing represented by equations (11) and (12) and by the
Interaction box in figure 1, cannot be found in the GPB
algorithms. This is the key novelty of the approach to the timing
of fixed depth hypotheses merging that yields the IMM algorithm.
We give a derivation of the key Step 1:

Application of fixed depth merging with d=1 implies that,

P (. fi) ~ N{.;%p_n <o Rp_q :1.
e 110¢-9.Y e-1eare ?'1
Substitution of this in (11) immediately yields (13) and (14),

A
. x A s .
with Xea1,4 ‘.E{xt—l'etfl'yt—l’ and ﬁt—l,i Fhe ?ssoc1ated
covariance. Finally we introduce the approximation,

X
p (.1i) ~ Nl.iRe_q 5.Re g 51,
xt—llet'yt—l t 1,1 t 1,1
which guarantees that all subsequent IMM steps fit correctly.

Remark 1: In (1), 6, is often replaced by 0y 17 i.e.

Xt = A(Ot_l)xt_1,+ (Gt_l)wt. )
This leads to an IMM which executes the Interaction of Step 1
after the Kalman time extrapolations of Step 2 (Blom, 1985).
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Remark 2: The GPB1l algorithm can be obtained from the IMM
algorithm by introducing the following approximation into the IMM

scheme: Replace ﬁt—l,i and ﬁt—l,i in step 1 by §t_1 and ﬁt—l'
Together with (12) this approximates (13) and (14) in step 1 by,

§t 1,i ™ Xg-1 and ﬁt 1,i = Rt 1° These equations are equivalent

to (13) and (14) if each component of H equals 1/N, which implies
that {6,] is a sequence of mutually independent stochastic
variables. The latter is hardly ever the case and we conclude
that the reduction of the IMM to GPBl leads to a significant
performance degradation. Obviously the computational loads of IMM
and GPBl1 are almost equivalent.

5 Performance of the IMM algorithm

At present, a comparison of the different filtering algorithms
for systems with Markovian coefficients with respect to their
performance is hampered by the analytical complexity of the
problem (Weiss, 1983; wWashburn et al., 1985). Because of this,
such comparisons necessarily rely on Monte Carlo simulations for
specific examples. For our simulated examples we used the set of
19 cases that have been developed by Westwood (1984). To make the
comparison more precise, we gpecify these cases and summarize the
observed performance results. In all 19 cases both {x.} and {yed
are gcalar processes, which satisfy,

Xy a(e )x, 4 + ble)w, + u(t),

]

with: u(t) = 10.cos(2nt/100}, et:nalo,ll, Xg a Gaussian variable
with expectation 10 and variance 10, P{60=11 = P{eo=0) = %, while
Moo = (1-1/70) and o9 = (1-1/11). The parameters a,b,h,g,-ro and
71 of these 19 cases are given in Table 1.

The results of Westwood (1984) show that, in all 19 cases the
differences in performance of the GPB2 and the GPB3 algorithms
are negligible, while in only seven cases (5,6,8,16,17,18,19) the
differences in performance of the GPB1 and the GPB2 algorithms
are negligible. To our present comparison the other twelve cases
(1,2,3,4,7,9,10,11,12,13,14,15) are interesting. For each of
these twelve cases we simulated the GPBl1, the GPB2 and the IMM
algorithms and ran Monte Carlo simulations, consisting of 100
runs from t=0 to t=100. For simplicity of interpretation of the
results we used one fixed path of # during all runs: 6=0 on the
time interval [0,30], 6=1 on the interval {31,60] and =0 on the
interval [61,100].
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CASE | T~-VALUES G—-DEPENDENT VALUES
+# To | T1 a(0) , a(1) b(0),b(1) | h(0), h(1) a(0) , g(1)
1 40 20 .995,.990 1.0 1.0 1.0
2 40 20 .995,.990 5 1.0 5
3 40 20 .995,.990 .1 1.0 5.0
4 200 100 .995,.990 A 1.0 5.0
5 40 20 .995,.990 8.0 1.0 1.0
6 40 20 .995,.990 1.0 1.0 3
7 40 20 .995,.900 5 1.0 2.0
8 40 20 .995,.750 1.0 1.0 6
9 40 20 .995 2.0 1.0,.95 5
10 40 20 .995 1.0 1.0,.80 2
1 40 20 .995 .5 1.0,.80 8
12 4 2 995 .5 1.0,.80 .8
13 200 100 995 .5 1.0,.80 .8
14 40 20 .995 .15.0 1.0 1.0
15 40 20 .995 1.0 1.0 .1,5.0
16 10 2 .95 .5 1.0,0.0 1.0,2.0
17 200 5 .950,0.0 1.0 1.0 1.0
18 50 5 .950,1.2 1.0 1.0 1.0
19 10 2 .95 5 1.0 1.0,40.0

Table 1 The parameters of the 19 cases of Westwood (1984)

The results of our simulations for the twelve interesting cases
are as follows. In six cases (1,2,7,12,14,15) both the IMM and
the GPB2 performed slightly better than the GPB1l, while the IMM
and the GPB2 performed equally well. For typical results see
figure 2. In the other six cases both the IMM and the GPB2
performed significantly better than the GPB1l. For typical results
see figures 3 and 4. Of these six cases the IMM and the GPB2
performed four times equally well (cases 3, 4, 11 and 13) and

two times significantly different (cases 9 and 10).

On the basis of these simulations we can conclude that the IMM
performs almost as well as the GPB2, while its computational load
is about that of GPBl. We can further differentiate this overall
conclusion:

- Increasing the parameters 7, and Ty increases the difference in
performance between GPB1 and GPB2, but not between IMM and GPB2.

- If a is being switched, then the IMM performs as good as the
GPB2, while the GPBl1 sometimes stays significantly behind.

- If the white noise gains, b or g, are being switched, then the
IMM performs as good as the GPB2, while the GPBl1l sometimes
stays significantly behind.

- If only h is being switched, then in some cases the IMM and
more often the GPB1 tend to diverge while the GPB2 works well.
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Fig. 2 RMS (Root Mean Square) of the filter errors for case 7,
illustrative of the six cases (1,2,7,12,14,15) where both
IMM and GPB2 perform slightly better than GPB1
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0.0 i { + } } 4 } t 1 {
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Fig. 3 RMS of the filter errors for case 3, illustrative of the
four cases (3,4,11,13) where both IMM and GPB2 perform
significantly better than PGBl, while IMM and GPB2
perform equally well
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Fig. 4 RMS of the filter errors for case 9, illustative of the
two cases (9 and 10) where IMM performs better than GPB1,
but worse than GPB2 (inthese two cases only h switches)

Another interesting question is how the IMM compares with the
modified MM algorithm and the MGEK filter. Apart from the GPB
algorithms Westwood (1984) also evaluated four more filters, the
MM, the modified MM, the MGEK and a MGEK with a "post-processor"”.
For the 19 cases there was only one algorithm that outperformed
the GPBl algorithm in some cases. It was the MGEK filter in the
cases 1, 3 and 4. He also found that the MGEK filter performed in
these cases marginally or significantly less good than the GPB2
algorithm. As these experiments showed that for cases 1, 3 and 4
the GPB2 and the IMM algorithm performed equally well, one can
conclude that the MM, the modified MM, the MGEK, the MGEK with
“postprocessor” and the GPBl are in all 19 cases outperformed by
the IMM algorithm.

On the basis of these comparisons one can conclude that for
practical filtering applications with N=2, the IMM algorithm is
the best first choice. As the IMM algorithm has been developed on
the basis of some general hypotheses reduction principles, one
can reasonably well expect that this is also true for larger N.
But it is unlikely that the IMM performs in all applications
almost as good as the exact filter. Therefore, if the IMM
performs not well enough in a particular application one should
consider using a suitable GPB(>2) or DE algorithm (Tugnait,
1982), or one might try to design a better algorithm by using
adaptive merging techniques (Weiss, 1983). The DE algorithm might
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possibly be improved by the novel timing of hypotheses reduction
(Andersson, 1985). If for a particular application the
performance of the selected algorithm has a too high
computational load, than it is best to try to exploit some
geometrical structure of the problem considered (Basseville and
Benveniste, 1986; Raisch, 1987).

6 Filtering sudden manoeuvres

One of the filtering problems for processes with sudden additive
jumps, that received considerable attention in the past, is the
tracking of a suddenly manoeuvring object. For this problem a
large variety of practical filter methods have been developed. If
the sudden jumps are approximated by a Gaussian process, the
optimal tracker is a Kalman filter. Since a Kalman filter
responds too slowly to a sudden acceleration, several other
methods have been developed: a-8-tracking, Multiple Model
Adaptive Estimation (MMAE) filter (Moose et al., 1979), the
Variable Dimension (VD) filter (Bar-Shalom and Birmiwal, 1982)
and the Input Estimation (IE) algorithm (Chan et al., 1979;
Bogler, 1987). An interesting question is then whether there is
an hybrid model and an appropriate IMM algorithm that competes
with these methods.

Manoeuvre tracking with the IMM algorithm

We observe white Gaussian noise corrupted position measurements
of an object that undergoes a sudden constant acceleration. For
simplicity we restrict ourselves to one dimensional motion.

Our manoeuvering object model is (1) with the following state
components: mode etE[O,ll, position, X1¢€R, speed, X5+ €R,
potential acceleration, x3tER, satisfying system (1), with
H00=(1—1/10), H11=(1-1/71),

[1 T o] [1 - xrz]
A(0) = {0 1 of, a(y =0 1 '+ [,
0O 0 O 0 0 1
B(0) = [0 0 1)T, B(1) = [0 0 01T,

and parameters: 7=10, ro=1000 and 71=10. The true acceleration
satisfies: accelerationt = X34 0y.

The observation equation is (2), with H(.)=[1 0 0] and G(.)=100.
The algorithms considered are respectively the IMM and the GPB2
algorithms, and the Kalman filter for a linear Gaussian system on
R3 with second order stochastic properties being equivalent to
those of position, speed and acceleration in the model above.

The latter leads to the following linear Gaussian system:
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x't = A'x't + B'w't,
with:

A' = A(1) Diagll,l.ﬂlll.

B' = A(1) Col{0,0,v8},

B = (1 + “11) / (To+71)l

and [w't] a sequence of i.i.d. standard Gaussian variables.

For the evaluation we implemented a simulator of the switching
model above, but with deterministic {etl; 6,=0 everywhere except
on the interval (ts,te], where 6,=1. This yields a simulation
with uniform motion for t<ts, constant acceleration of value

wt on the interval (ts.,te] and again uniform motion for t>te. On
B

the time interval [0, 100] we used Monte Carlo simulations of 100
runs with the following three sets of parameters:

(1) w =1.0 , ts=20 , tg=60 ,
te

(ii) w =0.4 , ts=40 , te=45 ,
ts

(iii) "t =0.1 , te=40 , te=60 .
B

During each Monte Carlo simulation run we measured the RMS of the
filter errors in position, speed and acceleration. Some results
measured on the interval [0,100] are for the IMM algorithm given
by Figs. 5 through 8, for Monte Carlo simulations (i), (ii) and
(iii). For the Kalman filter and the GPB2 algorithm we present
some results for Monte Carlo simulation (i) in Figs. 5 and 7.
Because of the Kalman filter's linearity and the similarity
between GPB2 and IMM, this covers also the Kalman and GPB2
results measured during Monte Carlo simulations (ii) and (iii).

The differences in performance of the IMM algorithm and the

Kalman filter are quite large:

- During uniform motion (filters converged) the RMS errors of the
IMM algorithm for position, speed and acceleration are
respectively 1.5, 5 and 4 times smaller than those of the
Kalman filter.

- During constant acceleration of simulation (i) (filters
converged) the RMS errors of the IMM algorithm for position,
speed and acceleration are respectively 2.5, 3 and 1.5 times
smaller than those of the Kalman filter.

- During simulation (i), both after a transition from uniform
motion to constant acceleration or from constant acceleration
to uniform motion, the IMM algorithm converges about two times
faster than the Kalman filter.

-~ The IMM algorithm's estimate of the covariance of its errors in
position, speed and acceleration is remarkably consistent; a
property completely lacking in case of the Kalman filter.
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Fig. 5 RMS of the Kalman, IMM and GPB2 filter errors in
position, measured during type (i) simulations of a
suddenly accelerating object
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Fig. 6 RMS of the IMM filter errors in position, measured
during type (ii) and (iii) simulations of a suddenly
accelerating object
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Fig. 7 RMS of the Kalman, IMM and GPB2 filter errors in speed,

measured during type (i) simulations of a suddenly
accelerating object
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Fig. 8 RMS of the IMM filter errors in speed, measured during

type (ii) and (iii) simulations of a suddenly accelerating
object
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The overall conclusion is that in this example the IMM algorithm
performs 1.5 up to 5 times better than the Kalman filter. To
complete the picture we also checked the processing load. In this
example (N=2) the IMM algorithm uses about 2.2 times the CPU- and
memory-load of the Kalman filter. On the basis of this evaluation
it can be concluded that for this example the IMM algorithm is at
least as efficient as the Kalman filter; for the IMM algorithm
the average increase in performance is slightly higher than the
increase in computational load. For an approximated Bayesian
method this is a very good ratio.

The differences in performance we found between the IMM and the
GPB2 are very small (See figures 5 and 7). The responses of IMM
and GPB2 on a jump are the same. The largest difference occurs
during uniform motion, where the GPB2 reaches slightly lower RMS
errors than the IMM. These improvements are respectively about
15% in position and about 25% in speed. In view of the IMM
performing close to GPB2, we also may expect that IMM performs
close to the exact Bayesian filter. Finally we ran some
additional Monte Carlo simulations to confirm that the IMM and
the GPB2 algorithms are significantly less sensitive to the
setting of the jump parameters, 7o and Ty than the Kalman filter
for the linear Gaussian approximated model.

Comparison with other manoeuvre tracking methods

As remarked, a large variety of other filter methods have been
developed, such as a-8 tracking, the Multiple Model Adaptive
Estimation (MMAE) filter (Moose et al., 1979), the Variable
Dimension (VD) filter (Bar-Shalom and Birmiwal, 1982) and the
Input Estimation (IE) algorithm (Chan et al., 1979; Bogler,
1987). Recent overviews of these methods are given by Woolfson
(1985) and Bogler (1987). Woolfson compares two Kalman filters,
the a-8 tracker, the MMAE filter and the VD filter and concludes
that the VD filter yields the best overall performance, at the
cost of ~10 times higher computational requirement than that of
the a-8 tracker. Bogler (1987) shows that a proper IE algorithm
performs better then the VD filter, at the cost of ~100 times
higher computational load than that of the a-8 tracker. Recently
Bar-Shalom et al. (1988) have shown that the IMM algorithm
performs as good as or better than a proper IE algorithm, while
the computational requirements of IMM are far smaller.

Real tracking models are more complicated than the examples
above. Apart of the sudden starting and stopping of several kinds
of accelerations there are other complications, such as the
nonlinear (continuous-time) aircraft dynamics and the ambiguity
of measurement origin. As such, for an Air Traffic Control
surveillance application we implemented a continuous-discrete IMM
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algorithm (see chapter V, section 5) with four extended
Kalman-Bucy filters in its bank and cooperating with the so
called Probabilistic Data Association (PDA) for MM filters
(Kuilder, 1981; Gauvrit, 1984; Houles and Bar-Shalom, 1987). The
resulting IMM-PDA based trackers outperform state-of-the-art
tracking systems (Blom, 1984a; Bar-Shalom, 1989). The conclusion
is that the IMM algorithm can very succesfully be combined with
approximated Bayesian methods that have been developed to cope
with other tracking complications.
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CHAPTER III

TIME-REVERSAL WITH APPLICATION TO SMOOTHING

1 Introduction

This chapter addresses the problem of time-reversion of a hybrid
state Markov process which is given as the solution of a
stochastic difference equation. The desired result is a similar
equation but running in reverse-time direction while having a
solution that is respectively pathwise and in probability law
equivalent to the solution of the forward equation.

The motivation to study this problem stems from two different
kinds of application. The first is to approach the solution of a
Bayesian smoothing problem by a merging of the estimates of two
Bayesian filters: one filter matches the original model and is
applied in the usual time direction while the other filter
matches the time-reversed model and is applied in the reverse-
time direction (e.g. Anderson and Rhodes, 1983; Bagchi, 1986).
The second application is the determination of a particular error
lower bound for discrete-time Bayesian filtering, by the method
of Galdos. This method requires a Monte Carlo simulation in
reverse-time direction of model matching trajectories, starting
from a prespecified end point (Galdos, 1981; Washburn et al.,
1985) . For both of these applications it is necessary to have a
reverse-time difference equation for which the Markovian solution
is in probability law equivalent to the original solution.

Our problem falls in the category of how to reverse a Markov
process in time. The Markov property implies that the past and
the future are independent under the condition that the present
state is known (Wentzell, 1981). This invariance with respect to
the time direction is the Kkey property used in time-reversion
studies. There are two types of studies that deal with this
problem; a classical type and a systems-type. The classical type
of study assumes that the transition measure or the generator of
a Markov process is given and then tries to characterize the
transition measure in reverse-time direction (Nagasawa, 1964;
Kunita and Watanabe, 1966; Chung and Walsh, 1969; Azéma, 1973;
Hasegawa, 1976; Dynkin, 1978; Kelly, 1979; D. Williams, 1979:;
R.J. Williams, 1988). The systems-type of study assumes that a
stochastic equation with a Markovian solution is given for which
it tries to characterize the time-reversed equation. The first
time-reversed equations were obtained by orthogonality arguments,
for the linear Gaussian situation (Ljung and Kailath, 1976;
Lainiotis, 1976). For general diffusions, it has already been
pointed out by Stratonovich (1960) how to obtain their
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time-reversed equations by actually following the classical
approach: from a stochastic equation via the generator and the
time-reversed generator to the time-reversed equation.

A truly systems-type of study has been started by Verghese and
Kailath (1979), by showing how for a linear Gaussian system a
more direct martingale approach leads in a simpler way to
time-reversed equations. Moreover, by this approach it was
possible to obtain a reverse-time equation with a pathwise
equivalent solution. Early elaborations of these ideas led, along
different routes, to reverse-time equations with pathwise
equivalent solutions (Anderson, 1982; Castanon, 1982; Pardoux,
1983) . During subsequent studies, quite large classes of
stochastic differential equations and their time-reversed
equations have been identified (Elliott and Anderson, 1985;
Pardoux, 1985; Elliott, 1986a, 1986b; Haussmann and Pardoux,
1986; Pardoux, 1986). Recently, some of these classes have been
extended by using a Girsanov transformation of Brownian motion
(Picard, 1986; Protter, 1987) and by using a stochastic calculus
of variations technique (Millet et al., 1989).

From a constructive point of view, the martingale approach is the
most appealing approach to reversing diffusions in time. The
martingale approach roughly consists of checking if the time-
reversed driving noise sequence can be decomposed in a suitable
reverse-time martingale part and its complement and next, if such
a decomposition exists (Jacod and Shiryaev, 1987; Jacod and
Protter, 1988), selecting such a decomposition. The final step is
to characterize both the martingale part and its complement.
Unfortunately, there is an additional problem in using this
martingale approach to the reversion of an equation with a
solution that is not continuous, since a martingale decomposition
is than not unique. This makes the selection of a suitable
martingale decomposition far from trivial in the hybrid state
space situation, because a worse choice yvields unnecessarily
complicated time-reversed equations. This complication is
unsolved at present, both in continuous-time and in discrete-
time. It will be solved in the sequel for quite general
difference equations in a hybrid space. With that result we
subsequently reverse the considered equation in time.

The chapter is organized as follows. In section 2 we define the
hybrid state stochastic difference equation that will be
considered and briefly compare its time-reversion with the time-
reversion of a linear Gaussian equation. In section 3 we specify
the time-reversion requirements. Next, in sections 4 and 5 we
consider, respectively, the pathwise time-reversion and the in
probability law equivalent time-reversion. In section 6 we make
the results obtained more specific for a linear system with
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Markovian switching coefficients. In section 7 we apply the time-
reversion results to fixed-interval smoothing of a jump linear
system, and show results for a trajectory with sudden manoeuvres.

This chapter partly appeared in Blom and Bar-Shalom (1989) and
will appear in the IEEE Tr. on Information Theory (Vol.36, 1990).
2 The stochastic difference equation considered

The stochastic difference equation we consider in the sequel is

the following system, on an appropriate stochastic basis
(@,%,F,P,T) with T = NN[0,T], T<ew,

Kepq = a0 9,0, X, W), (1.a)
Or41 = DlOL. V), (1.b)
yt = C(Otyxtlwt.ut), (1-0)

where [wt}, {u l and (v} are i.i.d. standard Gaussian sequences
of dimension p, q and 1 respectively, the initial distribution of
(xg.,05) admits the density-mass function p 0.’ and {(wy,ve,ugd
X
0'%0
is independent of (xo,eo). Further x,, 6, and y, have
respectively RP-, M- and R™-valued realizations (with M a
countable set), while a, b and ¢ are measurable mappings of
appropriate dimensions such that system (1) has a unique solution
for each initial (xg.64) with p o (xg,05)#0. The mappings a, b
X
0'Yo0
and ¢ are time-invariant for notational simplicity only.

In the model above, the pair (xt'et) represents the hybrid
system state, while Y, represents the measurement. For such
hybrid system models, the second order dependence of (l.a) on
{et} is quite uncommon (Blom, 1986). Obviously, (1.a) reduces to
the more common situation of first order dependence, only if
a(6,n,.,.) is invariant w.r.t. either & or n. The interpretation
of (l1.a) as an equation with a second order dependence on {6}

suggests the substitution of °*t+1 2 (9t+1'°t) in (l1.a). On doing
this (1.a) reduces to the more common equation, and it follows
immediately that {a*tl and leat,xtl are Markov processes.
However, as the state space of 6 t is significantly larger than
the state space of 6, this is a rather brute force
transformation of (l.a). A more elegant transformation of (l.a)
to the more common equation consists of substituting (1.b) in
(1.a), which yields an equation of the following form,

Kppy = @' (0, K Wea Vi)
Instead of a state space expansion, there appears an additional
noise term, v,. From the latter representation, it follows
immediately that the processes {et,xt} and (6.} are Markov
processes. The latter transformation shows that {x.} has first
order dependence of lotl only if a'(.,.,.,Vv) is v-invariant.
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Hence, (l1.a) is indeed more general than the more commonly
studied equation with first order dependence of f64}. With the
study of this more general equation, we also anticipate the
time-reversion results obtained; in the sequel it will turn out
that a time-reversed equation of (1.a) has, in general, a second
order dependence on the time-reversed {otl, even when a(o,n,.,.)
is w-invariant. In view of this, it is natural to study the more
general form described above.

In the sequel we consider the time-reversion of system (1) under
the following assumptions:

A.1l
a(e,m,.,w) has an inverse a”:M2xR7xRP=-R", such that for any
(6,m,w)EM2xRP,

a*(e.n,a(e,n,x,w),w)=x: all xern, (2)
A.2
b(.,v) has an inverse b*:HxR=M, such that for any VveER,
b*(b(e,v),v)=6; all eeM. (3)

Assumptions A.l and A.2 suggest the transformation of (l.a,b,c)
to the follow1ng time-reversed model,

Xp=a (0441,0¢ Ky W)

0r=b" (6,7, vy) .

yt—c(et,xt,wt,u ).
Because (wt,vt) and the future (= reverse-time past),
Fee1 = 0llyg,xg5,05); s€[t+1,T]}, are dependent, this is not the
time-reversed system we should look for. Unfortunately, it is not
clear how to continue from here. To develop some insight, we take
a quick look at the time-reversion of a linear Gaussian system.

Linear Gaussian example
As a gpecial case of (l.a) consider the following linear Gaussian

system

Xyl = AXy + Bug.
Assumption A.l1 implies that A is invertible, by which

Xy = A™ [Xy,q - Bwel.
Obviously Wy and the future 9t+1 are dependent, which requires a
martingale decomposition of W, . In this linear Gaussian case the
canonical martingale decomposition is the appropriate one. It
consists of decomposing Wy in 1ts reverse-time predictable part,
E{wt|3t+ll, and its complement w e

Wy = E[wt|9t+1] + W £-
The problem is now to write the predictable part as a function of
Xp4qp (if possible) and to characterize the covariance of "*t' As
pointed out by Verghese and Kailath (1979) it follows readily
from orthogonality arguments that

Elwel%esql = Elwglxegl,
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while the fundamentgl formula for LLSE estimation yields
E{wtl,*{t+1] = B°R T(E+1)Xt+1,
Coviw tl = I- B'R ~(t+1)B,
where R(t+1) is the covariance of Kepqo which must be invertible.
By a straighiforward subs%itgtion of these Eesults we obtain
. xt‘= A [xt+1 - B B'R “(t+l)xy 4 - BW el
which yields the desired reverse-time system:

~

I _ T--1 o RS
Xy = A Fxt+1 B B'R (t+1)xt+1 Bw,1.
The orthogonality arguments and the LLSE estimation step, used in
the above procedure, prevent a straightforward extension of that
procedure to equation (1).

In the sequel we replace the orthogonality arguments and the LLSE
estimation step respectively by Markov duality arguments and a
Bayesian estimation step. Besides this, we have to select an
appropriate martingale decomposition. Following the linear
Gaussian case, the canonical martingale decomposition seems a
good candidate:

(wt.vt)=(wt*,vt*)+El(wt,vt)|$t+1].
Unfortunately, this decomposition leads to very complicated
elaborations of the Bayesian estimation step. To avoid these
complications, we use the following decomposition:

(wt*,vt*) i ("t'vt) - (;tlvt) [

with: v, = Elvel%g,q) and we 2 Efwg |91,V !).

The main step, that must be carried out, is to prove that the
latter is a martingale decomposition, and to elaborate on the
Bayesian estimation step. For the presentation of these results a
constructive approach is taken, starting with a precise
description of the time-reversion objectives.

3 Time-reversion objectives

We want to obtain a time-reversed version of system (1), such

that its solution, [?t,it,at}, is in some sense eqguivalent to
[Yt'xt'et" To make this objective explicit it needs both a
specification of what we mean by a time-reversion of (1}, and a
specification of the desired sense of process equivalence.

By a reverse-time system we mean a stochastic difference equation
which starts at time T and runs in reverse time direction on the
interval [0,T]. We require from a time-reversion of system (1)
that it does not change the state space and that the solution of
the resulting reverse-time system represents a process

{?t,it,atl. More specificly, (yt,zt,at; must be the solution of
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the following system of stochastic difference equations:

Ky = @(t,8,,9,8,K 9/ W), (4.a)
ot = b(t,6t+1,xt+l,vt), (4.b)
§'t = E(ttat+1Iatlit.',llitl;tlut); all tE[OIT-]-]I (4.C)

where 3, b and € are deterministic mappings of appropriate

dimensions and (Et,Vt) is a noise sequence to be specified. For a
better understanding of (4), notice that the substitutions of
(4.a) in (4.c) and of (4.b) in (4.a,c) transform (4) to a
reverse-time system of the more common form:

Kl
I

e ox w o~ o
£ = A0, Xy g W V)

D!
1]

£ = Bl 8 g%y V)

<1
!

£ = S, B, Ky W Viu): all tefo,T-1].

To be a useful reverse-time system, (?t,Vt) should, as much as
possible, be independent of the future (= reverse-time past)
information

~ A ~ o~ o o o

Frep = 0¥, Xg,8,,W Vo, u ) s€E(L+1,T]).
A minimal requirement is then, that the conditional expectation
of (Et,Vt), given $.,,, should be zero. Since {$.: t€[0,T]} is a
decreasing sequence of o-algebras, the latter can most easily be
put in martingale language :

{Wt,Vt] in (4) should be a reverse-time Martingale Difference

(MD) sequence w.r.t. litl (see Elliott, 1982; Kumar and Varaiva,

1986; and the definitions below).

3.1 Definition

Let {Btl 2 {Bt; te[0,T]} be an increasing sequence of ¢-algebras;
i.e. Bg_q C Bs, for any s€[1,T].
A random sequence {Etl is said to be a Martingale Difference
sequence w.r.t. [Btl if, for all te(o0,T],
(1) &, is B -measurable,
(ii) E[IEt|]<m,
(iid) ElE |851=0 a.s.; for all s€[0,t-1].

3.2 Definition

Let (3tl ﬁ [St; te[0,T]} be a decreasing sequence of o-algebras;
i.e. ;5 C 33—1' for any s€[1,T].

A random sequence [Etl is said to be a reverse-time Martingale
Difference sequence w.r.t. ]ﬂtl if, for all t€[0,T],
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(1) €, is ¥ -measurable,
(ii) EBl|Eg|)<o,
(iii) El(g|951=0 a.s. ; for all seft+1,T].

Having specified the desired type of reverse-time system, next we
specify the types of equivalence of solutions of systems (1) and
(4), in which we are interested. For stochastic processes several
useful types of equivalence have been defined and named in the
past. We restrict ourselves to the two most important types of
equivalence and their unambiguous names:

- strict sense pathwise equivalent (indistinguishable),

- same finite-dimensional distributions (eguivalent in law).

Two processes lEtl and [Etl, te([0,T], are said to be
indistinguishable if they are defined on the same probability
space (&,%,P) and

Pl g, = B, , all t€(0,T] } = 1. (5)

For discrete-time processes (5) is satisfied if and only if, for
all te{o,T], &.=F, almost surely.

Two processes {t.} and {g.}, t€[0,T], are said to be equivalent
in law, if they have the same state space, E, and for all
0St1<t2<. .o <tkST,

P((¢ ,..,& )edXl = P{(¢ ,..,E )EAX} , (6)
t t
1 k K k
for any k and all measurable AXCE™.

Our objective in the sequel is to obtain time-reversed systems of
type (4), with solutions that are respectively indistinquishable
and equivalent in law w.r.t. the solution of (1). As two
indistinguishable processes are equivalent in law, in practice it
is easier to demonstrate equivalence in law than to demonstrate
indistinguishability.

4 Indistinguishable time reversion

In this section we derive a type (4) version of system (1), such

that their solutions, {?t,it,atl and (y,,X,,6.}, are indisting-
uishable, and illustrate these results for a jump-~linear example.
The first step of our derivation consists of using A.l and A.2,
to transform (1) to the in section 2 discussed time-reversed form,

X
xt = a*(9t+1'et'xt+1'"t)' (7.a)
9t =b (9t+1'vt)' (7.b)
Yy = C(et'xt'"t'ut)' (7.c)

Although (7) and (4) look similar, one requirement is not met:
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the driving noise in (7) is not a reverse-time Martingale
Difference sequence w.r.t. [ﬁtl, with
Fp = ollyg.xg,05,Wg, v, ug); s€[t,Tl}. (8)
Therefore our next step is to introduce a particular reverse-time
. < x X
Martingale Difference sequence, {wt Vi }. as follows,

("t*'vt*) (Nt,vt) - ("t'vt) ’ (WT*vVT*)=0: (9)
-~ A
with: Vi = Elvelde,qt,
~ A
Wy = E[wt|$t+1,vt]; all te[o0,T-1].

Notice that the definition of We differs significantly from the
revergse-time predictable process E{wt|9t+1). As such the
decomposition in (9) is not the unique canonical decomposition
(see Appendix A5). The introduction of this non-canonical
decomposition is a crucial step necessary for obtaining the
time-reverion of hybrid state system (1).

In the sequel we verify that {wt*.vt*} is indeed a reverse-time
MarEingale Difference sequence w.r;t. ($tl, and thus also w.r.t.
[st }, with Fo 0= o[.‘lt U o{(ws*,vs ): s€[t,T]}}. Moreover we show

that, due to the duality of the Markov property, (;t'vt) is
conditionally independent of Frep given (xy,4,04,4).

4.1 Theorem

Let [xt,etl and (wt*,vt*} satisfy (1) and (9), and let Ehe .
assumptions formulated after (1) be satisfied. Then (wt Ve } is
a reverse-time Martingale difference sequence w.r.t. {St }, while

W, and Gt satisfy:

Wt = B[Nt|6t+1,0t,xt+1l, (10.a)
Ve = E[Vt|9t+1'xt+1}' all te€[o0,T-1]. (10.b)
Proof:

sinse [ft'vt} satisfies (i) and (ii) of definition 3.2, also
lwt Ve } satisfies these properties. Furthermore, for any s2t+1,

Blwg 1957} = Elwg-we13,") = Blu—Elw,19¢,1,v,)19,"]
E[Ht|gs l - E[Ht|ss } = 0,

and a similar result for V¢ - This corresponds with (iii) of
definition 3.2, and verifies the reverse-time MD property of
[wt*,vt*} w.r.t. [Qt*l.

To show (10) we notice that for all dB,

Pl(wy,vi)EdB|$ 1=

= P(("t'Vt)EdB|Yt+1'xt+1'°t+1'"t+1'vt+1'“t+1"tf2"
and that the sixtet {Yt'xt'et'"t'vt'“t' is a Markov process with

respect to the filtration ($,]. Then the past-present duality of
this Markov property and some manipulations yield, for all
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measurable dB = dRPxdR C RPxR,

Pl(Wy, Ve )EAB[F 1} = PI(Wp, Vi )EABIYy 1/ Xey1:0t41 Wea1 Vsl Ues1! =
= Pl(wg, vy )€EdB|xy,1.0¢49) =

P{w, EARP|v EAR, X, 1,6y 1} - PIVLEAR[X (1,0 ,9]

where the first equality follows from the Markov property of the

sixtet, the second equality follows from (1), while the last is a

straightforward decomposition. The latter result verifies (10.a),

and because 6, is (vt,et+1)—measurable it also verifies (10.a).

Q.E.D.

Theorem 4.1 implies that ;t and ;t can be written as
We = E(8,0,,1,00 K q) s (11.a)
Substitutizg :fgt;::§+%;gt?%;:a,b) in (7.a,b,c) yields (H1-p)
Xy = ;(t'9t+1'9t'xt+1'w*t)' (12.a)
6y = S(t,et+1,xt+1,v*t), (12.b)
Ve = ClE,04,1:00 Ky 1 Xe W ¢olly) (12.c)
with: ;(t,e,n,x,w*) = a*(6.,n,x,w+E(t,0,n,%x)), (13.a)
B(t,0,x,v*) = b*(6,v*+g(t,6,x)), (13.b)
;(t,o,n,x,z,w*,u) = c(n,z,w+£(t,8,n,X),u). (13.¢c)

The above result is summarized by the following corollary.

4.2 Corollary

Under assumptions A.1l and A.2, the solution {?t,it,atl of the
reverse-time system (4) is indistinguishable from the solution
{Yp.X, 0} of system (1) if

~

(1) (yT.xT,eT) = (yT,xT,eT) a.s.,
(11) a, b and ¢ satisfy (13.a.,b,c),
-~ -~ *
(IID) (W, ¥y) = (w',ve)  a.s. i all tel0,T-11,

with w*t and v satisfying (9) and (10).

Jump-linear example
To illustrate the results obtained so far, let us consider the
particular situation of a linear system with first order
Markovian switching coefficients and observation noise
independent of the system driving noise. Both a(é,n,x,w) and
c(n,x,w,u) are then linear in (x,w), while the first is
n-invariant and the second is w-invariant, by which system (1)
simplifies to, Kegq = A0 1)Xe + BlOg )Wy,

9t+1 = b(etlvt) ’

Y Gloy)xe + H{e )ug.
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Then from Corollary 4.2 we readily find the indistinguishable
time-reversed system,

Xe = ATH0,g) [Xgyq - Blog, ) (we+w* )1,

6p = bMoy, g verviy),

yt G(gt)xt + H(et)utl
where {w eV t} is the reverse-time MD-sequence of Theorem 4.1,

* |l

- - , x
We=E(t,0,,1:00,X,4), ve=g(t,0,,1,X¢,q) and £, g and b are

according to (11) and (13.b). The difference equation for X¢ is
similar to the one for the linear Gaussian example in section 2.

But due to ;t' it may even be nonlinear in Xy41- At the end of
the next section we will show that there are some further
simplifications possible for this example, in case of in
probability law equivalence.

5 Equivalent in law time-reversion

In this section we derive conditions under which the solutions of
(1) and (4) are equivalent in law, and discuss these results for
a jump-linear example. So far our line of reasoning is quite
similar to the martingale approach of time-reversing a diffusion.
However, things are quite different now we require equivalence in
law only. The reason is that, while in the diffusion situation

this requires that {dwt] and (dwtl are equivalent in law, no
similar simple results hold in the discrete-time situation.
Instead of this, we identify the relation between conditional

laws of [wt} and {wtl by a Bayesian estimgtion step. Next we
characterize f and the required law of {w tl.

5.1 Theorem

Under assumption A.1 the soliution [?t,it,st} of reverse-time
system (4) is equivalent in law w.r.t. the solution {ye,Xg.041 of
system (1) if,
(i) . . . (@X) = pu (dx) ;
Yq:Xp, O Yq.XpiOq

for any measurable dAXCR™xRMxM,

(ii) 3 and ¢ satisfy (13.a,c),
(iii) P. . ~ (nje,x) = p (nje,x),
Opl0psq Xeyq Opl0psg e Xeyq
(iv) '3 (.|O,Tl,x) = M ('Ielnlx)l

~ ~ ~ %
Welbp,q 8 Ry WoplOrig 0 Xpyg
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for all (x,6,nm,t)eRPxM2x([0,T-1], with w' and f
satisfying (9), (10.a) and (11.a).

Proof:

Under the conditions of Corollary 4.2, {yt'it'at] and {y,.X¢ .0}
are indistinguishable and thus equivalent in law. This property
is preserved if (I) is replaced by (i) and the involved

. . . X, .
reverse-time Martingale Difference sequence wW.r.t. {st } is
replaced by one that is equivalent in law; i.e. (III) is
replaced by (III');

B - - o~ (.,.]10,x,(8)) =
Wt'Vt|9t+1pxt+1l (esrxs;se[t+2lT])

”ox x (-1-'9:Xr(s))v
W t'V tlet+1'xt+1'(OS'XS;se[t+2'T])

for every (x,0) and every realization S of (es,xs:sE[t+2,T]).
From the proof of Theorem 4.1 we know that
Pl(Wi, v )EAB|F q) = P((wﬁ,vt)EdBlot+1,Xt+1l =
= letEdR |VtEdR,9t+1,xt+1} .P{VtEdR|9t+1,xt+1} ‘

and thus glso* . . N

P{(w (/v t?EdBl@ t+1) = Pl(w .,V t)EdB|6t+1,xt+1].
Hence, (III'}) simplifies to (III");

B o ~ (.,.10.,%X) = u 4 x (.,..]0,%x),

WeVelOgigiXesy WigeV oelOesyXesn
for every (0,x). Together with (II), the latter equality
transforms straightforwardly to (ii), (iii) and (iv). Q.E.D.

Our remaining problem is the characterization of the conditional
law of "*t' As this is actually a discrete-time Bayesian
estimation problem, it can be done by applying Bayes formula. We
do this under the following additional assumptions:

A.3. The a priori distribution of (xt,et) permits a
density-mass function for all t&[0,T].

a*(6,n,x,w) is once differentiable in x€R" for all
(6,n,w)EM2xRP.

td
03

5.2 Proposition
Under assumptions A.3 and A.4, the distribution in (iv) of

Theorem 5.1 permits a density which is characterized by

P. - - o~ (wje,n,x) =p (w+f(t,0,n,x)|6,n,%),
WelOpi10eriXe WelOpygr@piXeyy :
(14.a)
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P (¢]O6,m,x) = c'(6,n,x) |vxa*T(e,n,x,.)| p ()
WelOpy1:0p Xeyg Yt

.p (a*(6,n,x,¢) M1, (14.b)
xtlet
for all (x,6,n,t)eR™xM2x(0,T-1], with v, the gradient and
A
c'(6,n,x) a normalizing factor, such that c'(e,n,x)=0 if

p (x|{6,n)=0). Moreover,
Kes1lOpeq.0¢

P, . ~ (nje,x) =p (nle).p (x|e,n).
O¢10¢4q:Xpyq OplOryy Xep110¢41:6¢
.p 1 (x]6). (15)
eyplOpsq
Proof:
Due to A.3, application of Bayes formula yields,
(s¢]8,n,%x) = p (x|e,06,n)
WelOpi1:0p:Xey Ree1lWe Opyq:0¢
.p (e]o,m) / P (x|e,n),
WelOpyiq:0¢ Xps110p4q0¢
for any (6,n,x) with p (x]6,n)>0; else the right hand

. Xer110¢41/0¢
side is zero.

In view of (1.b) and the independence of (w,} and {op vl
(el6,m) =p (o)

WelOpyqe0g We
and from (l.a) and A.4,
(x|-,9,'n) =
ey IWeoOpyqi6g
=1v,a*T(e,n,x, )| p (a*(8,n,x,+)16,n)
XelOpiq:0¢

Substitution of the last two equations in the first one, and
using the conditional independence of Xy and 6,9 given 6,
yields (14.b).

Next, substitution of (9) into the right hand side of (iv)
yields:
“, oo ~ o~ (.}le,n,x) =
WelOpigOpiXeyy

[ ~ (OIOrnlx)l
(We=We) 10¢49:0¢. K¢y n .2
for all (x,6,n,t)ER"'xM“x[0,T-1].
Since the latter conditional distribution admits a density,

substitution of (1l1.a) yields (14.a).
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Finally, a repeated application of Bayes formula yields:
(nje,x) =
010447 Xey1
=p (n,8|x) / P (e|x) =
OpiOs1 X4 Or+1lXesa

[p (n,6) / p ()] .
O ft+1 Ot+1
. [p (xje,n) / p (x|e)] =
X1 10p41:0¢ ey lOesn

=p (n1e).p (x|e,n) / p1 (xl6) .
6¢l0pyq KpyglOpeyrOy ReaplOpay
Hence, (15) follows from (iii). Q.E.D.

Jump-linear example

For a linear system with first order Markovian switching
coefficients we arrived, in section 4, at the following
time-reversed equation:

- a1 ~ *
Xt = A (et+1)[Xt+1 - B(9t+1)[wt+w t]]l

with w” t the reverse-time MD sequence and wt—E[wt|9t+1,9t,xt+1l
Because a* (.,..,X,w) is linear in (x,w), its gradient w.r.t. x is
w—-invariant, by which (14.b) in proposition 5.2 yields

(wle,n,x) =

Welbpy1e0piXpsq -1
= cq(6.,n,x)p (W)p (A" () [x-B(8)w]|n).

W x, |6
In spite of the simplification thistis a Eor: which is in general
quite complex, and ;t still may be a nonlinear function of Kepg-
Obviously, this type of complexity could have been expected, as
it is well known that a discrete-time Bayesian estimation step
leads to nonlinear equations, unless the prior densities involved
are Gaussian. Therefore, we consider in the next section the
special situation that for all meM, p {(.|n) is Gaussian, to

Xelby

recover that ;t is then a linear function of Xegqe and that [w*tl
is then white Gaussian noise, the covariance of which has a
second order dependence on {6.1}.

6 Linear systems with Markovian switching coefficients

In this section we consider both the indistinguishable and the in
law equivalent time-reversion of the following linear system with
Markovian switching coefficients:
Xt+1 = A(6t+1,9t)xt + B(9t+1,6t)wt, (16.a)
6t+1 = b(et,vt), (16.b)
under assumptions A.l, A.2 and A.5:
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A.5. The a priori conditional density of Xy given 0¢=m, is a
non-singular Gaussian for all (t,n)€[0,T]xM.

With the help of Corollary 4.2 and Proposition 5.2, one can show
the following.

6.1 Theorem

Under assumptions A.1, A.2 and A.5, the solution [§t,5t] of
Ky = K(t,8,9,8)% 1 + B(By,q,0)%,, (17.a)

Oy = Bt 8y 1.1,V (17.b)
is indistinguishable from the solution {xt,et} of system (16) if:

(I) (iT'aT) = (xTIeT) a.s.,

(11)  X(t,e,m) = A 1(e,m)(1-Blo,m BT (6, mR L(t+1]0,m ], (18.2)

B(e,n) -a"1(e,n)B(8,M), (18.Db)

b satisfies (13.b),

(III) (W, V) = (w'ov™  a.s. ; all tefo,T-1],

with "*t and v*t satisfying (9.a) and (10), and R(t+1|et+1,ot)
the conditional covariance of X,,;, given 6,,, and 6,:

R(t+1]6,n) = A(6,n)Covix|e,=nlA(e,n)T+B(e,n)B(6,mT. (19)

Proof:
(I) and (III) are as in Corollary 4.2, and it remains to show
(II). For short we write A for A(6,,,.6y), R for R(t+1,6,,4,6,),
etc.. Assumption A.5 implies

P (x) = N{x;0,C},

Xeloy

where Cy represents the conditional covariance of Xgo given 6.
Because A.5 implies A.3 and (16.a) implies A.4, proposition 5.2
holds true. Next, substitution in (15) of

a*T(e,n.x.w)=A'1(e,n)[x—B(o.ﬂ)w] and p (w)=N{w;0,I} yields,
w
t
(W) = g (Xg,q) N(W;0,I} N(A"1(x,, ,-Bw);0,Ci) =

p
WelOts1:OprXeey T 1 T -1
= ColXyyq) expl-%w w-%[A ~[x,, ,-Bwll'C  "[..]11=

h = c3(xy,q) expl-%[w-Fx,,,1TQ71(..11,
with:
9! = 1+a71B1Tc, A" 1p,

o lr = (a71p1Tc, "1a"t.
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From the matrix inversion lemma it follows that
g = 1-BT[BBT+AC, AT] 1B = 1-BTR7IB,
with R the covariance of X .q. given (9t+1'9t)7 R = ACtAT +§§T,

which corresponds to (19).
Next the evaluation of F yields

F=9Ma1p1Te, a7l -

[A_lg.]'rct-lé—l - ETQ—lﬁ[A-lﬁcht_lh—l -

(a71p1Tc, 72"t - pTR"1(R-aRATI (AT) "1c "1t

[A-lngCt_l_A_-l - ET(AT)‘].C‘:-].A-I + QTB-lz

BTR™1.

The above results mean that the conditional density of W given
(et+1'°t'xt+1) is Gaussian with mean and covariance,

= pTgr~1
E{W 164,704 /Xpiq) = BTR "Xy, (20.a)

To-1
Coviwg 10y, 1,04, Xeyq} I-B*R “B. (20.b)

From (20.a) follows that

Wy = ;t+§T§_1xt+1' (20.c)

Substitution of (20.c) in (16) and time-reversion yield (17) and
(18). Q.E.D.

The change of the indistinguishable time-reversion to the
equivalent in law time-reversion can simply be made by replacing
(I) and (III) of Theorem 6.1 by equivalent in law conditions such

as in Theorem 5.1. For ;t this implies a Gaussian density with
zero mean and covariance according to (20.b),

ot =7-RT -1
CoviWe 10y ,1:0¢ Xy g} =I-B (04, 1,0 )R “(t+1]6,9,6)B(0y,7,04).(21)

Due to (18), this equivalent in law time-reversion requires the
quite restrictive assumptions of invertible A's. Fortunately,
there exists an equivalent in law time-reversed system if the A's
are not invertible. Although, the intermediate step of
indistinguishable time-reversion can no longer be used for a full
derivation, that route can still be used to construct the form of
the less restrictive time-reversed system. That construction

runs as follows:
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From (ii) and (iv) of Theorem 5.1 we obtain the following
alternative in law equivalent time-reversed system,

X =a1(r-ssTR1y, (22.a)
B =1, (22.b)
CoviWy10y,q.0¢) = A" 1pr-aTR 1p1BT (a7 1) T, (22.c)

where the underline notation is as in the proof of theorem 6.1.
To avoid the use of A’l we use the following equality,

BBT = R-ac AT, (23)

Substitution of (23) in (22.a) and evaluation yields a form that
does not involve the inverse of A:

X =calrl (24)
In a similar way we can transform (22.c):
Coviiy|0y,y.0¢) = A~ (BBT-BBTR 1BBT) (A1) T -
= 2 lrr-eeTR 11BT(a 1T - &BRT(AL)T -
= ZR-ac AT a1 T = ZR(A7H) T-Fac, =
= ced"R7IR@TH TR, = ¢ -Eac, -
= c,-RATR tac, = ¢ -ErAT, (25)
which is also free of the inverse of A.

If the A's are not invertible one can show that (24) and (25)
still are the correct in law equivalent time-reversed forms:

6.2 Proposition

Under assumption A.5 the solution {it'at] of reverse-time system
(17) is equivalent in law w.r.t. the solution {x ,0,] of system
(16) if:

(i)  P{(Xp,8p)€dX} = Pl(xp,04)€AX}, all measurable AXCR"xM,

(ii) X(t,e,m) = Covix.le,=n} AT(e,m) R 1(t+1]6,m), (26.a)
B(e,n) =1, (26.b)
(iii) Pl3t=‘n|5t+1=6,it+1=xl = P(at=nl9t+1=9|.
-p (xle,mn) .p 1 (x|o).
Xee1lOpsq:0¢ Xep1l10p4q

(iv) (Ft} is a sequence of i.i.d. Gaussian variables of
conditional covariance:
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CoV{wt|6t+1.0t.Xt+1l =

_ _x xT
= Covix |6, }-A(t,0,,1,0 IR(t+1,0, 9,0 )A"(L,0,9.0), (27)
where R(t+1,6,n) satisfies (19).

Proof: Omitted. It can be obtained by a straightforward but
lengthy evaluation of the transition function of the
time-reversed Markov process.

It can easily be verified that even when A(6,n) and B(6,n} are
n-invariant, R(t+1let+1,9t) is in general conditionally
independent of 0 given Or41r and the time-reversed equations
have a second order dependence of [etl. If, however, X..q is
conditionally independent of 0 given 0r4+1 then it can easily be
verified that the in law equivalent time-reversed equations of
proposition 6.2 have a first order dependence of {6.}:

6.3 Corollary

If A.5 is satisfied and Xy is conditionally independent

of 6, given 6,1, then the solution {X.,6,} of reverse-time
system (17) is equivalent in law w.r.t. the solution {xt,etl of
gystem (16) if:

(1)  P{(Xp,8p)€dX} = P{(xq,6q)€AX}, all measurable dXCR"xM,

(11) A(t,0,m) = Covixgle,=nl AT(e,m) Cov lixy,jl0,,1=61,
Be,m) =1,

(1ii) P8 =n|8,1=0,K,1=X) = PO =n|6 =06}

(iv) {Wt) is a sequence of i.i.d. Gaussian variables of
conditional covariance:

C°V{"t|9t+1'°t'xt+1}

= Cov{xtIetl—x(t,9t+1,9t)Cov[xt+1|0t+1lKT(t,et+1,ot)

7 sSmoothing for a trajectory with manoeuvres

In this section we apply the time reversion results for a linear
system with Markovian switching coefficients (jump-linear

system) to a particular problem of Bayesian smoothing on a finite
time interval. As this smoothing works by way of time reversal,
we first introduce the system considered and derive its time-
reversed counterpart.
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Assume we are provided partial observations {ytl of {xt! on a
finite time interval, {0,T],

Yy = th + Gut,
with H=[1 0 0], G=100 and [utl a sequence of i.i.d. standard
Gaussian variables. The process {xtl satisfies system (16.a):

Xt+1 = A(6t+1:9t)xt + B(9t+1'°t)"t'
where (@ ], [wt) and [ut} are independent, {wtl is a sequence of
i.i.d. standard Gaussian variables and (et] switches between 0
and 1 with probabilities depending on the parameters, 7o and Ty
as follows:

P{e "1} = 1- P[OO—Ol = 71/(7'0+Tl)1

P[9t+1-1|9t—ol = 1/701

P{6y, 1=0]0 =1} = 1/74.

The process {xtl has three scalar components: position, velocity
and potential acceleration, while its initial distribution is,
for all CRY Gaussian of zero mean and covariance

Covixglog) = Diagl 1/¢2 , 1/¢ , 1},
with ¢ a small positive scalar, approaching 0.

The parameters of the above model are:
1 2

T 4T 1 7+ 0
A(1,1) = A(1,0) = [0 1 + | , A(0,0) = A(0,1) =0 1 o |,
0 0 1 0 0 «
B(1,1) = B(1,0) = [0 0 01T , B(0,0) = B(0,1) = [0 0 \J1-«2 T,

A
with a=vVe. The acceleration a; is defined by: a, = otx3 te
where x3 t represents the potential acceleration component of Xy

With «=0, the model above corresponds with the manoeuvre model of
section II.6. With ai0+, the model above is such that both the
prior distribution and the parameters of the time-reversed
equations can be determined explicitly by analysis.

In particular,

p ’
€10+ Xyyq10¢47/0¢ KpyqlOpy
while the latter is Gaussian, with covariance

0(1/¢2) 0(1/¢)  ©0(a)

Covixglegl = j0(1/€¢) ©(1/¢) () | all te[o,T],

O0(a) 0(a) 1
where lim O(a) = 0. Hence,
all
-1 o(e2) o0(e?) o(ac?)

ov [xtlotl = O(e 3. 0(¢) O(ae) |.

O(ae“) D{ae) 1+0(¢)
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From theorem 6.1 and some evaluation, the indistinguishable
time-reversed system becomes:

Yy = Hit + Gug,

%
ct
I

A(t.8t+1,6t)xt+1 + B(et+1'0t)wt’

with ﬁt white Gaussian noise and:

-~ -~ .1 -7 572
A(t,1,1) = X(t,1,0) = |0 1 -7 |,
0 0 1
-~ .1 -7 0
X(t,0,1) = X(t,0,0) = |0 1 o |,
Lo(e ) O(e) ot+O0(en)
B(1,1) = B(1,0) = [0 0 0}]T,
5(0,1) = 8(0,0) = [0 0 -\ 1-o2 /a1 T.

Consequently, it follows from (21) that

Coviiiy 10y,1=0.6,1 = 1-(1-a?) [1+0(e)]1 = a2 + O(€),
by which we arrive at the following in law equivalent time-
reversed system:

-~

Ry = K(t, 8,18 )% + BB 4.8 )W,, (28)
with w, white Gaussian noise and

Coviig] = [a?+0(e)] (1-a?) /a2 = 1+0(a?+e), (29)
while the density of iT is Gaussian of zero mean and covariance
2
)

- 0(1/¢ 0(1/¢) 0O(«x)
Covixploql = 0(1/¢ 0(1/¢) 0©(a)]. (30)
0(x) O(x) 1

With this, we substitute a=veé and take limit for €10, by which
several parameters of (28), (29) and (30) simplify:

Cov (ﬁt} =1,

~ -~ . 2
C 6ml = U O , Wwith U = lim 1/¢ 0(1/¢)| ,
ov BplOp [o ow2] €10 [O(l/e) 17¢ ]

~ -~ 1 -r O
A(t,0,1) = A(t,0,0) = {0 1 Of.
0 0 O

Finally, since 1lim p =p . from (iii) in
€10+ Xy q160p,9:0¢  KeyqlOpyg
corollary 6.3 it follows that
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CPIB =118 ,1=0} = 1/7g ,

P(8.=018,,=1} = 1/7; ,

P{5T=1‘ = 71/(71+70) -

Now that we have both a forward model and an equivalent in law
time-reversed model, we consider the problem of estimating {xt]
from the information field Yp. One approach of this so called
fixed-interval smoothing problem is to apply Bayesian filtering
of YT both in forward and in reverse-time direction,
independently from each other. The forward filtering assumes the
forward model, the reverse-time filter assumes the time-reversed
model. After that, the smoothed estimates can be obtained by a
merging of the forward and the reverse-time estimates according
to the following version of Bayes formula (e.g., Anderson and
Rhodes, 1983):

If p (x,i) = 0

Ferf (x,1i) (x,1)

x,i) p. X,
X, ,0, 1Y X, ,6.1Y

oy, Ko 1) = Lt t( — t'tt tt+1 . (31)

Xy, p x,i) Constan
trvel T
XpOy tlYT
else p (x,i) = 0,
XpeO¢l¥p

A
where Yt = [ys:se[t,T]l, and of course under the assumption that
the density-mass functions involved are non-singular.

With this and the above time reversion results we have a closed
form representation of the exact solution of the fixed interval
smoothing problem. Obviously, for practical application of this
closed form representation, we need algorithms to compute the
density-mass functions that appear at the right hand side of

(31). If we have an algorithm to compute p then that
xt'etIYt
algorithm can certainly be used to compute p 0. Moreover, in
X
t'vt
view of the above time reversion results, that algorithm can also
be used to compute p._

As is well known (Tugnhait, 1982), the exact computation of
p , from p and Y., involves the running of
Xe O Yy Kp_100¢-11¥¢g

at Kalman filters, which leads to a prohibitive computational
load. The only way out of this combinatorial explosion is to
accept approximations. Fortunately, for this type of filtering
there exist algorithms that compute very close approximations of

P . while using only a fixed number of Kalman filters. The
e 0¥y
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most efficient algorithm of these is the Interacting Multiple

Model (IMM) algorithm of chapter II. The IMM algorithm runs one

Kalman filter for each possible value of 6, (mode), evaluates the

conditional mode probabilities and mixes the estimates of all

these filters in a particular way. Depending of some particular
properties of the coefficients A and B, the latter mixing occurs
either at the beginning or at the end of each IMM filter cycle.

The mixing occurs at the beginning of each IMM filter cycle if

A(e,n) and B(e,n) are n-invariant. The mixing occurs at the end

of each IMM filter cycle, if A(6,n) and B(e,n) are é-invariant

(see remark 2 in section II.4). In view of the above, the

application of the IMM approach to smoothing our particular

trajectory with manoeuvres implies the following procedure:

- Application, in forward time direction, of a common IMM
algorithm (section II.6) with two Kalman filters and matched to
the parameters ro,rl,A,B,H and G,

- Application, in reverse-time direction, of a similar IMM
algorithm with mixing at the end of each cycle and matched to

the parameters ro,fl,i,B,H and G,

- Determination of the parameters of the prior distribution,

- Appropriate merging of the prior distribution and the filtered
estimates computed by the forward and the reverse-time applied
IMM algorithms.

For short, we refer to this procedure as the IMM smoothing

algorithm or the IMM smoother.

The performance of this IMM smoother has been evaluated and
compared to the performance of the optimal linear smoother for
the process {x.]}, i.e. a Kalman smoother (Sidhu and Desai, 1976).
The details of the linear Gaussian model underlying the Kalman
smoother are given in section II.6. In view of the lack of
analytical tools for these performance evaluations, we had to
rely on Monte Carlo simulations. During these Monte Carlo
simulations, the parameters of the underlying models are assumed
to be: 7=10, 74=10, 11=1000, ow=1, au=100. Both the parameters of
the IMM smoother and the optimal linear (Kalman) smoother were
set according to these parameters. To show the transient
behaviour of the smoothers, a fixed tra%ectory has been
simulated, with T=100 and xo=[0 1000 0]', while the acceleration
was piecewise constant: zero on the intervals [0,29], 1 on the
interval [30,70) and again zero on [71,100]. During the Monte
carlo simulations we measured the RMS of the smoothing errors in
position, speed and acceleration, the results of which are given
by solid lines in figures 1 through 6. Moreover, we measured the

average value (RMS) of the covariances that were estimated by the
smoothers. The dashed lines in figures 1 through 6 represent the

diagonal elements of these Rﬁs values.



66 Chapter III. Time-reversal with application to smoothing

3004~

POSITION ERROR

+

1004

Fig. 1 Measured and expected RMS of the position errors of the IMM smoother;
= measured RMS, =---- = expected RMS (RMS)
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Fig. 2 Measured and expected RMS of the position errors of the Kalman smoother;
= measured RMS, —==-- = expected RMS (RMS)
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Fig. 4 Measured and expected RMS of the speed errors of the Kalman smoother;
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Fig. 5 Measured and expected RMS of the acceleration errors of the IMM smoother;
= measured RMS, —=—-- = expected RMS (RMS)
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smoother estimated probability of acceleration.

The figures clearly indicate that the IMM smoother outperforms
the Kalman smoother in all aspects: significantly more accurate
during constant acceleration, significantly smaller errors around
acceleration discontinuities, and significantly more reliable
estimates of its own RMS errors. These performance improvements
come at the cost of about a doubling of the computational load,
which is a remarkably small increase for the size of performance
improvements obtained. Moreover, the IMM smoother provides very
reliable conditional probabilities of either being in the
non-accelerating or the accelerating mode (see fig. 7).

From the above, it may be expected that IMM smoothing is a
serious competitor of other fixed-interval smoothing algorithms.
This leads immediately to the question if and how the smoothing
approach presented can be extended to fixed-lag smoothing
(Mathews and Tugnait, 1983). Obviously, the study of these
interesting questions falls beyond the scope of the present
thesis. For now we conclude that the smoothing results obtained
form a good illustration of the practical use of the time-
reversion results developed.



70 Chapter III. Time-reversal with application to smoothing

8 References

B.D.O. Anderson, Reverse time diffusion equation models,
Stochastic Processes and their Applications, Vol. 12 (1982),
pp. 313-326.

B.D.O. Anderson, I.B. Rhodes, Smoothing algorithmg for nonlinear
finite-dimensional systems, Stochastics, Vol. 9, 1983, pp.
139-165.

J. Azéma, Théorie générale des processus et retournement du
temps, Ann. Sci. Ecole Norm. Sup., Vol. 4 (1973), pp. 459-519.

A. Bagchi, Nonlinear smoothing algorithms using white noise
model, Stochastics, Vol. 17 (1986), pp. 289-312.

H.A.P. Blom, Overlooked potential of systems with Markovian
switching coefficients, Proc. 25th IEEE Conf. on Decision and
Control, December 1986, Athens, Greece, pp. 1758-1764.

H.A.P. Blom, Y. Bar-Shalom, Time-reversion of a hybrid state
stochastic difference system, Proc. IEEE Int. Conf. on Control
and Applications, ICCON89, April 1989, WP-5-2.

D.A. Castanon, Reverse-time diffusion processes, IEEE Tr.
Information Theory, Vol. 28 (1982), pp. 953-956.

K.L. Chung and J.B. Walsh, To reverse a Markov process, Acta
Math., Vol. 123 (1969), pp. 225-251.

E.B. Dynkin, Duality for Markov processes, Eds: A. Friedman, M.
Pinsky, Stochastic Analysis, Academic Press, 1978, pp. 63-77.

R.J. Elliott, Stochastic calculus and applications, Springer,
1982.

R.J. Elliott, Reverse-time Markov processes, IEEE Tr. Information
Theory, Vol 32 (1986a), pp.290-292.

R.J. Elliott, Reverse time smoothing for point process
observations, Eds: N. Christopeit et al., Proc. of 3rd Bad
Honnef Conf. '85, Springer, 1986, pp. 151-158.

R.J. Elliott, B.D.O. Anderson, Reverse time diffusions,
Stochastic Processes and their Applications, Vol. 19 (1985),
pp. 327-339.

J.I. Galdos, A rate distortion theory lower bound on desired
function filtering error, IEEE Tr. Information Theory, Vol. 27
(1981), pp. 366-368.

H. Hasegawa, On the construction of a time-reversed Markov
process, Progress Theoretical Physics (Japan), Vol. 55 (1976),
pPp. 90-105.

U.G. Haussmann and E. Pardoux, Time-reversal of diffusions,
Annals of Probability, Vol. 14 (1986), pp. 1188-1205.

J. Jacod, P. Protter, Time reversal on Lévy processes, Annals of
Probability, Vol. 16 (1988), pp. 620-641.

J. Jacod, A.N. Shiryaev, Limit theorems for stochastic processes,
Springer, 1987.

F.P. Kelly, Reversibility and stochastic networks, Wiley
Interscience, 1979.

P.R. Kumar, P. Varaiyva, Stochastic systems, Prentice Hall, 1986.



Chapter III. Time-reversal with application to smoothing 71

H. Kunita and T. Watanabe, On certain reversed processes and
their application to potential theory and boundary theory, J.
Math. Mech., Vol. 15 (1966), pp. 393-434.

D.G. Lainiotis, General backwards Markov models, IEEE Tr.
Automatic Control, Vol. 21 (1976), pp. 595-599.

L. Ljung, T. Kailath, Backwards Markovian models for second order
stochastic processes, IEEE Tr. Information Theory, Vol. 22
(1976), pp. 488-491.

V.J. Mathews, J.K. Tugnait, Detection and estimation with fixed
lag for abruptly changing systems, IEEE Tr. AES, Vol. 19
(1983), pp. 730-739.

A. Millet, D. Nualart, M. Sanz, Integration by parts and time
reversal for diffusion processes, The Annals of Probability,
Vol. 17 (1989), pp. 208-238.

M. Nagasawa, Time reversion of Markov processes, Nagoya Math. J,
Vol. 24 (1964), pp. 177-204.

E. Pardoux, Smoothing of a diffusion process conditioned at a
final time. Lecture notes in Control Inform. Sci., Vol. 43,
Springer, 1983, pp. 187-196.

E. Pardoux, Time reversal of diffusion processes and nonlinear
smoothing, Eds: A. Bagchi, H.T. Jongen, Systems and
optimization, Springer, 1985, pp. 171-181.

E. Pardoux, Grossissement d'une filtration et retournement du
temps d'une diffusion, Eds: J. Azéma, M. Yor, Séminaire de
probabilités XX, Springer, 1986, pp. 48-55.

J. Picard, Une classe de processus stable par retournement du
temps, Séminaire de Probabilités XX, Lecture notes in
mathematics, Vol. 1204, Springer, 1986, pp. 56-67.

P. Protter, Reversing Gaussian semimartingales without Gauss,
Stochastics, Vol. 20 (1987), pp. 39-49.

G.S. Sidhu, U.B. Desai, New smoothing algorithms based on
reversed-time lumped models, IEEE Tr. on Automatic Control,
Vol. 21 (1976), pp. 538-541.

R.L. Stratonovich, Conditional Markov processes, Theory Prob.
Appl., Vol. 5 (1960), pp. 156-178.

J.K. Tugnait, Detection and estimation for abruptly changing
systems, Automatica, Vol. 18 (1982), pp. 607-615.

G. Verghege, T. Kailath, A further note on backwards Markovian
models, IEEE Tr. Information Th., Vol. 25 (1979), pp. 121-124.

R.B. Washburn, T.G. Allen, D. Teneketzis, Performance analysis
for hybrid state estimation problems, Report TR-266, Alphatech
Inc., Burlington, October 1985.

A.D. Wentzell, A course in the theory of stochastic processes,
Mc. Graw-Hill, New York, 1981.

D. Williams, Diffusions, Markov processes and martingales, Vol.
1: Foundations, Wiley, Chichester, 1979.

R.J. Williams, On time reversal of reflected Brownian motions,
Eds: E. ¢inlar et al., Seminar on stochastic processes,
Birkhauser, 1987, pp. 265-276.



72




73

Chapter IV

CONTINUOUS-TIME HYBRID STATE MARKOV PROCESSES

1 Introduction

Because many of the stochastic processes that we meet in nature
have a state space that is the product of a Euclidean space and a
discrete set, we often need pathwise models on such a hybrid
state space. As a result, several classes of hybrid state space
models have been developed, such as diffusions with Markovian
switching parameters, doubly stochastic counting processes and
Markov decision drift processes. These models are used in quite
different fields of applications, because of which their studies
have often evolved separately. An important reason to study
hybrid state space processes within a common framework is that
their martingale parts are in general discontinuocus. This
property has attracted a lot of attention, and is by now very
well documented (Jacod, 1979; Cinlar et al., 1980; Bremaud, 1981;
Elliott, 1982; Bensoussan and Lions, 1984; Ethier and Kurte,
1986; Jacod and Shiryaev, 1987). It is qguite clear from these
results that, to study hybrid state Markov processes along the
same lines as diffusions, we need pathwise representations of
those processes. Unfortunately, for hybrid state Markov processes
there is presently a lacuna of pathwise representations. To show
this lacuna we depict the main classes of hybrid state Markov
processes in a Venn-diagram.

-

- Hybnd S
, State .

/) Counting Diffusions \
: Hoqi?es with \
wi Markovian ;
\ Diffusion Switching )
\ Intensity Piecewise Parameters ’
\ Deterministic )
N ~ Mar kov ’

Processes

Fig. 1 Main classes of hybrid state Markov processes
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There exist pathwise representations of counting processes with
diffusion intensity (Snyder, 1975; Marcus, 1978), of diffusions
with Markovian switching parameters (Wonham, 1970; Brockett and
Blankenship, 1977) and of Piecewise Deterministic (PD) Markov
processes (Davis, 1984). For many other Markov processes in
figure 1, no such pathwise representations exist (Kingman, 1975;
Anulova, 1979, 1982; C¢inlar and Jacod, 1981; Bensoussan and
Lions, 1984; Belbas and Lenhart, 1986).

Actually, PD Markov processes geem the most interesting of all
processes in figure 1, as they cover all major non-diffusion
Markov processes; PD Markov processes exclude diffusion, but
include a random switching intensity, a jump reflecting boundary
and hybrid jumps. With the latter we mean jumps of the
Euclidean-valued process component that anticipate a simultaneous
switching of the discrete valued process component. As such, PD
Markov processes provide a framework to study Markov decision
drift processes (Hordijk and Van der Duyn Schouten, 1983;
Yushkevich, 1983; Van der Duyn Schouten, 1986) along the same
line as diffusions (Vermes, 1985). With this, an interesting
generalization is to extend the spectrum of hybrid state Markov
processes with Jump Diffusion (JD) Markov processes, by including
diffusion into PD Markov processes. As the present definition of
PD processes does not seem to have an opening left for that
inclusion (Davis, 1984), we need a different approach.

The approach that overcomes this difficulty, presented in the
sequel, is to assume a stochastic differential eguation (SDE) in
a hybrid space and to construct rather large classes of PD and JD
Markov processes from it. With respect to the state space we
restrict our attention to a hybrid subset of a Euclidean space.
Then the most general SDE is of Ité-Skorohod type (Métivier,
1982, pp. 240-272),

de, = a(E, )dt + B(E )dw, + 6 v(E_,u) pp(dt,du),

where [wt} is a Brownian motion, and Pp is a Poisson random
measure (defined in section 2) on (0,®)xU. The path of a solution
of this SDE is right continuous and has left hand limits:

E,_ = 1lim &€, _,.
t alp t-a

Further, if pPp generates a multivariate point (t,ut), then the
path of &€ has a discontinuity:
Et = Et_ + \"(Et_,ut).

In the sequel we extend the Ité-Skorohod equations to cover more
general Markov gemimartingales. Therefore we shall focus on
pathwise unique solutions. The classical result for the existence
of such solutions requires that ¥ is sufficiently continuous
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(Gihman and Skorohod, 1972), which restricts the SDE essentially
to systems with Markovian switching coefficients. However, there
are some non-classical pathwise uniqueness results that allow a
discontinuous ¥ (Lepeltier and Marchal, 1976; Jacod and Protter,
1982; Situ, 1985; Veretennikov, 1988). Taking these results as a
starting point, we introduce and evaluate a particular form for ¥
in section 3, which models a random jump rate.

Next, in section 4, we consider the hybrid state space situation.
The most interesting effect of the hybrid state space assumption
is that it leads to a particular type of jumps: jumps in the
continuous state component of {&.} that anticipate a simultaneous
switching of the discrete component of {Et}. This type of jumps
has been introduced by Gnedenko and Kovalenko (1968) for
piecewise linear processes and by Sworder (1972) for systems with
Markovian switching coefficients. For short we refer to these
anticipating simultaneous jumps as hybrid jumps. The SDE
framework of this paper provides an elegant way of representing
the hybrid jumps of PD Markov processes and their Jump Diffusion
generalizations. Section 5 concludes the results with SDE
representations for different types of linear systems with
switching coefficients.

Finally, we might put the guestion how to model a process with a
jump reflecting boundary as a solution of an SDE. Given a
boundary 20 of an open subset 0 of R", the problem is to
construct an SDE such that !Et} undergoes an instantaneous jump
into the interior of 0 if {Et} tries to cross or to travel
through 20. The simplest solution would be that the Poisson
random measure Ppp instantaneously generates a point each time
[Et) hits 20. However, this is not possible as a Poisson random
measure generates almost surely no point at such an arbitrary
time. To overcome this problem, we might think of adding to Pp
another random measure, which generates one point each time {E}
would otherwise cross or travel through 20. Although this
extension seems possible, it will not be treated in the sequel
since it falls outside the scope of our present study on Bayesian
estimation.

Some other interesting generalizations of PD Markov processes,
not considered in the sequel, are the inclusion of continuously
reflecting or sticky boundaries. The inclusion of a continuously
reflecting boundary, while preserving pathwise uniqueness, seems
possible if that boundary is smooth enough (Chaleyat-Maurel et
al., 1980; Menaldi and Robin, 1985; Frankowska, 1985; Saisho,
1987). The inclusion of a sticky boundary without loosing
pathwise uniqueness seems difficult if not impossible (Kingman,
1975; Anulova, 1979, 1982).
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2 Poisson random measure

Following Jacod and Shiryaev (1987), we introduce in this section
Poisson random measures and their integration. Throughout this
chapter we always work within a complete stochastic basis
(@,%,F,P,T), with T=R, and F right continuous (see Appendix A2).

2.1 Definition

Let U denote a finite dimensional Euclidean space.

A random measure p{(.;dt,du), or p(dt.,du)(.), on R,xU is a family
(p(w;dt,du); w€@) of nonnegative measures on B(R,)xB(U), such
that p(w;{0}1xU)=0 for all w.

Let 8 denote the o-algebra on Tx@ that is generated by all cadlag
adapted processes and let P denote the ¢-algebra on Tx@ that is
generated by all adapted left-continuous processes.

Let p be a random measure and let W(.) denote an €xB8(U)-
measurable mapping of xR xU into R, then we define the RU{w}-
valued integral process {[w*p]t] as follows:

(W*pl, () =[0,{]xu W(w,8,u) plw;ds,du),

if ! W(w,s8,u) (v;ds,du) < o,
o, f1xu'" | plo

= 4+ o ., otherwise.

A random measure is called optional if the process {[W*p]t} is
optional for every &x8(U)-measurable mapping W. A random measure
is called predictable if the process ([w*p]tl is predictable for
every Px8(U)-measurable mapping W.

A random measure is said to be Px8(U)-o-finite if there exists a
?x8 (V) -measurable partition (A;) of axR,xU, such that each
[lAi*p]m is integrable.

Jacod and Shiryaev (1987; J&S) prove a slightly more general
version of the following (J&S, Th. 1.8, p.66): Let p(w;dt,du) be
an optional ?x8(U)-measurable random measure. There exists a
predictable random measure, called the compensator of p (or
(dual) predictable compensator of p) and denoted by pP, which is
unique up to a P-null set, and which satisfies:

E([Ww*pP] ) = E([W*pl,)
for every nonnegative Px8(U)-measurable function W.

2.2 Definition

An integer-valued random measure is an optional Px8(U)-¢-finite
random measure p(w;dt,du) gatisfying:

- ple;l{tixU) £ 1, for every w,

=~ for each A€B(R,)xB(U), p(.;A) assumes values in NU{o}.
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2.3 Proposition
Let p(w;dt,du) be an integer-valued random measure.
The set D, defined by
D = {(uo,t); ple;itixu) = 1},
is a thin set (see appendix A2), and there exists an U-valued
optional process [u.l such that, for every o,

plw;.) = g 1D(w,5) G(S,us(u))(')'

where 3, denotes the Dirac measure at point « (i.e., a“(A)=1 for
all measurable A containing point «, while 5,(A)=0 otherwise).

Proof: See J&S, pp.68-69.

Hence, if (ri) is an exhausting sequence for the thin set D, the
integer-valued random measure p(w;.) admits the following
representation:

foid = . F .), for all o,
e (i:ri<m) (Ti(w),uTi(u))( or a @

and if W(.) is ExB(U)-measurable and nonnegative, the integral
expression for the integrated process {[w*p]t} reduces to:

(W*p]y (0) = (?) W(U,Ti(u).ufi(w)) 1 w).

(

Jacod and Shiryaev (1987) prove the following (Prop. 1.17, p.70):
If ple;dt,du) is an integer-valued random measure and pP its
compensator, pP admits a predictable version p', such that
p'(w;{tixU) £ 1 for all (w,t), while the set {(w,t);
p'(w;{tixU)>0 } is exhausted by a sequence of predictable times.

The intensity measure v (dt,du) of an integer-valued random
measure is defined by v (A) = E{p(.;A)}; v is said to be c¢-finite
if there exists a sequence of gets A; € B8(R,)e8(U), such that At
R, xU for increasing i, while v (A;)<= for every i.

Obviously, we are specially interested in integer-valued random
measures that are not predictable. This leads us to Poisson and
extended Poisson random measures.

2.4 Definition (J&S, p.70, Def.l.20a)

An extended Poisson random meagsure on R, xU, relative to the

filtration F, is an integer-valued random measure pf{w;dt,du)

which satisfies:

- its intensity measure v is ¢-finite,

- for every teR, and every A€g(t,=)xB8(U) such that v (A)<w, the
variable p(.;A)} is independent of the o-algebra ¥%,.
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The best known type of extended Poisson random measure is the
Poisson random measure.

2.5 Definition

A Poigson random measure is an extended Poisson random measure,
the intensity measure v of which satisfies v({t},U)=0, for all t.
A Poisson random measure is said to be homogeneous if its
intensity measure is of the form v (dt,du) = dt.m(du).

A Poisson random measure is the counting measure of a Poisson
point process (see Jacod and Shiryaev, p.71).

Next, from Jacod and Shiryaev (pp.104-106) we have some
characterizations of an extended Poisson random measure:

2.6 Proposition

An integer-valued random measure pP{w;.), with intensity measure
v(.) and compensator pP(w;.), is an extended Poisson random
measure if and only if v(.) is o-finite, v ({t}lxU) £ 1 for every
t, and pP(w;.) = v(.) for every o.

Moreover, if we associate to an extended Poisson random measure
pl(w;.) two new measures pF(u:.) and pP(u;.) as follows,

:de,d = ;dt,da 1 t),
pPplw;dt,dx) plw X) {8: v((s]xU) > 0 ‘( )

pplei.) = plw;.) - pple;.),

then pPp and pp are independent and pp is a Poisson random
measure.

Proof: See J&S, pp. 105-106.

3 The SDE of Lepeltier and Marchal

We assume a complete stochastic basis (8,%,F,P,R ), endowed with
an m-dimensional standard Wiener process, {w ]}, and a Poisson
random measure, pp(dt,du)(.) = pp(.;dt,du) on R,xU, with
intensity measure v (dt,du) = dt.m(du)}, and consider the following
stochastic differential equation (SDE) in R, xR",

dEt = a(tt)dt + B(Et)dwt + 6 W(Et_ru) Q(dt.du) +
+ J wl(E,_,u) ppldt,du) , 8]
Uy

where q is the martingale measure of Ppi i.e.

qg{dt,du) (.) = pp(dt,du)(.) - v(dt,du),
£g is an $g-measurable RM-valued random variable, while «, 8 and
¥ are measurable mappings of appropriate dimensions (with domains
R", RM™xR™ and R, respectively).
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Although, in the sequel, we are not really using the third right
hand term, we start from (1) to notice the main difference
between the roles played by the first and fourth right hand
terms. The set-~up commonly used is to partition U into Ul and Uz
and to assume conditions such that:

{ V(Es_,u)q(ds,du) } is a local martingale, while the process

I
Uy

t

Ot Otmet

6 v(Eg_,u) pplds,du) |} has finite variation over each finite

interval. The classical reference for an SDE of type (1) is
Gihman and Skorohod (1972), who considered the situation Uy, = 2.
Extensions of their results have been obtained by Lepeltier and
Marchal (1976) in their study of the relation between an integro-
differential operator and an SDE of type (1), with U1={u;|u|sll
and Uy={u;1<|uj<=}.

The partition we use in the sequel is:

U, = R"xR9, with R~

(—mlo) 2
U, = R, xR}, with R, = [0,®)
2 + ’ + . L4 .

Hence, the results of Lepeltier and Marchal can easily be
translated to our case bg introducing measurable mappings, of
{uerd*1; juj<1} into R xRY and of {uer%*l;1<|uj<w} into R+de, and
subsequently transforming m and ¥ correspondingly. Consequently,
the results of Lepeltier and Marchal can immediately be used
during our present study.

To that end we make the following assumptions:
A.1 There is a constant K such that, for all &€R",

late) 12+ N8I IZ + S g lv(g,u)|%m(du) < K(1+]€]2).
X

kg
N

For all KEN there exists a constant Lk such that,
for all & and y in the ball Bp={x€R";|x|sk+1],

latE)-aly) |2 + 18(E)-B(Y) |2 + ,
+ o-tea e W v (y,w | *n(au) < L le-yl2.

A'.3 m(R+de) < @,
A'.4 For every k€N there exists a constant My, such that

sup J |v(g,u)| m(du) < M,.
HEB R L k
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3.1 Proposition
Let A.1, A.2, A'.3 and A'.4 be satisfied and let U1=R—xlld and

Uy=R, XR". Then equation (1) has for every initial condition
Eo(u) = £ € R! a pathwise unique solution, {Etl. which is cadlag
and adapted. Moreover, there exists a measurable random function
f(t,&,0) such that Eg(.) = £(t,k,.) almost surely for every t.

Proof: See Lepeltier and Marchal (1976, Theorem I1T,, pp.84-85).

Remarks:

- With a pathwise unique solution we mean that if there is more
than one solution, those solutions are modifications of each
other.

- If the fourth right hand term of equation (1) vanishes, then it
is well known that A.1 and A.2 are sufficient conditions
(Gihman and Skorohod, 1972, pp. 273-275). Lepeltier and
Marchal show that adding the fourth right hand term does not
change the existence of a pathwise unigue solution, under A'.3
and A'.4.

- Recently the result in proposition 3.1 has been extended to the
situation that B8 is not Lipschitzian (Kleptsyna, 1984; Situ,
1986; Veretennikov, 1988).

— The existence of an in law unique solution has been shown to
hold true under more general non-Lipschitz conditions (Komatsu,
1984a,b; Negoro and Tsuchiya, 1989).

The interesting aspect of proposition 3.1 is that the
coefficients of the fourth right hand term of (1) may be
discontinuous in €. This is exactly what we need to construct a
class of hybrid state Markov processes that is larger than the
class of solutions of systems with Markovian switching
coefficients. The first step towards this congtruction is using
an idea of Jacod and Protter (1982; Protter, 1983), by assuming

m(du) = dujxu(du), on [-c,CI1xR",

=0, else,

for some pair (c,C) of values in R,, and replacing ¥(&,u) by
v'({E,u);

v'(gE,u) = v(&,u) 1[—C,A(E)] ](\11),

where A is a measurable mapping of R" into R,, while v is a
measurable mapping of R™xR? into R® and « is a probability
measure {(underlining of the vector u refers to all, except the
first components of u).

From now on, we restrict our attention to the situation that c=0.
With this, the replacement of v by ¥' in (1) yields the following
SDE:
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ag, = a(Et)dt + B(E)dw, +

+ I ' 1 (at,du). 2
Ted viEe_,u) (uy) pPp u) (2)

R, [0,A(E )]

Next, we introduce the following assumptions:
A.3 A(E) is twice continuously differentiable in &.

A.4 For all KEN there exists a constant My, such that

sup  J4 |w(E,u)| w(du) < M.
[g]<k RY ' l k

A.5 There is a constant C such that A(g) < C, for every E.

3.2 Corollary

Let a and B8 satisfy A.1 and A.2, while ¢y and A satisfy A.3, A.4
and A.5. Then for every initial condition £45(w)=t, equation (2)
has a pathwise unique solution, [Et}, which is cadlag and
adapted. Moreover, there exists a measurable random function
f(t,%,0) such that & .(.) = f(t,&,.) almost surely for every t.

Proof:
Oon defining the mapping X(E,ul) by

' x(E,ul) = I[O,A(E)](“l)' for every & and every u,, the third
right hand term of (2) can be replaced by

J v(E,_,u) x{(E._,uq) {dt,du),
R+de t—12 t-+41) Pp

which implies that (2) is an equation of type (1). Due to A.3,
x(&,u;) is measurable in (&,u,). Hence A.3, A.4 and A.5 imply
that the conditions of proposition 3.1 are satisfied. Q.E.D.

Next, we give a semimartingale characterization of the solution
{E ] of equation (2).

3.3 Theorem

Let the assumptions of corollary 3.2 hold true. Then for all
EOERn, {Et} is a semimartingale Markov process, and its extended
generator, 4, is given by:

4f = 2f + 9f , for all £ € D(4) D C2(rRM), (3)
where
n n T
2f(g) = Z ai(E)f (e)+%, Z [B(€)B(E) ]ijf (k). (4)
i=1 €y i,j=1 EiEy
gf(€) = A(E)Rnf{ollf(t)-f(t)] S(e;dr), (5)

and for all Borel ACR®-(0},
S(EA) = fg Lp(ewv(E,m) kidw). (6)
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Proof:

The existence of a measurable f in Corollary 3.2 implies the
Markov property.

Due to A.3 and A.4, the predictable part fayl of {g,} satisfies

t t
ag = 6 a(Eg)ds + 6 AlEg ) &d v(eg_,u) u(dulds ,

up to indistinguishability. Obviously, [at} is of finite
variation on any finite time interval, while {Et—at—zol is a
local martingale (see Appendix A.4). Hence, te ) is a
gsemimartingale (see Appendix A.5), by which the extended
generator 4 follows from Ité's differentiation rule for
discontinuous semimartingales. Q.E.D.

Now we are prepared to consider the hybrid state space situation.

4 The hybrid state space situation

In this section we explicitly consider the hybrid state space
situation for a system of the form (2). The main objective of
this section is to show that the last term of (2) generates a
particular type of jump: a jump in [gtl that anticipates a
simultaneous switching of {Elt}. For short we refer to this type
of jump as hybrid jump. Notice that such a hybrid jump is in some
sense unexpected, as all coefficients of (2) are non-anticipating.

Before showing this, we rewrite (2) as follows:
dzt = a(Et)dt + B(Et)dwt + éd W(Et_,g) pI(dt,R+xdg), (7.a)

with Py the integer-valued random measure

(dt,A) = 1 1
P1 P =4 [0,A(E._)]

for every A € 8(U).

(ul) pp(dt.du). (7.b)

To consider the hybrid state space situation, we assume that the
first component of £y is M-valued, with M={1,2,..,N}, by which we
can write the first scalar equation of (7.a) as follows:

1 _
de”y = {d v, _,u) pr(dt,du), (8)

with ¥, a mapping of R?xrY into z = (.,-2,-1,0,1,2,.]).
Further, we assume that ¥ satisfies

v(E,u) = o(n,E,u) (9)

niu (Zq_1(€) ., 2y (E)]

n
with: 2“(5) z p(i'E)l for ﬂez:
i=0
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u(du) 2 #q (Quq)p(de),
where ul(.) is a uniform distribution on [0,1], ¢ is a measurable
mapping of MxRPxR' “1 jnto Zan_l, and p is a measurable mapping
of NxR" into R,, such that
e(i,.)=0, iEN/M,

2 p(i,E) = 1.
ieN

Moreover, we assume that for all neM, &€zxR" 1 and «er971,

"4’1(“:5:&) = 71'51 ' (10)

which, together with (9) and p(i,.)=0 for all i€N/M, implies that
if glg(w)eM, then &l (o)€M, for all t. Substitution of (9) and
(10) into (7.a) yields:

1 _ el d
1 3 -néu(n €7y_) Py, y(dt R xRT), (1i1.a)
dg, = ol )dt + g(e )dw, + Z [,y 4 e(n,E _,u) P (dt, R xRxdu)
oot ST T pey gdtl S e LD (11§
with, for all AeB8 (U},

pI'n(dt,A) = 1 (wl)pI(dt,du), (11.c)

!
» (Zy_q (Eg_) /By (e )]

pr(dt,a) = [ (up)pp(dt,du). (11.4)

A [0,A(E )]
Next, we introduce the following assumptions:
B.1 There is a constant K such that, for all teMxr? 1,

lofE) 12 + 18(E) 12 < K(1+]E]2).

B.2 For all KEN there exists a constant L, such that,
for all & and y in the set {xeMxR?1; x| <k+11,
la(E)~aly) |2 + UB(E)-B(y) 2 < Lyje-y]2.

B.3 A(E) is twice continuously differentiable in k.

B.4 For all kEN there exists a constant M, such that

sup T po(n,E) [In-E + f4q_ e(n, E,u)| p(de)] < M.
|E|Sk nEM In"€1l + fa-1 | & k
B.5 There is a constant C such that A(§) < C, for every E.

B.6 p(..E) is twice continuously differentiable in k.
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4.1 Corollary
A

Given the hybrid space O = uan_l. Under assumptions B.1 through
B.6, the system of equations (1l.a,b,c,d) has for any Eo(u)=EEO a
pathwise unique solution lztl, which is cadlag adapted. Moreover

[Etl is then a semimartingale Markov process in R xO.

Proof:

Due to B.6, (9) defines ¢ as a measurable mapping (see proof of
corollary 3.2). Hence, (11) is a special case of (7.a,b), and it
remains to be shown that A.1-A.5 are satisfied. For A.1, A.2,
A.3 and A.5 this is obvious, and we only have to show that B.4
implies A.4. Therefore, we subsequently substitute (10) in B.4,
interchange order of integration and substitute (9):

z (n,&) il - E, d =
nEy PE) DIN-ELl L et | a(da) ]

= Iy P g leLEw | aldw

=z J 1 (eq)d Ja_ em,e,u)| p(da)=
neM R (Z,_q(6),z,(6)] 11 gd-l I e aldy

~

I - z 1 (‘b) (0(71,5. )I d E(d‘ﬁ)=
R RIL néw "z, (e),z, (60 Y T

= éd |v(E,u) | u(de) ,

which implies that B.4 = A.4. Q.E.D.

To make the hybrid jumps more explicit, we notice that due to the
definition of Py, n-

pI’n({tl,R+de) € {0,1}, any neM,

L py; o((t},R,xR9) = 1.
neM 1.7 +

This means that (11.b) can be simplified to:

dg_t = E(Et)dt + -B—(Et)dwt + l{d_lg(ﬁlt.Et_,g) pI(dt:R.',XRXdE)r (12)

By taking a closer look at (12), we notice the interesting aspect
that Elt appears in the coefficient of (12)'s third right hand
term. This means that this coefficient anticipates a switching
from Elt_ to Elt, and thus a iump of [gt} anticipates a
simultaneous transition of {& i i.e. (€. ] has hybrid jumps.
Since there is no anticipating coefficient in equation (11.b),
and the solutions of equations (11.b) and (12) are
indistinguishable, we conclude that (11.b) forms a kind of
canonical representation of a system with hybrid jumps. However,
(12) is the representation that is more useful when it comes to
the practical realization of Markov models with hybrid jumps.
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5 Linear systems with switching coefficients

For »=0, system (12) has had a lot of attention in the past,
mainly in the case that [Elt} is a Markov process and that Ee is
conditionally Gaussian given the o-algebra generated by {Els;sst}.
It would be interesting to study (12) under similar conditions
when ¢#0. For this, the differentials in (12) should be linear in
(§¢,dwW¢,e) . In addition, for conditionally Gaussian g, the

mapping (6, (6,. ),u) should vanish for all 6. For Markovian {Elt},
the intensity A(kE).p(6,E) should be g-invariant for all (9751).

To introduce similar conditions when ¢#0, we rewrite (12) as
follows:

dE_t = Q(Et)dt + Q(Et)dwt +
1 1
* Talq elel e w1 (aglt) py(dat,R,xRxde). (13)

Next, we introduce the following assumptions:
Ll ale) =a el + a el B(e) = B(eD),

v(6,5,u) = Colo,8h) + c to,8)E + c (0,8)u.

L2 A(E).p(6,t) is g-invariant and bounded.
L3 op(0,(0,8))=0 for all (6,E).
L2' A(6,§).p(6,(0,8)) is E-invariant and bounded.

|y

3' p(6.,(6,E)) = 0 for all (6,E) € a0.

5.1 Definition

System (13) is called a linear system with randomly switching
coefficients if L1, L2' and L3' hold true.

5.2 Definition

system (13) is called a gystem with Markovian switching
coefficients if L2 holds true. ’

5.3 Corollary
system (13) is called a linear system with Markovian switching

coefficients if L1 and L2 hold true.
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5.4 Definition

System {(13) is called a linear Gaussian system with randomly
switching coefficjents if Ll and L3 hold true and g is Gaussian.

5.5 Corollary

System (13) is called a linear Gaussian system with Markovian
switching coefficients if L1, L2 and L3 hold true and g is
Gaussian.

The classical sense definitions of linear systems with randomly
switching coefficients assume, in addition to L1, that Ci(e,n)=0
for all é=n, i=0,1,2 (see Brockett and Blankenship, 1977). Hence
the classical sense definitions exclude hybrid jumps. Although
scarce, there are some applications reported with hybrid jumps:
sworder (1972), Blom (1984), Mariton (1987).

A very interesting subclass of systems with randomly switching
coefficients are those with semi-Markovian switching
coefficients. To represent them by SDE's, we assume that

E = Col{gH t'iL tl and that A and p are invariant w.r.t. gL t-
Moreover, we assume that during each jump, {EH t] starts
independent of the past; i.e. [wH(n £, w)+EH] is g-invariant, say
f(n,e). The above implies that [gH ¢} and {EL t! are pathwise
unique solutions of:

dgﬂlt = gH(Et)dt + Q_H(Et)dwt +

+ T4y [£(ely,u)-€y (] pr(dt,R,xRxde), (14.a)

1
+ éd_l ZL(E t'tt—'&) pI(dt,R,',XRXdE)- (14.b)

Now we introduce the following assumptions:
81 ay(E), By(€) and A(&)e (6, k) are §;-invariant,

82 op (&), B; () and e, (6,€E,u) are gy-invariant,

5.6 Definition
Let {gy .} satisfy (14.a). System (14.b) is called a system with
semi-Markovian switching coefficients if S1 and 82 hold true.

5.7 Corollary
Let {&y .} satisfy (14.a). System (14.b) is a linear system with

semi-Markovian switching coefficients iff @r,.8; and ¢, satisfy L1
and S1 and S2 hold true,
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5.8 Corollary

Let {EH t‘ satisfy (14.a). System (14.b) is a linear Gaussian
system with semi-Markovian switching coefficients iff ap By, and
¢, satisfy L1, »(6,6,£)=0 for all (6,%), « is Gaussian and
conditions 81 and S$2 hold true.
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Chapter V

FILTERING CONTINUOUS-TIME HYBRID STATE PROCESSES

1 Introduction

This chapter adresses the problem of evaluating the conditional
distribution of a hybrid state Markov process given a filtration
{ﬂytl generated by an observations process {ytl. The hybrid
Markov process has the components [xtl and {6.}, assuming values
in R® and M={1,..,Nl, respectively. Since a realization of such a
conditional distribution is a nonnegative measure on RUxM, its
numerical evaluation is in general not a simple problem. For an
exact numerical evaluation we need a finite-dimensional
sufficient statistic which characterizes the conditional
distribution uniquely. For practical filter applications, where
the dimension may not be "too large", the problem even is to
introduce a not "too large" statistic which characterizes the
conditional distribution either exactly or approximately. In the
sequel, we develop a low dimensional approximate Bayesian filter
for linear systems with Markovian switching coefficients. Before
starting with this development, we review the existing, exact and
approximate finite dimensional results.

For the evaluation of the conditional distribution of a hybrid
state Markov process two approaches exist: a classical approach
and a Bayesian approach. The classical approach evaluates all
possible paths of {es:sst} ~ 8, under the condition that there
are countably many such paths. For each path e,, the evaluation
characterizes the conditional distribution of x. given (et,syt)
and the conditional mass of e, given th' Next, the conditional
distribution W, = « of (x.,6,) given ﬂyt becomes:

y
X0l 3¢

(et_lye)- (1)

m(..6) = £ y (-1(eg_3.00) b
t t

This leads to a finite dimensional solution iff, for every t,
there are finitely many possible paths 6, and each conditional
distribution of Xy given ey is finite dimensional. Both
conditions are satisfied in the multiple model (MM) situation: N
is finite, {6} is continuous (no switching) and lxt,ytl is the
solution of a linear Gaussian system, the coefficients of which
are governed by {#.}. If (6]} is switching at random moments in
time, the possible paths of {ot} are not countable {(Fujishige and
Sawaragi, 1974), and the classical approach does not lead to a
finite dimensional solution.
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The Bayesgian approach consists of evaluating the conditional

distribution of the Markov state as an Hilbert space valued

solution of a closed system of stochastic differential

equations (SDE's). For the evaluation of an R™-valued diffusion,

the Bayesian approach has led to the identification of a large

class of problems admitting a finite dimensional sufficient

statistic. These are the "almostly linearizable" diffusions

(Zeitouni, 1984; Shukhman, 1985; Kolodziej and Mohler, 1986;

Haussmann and Pardoux, 1988) and processes that are immersible in

conditionally "almostly linarizable” diffusions, while no other

examples are known. "Almostly linearizable" diffusions consist of

combinations of the following situations:

~ Conditionally Gaussian systems (Liptser and Shiryaev, 1978),

-~ Almost linear Gaussian systems (Benes, 1981, 1985, 1987; Wong,
1983; Zeitouni and Bobrovsky, 1986),

- Linear Gaussian systems with non-Gaussian initial conditions
(Ocone, 1980; Makowski, 1982, 1986; Benes and Karatzas, 1983),

- Systems that are immersible in linear Gaussian systems (Wong,
1983; Lévine and Marino, 1986).

In the hybrid state situation, the Bayesian approach yields {ntl
as the solution of a Hilbert gpace valued stochastic differential
equation. Obviously, e admits the following decomposition:
o, (.,0) = u (.le)p (e), for every O0€M, (2)
t Y )4
xtlat,ﬂ t 015 ¢

which means that a realization of oy is the product of a counting
measure on M and Lebesque measures on R® (one for each 6€M).
Hence, the Bayesian approach leads to the evaluation of a
counting measure on M and N Lebesque measures on R?, which means
that the complexity of evaluating (nt) is time-invariant. The
solution of this evaluation is finite dimensional iff N is finite
and each of the N Lebesque measures admits a finite dimensional
parametrization. Examples of the latter are the "almostly
linearizable® MM case and the situation that {ytl consists of two
components, {yxtl and (yotl, while [xt,yxtl and {at,yet) are
independent and (xt,yxtl is immersible in a conditionally
"almostly linarizable" diffusion. Unfortunately, these are rather
degenerate hybrid state examples, while no other finite
dimensional examples are known. Furthermore, there even is
significant evidence (Roth and Loparo, 1986) that no other finite
dimensional hybrid state example exists.

In view of the lack of finite dimensional sufficient statistics
for the conditional distributions of non-trivial hybrid state
Markov processes, we have to accept finite dimensional
approximations of lntl. Inherent to the problem, any
approximatio® is a compromise between approximation "accuracy"
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and statistic "dimension”, while the best compromise depends of
the particular application. Since hybrid state Markov processes
appear so often in practice, several approximate Bayesian filters
have been developed in the past; mainly for linear Gaussian
systems with Markovian switching coefficients. The most common
approach is to approximate (et] by a process [e't} the random
switching of which only may happen at a finite number of discrete
moments on any finite time interval. This results in countably
many approximated paths and allows application of the clasgical
approach. As the number of possible paths grows in general
exponentially with time (Fujishige and Sawaragi, 1974), it is
common practice to truncate less likely paths heuristicly (Au et
al., 1978, 1982; Loparo et al., 1984, 1986). For a reasonable
approximation of the conditional distribution, many (>>N) paths
often need be evaluated. Even if the switching rate of (et]
approaches arbitrarily close to zero, the number of paths to be
evaluated does not approach to N (Marcus and Westwood, 1984).

With the help of the general MMSE (minimum mean square error)
filter theory for semimartingales, some low dimensional MMSE
filters have been developed (Davis, 1975; Bjork, 1980, 1982;
Krishnan, 1981). For linear systems with Markovian switching
coefficients, Bjork (1980) identifies some problems admitting a
low dimensional sufficient statistic w.r.t. MMSE filtering, while
the conditional distribution admits not a finite dimensional
sufficient statistic. In a subsequent study, these results are
extended to some nonlinear system situations (Bjork, 1982). The
filters of Bjork all have in common that the observation process
ly,] is independent of (otl, which is a rather degenerate hybrid
state space situation. In an early paper, Davis (1975) developed
a heuristic approximation to the optimal detection of a failuring
drift coefficient in a linear Gaussian system. The result is a
modified type of MM filter. Since this filter can not be applied
if the failure switches the diffusion coefficient only, Krishnan
(1981) developed another approximate filter (of "significantly
higher dimension"). Of all these filters it is unclear whether
they might be represented as approximate Bayesian filters.

Presently, the spectrum of exact and approximate Bayesian filters
lacks one of "low dimensionality". Therefore, we develop such a
filter in the sequel. In order of Kkeeping the presentation self
contained, we first give an overview of the main body of filter
theory. First, in section 2, we present the fundamental filtering
theorem. Next, in section 3, we develop SDE's for the conditional
distribution of a Markov process. To support practical implement-
ation, in addition to the commonly used Itdé characterizations, we
present a Wiener characterization. Subsequently, in section 4, we
develop our low dimensional approximate Bayesian filter for linear
systems with Markovian switching coefficients, and mention the
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relation with the filters of Bjérk and Davis. Finally, in section
5, we develop the associated continuous-discrete filter equations.

2 Fundamental filtering theorem

In this section, we develop the fundamental filtering theorem
under quite general conditions. Therefore we assume to work on

a complete stochastic basis (n,ﬂ,F,P,R+) with a right continuous
filtration F. We consider a pair of adapted processes {xtl and
{yg), with (%} real valued and {y.} R™-valued, which are
pathwise unique solutions of the following equations:

Xy = Xg + agds + mg, (3)

Yy = Yo + J bgds + w,, (4)

both up to indistinguishability, with {at} and {btl progressive
finite-valued processes, {mtl and lwt) local martingales with a
predictable quadratic covariation

. t ,
MW = ! zi, ds, i€(1,m], (5)

up to indistinguishability, while {x¢l is progressive.
The problem we consider is to develop a differential equation,

the pathwise unique solution of which is {xtl:
-~ A v
Xy = E(x |97},

up to indistinguishability. In the sequel, this will be done
under the following assumptions:

A.1l (bt} is P-integrable.

A.2 {w ] is an m-dimensional standard Wiener process.
A.3 (x.] and fa l are P-integrable.

A.4 (X ] is P-integrable.

A.5 [xtbtl is P-integrable.

2.1 Theorem (fundamental filtering)
Let assumptions A.l1 through A.5 hold true and let FV=FY. Then

-~ -~ t - t - PPN

e = Xg + fagds + [ [hg + Elxgbyls¥g) - xgbg1Tav,, (6)
t ~

Ve =Yg - 6 bg ds, (7)

both up to indistinguishability, with T denoting transpose.
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Remark: There are three approaches in deriving the fundamental
filtering theorem: an abstract Bayesian approach, an innovations
approach and a change of measure approach (Liptser and Shiryaev,
1977; Kallianpur, 1980; Elliott, 1982; Davis, 1984; Wong and
Hajek, 1985; Rogers and Williams, 1987). Although the most
general results have been obtained by the change of measure
approach (Davis and Marcus, 1981; Kunita, 1982; Mitter, 1982:
Pardoux, 1982), we prefer to follow the intuitively more
appealing innovations approach. Unfortunately, the innovations
approach has largely been based on Kailath's conjecture that
there are mild conditions under which FY=FY, while the validity
of this conjecture has been proven under rather restrictive
conditions only; see Krylov (1979), Allinger and Mitter (1981),
Toronjadze (1986) and Situ (1987).

Proof:
First we show that (vt] is a Brownian motion. For every tzs

- Y = -
E[vt vs|5 sl = E{ Wy w

t
- - Y Y ) -
o = 1 IbyEiby|sYy) au | $¥,) -

= El we-wg | Y.} =0,
which implies that {vt—vol.is a local wide sense FY-martingale.

t
Due to A.2, {wt] is continuous. Due to A.1l, {6 [bs-E[bslgysl]dsl

is continuous. Hence, {vt) is continuous and thus a local
FYTmaptingale. Next, application of Ité's differentiation rule to
{vi vl _} and (3) yields:
RN igd i gvl iy

dav tVie = [ v t_dv LtV t_dv t jdt + A<W- W e
Hence, . . )

acvt, vl = awt,why =145, at,
thus {vtl is an m-dimensional standard Brownian motion.

Next, we define a process lnt} as follows:

~ t -~ -
ng = X¢ - 6 ag ds, (with n0=x0) (8)
up to indistinguishability. Hence, {nt] is cadlag, FY-adapted and

v - - t - v
E[nt—nslg s’ = E{xt - Rg - é a, du | % sl =
t v
= Elxy - xg - é a, du |37} =
= - v =
= E[mt ms|9 S’ = 01

which implies that [nt—no} is a local FV-martingale. But then,
the martingale representation theorem (See appendix A.3) yields:
There exists an FY-predictable process lht}, such that

~ t T
nt = xo +6h8 dvs,
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t
up to indistinguishability, while {6 hsThS ds}l is locally

integrable. Hence,

Xg = Xg + 6 ag ds + 6 hs dvs. (9)
The remaining task is to characterize [ht]'
Application of Ité's differentiation rule to {xtyt} yields

t
XeVe = Xg¥g + 6 xs(bsds+dws) + ys(asds+dms) + Agds,
up to indistinguishability. In view of this, we define {ft} as
~ t - -
fe = Xeve - [ [Elxgb I8V} + ygag + 2] ds,

up to indistinguishabiltity.
Hence, {f,} is cadlag, FY-adapted and
v =
E{f - 13V} =
- > t v > T v
Elxyyy - Xgvg - é [Etxyby1#7 1 + yya, + A, ldu |8Y) =

t
= Bl XYy - Xgvg - g [xyb, + yya, + 2,] du lsvsl =

=E{

W St

xu(budu+dwu) + yu(audu+dmu) + Ay du +

- v =
[xyby + Y a, + Ayl du |# gl

t
E{ J x,aw, + y dm |3Vs] = 0.
s .

But this implies: {f -f,;] is a local FY-martingale and (X, v} is
an Fv—semimartingale, with decomposition

et-

Otnet |l

[Elxgbg I3V ) + ygag + 2 lds, (11)

both up to indistinguishability. Because {e,} is continuous, fe.}

is FY-predictable, and (;tyt’ is special, with (10) its canonical
martingale decomposition. To obtain another characterization of

(étl, we next apply Ité's differentiation rule to [xtytl;

~ -~ t - -
XYy = Xg¥g + I xsdys + stxs + hsds =

(=]

-~ tl\ -~ ~
= Xg¥q + 6 xs(bs ds+dvs) + ys(asda+hsT dvs) + hsds'

up to indistinguishability. Hence, comparison with (10) yields
t -
e = é [x_b_ + Ygag + hs]ds, (12)

up to indistinguishability. Comparison of (11) with (12) yields
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t o~ A t n
- A4
6 [xsbg + hglds = 6 [Elxgbg | 51 + A lds,

and since (h.} is FV-predictable,

hy = &hy + LElxyb |3V ] - £IXeby],
up to indistinguishability. This and (9) yields (6). Q.E.D.

If the P-integrability conditions in A.1 through A.5 are replaced
by local integrability conditions, then it can be verified that
the fundamental filtering theorem holds true on a finite interval
[0,T]). For extensions of the fundamental filtering theorem to
point process observations see Van Schuppen (1979), Wong and
Hajek (1985) and Cohen (1988).

3 Evolution of the conditional distribution

In general, the fundamental filtering formula does not provide a
closed form solution of the filtering problem. As such, we next
develop filter equations for the conditional distribution of a
semimartingale X-valued Markov process (&}, with extended
generator &4 acting on mappings in its domain D(d4). &4 is assumed
to be time-invariant for notational simplicity only.

Hence, for every feD(d4), the process {f(Et)) satisfies,

t
fleg) = flgg) + [ af(eg ) ds + my, (13)

t
Yy = Yo * 6 h(Es) ds + w, (14)

both up to indistinguishability, with [mtl a local martingale and
{wt} an m-dimensional standard Wiener processs, such that

. t .
<M, Why, = ! 8'f(g )ds, for all i€f1,m], (15)

up to indistinguishability.

Now we introduce the following conditions:

B.1 h e c2.

B.2 h(k,) _is integrable.

B.3 f € c2.

B.4 f(t,) and f(Ey)h(k,) are integrable.

B.5 (4f(E¢ )} and {8f(€,)} are locally integrable.

Next, application of the fundamental filtering theorem yields a
recursive equation for the process {E(Et)l:

- A v
£le,) = BIE(E) I8V ). (16)
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3.1 Corollary (Fujisaki-Kallianpur-Kunita (FKK) equation)

Let {yt} be observations of a quasi-left continuous
semimartingale Markov process {Etl with extended generator
[4,D(4)] satisfying (13), (14) and (15), let conditions B.1l and
B.2 hold true and let FV=FY. If S contains all feD(d4) for which
B.3, B.4 and B.5 are satisfied, then, for every f€S, and t<T<o,

~ ~ t
fley) = f(gg) + f El4f (£.) |3V )ds +

t N ~
+1 [BL BE(eg)+h(Eg)Elkg) 18V ) - nE) (1T avy, (17.a)

ve = ve - S h(g,)ds, (17.b)

both up to indistinguishability.

What we actually like to have, is a differential equation for the
conditional "density" of a Markov process {Et}. If the state
space is hybrid, such "density" is a mixed density-probability
function:

3.2 Proposition (Kushner-Stratonovich-Wonham (KSW) equation)
Let {yt} be observations of a quasi-left continuous
semimartingale Markov process [Et] with extended generator
[4,D(4)] and satisfying (13), (14) and (15), let P(kyEdx|3$Y,)

admit the "density" ;o(x), let conditions B.1, and B.2 hold
true, let FV=FY and let 4" and 8" be the adjoints of 4 and %,
respectively. If there is, on [0,T], a Hilbert space valued

pathwise unique solution {nt(.)] of

- - t -
nt(.) = ﬂo(.) + 6 A*ns(.) ds +

+ F (8% ) + w00 ()-heT) av, (18)

O~ct

then [P(Etdelsvt)l admits {;t(x)l as its "density" on [0,T].

Proof: If (18) has a pathwise unique solution, then

- -~ t -
[ E(xX)me(x) dx = [ £(X)mg(x) ax + [ f f(x)d = (x) dxds +
x x 0 X

t -~ -~ -~
+ L8008 (0 + £ mg (x) [h(x)-h(eg)1TIav ax,

up to indistinguishability, for every fes.
The forward generators, 4 and 8 , are such that, for all fe€s,

;t(x) 4f (x) dx

S £(x)d"x () ax,
X

!
X

I w(x) Bf(x) dx £(x)8"n, (%) ax,
X

!
X
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both up to indistinguishability. Substituting this yields

- - t ~
J f(x)nt(x) dx = J f(x)ng(x) dx + I I ns(x)df(x) dsdx +
X X 0 X

[ ow (x) [B£(x) + h(X)E(x) - h(E)E(x)1T ax avg,

+
X 8

O bt

for all f€S, up to indistinguishability. To match (17.a), [;t(.)}
must be the conditional "density" on ([0,T]. Q.E.D.

For sufficient conditions under which (18) has a pathwise unique
solution see Liptser and Shiryayev (1977, 1978), Pardoux (1979),
Bismut & Michel (1982), Baras et al., (1983), Fujisaki (1988),
Kurtz & Ocone (1988), Haussmann (1988).

Notice that the last term of the KSW equation is nonlinear. To
simplify the situation, we introduce a transformation that
removes this nonlinearity.

3.3 Theorem (Duncan-Mortensen-Zakai (DMZ) equation)
Let the conditions of proposition 3.2 be satisfied. Then,

7 () = pe (L) 7 Ig ey () at, tefo,T], (19.a)

where {pt] is an "unnormalized conditional density", satisfying
the DMZ equation

o n ) Fs*s o T 19
Pela) = mgl) + [ 4’5 () ds + [ (8%, ()4 (0T () ]dy,, (19.D)

up to indistinguishability on [0,T].

Proof: Define a scalar valued process {Atl,
aa, = Atﬁ(Et)Tdyt, up to indistinguishability,
with A0=1. Next, define an Hilbert space valued [;t] by

;t(.) = At;t(')' up to indistinguishability.
Hence, application of Ité's differentiation rule yields

do (x) = 4 (x)dt + (8% (x) + o ()N T] Ay, on [0,7T].
Furthermore,

alf pptx) axl = ¢ dop(x) ax = [ o (xIn(x)Tay, ax

- T _ o T
Ay é ne (X)h(X) "dy, = Ach(E ) "dy, dAg,

which implies (19.a,b). Q.E.D.

Obviously, the KSW and the DMZ equations involve stochastic
integrals which are not of Wiener type. Unfortunately, it is not
always clear how to interprete such a stochastic integral
equation physically, while numerical integration is complicated
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(Pardoux and Talay., 1985). If, however, {ztl and {wt] are
independent, the DMZ equation admits a Wiener representation:

3.4 Corollary (log-2akai equation)
Let the conditions of proposition 3.2 be satisfied, let lEtl and
lwtl be independent and let nt(.) > 0 for all t. The unnormalized

density [pt] satisfies, up to indistinguishability on [0,T],

enp () = enng() + o (171 £ (L) ds +

t
()T ay, - % ! n(.)Th(.) as. (20)

Notice that the log-Zakai equation has a nonlinear drift but a
Wiener type of diffusion. This implies that the physical
interpretation of the log-Zakai equation is unambiguous, and

thus the physical interpretations of the KSW and DMZ equations
are unambiguous too. The log-Zakai equation can also be obtained
when [Et} and {wt} are dependent, but the diffusion term is than
not of Wiener type. Remarkably, the log-Zakai equation has gone
rather unnoticed, although it already appears in Zakai (1965) for
a finite state Markov process. For diffusions, it appears in
Fleming and Mitter (1982; Fleming, 1982; Blom, 1981). Better
known is a disguised log-Zakai version: the "Multiplicative
Functional Filter" (MFF) equation (Clark, 1978; Davis, 1980,
1984; Elliott and Kohlmann, 1981; Wong and Hajek, 1985; Davis and
Spathopoulos, 1987). To apply the MMF approach, Ty need not be
strictly positive.

Unfortunately, the total measure, Ay, of ;t increases rapidly
with time. To see this, substitute

in the SDE for Ay . Hence,
= At Th A h(E )T

which implies that [At} is an Fv—supermartingale, which increases
rapidly with time. Hence, the solutions of the Zakai, the
log-Zakai and the MFF equations are not stable. To prevent this,
we might better use a quotient as an unnormalized “density":

qt(') 2 w () / nt(m) = pelo) / pt(z), (21)
with =z € X, such that h(z)=0 (if there is no such z, we can
create one by modifying the observations process {yel to {y'.1,
satisfying dy',=dy.-h(z)dt), for some =z €X).

Subsequent application of Ité's differentiation rule to (20),

(21) and (Lnatl vields a log-Quotient equation on {0,Tl:
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- t - 1 xn .
enqe () = [ lagl) ™t dla ) - dlagle)] as ¢

t T T
+ 6 h(.) dyg - ¥ h(.)*h(.) ds. (22)
Notice that the only difference between the log-Quotient equation

and the log-Zakai equation is the extra drift term ‘*at(”)'

If the Markov state space is M = {1,..,N}, then the log-Quotient
equation consists of N scalar Wiener differential equations. As
demonstrated in (Kemp and Blom, 1981; Kemp, 1987) this allows
for straightforward practical implementation.

4 The Interacting Multiple Model filter

If the Markov state space is hybrid (R"xM), finite dimensional
sufficient statistics for the conditional “density" are only
known in rather degenerate cases (Roth and Loparo, 1986). Even
for linear Gaussian systems with Markovian switching coefficients
we have to accept approximate numerical evaluations of the
conditional distribution. In this section we develop a "low
dimensional” such approximation. This approximation originally
appears in Blom (1982, 1984), for less general situations.

Let {xt] be the evolving state of a linear system with MarKkovian
switching coefficients {et}, that is observed through the R™
valued process {y.}:

dy, = h(et,xt)dt + dwy. (23)
Following chapter IV (see egs. 11 and 12), we write {et,xt] as a
pathwise unique solution of a system of stochastic equationms;

t
dx, = g(et,xt)dt + Q_v(et,xt)dvt + gw(ot,xt)dwt +

1 a
ae, = (n-E-,_) p (dt.R_xR"), (24.a)
nem t I.m +

+ l{d—l g(et.ot-.xt_,g) DI(dt,R_,_XRXdQ), (24.b)

with, for all Aes(u),

(at,a) = /1
A (Zy_ (&g ), ZylE )]
(ul)pP(dtldu) r

PI,n (uq)pg(dt,du),

(at,A) = /£ 1
P1 A T[0,A(E )]

A m .

zn(e) = I p(i,E), TNEZ,
i=0

where p is a measurable mapping of NxR" into R,, such that

p(i,.)=0, i€eEN/M, and I op(i,E) =1,
iEN

while 6,(v) € M = {1,..,N}, xt(u)ER“ and 6,4, xg, (W, ]l and (v}
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independent. For simplicity, we assume that (23,24.b) is a linear
Gaugsian system with Markovian switching coefficients, i.e. (see
chapter IV, corollary 5.5): ¢ is Gaussian and

LO Ale,x) = H,(6) + Hy(8)x.

L1 x(6,x) = A (0) + Ax(e)x, 8 (8,x) = B (o),

¢(n,06,x,u) = Co(n,8) + Cyuin,0)x + Cyin.0)e.

A(0,X).p(n,06,X) is x-invariant and bounded.

p(6,0,x) = 0 , for all (6,x).

Since a density-mass function ™ on R"xM satisfies
nt(x,o) = pt(x|o). Pt,e’

with Bt(xle) denoting the conditional density p (x]e) and
x,.|0,,3Y
t!vt t

Pt,e = P(otzelgyt)' (25.a)

our problem really is to evaluate pt(.le) numerically for all eo.
To find a low dimensional approximation, we consider the first

and second central moments of St(.|o) on [0,T];

= \'4
xt,o E{xtlet—e,s ap (25.b)

-~

R

e up

t,0 = EL(xe-X¢ o) ()T 10 =6,5Y,]. (25.c)
4.1 Theorem
Let the processes ly,) and {6,,x,} satisfy (23), (24), LO, L
and L3, let 09/ Xg. (wtl and [vt] be independent, and let:
P{ot=o] > 0, for all eeM,
#(de) = N[dw, € ,0.0. T}, with ho 0, TH < o,

-
If {x.1, [xtxt } and (xx,"ex,} are locally integrable and the

&

innovations conjecture holds true, then the processes iPt'el.

{it o} and (ﬁt gl defined by (25.a,b,c) on [0,T], are pathwise
unique solutions of the following equations:

(26)
s a4 s .
denly o = [T 617" 2 Dgnle,ndnele,eldt +

- n .
+ (Hy g+tHy oXy o) "dyy - % (Hy o+Hy oX¢ o) (..)At, (27.a)

-1 -~ -~ -A
Tt,o " Iy Yenlt, nlTt on — X glat +

+

R R T
(Ao, o*Ayx, oXr,01at + [By o+Ry oHy o ldvy o (27.b)

~ ~

— -1 2 o -“ hod _‘ T
Ry o = Ip,e I, Yenle,n(®, on~Re, 6% (Tt onXe o) ()71 +

A - T T .
+ [Ay gR¢, %Ry, 02 x,8 * By,eBy,e 10t + Z¢ dvy 4. (27.C)
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with: Ty gy = Co gn * [I+Cy gnlX¢ .y (28.a)
atlen = [I+Cx,en]§t,n[1+cx,en]T + cu,Bﬂlaga?CTu,en' (28.b)
vy, = Gy — (Hg, o+Hy oX¢ g)dt, (29)
Agn = A(n,x)p(6,n,x), any X, (30)
Z¢,0 = igl El(x,- xt o) T ;104=0, Y} (Hx,eT)i' (31)

and (Hx,eT)i the i-th row of (Hx,eT)'

Proof: The result can be obtained both from the KSW equation and
from the fundamental filtering theorem. We follow the latter

approach: Define the processes {thel, lst,al and {Qt,e] by
)(t'e =1 if 6t=6,
= 0 if 0,=6,

St,e = Xt,0 Xtr

Qc,0 = Xt,0 XXt -
up to 1nd15t1ngu15hab111ty, for each 6€EM. Then a repeated use of
Ité's differentiation rule and some 1engthy evaluations, yield:

dax = 2 [agpX - ldt + damX
t,e neM oen“t,n ne t.e t.e’

ds¢, e = [Ag,0Xt,0 * Ax,e65t, e]dt * By oXt,09Ve * By, oXt,0d%t *
*néu AonYt,on ~ *neSt,eldt * an®y o,

_ T T T
dQ¢ .6 = [A;, 95 t,0 * St,6A c.0 * Ax,0%,6 * Q,0? x,01dC *

BT

T
+ [By oB 'y, * By,oB w,0l%t,0dt *

T T T T
+ [By 657¢,0%S¢t,0B v,01dVe * [By 657t 6*5¢,0B w,0ld%¢ *
+ 2 [Aan@ - A aQ, oldt + dm®. _,
niy Ment,em n6%, 6 t,e
with: 3t,en = Cc,enxt,n + [I+Cx,on]st,n R

cT +

+ ¢ c,em

_ T
2¢,6m = Cc,om¥ t,en t,em

TeT

T
+ [I+Cy onlQ¢, n[I+Cx o] " * Cy,on% % C u,onXt,n’

while the components of {mX t, el, {m t, ol and (m t, e} are purely
discontinuous martingales. Subsequent application .of the
fundamental filtering theorem (2.1) yields, on [0,T}:

- tholdt +

dXe,0 = Iy Pen¥e,n = *ne
+ [X¢ gtHg o~h)T + 8¢ oTHy GTlavy, (32.a)

dsy g = [Ac gXt,e*™Ax,65t,0ldt *+ By oX¢,edve *
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+ I [ ; - A § lat +
neM envt,.oen nevt,o
+ (8, oM, .-hn)T + Q. 0, T] av (32.Db)
t,oe c,0 t t,07°x,6 t’ ¢

) ~r - T R R T
d0¢,0 = [A;,657¢t,0 * St,02 c,0 * Ax,6%,0 * Q0P x,0ldt +

T T 2 aT 2 T
+ [By 6B 'y, 0%By, 6B v, 01Xt ,edt + [By o87¢ o+5¢ gB 'y gldve+

+ T a2 - A a0, Sldt +
neM on~t,en nex=t,é6

+ [Qp oH, g-he)T + I ElQ, oxiy (Y j(n, )] dv,, (32.c)
t,0'c, 67t jo1 e, eX el e Wik 07 t’ -C

with: dvt = dyt - htdt,

h, = £ (H X + H S Y.
t neM c,nt,n X, nVt,n

=C + [I+C

¢, 0m c,onXt,n x,on18¢,n

-~

= C +

T a T
2 ,0n c,on? t,on ¥ Tt,onC c,on

-~

- T TT
+ [I+Cy onlQ¢, n[I+Cyx on] " *+ €4 0n%u 2. C yu,onXt 0"

Now we identify the processes [x:,e}' lst 9l and {Qy g} through
an evaluation of their defining equations:

ElXy ol%Y¢) = plxt o=11%Y, 1 = Plo =6|3Y ]},

- - Y o.-n} =
t,o = ElXg oxel¥¢l =z Xe,n ElXg, oXe19¥¢ 00=n) =

. v . . s v .
= Xg o ElXg g% |9Y(,0,=01 = X, o Elx,|8¥ ,0.=0] =
= Xt,0 Xt,0¢

= Tig¥ } = X T gy =n} =
Qt,0 = ElXg oXeXe 197¢) = |2 X n BlXp oXeXp 1974, 0¢=01 =

X T|gY, ,9.=60} = X T\gY .o =0} =
Xt,o By, oXeXe 19700701 = X g Blxexe 197, 00701 =

= X¢,9 [Re,o xt ext P
up to 1ndlst1ngu1shab111ty. These equalities imply that

Pt,o = xt,a'

2 -1 =
X¢,0 = Xt,0 ~ St,e¢
Rt X ol Q6 - xt xt o
up to 1nd1st1ngu13hability. Appl1cat10n of Ité's differentiation
rule to the latter equalities and evaluation yield (27.b,c) and
~ _ - _ - - - A
dPt'G —“én[xonpt,ﬂ kﬂoPt'o]dt + Pt,s[ﬂc,0+nx,6xt,9 ht] dvt.
Finally, (27.a) follows from the latter SDE, in a similar way as
the log-Zakai equation follows from the KSW equation. Q.E.D.
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Due to the term Zy LY (27.a,b,c) does not provide a closed
system of SDE's, unless Zt,e = 0 for all 6. This observation
suggests the following approximate filter:

4.2 Definition

The Interacting Multiple Model (IMM) filter, for linear Gaussian
systems with Markovian switching coefficients, satisfies the
system of equations (26) through (30), with Zt,o = 0 for all e.

From this definition follows that the IMM filter consists of a
number of coupled subfilters: a filter (27.a) for the
unnormalized conditional probabilities of {et}, and a bank of N
interacting Kalman-Bucy-like filters (27.b,c), one for each 6€EM.
If x9n=0 for all (6,n) then the latter filters are Kalman-Bucy
filters and the IMM filter is equivalent to the MM filter, which
is in that case exact if Xo is conditionally Gaussian distributed
given 6g- Notice that all IMM equations except (27.a) are of
Wiener type.

Remark 1: If we assume that A(E)=¢, by which Agn = € p(6,n,%x),
and we let ¢ approach zero, then the IMM filter converges in
general not to the MM filter. Similarly, the exact filter
converges then in general not to the MM filter (Marcus and
Westwood, 1984). An interesting open question is whether the IMM
filter than converges to the exact filter.

Remark 2: Equations (32.a,b) for (it,el and {ét,e" in the proof
of theorem 4.1, originally appear in Davis (1975; Bjoérk, 1980;
Krishnan, 1981) under some additional assumptions, such as
c_'9n=0 for all (e,n). Bjork (1980) notices that the pair
(32.a,b) forms a closed system of equations if “x,6=°' for all e.
In that case, however, the resulting statistics need not be
sufficient w.r.t. the conditional distribution.

Remark 3: In their search for low dimensional approximations,
Davis (1975) and Krishnan (1981) propose some approximations
in (32.a,b), which become superfluous with the IMM approach.

Remark 4: Actually, theorem 4.1 also holds true without
assumption L3. If x9n=o for all eé=n (i.e. no switching, and no
interaction between the filters in the bank) and xeeﬂo, then the
filters in the bank are equivalent to second order filters for
linear systems driven by Brownian motion and compound Poisson
processes (Kwakernaak, 1975; Rogers, 1983).

Remark 5: To apply the IMM filter to linear systems with randomly
switching coefficients one might think of approximating the
N-state process {ot] by a conditionally finite state Markov
process. The simplest way to accomplish this is to replace the
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switching parameters LYY by *on,t' with

A ~ ~
xen't = A(“lxt'n)p(elﬂ'xt'n)o (33)

A better, but more costly, approach is to approximate {et} by a
"larger than N" state Markov process (Rudemo, 1973).

5 Continuous-discrete IMM filtering

Often, the observations process is of discrete-parameter type,
while. the to be estimated process is of continucus-parameter
type. To develop an IMM filter for such situations, we consider
the following continuous-discrete filtering problem. The hybrid
state Markov process [et,xt] of section 4 is observed, at
discrete moments in time, T7€ENN[0,T], by the process {y 1.

v, =i§M xe(er)[ﬂexr+GoVr]' (34)

where {vT} is a sequence of i.i.d. standard Gaussian variables, G
and H are mappings of M in appropriate Euclidean spaces, GeGeT is
non-degenerate, while {6,,x,] and {v,} are independent.

Our first step is to characterize the evolution of the
conditional distribution of (x.,6,) given syt under the

assumption that it admits a density-mass function pt:Rnxu = R.
The evolution of this density-mass between two successive
measurement moments, is governed by the following equation:

2 - .
— py = 4'p, , telr-1,7) , (35.a)
at

where 4* is the adjoint of the generator of the Markov process
lxt,etl. The conditional evolution of this density mass is
completed by applying Bayes formula at each moment 7 that a
measurement according to (34) is received:

p (.) =c.p () p
T T= Y ix_ .6,

with ¢ a normalizing constant. Similar as in the discrete-time
and continuous-time situations, the above filter equations admit
in general no low-dimensional representation. Between two
successive observation instants, however, there exists a
low-dimensional characterization of the zero-th, the first and
the second conditional central moments, if [xt} is the solution
of a linear Gaussian system with Markovian switching
coefficients. This characterization follows from Theorem 4.1:

(v, 1.). (35.b)

5.1 Corollary
Let the processes {y,] and (6y.x,]1 satisfy (34), (24), L1 2 and

L3, let 6,4, Xq. {wtl and [le be independent, and let



Chapter V. Filtering continuous-time hybrid state processes 107

Bw(o) = 0, for all 6€M,
P[et=e} > 0, for all eeM,

u(dw) = Nidu; €,,0,0, T}, with Jlo o, TI < =.

1f {xt}, {xtxtT} and {xtxtTaxt} are locally integrable, then the

processes [Pt,oi' {it,e} and [Rt,e' (defined by (25.a,b,c)) are,
between two successive measurement moments, the pathwise unique
solutions of the following ordinary differential equations:

]

ot Tt.o T Zy[enPr,n P nePr, 0l (36.a)
F: ] -~ ~ -~ ~ ~ ~
—_ = -1 -

Xt,0 = Pr,o  Z. *onPt,nl%c,om X¢,0] * Ac,e%Px,6%t,0r (36-P)
at neM
R .= b. .l s o, B (R gr-Ry gt (T oKy o) (T] +
>t Rt.e t,o oIy *enfr nl®e on"Re 0% (Te on~Xg o) (-

+ R, .+R T + B, B, o7 (36.c)
_ Ax.,oRt,0*Rt,0%x,0 v,0Bv, e * .
with:
Te,om = Cc,om * [I+Cx onl&g g -
2 = [I+C IR, . [I+C 1T + ¢ ¢ o TcT
t,en x,onlRy q[I+Cx gn u,on%ele € u, 00

Agp = Al{n,x)p(06,n,Xx), any Xx.

The finite-dimensionality problem turns up as soon as wWe want to
evaluate Bayes formula (35). This is caused by the fact that the
first and second (central) moments say nothing about the shape of
D¢ - Hence, for a low-dimensional approximation we propose to
apply the measurement update equations of the IMM algorithm

in chapter II:

ar,e = C, 57-,9 "UT,GH—M expl-KvT'GTUT’O'lvT'o], (37.a)
ir,o = ir-,e * Kr,elyr—ﬂeiT—,o]' (37.b)
ﬁT,O = ﬁr—,e - K., oHoRr— 0+ (37.c)
with: Ve = YT—HGQT—,O'
Ur,0 = Heﬁr—,eHeT+GoGeT'
Kroe = ﬁf—,oﬂeTUr,o_l'

and ¢_ such that £ 5 =1.
T peM T1©

One cycle of the continuous-discrete IMM filter than consists of
Corollary 5.1 and the IMM measurement update equations above.
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A scheme to integrate (36) numerically

For practical application of the continuous-discrete IMM filter,
we have to integrate (36.a,b,c) numerically. The N equations of
(36.a) are linear, but the N(n+n2) equations of (36.b,c) are
nonlinear. Due to these nonlinearities a direct numerical
integration may be complicated. To simplify this, we introduce

the processes {the} and lEt'el. as follows:
A A N A - -
Xt o = Xt Pt o and K 0 = Rt Pt 0
Appllcatlon of the ordlnary dlfferentlatlon rule to the latter
and (36) yields the following differential equations, te&{r,7r-1):
0
— X = A
at t.®
]

—_ = T TS
7t Re,0 = Ax,6Rt,0 * Re,pBx,6 + BgBg Py o +

o * Ag, oX

c, t,e + 2 [XGTI t, 'qzt on~ ﬂext,BJ’ (39.a)

~ -~ ~ -~ T
+ B, DenPe,n (R, on* (Tr onXe o) (- )T)-AoRe o1.  (39.b)

Now, we propose to integrate alternatingly the jump terms of (36)
according to (36.a) and (39.a,b), and the diffusion terms of (36)
according to (36.b,c). This yields the following fractional step
integration method: partition each interval [r,v+1] in
equidistant intervals of length A and integrate (36), on each
A-interval, by two fractional steps.

During each first fractional step we integrate (36.a) and the
jump terms in (39.a,b). During each second fractional step we

first transform (Pt o Xt o Et o) to (P ,0° it,O' ﬁt,o) and then
integrate the diffusion terms in (36.b, c). Euler integration of
(36.a) and the jump terms of (39.a,b), during each first
fractional step, yields the scheme:

Para,0 = 2 DondPg 5 + (173gn8)Pg g1, (40.a)
Xs+a,0 = néﬂ [AgnAPg, nTg,6m * (1-2ngd) Py o Xg ol (40.b)
K

~ -~ ~ -A T
8+A,0 = “é" D‘Oﬂ‘“’s,n (za,o‘n + (XS,OTI XS+A,6)(") ) +

+ (1-2,68)P, gRy o1, (40.c)

with the i's and i's defined in Corollary 5.1. During each second

fractional step we first apply the transformation:
X ~ Xs+a,6 / Posa,er (41.a)

~Rgsn.6 / Pora. o (41.b)

8+4,0

Rs+A,e

and than numerically integrate the diffusion terms of (36.b,c)
over a A-interval through numerical integration of
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I .
5T Xt.e T Ac,e * Ax,eXt,er (42.a)
=R ~ Ay, oR + Ry gAy o + BgBg' (42.b)
at t,o x,0°t,0 t,07x,0 e-e -° °

The latter may be done with the help of appropriate Kalman time-
extrapolation equations.

Remark: For C x 8= -0, equation (39.a) and the non-central
version of (39 b) appear 1n Morrison (1972), while (40.a,b,c) and
(41.a,b) are equivalent to the equations characterizing the
interaction between the Kalman filters of the IMM algorithm in
chapter II.
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APPENDICES Al - Ab

These appendices provide the mathematical background for the
material in chapters IV and V, as far as it goes beyond standard
texts on analysis, like Rudin (1964, 1966), on probability, like
Chung (1974) or Shiryaev (1984), and on Itd equations with
diffusion solutions, like Wong (1971), Friedman (1975), Schuss
(1981) or Gard (1988). Stimulated by the complexity and the
generality of the subject, a comprehensive theory of
discontinuous processes has been developed. This is illustrated
by an impressive and still. growing number of mathematically
oriented texts on discontinuous processes. The background
presented in these appendices only covers a small part of this
theory. The main sources used for this presentation are
Dellacherie and Meyer (1978), Elliott (1982) and Jacod and
Shiryaev (1987).

The appendices are organized as follows. In appendix Al, we
present general background. In appendices A2 and A3, we present
measurability and predictability concepts, respectively. In
appendices A4 and A5, we present local martingales and
semimartingales, respectively.
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APPENDIX Al
GENERAL BACKGROUND

A probability space .(2,%,P) consists of a measurable space (8,%)
and a probability measure P defined on %. An element of 9 is
called an event. An event of P-measure zero is called a P-null
set of %. In general a state space (or phase space) X is a metric
space with Borel ¢-algebra B8(X). An index set (or time set) T is
either R, (called continuous) or N {(called discrete). Whenever o,
t (or s) and x (or y) appear in the sequel they denote, without
qualification, elements of @, T and X, respectively. A state
space X is said to be hybrid if X = RPxM, with MCN.

Given an index set T, a state space X and a probability space
(0,%,P), a stochastic process (or simply a process) {x,} is a
family of measurable mappings Xy of & into X, indexed by t. It is
often convenient to represent a stochastic process {xtl as a
mapping of ‘Tx@ into X, i.e. X: (t,w) —> X¢ (0). In that case we
write {xt} ~ X and say [xt} is measurable if X is a measurable
mapping. Additional measurability concepts, which are really
useful for stochastic processes, are discussed in appendix A2.
A trajectory (or sample path or realization) of a process [xtl is
a family of outcomes [xt(n)} = X(t,.w), for a given wEf.
Given the finite ordered sequence, 0 < ty < t2k< +o <ty £ @ of
elements in T and a Borel measurable set I' C X", then we call
Pllw:; [x (w),x (o)..xt ()] €T}) a finite-dimensional

| 4

distribution of [xtl.

Now we fix t and proceed with some terminology for Xy as a random
vector. By its definition, Xy is a measurable mapping of @ into
X. The o-algebra o[lw; x (w)EA}; AEB(X)] is called the g-algebra
generated by Ko and is often denoted as oX,. We say Xy is
¢'-measurable if $' D 0Xy. An R-valued random variable x, is said
to be P-inteqgrable (or inteqrable) if In lxt(o)l dP(w) exists and
is finite. A vector of random variables is said to be integrable
if each of its components is integrable. Let Xy and y, be
R,-valued random variables, of which y, is measurable w.r.t. some
c-algebra $'C%. We say Y is a version of the conditional
expectation of x, given $' if Ia Xy (0) dP(e) = I Yiele) dP(e),
for all A€$'. In that case we write Yy = Eix|%'} a.s..
More generally, E{xtls'l denotes the generalized conditional
expectation of Xy given $°', which is defined as follows;

E(x %'} = E[x"( |9} - Elx"|8'}, if E{x" |8’} < o,
@ , otherwise.

A particular form of conditional expectation is conditional
probability. The conditional probability of a set A€$, given a



Appendix Al. General background . 117

oc-algebra %'C%, is defined by P(A|%") 2 E{1,|%'}, where 1,(w) is
the indicator of wEA. Two random vectors Xe and Yy are said to be
conditionally independent given the o-~algebra %'c%, if for all
Borel (A,B):

P([m;xt(u)EA,yt(u)EB}|$') = P({u;xt(u)EAlIﬂ'}.P(Iu:yt(w)EB}lﬁ').
A reqular conditional distribution (or conditional digtribution)

[ |9 of X, given %* is for each v a probability measure on
x I’
t
8(X), such that for every Be8(X),
u® (B;w) = P({uw'EQ; xt(u')EB]|9')(w), a.s.
Xe | ¥°

If the state space of Xe is a complete separable metric space
{e.g. R?) such a regular conditional distribution always exists
(Sshiryayev, 1984, p. 228).

The variation process [Varxt} is defined for a measurable real
valued process {xt] by:

var¥ (o) = Supp(py Fj IXK(tj,q.0)-X(tj,0)] = Jg 7 ldxgle)] ,
where the supremum is taken with respect to all finite partitions
n(t), with parameters 0=to<t1<..<tk=t. A real valued process {xtl
is said to have a finite variation if Supi ep Varxt(u) < o for
every w; to have a finite variation over [0,T] if S“ptE[O,T]
Varxt(w) < o for every w; to have an inteqrable variation if
E{Varxt] < » for every t; to be P-integrable if x, is
P-integrable for every t. The a~a}gebra generated by (xs;se[o,t])
is denoted by the script capital version of X i i.e.

A
Iy = o[[u;xs(u)eA}; all s€[0,t]1NT, A€B(X)].

It is a common practice to use the following short notations:

{x.€al for twix (w) €A}

P{XteAlg'} for P((u:Xt(u)EAHQ')

Pi{x €A|xg] for Pl{wix, (0)EA} |oxg)

a(xs; s€[0,t]] for ol luixg(w)€EA}; all s€e[0,t], all AEB(X)],
® (B) for ” (B;.).

xtlﬂ' xtls'

However, to improve the understanding of the material in the
following appendices, there we often use the full notations.
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APPENDIX A2

PROGRESSIVELY MEASURABLE PROCESSES

Throughout this and the following appendices, we assume that the
index set T is either R, or N.

Equivalence of processes
If {x.] and {y,} are processes with the same index set and state

space, while their finite-dimensional distributions are equal,
then {xtl and {yt] are gaid to be equivalent in law. Two stronger
notions of equivalence between two processes are modification and
indistinguishability. If {x. ] and {y.} are two measurable
processes with the same index set, state space and probability
space while Pluw; X (w) = Yel{w) 1 = 0 for every t, then {xyl is
called a modification of [Yt] and then we write: " Xy = Yy a.s.
for every t ". If the latter condition is replaced by P{w ; 3 t

with X (o) # yi(w) ] = 0 then {x¢} is said to be
indistinguishable from {ytl, and we write: " Xy = Y, up to
indistinguishability ". Obviously, indistinguishable is the

strongest: it implies modification, which in turn implies
equivalent in law. There are some elegant conditions under which
modification implies indistinguishable. For this we need some
additional terminology.

If T is continuous and the path {x¢(0) ]} is continuous
(respectively right/left continuous, has right-/left- hand
limits) for every w€f, then we say {xtl is continuous
(respectively right/left continuous, has right-/left-hand
limits). We add almost surely when the above holds true for
P-almost all paths.

2.1 Proposition
The processes lxtl and {y.,} are indistinguishable if {x.} is a
modification of {yt} and one of the following conditions is
satisfied:

- 1i{x] and {y.;} are of discrete-parameter type,

- {x;] and lyy} are right continuous, almost surely,

- {x¢} and {y,] are left continuous, almost surely.

Proof: For each rational number reQNT Plo; Xr(o)#yr(u) }=0.
Hence, P{ UrEQﬂT [u;xr(u)#yr(u)) }=0. Due to the assumptions
above, {w; 3t with x(e) = vy (w)} C UregnT {o; x (0)=y (w0)]; by
which P{w ; 3t with xt(o) » Yt(") } = 0. Q.E.D.

Stochastic basis

Our next step is introducing some additional structure of a given
probability space (8,%,P) by defining a filtration F as an
increasing family of sub-o¢-algebras of $, i.e.
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A
F = {2,(9.;t€T), %}, with # C $, C ¥, C § for every s<t.
The sub-¢-algebra 2 is called the initial o¢-algebra. Notice that
we do not follow the usual convention that $=%,. This is to
distinguish between the different roles played in Bayesian
estimation by the initial o¢-algebra ¢ and by the first moment
o~-algebra 9o-

By convention, we set $_ 8 3,6 g__ 8 0[Ugeqp 951, F¢_ 8 0 [Ugcr¥g1

fér t>0, ﬁp_ [ $o and ﬂtf b Ng>tFg- A filtration {ﬂt} is called
right continuous if the index set T is continuous and %, = %,
for every t.

2.2 Definition

A stochastic basis (or filtered probability space) is a quintet
(2,9,F,P,T), consisting of a probability space (2,%,P), an index
set T and a filtration F.

A stochastic basis (9,%,F.P,T) or filtration F is called complete
if ¢ is P-complete and the initial o-algebra ¢ contains all
P-null sets of %. Obviously, any stochastic basis can be
completed, and such a completion is unique.

Given an X-valued process {xt} on the stochastic basis
(2,%,F,P,T). The presence of the filtration F makes it possible
to consider, for every t, the measurability of (xg: s<t} with
respect to sub-o-algebra $,. We say {xtl is adapted if x is Fy-
measurable for every t. For a joint (t,eo)-measurability concept
we consider the restriction of the mapping X to [0,t]xQ:

2.3 Definition

We say that {xl is progressively measurable (or simply
progressive) if, for every t, the restriction of X to [0,t]x@ is
a measurable mapping of B[O,t]xst into B8(X).

Obviously, progressive is stronger than adapted, hence for the
converse we need additional conditions.

2.4 Proposition
An X-valued process (x,] on a stochastic basis {(8,%,F,P,T) is
progressive if [xt] is adapted and one of the following
conditions is satisfied:

- [xt} is of discrete-parameter type,

- {xtl is right continuous,

- {x¢} is left continuous.

Proof: Fix an arbitrary t€T and consider a partition of [0,t]
into 2k equal intervals. If {xt) is right continuous, we define a
process {yk,tl as follows:
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For all €@ set Yk t(u) = xt(”) and

Yy () =x_“L(w) , for all se[t(i-1)/2K,tis2¥), 1<i<2k.
k,s ti/2

As [Yk,t] ~ Yk is a process with simple sample paths, the
restriction of the mapping Yy, to [0,t]x8 is a measurable mapping
of B[O,t]x$t+€~into B(X), for every t and every ¢ > 1/2k. With k
to infinity [Yk,tl becomes indistinguishable from [xt}. Hence,
for every t, the restriction of X to [0,t]lx@ is a measurable
mapping of B[O,t]xf&t+€ into B8(X), for every every € > 0. The
final step is to show that the latter also holds true for €=0.
For s<t we can write

Xg = il Xglpg,t-¢) (8) + Xclygy(s),

the right hand side of which is measurable, since Xe is
$,-measurable and the restriction of X to [0,tlx@ is a measurable
mapping of B[O.t]xflt+€ into B(X), for every every ¢ > 0. Hence,
for every t, the restriction of X to [0,t]x2 is a measurable
mapping of B[O,t]xat into 8(X).

Similar for the left continuous situation. Q.E.D.

2.5 Definition

A stopping (or optional) time = (relative to F) is a mapping of @
into TU{w] such that {w;7(w)<t} € %y, for every t.

2.6 Definition

A wide sense stopping (or Markov) time 7 (relative to F) is a

mapping of 8 into TU(=} such that {e;7r(w)<t]} € $.. for every t.

2.7 Proposition
A stopping time is a Markov time. Moreover, a Markov time is a
stopping time, if F is right continuous or T is discrete.

Proof: Only in case T is continuous;

First, let r be an F-stopping time; i.e. {w;7(w)<t} € $¢. for
every t. Because {w;T(w)<t} = Upen [@iT{w)<t-1/n}, we also have
loir(e)<t} € Upey %¢_q/pn C % . Hence, loiT(0)<t} € $,, for every
t, which implies r is a Markov time.

Next, let F be right continuous and let r be an F-Markov time.
Then, for every t, {w;r(w)<t} € $,., which implies {w;7(w)<t+1l/n}

€ $¢41/m+ if n2m. But then, as {wi7(w)<t} = N -y {oiT(w)<t+1/n},
loiTlo)st) € Npey Friq/m = Fe4r fOr every t. Hence, for every t,
fo;r(w)st] € $., which implies 7 is a stopping time. Q.E.D-

Propositions 2.4 and 2.7 indicate that, if T is continuous, we
would best simplify measurability issues by restricting our
attention to right continuous filtrations and to processes that
are either right continuous or left continuous. Fortunately, the
material to be presented in the sequel does not suffer from such
restrictions.
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The o-algebra ¥, of events prior to or at stopping time T is:

g & {aes; Aﬂ{u;f(w)stIE$t for every t},

and the s—-algebra 37_ of events strictly prior to 7 is:
$.. 8 0l3; U (AN (wir(w)>ti; A€, teTI].
It can readily be verified that this agrees with the definition

A
of %,_: when 7(.)=t, then $, = 9, and __ = Fp_

With r a stopping time, the process [xft} 2 {Xpapl 18 called a
process stopped at r. It can readily be verified that if {xt} is
progressive and r is a stopping time, then x llu,r(u)<w] is
%_-measurable and {xT t] is progressive.

2.8 Definition
A subset A of Q@xR,_ is called thin if there is a sequence () of
stopping times, such that A = U {(e,t); t€R, , t=7;(0)].

i

An immediate conseqguence of this is (J&S, p.8, Lemma 1.3):
Any thin random set A admits a sequence (ai) of stopping times
such that:

A=U {(e,t); teR,, t=a;(v)], and for all i = j,
1

{(w,t); terR,, t=:»i(u)} N {({w,t); ter,, t=o«j(u)! = g.

Such a sequence (o) is called an exhausting sequence for A.
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CADLAG PROCESSES AND PREDICTABILITY

Troughout this and the following appendices, we assume a
stochastic basis (8,%,F,P,T) where either T is discrete or F is
right continuous.

Cadlaqg processes

If an X-valued process is both right continuous and has left-hand
limits, then the process is called cadlag ("continu a droite avec
des limites & gauche"; or corlol). When {x,} is cadlag we always

A
assume the following convention: 1lim x_ = X,.
810- © 0

3.1 Proposition
If {xt} is a cadlag adapted process, {(w,t); xt(u) = xt—(”)} is
a thin set.

Proof: See J&S (p.8, Prop. 1.32).

If {xtl is cadlag we define two other processes {thl and [Axtl.
as follows: for every o,

A A
eXe(w) = X, _(0) = 1im x_(w) , for every t,
t t stt- 8

Axt(u) Xt(w) - th(u) (hence Axo(m) = 0).
Notice that the above may not be possible when [xtl is simply
right continuous.

To recover the discrete-parameter versions of the above
introduced processes ith} and [Axt}, we introduce a particular
one-to-one mapping of the class of discrete-parameter processes
into the class of cadlag processes.

Given an X-valued process {x;} on the discrete stochastic basis
(2,%,F,P,N) we associate to it a right continuous X-valued
process lgt) on a right continuous stochastic basis

A
(@,%,F,P,R,), with F = {%,(%.;teR,),%} and, for every t€[i,i+l),
A [
Xy = Xj and &4 = § i€EN.

i i’

With this mapping, the discrete-parameter processes are:

¢ Xy = Xe_q , for t21, and &xgy = Xg,
Axy X = &xg (hence axg = 0).

For a detailed analysis of this set-up see J&S (pp. 13-15).
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Predictable processes
The simplest example of a predictable process is the following:
If {xt] is cadlag adapted, the process [th] is predictable.

3.2 Definition

The predictable c-algebra is the e¢-algebra ? on Txg, that is
generated by all adapted left-continuous processes (considered as
mappings on Txg).

3.3 Proposition
The predictable o-algebra is related to the filtration as follows:

2 = o {t01xa; Aesg) U {(s,t1xA; s<t, AS ) 1,
and to stopping times v as follows:
P =0l {[o;xA; Aeao} U {(t,w); 0 <t < (o), all T} 1.

Proof: See J&5 (p. 16, Th. 2.2).

3.4 Definition
An X-valued process {xt} ~ X is said to be predictable if X is
P-measurable.

The following are immediate consequences of definition 3.4:

- If {xt] is cadlag and adapted then [th] is predictable.

- If (xt} is cadlag and predictable then {Ax,]} is predictable.

- If {xtl is a predictable process and 7 is a stopping time,
then the stopped process (thl is predictable.

3.5 Definition
A predictable time 7 is a mapping of 8 into TU{x}, such that

{(t,u): 0<t < 7o) } € .

Ssome consequences of definition 3.5 are:

- A predictable time is a stopping time.

- If (7j) is a sequence of stopping times increasing to a >0
while 7 <7 for all i, then 7 is a predictable time, and we
call (Ti) an announcing sequence for 7.

- If v is a predictable time >0, there exists an increasing
sequence (7;) of predictable times, such that 7;<r a.s.,

1

Ti(m) < 7 for all w, and 1imi T; = 7 a.s. If the stochastic

basis is complete, then the additions "a.s." may be deleted
(Dellacherie and Meyer, 1978, p.132).

3.6 Proposition

Let the stochastic basis be complete, and let !xt) and (ytl be
two cadlag adapted processes. Then {x ]} and {Ytl are
indistinguishable if and only if X 1(,.4)=Y,1l(, <o) a-8., for
every stopping time 7.
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Proof: See Elliott (1982, 6.25)
Next we give a characterization of predictable processes.

3.7 Definition

A stopping time a is called totally inaccessible if

Plo: a(w)=7(w)<e } = 0 for all predictable times .

An adapted cadlag process [xt] is said to charge a stopping time
v if Plow; [X_r(w)?‘x,r_(u)] and [r(w)<w) } > 0.

3.8 Theorem

Let the stochastic basis be complete. Let 1 ;<o) denote a
{0,1}-valued random variable, such that 1(rcw) (0)=1 iff 7(0)<w,
If {xt} is an adapted cadlag process which does not charge any
totally inaccessible stopping time, and the random variable
x71(7<m) is 9,.-measurable for every predictable time 7, then
[xt) is predictable. Conversely, if [xtl is predictable, then
x11(7<m) is 51_—measurable for every stopping time r.

Proof: See Elliott (1982; 6.30 and 6.47).

3.9 Definition

A process [x,] is called guagi-left continuous if (xtl is cadlag
and Ax_=0, almost surely on the set {w; T(w)<=}, for every
predictable time 7.

An immediate consequence of definition 3.9 is that a
discrete-parameter process is quasi-left continuous if and only
if Xt = Xg for all t, up to indistinguishability.

3.10 Definition

A complete right-continuous filtration F is said to be quasi-left
continuous (or predictable) if $,..=89 for every predictable
time .

T
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LOCAL MARTINGALES

In this section we only give a brief outline of the main local
martingale framework, and refer to other texts for proofs.
Throughout this and the following appendix we assume a complete
stochastic basis (8,%,F,P,T) with either T discrete or F right
continuous. Our first step is to define a martingale with respect
to the filtration F.

4.1 Definition
A real valued process {(x.} on the basis (@,%,F,P,T) is said to
be a wide sense martingale (w.r.t. F) if {xtl is adapted and
P-integrable, while:

xg = Elx|%5] for all sst.
A wide sense martingale lxt] is said to be a martingale if (xt]

is either cadlag or of discrete parameter type.

It can be verified that each wide sense martingale admits a
modification that is a martingale (due to the right continuity of
F when T is continuous). We denote the class of real-valued
martingales by ul. A vector valued process is said to be a
martingale if each of its components is in ul.

4.2 Theorem (Optional stopping)
Let lmt} be a real-valued F-martingale and let (a,r) be a pair of
bounded F-stopping times such that a(w)<r(w), for every o.
Then the random variables m, and m,_ are integrable and
E[mT]§°! =m, a.s.

Proof: See Elliott (1982, 4.12 and 4.13).

4.3 Definition

A Wiener process on (2,%,F,P,R,) (or relative to F) is a
continuous adapted real-valued process {wt}, such that wg=0 and,
for every t,

(i) Efw 1=0,

(1)  E(w? i<e,

(iii) (wg-wg) is independent of the ¢-algebra %  for all s<t.
A Wiener process {wt] is said to be standard if E{w2t1=t. An
n-dimensional Wiener process is an n-vector of independent

Wiener processes. A process {btl is called a gstandard Brownian
motion if there exists a stochastic basis, say (Q,S,F,P,R+), such
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that b0 is $y-measurable and {bt—bol is a standard Wiener process
relative to F.

4.4 Definition

A square-integrable martingale is a real valued F-martingale
{x}, such that supg E{lxt|27—< . The class of all
square-integrable martingales is denoted as Mz.

Localization

Let € denote a particular class of processes. We denote by Gloc
the localized class of 8, defined as follows: a process {xtl
belongs to 8y, if there exists an increasing sequence (Ti) of
stopping times (depending on {xtl), such that lim; 7. = » almost

i7i
surely and that each stopped process {x } belongs to 8.

AT
(Ti) is called a localizing sequence for [xt] relative to 8.

Hence, a process is said to be a local martingale if it belongs
to the class ulloc‘ A process is said to be a locally-square
integrable martingale if it belongs to the class ﬂzloc' A process
{xt} is said to be locally bounded if {x 1 is in the localized
class of bounded processes. A real valued process {xtl is said to
be locally integrable if {xtl is in the localized class of
integrable processes; to be locally of integrable variation if
[xtl is in the localized class of processes of integrable
variation; to be locally of finite variation if Ixe} is in the
localized class of finite variation processes.

4.5 Definition

If [xtl~x and {y.}~Y are locally square-integrable martingales,
then the predictable gquadratic covariation (or angle bracket, or
gquadratic characteristic) of the pair ([xt}.{ytl) is the process
<X,Y>; such that {xtyt - <X.Y>t) is a local martingale, and that
{<X,Y>t} is a cadlag predictable process which is locally of
finite variation, while X,Y>5 = 0.

4.6 Proposition
The predictable quadratic covariation, of definition 4.5, exists
and is unique up to indistinguishability. Moreover,

X, Y>p = [ <X+Y,X+Y>, - <X-Y,X-Y>, 1/4
and the predictable quadratic variance [(<X,X>,} admits a
continuous version if and only if {xt] is quasi-left continuous.

Proof: See J&S, p.38-39.

4.7 Proposition
A Wiener process lwt) is a continuous martingale, and its angle

A
bracket satisfies (W.W)t(u) = uz(t) = E[wtzl.
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Proof: That {wt} is a continuous martingale follows readily from
(i) and (iii) in definition 4.3. Due to (ii), (t) < o, hence we
can define a process {x.} as follows:

Xy = wtz - oz(t), up to indistinguishability.
Evaluation yields:

XpXg = (We-wg)2 - [02(t)-02(e)] + 2ug (wt W) . )
Hence, for t2s, E[xt—x8|$8} = E[(wt ws) Iﬂ - [o (t)-¢“(8)] =0,
which implies that <W,W>, = ¢ 2(v). Q.E.D.

Orthogonality and characterization

Two local martingales {mtl and (m' ]} are called orthogonal if
their product {mtm't} is a local martingale. A local martingale
{mtl is called a purely discontinuous local martingale if my=0
and {mt} is orthogonal to every continuous local martingale.

4.8 Theorem
Any local martingale (m]} admits a unique decomposition

m, = mg + mct + mdt . up to indistinguishability,
such that mc0 = mdo =0, {m€ t} is a continuous local martingale
and {mdt} is a purely discontinuous local martingale. Moreover,
if {m )} is locally of finite variation, then n®, =0, for all t.

Proof: Uniqueness is trivial. For existence, see J&S, pp-.42-43.

Further, it can easily be verified that if (mt] is a local
martingale such that mg is square-integrable and lAmt) is locally
bounded, then [mtl is a locally square-integrable martingale.

4.9 Theorem (Levy's characterization of a local martingale)

A continuous local martingale {wt} with wo-o is a Wiener process
if and only if its angle bracket <W,W> is determlnlstlc. say

<w W>, =0 (t) for some increasing continuous function ¢ ( ). Then
a ( ) is the variance function of {w.}, and for all sst the
variable W Wy is Gaussian, centered, with variance oz(t) -0 (s).

Proof: See J&S, p.102 (with the help of theorem 5.5 of the next
section).

4.10 Definition
We define the filtration F* generated by a process {xtl as:

A
FX = {32, (8% :teT) , 9%},
with ¢ the initial o-algebra (see Appendix A2) and:

A
$xt = 0 [JUo{xgisst]] = o[9UX ], for every t,

A
X _ X
g =0 [USET & B] .
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If F is complete, ¢ contains all P-null sets of &. Hence, ¢
contains all P-null sets of $* and (8,9%,FX,P,T) is complete.
However, even if {x.] is cadlag and adapted and F is right
continuous, FX is in general not right continuous. An interesting
exception is the following.

4.11 Proposition (Conditional Zero-One Law)
Let {wtl be a Wiener process relative to a complete F. Then, F¥
is right continuous.

Proof: See Wong and Hajek, 1985, p. 245.

4.12 Theorem (Martingale representation)

Let [wt} be a Wiener process relative to a complete F, and let FY
be the filtration generated by {wel. If {mg} is a local
F¥-martingale, there is an F"-predictable process (hi}, such
that:

t
me = my + f h.dw_,, up to indistinguishability,
t 0 o 8 '8
t 2 . .
(6 (hg)“ds} is locally integrable.

Proof: See Wong and Hajek, 1985, pp. 246-248.

The martingale representation theorem above can be extended in
many other interesting directions (J&S, pp. 166-178).
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SEMIMARTINGALES

Although it will not become apparent from the text below, the
class of semimartingales is a very desirable one, as it is closed
under a large class of transformations:

- stopping,

- localization,

- change of time,

- absolutely continuous change of probability measure,

- changes of filtration.

Moreover, the class of semimartingales is the largest possible
class of processes with respect to which one may "reasonably"”
integrate all bounded predictable processes (see Dellacherie and
Meyer, 1982; Jacod, 1979; Dellacherie, 1980).

5.1 Definition
A real valued process {x.] is said to be a gemimartingale if x,
is an %j-measurable random variable and [xtl admits the
representation

Xe = Xg + Mg + ag, up to indistinguishability,
with {mt} a local martingale and {at} a cadlag adapted process
which has a finite variation over each finite interval, while
mo=ao=0 .

A decomposition of the latter type is called a martingale
decomposition, and is in general not unique. Further, it can
easily be verified that if {xt} is a semimartingale then it
admits a martingale decomposition

Xy = X + Mg + ag, up to indistinguishability,
such that [mt} is a locally square integrable martingale and {atl
is a cadlag adapted process which is locally of finite variation
(see remark in Wong and Hajek, 1985, p.234). Further, it can
easily be verified that a real valued process [xt] is a
deterministic semimartingale if and only if we can write xt(u) =
f(t) up to indistinguishability, where f(t) is a real-valued
function which is cadlag and locally of finite variation. When T
is discrete, then a real valued process {x,} is a semimartingale
if and only if lxtl is adapted. An R™-valued process lxtl is said
to be a semimartingale if each of its n components is a
semimartingale.

5.2 Proposition
Let lxtl be a real valued semimartingale. Then every martingale

decomposition of the type in definition 5.1;
X, = X + m + a
t 0 t t . c . c
yields the same continuous local martingale {m t}, with m 0= 0.
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Proof: [xt} admits a martingale decomposition;

Xg = Xg + Mg + ay, up to indistinguishability,
of which (mt] admits a unique decomposition (theorem 4.8):

m, = mS + Y.
Assume: a, = m', + a'y, up to indistinguishability, where {m*]
is a local martingale and [a'tl is locally of finite variation.
As lat} and {a't} are locally of finite variation, Im't] is
locally of finite variation. Hence from theorem 4.8, it follows
that [m't} is purely discontinuous, which implies that every
martingale decomposition yields the same {mct}. Q.E.D.

5.3 Definition

The martingale_decomposition of (5.1) is called canonical if {atl
is predictable.

A semimartingale {xt] is said to be gpecial if it admits a
canonical martingale decomposition.

5.4 Theorem
Let {xt] be a semimartingale. There is equivalence between:
(i) {xt} is a special semimartingale,
(ii) There exists a decomposition of type 5.1 such that {at]
has locally integrable variation,
(iii) Every decomposition of type 5.1 yields an {atl the
variation of which is locally integrable,
(iv) The process [Supsst Ixs-xol;tET] is locally integrable.

Proof: See J&S, p.44.

Ité's differentiation rule

Several generalizations of Ité's differentiation rule for
stochastic integrals with respect to Brownian motion eventually
led to the differentiation rule of Doleans-Dade and Meyer (1970)
for R%-valued semimartingales. Many of the most important results
of probability can easily be obtained by using this rule; such as
Lévy's Brownian motion characterization of local martingalesg (due
to Kunita and Watanabe) and the Girsanov transformation of local
martingales (due to Van Schuppen and Wong).

5.5 Theorem (Semimartingale differentiation rule)

If lxt} is an RP-valued semimartingale and f is a twice
continuously differentiable mapping of R® into R, then f(xt) is a
semimartingale satisfying:

n t a i
f(xt) = f(xo) + I 6 —_— f(xs_) dx +

i=1 agl 8
n t F:] . .
+ % I =33 flxg ) dm’®,mI%  +
i,3=1 0 axtax]

n a i
+ z [ f(xs)—f(xs_)—,t — f(xs_)Ax

]
0<sst i=1 ax? 8
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up to indistinguishability, where'mic is the i-th component of

the continuous martingale part of lxtl. Moreover, if {xt) is a
special semimartingale, then (f(xt)] is a special semimartingale.

Proof: See Elliott (1982; pp. 128-140), Wong and Hajek (1985,
pp.238-240) and, for special semimartingales, Métivier (1982,
pp. 231-232).

The concept of a semimartingale can be generalized to Hilbert
space valued processes, and it has been shown that Ité's rule
still holds true (Kussmaul, 1977; Métivier and Pellaumail, 1980;
Métivier, 1982; Gysngy and Krylov, 1982; Kopp, 1983).

As is well known, there exists an ordinary differentiation rule
for continuous semimartingales, the result of which implies a
Stratonovich type of integration. Recently, this ordinary
differentiation rule has been extended to discontinuous
semimartingales (Ferreyra, 1987).
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cP(a)

ck(a)

D(4)

LIST OF SYMBOLS

{0,1,2,..1,
(0-1_21_110711210-}1

= Set of rational numbers,

(~o,®),
[0,),
(~o,0],
(0,=),
(~»,0),
Closure of R°".

sup(a,b),
inf (a,b).

xVv0Q, for =x€R,
(-x)v0, for xeER.

= 1, a€;,

o

0, else.
Col{uz,..,un}, if u = Col[ul,..,unl.

z a; 2 if a is a matrix.

iy 3

z aiz . if a is a vector.
i

smallest o-algebra containing the collection ¢.
smallest oc-algebra generated by [xs:sst}.
i-th component of Eyo

boundary of the closure of set O.
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the set of all real-valued functions that are bounded

and continuous, everywhere on A.

the set of all real-valued functions that are, on A,
k times continuously differentiable. The superscript
is deleted if k=0. If k is followed by b, then f and

the k derivatives are bounded on A.
domain of operator 4.



136




137

AUTHOR INDEX

M.B. Adams, 12,16 M. Chaleyat-Maurel, 75,87

R. Akella, 9-10,16 Y.T. Chan, 36,40,42

T.G. Allen, 43,71 K.C. Chang, 41-42

D.F. Allinger, 95,109 H.F. Chen, 10,17

B.D.0O. Anderson, 45-46,64,70 H.J. Chizeck, 8-9,17-18,20
P. Andersson, 24,36,41 C.Y. Chong, 5,19,23,25,42
S.V. Anulova, 74-75,87 D.S. Chou, 10,20-21

M. Aoki, 11,16 E.Y. Chow, 12,17,43

M. Asher, 42 K.L. Chung, 45,70,115,133

J.T. Aslanis, 19
K.J. Astrém, 11,16
M. Athans, 11,16-17
D.P. Atherton, 25,42
§.P. Au, 93,109

J. Azéma, 45,70

E. Cinlar, 73-74,87

J.M.C. Clark, 100,110

R. Cohen, 97,110

M.H.A. Davis, 8-9,17,74,87,
93-95,100,105,110

C.A. Deacon, 25,42

A. Bagchi, 45,70 C. Dellacherie, 115,123,129,133

J.S. Baras, 99,109 U.B. Desai, 65,71

Y. Bar-Shalom,11,16,21,24,36,40-42,47,70 J.G. Desphande, 11,17

M. Basseville, 11,16,24,36,41 G. DiMasi, 9,18

S.A. Belbas, 12,18,74,87 C. Doléans-Dade, 130,133

V.E. Benes, 92,109 B.T. Doshi, 12,17

A. Bensoussan, 6,17,73-74,87 K.P. Dunn, 16

A. Benveniste, 24,36,41 F.A. van der Duyn Schouten, 74,87-88
P. Bertrand, 12,19,43 E.B. Dynkin, 6,17,45,70

J.D. Birdwell 9,17 S.J. Eckert, 111

K. Birmiwal, 36,40-41 N. El1 Karoui, 87

J.M. Bismut, 99,109 R.J. Elliott, 9,17,46,50,70,73,87,
T. Bjork, 93-94,105,109 95,100,110,115,124-125,131,133
W.P. Blair, 8,17 J.S. Eterno, 12,18-19

G.L. Blankenship, 74,86-87,109 S.N. Ethier, 73

H.A.P. Blom, 23-24,26,31,41,47,70,86-87, A.A. Feldbaum, 11,18
100-101,110-111 G. Ferreyra, 131-133

R.M. Blumenthal, 8,17
B.Z. Bobrovsky, 92,113
R. Boel, 9,17

P.L. Bogler, 36,40-41
V.S. Borkar, 6,10,17

P. Bremaud, 73,87

R.¥. Brockett, 74,86-817
F.E. Bruneau, 25,41
P.E. Caines, 10,17

L. Campo, 24,41

F. Casiello, 11,17

D.A. Castanon, 16-17,46,70

¥W.H. Fleming, 6,18,100,110
J.J. Florentin 9,18
J.D. Forney jr., 42

H. Frankowska, 75,87

A. Friedman, 115,133

M. Fujisaki, 99,110

S. Fujishige, 91,93,110
J.I. Galdos, 45,70

T.C. Gard, 115,133

M. Gauvrit, 41-42

S.B. Gershwin, 5,18,43
I. Gertner, 10,18



138

R.K. Getoor, 8,17

I.I. Gihman, 75,79-80,87

B.V. Gnedenko, 75,88

C.S. Greene, 16,43

B.E. Griffiths, 11,18

H.N. Gross, 12,16

S.¥. Gully, 19

I. Gyongy, 131,133

A.H. Haddad, 109

T. Hagglund, 24,43

B. Hajek, 95,97,100,113,128-129,

131-133

0. Hajek, 19

H. Hasegawa, 45,70

U.G. Haussmann, 46,70,92,99,111

0.B. Hijab, 10-11,18

W.E. Hopkins jr., 109

A. Hordijk, 74,88

A. Houles, 41-42

P.K. Houpt, 43

A.G.C. Hu, 42

J. Jacod, 46,70,73-78,80,87-88,
115,121-123,126-130,133

A.H. Jazwinski, 13,18

Y. Ji, 8-9,17-18

Kailath, 45-46,48,71

Kallianpur, 95,111

Karatzas, 92,109

. Kazangey, 9,21

F.P. Kelly, 45,70

B. Kemp, 101,111

T.H. Kerr, 12,18

J.G. Kimemia, 5,18

J.F.C. Kingman, 74-75,88

M.L. Kleptsyna, 80,88

M. Kohlmann, 100,110

¥.J. Kolodziej, 92,111

T. Komatsu, 80,88

P.E. Kopp, 131-133

I.I. Kovalenko, 75,88

N.N. Krasovskii, 9,18

V. Krishnan, 92,105,111

S.M. Krolewski, 19

N.V. Krylov, 6,8,18,95,111,131-133

H. Kuilder, 41-42

P.R. Kumar, 9-10,16,50,70

H. Kunita, 45,71,95,111

A.L. Kurkjian, 43

T.G. Kurtz, 73,99,111

= -Q 3

Author index

H.J. Kushner, 9,18

A.U. Kussmaul, 131-133

H. Kwakernaak, 105,111

G.S. Ladde, 11,18

D.G. Lainiotis, 17,45,71

W.H. Lee, 16

S.M. Lenhart, 12,18,74,87

J.P. Lepeltier, 75,79-80,88

J. Lévine, 92,111

W.S. Levine, 42

E.A. Lidskii, 9,18-19

J.L. Liomns, 6,17,73-74,87

R.S. Liptser, 92,95,99,111

L. Ljung, 45,71

D.P. Looze, 5,11-12,18-19

K.A. Loparo, 11-12,17-19,92-93,
101,111-112

D.G. Luenberger, 9,20

R. Malhame, 5,19

U.E. Makov, 25,42

A.M. Makowski, 23,42,92,111-112

B. Marchal, 75,79-80,87-88

S.I. Marcus, 25-26,42,74,88,93,

95,105,110,112
R. Marino, 92,111
M. Mariton, 7-10,12,19,43,86,88
V.J. Mathews, 69,71
P.S. Maybeck, 13,19
D.H. McCabe, 42
J.L. Menaldi, 75,88
M. Métivier, 74,88,131-133
P.A. Meyer, 115,123,129-130,133
D. Michel, 99,109
A. Millet, 46,71
S.K. Mitter, 95,100,109-110,112
R.R. Mohler, 92,111
R.C. Montgomery, 5,12,21
P. Mookerjee, 41
R.L. Moose, 36,40,42
S. Mori, 23,25,42
T. Morozan, 8,19
J.A. Morrison, 109,112
M. Nagasawa, 45,71
A. Negoro, 80,88
D. Nualart, 71
D.L. Ocone, 92,99,111,112
G.J. Olsder, 9,19
E. Pardoux, 46,70-71,92,95,
99-100,111-112



Author index

K.P. Pattipati, 23,25,42

J. Pellaumail, 131-133

D.M. Perriot-Mathonna, 24,42

J. Picard, 46,71

B.D. Pierce, 9,20

J.B. Plant, 42

H.V. Poor, 109

P. Protter, 46,70-71,75,80,87-88

D. Rappaport, 10,18

J. Raisch, 36,42

R.S. Ratner, 9,20

I.B. Rhodes, 45,64,70

R.¥W. Rishel, 6,9-10,18,20

M. Robin, 75,88

V.G. Robingon, 9,21

L.C.G. Rogers, 95,112

R.M. Rogers, 105,112

R.0. Rogers, 5,10,21

Z.S. Roth, 92,101,111-112

M. Rudemo, 106,112

¥. Rudin, 115,133

Y. Saisho, 75,88

N.R. Sandell jr., 16,23,26,42

M. Sanz, 71

G.N. Ssaridis, 5,11,20

Y. Sawaragi, 91,93,110

J.H. van Schuppen, 97,112

Z. Schuss, 115,133

M.J. Sharpe, 87

A.N. Shiryaev, 46,70,73,76-78,88,92,95,
99,111,115,117,121-123,126-128,130,133

T. Shukhman, 92,112

G.S. Sidhu, 65,71

D.D. siljak, 11,18

R. Situ, 75,80,88,95,112

R. Sivan, 11,16

A.V. Skorochod, 75,79-80,87

A.F.M. Smith, 25,42

D.L. Snyder, 74,88

T.L. Song, 24,43

M.P. Spathopoulos, 100,110

J.L. Speyer, 24,43

139

N. Sreenath, 9,20

¥W.C. Sstirling, 23,43

R.L. Stratonovich, 45,71

R. Suri, 9,19

D.D. Sworder, 5,8-10,17,20-21,75,86,89

D. Talay, 100,112

D. Teneketzis, 43,71

R. Tenney, 43

T.A. Toronjadze, 95,112

E. Tse, 11,16,21,25,42

M. Tsuchiya, 80,88

J.K. Tugnait, 24-26,29,35,43,64,69,71

T.N. Uphadhyay, 17,43

H.F. VanLandingham, 42

P. Varaiya, 9,17,50,70

A.Y. Veretennikov, 75,80,89

G. Verghese, 46,48,71

D. Vermes, 74,89

J.B. Walsh, 45,70

R.B. Washburn, 26,32,41,45,71

T. Watanabe, 45,71

J.L. Weiss, 18-19,25-26,29,32,35,43

C.J. Wenk, 11,21

A.D. Wentzell, 45,71

E.K. Westwood, 25-26,32-35,42-43,93,

105-112

J.E. ¥White, 24,43

D. Williams, 45,71,95,112

J.P. ¥Williams, 5,12,21

R.J. Williams, 45,71

A.S. ¥Willsky, 12,16-18,24-26,43

R.P. Wishner, 25,42

E. ¥Wong, 95,97,100,113,115,
128-129,131-133

¥.S5. ¥ong, 92,113

W.M. ¥onham, 9,21,74,89

M.S. ¥Woolfson, 40,43

C. Yang, 24,43

A.A. Yushkevich, 6,17,74,89

M. Zakai, 100,114

Q. Zeitouni, 92,114



140




141

SUMMARY (In Dutch)

SCHATTEN VOLGENS BAYES TEN BEHOEVE VAN
OP BESLISSINGEN GERICHTE STOCHASTISCHE BESTURING

Samenvatting

Stochastische processen met een op beslissingen gerichte
besturing worden beschouwd als bestuurde Markov processen waarvan
de toestandsruimte "hybride" is; dat wil zeggen een produkt van
een discrete set en een Euclidische ruimte. Deze wiskundig aanpak
is algemeen genoeg om als model te dienen voor velerlei op
beslissingen gerichte stochastische besturingsproblemen.

In het algemeen leiden de in het "verleden" en "heden" gedane

waarnemingen van het bestuurde Markov proces niet tot volledige

zekerheid over het "heden" van de discreet-waardige toestands-

component. De optimale besturing kan dan worden verkregen door

het uitvoeren van twee opeenvolgende stappen:

- Het schatten volgens Bayes (het evalueren van de conditionele
distributie) van het Markov proces,

- Het besturen van de conditionele distributie op basis van
perfecte kennis van zijn evolutie.

Helaas levert de uitvoering van elk van deze stappen aanzienlijke

problemen in het geval dat de Markov toestand hybride is.

Het proefschrift richt zich op de modellering van hybride
toestand Markov processen en op de oplossing van problemen die
zich voordoen bij het schatten volgens Bayes voor dergelijke
processen.
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