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STOCHASTIC APPROACH TO STUDY THE INFLUENCE 
OF RATE OF LOADING ON STRENGTH OF CONCRETE 

Summary 

Although any reliability analysis depends on the entering load and resistance distribu­
tion functions, the actual materials behaviour has been neglected in many reliability as­
sessments. Strength of concrete is widely scattered because of the heterogeneity of this 
composite material. So far no generally accepted theory to describe the stochastic na­
ture of concrete properties is available. Besides of this, hardly anything is known on the 
influence of rate of loading on the variability, of strength of concrete. 

In this paper, a stochastic theory for fracture of concrete materials is presented. This 
theory is based on physically relevant probability models. It is possible to describe the 
fracture process not only under monotonically increasing load, buth also under time­
dependent loading conditions such as sustained load and repeated load. Moreover, this 
theory provides a realistic basis for a mathematical formulation of the variability of 
porous materials. Theoretical predictions are compared with earlier published data. Ex­
periments have been carried out to verify the theoretical approach described in this re­
port. Special emphasis is placed on the influence of rate ofloading on the mean strength 
and the corresponding variability. The rate ofloading has been changed by three orders 
of magnitude and for most series six different rates have been chosen within this range. 
Specimens of high strength mortar, low strength mortar, lightweight and normal con­
crete have been tested under compressive and bending load. The distribution function 
has been evaluated from about 30 individual tests for each chosen condition of loading 
some experiments to investigate the influence of temperature have been carried out. 

The experimental results essentially verify the theoretical approach. The following 
conclusions were obtained: 
- The influence of rate of loading can be described by a power function: 

(-/- ) ( ./ • )l/(JJ+ 1) a ao = a ao 

where ao and 0-0 are reference mean value of strength and reference rate of loading 
respectively, and./3 is a materials parameter. 

- The coefficient of variation does not depend on rate of loading. 
- Materials with a low average strength experience a more pronounced strength 

increase as the rate of loading increases. 

- The distribution of strength as determined by three point bending test and under 
compressive load can be described satisfactorily by Weibull's distribution function. 
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Stochastic approach to study the influence 
of rate of loading on strength of concrete 

1 Introduction 

There are many reports or studies of the fracture behaviour of concrete. Most of them, 
however, are mainly based on phenomenological observation and various empirical for­
mulae applicable to some limited conditions have been proposed. On the other hand, 
there are quite few theoretical approaches which can predict satisfactorily the fracture 
of concrete. 

Fundamental theories such as the original one by Griffith [1920] and most of the mo­
dification which followed treat only crack initiation at regular flaws in an isotropic and 
homogeneous solid. But concrete is a very heterogeneous material and fracture initia­
tion is a highly localized phenomenon. Therefore the wide scatter of the test results con­
cerning fracture behaviour of concrete should be considered as a characteristic property 
which cannot be separated from the physical aspects ofthis type of materials. As a con­
sequence the nature of the observed phenomena need to be analysed by statistical 
methods. 

At present there are many papers to discuss which kind of statistical distribution 
function is best suited to describe the distribution function of concrete strength [see for 
example: D. P. Maynard and S. G. Davis, 1974; R. J. Torrent, 1979]. But it is very dif­
ficult to discriminate by a limited number oftest results whether the choice of a normal 
distribution, a log-normal distribution or a typical extreme value distribution is more 
realistic. Because of the fact that fitting of different distribution functions to existing 
test results does not provide a clear answer to this problem there is a need to derive 
appropriate distribution functions on the basis of realistic physical concepts. 

Wei bull [1939] proposed a statistical theory. He was the first to apply the weakest link 
concept to fracture phenomena of solids, and he arrived at a distribution function of the 
smallest values (so-called Weibull's distribution function). 

Weibull's approach was especially successful to describe the size effect of brittle frac­
ture of solids. Freudenthal [1968] conjuncted this asymptotic distribution function 
based on the weakest link model, with the Griffith crack instability criterion to discuss 
more generally the scatter of fracture phenomena of brittle materials. 

Fracture behaviour of concrete materials, however, is quite different from that of 
idealy or nearly brittle materials. There is a stage of stable crack propagation even under 
a tensile load [Kaplan, 1961]. Moreover, compressive fracture is caused by accumula­
tion of micro cracks which increase with the compressive load. Therefore another 
theory which takes into consideration structural aspects of concrete is required in place 
of purely statistical theories such as the one by Weibull [1939]. 

Most conventional concrete structures are designed in such a way that concrete has to 
carry static compressive load. But there is an increasing number of concrete structures 
or structural elements where the design load is dependent on the behaviour of concrete 
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under high rate ofloading. Typical examples are columns of highway structures, slender 
off-shore structures, concrete ships and concrete piles used for foundations. The secondary 
safety containment of nuclear power plants which is designed to resist among other 
loading conditions missile impact external explosions and seismic loads, is just another 
example which underlines the necessity to know more about materials properties under 
high rate of loading. 

For a realistic reliability assessment, not only the mean value of strength as function 
of rate of loading is needed but the distribution function must be known too. So far, 
limited information on the influence of rate of loading on the average strength can be 
obtained from the literature. But very little is known on the distribution of strength at 
high rates ofloading. Therefore we shall concentrate in this contribution on the influ­
ence of rate of loading on the variability of concrete strength. 

Mechanical properties of all materials are dependent on rate of loading. It is well 
known that strength of steel or plastics increases at higher rates ofloading [Mainstone, 
1975]. Similar behaviour is observed on brittle materials such as glas [Chandon et aI., 
1978]. 

Watstein [1953] has shown among others that compressive strength as well as elastic 
modulus of concrete increase at high rate of loading. There is a wide scatter of the ex­
perimental findings of various authors. But a remarkable increase of compressive 
strength with increasing rate of loading undoubtedly may be assumed. Similar results 
have been obtained by measurements of direct tensile strength [Reinhardt 1979] and of 
bending strength [Zech and Wittmann 1980]. Gupta and Seaman [1975] observed an in­
crease of strength by a factor of 10 under missile impact loading. 

A new concept to describe the stochastic nature of failure of concrete has recently 
been published by Mihashi and Izumi [1977]. On the basis of this approach the influ­
ence of temperature, of size of the specimen, and of rate of loading on strength can be 
explained uniformely. 

In the following section on the same basis a stochastic theory to describe fracture of 
concrete will be outlined. The essential theoretical predictions shall be compared with 
experimental findings on this report. 

2 Stochastic theory for fracture of concrete 

2.1 Assumptions and model 

Roughly speaking, most of the previous studies concerning the fracture behaviour of 
concrete can be subdivided into the following three groups from the view point of the 
level. 
l. Macroscopic level: 

Characteristic length in the order of 100 mm or more. Typical materials properties to 
be studied: average stress and strain, strength, nonlinearity of mechanical properties. 

2. Submacroscopic level: 
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Characteristic length in the order of 1 mm or 10 mm. Typical materials properties to 
be studied: local stress and strain, crack formation, failure process, fracture mech­
anism. 



3. Microscopic level: 
Characteristic length in the order oflO- 1 mm or less. Typical materials properties to 
be studied: microstress and microstrain, hydration, porosity, structure. 

The characteristic macroscopic phenomena are caused by submacroscopic failure and 
remarkably affected by the factors on the microscopic level. Concrete materials i.e. 
cement paste, mortar and concrete contain enough submacroscopic material defects 
such as voids (entrapped air), flaws, shrinkage cracks and interfacial cracks. Therefore 
the stress distribution in the solids is remarkably disturbed by these defects. And it is 
well known that the failure process is highly affected by some bigger material defects 
among them. Under uniaxial load the failure behaviour around each defect is rather in­
dependent of the rest of the materials structure with the exception of direct neighbour­
ing pores. The failure process can be assumed to be the same of many microprocesses. 
Until fracture occurs a series of typical states of crack propagation is followed. 

The failure process highly depends on the material and the loading condition. Cement 
paste under tensile load behaves just like porous rock. Fracture occurs in a quite 
brittle manner and there are not stable states with crack initiation. The spe­
cimen fractures immediately when a crack initiates from a pre-existing micro crack. 

Concrete and mortar under compressive load, however, are not fractured in such a 
way. There are some stable states with submacroscopic cracks and the failure is caused 
by the accumulation of many cracks. 

From the view point of the microscopic level, the fracture of concrete materials may 
be caused by a series of local failure processes in the phase of hydratation products of 
cement and interfaces. When a failure criterion is satisfied in one part of the phase, a 
crack is created. Its extension and the connection with other cracks cause eventually 
fracture. This holds true even under tensile load [Higgins and Baily, 1976]. 

On the basis of these facts, the following assumptions may be introduced for the 
mathematical treatment. 

a. The concrete system may be considered to consist of a group of m elements with two 
or three phases which are linked in series. (In the case of fracture under multi-axial 
compressive load, the structural element must be reconsidered according to the 
failure process). This situation is shown schematically in Fig. 2.l. 

b. Each phase consists of n units which contain a circular crack. This model may be re­
presentative for hardened cement paste and is shown in Fig. 2.2. 

c. The dimensions of a circular crack may be evaluated by the equivalent crack length 
2c 2: where c is a fracture factor. 

c=g(s, I, t) 

c depends on s, which is a micro-stress disturbance coefficient caused by material 
defects, on 2/the microcrack length (which may be related to micropore size) and on 
time t, s and I are random variables and mutually independent. When the relative 
fracture factor of a microcrack under a given stress is estimated, the following equa­
tion is obtained on the basis of elementary fracture mechanics: 
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C=ks 1/t 
VEY (2.1) 

Where Eis Young's Modulus, y is the surface energy and kis a constant. If only a spe­
cific crack length such as the expected maximum micro crack length (2/) is consider­
ed, the density function of the fracture factor is described as follows. 

11 fEY 
fc(c) = k V,··fs(s) (2.2) 

d. Different failure processes are described in Fig. 2.3. For each state, only the micro 
stress distribution is changed by submicroscopic cracking. In type A, there are no 
stable states for crack formation. In type B, the internal micro stress distribution of 
state 1 is different from the initial state. Fracture of the specimen is dominated not 
only by the initial state but also by the state l. In type C finally the failure process is 
treated much more comprehensive. 

1-Pol 
[Type AI 

NON-FRACTURE FRACTURED 

[Type B] 

1-Pol 1-Pl' 

INITIAL BOND-CRlI,C 1< FRACTURED 
STATE INITIATION 
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1- POI 1-p 12 1-P23 

Q Po 1 

IN ITJAl BOND-CRACK SlO\~-CRACK FRACTURED 
STATE INITIATION PROPAGATION 

Fig. 2.3. Mathematical models - Transition line graph. 
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e. The distribution of material defects and the characteristic properties of each element 
are statistically equal over the whole region. 

2.2 Strength under monotonically increasing load 

2.2.1 Failure of material of type A 

According to the theory of rate process, the rate of crack initiation on an atomic scale is 
given by the following equation: 

kT 
r=/iexp[-{Uo-p(o,)}!kT] (2.3) 

It is assumed that p (0,) ~ kT, where p is an increasing function of 0, and 0, is the local 
stress at the area of interest. Vo = activation energy in the non-stressed material, 
k= Boltzmann constant, h = PI(j.nck constant and T = absolute temperature. The actiya 
tion energy V (0) = Vo - P (0,) is dependent on the type of the objective phenomena. In 
the case ofbrit11e fracture under a static load, the function V(o) is given by eq. (2.4) ac­
cording to the theory of heterogeneous nucleation [Yokobori, 1974]. 

1 
U(o) = Ub - -In (qo) (2.4) 

nb 

Where Ub and nb are material constants, q is the local stress concentration coefficient 
that means qo is the local stress: 

qo= ab~rrlo= abK 

where ab is constant, and K = stress intensity factor. The same function is given in creep 
fracture, too. Hence the eq. (2.3) can be rewritten: 

kT _1_ 

r=7i exp (- Ub!kT)(qO)"b kT (2.5) 

Since a crack is most likely to nucleate at the zone of stress concentration, the rate of real 
crack nucleation J may be assumed to be proportional to the number of molecules in the 
vicinity of the tip of the pre-existing crack. That means the rate is proportional to the 
crack length. 

Therefore the following equation is obtained: 

J= VZr (2.6) 

where Z is the number of molecules in the stress concentrated zone and V is the effec­
tive volume and not the total volume of the specimen. 

Let Jli (t) . dt be the probability of fracture initiation from a unit i between a given 
time t and t + dt. The mean value Pi (t) for a large number of n is then given by: 

= lJli(t)·Ic(c).dc (2.7) 
o 
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From eq. (2.6), ]I;(t) is described by eq. (2.8) because of ]I; (t) a: I. 

]I;(t) = Z'A(T)(e. a)fi./ (2.8) 

where A (T) andfi are material constants dependent on the absolute temperature and Z' 
is a material constant. From eqs. (2.7) and (2.8) it follows: 

j1;(t) = J Z'A(T)(e· a)J3/·Ic(e). de (2.9) 
o 

In the simple case when only one specific crack length (2/) is considered, the following 
equation is obtained. 

00 

j1; (t) = ZA (Ey) - J3/2 . /J3/2 + 1 a (t)J3 J sJ3fs (s) . ds (2.10) 
o 

because 

fc(e). dea:fs(s)· ds 

If jj. dt is the mean value of the probability offracture occurrence in one element with­
in a given time interval t and t+ dt, the probability P(t) that no fracture occurs before t 

in any units is obtained by eq. (2.11). 

P(t) = exp ( - ~ jj(t)· dt) 

where jj (t) = nj1; (t). 
Hence 

where 

and 

00 

jj (t) = nZA (Ey) - J3/2 .7J3/2 + 1 a(t)J3 J sJ3fs (s) . ds 
o 

00 

R= J sJ3fs(s) ·ds 
o 

(2.11) 

(2.12) 

Therefore the non-fracture probability under uniformly increasing tensile stress is 
given by eq. (2.13). 

{ mL J3+1} 
P(a)=exp -(fi+l)ba (2.13) 

where m is the specimen size parameter and b is the stress rate. And the probability 
density function of strength q (a) is obtained as follows. 
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q(a)= :L aPexp j-(JJ:~)OaP+l} 
Hence the mean value of strength (j is given by eq. (2.15). 

~=j(fi+1)0}1/(J3+1). (fi+2) 
a mL r /3+ 1 

(2.14) 

(2.15) 

where r is the Gamma function. And the peak value of the function q (a) is expressed as 
follows. 

(j _ (fiO )p! 1 

m- mL (2.16) 

Eq. (2.15) or (2.16) indicate that large values of Land m decrease the value of 0. It 
should be noted, moreover, these equations lead to explanations of kinetic effects of 
stress rate and temperature which could not be explained by usual extreme probability 
theory. The variance (or dispersion) of strength is obtained by eq. (2.17): 

2 j(fi+ 1)0}2/(J3+1) {~+3) 2 ~+2)} V(a)= r - -r -
mL +1 +1 

(2.17) 

This predicts that large values of Land m decrease the scattering of strength. 
From eqs. (2.15) and (2.17) the following equation can be deduced: 

V(a) = {r(ffi)-r2 (ffi)r2 

o r~:~) 
(2.18) 

Eq. (2.18) means that the coefficient of variation is not influenced by the rate ofloading, 
but it is rather a constant for a given material. In the same way, the mean value of flex­
ural strength under third point loading is obtained as follows: 

1 

a-{ 3(fi+l)3 00 }fl+l rlfi+2) (2.19) 
- m· (lbh . (fi + 3)L \Jj + 1 

where a is the halflength of the span simply supported, while b is the width and h is the 
height of the beam, and 00 is the stress rate at the outer fiber in the center of the span. 

2.2.2 Failure of a material of type B and type C 

Generally speaking, it is more suitable to describe concrete fracture phenomena as suc­
cessive events. In such a case, let Pi (t) be the probability that the state of an element has 
transformed into the stage i of the successive stochastic processes at a given time t. Then 
the following differential equations are obtained. 

dPo(t)/dt= - P01(t)PO(t) 

dPi (t)/dt= - Pu + 1 (t)Pi (t) + Pi ~ l.i (t)Pi~ 1 (t) 

12 
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where 

and 

L; = nZ(Ey) - jJ/2 . 7 jJ/2 + I AR; 

indicating the probability that an element makes a transition from stage i to stage} in a 
unit interval at a certain time t. From eq. (2.21) under the initial condition: 

Po(o) = 1, P; (0) = 0U =1= 0) 

one can obtain the following equation: 

(2.22) 

where 

(2.23) 

and 

1= i-I 

and the initial conditions concerning u; (t) are 

u;(o) =0; i~ 1 

Under uniformly increasing stress, eq. (2.22) is rewritten as follows: 

(2.24) 

N ow the probability that no fracture occurs below a given stress within a given element 
is written for the two types of model material as follows: 

j-l 

P(o) = I P;(o) (2.25) 
;~O 

where} = 2 for type Band} = 3 for type C and the non-fracture probability of the speci­
men can be expressed as P(s) = lP(o)}m. 

Therefore the following equation is obtained. 

(2.26) 

where according to the type of model material} = 2 or 3 and k=l= i. 

Then the mean values of fracture strength in the case of type B is obtained as follows: 
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I 

0-= l(ft+ l)a}.!i+l[~. r (2ft + 3) + 1(2m -1). Lo - LII·LI. 
mLo mLo ft+ 1 2m2~ 

( ~ft+ 4) m2~ + (1- 3m)· LoLl + Lf (4ft + 5)] ·r ~~ + ·r--
ft+ 1 6m2~ ft+ 1 

_1_ 

l
(ft+ 1)a}.P+I 

= mLo . F(Jq, m,ft) 

where 

Al = LdLo 

and for type C another expression is found in a same way. 

2.3 Strength under sustained load 

2.3.1 Fracture without consideration of aging effect 

2.3.1.1 Fracture under sustained tensile or bending load 

(2.27) 

The probability that no fracture occurs in the purely brittle specimen like type A before 
time t, is defined by P(t) as follows: 

P(t) = exp ( - I mLaP dt) = exp ( - mLaflt) (2.28) 

Therefore the fracture probability D (t) is 

D(t) = 1 - exp ( - mLaflt) 

The probability density function of fracture strength q(t) is 

q (t) . dt= mLafl exp ( - mLaflt) . dt 

The mean value {of fracture time is described by 

where 

(= J t· q(t). dt= J mLaflt exp (- mLaflt). dt 
o 0 

1 00 

= --fl J X· exp ( - X) . dX 
mLa 0 

Finally we can get the following equation. 
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and we get far the related legitime of a specimen: 

or what is equivalent with eq. (2.32) 

0/00 = (Yu/r/ 1fJ 

Therefore 

-1 
In 0/00 = fi In I/Yu 

Then the variance V2(t) is obtained as follows: 

V2(t) = j t 2. q(t)· dt- (t? 
o 

1 2 
( fJ) 2 jr(3) - r (2)} 
mLo 

Hence 

V(t) _ jr(3) - r2(2)}1/2 
7 r(2) 

2.3.1.2 Fracture under sustained compressive load 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Since the failure process of concrete is not purely brittle because of its heterogeneity 
and the different crack arresting mechanisms, the probability Pi (t) that the state of an 
element has been transformed into the stage i of the successive stochastic processes at a 
given time t, has to be considered. One can obtain Pi (t) for a model material of type B or 
type C in an analogous way as described for a material of type A by eq. (2.28): 

Pi(t)=exp {- rPi.i+l(t) dt} Ui(t) (2.37) 

where Pu means the probability that an element makes a transition from stage i to j in a 
unit interval at a certain time t. 

where 

UO(t) = 1; 1= i-I 

Therefore (i= 1): 

UI (t) = i {POI (t) . exp [i {PI2(t) - POI (t) } dt]} dt 

(2.38) 
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We assume that the probability Pu (t) can be described by eq. (2.12). 

Pu (t) = L;jolfl 

where 

L; = nZA (Ey) -fl12 /fi12 + j • R; 

Hence it follows for i = 0 and i = 1: 

Therefore Uj (t) can be rewritten: 

( 

Uj(t) = J [Lalal fl . exp {(Lj - La) ·Ialfl. t}] dt 
o 

(2.39) 

Accordingly we obtain the probability that the state of one element has been transform­
ed from eq. (2.37): 

Po(t) = exp ( - La ·Ialfl. t) 

Pl(t) = exp (-1 Ldalfl d} (Ll ~La) [exp {(Lj-La)lalflt} -1] 

La 
= (Lj _ La) [exp ( - Lalal fl . t) - exp ( - Ldalfl . t] 

The probability P(t) that the element is not fractured before a given time t, is then ob­
tained as follows: 

p(t) =Po(t) +Pl(t) 

1 
= (L j _ La) {Lj exp ( - Lalalflt) - La exp ( - Ldalfl . t)} (2.40) 

The probability density function of the fracture time of an element is then given by: 

e LaLjafl 
q (t) = (Ll _ La) {exp ( - Lalal fl . t) - exp ( - Ldalfl . t)} (2.41 ) 

and mean value of the fracture time is 

(2.42) 

The non-fracture probability of a specimen with m elements can be expressed by the 
relation 
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Consequently the following equation is obtained: 

The probability density function of the fracture time can be written as follows: 

mLoLdal!! 
q(t) = (LI _ Lo)'" ILl exp (- Lolalflt) - Lo exp (- Ldal!!t)}m~ I 

·lexp (- Lolal!!t) - exp (- Ldalflt)} (2.44) 

= mLoa!!· exp (- mLoa!!t) [Llaflt+ LI ·1(2m -1)· Lo - Ldiffl ~ 

+ ILf + (1- 3m)· LILv + m2i.6}a3!!~] 
The mean value of the fracture time is described by eq. (2.45). 

where 

(2.45) 

2.3.2 Consideration of the aging effect on the fracture behaviour of 
concrete from the view point of a stochastic theory 

Young's modulus E, surface energy y, and pre-existing crack length 7 may be functions 
of the age of specimens. The time-dependence may he described by the following 
equations: 

E(r) = Elr al 

y (r) = YI r a2 

7(r)=~/ra3 

(2.46) 

(2.4 7) 

(2.48) 

where aI, a2 and a3 are materials parameters which are affected by water-cement ratio 
and type of cement etc. From eq. (2.12), the term L can be subdivided into two com­
ponents, i.e. 

L= L.L(t) 
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Then L(t) is given by: 

L(t) = (Ey) -j]/2/Cf3+ 2)/2 = CIT- a (2.49) 

where 

On the assumption thatfl is not affected by the age of a specimen and that i; is high 
enough in comparison with the change of materials properties as function of age T, the 
aging effect on the strength is: 

_1_ 

a= {(fl+ 1)i;}j]+lr/~+2) Tef3:I) 

mLCI \;3+ 1 

{ 
fli; }j]! I _a 

a - -- Ij]+1 
m- mLCj 

(2.50) 

If we consider specimens with the same wlc ratio, the strength ratio is 
a 

'YJ= a(T)/a(To) = (T/TO)(j] + I) (2.51) 

Under a sustained load, the non-fracture probability may be obtained by eq. (2.52). 

P(t, TO) = exp {- i mf. L(t, TO)(fj] dt} (2.52) 

where 

and TO = the age of the specimen at which the load has been applied. Hence 

mLCj (f j _ a - mLCj (f j _ a { - f3 } { -. j] } 
P(t, TO) = exp (1- a) TO exp (1 _ a) (t+ TO) ; (a =1= 1)(2.53) 

The probability density function is as follows. 

(2.54) 

Therefore the mean value of fracture time is described by eq. (2.55): 

- - j] mLCI (f I _ a 00 _ a mLCI (f I _ a { - j]} { - j] } 
t(TO, (f) = mLCj(f ·exp (I-a) TO ~t(t+TO) ·exp - (I-a) (t+TO) dt 

I 

_ {mLCI(fj] I-a}[{ (l-a)}~ (2-a mLCI(fj] I-a) - exp TO ·r --, TO 
(1- a) mLCI(fj] 1- a (1- a) 

( mLCI (fj] I _ a )] 
-Tor 1, (I-a) TO 

(2.55) 
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where r(b, z) is the Incomplete Gamma Function and an asymptotic expansion of this 

function is as follows (where b> 0): 

_ b-l {b-l (b-l)(b-2) (b-l)(b-2)(b-3) } r (b, z) - z exp ( - z) 1 + + 2 + 3 + ... 
z z z 

(2.56) 

Ifwe consider the expansion until the third term, the mean value of fracture time may 

be described by eq. (2.57). 

In the case of old specimens, eq. (2.57) may be rewritten as: 

where 

7 __ 1_ (1 + __ a_) 
- mLafi mLafiTo 

L= LC1TO-a 

If a = 1, eq. (2.53) should be replaced by eq. (2.58): 

P(t, TO) = exp (mLC1afi ln TO) exp {- "!.iC1afi ln (t+ TO)} 
= exp (mLC1afi ln TO)(t+ TO) -mLCwfi 

and the probability density function is then given by: 

q (t, TO) = mLC1 afi . exp (mLC1 afi ·In TO)(t+ TO) -1- mLCj<lfi 

(2.57) 

(2.58) 

From eq. (2.53), it follows that the non-fracture probability leads to an infinite value for 
time t when the value a is larger than unity. The non-fracture probability is shown in 
Fig.2.4. 

The non-fracture probability at time t= 00 is given by eq. (2.59): 

{ mLCl afi 1 _ a } 
P(t, TO)I= 00 = exp 1 _ a TO 

1 

{ mLClafi } 
exp (a _ I)T~-1 

p (t) 

1 

a<l 
OL-_____ -=~ ___ _{> 

t 

Fig. 2.4. Non-fracture probability under sustained load. 

(2.59) 
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From equation (2.50) and eq. (2.57), the relationship between 7 and the static strength 
can be obtained as follows ('YJ= a/a): 

-.1IL (1a ) 
7- a (mLC1)Ji+lt< ,Ii"+j-I 

- (mLCI)2 jJa 0 

I mLCl TO (I -,Ii: I) ( jJ' )fth) 2 
(1/'YJ)Ji+ ~-~ 

2a mLC1 4a 
(2.60) 

(_1~) 1 (1/'YJ)Ji + A2· TO (I- Ji : I) 12 :~ 
TO 1 Ji + 1 

This may be looked upon as being a deformated equation of eq. (2.61). (Fig. 2.5). 

Al 
7= ~~- (1/'YJfl)2 

TO (1-/:1) 

From eq. (2.60) it follows: 
~ ~ 

7= -1- (mL~1 )Ji+ 1 {(1/ fl)T': 1 + ---!-. (mL~1 )Ji+ 1 1 2a (1/'YJ.f3\2} 
mLC1 jJa 'YJ mLC1 jJa J 

T01-]T+T 

In the case of old specimens, the following equation may be useful. 
~ 

_ 1 (mLC1 )Ji + 1 Ji: 1 ( / ) Ji t=--- -- TO 1 'YJ 
mLC] jJa 

{ TO lJi~1 
= mLC1(jJa)Jif (l/'YJ)Ji 

(2.61) 

(2.62) 

(2.63) 

From eq. (2.45) and eq. (2.62), the following equation may be obtained for the model of 
type B. 

20 

, , -' 0 11 
--':~'lLf~- To /4 'T 

, , 

Fig. 2.5. Graphical representation of eq. (2.60). 



~ 

7= --2-. (mLC1 )fi+ I {~. Trf~ I 
mLC1 jJa 1') fi 

~ 

+--!- (mLC1)fi+1 (l/1')J?} F(AJ, m) (2.64) 
mLC1 jJa (2a ) 

TO 1-!i+I 
In the case of the loading condition as shown in Fig. 2.6, the non-fracture probability 
should be evaluated by eq. (2.65). 

P(t) = exp (- t mLafi . dt). P(a) 

= exp (- mLa!3 t) exp { - (jJ :~)o a!3+ I} (2.65) 

where P(a) means the non-fracture probability at point 1 in Fig. 2.6. Hence the follow-
ing equation is obtained. 

1 {mL } 7= mLafi ' exp - (jJ + 1)0' afi + I 

Because of the same reason, eq. (2.64) may be rewritten as follows. 
~ 

7=--2- (mLC1)fi+1 {Tr!~1 ~ 
mLC1 jJo 1')!3 

~ 

a (mLC )ofJ + I 1 ( 1 )2} {jJ } + --- _~.~I 2a fl exp - _o_1')fi+ I F(AJ, m) 
mLC1 jJa TO I -!i+I 1') jJ + 1 

This equation will later be compared with published experimental data. 

a 

A 
I 
I 
I , 
I 
I 

I 
I 
I 

Time 

o ~----------------- - ----.". t 

(2.66) 

(2.67) 

Figo 2.6. Usual loading history for an experiment to determine the lifetime of a specimen. 
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T) 

The E f feet 0 f P (a) 
in Eq. (2-65) 

a r--

o to 2to 

- - r-

t 

Fig. 2.7. Modified relationship. Fig. 2.8. Rectangular pulse loading condition. 

2.4 Strength under repeated load 

2.4.1 Fracture under repeated tensile or bending load 

2.4.1.1 Rectangular pulse loading history 

To begin with the description offatigue of concrete, the simplest model (type A) will be I 
used to study the failure process. A rectangular pulse loading history is being assumed. 
Then the non-fracture probability after one cycle ofloading as shown in Fig. 2.8, is given 
by eq. (2.68): 

P(l) = exp { -I mLa1i · dt} (2.68) 

After N cycles of loading, the following equation expresses the non-fracture probab­
ility: 

P(N) = exp ( - NmLa1i 41) (2.69) 

The probability density of the number of cycles N which leads to failure is given by eq. 
(2.70): 

The mean value of fatigue life is then described as follows: 

where 

2J 
=~r(2) 

mLa1i 

1 
J=-241 

is the frequency of the cyclic loding history. 
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If we introduce 

~ _ (.J30 )/1 ~ 1 
(Jm- mL 

as the mean value of static strength as indicated by eq. (2.16) we can rewrite eq. (2.71) 
and obtain: 

-fL 
~ 2,[ (mL)fi+ 1 

In Nl = -.J] ·In 'YJ + In mL' .J30 (2.72) 

2.4.1.2 Triangular pulse loading history 

Non-fracture probability after half-cycle ofload history as shown in Fig. 2.9, is given by 
eq. (2.73). 

{ mLofi } pm = exp -.J3+ 1 tI+ 1 (2.73) 

Ifwe suppose that the transient probability is dependent only on stress, the non-fracture 
probability after N cycles is described by eq. (2.74). 

( 2NmL(JfJ ) 
P(N) = exp - .J3 + 1 to (2.74) 

The probability density q (N) and the mean value offatigue life N2 are given by eq. (2.75) 
and (2.76) respectively: 

( ) _ 2mL(Jfi to . ( _ 2mL(Jfi to . ) 
q N - .J3 + 1 exp .J3 + 1 N (2.75) 

(2.76) 

a 

o to 2to t 

Fig. 2.9. Triangular pulse loading condition. 
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Ifwe introduce again am as the the mean value of static strength, the following equation 
is obtained: 

~ 

_ (fl + 1) -f ( mL )fi + I 
In N2 = - flln rJ+ In mL flO- (2.77) 

as usual 'YJ stands for oj am· 

2.4.1.3 Sine-wave loading history 

For experimental studies very often sine-wave loading history is chosen. In this case the 
non-fracture probability is given by the following equation: 

{ I/f } 
P(l) = exp - ~ mL· (om + Oa· sin 2rrJt)fi. dt (2.78) 

Unfortunately it is very difficult to find an analytical solution of this equation. But the 
upper limit and the lower limit of N3, the fatigue life under cyclic loading, may be esti­
mated by the results of 2.4.1.1 and 2.4.1.2: 

(2.79) 

From eq. (2.72) and eq. (2.77), the following relation is predicted between the fatigue 
life N and the upper bound stress level 'YJ for all kinds of constant amplitude loading con­
dition. 

In N = - fl ·In 'YJ + constant (2.80) 

where the constant is dependent on the chosen loading history. 

2.4.2 Fracture under repeated compressive load 

2.4.2.1 Rectangular pulse loading history 

According to the model of type B, the following non-fracture probability and the mean 

value of fatigue life are obtained if rectangular pulse loading history is assumed: 

(2.81) 

(2.82) 

2.4.2.2 Triangular pulse loading history 

The corresponding equations for non-fracture probability P(N) and the mean life-time 
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under triangular loading history are found to be: 

(2.83) 

(2.84) 

From eq. (2.82) and (2.84), the general relation between the upper stress and the fatigue 
life under compressive load may be expressed by eq. (2.80). 

2.4.3 The influence of time-dependent deformation on fatigue life 

Under repeated loading condition, an influence of time-dependent deformation on fa­
tigue life cannot be excluded. Possible mechanisms to cause the change of internal 
structure include: 
l. Increase of the radius of micro crack tip caused by creep deformation. 
2. Stress redistribution caused by many stable cracks as discussed above. 

The non-fracture probability of an element under rectangular loading conditions as 
shown in Fig. 2.11, is given by eq. (2.85). 

P(N) = exp { - I L· (RJl + 1) . aft. 10· dN} (2.85) 

If we consider the change of internal structure under a certain sustained load, the 
following relation an be assumed: 

[) 

/ 
2t 0 

Fig. 2.10. Sine wave loading condition. 

(2.86) 

a 

Ro 

t 
to 2~ 

Fig. 2.11. Rectangular pulse loading condition_ 
superimposed to a constant load Ro. 

25 



where 

210 

S= J {a(t))al. dt= (R al + 1)· aal'f{] 
o 

and a may be a kind of materials parameter affected by temperature, humidity and the 
frequency of repeating load. 

Hence the non-fracture probability of the specimen is obtained. 

P(N) = exp {mL' (RfJ + 1) . afl'f{]}. exp { _ mL(RfJ + 1) . aflf{] (bSaN + 1) 1- r} (2.87) 
a· b· sa. (1 - r) ab· sa . (1 - r) 

and the probability density of fatigue life q (N) is: 

q(N)=exp (A).A.(I-r)bSa.(bSa.N+l)-rexp (-A(bS a .N+l)l-r) (2.88) 

where 

mL· (RfJ+ 1). afJ'f{] 
A=-~--~--

abS a • (1- r) 

The mean value of fatigue life is given by eq. (2.89). 

N= :S· exp· (A). [(~) J~r.rC = ~,A)- r(l, A)] 
where 

( 2 - r ) r 1- r,A 

is the incomplete gamma function. 
After asymptotic expansion, the following equation is obtained. 

N = 1 + ------':,--------'-;;--- a [abr. tt· (Raj + It. aa2 

mLf{]· (RfJ + 1). afJ mL(RfJ + 1). afJ'f{] 

+ a 2b2. r. (2r-l). tJa. (R al + 1)2a. aM] 

m2L2(RfJ + I? a 2fJ . tJ 
where a2 = al . a. 

3 Comparison with published data 

3.1 Influence of rate of loading on strength 

(2.89) 

(2.90) 

The influence of rate of loading may be described by the following equation (see eq. 
2.15) as shown above: 

J 

~=(!)fi+l (3.1) 
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Fig. 3.1. Some empirical formulae of the influence of rate of loading compared with eq. (3.1). 

3.5 

Theoretical Curves (Bq.3-1) 

Po= 0.0] ton/sec 

• S 13.5 d ern 2.5 

0 S 12.0 d em 

1.5 

-1 

0.5 

Fig. 3.2. Related flexural strength of concrete slab as function of related rate ofloading (after J. 
Takeda). 
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a and ao stand for strength under high rate ofloading and for low rate ofloading respec­
tively. The corresponding rates of loading are called a and ao. 

In Fig 3.1 and 3.2, some experimental results taken from Hatano [1961; 1968] and 
Takeda et al. [1976] are shown. 

It is noteworthy that eq. (3.1) describes the dependence of strength under high rate of 
loading satisfactorily in a very wide range of different rates. This has been shown by 
other authors too in the mean-time [Zech and Wittmann 1980; Chand on et al. 1978]. 

3.2 Aging effect and strength under sustained load 

If the load is kept constant on a level slightly below the critical load, the overall crack 
length increases as a function of the duration of load t. 

Wittmann and Zaitsev [1973] obained the following theoretical expression after a 
mathematical treatment of this problem on the basis of crack propagation: 

a (t) 
rj=--a (TO) 

~ 

"t;= 10 ~j.-£e=ES3;g~eB 
0.8 1---+---+-1-_+--+--+-+_-+--+--+-+_+___+-1----1 1 day r -+--+-+-+--+--+--+---+--+-+-----+-+----

°L_o 0 
10 - - - - -"'r=~~F_;"'-"oT:-=-~-.-+----+-+---+--+-1---- 1-1--

t5' 0.8 '-i--~~ 3 days 

.,.. 1.0 --- --olo-a,o~'_"'.:".Q·lo-~:±O----ot------c~+-___+__+-__j-+__+____j 
-f--~- __ 0 

0.8 f==t=+=:=::t=--+1t-~t-::t~~~~~~I;-o-=t=t:J 7 days 
1-----1--+--+--+ --I-- --- t----t---...J'c----+--+----+-+-

----I-- -- - t----j---+--+ 

1.0Jt~=t=OO ~~~~~=t::;t:t=t=t=~ all -_-O.Q. 

r---o-,,--;;"-
0.8 1----+--+- -+--+-I--t---+-+---"f=t=-p--:+~=I:c-"", 1. days 

1. OI--__+---.,f-·cI-"""", u,j.Jt=-~B-:~.=l'=-o---j-:::::.+-;,--+t--,_::.::-_'-l~ ~r,,--+--I-~--+ 
0.8 1-__+-I-+--+__+-j----191-'1r--t::=:,O 8 0 56 days 

t--+-- -- t--+--t--i--t--+-+-+--+'o- 0 Q) 

1.0 - - ~4-=-*=~=_~dt--=--+-1---+F--_-_+-+----+--+-+-+---+-+-

0.8 ~~~l;~~~t~0-+t!~t--~0~01~t-~~;!~~§t~~ 90 days 

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 500 1000 min. 

- - - - - after Wittmann & Zeits.v (1973) 
~ present theory 

lifetime t -. 

(3.2) 

Fig. 3.3. Comparison of eq. (2.67) with experimental data of Wittmann and Zaitsev [1973] who 
determined the lifetime of hardened cement paste under sustained load. 
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where O'(TO) and E(TO) are the strength and the Young's modulus respectively of the age 
of the specimen TO at which the load has been applied. rp (t, TO) is the corresponding creep 
number. 

In Fig. 3.3 and 3.4, a comparison of some experimental results with the theoretical 
equation (2.67) is presented. According to eq. (2.67), the following equations are ob­
tained for Fig. 3.3 and 3.4 respectively: 

(3.3) 

(3.4) 

Theoretical curves calculated with the help of eq. (3.2) are also shown in these figures. 
It can b..; stated that there is good agreement between theoretical predictions and ex­

perimental findings within the range of accuracy of the measurements. 
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Fig. 3.4. Comparison of eq. (2.67) with experimental data of Wittmann and Zaitsev [1973] who 
determined the lifetime of concrete under high sustained load. 
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3.3 Dynamic fatigue of concrete 

From eq. (2.87), the non-fracture probability after N cycles ofioading, may be described 
as follows: 

In ( -In P(N) + Yc ) = (1 - r) In N + Xc (3.5) 

where P(N) is non-fracture probability, r is parameter to introduce the effect of time­
dependent deformation, X and Yare constants essentially affected by stress level and 
temperature. In Fig. 3.5, experimental results are compared with eq. (3.5). 

According to eq. (2.90), the mean value of fatigue life (the number ofioad repetitions 
up to fracture) may be predicted by the following equation: 

N = 1 + + --~~---'-;;---;;---;;-i-;:------;,;:--,'---
_ 2af { abr(R al +lt(2f)l-a a2b2'r'(2r_l).J2(I-a)'(Ral+l)2a} 

mL(RJ3+1)aC mL(RJ3+1)aC-a2 m2.L2.(RJ3+1)2. a;(fi-a2) 
(3.6) 

where f is frequency, R is ad au with au and al being upper and lower bound of the 
applied stress respectively, m is size factor of the specimen,fi is a materials parameter, 
a, b, r, a and al are parameters to introduce the effect of time-dependent deformation, 
a2 is al . a, L is a parameter representing the heterogeneity of internal structure. When 
the effect of time-dependent deformation is negligible, the relation between the mean 
value offatigue life and the applied maximum stress may be described by the following 
linear equation: 

In N= -fi·ln au + F(m, L, R,i) (3.7) 

Fig. 3.6 shows the comparison of eq. (3.7) with the impact fatigue under direct tensile 
repeated loading. A good agreement between the experimental results and the theory is 
observed. Fatigue of concrete under compressive repeated load is also described satis­
factorily by eq. (3.7) is shown in Fig. 3.7. 

2.0 

o 
1.0 o 
0.8 o 
0.6 o 

CL 
~ 0 .• o 
I -

.:; 
0.2 o 

0.1 

4.3 4.4 4.5 4.6 4.7 •. 8 4.9 5.0 In N 

Fig. 3.5. Comparison of eq. (3.5) with experimental results (after Leeuwen and Siemes). 
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Fig. 3.6. Fatigue life under impact tensile load (after Reinhardt). 
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Fig. 3.7. Fatigue life under compressive load (after Leeuwen and Siemes). 

Fig. 3.8. Influence of the lower bound ofthe applied stress on fatigue life. Lines are calculated by 
using eq. (3.6) and experimental values are taken from a reference of Leeuwen and 
Siemes. 
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In Fig. 3.8 finally the influence of the lower bound of applied stress on the dynamic 
fatigue is presented. Theoretical curves calculated with the help of eq. (3.6) are shown 
for comparison. 

4 Experiments and results 

4.1 General remarks on the experimental program 

Experiments were carried out with the aim to verify the theoretical approach described 
in this report. Two different series have been planed. 

The materials tested and the corresponding loading conditions which were chosen in 
these programs are shown in tables 4.1 and 4.2. Ordinary Portland cement was used 
throughout the study (type B according to Dutch Standards). The age of the specimens 
at the time of testing was 28 days for all series. 

In series I the influence of rate ofloading on the mean strength and the variability was 
studied. 

The rate ofloading was changed by nearly three orders of magnitude. Several differ­
ent rates were chosen within these ranges for each material. Specimens of high strength 
mortar, low strength mortar, ligth weight aggregate concrete and normal concrete were 
tested under uniaxial compressive load and in bending. About 30 individual tests were 
carried out for each chosen condition. 

The influence of temperature was also investigated in series II. In this case the speci­
mens were subjected to uniaxial compressive load. Two different environmental tem­
peratures and two different rates of loading were chosen for each material. 

Table 4.1 Experimental program to study the influence of rate ofloading on mean strength and 
on variability of strength of concrete (series I). 

different rates 
group material loading condition of loading number of tests 

A mortar bending 5 148 
(w/c = 0,45) 

B mortar bending 5 149 
(w/c = 0,65) 

C mortar compression 6 188 
(w/c = 0,45) 

D mortar compression 6 190 
(w/c = 0,65) 

E light weight bending 5 150 
concrete 

F light weight compression 5 150 
concrete 

G normal compression 2 60 
concrete 
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Table 4.2 Experimental program to study the influence of temperature on strength of concrete 
(series II). 

different different rates 
group material temperatures of loading number of tests 

H mortar 2 2 6 
(w/c = 0,45) 

mortar 2 2 6 
(w/c = 0,65) 

J light weight 2 2 6 
concrete 

4.2 Experiments with mortar 

4.2.1 Experimental procedure 

As indicated in Table 4.1 mortar prisms (40 mm x 40 mm x 160 mm) have been subject­
ed to bending load and compressive load. The composition of the two types of mortar 
which have been tested in given in Table 4.3. 

Steel moulds were filled with mortar and compacted with a table vibrator for five 
seconds. 

Specimens were kept under moist cloth and demoulded next day. Then they were 
kept in water until the night before testing. Before loading, they were exposed to labora­
tory climatic conditions (20 0 e, 60"/0 RH) for about 16 hours. 

The bending tests were performed on a displacement controlled loading device (In­
stron). A three-point-test was carried out and the beams were simply supported with a 
100 mm span. The load was recorded by means of a conventional load cell. 

The compression test was carried out in a 600 kN servo-hydraulic testing machine 
(Schenck). The load-displacement diagrams of three specimens were obtained for each 
rate ofloading by means of strain gages. This was mainly done to check the influence of 
creep deformation. In the case of compression test, the displacement between loading 
plates was also recorded on a X - Y recorder (HP: 7004 B). The rates ofloading chosen 
for each loading condition are given in Table 4.4. For the bending tests the speed of the 
crosshead is indicated. 

Table 4.3 Composition of the two types of mortar. The weight used for one batch is indicated. 

Portland cement B: 

water 

river sand 

w/c=0,45: 
w/c = 0,65: 

2,0 -4,0 mm: 
1,0 -2,0 mm: 
0,5 - 1,0 mm: 
0,25 - 0,5 mm: 
0,125 - 0,25 mm: 

total: 

450,0 g 

202,5 g 
292,5 g 

67,5 g 
378,0 g 
459,0 g 
310,5 g 
135,0 g 

1350,0 g 
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Table 4.4 Different rates of loading chosen for the tests on mortar specimens. 

bending test compressive load 
A: w/c= 0,45 C: w/c= 0,45 
B: w/c= 0,65 D: w/c= 0,65 

20,0 mm/min 
(3854,20 N/sec) 50,505 N/mm2 . sec 

2 10,0 mm/min 
(1944,10 N/sec) 25,253 N/mm2 • sec 

3 5,0 mm/min 
(1022,08 N/sec) 5,173 N/mm2 • sec 

4 1,0 mm/min 

(200,45 N/sec) 2,586 N/mm2 • sec 

5 0,1 mm/min 
(18,074 N/sec) 0,259 N/mm2 • sec 

6 0,052 N/mm2 • sec 

The values given in Table 4.4 in parentheses mean the approximate rate ofloading cal­
culated from the experimental results. 

4.2.2 Results 

The test results of the groups A to D are given in Tables 4.5 to 4.8. The standard devia­
tion was calculated by using the following equation according to Bessel's correction: 

V(a) = (4.1) 

where (j is mean value of strength and n is the total number of individual tests. 

Table 4.5 The relation between the rate of displacement and strength of mortar (w/c = 0,45) 
under bending loading condition (test group A). 

rate of mean value 
displacement of strength standard coefficient value of 
(mm/min) (N/mm2) deviation of variation .J3s* 

20,0 8,7203 0,67705 0,078 13,222 
10,0 8,4766 0,71270 0,084 12,002 
5,0 8,3887 0,68489 0,082 12,488 
1,0 8,1136 0,58505 0,072 13,683 
0,1 6,8668 0,72897 0,106 8,969 

* The value of.J3s was obtained according to eq. (2.13). 
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Table 4.6 The relation between the rate of displacement and strength or mortar (w/c = 0,65) 
under bending loading conditions (test group 8). 

rate of mean value 
displacement of strength standard coefficient value of 
(mm/min) (N/mm2) deviation of variation ./3s 

20,0 8,4355 0,71630 0,085 11,746 
10,0 7,9336 0,81962 0,103 8,896 
5,0 8,1'270 0,62945 0,077 12,872 
1,0 7,4507 0,54210 0,073 14,069 
0,1 6,2836 0,46496 0,074 13,758 

Table 4.7 The relation between the rate of loading and strength of mortar (w/c = 0,45) 
under compressive load (test group C). 

mean value 
rate of loading of strength standard coefficient 
(N/mm2 • sec) (N/mm2) deviation of variation 

50,505 46,514 5,0749 0,109 
25,253 43,366 6,3480 0,146 

5,173 40,628 5,9925 0,147 
2,586 41,298 5,8996 0,143 
0,259 37,978 5,2945 0,139 
0,052 35,517 3,9054 0,110 

Table 4.8 The relation between the rate of loading and strength of mortar (w/c = 0,65) 
under compressive load (test group D). 

mean value 
rate of loading of strength standard coefficient 
(N/mm2 • sec) (N/mm2) deviation of variation 

50,505 33,152 4,6688 0,141 
25,253 33,382 3,5767 0,107 

5,173 30,629 3,0357 0,099 
2,586 29,548 3,0142 0,102 
0,259 26,862 3,9058 0,145 
0,052 26,220 3,6890 0,141 

Figs. 4.1 and 4.2 show the relation between the rate of loading and the mean value of 
strength under bending and compressive load respectively. By fitting the data with eq. 
(2.15), the following relations were obtained for the different series: 

Group A: 
(Bending test; mortar w/c = 0,45) 

In a = 0,043 ·In i5 + 2,050 
fiD = 22,2 

Group B: 
(Bending test; mortar w/c = 0,65) 

In a=0,053 ·In i5 + 1,980 
fiD = 17,8 

Group C: 
(Compressive load; mortar w/c = 0,45) 

In a= 0,035 ·In 0+ 3,675 
fiD = 27,4 

Group D: 
(Compressive load; mortar w/c = 0,65) 

In a= 0,038 ·In 0+ 3,361 
fiD = 25,2 
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Fig.4.1. Relation between the rate ofloading and the mean value of flexural strength of mortar. 
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Fig. 4.2. Relation between the rate of loading and the mean value of compressive strength of 
mortar. 

The value of fiD was obtained from the relation: 

1 
In 0= (fiD + 1) In a+ constant 

The probability offailure of mortar prisms (w/c = 0,45) under bending stress and com­
pressive load is shown in Figs. 4.3 and 4.4 respectively. The probability of failure D (0) 
was calculated by dividing the rank of each specimen by (n + 1), where n equals the 
total number of specimens tested at this rate of loading. 
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The reason for dividing by (n + 1) rather than by n, is to avoid a probability offailure of 
1.00 for the specimen having the highest a-value. 

The relation between Young's modulus (obtained from the displacement between 
loading plates) and compressive strength is given in Fig. 4.5. By linear regression the 
following equations are obtained: 

Series C: 

In a = 0,952 In E - 5,843 

Series D: 

In a = 0,567 In E - 2,130 
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Fig. 4.3. Probability offailure of mortar under bending load. Group A (a) and group B (b) are 
plotted separately. 
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4.3 Experiments with light weight concrete 

4.3.1 Experimental procedure 

For the tests with light weight concrete, prisms with the following dimensions have 
been prepared: 40 mm x 40 mm x 160 mm. Sixty prisms were cast at a time from one 
mix. 

Natural river sand and Liapor light weight aggregates having a maximum size of 
about 8 mm were used. The water-cement ratio was 0,55. The light weight aggregates 
were put in water for several hours before mixing. Therefore the actual water-cement 
ratio might be increased some what. Details of mix proportions are indicated in Table 
4.9. 
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Table 4.9 Composition of the light weight concrete. The indicated weights were mixed to 
prepare 60 specimens of 40 mm x 40 mm x 160 mm. 

Portland cement A 
water 
river sand 
liapor (light weight aggregate) 
water taken up by liapor 

5,400 kg 
2,970 kg 
9,300 kg 
9,075 kg 
1,972 kg 
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Typical sieve analyses oflight weight aggregate and the sand are given in Table 4.10. 

Table 4.10 Sieve analyses of light weight aggregate and river sand. 

diameter 
(mm) 

>8 
>4 
>2 
>1 
>0,5 
>0,25 
> 0,125 

rest 

liapor 
(%) 

51 
95,2 

100,0 

river sand 
(%) 

0,5 
6,8 

14,8 
27,1 
59,7 
94,3 
99,3 

100,0 

Steel moulds were filled with fresh light weight concrete and compacted with a power­
ful table vibrator for 5 seconds. Next day all specimens were de moulded and cured in 

water for 27 days at 20°C. They were only removed from the water immediately before 
the loading. The same loading machine as mentioned in the preceding section (groups 
A and B) was used for the bending tests. The compressive tests were again performed on 
a 600 kN servo-hydraulic testing machine (Schenck). In the case of compressive test the 
displacement (of the loading plate) has been recorded. The five different rates ofload­
ing which have been chosen for the two loading conditions are indicated in Table 4.11. 

Table 4.11 Different rates of loading to determine strength of light weight concrete under 
bending and compressive load. 

bending load compressive load 
no. (group E) (group F) 

1 20,0 mm/min 50,505 N/mm2 • sec 
2 10,0 25,253 
3 5,0 5,173 
4 1,0 0,517 
5 0,1 0,052 

4.3.2 Results 

The test results of group E and F are shown in Table 3.12 and 3.13. Fig. 4.6 shows the re­
lation between the rate of loading and the mean value of strength under bending and 
compressive load respectively. According to eq. (2.15), the following relations were ob­
tained: 

Group E: 
(Bending) 

40 

In a= 0,038 ·In 6 + 1,441 
fiD = 25,6289 

Group F: 
( Compression) 

In a= 0,017 ·In a+ 2,566 
fiD = 58,7533 



Table 4.12 The relation between the rate of displacement and strength of light weight concrete 
under bending load (test group E). 

rate of mean value 
displacement of strength standard coefficient value of 
(mm/min) (N/mm2) deviation of variation .f3s 

20,0 4,6133 0,50005 0,108 9,113 
10,0 4,5934 0,44372 0,097 10,237 
5,0 4,6277 0,47012 0,102 9,828 
1,0 4,2832 0,38221 0,089 11,335 
0,1 3,8195 0,35094 0,092 10,827 

Table 4.13 The relation between rate of loading and strength of light weight concrete under 
compressive load (test group F). 

rate of loading 
(N/mm2 . sec) 

50,505 
25,253 

5,173 
0,517 
0,052 

mean value 
of strength 
(N/mm2) 

13,293 
13,793 
14,230 
12,838 
12,148 

standard coefficient 
deviation of variation 

4,3456 0,327 
3,0389 0,220 
3,1460 0,221 
2,7966 0,218 
2,3532 0,194 
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Fig. 4.6, Relation between the rate of loading and the mean value of flexural and compressive 
strength of light weight concrete. 
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Fig. 4.8. Probability of failure of light weight concrete under compressive load. 

The behaviour of light weight concrete under high rate of loading seems to be very dif­
ferent from that of other materials. 

The probability of failure of light weight concrete under bending and compressive 
load are shown in Figs. 4.7 and 4.8 respectively. 

4.4 Experiments with normal concrete 

4.4.1 Experimental procedure 

The prismatic specimens used for this study had a cross section of 100 mm x 100 mm 
and a length of 300 mm. Thirty test pieces were cast at a time from one mix. The same 
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natural river sand as mentioned in table 4.10 and rounded coarse aggregates (maximum 
grain size: 31,5 mm) were used. The water-cement ratio was 0,50 and a slump of5,5 mm 
was measured. Details of the composition of the aggregates used are to be found in table 
4.14. 

Table 4.14 Sieve analyses of gravel and sand. 

seive gravel 

31,5 mm 1,0% 
16 mm 51,4% 
8 mm 88,4% 
4 mm 98,4% 
2 mm 99,8% 
1 mm 99,8% 

500 pm 100,0% 
250 pm - % 
125 pm - % 
Rest - % 

Table 4.15 Composition of one mix of normal concrete for 30 specimens. 

Portland cement A 
water 
sand 
gravel 

The filling of the steel moulds was carried out in two equal layers. 

sand 

% 
% 

0,5 % 
6,8 % 

14,8 % 
27,1 % 
59,7 % 
94,3 % 
99,3 % 

(100,0)% 

30,0 kg 
15,0 kg 
74,7 kg 

125,5 kg 

Each layer was compacted seperately on a powerful vibrating table until the corners 
of the mould were filled with fresh concrete. Specimens were demoulded the following 
day and cured in a moist room for 27 days at 20°C. Prior to testing two strain gages were 
glued on two opposite sides of every prism for strain measurement. The compressive 
tests were performed on a 600 kN Servo-hydraulic testing machine (Schenck). Two rates 
ofloading were used with a difference of about three orders of magnitude. The fast one 
was 17,34100 N/mm2. sec and the slow one was 0,017932 N/mm2. sec. 

4.4.2 Results 

The test results of the group G are shown in table 4.16. 

Table 4.16 The relation between the rate of loading and strength of normal concrete under 
compressive load. 

rate of loading 
(N/mm2 • sec) 

17,341 
0,017932 

mean value of 
strength 
(N/mm2) 

37,8615 
29,3145 

standard 
deviation 

2,80478 
2,15095 

coefficient of 
variation 

0,074 
0,073 
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There were no significant differences observed in the failure mode by comparing test 
of different rates of loading. 

Fig. 4.9 shows the relation between the rate ofloading and the mean value of strength. 
This relation can be described as follows: 

Group G: 
(Compression) 

In 0= 0,037 ·In a+ 3,271 
fiD = 25,8685 

The probability of failure is shown in Fig. 4.10. 
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Fig. 4.9. Relation between the rate of loading and the mean value of compressive strength of 
normal concrete. 

-,-----.--
0 

0 

Group G 0 
CJ 

80 
CJ 

OJ 0 
0 

CJ 
EJ 

60 

0 
CJ 0 
CJ 0 

P 0 
0 

20 

0 
0 

;0 

26 28 30 32 34 36 38 N/mm2 42 

Strength 

Fig. 4.10. Probability of failure of normal concrete under compressive load. 

44 



4.5 Influence of temperature 

4.5.1 Experimental procedure 

Prismatic specimens (40 mm x 40 mm x 160 mm) were subjected to compressive load. 
Three kinds of materials were used. The materials of group H (mortar: w/c = 0,45), I 
(mortar: w/c = 0,65) and J (light weight concrete) were prepared in the same way as 
those of corresponding groups C, D and F. 

Two different temperature conditions were produced in a specially designed 
chamber, in which the specimens could be subjected to load. 

The high temperature was + 80°C and the low temperature was - 5°C. Moreover, two 
rates of loading were chosen. 

The fast rate of loading was 50,505 N/mm2. sec and the slow rate of loading was 
0,052 N/mm2 . sec. 

Before the loading, all specimens were put in the temperature chamber for several 
hours to reach thermal equilibrium. Three tests were carried out for each condition. 

4.5.2 Results 

The test results of the groups H to J are given in table 4.17. Fig. 4.11 shows the influence 
of environmental temperature on strength of mortar and light weight concrete. The 
results of 20°C are taken from the other groups mentioned in previous sections. In the 
case of mortar, the strength is decreased by increasing temperature. 

On the other hand, the strength oflight weight concrete is not decreased significantly. 

Table 4.17 Influence of temperature on strength. All individual values together with the mean 
value, in parentheses, are given. 

low temperature high temperature 
(-5°C) (80°C) 

group fast slow fast slow 

H 45,30 N/mm2 42,30 N/mm2 39,90 N/mm2 28,05 N/mm2 

46,17 41,25 38,07 32,55 
39,90 39,06 33,00 34,20 

(43,79) (40,87) (36,99) (31,60) 

41,46 N/mm2 35,64 N/mm2 24,45 N/mm2 25,50 N/mm2 

36,12 34,50 28,50 26,925 
39,09 32',55 22,50 26,91 

------

(38,89) (34,23) (25,15) (26,445) 

J 9,39 N/mm2 10,20 N/mm2 10,35 N/mm2 9,75 N/mm2 

10,575 9,075 8,025 12,72 
11,85 9,525 12,60 11,10 

(10,605) ( 9,60) (10,325) (11,19) 
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Fig. 4.12 shows the influence of rate ofloading on strength of different temperatures. 
The number of tests was not sufficient to provide a basis of the determination of values 
such asjJ. 

5 Discussion 

Influence of rate of loading on the mean value of strength 

The theoretical prediction of eq. (2.15) satisfactorily agrees with the experimental re­
sults within the tested range of rate ofloading as indicated by Figs. 4.1, 4.2 and 4.6. Figs. 
5.1 and 5.2 show the relation between related strength and related rate ofloading under 
bending and compressive load respectively. The following theoretical equation can be 
used to describe the influence of rate of loading on strength of composite aggregative 
materials from eq. (3.1): 

1 

0/00 = (iI/iIo)fiD+ 1 (5.1) 

where 00 and iIo are reference mean value of strength and reference rate of loading 
respectively. 

Table 5.1 gives the values ofjJD which are experimentally obtained by means of eq. 
(5.1). High strength mortar gives comparatively low values of jJ. This tendency is in 
agreement with earlier results described by Reinhardt [1979] and Zech and Wittmann 
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Fig, 5.1. Relation between the Related Rate of Loading and the Related Mean Value of Flexural 
Strength. 

[1980]. For the same material the evaluation of compressive strength leads to higher 
values of jJ than those deduced from bending strength. Light weight concrete shows 
rather exceptional behaviour above a/ ao = 100. This might be caused by the difference 
of failure mechanism. In the case of light weight concrete, failure is not only a process 
within hardened cement paste, but aggregates play an active role. Their strength is com­
parable with the strength o/the matrix. High strength concrete probably reacts in a similar 
way. 

Table 5.1 Compilation of values offi as determined in this project.fiD is obtained by applying eq. 
(5.1) and fis is deduced from the probability of failure under bending load. Values 
given as (E') and (F') are evaluated by neglecting results of high rates of loading. 

group fiD fis 

A 22,2 l3,1 
B 17,8 l3,3 
C 27,4 
D 25,2 
E 25,6 11,4 

(E/) (19,3) 
F 58,7 

(F/) (28,0) 
G 25,8 
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If we assume that high rate of loading stimulate preferably the failure of weak light 
weight aggregates, the strength of light weight concrete does not increase with increas­
ing rate of loading as predicted by the theory. If we neglect for a moment the discrep­
ancy in the region of high rates of loading, the theoretical equation can be applied in 
the region below a= 10 N/mm2. sec (compression). The corresponding values deter­
mined from data shown in Figs. 5.1 and 5.2 are designated by E' and F' in the figures and 
in Table 5.1 respectively. 

Coefficient of variability 

The theory predicts that the coefficient of variability is not influenced by rate ofloading. 
The constance of the coefficient of variability is of major interest in connection with a 
realistic reliability assessment of a concrete structure. Within the range of accuracy, this 
theoretical prediction is verified by the present results. Table 5.2 gives the mean value ofthe 
coefficient of variability. High values of the coefficient of variability for light weight 
concrete under compressive load might be caused by the stiffness of the loading 
machine. The value of normal concrete may be looked upon to be reasonable for com­
pressive strength. 
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Table 5.2 Compilation of coefficients of variability. 

series coefficients of variability 

A 0,0844 
B 0,0824 
C 0,1323 
D 0,1403 
E 0,0976 
F 0,2360 
G 0,0735 

Probability of failure 

Since the coefficient of variability is not influenced by rate ofloading, it is reasonable to 
expect that the distribution function of the strength, normalized by the mean value for 
each ofloading, will be the same. Fig. 5.3, A to G, give the histograms for normalized 
strength and the theoretical density functions. Most of the results can be satisfactorily 
described by the Weibull distribution function (eq. 3.14). Group F only shows better 
agreement with a normal distribution function (Gaussian distribution). 

Values of)J 

The parameter )Jplays a dominant role in the theoretical prediction. The exact value is 
highly dependent on the method used for the determination as well as on the material. 
Table 5.1 shows that the value of)Jobtained from the results of rate ofloading ()JD) is 
higher than that obtained from the probability of failure ()Js). The reason for this dis­
crepancy is not yet fully understood. This will be a matter offurther investigation. The 
value of)J for compressive strength is somewhat higher than the corresponding value for 
bending strength. This tendency is in accordance with results of previous studies [Zech 
and Wittmann, 1979]. 

Influence of environmental temperature 

The stochastic theory on which this report is based and which is mentioned in chapter 2 
predicts the invluence of environmental temperature as follows [Mihashi and Izumi, 
1977]: 

In a=A- T+B (5.2) 

where a is the strength and T is the environmental absolute temperature; A and Bare 
material constants which might be affected by testing conditions. 

The present results, except group J (light weight concrete under high rate ofloading) 
are in agreement with this theoretical prediction. In previous studies, A was found to be 
in the range of 0,0037 to 0,006l. The present results show slightly smaller values. 

According to the theoretical prediction, the value of)J is also affected by temperature. 
The relation between)J and T is found to be: 

1 
)JrxT (5.3) 
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From Fig. 4.12 very high jJ values would follow. 
Even negative values ofjJ which cannot be explained from the view point of physical 

processes involved are found. Only group H gives results which can be compated with 
eq. (S.3). The following reasons are considered to have a major influence on this un­
expected descrepancy: 
1. Paper pads between specimen and platens which served as thermal isolation might 

have influenced the actual rate of loading. 
2. The temperature gradient between the center and the end of the specimens causes 

internal thermal stresses. 
3. The rather soft loading frame, might prevent stress redistribution under high rate of 

loading. 
Quantitative evaluation of the influence of environmental temperature onjJ needs to be 
done in the future. The preliminary tests described in this report are mainly meant to 
point out this problem. 

6 Conclusions 

The stochastic theory for fracture of concrete satisfactorily describes the experimental 
findings of strength as affected by rate of loading. 

Bending and compressive strength of mortar and compressive strength of concrete 
increase with increase rate of loading. 

Compressive strength seems to be influenced less severely by rate of loading than 
bending strength. Strength of weaker specimens is more affected by rate of loading. 

The influence of rate ofloading is satisfactorily described by a following power func­

tion: 
_1_ 

-/- ('/')fi+! a ao = a ao 

where ao and 0-0 are reference mean value of strength and reference rate ofloading res­
pectively and jJ is a materials parameter. 

jJ is found to be in the range between 17,8 and 22,3 for bending strength of mortar and 
between 2S,3 and 27,S for compressive strength of mortar and concrete. Light weight 
concrete shows a different behaviour in the range of high rates ofloading. The reason for 
this phenomena should be investigated in the future. 

The coefficient of variation is not influenced by rate ofloading. On the basis of this, a 
distribution function of all strength values, normalized by the mean value for each rate 
of loading, can be obtained, The distribution function of strength is described satisfac­
torily by Weibull's distribution function. This applies both for strength as determined 
under bending load and under compressive load. 

The distribution of strength oflight weight concrete may be approximated by a Gaus­
sian distribution function. 
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