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ABSTRACT
Decision-making tasks sometimes involve soft objectives.They are soft in the sense that they contain uncer-
tainty, imprecision or vagueness. For example, decisions on built environment aim to maximize comfort or
other experiential qualities. Pareto-optimal solutions to such problems can be found using multi-objective evo-
lutionary search together with other soft computing methods. Beyond optimality, professionals are interested
in knowing how different aspects of the problem influence each other in optimal solutions. Such knowledge
is referred to as the design principles. Through them decisions can be taken with great confidence and knowl-
edge for similar future design cases is gained. Using the Pareto-optimal solutions for this purpose is known as
innovization and it has been exercised for various crisp engineering problems. In the present paper automated
innovization is used to discover the principles for a soft decision making problem. The process involves the use
of a grid-based clustering technique integrated with a genetic algorithm for unsupervised learning of the prin-
ciples. Multiple design principles are discovered simultaneously through a niching strategy. The large number
of variables originating from the softness of the problem poses an additional challenge of parsimonious knowl-
edge representation for ensuring interpretability. The problem investigated is a real-world decision making task
concerning the optimal placement of a number of residentialunits in an urban design, involving two soft objec-
tives: the recuperative quality of the neighborhood, as well as its living comfort should both be maximized. The
underlying design principles are obtained and interpretedfrom the point of view of the decision-maker. This
demonstrates the relevance of evolutionary knowledge discovery in decision-making, a matter which should
provide decision-makers adequate and informed knowledge for choosing a single preferred solution among the
Pareto-optimal ones, and also to understand intricate trade-offs among decision variables.

KEY WORDS: innovization, architectural design, design principles, decision making, multi-objective evolu-
tionary algorithm, fuzzy neural tree

1 Introduction

Many engineering problems can be characterized as
crisp. This means that the problem does not require
means to address imprecision, uncertainty or vague-

ness. Examples of such problems are the well known
engineering design problems, such as design of truss
structure, ammonia reactor design, car suspension de-
sign etc. (Deb, 2001). In such problems the objec-
tives refer physical object features, such as minimizing
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stress or material volume that are unambiguously de-
fined in computational or mathematical terms. How-
ever, in other problems, particularly when the object
of concern facilitates complex human experiences re-
garding products, services, buildings or cities, more
often than not, objectives are described in linguistic
terms that are not readily amenable for computation.
Examples of such objectives are when an object is re-
quired to be functional, sustainable, or posses aesthetic
qualities. Such concepts contain some imprecision or
vagueness, so that they are referred to as soft. The
softness is due to the abstract nature of the linguistic
labels, which stem from human perception and cog-
nition (Zadeh, 1997). Soft problems are an impor-
tant class of decision making problems. This is seen,
for instance from the fact that a substantial portion of
the energy and materials consumed on the globe is
through products and buildings, while decision mak-
ing on such objects traditionally involves perception-
based objectives. Thus decision making in industrial
and architectural design is generally a soft issue. Due
to their ill-defined nature, soft problems require spe-
cial methodologies to deal with them, in particular the
methodologies from the domain of soft computing, in-
cluding fuzzy, neural, and evolutionary computation.
These methodologies are able to absorb the impreci-
sion inherent to soft decision making problems, since
the underlying mathematical structures are able to han-
dle a high degree of non-linearity, and generally some
from of machine learning is used to establish the mod-
els (Broomhead and Lowe, 1988; Hunt et al., 1996).
Due to their mathematical complexity, and as many
real-world decision making tasks involve softness, it
is an important matter to identify the invariant princi-
ples characterizing a soft problem. In particular in this
work we investigate this issue using a post optimality
analysis known as automated innovization (Bandaru
and Deb, 2011b). This is studied by means of an appli-
cation, where Pareto-optimal solutions of a soft prob-
lem are analyzed using the clustering based innoviza-
tion approach.

The paper is structured as follows. In the rest of this
section the concept of a design principle and the ap-
proach used for deciphering them are explained. In
Sec. 2 the clustering based automated innovization
method is described, followed by an illustration of

its relevance to and importance in decision making.
Thereafter in Sec. 3 we consider a soft multi-objective
architectural design problem as a case study and de-
velop a detailed neuro-fuzzy approach for modeling
the inherent softness. In Sec. 4 we decipher several
principles using the automated innovization approach
and assess them against expert opinion. This is fol-
lowed by conclusions.

1.1 Deciphering design principles

The invariant principles mentioned above are so called
because they apply to all or most Pareto-optimal so-
lutions of a multi-objective optimization problem, soft
or otherwise. Also, they are unique only to these so-
lutions and are not satisfied by other feasible or in-
feasible solutions. Thus they are characteristics of the
Pareto-optimal front and their knowledge is crucial not
only for the designer but also for the decision maker,
as will be illustrated in Sec. 2.4. In this context these
principles have been conventionally referred to asde-
sign principles(Deb and Srinivasan, 2006). These
principles provide the recipe for creating more Pareto-
optimal solutions. Moreover, they can be used to iden-
tify the most significant and least significant parame-
ters of the problem.

Identifying commonalities or invariant principles
among a given set of solutions is a challenging task.
Firstly, it is difficult to predict the mathematical or
logical form of the principles. Most notable of past
studies have used decision trees and data-mining tech-
niques to overcome this problem. Instead of assum-
ing a definite form for the principles, decision trees
work by successively dividing the dataset into seg-
ments based on each variable one at a time. Data-
mining methods like SOMs provide a visual means
of deciphering the commonalities. However, in both
these cases the obtained knowledge is in a form that
cannot be used by designers and decision makers ef-
fectively. Secondly, a given principle may not be ap-
plicable to the whole dataset. However, it is desir-
able that the principle encompasses a significant por-
tion of the dataset. Decision trees fail when applied
to such datasets, often resulting in a large number
of terminal nodes. Lastly, the computational nature
of obtaining the trade-off solutions in most if not all
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cases, introduces approximations and hence noise in
the dataset. Any algorithm that aims to automatically
extract the design principles must be able to filter out
points which do not comply with the principle in hand.

1.2 Innovization

Unlike other methods,innovization(Deb, 2003) fo-
cuses on the mathematical structure of the principles.
The goal of any innovization study is to identify differ-
ent combinations of variables, constraints and/or ob-
jectives such that the resulting mathematical expres-
sion, when evaluated for all solutions in the dataset,
remains constant or invariant across most of them. By
definition, these combinations then become the design
principles of the multi-objective problem. In this con-
text, a design principle denotes a mathematical rela-
tionship between two or more entities of a problem,
which is valid for a significant portion of the Pareto op-
timal front. Problem entities include the decision vari-
ables, the objectives as well as the constraint functions.
The easiest way to obtain these principles is to man-
ually choose various pairwise combinations of vari-
ables, constraints and objectives and plot them against
each other in two dimensions to see if there is any
correlation. This is known as manual innovization.
For example, if a variablex1 when plotted against
an objectivef1 results in the data points falling ap-
proximately on a straight line with positive slope, then
x1 ∝ f1 and thereforex1

f1
= constant becomes the

design principle. There are however, some glaring lim-
itations to this approach. Firstly, it is difficult to manu-
ally plot and analyze all combinations of problem en-
tities especially when a large number of variables are
involved. The method of identification of design prin-
ciples is visual and hence is not reliable if the prob-
lem entities under consideration have different mag-
nitudes or if there is a subset of points on which the
principle is not applicable. Thirdly, linear correlations,
though easy to identify, are rare and hence there is a
need for preprocessing the data using transformations
(eg. logarithmic) and post-processing with regression
techniques. Lastly, the human element in the manual
innovization procedure makes the process prone to er-
rors. In the following section we discuss the clustering
based automated innovization approach developed to

circumvent these problems.

2 Clustering based automated in-
novization

Automated innovization (Bandaru and Deb, 2010),
proposes the use of the following mathematical struc-
ture for the design principles,

ΠN
j=1φj(x)

ajbj = c. (1)

This mathematical form is supported by previous
manual innvoization studies like Deb and Srinivasan
(2006). Additionally, it is easy to see that such a
form easily lends itself for interpretation and future
reference. Hereφj ’s are theN chosen problem en-
tities. They can also be any other user defined func-
tions. Since they form the basic units which form a
design principle, they are also called the basis func-
tions (not to be confused with the basis functions used
later for neuro-fuzzy modeling). The constantc, called
the parametric constant, quantifies the degree of invari-
ance of the principle defined by the expression on the
left hand side of Eq. (1).

aj ’s are Boolean variables which represent the pres-
ence (1) or absence (0) of thej-th basis function.
Given a set ofaj ’s the automated innovization algo-
rithm tries to find the corresponding exponentsbj ’s
such that Eq. (1) represents asignificantdesign princi-
ple. Since thec-values quantify the invariance, a valid
design principle should have the same value ofc for
a relatively large number of Pareto-optimal solutions.
As discussed earlier, this design principle may not ap-
ply to the whole Pareto-optimal front The percentage
of points which have very closec-values can be used
to calculate the significance of a design principle.

2.1 Grid-based clustering

Before calculating the significance described above,
the trade-off points have to be classified into two
groups: one which has the same (or very close)c-
values and the other which havec-values very differ-
ent from rest of the dataset. Automated innovization
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uses the grid-based clustering technique in the one di-
mensional space ofc-values. It involves the following
steps:

1. Sort {c(1), c(2), . . . , c(m)} evaluated for them
trade-off solutions.

2. Divide the range[cmin, cmax] into d divisions.

3. Count the number ofc-valuesnd falling within
each division.

4. Label the divisions withnd ≥ ⌊m
d
⌋ (the average

number ofc-values per division) as sub-clusters.

5. Label the trade-off points corresponding to thec-
values in the remaining divisions as unclustered.

6. Merge adjacent sub-clusters to formC clusters.

7. Count the number of unclustered trade-off points
U .

Notice that the grid-based clustering described
above introduces a parameterd. It can take any value
in the range[1,m]. However, instead of asking the
user to set a value for it, the automated innovization
algorithm is designed to choose an optimal value for it
based on the accuracy of the deciphered design prin-
ciple. Once the trade-off points are classified into the
above defined groups the significance can now be ob-
tained as,

S =
m− U

m
× 100%. (2)

2.2 Deciphering a single design principle

It is clear from the discussion above that thec-values
in theC clusters found above should all have approx-
imately the same value. The algorithm is expected
to find suitableaj ’s andbj ’s such that the invariance
property of the design principle is satisfied. The coef-
ficient of variancecv of the c-values is used for mea-
suring this invariance. For converging iteratively to a
design principle and hence improving its significance,
an optimization problem is formulated with the min-
imization of the sum ofcv ’s in all clusters as the ob-
jective. The exponentsaj ’s andbj ’s are the variables.
The parameterd of the clustering algorithm is also in-
cluded in the variable set, and its value is optimized

for minimum number of clusters. Since within each
cluster, thecv is minimized, the accuracy of the design
principle can be indirectly controlled through the vari-
abled. The percentage coefficient of variation is used
instead ofcv so that the following weighted objective
function can be used,

Minimize C +

C
∑

k=1

c(k)v × 100%. (3)

Notice that thec-values on the RHS are only used
for clustering and their numerical values are irrele-
vant. Therefore, there can be infinite sets of opti-
mal exponentsbj ’s thats will result in the same num-
ber of clusters. The objective function in Eq. (3) is
hence multi-modal. We overcome this, by restricting
the variablesbj to the range[−1, 1] by always ensur-
ing that the exponent with largest absolute value is al-
ways1 and that the other exponents are modified pro-
portionately if needed. For example, a design prin-
ciple of the formφ2.5

1 φ1.0
2 φ−4.0

3 = c, will be rep-
resented in the automated innovization algorithm as,
φ−0.625
1 φ−0.25

2 φ1.0
3 = c′.

2.3 Niching for preserving multiple de-
sign principles

The approach discussed above is only suitable if the
user wants to decipher only the most significant de-
sign principle. Often, the user is interested in find-
ing all design principles which are above a thresh-
old significance value. Previously, manual and auto-
mated innovization (Bandaru and Deb, 2011b) stud-
ies achieved this through multiple runs with different
sets of basis functions. A recent study (Bandaru and
Deb, 2011a) exploits the population based nature of
the GA to evolve multiple design principles simultane-
ously using a less known niching strategy. Since each
population member represents a possible design prin-
ciple, for thei-th individual, Eq. (1) can be written as,

ΠN
j=1φj(x)

aijbij = ci. (4)

The significanceSi can now be calculated by first
clustering allci-values to determineUi and then us-
ing Eq. (2). Population members with different sets
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of aij ’s represent design principles which use differ-
ent basis functions and hence they are not compared
during the selection operation of GA. Thus different
‘species’ of design principles can be made to coexist
in the population. Booleanaij ’s are encoded as a bi-
nary string of lengthN and a GA which can handle
both real and binary variables is adopted.

In order to prevent trivial solutions (whenaij =
0 ∀ j) and complex design principles (when many
basis function are involved), the constraint1 ≤
∑

j aij ≤ N is introduced in the problem formulation,
whose complete form (for thei-th design principle) is:

Minimize Ci +
Ci
∑

k=1

c(k)v × 100%,

Subject to Si ≥ Sreqd,
1 ≤

∑

j aij ≤ N , 1 binary variable
−1.0 ≤ bij ≤ 1.0, N real vaiables
1 ≤ di ≤ m, 1 integer variable.

(5)
whereSreqd andN are user-supplied values indicating
respectively, the minimum threshold significance for
the variables and the maximum number of basis func-
tions that can participate in forming a design principle.
The mixed variable nature of the problem also justifies
our use of a GA to solve Eq. (5). The constraints are
handled using Deb’s penalty-parameter-less approach
(Deb, 2000).

2.4 Innovization for decision making

In this section, we shall illustrate the role of innoviza-
tion in decision making through two well known en-
gineering design problems. Though the problem for-
mulations in both the cases are crisp, the procedure is
applicable as is to soft problems.

2.4.1 Brushless DC motor design

A detailed manual innovization study for the design of
a brushless DC permanent magnet motor design can be
found in Deb and Sindhya (2008). The design requires
minimization of manufacturing cost of the motor along
with maximization of the peak output torque. The five
design variables are: the number of laminations to be
used in the motor (nl), the number of turns in each coil

(N ), lamination type (Ltype), type of electrical con-
nection (Mph) and the wire gauge (Agauge) to be used
in the windings. The optimization problem is posed
as:

Minimize Ctotal(nl, N, Ltype,Mph, Agauge),
Maximize Tp = 87300.00 CtorNRsiAwirenl,
Subject to g1(x) = Tp ≥ 0.83,

g2(x) = Tp ≤ 5.27,
g3(x) = AwireN ≤ {150, 240, 280} × 10−7

whenLtype = {A,B,C} respectively,
20 ≤ nl ≤ 200,
10 ≤ N ≤ 80,
Ltype ∈ {A,B,C},
Mph ∈ {Y,∆},
Agauge ∈ {16.0, 16.5, . . . , 23.5},
nl andN are integers, Agauge is discrete.

(6)
The cost functionCtotal can be found in Deb and Sind-
hya (2008).A, B andC are different kinds of lamina-
tions with specificRsi values. The electrical connec-
tion can be ofY type or∆ type, each having a dif-
ferentCtor value. Finally, the cross-section are of the
wire Awire is a function of the gauge numberAgauge

and hence can also take16 discrete values.
Fig. 1 shows the Pareto-optimal front obtained us-

ing local search based NSGA-II (Deb et al., 2002). In-
terestingly, the Pareto-optimal solutions all differ only
with respect to the number of laminationsnl which
takes all integer values in the range[28, 172]. All other
variables are fixed for the entire set of Pareto-optimal
solutions. N = 18, Ltype = B, Mph = Y and
Agauge = 16.0 are simple but very useful design prin-
ciples deciphered for this problem. A decision maker
with knowledge of these principles can enhance the
productivity of a manufacturing unit producing these
motors by simply setting the wire turning machine to a
fixed value of18. The armatures will thus never have
over-turns or under-turns. The inventory and the as-
sociated costs can also be reduced by only ordering
laminations of typeB and wire of gauge16.0.

2.4.2 Spring design

In this design task, a helical compression spring needs
to be designed such that both its volume and developed
stress are minimized. The wire diameterd, the mean
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Figure 1: Pareto-optimal front and innovized princi-
ples for brushless DC motor design.

coil diameterD and the number of turnsN are the de-
sign variables. The optimization problem formulation
is as follows. A detailed description of all the symbols
can be found in Bandaru and Deb (2011b).

Minimize f1(x) = V = 0.25π2d2D(N + 2),
Minimize f2(x) = S = 8KPmaxD

πd3
,

Subject to g1(x) = lmax −
Pmax

k
− 1.05(N + 2)d ≥ 0,

g2(x) = d− dmin ≥ 0,
g3(x) = Dmax − (d+D) ≥ 0,
g4(x) = C − 3 ≥ 0,
g5(x) = δpm − δp ≥ 0,
g6(x) =

Pmax−P

k
− δw ≥ 0,

g7(x) = S −
8KPmaxD

πd3
≥ 0,

g8(x) = Vmax − 0.25π2d2D(N + 2) ≥ 0,
1 ≤ N ≤ 32,
1 ≤ D ≤ 30 in.,
N is integer,d is discrete,D is continuous.

(7)
The variabled is allowed to take any of the following
42 discrete values:



















0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132,
0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041,
0.047, 0.054, 0.063, 0.072, 0.080, 0.092,
0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0.244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5.



















in.

Automated innovization yields various design prin-
ciples for the Pareto-optimal set of this problem (Ban-
daru and Deb, 2011b). However, the most important
for the decision maker is the principled = constant
which results in seven clusters as shown in Fig. 2. Out
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Figure 2: Cluster plot for the design principled =
constant.
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Figure 3: Pareto-optimal front for the spring design
problem. The clustered points in Fig. 2 fall in different
segments on the Pareto-optimal front.

of the 42 allowed values for the spring wire diame-
ter, only the last seven are optimal. This information
is very crucial to the designer and the decision maker
who can now propose to reduce the inventory size of
the wires from42 different groups to just7. Us-
ing such a cluster plot and its mapping on the Pareto-
optimal front, the decision maker can also deduce that
choosing one of the seven optimal values ofd is the
highest level of decision making when an optimal de-
sign has to be selected.
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3 Architectural design problem

3.1 Softness and relevance

The present problem is from the domain of architec-
tural design and concerns a typical real-world decision
making case in this domain. A decision is to be made
regarding optimal positions of an ensemble of residen-
tial housing units on their respective lots, where two
objectives are subject to maximization. The first objec-
tive is to provide acomfortable living experienceto the
residents by maximizing the visual privacy they expe-
rience in their homes. The second objective is to max-
imize the recuperative qualityof the neighbourhood
as determined by the suitability of the gardens for this
purpose. These criteria are major aspects in architec-
tural and urban decision making tasks. That is, living
comfort and recuperative performance are significant
features determining the quality of life for the residents
and the value of an area, so that these issues frequently
occur as objectives to be maximized in these tasks. It
is noted that in the decision making task considered in
this work, aspects such as social control for safety of
residents are omitted, as these issues do not play a sig-
nificant role in the problem at hand. The building site
is one of the largest areas in the Netherlands subject
to development, named Leidsche Rijn. The site has a
size of3600m2. The streets and lots are provided in
advance in this case.

In Fig. 4 the building site is seen from plan view. On
the site twenty buildings are situated. Three of them al-
ready exist on the site. These buildings are shaded with
black colour in the figure. Thus, seventeen houses are
subject to optimal positioning. The housesGa1-Ga6
andGb1-Gb4 form two groups of houses, respectively
termedGa andGb, which are situated along a line par-
allel to the north and south perimeter of the neighbour-
hood, as seen from Fig. 4.

It is an initial basic choice of the decision makers
to align the houses of a groupGa or Gb with respect
to each other, so that theiry coordinates are the same,
and also the distances among the houses inx direc-
tion are kept constant. Therefore, a singlex-y coor-
dinate pair suffices per group - respectively(x8, y8)
and (x9, y9) - to describe the location of the houses.
The houses ofGa andGb have a square shaped floor

Figure 4: Decision variables of the problem.

plan of8m×8m, while housesH1-H7 are12m long,
8m wide and their longer axis is oriented in east-west
direction as seen from Fig. 4. All buildings are two
storeys high. It is noted that the existing buildings do
play a role in the assessment of the performance of the
designs, although they are not subject to optimal place-
ment. This is because they influence the visual privacy
of a number of buildings to be positioned, thereby in-
fluencing the living comfort of the neighborhood and
the performance of the neighbourhood. The objec-
tive for high living comfort of the neighborhood en-
tails that all residential units should have a high visual
privacy, meaning that every unit should be minimally
exposed to visual perception from the other buildings
around it. Next to this, the recuperative quality of
neighbourhood is maximized by placing the houses in
such a way that the gardens are as large as possible
in the desirable cardinal direction for all houses of the
neighborhood. One aspect of the softness of this prob-
lem is that the living comfort is determined by visual
perception aspects, the human visual perception pro-
cess is complex, leading to an inherent uncertainty in
the assessment of visual perception features of objects.

3.2 Computing visual perception infor-
mation

Visual perception is deemed a soft issue, because brain
processes play an essential role in it. Therefore, up till
now visual perception based requirements have gen-
erally not been subject to computational treatment,
although they play an important role for the qual-
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Figure 5: Probabilistic perception model for a basic
geometric situation. Figure taken from Bittermann
et al. (2007).

ity of a design. In the decision making problem ad-
dressed in this work treatment of this issue is ex-
emplified by computing visual perception information
based on a probabilistic perception theory (Bittermann
et al., 2007). In this theory the faculty of conscious-
ness known asattentionin psychology, is modeled by
means of probability density function (pdf), while per-
ception is modeled by means of a probability being a
scalar quantity. This probability is obtained by inte-
grating the pdf that characterizes visual attention over
some physical domain of an object. This is exempli-
fied for the basic geometry in Fig. 5, where an observer
at P is viewing a plane with infinite length.

Taking the scope of vision in this situation to be de-
fined by the angle−π/4 ≤ θ ≤ π/4, the probability
density functionfθ that characterizes unbiased atten-
tion with respect to the angleθ in Fig. 5 is given by

fθ =
1

π/2
(8)

as a uniform pdf. This implies that the observer has
no a-priori bias for any direction in his view, which re-
flects the lack of information on such preferences in a
general viewing situation. Based on Eq. (8) and the ge-
ometric relationtan(θ) = z/l0, probability theoretic
computations yield the function of the random variable
z for the interval−l0 ≤ z ≤ l0 as (Bittermann et al.,
2007),

fz(z) =
2

π

l0
(l20 + z2)

(9)

which is a Cauchy function shown in Fig. 6 forl0 = 4,
l0 = 6 andl0 = 8.

Figure 6: Plot offz(z) for l0 = 4, l0 = 6 andl0 = 8.

Figure 7: Illustration of the result from the perception
model.

From the plot it is seen that the maximum of atten-
tion is located directly in front of the observer, i.e. at
z = 0, where the distancex to the object is minimal,
namelyx = l0. This result is confirmed from com-
mon vision experience: For instance when we visually
experience a wall without ana priori bias for any part
of the wall, we naturally pay more attention to the de-
tails of the wall region that is directly in front of us
compared to adjacent regions. From the plot we also
note that with increasing distance from the plane the
attentionfz(z) becomes less peaked. This means for
a far distance, instead of paying attention primarily to
the middle part of the wall, an observer gives attention
to the whole object with almost equal intensity, i.e. at-
tention is less accentuated for the frontal region of the
object compared to to the case of a nearer distance.

The integration of visual attention paid to an object
yields perception, which is quantified by a probability
(Ciftcioglu et al., 2006). This probability can be inter-
preted as the degree of awareness the observer has for
the object attended to. For simplicity of the explana-
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tion, preliminarily perception is investigated in thez-x
plane seen in Fig. 7. In case of the infinite plane in
Fig. 5 being the single object in the scene, the integra-
tion yields

∫ +l0

−l0

fz(z)dz =
2l0
π

∫ +l0

−l0

dz

l20 + z2
= 1 (10)

so thatfz(z) is verified as a pdf. This means that in
case there is a single object fully spanning the visual
scope, then the probability that the object is seen is
unity, i.e. the observer is aware of the object’s presence
with certainty. For an object that is small enough, so
that it does not span the entire visual scope, perception
of the object is computed by

Pz =

∫ b2

b1

fz(z)dz, (11)

whereb1 andb2 are the boundaries of the object inz-
direction. For illustrative purposes the perception of
the wall object shown in Fig. 7 is calculated, where
l0 = 4m and the object size is also4m in z direction,
so that the perception becomes

Pz =

∫ +2

−2

fz(z)dz =
4l0
π

∫ +2

0

dz

l20 + z2

=
4

π
tan−1 2

l0
≈ 0.591. (12)

The integration for this case is illustrated in Fig. 6 by
means of the shaded area. For the perception in three
dimensional space the perception iny direction should
be considered as well. Due to the probabilistic nature
of the approach the perceptions in either direction are
independent events. Therefore the perception of the
object in space is obtained by using the multiplication
ruleP (Pz ∩ Py) = PzPy, i.e. multiplying the proba-
bility quantifying perception inz direction and percep-
tion in y direction (Bittermann and Ciftcioglu, 2008).
For the wall object in Fig. 7, having a height of3.0m
the perception iny direction becomes

Py =

∫ +1.5

−1.5

fy(y)dy =
4l0
π

∫ +1.5

0

dy

l20 + y2

=
4

π
tan−1 1.5

l0
≈ 0.457. (13)

Therefore the visual perception of the object is

Py,z = PyPz ≈ 0.270. (14)

This means the object ’occupies’ a significant por-
tion of the visual awareness of an unbiased observer,
namely more than a quarter of it. From the figure
it is clearly noticed that an object located directly in
front of the observer and nearer to him yields a higher
degree of perception, due to the peaked shape of the
Cauchy function. Since the sharpness of the peak de-
pends on the distancel0, as seen from Fig. 6, the in-
tegral, i.e. perception also diminishes as the object
moves away form the observer.

Clearly due to the geometry of the Cauchy func-
tion, if an object appears not directly in front of the
observer but lateral to the observer’s central viewing
line, the object will also have reduced perception com-
pared to the former case. This is illustrated in Fig. 8,
where several perception computations are shown. For
the sake of simplicity the vertical dimension is omitted
in the following consideration. The perception of the
buildingsH1, H2, H3, andH4 is investigated. Here
the viewpoint of the observer is taken as the geomet-
ric centre point of the north facade of a buildingE1.
The curves plotted along thez axis illustrate the prob-
ability density functions belonging to the perception
of housesH1-H4 as viewed fromE1. In particular
they show the degree of visual attention paid to these
buildings’ south facades for thez dimension. The in-
tegral of these pdfs over the length of the respective
south facade of a house is indicated as a shaded area. It
quantifies the perception of the respective facade from
the viewpoint considered. Comparing the perception
of houseH3 andH2 it is clear thatH3 is perceived
more strongly compared toH2, asH3 is located more
close to the frontal direction marked byl0 in the figure.

It is noted that every house is perceived from several
viewpoints at the same time. From the decision mak-
ing viewpoint it is desirable in the present case that
the total perception of a building’s facade from these
viewpoints should be small. This is to increase the
visual privacy experienced in the house. In this case
this is relevant with respect to the south facade of the
house, since the living areas of a house are generally
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Figure 8: Sketch indicating the computation of the de-
gree of perceptions of the housesH1, H2, andH3
from the viewpointE1.

Figure 9: Illustration of the visual privacy computation
based on the probabilistic perception model.

located behind the south facade in north western Eu-
rope. Therefore, the perceptions ‘impinging’ on the
south facades of the buildings are considered. This is
illustrated in Fig. 9. In the figure an implementation of
the perception model described before is seen, where
a random process is used to generate vision rays based
on the pdf in Eq. (8). These are emitted in northern di-
rection from the different houses according to the uni-
form pdf of attention with respect to the vision angle.
Based on these considerations visual privacy of a fa-
cade is defined by

Ppriv(O) =

(

n
∑

1

P (O, Vn)

)−1

(15)

whereP (O, Vn) is the degree of perception of object
O from then-th viewpointV . That is, the visual pri-
vacy of a facade is considered the reciprocal of the sum
of attention paid to the facade from the other houses.

Figure 10: Calculation of the garden performance.

For the computation of the perceptions, in this imple-
mentation occlusion is considered by means of a sim-
ple test of the visibility of a building from another one.
This is detected by sending a test-ray from the centre
location of the first building to the original viewpoint.
In case this ray is intercepted by a building located in
between the two points, then the component of percep-
tion of this building from the viewpoint considered is
taken to be zero.

3.3 Assessment of recuperative perfor-
mance

A second aspect considered in the design of the hous-
ing complex is the performance of the neighborhood
for recuperative purposes. In general a large gar-
den located south of the building is considered most
desirable for this purpose, due to exposure to direct
sunlight in moderate climates on the northern hemi-
sphere. Therefore the performance of a garden is ob-
tained based on the size of the south garden in general.
The buildingsH4 andH5 form an exception. The
lots of these houses are oriented in east-west direction.
Therefore, next to the garden in south direction, the
gardens west of the buildings are considered for re-
cuperation as well. In this case the west direction is
used and not the east direction. This is done because
the housesH4 andH5 should have direct sunlight in
their gardens during the evening, as the occupants are
expected to make use of their gardens mainly in the
evening in this case. In order to determine the garden
performanceG for an individual house, the size of its
garden in south direction is normalized with respect
to the maximum size of the garden in this direction,
i.e. G = g/gmax. This expresses to what degree a
house is located so that it maximizes the size of the
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garden. The maximum size of the garden in south di-
rection is restricted by the minimum distance between
the boundaries for placement in north and south direc-
tion and the width of the house in north-south direc-
tion. This is illustrated in Fig. 10 using houseH1 as
an example. In the figure the boundary of the lot is
shown as a solid line while the placement boundary is
shown as a dashed line.

3.4 Fuzzy modeling for treating soft ob-
jectives

The computations for determining the privacy of a fa-
cade and the performance of a garden described in the
previous subsection are addressing the elemental as-
pects that characterize the performance of the design.
Both demands, that the neighbourhood should have a
high recuperative quality and that the living comfort
should be high as well, are soft in nature. This is for
two reasons. First, it is vague to some extend what is
considered to be a ‘high recuperative quality’ although
it is clear that it is determined by the largeness of the
gardens, where it is desirable that all gardens are large
in the desirable cardinal direction. Explicitly stated
the demand all gardens should be large in the suitable
directions implies thatG1 should be large, ANDG2
should be large, AND ..., ANDGJ should be large for
J number of gardens. The softness of this demand is
clear considering for instance that in case the demand
for largeness is not completely fulfilled concerning one
of the gardens, this does not mean that the objective
for large gardens for all houses is totally not fulfilled.
It means that the objective is merely partly fulfilled.
On the other hand, for instance summing up the actual
sizes of the gardens and using this as an objective does
not reflect the actual demand at hand. Namely in case
one of the gardens would be undesirably small, sum-
ming up its size with the size of others that are large
will obscure the information that one of the gardens
is small, as it does not model the demand for simul-
taneous presence of largeness, i.e. it does not model
a logical ‘AND’ condition, which is the base for the
objective at hand.

To deal with the softness of the objectives of the
problem, in this work a soft computing technique is
used, which is neuro-fuzzy modeling employed in

Figure 11: The neural tree structure.

the framework of a neural tree structure. Using this
method the suitability of a solution is estimated based
on human-like reasoning. That is, the simultaneous
presence of the desired features is measured by means
fuzzy set and chained fuzzy logic operations embed-
ded in a neural tree structure, as follows. A neural tree
is composed of terminal nodes, also termed leaf-node
and non-terminal nodes, also termed internal nodes.
Nodes of a neural tree are connected by means of links,
where the structure is built up in such a way that at
least two leaf nodes are linked to one inner node, and at
least two inner nodes are linked to another inner node
one level above the former inner nodes. This way the
amount of nodes per level reduces for levels that are
more and more remote from the leaf node level. Ulti-
mately the nodes on the uppermost level of the tree are
linked to one or several root nodes of the tree, which
generally act as model output. This structure is seen
from Fig. 11.

In the fuzzy neural tree implementation the terminal
nodes convert crisp input data into fuzzy information.
This information is introduced to the inner nodes and
then further propagated ’upwards’ through the model.
The inner nodes of a fuzzy neural tree model neural ac-
tivity in a human brain. A neuron in the tree performs
a non-linear mapping on the input information com-
ing to it, simulating a neuronal activity. In the present
case, the non-linearity of an inner node is established
by means of Gaussian functions. The Gaussian func-
tion is of particular interest for the intended modeling
purpose due to its relevance to fuzzy logic, namely us-
ing a Gaussian allows considering the model both as a
neural model and as a fuzzy system (Hunt et al., 1996).
Namely the Gaussian function plays the role of activa-
tion function when we consider the model from the
viewpoint of the neural network paradigm, and at the
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Figure 12: Different type of node connections for the
fuzzy information processing executed at the neural
tree nodes.

same time it plays the role of membership function in
the terminology of fuzzy information processing. Due
to the latter, a fuzzy neural tree using Gaussian func-
tions at the inner node represents a fuzzy logic system,
i.e. it performs chained logic operations mimicking
human-like reasoning.

Using a neural tree for evaluating the suitability of
a decision, the root node of a neural tree represents
the ultimate goal subject to maximization, namely in
our case the design performance of the neighbour-
hood. The tree branches form the objectives constitut-
ing this ultimate goal - in our case maximizing recu-
perative and living comfort performance. The connec-
tions among the inner nodes and terminal nodes have a
weightwij associated with them, as seen from Fig. 12.
The weights are given by a decision maker. They spec-
ify the relative significance a nodei has for the node
j, which is situated one level closer to the root node in
the neural structure compared toi.

The weight of a link connecting nodei to nodej
denotes to what extent, relative to other inputs ofj,
the linguistic label associated toi is to be considered
as a constituent of the concept associated with nodej.
The fuzzy neural tree is used to model knowledge of a
decision maker. In the present case the knowledge in-
cludes that high recuperative quality of the neighbour-
hood means simultaneous presence of several object
features, such as high privacy for every house in the
neighbourhood. Therefore the operation performed at
an inner nodej is an AND operation that is similar to
the computations in radial basis function (RBF) neural
networks. In RBF networks the Gaussian function is

used as basis function, given by

f(X) = wΦ(||X − c||2) (16)

whereφ(.) denotes the Gaussian basis function, andc
denotes the centre of the basis function. The width of
the basis functionµj at nodej is used to measure the
uncertainty associated with the input vectorXjj to the
nodej. For the AND operation at nodej the multi-
plication rule is used, so that forn number of inputs
to nodej, where every component of the input vector
Xij is denoted byxij , the nodal operation is given by

Oj(Xj) = e
−

1
2

∑n
i=0

(

xij−cij
σj

)2

. (17)

It is noted that in Eq. (17) the multiplication rule is ex-
pressed by means of the summation at the exponent of
Euler’s number for every input and centre. The input
to the basis function at inner nodej denoted byXij is
related to the outputµi from nodei by the relation

Xij = µiwij (18)

wherewij is the weight connectingµi to the nodej.
The weightwij expresses the relative importance of
the i-th inputµ in the AND operation. It is noted that
the weightswij for all inputs to nodej sum up to unity,
as the weights represent the relative importance among
the inputs to the node. Using the radial basis function
neuron for the AND operation, the centrescij of the
Gaussian basis functions are set to take the same value
as the input weightswij to the node. This way it is
ensured that for an inputµi = 1.0, i.e. when a elemen-
tal requirement is fully satisfied, the membership de-
gree used in the multiplication representing the AND
is also maximal, namely 1.0. This inherently ensures
that when all elemental requirements are totally satis-
fied, i.e.µ1 = µ2 = . . . = µn = 1.0, then the output
Oj of the inner node is also1.0, meaning the require-
ment modeled by nodej is completely fulfilled. This
is seen when we use Eq. (18) in Eq. (17), as well as
cij = wij , so that we have

Oj = e
−

1
2

∑n
i=0

(

wijµi−wij
σj

)2

, (19)

which can be written as

Oj = e
−

1
2

∑n
i=0

(

wij(µi−1)

σj

)2

, (20)
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Eq. (20) can be expressed in the following form

Oj = e
−

1
2

∑n
i=0

(

µi−1

σj/wij

)2

, (21)

From Eq. (21) it is clearly seen that when all inputs
areµi = 1.0 thenOj becomes unity inherently. Also
it is noted that the width parameter of the Gaussianσ is
scaled by the weightwij associated with thei-th input.

It is noted that due to the particularity of the neural
tree structure, only the left half side of the Gaussians
at the inner nodes are used during the logic opera-
tions. Therefore the inner nodes represent a multivari-
ate increasing function. This ensures that the greater a
membership valueµi is belonging to an aspect at the
input to a radial basis function, the greater the node
output will be. This implies that improvements with
respect to any elemental requirement in the decision
making yields an improvement of the general perfor-
mance. This property is seen from Fig. 13, where the
logic operations occurring in every inner node are il-
lustrated. The operation at an inner node is a two-stage
process. First the informationµi coming into an inner
node is subjected to a non-linear mapping using the
Gaussian membership functionsgi = f(µi) in Fig. 13.
Explicitly we can write these basis functions for every
input as

gij(µi) = e
−

1
2

(

µi−1

σj/wij

)2

, (22)

so that the outputOj of the j-th inner node is obtained
byOj = g1jg2j . . . gnj . The basis functionsgij can be
considered asactivation functionsin the terminology
of artificial neural networks. Before the multiplica-
tion, the membership functiongij signifies the close-
ness to the full satisfaction of the input at unity. That
is, gij models the fuzzy set of decisions satisfying the
i-th elemental decision requirement. Clearly a wider
Gaussian implies greater tolerance for deviation from
full satisfaction atµi = 1.0. This width is in pro-
portion to the significancewij of an input coming to
the node as seen from Eq. (21). This means, an in-
put having a high significance implies a Gaussian with
a small width, so that small deviation from the max-
imum input value, i.e.µi < 1.0, will already yield
a significantly smaller value forg. Conversely, when
the significance of an input is relatively small, then the
associated Gaussian basis function is relatively wide,

Figure 13: Fuzzification of an input at an inner node.

Figure 14: Linear approximation to Gaussian function
at AND operation.

so that a small deviation fromµi = 1.0 yields still a
value close to unity forgij . The functionality of this
becomes clear when as we consider the ensuing AND
operation being executed by means of multiplication.
This is illustrated in Fig. 13 for a condition with equal
weights. A small value forg(µ), i.e. a value nearby
zero will have a significant impact in the multiplica-
tion, drastically reducing the outputOj = g1g2 . . . gn.
This means for an input with great relative importance,
the node will react relatively sensitive to the fulfilment
of the requirement modeled by this input, compared to
the other inputs.

The parameterσ is the only parameter left to be de-
termined in the model. It should be selected in such a
way that the following condition holds: If all require-
ments are satisfied by the same degree, for instance
all requirements are50% satisfied - i.e.µ1 = µ2 =
. . . = µn = 0.5, then it is consistent for our mod-
eling purpose that the output for this solution should
also beOj = 0.5. It is noted that this condition is ir-
respective of the pattern of weights associated to the
inputs of the nodej. In the same way, in general when
µ1 = µ2 = . . . = µn = a, then it follows thatO = a.
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Table 1: Input-output datasets used for consistency es-
tablishment for6 inputs per node.

Dataset µ1 µ2 µ3 µ4 µ5 µ6 Oj

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

This condition is termed asconsistency conditionin
this work, and it is used to establish the width param-
eterσ of the Gaussian basis function (Ciftcioglu et al.,
2007). That is, the width is selected in such a way
that the deviation from the consistency condition for a
number of input data sets is minimal. This is accom-
plished by means of classical optimization. The input-
output datasets used for the consistency establishment
in the case of six inputs to a node is given in Table 1.

It should be noted that the present neural model-
ing approach is in contrast to artificial neural networks
as follows. Establishing an artificial neural network
is based on data samples and training to minimize
the model error in the representation of the dataset.
The neural trees used in the present approach are es-
tablished from expert knowledge and applying a con-
sistency condition. That is, the structure of the tree
and the weights are given based on domain knowledge
and the model parameters are established by means of
a classical optimization algorithm. It is noteworthy
that the neural model used in this work is completely
knowledge-driven and involves non-linearity due to
the Gaussians involved, at least for the non-terminal
nodes.

To illustrate the operation occurring at an inner node
with three inputs, three identical optimal basis func-
tions gij(µi) are shown in Fig. 15, belonging to the
weightsw1j = 1/3, w2j = 1/3 andw3j = 1/3, that
is the three inputs are equally important constituents
of a nodej.

From Fig. 15 it is noted that in case all weights are

Figure 15: Three identical Gaussian basis functions for
a node with three inputs that are equally significant.

equal then clearly all basis functions are identical, in
particular they have the same widthσ/w. In Fig. 15
an input condition is exemplified, where the following
fuzzy membership degrees for three inputs are taken:
µ1 = 0.2, µ2 = 0.5 andµ3 = 0.8. In this case, from
the figure we note the three different activation degrees
areg1 = 0.55, g2 = 0.79 andg3 = 0.96 respectively,
so thatOj = g1g2g3 = 0.42. That is the node out-
put of the solution is below0.5. In a linear computa-
tion, had we for instance taken the average among the
three input values, the result would have been exactly
0.5, this result is20% lower compared to the output
from the neuron. This means the AND operation ‘pun-
ishes’ more severely for the low satisfaction of input1,
compared to computing the average of the inputs. The
fuzzy neural tree established in this way is a model of
a knowledge reflecting the inherent consistency of the
latter.

3.5 Fuzzy neural tree model for the
neighbourhood design

From Fig. 16 the two objectives of the neighbourhood
design are seen, namely maximizing the recuperative
quality and living comfort performance, located at one
level below from the root node. The demand for re-
cuperative quality of the neighborhood becomes sat-
isfied, when all houses have large gardens oriented in
the desirable cardinal direction. The demand for liv-
ing comfort of the neighborhood is satisfied when per-
ception and garden requirements for every house are
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Figure 16: Structure of the neural model for measuring the performance of members during the evolutionary
search.

also highly satisfied. The recuperative quality is deter-
mined by the performances of the individual gardens,
such as garden ofH1, H2, H3, etc. This is except
with respect to the garden performance of housesH4
andH5, where the recuperative performance has two
additional sub-aspects. These aspects are the perfor-
mance of the garden to the west and the south side
of the house respectively. In the same way the living
comfort performance is determined by the privacy of
the individual houses’ south facades. An exception
is the privacy performance of the housesGa1-Ga6,
which together form an additional sub-aspect of the
privacy performance.

The connection weights in the neural are assessed
by a domain expert. They are given in Table 2. It
is emphasized that the weights are determined with-
out computation. They are elemental constituents of
an expert knowledge. The houses are considered to
differ with respect to their importance for recuperative
and comfort performance of the neighborhood, which
is a common consideration in decision making in ar-
chitecture, due to different expected user demands for
a house. However, concerning the visual privacy of the
group of housesGa1-Ga6 it is noted that in this de-
sign every house is considered equally significant with
respect to privacy of the design, so that the weights
w0(12)-w0(17) are equal.

Figure 17: Fuzzy membership function characterizing
the inputs that determine the garden performance of
the neighborhood.

3.6 Modeling the requirements at the ter-
minal nodes

In order to provide the neural model with input val-
ues, fuzzification processes are carried out at the termi-
nal nodes shown by means of square shaped boxes in
Fig. 16. From the recuperative quality viewpoint gen-
erally the south gardens should be as large as possible,
i.e. the percentageg/gmax should be close to unity.
This requirement is expressed by the fuzzy member-
ship function given in Fig. 17, where the membership
degree is proportional to the valueg/gmax.

The requirements for living comfort entails that
the visual privacyPpriv experienced for every house
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Table 2: Weights of the neural tree for the design performance
Weight n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
w1(n) 0.10 0.10 0.22 - - - - - - - - -
w0(n) 0.10 0.10 0.10 0.10 0.10 0.15 0.15 0.70 0.30 0.70 0.30 0.17

Weight n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20 n = 21 n = 22 n = 23
w1(n) - - - - - - - - - - -
w0(n) 0.17 0.17 0.17 0.17 0.17 0.13 0.13 0.13 0.13 0.13 0.13

should be as high as possible, and satisfaction becomes
less as the privacy approaches to zero. This require-
ment is expressed by means of the following Gaus-
sian shaped fuzzy membership functions at the termi-
nal nodes, in order to determine the degree of privacy
performance of a house.

µ(Ph) =

{

e
−

1
2

(

Ph−Psh
σh

)2

if Ph ≤ Psh;

1.0 otherwise
(23)

wherePh is the degree of privacy of househ; Psh de-
notes the privacy degree from on which the privacy
requirement is considered to be fully satisfied;σh de-
notes the uncertainty associated with the demand for
the satisfaction of the privacy demandPsh. The mem-
bership functions for the different houses are selected
by a domain expert and are shown in Fig. 18-21.

Figure 18: Membership function for privacy perfor-
mance ofH1, H2 andH4, wherePsh = 6.0, σh =
2.0 for P ≤ 6.0.

It is noted that the membership functions selected
for the privacy performance evaluation all have the
same basic shape. However, the output maxima are lo-
cated at different locations. This is to account for dif-
ferent requirements that are due to the different hous-

Figure 19: Membership function for privacy perfor-
mance ofH3, wherePsh = 9.0, σh = 3.0 for
P ≤ 9.0.

ing types and lot conditions involved. For example the
membership function for the HousesH1, H2, andH4
expresses that visual privacy is required to be value
6.0 or greater as an ideal situation. Explicitly when
privacy P ≥ 6.0 the leaf node output is unity, rep-
resenting maximum satisfaction of the corresponding
requirement. In caseP < 6.0 the output of the respec-
tive leaf node becomes less than unity, as specified by
the membership function. For the other houses more
privacy is deemed desirable as can be seen from the
location of the respective maximaPsh.

4 Results

4.1 Obtaining Pareto-optimal solutions

Before the neural tree can be used for fitness evalu-
ation during the evolutionary search, the consistency
condition has to be imposed on the neural tree. This
can be carried out by classical or evolutionary learn-
ing. In the present implementation classical learning is
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Figure 20: Membership function for privacy perfor-
mance ofH5 andH7, wherePsh = 12.0, σh = 4.0
for P ≤ 12.0.

Figure 21: Membership function for privacy perfor-
mance ofGa1-Ga6, wherePsh = 13.0, σh = 4.0 for
P ≤ 13.0.

used for high accuracy. As result of the learning pro-
cess, the width of every Gaussian at the non-terminal
nodes is established as seen from Table 3.

The approximation error for the consistency train-
ing data set is relatively higher for the area around
µ1j = µ2j = ... = µij = 0.3 andµ1j = µ2j =
... = µij = 0.8. This is illustrated in Fig. 14, where
it is seen that the deviation of the Gaussian from the
line Oj = aµ + b is maximal around these points. To
exemplify this approximation let us consider impos-
ing the consistency condition on node5 which has an

Table 3: Resulting widths of the Gaussians at the non-
terminal nodes.

Node no. 1 2 3 4 5
σ 0.0322 0.0322 0.173 0.144 0.164

Figure 22: Verification of the consistency condition
applied to node5.

optimalσ5 = 0.164. The input dataset for imposing
consistency is shown in Fig. 22, as well as the approx-
imation for node5 in the model. The horizontal axis in
the figure shows the input values for the seven nodes
coming to node5, and the vertical axis denotes the out-
putO2(2)of node5. It is to be noted that for the seven
inputs, all of them have the same value, i.e. for a value
x on the horizontal axisµ1j = µ2j = ... = µij = x.
From the figure it is seen that due to the Gaussian
shape used as basis function at the inner node the ap-
proximation error is maximal at two locations that are
approximately at the inflexion points of the resulting
Gaussian.

4.2 Design principles through automated
innovization

Having established the fuzzy neural tree, the design
task in this implementation is to maximize the outputs
of the nodes4 and5 of the neural tree as the two objec-
tives. For this purpose an elitist multi-objective evo-
lutionary algorithm (MOEA), NSGA-II is employed.
The variable boundaries for the locations of the houses
are given in Table 4.

The boundaries are given by the minimal and maxi-
malx andy coordinates for the positions of the houses
H1-H7, Ga1-Ga6 andGb1-Gb4. These boundaries
are selected, so that the facades of the buildings are at
a distance greater than3m from the boundary of the
lot. This is according to legal safety regulations apply-
ing to this design case. The boundaries of the place-
ment are taken parallel to thex andy-axis. They-axis
is in north direction, and thex-axis is in east direction.
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Table 4: Variable bounds for the problem.
House H1 H2 H3 H4 H5

x y x y x y x y x y
Min. 25.0 26.0 26.0 46.0 56.0 47.0 81.0 34.0 86.0 52.0
Max. 31.0 34.0 36.0 56.0 69.0 56.0 117.0 38.0 114.0 57.0

House H6 H7 Ga Gb

x y x y x y x y
Min. 21.0 6.0 3.0 70.0 27.0 67.0 76.0 7.0
Max. 28.0 16.0 10.0 80.0 32.0 81.0 79.0 22.0

As the problem is treated as bi-objective problem, the
evolutionary algorithm is not converging to a single so-
lution, but it yields a Pareto-optimal front in the two-
dimensional objective space. This is relevant, so that
decision making remains flexible, and a final decision
is taken with great awareness. It is interesting to note
that generally the problem could have been treated as a
single-objective optimization problem, under the con-
dition that the weightsw2(1) andw2(2) from figure
Fig. 16 are fixed. However, as the living comfort and
the recuperative quality are rather abstract concepts,
such a commitment is rather problematic to make for
a decision maker, so that the multi-objective approach
is more appealing.

The Pareto-optimal front obtained after50 genera-
tions is seen from Fig. 23. Automated innovization is
carried out on these solutions by solving Eq. 5.Sreqd

is chosen to be90% and N is taken as4 to avoid
complex relationships. It is noted that only one so-
lution among all the Pareto-optimal solutions remains
unclustered in the process, and this solution is marked
by ‘×’ sign in the figure. A total of303 significant
relationships are found. Here we discuss and interpret
the following six:

x1.0000
4 y0.98014 = constant(24)

x0.9001
4 y1.00005 = constant(25)

x0.3571
3 y0.71103 x1.0000

4 = constant(26)

y1.00002 x0.3468
3 x0.8250

4 = constant(27)

y0.76471 x−0.1746
2 x1.0000

4 y0.74794 = constant(28)

y−0.6557
2 y0.39703 x0.6304

4 x1.0000
8 = constant(29)

Figure 23: Pareto-optimal solutions obtained for the
problem. The horizontal axis represents the recupera-
tive quality; vertical axis represents the living comfort

4.3 Interpretation of design principles

In order to illustrate interpretation of the principles ob-
tained by means of automated innovization, a number
of them are interpreted by a domain expert as follows.
The first principle given by Eq. (24) involves two ba-
sis functions. This principle implies that as houseH4
is moved east, its west garden size increases and the
privacy ofH5 is reduced. This means the recuperative
quality of the neighbourhood increases somewhat, at
the cost of some reduction in living comfort. In order
to still have a solution that satisfies the Pareto optimal-
ity condition, in case no other variable is modified,H4
should be moved south to increase the privacy ofH5.
This is seen in Fig. 24.

The second principle involving two basis functions
is given by Eq. (25). This rule implies that, as house



DISCOVERINGDESIGN PRINCIPLES FORSOFT MULTI -OBJECTIVEDECISION MAKING 19

Figure 24: Illustration of implications of the principle
in Eq. (24).

Figure 25: Illustration of implications of the principle
in Eq. (25).

Figure 26: Illustration of implications of the principle
in Eq. (26).

Figure 27: Illustration of implications of the principle
in Eq. (27).

H5 is moved north its south garden size is increas-
ing, yet the house is moving closer to the groupGa.
This means the recuperative quality of the neighbor-
hood is slightly increasing at the cost of reduced living
comfort. To remain Pareto-optimal,H4 should move
west, reducing the garden performance ofH4 some-
what and further increasing the privacy ofH5. This is
seen in Fig. 25.

A third principle involving, which involves three ba-
sis functions is given by Eq. (26). Interpretation of the
principle is that as houseH4 is moved east its gar-
den size increases while privacy ofH5 decreases. This
means the recuperative quality of the neighborhood in-
creases somewhat at the cost of some reduction in liv-
ing comfort. To reach a solution that is Pareto-optimal,
H3 should move south, trading in some recuperative
quality to increase the living comfort of the neighbour-
hood. Namely, asH3moves south its perception of the
housesGa becomes desirably reduced. This is seen in
Fig. 26.

A fourth principle, which also involves three ba-
sis functions, is given by Eq. (27). As houseH2
is moved north, its garden size increases, thereby in-
creasing the recuperative quality of the neighbourhood
to some extent, while compromising the living com-
fort, as it moves closer toGa. To obtain a solution
that satisfies the Pareto optimality criterion,H4 should
move west, increasing the living comfort, while los-
ing some of the previously gained recuperative quality
H5. This is seen in Fig. 27.

A fifth principle, which contains four basis func-
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Figure 28: Illustration of implications of the principle
in Eq. (28).

Figure 29: Illustration of implications of the principle
in Eq. 29.

tions, is given by Eq. (28). The principle is interpreted
as follows. As houseH4 is moved east, its garden
performance increases, i.e. the recuperative quality of
the neighborhood slightly increases, while the living
comfort slightly diminishes, as the privacy ofH5 de-
creases. To still remain Pareto-optimal, the loss of liv-
ing comfort is compensated by movingH4 andH1 in
south direction, while movingH2 east. This way the
privacy ofH5 andH2 is increased, compensating the
loss in living comfort. This is seen in figure Fig. 28.

A sixth principle that also consists of four basis
functions is given by Eq. (29) This principle entails
that, as housesGa are moved north, their privacy in-
creases as well as their garden performance. This
means that the living comfort of the neighborhood and
also the recuperative quality is increased somewhat.
For Pareto optimality, the gain in recuperative perfor-

mance is reduced and living comfort is increased by
moving H2 andH3 south and movingH4 west, as
seen from Fig. 29.

From these examples it is seen that the interpreta-
tion of the principles is rather intuitive. This is also
due to the fact that in the present case fuzzy modeling
is used to treat the objectives in the decision making.
As the two objectives, maximize recuperative quality
and living quality are linguistic terms that are well un-
derstood by a decision maker, it is easy to understand
the relations among a number of decision variables
while keeping in mind the Pareto optimality condition.
However, it is noted that the interpretation of the prin-
ciples for rules with more than three basis functions
becomes less intuitive, as relationships among seem-
ingly remotely related objects appear in the principles.
However, the latter implies that a decision maker is
able to gain insight into subtle influences present in
the decision making problem at hand.

It is further noted that the innovized principles can
be used to fill gaps on the Pareto-optimal front. In or-
der to identify a Pareto-optimal solution on the front
that has not been found by the evolutionary algorithm,
merely one of the principles has to be used, as each of
them applies to ensure Pareto optimality. This means,
through the innovized principles the set of optimal so-
lutions evolved by the evolutionary algorithm can be
extended to a larger set.

5 Conclusions

Automated innovization is used to extract design prin-
ciples in a soft multi-objective decision making prob-
lem. Despite the rather simple looking Pareto-optimal
front of the bi-objective problem being smooth and
convex, rich diverse design knowledge in the form of
invariant principles among the decision variables are
obtained from the corresponding information. This
exemplifies the suitability of the clustering based au-
tomated innovization method for complex real-world
problems that involve vagueness and imprecision, and
a high degree of non-linearity in the fitness evaluation.
The empirical design rules obtained from this process
are interpreted by a domain expert, and the interpreta-
tion is intuitive. For rules involving a larger number of
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basis functions, interpretation becomes less intuitive,
so that the decision maker can understand subtle rela-
tions among the decision variables. The extracted de-
sign principles can help decision makers to reach an in-
formed decision as they understand with precision the
implications of the trade-offs under consideration. An-
other interesting benefit from the innovization is that
gaps in the non-dominated front can be filled using the
obtained design principles. Some relevant future re-
search directions are lower level automated innoviza-
tion, higher level automated innovization, studying the
performance of clustering with higher number of ob-
jectives and identifying design principles in problems
with simulation based objective evaluation.
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(2007). Visual perception in design and robotics.
Integrated Computer-Aided Engineering, 14(1):73–
91.

Broomhead, D. S. and Lowe, D. (1988). Multivariable
Functional Interpolation and Adaptive Networks.
Complex Systems 2, pages 321–355.

Ciftcioglu, O., Bittermann, M., and Sariyildiz, I.
(2006). Towards computer-based perception by

modeling visual perception: A probabilistic theory.
In IEEE International Conference on Systems, Man
and Cybernetics, 2006. SMC’06, volume 6, pages
5152–5159. IEEE.

Ciftcioglu, O., Sariyildiz, I., and Bittermann, M.
(2007). Building performance analysis supported
by ga. InIEEE Congress on Evolutionary Compu-
tation, 2007. CEC 2007., pages 859–866. IEEE.

Deb, K. (2000). An efficient constraint handling
method for genetic algorithms.Computer Meth-
ods in Applied Mechanics and Engineering, 186(2–
4):311–338.

Deb, K. (2001). Multi-objective optimization using
evolutionary algorithms. New York: Wiley.

Deb, K. (2003). Unveiling innovative design principles
by means of multiple conflicting objectives.Engi-
neering Optimization, 35(5):445–470.

Deb, K., Agarwal, S., Pratap, A., and Meyarivan, T.
(2002). A fast and elitist multi-objective genetic al-
gorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation, 6(2):182–197.

Deb, K. and Sindhya, K. (2008). Deciphering in-
novative principles for optimal electric brushless
D.C. permanent magnet motor design. In2008
IEEE world congress on computational intelli-
gence, pages 2283–2290. IEEE Press.

Deb, K. and Srinivasan, A. (2006). Innovization: In-
novating design principles through optimization. In
GECCO ’06 - Proceedings of the 8th annual con-
ference on genetic and evolutionary computation,
pages 1629–1636. New York: ACM.

Hunt, K., Haas, R., and Murray-Smith, R. (1996).
Extending the functional equivalence of radial ba-
sis function networks and fuzzy inference systems.
Neural Networks, IEEE Transactions on, 7(3):776–
781.

Zadeh, L. (1997). Toward a theory of fuzzy infor-
mation granulation and its centrality in human rea-
soning and fuzzy logic. Fuzzy sets and systems,
90(2):111–127.


