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ABSTRACT

Decision-making tasks sometimes involve soft objectivEsey are soft in the sense that they contain uncer-
tainty, imprecision or vagueness. For example, decisionbuilt environment aim to maximize comfort or
other experiential qualities. Pareto-optimal solutiamsuch problems can be found using multi-objective evo-
lutionary search together with other soft computing methd8leyond optimality, professionals are interested
in knowing how different aspects of the problem influenceheather in optimal solutions. Such knowledge
is referred to as the design principles. Through them datsstcan be taken with great confidence and knowl-
edge for similar future design cases is gained. Using thet&aptimal solutions for this purpose is known as
innovization and it has been exercised for various crispresgging problems. In the present paper automated
innovization is used to discover the principles for a softisien making problem. The process involves the use
of a grid-based clustering technique integrated with a tieadégorithm for unsupervised learning of the prin-
ciples. Multiple design principles are discovered simmgiausly through a niching strategy. The large number
of variables originating from the softness of the probleragsoan additional challenge of parsimonious knowl-
edge representation for ensuring interpretability. Trodbfam investigated is a real-world decision making task
concerning the optimal placement of a number of residentids in an urban design, involving two soft objec-
tives: the recuperative quality of the neighborhood, a$ asits living comfort should both be maximized. The
underlying design principles are obtained and interprétmah the point of view of the decision-maker. This
demonstrates the relevance of evolutionary knowledgeod&sy in decision-making, a matter which should
provide decision-makers adequate and informed knowlealgehoosing a single preferred solution among the
Pareto-optimal ones, and also to understand intricatetoéfid among decision variables.

KEY WORDS: innovization, architectural design, desigmpiples, decision making, multi-objective evolu-
tionary algorithm, fuzzy neural tree

1 Introduction ness. Examples of such problems are the well known
engineering design problems, such as design of truss
Many engineering problems can be characterized $g.cture, ammonia reactor design, car suspension de-
crisp. This means that the problem does not requf@n etc. (Deb, 2001). In such problems the objec-
means to address imprecision, uncertainty or vaguwes refer physical object features, such as minimizing
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stress or material volume that are unambiguously des relevance to and importance in decision making.
fined in computational or mathematical terms. HowFhereafter in Sec. 3 we consider a soft multi-objective
ever, in other problems, particularly when the objearchitectural design problem as a case study and de-
of concern facilitates complex human experiences neelop a detailed neuro-fuzzy approach for modeling
garding products, services, buildings or cities, motbe inherent softness. In Sec. 4 we decipher several
often than not, objectives are described in linguistarinciples using the automated innovization approach
terms that are not readily amenable for computaticend assess them against expert opinion. This is fol-
Examples of such objectives are when an object is tewed by conclusions.
quired to be functional, sustainable, or posses aesthetic
gualities. Such concepts contain some imprecision or, . . : S
vagueness, so that they are referred to as soft. 1%3‘ Deciphering design principles
softness is due to the abstract nature of the linguisfige invariant principles mentioned above are so called
labels, which stem from human perception and cogecause they apply to all or most Pareto-optimal so-
nition (Zadeh, 1997). Soft problems are an impofutions of a multi-objective optimization problem, soft
tant class of decision making problems. This is se&d, otherwise. Also, they are unique only to these so-
for instance from the fact that a substantial portion @ftions and are not satisfied by other feasible or in-
the energy and materials consumed on the globefdgsible solutions. Thus they are characteristics of the
through products and buildings, while decision malpareto-optimal front and their knowledge is crucial not
ing on such objects traditionally involves perceptiorbnly for the designer but also for the decision maker,
based objectives. Thus decision making in industrigé will be illustrated in Sec. 2.4. In this context these
and architectural design is generally a soft issue. Dggnciples have been conventionally referred talas
to their ill-defined nature, soft problems require spgign principles(Deb and Srinivasan, 2006). These
cial methodologies to deal with them, in particular thﬁrincip|es provide the recipe for creating more Pareto-
methodologies from the domain of soft computing, irbptimal solutions. Moreover, they can be used to iden-
cluding fuzzy, neural, and evolutionary computatiofiify the most significant and least significant parame-
These methodologies are able to absorb the impregirs of the problem.
sion inherent to soft decision making problems, since|dentifying commonalities or invariant principles
the underlying mathematical structures are able to h%’ﬂnong a gi\/en set of solutions is a Cha”enging task.
dle a high degree of non-linearity, and generally songgstly, it is difficult to predict the mathematical or
from of machine learning is used to establish the moghgical form of the principles. Most notable of past
els (Broomhead and Lowe, 1988; Hunt et al., 1996%udies have used decision trees and data-mining tech-
Due to their mathematical complexity, and as mamjques to overcome this problem. Instead of assum-
real-world decision making tasks involve softness, jiig a definite form for the principles, decision trees
is an important matter to |dent|fy the invariant prinCiwork by successive|y d|V|d|ng the dataset into seg-
ples CharaCteriZing a soft prOblem. In particular in thiﬁents based on each variable one at a time. Data-
work we investigate this issue using a post optimalifiining methods like SOMs provide a visual means
analysis known as automated innovization (Bandag# deciphering the commonalities. However, in both
and Deb, 2011b). This is studied by means of an appliese cases the obtained knowledge is in a form that
cation, where Pareto-optimal solutions of a soft proBannot be used by designers and decision makers ef-
|em are analyzed USing the Clustel’ing based innOViZ@Ctive|y_ Second|y' a given princip|e may not be ap-
tion approach. plicable to the whole dataset. However, it is desir-
The paper is structured as follows. In the rest of thable that the principle encompasses a significant por-
section the concept of a design principle and the amn of the dataset. Decision trees fail when applied
proach used for deciphering them are explained. tm such datasets, often resulting in a large number
Sec. 2 the clustering based automated innovizatiohterminal nodes. Lastly, the computational nature
method is described, followed by an illustration odf obtaining the trade-off solutions in most if not all
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cases, introduces approximations and hence noiseirtumvent these problems.
the dataset. Any algorithm that aims to automatically
extract the design principles must be able to filter out

points which do not comply with the principleinhand? Clusteri ng based automated in-

novization
1.2 Innovization
Automated innovization (Bandaru and Deb, 2010),
[oposes the use of the following mathematical struc-
ure for the design principles,

Unlike other methodsinnovization(Deb, 2003) fo-
cuses on the mathematical structure of the principl
The goal of any innovization study is to identify differ-
ent combinations of variables, constraints and/or ob-
jectives such that the resulting mathematical expres-
sion, when evaluated for all solutions in the datas

remains constant or invariant across most of them. . N . ) .
anual innvoization studies like Deb and Srinivasan

definition, these combinations then become the desi . o
principles of the multi-objective problem. In this con—&rb%)' Additionally, it is easy to see that such a

. o . orm easily lends itself for interpretation and future
text, a design principle denotes a mathematical rer y P

) . - faference. Here;'s are theN chosen problem en-

J
tlonshl_p be_t"vee” tV.VO or more e_”““es of a prOblenﬂtles. They can also be any other user defined func-
which is valid for a significant portion of the Pareto op- : . . :
. S o tions. Since they form the basic units which form a
timal front. Problem entities include the decision varl;

L : ._design principle, they are also called the basis func-
ables, the objectives as well as the constraint func'uo%.nS (not to be confused with the basis functions used

IQIT e?ﬁéisstew\?gri?ugbtgli?v\fgzsgoﬂgiﬂgisnf: :f) \rlr;":\r_]afer for neuro-fuzzy modeling). The constantalled
y P fh% parametric constant, quantifies the degree of invari-

ables, constraints and objectives and plot them agalizte of the principle defined by the expression on the

each other in two dimensions to see if there is arpgft hand side of Eq. (1).

correlation. This is known as manual innovization. s are Boolean variables which represent the pres-
For example, if a variable:; when plotted against 4 ) pre ep
S : . : ence (1) or absence (0) of theth basis function.
an objectivef, results in the data points falling ap-_. : . o
Given a set ofu;’s the automated innovization algo-

proximately on a straight line with positive slope, then . : . '
21 o f, and therefore}i—l — constant becomes the rithm tries to find the corresponding exponenis

design principle. There are however, some glaring Iir%EJCh that Eq. (1) representsignificantdesign princi-

itations to this approach. Firstly, it is difficult to manuglees'i;n;ﬁr:gep ;Za;ziilﬁusg\t/';yt:]hee ;r;\:?ga:/r;clséa%?hd
lly plot and analyze all combinations of problem en- . . .
awp ota d analyze all combinations of p o_b em € 3 relatively large number of Pareto-optimal solutions.
tities especially when a large number of variables ape

involved. The method of identification of design prin- s discussed earlier, this design principle may not ap-

ciples is visual and hence is not reliable if the prok?—ly to the whole Pareto-optimal front The percentage

lem entities under consideration have different maﬁéf points which h_avg Very closevalugs can b.e used
nitudes or if there is a subset of points on which th calculate the significance of a design principle.
principle is not applicable. Thirdly, linear correlations

though easy to identify, are rare and hence there i93  Grid-based clustering

need for preprocessing the data using transformations

(eg. logarithmic) and post-processing with regressi@efore calculating the significance described above,
techniques. Lastly, the human element in the manulaé trade-off points have to be classified into two
innovization procedure makes the process prone to greups: one which has the same (or very close)
rors. In the following section we discuss the clusteringalues and the other which havevalues very differ-
based automated innovization approach developecetd from rest of the dataset. Automated innovization

I ¢(x) 5% =c. )

is mathematical form is supported by previous
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uses the grid-based clustering technique in the one fir minimum number of clusters. Since within each
mensional space efvalues. It involves the following cluster, the:, is minimized, the accuracy of the design
steps: principle can be indirectly controlled through the vari-
abled. The percentage coefficient of variation is used
instead ofc, so that the following weighted objective
function can be used,

1. Sort {c™M, @) ... ™} evaluated for then
trade-off solutions.

2. Divide the rangéc,in, ¢maz] iNtO d divisions. c

3. Count the number of-valuesn, falling within Minimize €+ ¢ x 100%. (3)
each division. k=1

4. Label the divisions witm, > |2 | (the average Notice that thm-valu_es on thg RHS are only _used
number ofe-values per division) as sub-clustersfor clusterlng and their numerical values are irrele-
vant. Therefore, there can be infinite sets of opti-
5. Label the trade-off points corresponding to the ma| exponents,’s thats will result in the same num-
values in the remaining divisions as unclusteregher of clusters. The objective function in Eq. (3) is
hence multi-modal. We overcome this, by restricting
the variables; to the rangd—1, 1] by always ensur-
7. Count the number of unclustered trade-off poinisg that the exponent with largest absolute value is al-
u. ways1 and that the other exponents are modified pro-

Notice that the grid-based clustering describé)(?monately If needed. For example, a design prin-

; le of the f 254509540 = ill -
above introduces a parametérlt can take any value Clple of the form¢y°¢;" ¢5 ¢, will be rep
) : . resented in the automated innovization algorithm as,
in the range[l, m|. However, instead of asking the 0625 ,~0.25 410 _ ./
user to set a value for it, the automated innovizatic?ri 2 5
algorithm is designed to choose an optimal value for it o _ )
based on the accuracy of the deciphered design p#h3 Niching for preserving multiple de-
ciple. Once the trade-off points are classified into the sign principles

above defined groups the significance can now be ob- ] ] ) )
tained as, The approach discussed above is only suitable if the

m—U user wants to decipher only the most significant de-
S= m x 100%. @) sign principle. Often, the user is interested in find-
ing all design principles which are above a thresh-
2.2 Deciphering asingledesign principle old significance value. Previously, manual and auto-
] ] . mated innovization (Bandaru and Deb, 2011b) stud-
Itis clear from the discussion above that thealues e achieved this through multiple runs with different
in the C clusters found above should all have approxets of basis functions. A recent study (Bandaru and
imately the same value. The algorithm is expectgshp 2011a) exploits the population based nature of
to find suitablea;’s andb;’s such that the invariancene GA to evolve multiple design principles simultane-
property of the design principle is satisfied. The cogfysly using a less known niching strategy. Since each
ficient of variancez, of the c-values is used for mea-population member represents a possible design prin-

suring this invariance. For converging iteratively to giple, for thei-th individual, Eq. (1) can be written as,
design principle and hence improving its significance,

an optimization problem is formulated with the min- Hévﬂfbj (X)aubu =c;. (4)
imization of the sum ot,’s in all clusters as the ob-

jective. The exponenis;’s andb;’s are the variables. The significanceS; can now be calculated by first
The parameted of the clustering algorithm is also in-clustering allc;-values to determinéf; and then us-
cluded in the variable set, and its value is optimizeédg Eq. (2). Population members with different sets

6. Merge adjacent sub-clusters to fofhelusters.
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of a;;'s represent design principles which use diffefsV), lamination type Ly,.), type of electrical con-
ent basis functions and hence they are not comparegttion (\/,,) and the wire gaugeA;q.,4¢) to be used
during the selection operation of GA. Thus differerih the windings. The optimization problem is posed
‘species’ of design principles can be made to coexiss:

in the population. Boolean;;'s are encoded as a bi-

nary string of lengthV and a GA which can handle Minimize  Ciova(ni, N, Liype, Mph, Agauge),

both real and binary variables is adopted. Maximize T}, = 87300.00 Cior N RsiAwireni,
In order to prevent trivial solutions (whem; = Subjectto  gi(x) =T}, > 0.83,
0 V j) and complex design principles (when many 92(x) =T < 5.27, .
basis function are involved), the constrait < 93(x) = AwireN < {150, 240,280} x 10~
3, ai; < Nisintroduced in the problem formulation, whenLi,,. = {A, B,C} respectively
whose complete form (for thieth design principle) is: 20 = my < 200,
10 < N < 80,
Ci Ltype € {A7 B, 0}7
Minimize ~ C; + ) _ ¢ x 100%, M, € {Y,A},
_ Pt Agauge € {16.0,16.5, ..., 23.5},
Subjectto S; > Syeqa, n, and N are integersA .. is discrete.
1<% a;; <N, 1binary variable (6)
—1.0<b;; <1.0, Nrealvaiables The costfunction,;,.,; can be found in Deb and Sind-
1<d; <m, 1 integer variable. hya (2008).4, B andC are different kinds of lamina-

(5) tions with specificR,; values. The electrical connec-
whereS,..,q and are user-supplied values indicatingion can be ofY” type or A type, each having a dif-
respectively, the minimum threshold significance fgerentC,,, value. Finally, the cross-section are of the
the variables and the maximum number of basis fungire 4,,,,. is a function of the gauge number, ;.

tions that can participate in forming a design principlend hence can also také discrete values.

The mixed variable nature of the problem also justifies Fig. 1 shows the Pareto-optimal front obtained us-
our use of a GA to solve Eg. (5). The constraints ajieg local search based NSGA-II (Deb et al., 2002). In-
handled using Deb’s penalty-parameter-less approagfestingly, the Pareto-optimal solutions all differ only

(Deb, 2000). with respect to the number of laminations which
takes all integer values in the ran@s, 172]. All other
2.4 Innovization for decision making variables are fixed for the entire set of Pareto-optimal

solutions. N = 18, Lyy,e = B, M, = Y and
In this section, we shall illustrate the role of innovizaAgauge = 16.0 are simple but very useful design prin-
tion in decision making through two well known engiples deciphered for this problem. A decision maker
gineering design problems. Though the problem fafith knowledge of these principles can enhance the
mulations in both the cases are crisp, the procedurggductivity of a manufacturing unit producing these

applicable as is to soft problems. motors by simply setting the wire turning machine to a
fixed value of18. The armatures will thus never have
241 BrushlessDC motor design over-turns or under-turns. The inventory and the as-

A detailed manual innovization study for the design 94 minations of typeB and wire of gauge6.0
a brushless DC permanent magnet motor design can be e

found in Deb and Sindhya (2008). The design requires i )
minimization of manufacturing cost of the motor along-#2 SPring design
with maximization of the peak output torque. The fivh this design task, a helical compression spring needs

design variables are: the number of laminations to kgbe designed such that both its volume and developed
used in the moton{;), the number of turns in each coilstress are minimized. The wire diametgrthe mean

sgciated costs can also be reduced by only ordering
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Figure 1: Pareto-optimal front and innovized princi-
ples for brushless DC motor design.

coil diameterD and the number of turn¥ are the de-
sign variables. The optimization problem formulation
is as follows. A detailed description of all the symbols
can be found in Bandaru and Deb (2011b).

Minimize  fi(x) = V = 0.257%d>D(N + 2),
Minimize  fa(x) = S = 8Pl
SUbJECt 10 g1(x) = mas — 2202 — 1.05(N + 2)d > 0,
92(x) = d — dmin >0,
93(x) = Dpmaz — (d+ D) >0,
ga(x) =C =3 >0,
gS(X) = 6pm - 5;7 >0,
go(x) = Lmar=L _ 5, >0,
gr(x) =S — M >0,
98(%) = Vinas — 0. 25772d2D(N +2) >0,
1< N <32,
1<D<30in,
N isintegerd is discrete D is continuous.

(7)
The variabled is allowed to take any of the following
42 discrete values:

AND DEB K.
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Figure 2: Cluster plot for the design principle =

constant.
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Figure 3: Pareto-optimal front for the spring design
problem. The clustered points in Fig. 2 fall in different
segments on the Pareto-optimal front.

0.009,
0.014,
0.023,
0.047,
0.105,
0.192,
0.307,

0.0095, 0.0104, 0.0118, 0.0128,
0.015,  0.0162, 0.0173,  0.018,
0.025, 0.028, 0.032, 0.035,
0.054, 0.063, 0.072, 0.080,
0.120, 0.135, 0.148, 0.162,
0.207, 0.225, 0.244, 0.263,
0.331, 0.362, 0.394,  0.4375,

0.0132,

0.020,
0.041,
0.092,
0.177,
0.283,
0.5.

in.

of the 42 allowed values for the spring wire diame-
ter, only the last seven are optimal. This information
is very crucial to the designer and the decision maker
who can now propose to reduce the inventory size of
the wires from42 different groups to jus?.  Us-

Automated innovization yields various design priring such a cluster plot and its mapping on the Pareto-
ciples for the Pareto-optimal set of this problem (Bamptimal front, the decision maker can also deduce that
daru and Deb, 2011b). However, the most importacthoosing one of the seven optimal valuesdas the

for the decision maker is the principte= constant

highest level of decision making when an optimal de-

which results in seven clusters as shown in Fig. 2. Qaign has to be selected.
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3 Architectural design problem

3.1 Softnessand relevance

The present problem is from the domain of architec-
tural design and concerns a typical real-world decision
making case in this domain. A decision is to be made
regarding optimal positions of an ensemble of residen-
tial housing units on their respective lots, where two
objectives are subject to maximization. The first objec-
tive is to provide aomfortable living experiende the
residents by maximizing the visual privacy they expe-  Figure 4: Decision variables of the problem.
rience in their homes. The second objective is to max-

imize therecuperative qualityof the neighbourhood ¢ hile h |
as determined by the suitability of the gardens for ghjian ofém x 8m, while housed71-H7 arel2m long,

purpose. These criteria are major aspects in archité@z W'_de and thelr;onge;'axi |sAc\)”r|ebn§|eac.i In east-west
tural and urban decision making tasks. That is, livif"ection as seen from Fig. 4. All buildings are two
reys high. It is noted that the existing buildings do

comfort and recuperative performance are significa lein th th ; fih

features determining the quality of life for the residen ayarolein the assessment of t € performance o the

and the value of an area, so that these issues frequefifig'dns: although they are not subject to optimal place-
nt. This is because they influence the visual privacy

occur as objectives to be maximized in these tasks. - " ¢
) a number of buildings to be positioned, thereby in-

is noted that in the decision making task considered
9 L'Jencing the living comfort of the neighborhood and

this work, aspects such as social control for safety ; £ th iahbourhood. The obi
residents are omitted, as these issues do not play a Si _ periormance o the neighbour 0oa. The objec-
e for high living comfort of the neighborhood en-

nificant role in the problem at hand. The building it : . ) ) . .
is one of the largest areas in the Netherlands subj@{s that all residential units should have a high visual

to development, named Leidsche Rijn. The site ha®4vacy, meaping that every unit should be min!mglly
size of 3600m?. The streets and lots are provided iffxposed to visual perception from the other buildings
advance in this case around it. Next to this, the recuperative quality of

In Fig. 4 the building site is seen from plan view. Orqelghbourhood is maximized by placing the houses in

the site twenty buildings are situated. Three of them §1l-JCh a way that the gardens are as large as possible

ready exist on the site, These buildings are shaded V\;IrMhe desirable cardinal direction for all houses of the

. : neighborhood. One aspect of the softness of this prob-
black colour in the figure. Thus, seventeen houses ?erﬁw is that the living comfort is determined by visual
subject to optimal positioning. The hous@s1-G,6 9 y

andG,, 1-G,4 form two groups of houses, respectiVelgerceptlon aspects, the human visual perception pro-

X . . ess is complex, leading to an inherent uncertainty in

termedG, andG,, which are situated along a line par- . . .
. . the assessment of visual perception features of objects.
allel to the north and south perimeter of the neighbour-
hood, as seen from Fig. 4.
It is an initial basic choice of the decision makerg§ 2 Computing visual perception infor-

to align the houses of a grou@, or G} with respect mation
to each other, so that thejrcoordinates are the same,
and also the distances among the houses direc- Visual perception is deemed a soft issue, because brain
tion are kept constant. Therefore, a singlg coor- processes play an essential role in it. Therefore, up till
dinate pair suffices per group - respectivélys, ys) now visual perception based requirements have gen-
and(xg,y9) - to describe the location of the house®rally not been subject to computational treatment,
The houses of7, andG;, have a square shaped flooalthough they play an important role for the qual-
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.

observer
fz(z)

¥\
I

x=l, =0

vertical plane
with infinite length —

Figure 5: Probabilistic perception model for a basic
geometric situation. Figure taken from Bittermandrigure 6: Plot off. () for lo = 4, lo = 6 andly = 8.
et al. (2007).

ity of a design. In the decision making problem ad-
dressed in this work treatment of this issue is ex-
emplified by computing visual perception information
based on a probabilistic perception theory (Bittermann
et al., 2007). In this theory the faculty of conscious-
ness known aattentionin psychology, is modeled by
means of probability density function (pdf), while per-
gigﬂa?nquarr?t(i)tgél?r?]igyprgi?arg)?li?; irggtba?: ggyb?/e;:t%lf—algure 7: lllustration of the result from the perception
grating the pdf that characterizes visual attention oVl del.
some physical domain of an object. This is exempli-
fied for the basic geometry in Fig. 5, where an observerggm the plot it is seen that the maximum of atten-
at P is viewing a plane with infinite length. tion is located directly in front of the observer, i.e. at
Taking the scope of vision in this situation to be de; _ 0, where the distance to the object is minimal,
fined by the angle-7/4 < ¢ < /4, the probability namely; — ,. This result is confirmed from com-
density functionf, that characterizes unbiased atteRqon, yision experience: For instance when we visually
tion with respect to the angtgin Fig. Sis given by gynerience a wall without aa priori bias for any part
. 1 of the wall, we naturally pay more attention to the de-
fo= 7772 (8) tails of the wall region that is directly in front of us
compared to adjacent regions. From the plot we also
as a uniform pdf. This implies that the observer hagte that with increasing distance from the plane the
no a-priori bias for any direction in his view, which reattention. (z) becomes less peaked. This means for
flects the lack of information on such preferences ingfar distance, instead of paying attention primarily to
general viewing situation. Based on Eq. (8) and the gée middle part of the wall, an observer gives attention
ometric relationtan(¢) = z/lo, probability theoretic to the whole object with almost equal intensity, i.e. at-
computations yield the function of the random variablention is less accentuated for the frontal region of the
z for the interval—l, < 2z < I, as (Bittermann et al., object compared to to the case of a nearer distance.

2007), 0 The integration of visual attention paid to an object
fo(2) = 72702 (9) Yields perception, which is quantified by a probability
m (Ig + 2%) (Ciftcioglu et al., 2006). This probability can be inter-

which is a Cauchy function shown in Fig. 6 flagr= 4, preted as the degree of awareness the observer has for
lo =6 andly = 8. the object attended to. For simplicity of the explana-
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tion, preliminarily perception is investigated inther  Therefore the visual perception of the object is
plane seen in Fig. 7. In case of the infinite plane in

Fig. 5 being the single object in the scene, the integra- P, .= P,P, ~0.270. (14)
tion yields
e e 'I_'his means the object 'occupies’ a s_ignificant por-
Fo(2)dz = 2l dz_ _ 1 (10) tion of the visual awareness of an unbiased ob;erver,
—lo T J_i, 12+ 22 namely more than a quarter of it. From the figure

) N ) _it is clearly noticed that an object located directly in
so thatf.(z) is verified as a pdf. This means that ifront of the observer and nearer to him yields a higher
case there is a single object fully spanning the viSL@égree of perception, due to the peaked shape of the
scope, then the probability that the object is seendgychy function. Since the sharpness of the peak de-
unity, i.e. the observer is aware of the object’s presenggngs on the distandg, as seen from Fig. 6, the in-

with certainty. For an object that is small enough, S@gral, i.e. perception also diminishes as the object
that it does not span the entire visual scope, perceptiggyes away form the observer.

of the object is computed by Clearly due to the geometry of the Cauchy func-

bo tion, if an object appears not directly in front of the
P, = f2(2)dz, (11) observer but lateral to the observer’s central viewing
b1 line, the object will also have reduced perception com-

whereb,; andb, are the boundaries of the objectin pared to the former case. This is il]ustrated in Fig. 8,
direction. For illustrative purposes the perception Jf1€re several perception computations are shown. For

the wall object shown in Fig. 7 is calculated wher@e sake of simplicity the vertical dimension is omitted
lo = 4m and the object size is alson in = dire(;tion in the following consideration. The perception of the
so that the perception becomes " buildingsH1, H2, H3, and H4 is investigated. Here

the viewpoint of the observer is taken as the geomet-

+2 4l (T2 dz ric centre point of the north facade of a buildirig.
P, = , fo2)dz = — A P The curves plotted along theaxis illustrate the prob-
4 9 0 ability density functions belonging to the perception
= —tan" ! 2= ~0.591. (12) of housesH1-H4 as viewed fromFE1. In particular
T lo they show the degree of visual attention paid to these

The integration for this case is illustrated in Fig. 6 bhuildings’ south facades for thedimension. The in-
means of the shaded area. For the perception in thie@ral of these pdfs over the length of the respective
dimensional space the perceptionyidirection should south facade of a house is indicated as a shaded area. It
be considered as well. Due to the probabilistic natugglantifies the perception of the respective facade from
of the approach the perceptions in either direction dfe viewpoint considered. Comparing the perception
independent events. Therefore the perception of tehouseH 3 and 2 it is clear thatH 3 is perceived
object in space is obtained by using the multiplicatidiore strongly compared t§2, asH 3 is located more
rule P(P, N P,) = P.P,, i.e. multiplying the proba- close to the frontal direction marked kyin the figure.
bility quantifying perception inx direction and percep-

tion in y direction (Bittermann and Ciftcioglu, 2008). Itis noted that every house is perceived from several
For the wall object in Fig. 7, having a height &0m viewpoints at the same time. From the decision mak-

the perception iny direction becomes ing viewpoint it is desirable in the present case that
the total perception of a building’s facade from these

P, = /Hﬁf (y)dy = Ao [T dy viewpoints should be small. This is to increase the
o s Y yIey = o 12+y? visual privacy experienced in the house. In this case

this is relevant with respect to the south facade of the

1 1.5
— tan~" To ~ 0.457. (13) house, since the living areas of a house are generally
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Figure 10: Calculation of the garden performance.

Figure 8: Sketch indicating the computation of the de-

gree of perceptions of the housél, 2, and H3 ko the computation of the perceptions, in this imple-
from the viewpoint1. mentation occlusion is considered by means of a sim-

——— - - ple test of the visibility of a building from another one.

: aw=s This is detected by sending a test-ray from the centre

location of the first building to the original viewpoint.
In case this ray is intercepted by a building located in
between the two points, then the component of percep-
tion of this building from the viewpoint considered is
taken to be zero.

3.3 Assessment of recuperative perfor-
mance

Figure 9: lllustration of the visual privacy computatiof* S€cond aspect considered in the design of the hous-
based on the probabilistic perception model. ing complex is the performance of the neighborhood
for recuperative purposes. In general a large gar-

den located south of the building is considered most
located behind the south facade in north western Edesirable for this purpose, due to exposure to direct
rope. Therefore, the perceptions ‘impinging’ on theunlight in moderate climates on the northern hemi-
south facades of the buildings are considered. Thissishere. Therefore the performance of a garden is ob-
illustrated in Fig. 9. In the figure an implementation ofined based on the size of the south garden in general.
the perception model described before is seen, whaige buildingsH4 and H5 form an exception. The
arandom process is used to generate vision rays bajgeslof these houses are oriented in east-west direction.
on the pdfin Eq. (8). These are emitted in northern diherefore, next to the garden in south direction, the
rection from the different houses according to the urngardens west of the buildings are considered for re-
form pdf of attention with respect to the vision anglesuperation as well. In this case the west direction is
Based on these considerations visual privacy of a {@sed and not the east direction. This is done because
cade is defined by the housed74 and H5 should have direct sunlight in
. their gardens during the evening, as the occupants are
= expected to make use of their gardens mainly in the
Poriv(0) = (Z P(O, V")> (15) evening in this case. In order to determine the garden
! performance for an individual house, the size of its
where P(O,V,,) is the degree of perception of objecgarden in south direction is normalized with respect
O from then-th viewpointV. That is, the visual pri- to the maximum size of the garden in this direction,
vacy of a facade is considered the reciprocal of the sii®. G = ¢/gmas- This expresses to what degree a
of attention paid to the facade from the other housd®use is located so that it maximizes the size of the
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root node

garden. The maximum size of the garden in south di-
rection is restricted by the minimum distance between
the boundaries for placement in north and south direc- Interalnode n level 1
tion and the width of the house in north-south direc-
tion. This is illustrated in Fig. 10 using hougél as

an example. In the figure the boundary of the lot is

shown as a solid line while the placement boundary is _
shown as a dashed line. Figure 11: The neural tree structure.

leaf node level 2

34 Fuzzy modeling for treating soft ob- the framework of a neural tree structure. Using this

Jectives method the suitability of a solution is estimated based

The computations for determining the privacy of a f&n human-like reasoning. That is, the simultaneous
cade and the performance of a garden described in Bigsence of the desired features is measured by means
previous subsection are addressing the elemental f#gzy set and chained fuzzy logic operations embed-
pects that characterize the performance of the desifd in a neural tree structure, as follows. A neural tree
Both demands, that the neighbourhood should havéS&omposed of terminal nodes, also termed leaf-node
high recuperative quality and that the living comfo@nd non-terminal nodes, also termed internal nodes.
should be high as well, are soft in nature. This is foyodes of a neural tree are connected by means of links,
two reasons. First, it is vague to some extend whatViere the structure is built up in such a way that at
considered to be a ‘high recuperative quality’ anhouﬂgzst two leaf nodes are linked to one inner node, and at
it is clear that it is determined by the largeness of tp@ast two inner nodes are linked to another inner node
gardens, where it is desirable that all gardens are laRjte level above the former inner nodes. This way the
in the desirable cardinal direction. Explicitly state@mount of nodes per level reduces for levels that are
the demand all gardens should be large in the suitaBi@re and more remote from the leaf node level. Ulti-
directions implies thaG'1 should be large, ANDG2 mately the nodes on the uppermost level of the tree are
should be large, AND ..., ANIZ.J should be large for linked to one or several root nodes of the tree, which
J number of gardens. The softness of this demanddgnerally act as model output. This structure is seen
clear considering for instance that in case the demdfem Fig. 11.
for largeness is not completely fulfilled concerning one In the fuzzy neural tree implementation the terminal
of the gardens, this does not mean that the objectivedes convert crisp input data into fuzzy information.
for large gardens for all houses is totally not fulfilledThis information is introduced to the inner nodes and
It means that the objective is merely partly fulfilledthen further propagated 'upwards’ through the model.
On the other hand, for instance summing up the actddie inner nodes of a fuzzy neural tree model neural ac-
sizes of the gardens and using this as an objective dbeisy in a human brain. A neuron in the tree performs
not reflect the actual demand at hand. Namely in caseon-linear mapping on the input information com-
one of the gardens would be undesirably small, sufing to it, simulating a neuronal activity. In the present
ming up its size with the size of others that are largmse, the non-linearity of an inner node is established
will obscure the information that one of the gardertsy means of Gaussian functions. The Gaussian func-
is small, as it does not model the demand for simulen is of particular interest for the intended modeling
taneous presence of largeness, i.e. it does not mga@lpose due to its relevance to fuzzy logic, namely us-
a logical ‘AND’ condition, which is the base for theing a Gaussian allows considering the model both as a
objective at hand. neural model and as a fuzzy system (Hunt et al., 1996).
To deal with the softness of the objectives of thidamely the Gaussian function plays the role of activa-
problem, in this work a soft computing technique iBon function when we consider the model from the
used, which is neuro-fuzzy modeling employed imiewpoint of the neural network paradigm, and at the



12 BANDARU S., BTTERMANN M. AND DEB K.

used as basis function, given by

isle | ' F(X) = wa(||X ~|) (16)
whereg(.) denotes the Gaussian basis function, and
i ;”" denotes the centre of the basis function. The width of
ermina

the basis function; at nodeyj is used to measure the
uncertainty associated with the input vecloy; to the
node;. For the AND operation at nodg¢the multi-
plication rule is used, so that fer number of inputs
Figure 12: Different type of node connections for thgy nodej, where every component of the input vector

fuzzy information processing executed at the neurmij is denoted byz;;, the nodal operation is given by
tree nodes.

node i

15 zij—cij\?

0,(x;) = e+ 2= ()
same time it plays the role of membership function ifis noted that in Eq. (17) the multiplication rule is ex-
the terminology of fuzzy information processing. Dugressed by means of the summation at the exponent of
to the latter, a fuzzy neural tree using Gaussian funggler's number for every input and centre. The input
tions at the inner node represents a fuzzy logic syste@the basis function at inner noglelenoted byX,; is
i.e. it performs chained logic operations mimickinge|ated to the outpyt; from nodei by the relation
human-like reasoning.

Using a neural tree for evaluating the suitability of Xij = piwi; (18)

a decision, the root node of a neural tree represeWﬁerewij is the weight connecting; to the node;.

the ultimate goal subject to maximization, namely ifthe weightuw;; expresses the relative importance of

our case the design performance of the neighboyla ; th input . in the AND operation. It is noted that

hood. The tree branches form the objectives constityjt weightsu; ; for all inputs to node’ sum up to unity.

ing this ultimate goal - in our case maximizing reclsg the weights represent the relative importance among

perative and living comfort performance. The connefye inpyts to the node. Using the radial basis function

tions among the inner nodes and terminal nodes hav§ron for the AND operation, the centres of the

weightw;; associated with them, as seen from Fig. 1&,ssjan basis functions are set to take the same value

The weights are given by a decision maker. They spegs the input weightsv,; to the node. This way it is

ify the relative significance a nodehas for the node onsyred that for an inpui; = 1.0, i.e. when a elemen-

J, which is situated one level closer to the root node {g yrequirement is fully satisfied, the membership de-

the neural.structure .comparedztf) _ ~ gree used in the multiplication representing the AND
The weight of a link connecting nodeto node; s also maximal, namely 1.0. This inherently ensures

denotes to what extent, relative to other inputsjof that when all elemental requirements are totally satis-

the linguistic label associated tds to be consideredfied, i.e. i, = o = ... = p, = 1.0, then the output

as a constituent of the. concept associated with |jod@j of the inner node is alsb.0, meaning the require-

The fuzzy neural tree is used to model knowledge ofgent modeled by nodgis completely fulfilled. This

decision maker. In the present case the knowledge j§-seen when we use Eq. (18) in Eq. (17), as well as
cludes that high recuperative quality of the neighbow;; — «,;, so that we have

hood means simultaneous presence of several object ’ )

features, such as high privacy for every house in the O, —¢ % S (M) (19)
neighbourhood. Therefore the operation performed at ! ’

an inner nodg is an AND operation that is similar towhich can be written as

the computations in radial basis function (RBF) neural Leen w1\ 2

networks. In RBF networks the Gaussian function is Oj=¢? Zizo( E ) , (20)
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Eq. (20) can be expressed in the following form w7

by, (2mh)? - gfw=eZloh
sze_i L=O(W) (21) R ——— ===

From Eq. (21) it is clearly seen that when all inputs
areu; = 1.0 thenO; becomes unity inherently. Also g b Py
itis noted that the width parameter of the Gaussias
scaled by the weight,; associated with theth input.
It is noted that due to the particularity of the neurafigure 13: Fuzzification of an input at an inner node.
tree structure, only the left half side of the Gaussians
at the inner nodes are used during the logic opera-
tions. Therefore the inner nodes represent a multivari-
ate increasing function. This ensures that the greater a
membership valug; is belonging to an aspect at the
input to a radial basis function, the greater the node
output will be. This implies that improvements with I
respect to any elemental requirement in the decision .
making yields an improvement of the general perfor- 0" # Hi 2
mance. This property is seen from Fig. 13, where the
logic operations occurring in every inner node are ifjgyre 14: Linear approximation to Gaussian function
lustrated. The operation at an inner node is a two-stageasND operation.
process. First the informatign; coming into an inner
node is subjected to a non-linear mapping using the
Gaussian membership functiogis= f(u;) in Fig. 13. so that a small deviation from; = 1.0 yields still a
Explicitly we can write these basis functions for everyalue close to unity fog;;. The functionality of this
input as becomes clear when as we consider the ensuing AND
N 75(;/7;1)2 22 operation being executed by means of multiplication.
gig(pa) = e 2RIl (22) This is illustrated in Fig. 13 for a condition with equal
so that the outpuD; of the j-th inner node is obtainedweights. A small value fog(y), i.e. a value nearby
by O; = g1j92; - - . gnj. The basis functiong;; can be zero will have a significant impact in the multiplica-
considered aactivation functionsn the terminology tion, drastically reducing the outpt; = g19 ... gn.
of artificial neural networks. Before the multiplica-This means for an input with great relative importance,
tion, the membership functiog; signifies the close- the node will react relatively sensitive to the fulfilment
ness to the full satisfaction of the input at unity. Thaif the requirement modeled by this input, compared to
is, g;; models the fuzzy set of decisions satisfying thée other inputs.
i-th elemental decision requirement. Clearly a wider The parametet is the only parameter left to be de-
Gaussian implies greater tolerance for deviation frotermined in the model. It should be selected in such a
full satisfaction atu; = 1.0. This width is in pro- way that the following condition holds: If all require-
portion to the significancey;; of an input coming to ments are satisfied by the same degree, for instance
the node as seen from Eq. (21). This means, an all requirements ar80% satisfied - i.e.p; = ps =
put having a high significance implies a Gaussian with. = p,, = 0.5, then it is consistent for our mod-
a small width, so that small deviation from the maxeling purpose that the output for this solution should
imum input value, i.e.; < 1.0, will already yield also beO; = 0.5. It is noted that this condition is ir-
a significantly smaller value fay. Conversely, when respective of the pattern of weights associated to the
the significance of an input is relatively small, then thiaputs of the nodég. In the same way, in general when
associated Gaussian basis function is relatively wide, = u2 = ... = u, = a, then it follows thaiO = a.

~

-~
- —
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Table 1: Input-output datasets used for consistency es-
tablishment foi6 inputs per node.

Dataset| uq M2 3 Mg Us M6 Oj

D

07 0.7 07 07 07 0.70.7

08 08 08 08 08 0808 Figure 15: Three identical Gaussian basis functions for
09 09 09 09 09 0909 a node with three inputs that are equally significant.

1 01 01 01 01 01 0101

2 02 02 02 02 02 0202

3 03 03 03 03 03 0303

4 04 04 04 04 04 0404 %

5 05 05 05 05 05 0505 2 m Iz Hs

6 06 06 06 06 06 0.606 ° S - ‘
7

8

9

This condition is termed asonsistency conditiom equal then clearly all basis functions are identical, in
this work, and it is used to establish the width paramparticular they have the same widitjw. In Fig. 15
etero of the Gaussian basis function (Ciftcioglu et algn input condition is exemplified, where the following
2007). That is, the width is selected in such a wdyzzy membership degrees for three inputs are taken:
that the deviation from the consistency condition for/a = 0.2, u2 = 0.5 andus = 0.8. In this case, from
number of input data sets is minimal. This is accorthRe figure we note the three different activation degrees
plished by means of classical optimization. The inpuareg; = 0.55, go = 0.79 andgs = 0.96 respectively,
output datasets used for the consistency establishmgmthatO; = g1g293 = 0.42. That is the node out-

in the case of six inputs to a node is given in Table 1put of the solution is below.5. In a linear computa-

It should be noted that the present neural moddion. had we for instance taken the average among the
ing approach is in contrast to artificial neural networkgree input values, the result would have been exactly
as follows. Establishing an artificial neural networK-5, this result is20% lower compared to the output
is based on data samples and training to minimi#®m the neuron. This means the AND operation ‘pun-
the model error in the representation of the datastshes’ more severely for the low satisfaction of input
The neural trees used in the present approach are@4$npared to computing the average of the inputs. The
tablished from expert knowledge and applying a coftizzy neural tree established in this way is a model of
sistency condition. That is, the structure of the tréeknowledge reflecting the inherent consistency of the
and the weights are given based on domain knowledéger-
and the model parameters are established by means of
a classical optimization algprlth_m. It is noteworthyrgl5 Fuzzy neural tree model for the
that the neural model used in this work is completely . .
knowledge-driven and involves non-linearity due to neighbourhood design

the Gaussians involved, at least for the non-terminglom Fig. 16 the two objectives of the neighbourhood
nodes. design are seen, namely maximizing the recuperative
To illustrate the operation occurring at an inner nodgyality and living comfort performance, located at one
with three inputs, three identical optimal basis fungevel below from the root node. The demand for re-
tions g;;(u:) are shown in Fig. 15, belonging to thesuperative quality of the neighborhood becomes sat-
weightswy; = 1/3, wy; = 1/3 andws; = 1/3, that sfied, when all houses have large gardens oriented in
is the three inputs are equally important constituentse desirable cardinal direction. The demand for liv-
of a nodey. ing comfort of the neighborhood is satisfied when per-
From Fig. 15 it is noted that in case all weights areeption and garden requirements for every house are
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Figure 16: Structure of the neural model for measuring théopmance of members during the evolutionary
search.

2

also highly satisfied. The recuperative quality is deter-
mined by the performances of the individual gardens,
such as garden aoff1, H2, H3, etc. This is except
with respect to the garden performance of houdds

and H5, where the recuperative performance has two
additional sub-aspects. These aspects are the perfor-
mance of the garden to the west and the south side
of the house respectively. In the same way the living ° m oo 6w 1
comfort performance is determined by the privacy of o

the individual houses’ south facades. An excepti
is the privacy performance of the hous@s1-G,6,
which together form an additional sub-aspect of t
privacy performance.

membership degree
° o ° °
s = & %

o

?‘—qgure 17: Fuzzy membership function characterizing
ﬁEe inputs that determine the garden performance of
the neighborhood.

The connection weights in the neural are assesst® M odeling therequirementsat theter-
by a domain expert. They are given in Table 2. It minal nodes
is emphasized that the weights are determined with-
out computation. They are elemental constituents kf order to provide the neural model with input val-
an expert knowledge. The houses are consideredugs, fuzzification processes are carried out at the termi-
differ with respect to their importance for recuperativeal nodes shown by means of square shaped boxes in
and comfort performance of the neighborhood, whidfg. 16. From the recuperative quality viewpoint gen-
is a common consideration in decision making in aerally the south gardens should be as large as possible,
chitecture, due to different expected user demands f&. the percentagg/g.... should be close to unity.
ahouse. However, concerning the visual privacy of tAéis requirement is expressed by the fuzzy member-
group of house&s,1-G,6 it is noted that in this de- ship function given in Fig. 17, where the membership
sign every house is considered equally significant wigiegree is proportional to the valygg,,q. -
respect to privacy of the design, so that the weightsThe requirements for living comfort entails that
wo(12)-w(17) are equal. the visual privacyP,,;, experienced for every house
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Table 2: Weights of the neural tree for the design perforraanc
Weight n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10n=11 n=12
wi(n) 010 010 0.22 - - - - - -
we(n) 010 010 010 010 010 015 015 070 030 0.70 0.30 0.17
Weight n=13 n=14 n=15 n=16 n=17T n=18 n=19 n=20 n=21 n=22 n=23
wi(n) - - - - -
we(n) 0.7 0.7 0417 017 017 013 013 013 013 0.13 0.13

-

should be as high as possible, and satisfaction becomes
less as the privacy approaches to zero. This require-
ment is expressed by means of the following Gaus-
sian shaped fuzzy membership functions at the termi-
nal nodes, in order to determine the degree of privacy
performance of a house.

membership degree
° ° ° °
S IS > &

)

7%<Ph_PSh)2 i 0" 2 4; ; 8

:U/(Ph) = {6 " If Ph S PSh; (23) privacy degree
1.0 otherwise

Figure 19: Membership function for privacy perfor-

mance of H3, where P, = 9.0, o5, = 3.0 for

P <9.0.

whereP, is the degree of privacy of house Py, de-
notes the privacy degree from on which the priva
requirement is considered to be fully satisfieq;de-
notes the uncertainty associated with the demand for

the satisfaction of the privacy demat,. The mem- jng types and lot conditions involved. For example the
bership functions for the different houses are selectgfémbership function for the Housékl, H2, and H4

by a domain expert and are shown in Fig. 18-21.  expresses that visual privacy is required to be value
6.0 or greater as an ideal situation. Explicitly when
privacy P > 6.0 the leaf node output is unity, rep-
resenting maximum satisfaction of the corresponding
requirement. In casf < 6.0 the output of the respec-
tive leaf node becomes less than unity, as specified by
the membership function. For the other houses more
privacy is deemed desirable as can be seen from the
location of the respective maxinfa,.

1

membership degree
° ° °
= S &

e
o

o
o
-

2 3 4 5 6
privacy degree

Figure 18: Membership function for privacy perfor4 Results
mance ofH1, H2 and H4, whereP,;, = 6.0, o, =

2.0 for P < 6.0. 4.1 Obtaining Pareto-optimal solutions

It is noted that the membership functions select&kfore the neural tree can be used for fithess evalu-
for the privacy performance evaluation all have thation during the evolutionary search, the consistency
same basic shape. However, the output maxima aredondition has to be imposed on the neural tree. This
cated at different locations. This is to account for ditan be carried out by classical or evolutionary learn-
ferent requirements that are due to the different housg. In the present implementation classical learning is
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Figure 22: Verification of the consistency condition
Figure 20: Membership function for privacy perforapplied to nodé.
mance ofH5 and H7, wherePy;, = 12.0, o, = 4.0
for P < 12.0.
optimal o5 = 0.164. The input dataset for imposing
1 consistency is shown in Fig. 22, as well as the approx-
imation for nodes in the model. The horizontal axis in
the figure shows the input values for the seven nodes
o8 coming to nodé&, and the vertical axis denotes the out-
0a put O, (2)of nodeb. Itis to be noted that for the seven
inputs, all of them have the same value, i.e. for a value
z on the horizontal axig,j = psj = ... = uij = .
o 2 4 s 5 10 b From the figure it is seen that due to the Gaussian
privacy degree shape used as basis function at the inner node the ap-
proximation error is maximal at two locations that are
Figure 21: Membership function for privacy perforapproximately at the inflexion points of the resulting
mance ofG,1-G,6, whereP,;, = 13.0, o5, = 4.0 for Gaussian.

membership degree

P <13.0.
4.2 Design principlesthrough automated
used for high accuracy. As result of the learning pro- innovization
cess, the width of every Gaussian at the non-terminal
nodes is established as seen from Table 3. Having established the fuzzy neural tree, the design

The approximation error for the consistency traiffask in this implementation is to maximize the outputs

ing data set is relatively higher for the area arour‘tﬁjthe nFodetﬁ_and5 of the ”e”ﬁ_' t:ee 5};5 th;’_ tWt‘? objec-
ij = fiaj = . = pij — 0.3andyj — pj — tves. For this purpose an elitist multi-objective evo-

... = ;7 = 0.8. This is illustrated in Fig. 14, wherelutionary algorithm (MOEA), NSGA-II is employed.

it is seen that the deviation of the Gaussian from tH&'e variable boundaries for the locations of the houses
line O; = au + b is maximal around these points. TG'€ givenin Table 4. o _
exemplify this approximation let us consider impos- 1he boundaries are given by the minimal and maxi-
ing the consistency condition on nodavhich has an Malz andy coordinates for the positions of the houses
H1-H7, G,1-G,6 and Gy1-Gp4. These boundaries

are selected, so that the facades of the buildings are at
a distance greater thahn from the boundary of the
Table 3: ReSUlting widths of the Gaussians at the Ng@t. Thisis according to |ega| Safety regu|ations app]y_
terminal nodes. ing to this design case. The boundaries of the place-
Node no. 1 2 3 4 ment are taken parallel to theandy-axis. They-axis
g 0.0322 0.0322 0.173 0.144 0.164 gin north direction, and the-axis is in east direction.
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Table 4: Variable bounds for the problem.

House H1 H?2 H3 H4 Hb5
T Y T Y T Y T Y T Y
Min. 25.0 26.0 26.0 46.0 56.0 470 810 34.0 86.0 52.0
Max. 31.0 340 36.0 56.0 69.0 56.0 117.0 380 1140 57.0
House HG6 H7 G, Gy
T Y T Y T Y T Y
Min. 21.0 60 30 700 270 67.0 760 7.0
Max. 28.0 16.0 10.0 80.0 32.0 81.0 79.0 220
As the problem is treated as bi-objective problem, the s g o ‘
evolutionary algorithm is not converging to a single so- 0.95 |- 1
lution, but it yields a Pareto-optimal front in the two-
dimensional objective space. This is relevant, so that 0.9 p i
decision making remains flexible, and a final decision 0.85 - -
is taken with great awareness. It is interesting to note
that generally the problem could have been treated as a 08 i
single-objective optimization problem, under the con- 0.75 ;
dition that the weightsuvs(1) andws(2) from figure e .
Fig. 16 are fixed. However, as the living comfort and ’ 1
the recuperative quality are rather abstract concepts, 0.65 0'6 017 0‘8 0‘9 i

such a commitment is rather problematic to make for

a decision maker, so that the multi-objective approach ) . . .
is more appealing. E|gure 23: Pareto-optimal solutions obtained for the

The Pareto-optimal front obtained aftsh genera- problem. The horizontal axis represents the recupera-

. . ) . .~ . tive quality; vertical axis represents the living comfort
tions is seen from Fig. 23. Automated innovization is q y P g

carried out on these solutions by solving Eq.%.qq
is chosen to b&0% and A\ is taken ast to avoid 43
complex relationships. It is noted that only one so-

lution among all the Pareto-optimal solutions remaing order to illustrate interpretation of the principles ob-
unclustered in the process, and this solution is markgghed by means of automated innovization, a number
by ‘x’ sign in the figure. A total of303 significant uf them are interpreted by a domain expert as follows.
relationships are found. Here we discuss and interpfigfe first principle given by Eq. (24) involves two ba-
the following six: sis functions. This principle implies that as hougé

is moved east, its west garden size increases and the

Interpretation of design principles

—0.6557

Yo

xy %90 = constant(24) privacy of H5 is reduced. This means the recuperative

£ 90014,1.0000 —  (.opstant(25) quality of the neighbourhood increases somewhat, at
Q37107010000 — (o stant(26) the cost of some r_eduction in_Iiv_ing comfort. In or_der
L0000 03408,0.8250 o crani7) to still have a solution that satisfies the Pareto optimal-

0.7647,.—0.1746.1.0000
Y1 ) Ty

Y

0.7479
Yq

0.3970,.0.6304,.1.0000
3 Ly Ty

constani(28)
constanit(29)

ity condition, in case no other variable is modifidf#
should be moved south to increase the privacyiéf
This is seen in Fig. 24.

The second principle involving two basis functions
is given by Eq. (25). This rule implies that, as house
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Figure 27: lllustration of implications of the principle

Figure 24: lllustration of implications of the principlein Eq. (27).

in Eq. (24).

Figure 25: lllustration of implications of the principl
in Eq. (25).

e

Hb5 is moved north its south garden size is increas-
ing, yet the house is moving closer to the gratip.
This means the recuperative quality of the neighbor-
hood is slightly increasing at the cost of reduced living
comfort. To remain Pareto-optimal{4 should move
west, reducing the garden performancerbf some-
what and further increasing the privacydb. This is
seen in Fig. 25.

A third principle involving, which involves three ba-
sis functions is given by Eq. (26). Interpretation of the
principle is that as housé&/4 is moved east its gar-
den size increases while privacy b decreases. This
means the recuperative quality of the neighborhood in-
creases somewhat at the cost of some reduction in liv-
ing comfort. To reach a solution that is Pareto-optimal,
H3 should move south, trading in some recuperative
quality to increase the living comfort of the neighbour-
hood. Namely, a& 3 moves south its perception of the
housed, becomes desirably reduced. This is seen in
Fig. 26.

A fourth principle, which also involves three ba-
sis functions, is given by Eq. (27). As hougé2
is moved north, its garden size increases, thereby in-
creasing the recuperative quality of the neighbourhood
to some extent, while compromising the living com-
fort, as it moves closer t6/,. To obtain a solution
that satisfies the Pareto optimality criteridi should
move west, increasing the living comfort, while los-

Figure 26: lllustration of implications of the principleing some of the previously gained recuperative quality

in Eq. (26).

H5. This is seen in Fig. 27.
A fifth principle, which contains four basis func-
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mance is reduced and living comfort is increased by
moving H2 and H3 south and movingd4 west, as
seen from Fig. 29.

From these examples it is seen that the interpreta-
tion of the principles is rather intuitive. This is also
due to the fact that in the present case fuzzy modeling
is used to treat the objectives in the decision making.
As the two objectives, maximize recuperative quality
and living quality are linguistic terms that are well un-
derstood by a decision maker, it is easy to understand
the relations among a number of decision variables
Figure 28: lllustration of implications of the principleyhile keeping in mind the Pareto optimality condition.
in Eq. (28). However, it is noted that the interpretation of the prin-
ciples for rules with more than three basis functions
becomes less intuitive, as relationships among seem-
ingly remotely related objects appear in the principles.
However, the latter implies that a decision maker is
able to gain insight into subtle influences present in
the decision making problem at hand.

It is further noted that the innovized principles can
be used to fill gaps on the Pareto-optimal front. In or-
der to identify a Pareto-optimal solution on the front
that has not been found by the evolutionary algorithm,
merely one of the principles has to be used, as each of
them applies to ensure Pareto optimality. This means,
Figure 29: lllustration of implications of the principlethrough the innovized principles the set of optimal so-
in Eq. 29. lutions evolved by the evolutionary algorithm can be
extended to a larger set.

tions, is given by Eq. (28). The principle is interpreted
as follows. As housdi4 is moved east, its gardens5  Conclusions
performance increases, i.e. the recuperative quality of
the neighborhood slightly increases, while the livingutomated innovization is used to extract design prin-
comfort slightly diminishes, as the privacy &f5 de- ciples in a soft multi-objective decision making prob-
creases. To still remain Pareto-optimal, the loss of liem. Despite the rather simple looking Pareto-optimal
ing comfort is compensated by movidfit and /1 in  front of the bi-objective problem being smooth and
south direction, while moving72 east. This way the convex, rich diverse design knowledge in the form of
privacy of H5 and H2 is increased, compensating thghariant principles among the decision variables are
loss in living comfort. This is seen in figure Fig. 28. obtained from the corresponding information. This
A sixth principle that also consists of four basiexemplifies the suitability of the clustering based au-
functions is given by Eq. (29) This principle entailsomated innovization method for complex real-world
that, as house&, are moved north, their privacy in-problems that involve vagueness and imprecision, and
creases as well as their garden performance. Thikigh degree of non-linearity in the fitness evaluation.
means that the living comfort of the neighborhood arithe empirical design rules obtained from this process
also the recuperative quality is increased somewhate interpreted by a domain expert, and the interpreta-
For Pareto optimality, the gain in recuperative perfotion is intuitive. For rules involving a larger number of
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basis functions, interpretation becomes less intuitive,modeling visual perception: A probabilistic theory.
so that the decision maker can understand subtle relain IEEE International Conference on Systems, Man
tions among the decision variables. The extracted de-and Cybernetics, 2006. SMC’06olume 6, pages
sign principles can help decision makers to reach an in-5152-5159. IEEE.

formed decision as they understand with precision the o ]

implications of the trade-offs under consideration. Afifticioglu, O., Sariyildiz, 1., and Bittermann, M.
other interesting benefit from the innovization is that (2007). Building performance analysis supported
gaps in the non-dominated front can be filled using thePY 92 INIEEE Congress on Evolutionary Compu-
obtained design principles. Some relevant future re-tation, 2007. CEC 2007pages 859-866. [EEE.
search directions are lower level automated innovizBéb, K. (2000).

tion, higher level automated innovization, studying the yathod for genetic algorithms.Computer Meth-
performance of clustering with higher number of ob- J4sin Applied Mechanics and Engineerjig6(2—
jectives and identifying design principles in problems 4):311-338.

with simulation based objective evaluation.

An efficient constraint handling

Deb, K. (2001). Multi-objective optimization using

evolutionary algorithmsNew York: Wiley.
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