
Parallel
Machine
Scheduling
with Partition Constraints
C.M.F. Swennenhuis

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

Parallel Machine
Scheduling

with Partition Constraints
by

C.M.F. Swennenhuis
to obtain the degree of Master of Science Applied Mathematics

at the Delft University of Technology,
to be defended publicly on Thursday October 18, 2018 at 10:00 AM.

Student number: 4149645
Project duration: January 18, 2018 – October 18, 2018
Thesis committee: Prof. dr. ir. K.I. Aardal, TU Delft, Responsible Full Professor

Dr. ir. L.J.J. van Iersel, TU Delft, supervisor
Ir. T.M.L. Janssen, TU Delft, supervisor
Dr. C. Kraaikamp, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This thesis project is the final part of my Master Applied Mathematics at Delft University of Technology.

I would like to thank my supervisors ir. T.M.L. Janssen and dr.ir. L.J.J. van Iersel for their excellent
supervision. During our many meetings, I was able to ask any questions and always felt re-inspired to
work onmy research again. Because of their supervision, I felt comfortable to try many new approaches
and felt supported throughout the whole project. I’m also thankful for giving me the opportunity to con-
tribute to the paper.

Furthermore, my gratitude goes to prof.dr.ir. K.I. Aardal for listening to my wishes for my graduation
project. As with my bachelor thesis, she assigned me to an extremely interesting project with great
supervisors.

Next, I would like to thank dr. C. Kraaikamp for being part of my thesis committee and for the years
of being a great teacher and help throughout the years of my studies.

Finally, I am grateful for the help of many others who helped during my research, such as Dr. D.C.
Gijswijt for his remarks on the paper, T. Bosman for his many definitions and insights on the problem
and my friends and family for always supporting me.

C.M.F. Swennenhuis
Delft, October 2018

iii

Contents

List of Figures 1

1 Introduction 3
1.1 Background . 3
1.2 Notation . 3
1.3 Previous Work . 4
1.4 Structure of the Thesis . 5

2 Theoretical Results 7
2.1 Introduction . 7
2.2 Definitions. 9
2.3 Problem Properties . 10
2.4 Shortest Processing Time First . 15
2.5 Machine Subset Constraints . 19
2.6 Unmovable Resources . 22
2.7 Two Resources per Job . 23
2.8 Conclusion . 24

3 Exact Algorithms 25
3.1 ILP with Starting Time Variables . 25
3.2 ILP with Preemptions. 26
3.3 ILP with Precedence Constraints . 27
3.4 MILP with Precedence Constraints . 28
3.5 Dynamic Programming . 29

4 Heuristics 31
4.1 SPT-available . 31
4.2 Semi-SPT-available . 31
4.3 Dynamic Programming Heuristics . 31
4.4 LP Relaxations . 32

5 Experimental Results 33
5.1 Implementation . 33
5.2 Test Data . 34
5.3 Exact Algorithms Results. 34
5.4 Heuristics Results . 37
5.5 Conclusion . 41

6 Conclusion and Future Work 43
6.1 Conclusion . 43
6.2 Future Work. 44

Bibliography 45

v

List of Figures

2.1 Proof of Theorem 11, situation where 𝑖 = 𝑖′. 12
2.2 Proof of Theorem 11, finding a better solution if 𝐶𝑗′ ≤ 𝑡2 12
2.3 Proof of Theorem 11, only possible situation in an optimal schedule with preemption. . . 12
2.4 Proof of Theorem 11, finding a better solution if |𝑆(𝑗)| < |𝑆(𝑗′)| 13
2.5 Proof of Theorem 11, finding a better solution if |𝑆(𝑗)| > |𝑆(𝑗′)| 13
2.6 Min Cost-Flow instance for 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 . 14
2.7 Optimal and SPT-available schedule for Example 1 . 16
2.8 Feasible schedule for reduction in the case of a yes-instance. 20
2.9 Example of the reduction from edge coloring to 𝑃 |partition(2), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 24

4.1 Example of rescheduling optimal solution in order of completion time does not give op-
timal solution. 32

5.1 Average running time for 𝑚 = 2, 𝐾 = 3 and 𝑝𝑚𝑎𝑥 = 5 for the exact algorithms. 35
5.2 Average running time of tested exact algorithms, set 2. 36
5.3 Average running time of tested exact algorithms, set 3 36
5.4 Experimental results for all heuristics 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 100. 38
5.5 Average running time of best tested heuristics. 39
5.6 Average accuracy ratio of best tested heuristics. 40

1

1
Introduction

1.1. Background
In the semiconductor industry, fabrication plants produce wafers containing chips. These chips are
used in goods such as smartphones and notebooks. The wafers are built layer by layer, each time
going through a production cycle. During one of the stages of the cycle, the wafers go through the
photolithography machines. In these machines, a certain geometrical pattern is put onto the wafers
with the help of reticles and UV light. Each set of wafers needs a specific reticle for this process and
the reticles are unique. It is therefore important to make sure the necessary reticle is available when
processing a set of wafers on the machines. The photolithography machines are expensive and often
are the main bottleneck in the fabrication plants. Hence, optimizing the use of these machines can
improve the overall performance of the fabrication plant.

It is useful to model the optimization of the machines as a scheduling problem. One can view the
wafers that need to be processed as a set of jobs, each having its own processing time. The goal is
to find a schedule, such that each machine processes at most one job at the same time and a certain
objective value is optimized. Since the scheduling of the lithography machines is a continuous pro-
cess, we choose to minimize the total completion time. This is the sum of the completion times of the
jobs. However, since a reticle is needed in the process, we need to make sure that the required reticle
is available if a job is being processed. Hence, auxiliary resource constraints are necessary for our
scheduling problem, where the reticles may be viewed as a resource.

Note that the processing times in practice may depend on the machine the job is processed on. Fur-
thermore, each job may have a priority value, also called weight. These weights should be taken into
account during the scheduling. One would then minimize the total weighted completion time. However,
in this thesis, we will assume that all processing times rely only on the jobs and all priority values are
equal, unless mentioned otherwise. Although a lot of research has been done on all kinds of scheduling
problems with auxiliary resource constraints, none of the known problems fully capture our problem,
which is therefore an interesting topic of study.

1.2. Notation
Scheduling problems can be classified using the notation from Graham et al. [17]. The notation will be
explained briefly and only input relevant for this thesis will be introduced. Assume that 𝐽 is the set of
jobs to be scheduled and |𝐽 | = 𝑛. Suppose that there are 𝑚 available machines. Then a scheduling
problem can be characterized by a 3-field problem classification 𝛼|𝛽|𝛾.

3

4 1. Introduction

The 𝛼 field describes the machine environment. Let 𝑝𝑖𝑗 be the processing time of the job 𝑗 on
machine 𝑖. In all the described environments every job only needs to be processed once. Possible
inputs are:

• 1: there is only one machine.

• P: parallel machines. This indicates that the machines are identical and thus the processing
times only depend on the jobs, i.e. 𝑝𝑖𝑗 = 𝑝𝑗 for each machine 𝑖.

• Pm: there are 𝑚 parallel machines available.

• Q: related machines. This implies that each machine has a speed factor 𝑞𝑖 and 𝑝𝑖𝑗 = 𝑞𝑖𝑝𝑗.

• R: unrelated machines. There are no restrictions on 𝑝𝑖𝑗.

The 𝛽 field indicates a number of job characteristics. A combination of those can be part of the 𝛽
field. The following possible inputs will be used:

• prmp: Preemptions are allowed. Preempting a job is interrupting a job at a machine to resume it at
a later time (and possibly at a different machine). No processing is lost when a job is interrupted.

• res: There is a set 𝑅 = {𝑟1, ..., 𝑟𝐾} of resources and each job 𝑗 requires the use of 𝑟𝑘𝑗 units
of resource 𝑟𝑘 during its processing. There resources are limited, so one must make sure that
enough resources are available at any time.

• prec, tree, chains: Precedence constraints apply. There is a precedence relation ≺𝑃 , such that
𝑗 ≺𝑃 𝑗′ if job 𝑗′ can only start after job 𝑗 is finished. The precedence relation can be described
as an acyclic directed graph. If this graph is in the form of a tree or a collection of chains, we will
identify this as such in the 𝛽 field.

• 𝑝𝑖𝑗 = 1: Each job has the same processing time.

• partition: There is a set 𝑅 = {𝑟1, ..., 𝑟𝐾} of resources and each job 𝑗 uses exactly one resource.
Only one job using that resource can be processed at the same time. A more formal definition
will be given in Section 2.2.

• ℳ𝑗: Each job has set ℳ𝑗, which is a subset of machines on which it can be processed, also
called processing set restrictions.

The 𝛾 field defines the optimality criterion. This is the value that one wants to optimize. In our
thesis, only ∑𝑗 𝐶𝑗 and its weighted variant ∑𝑗 𝑤𝑗𝐶𝑗 will be used, where 𝐶𝑗 is the completion time of
job 𝑗. These two criteria are also known as minimizing the total completion time and the total weighted
completion time.

Using this notation, the problem 𝑃 |partition| ∑𝑗 𝐶𝑗 will be studied in this thesis.

1.3. Previous Work
It is well-known that 𝑃 || ∑𝑗 𝐶𝑗 is solvable in 𝒪(𝑛 log𝑛) time by sorting the jobs in order of shortest
processing times (SPT) and then scheduling them in that order at the first possibility. The problem
with unrelated machines (𝑅|| ∑𝑗 𝐶𝑗) is solvable in 𝒪(𝑛3) time, as it can be formulated as an 𝑚 × 𝑛
transportation problem [9]. However, scheduling problems minimizing the total completion time tend
to become hard quite quickly. For example, if we look at minimizing the weighted total completion
time, 1|| ∑𝑗 𝑤𝑗𝐶𝑗 can be solved by scheduling the jobs in order of shortest weighted processing times
(𝑝𝑗/𝑤𝑗). This takes 𝒪(𝑛 log𝑛) time, since the jobs must be sorted [26]. However, 2|| ∑𝑗 𝑤𝑗𝐶𝑗 is already
𝒩𝒫-hard as shown by Lenstra et al. [21]. Hence, also 𝑃 || ∑𝑗 𝑤𝑗𝐶𝑗 is 𝒩𝒫-hard.

1.4. Structure of the Thesis 5

Precedence constraints are also widely studied in scheduling theory. 𝑃 |prec| ∑𝑗 𝐶𝑗 is known to be
𝒩𝒫-hard. The result is even stronger, as 𝑃 |chains| ∑𝑗 𝐶𝑗 is also 𝒩𝒫-hard, as shown by Du et al. [13].
The reduction for this is from 3-PARTITION. In the proof, the chains are sorted in order of processing
time, from largest to smallest. This detail is important for our research, as 𝑃 |partition| ∑𝑗 𝐶𝑗 will be
proven to be a special case of precedent constraints in the form of chains. The chains are then struc-
tured from smallest to largest processing time.

Sometimes, allowing preemptions does not change the problem. In other words, the optimum
of the problem does not change, by allowing jobs to be interrupted. For example McNaughton [24]
showed that each instance of 𝑃 |prmp| ∑ 𝑤𝑗𝐶𝑗 has an optimal solution without preemptions. Also for
for 𝑃 |prmp, chains| ∑ 𝑤𝑗𝐶𝑗 preemptions are redundant as proved by Du et al. [13]. However, in many
cases allowing preemption does change the problem. For example, in 𝑄2|prmp, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 it can
be more advantageous to schedule jobs partly on a faster machine.

Recall that 𝑅|| ∑𝑗 𝐶𝑗 is polynomially solvable. Horn [19] showed that allowing processing set re-
strictions (denoted by ℳ𝑗), does not make the problem harder. This makes sense, as one can just set
the processing times to infinity for 𝑝𝑖𝑗 if job 𝑗 cannot be scheduled on machine 𝑖. This also implies that
𝑃 |ℳ𝑗| ∑𝑗 𝐶𝑗 is also polynomially solvable. Allowing preemptions, however, reveals something very
interesting. It has been shown that for 𝑃 |ℳ𝑗,prmp| ∑𝑗 𝐶𝑗 preemptions are redundant [8], whereas
𝑅|ℳ𝑗,prmp| ∑𝑗 𝐶𝑗 becomes 𝒩𝒫-hard [25]. This is remarkable, since allowing preemptions does not
often make a problem harder.

1.4. Structure of the Thesis
This thesis is split into three main parts. The first part is a paper which was written in collaboration
with the supervisors during the period of the master thesis. The paper mainly contains theoretical
results about the scheduling problem. These results include fundamental properties of the problem, an
analysis of a greedy algorithm and three related problems which are shown to be 𝒩𝒫-hard. Although
the complexity of the problem on parallel machines remains open, we conjecture that the problem with
unrelated machines is also 𝒩𝒫-hard. The second part of the thesis discusses several exact algorithms
for solving the problem, which are a number of (mixed) integer linear programs. The third part focuses
on heuristics, such as greedy algorithms, dynamic programming algorithms and LP relaxations. The
efficiency of these exact algorithms as well as the efficiency and the accuracy of the heuristics will then
be assessed in the last chapter.

2
Theoretical Results

This chapter is based on a article by Janssen et al. [20]. Parts of this article were written during the
period of the master thesis and focus mainly on theoretical results on the problem. My contributions
were mainly to the following theorems:

• Theorem 11

• Theorem 12

• Lemma 18

• Theorem 19

• Corollary 20

• Theorem 22

• Corollary 23

Furthermore, in comparison to Janssen et al. [20], Corollary 24 and Theorem 25 were added, as
well as some extra text after Theorem 12 explaining the importance of the theorem.

2.1. Introduction
We study a variant of the problem of scheduling jobs on parallel machines with the objective to minimize
the total completion time, i.e. the sum of the completion times of all jobs. In this variant, each job uses
exactly one resource, thus partitioning the jobs. There is only one unit of each resource available at any
time, so jobs using the same resource cannot be processed simultaneously. Using the classification of
Graham et al. [17], we will denote the problem as 𝑃 |partition| ∑𝑗 𝐶𝑗. In this classification, scheduling
problems are classified by parameters 𝛼|𝛽|𝛾 where the 𝛼-field describes the machine environment, the
𝛽-field indicates job characteristics and the 𝛾-field reflects the optimality criteria.

The problem is motivated by a scheduling problem found in the semiconductor industry. The wafer,
which contains the chips, will visit different production bays multiple times during its production cycle.
The expensive photolithography pieces of equipment are often the bottleneck of the production line.
Hence, the overall performance of the factory can be improved by raising the equipment throughput
on these tools (which is achieved by minimizing ∑𝑗 𝐶𝑗). Photolithography is a process to transfer the
geometric pattern of a chip-design onto a wafer. This is done by putting light through a reticle onto
the production wafer. This reticle contains the geometrical pattern of the computer chip. Thus, when

7

8 2. Theoretical Results

trying to schedule jobs in the photolithography bay, we need to make sure the reticle (the resource) is
available when a job is processed.

𝑃 || ∑𝑗 𝐶𝑗 is the problem of scheduling jobs on parallel machines, where one wants to minimize
the total completion time. It is well-known from the literature that 𝑃 || ∑𝑗 𝐶𝑗 is polynomially solvable by
using the shortest processing time first (SPT) order on the earliest available machine (Conway et al.
[11]). This rule makes sure that every time a machine finishes a job, it will be assigned, from among
the jobs waiting, the job with a shortest processing time.

Our problem adds auxiliary resource constraints. Blazewicz et al. [5] describe the resource require-
ments with the entry res𝜆𝛿𝜌 in the 𝛽 field of the scheduling problem. The number of different resources
is given by 𝜆 ∈ {⋅, 𝑐𝜆}. If 𝜆 = 𝑐𝜆, the number of resources is given by 𝑐𝜆. If 𝜆 = ⋅ it is part of the input.
The resource capacities are denoted by 𝛿 = {⋅, 𝑐𝛿}. If 𝛿 = 𝑐𝛿, there is exactly 𝑐𝛿 of every resource avail-
able. If 𝛿 = ⋅, the total amount available of a resource is part of the input. The resource requirements
per job are denoted by 𝜌 = {⋅, 𝑐𝜌}. If 𝜌 = 𝑐𝜌, every job needs exactly 𝑐𝜌 of a resource it requires. If
𝜌 = ⋅, the amount required is part of the input.

The type res ⋅ 11 implies that per resource type, there is one resource available at any given time
and this resource will be used entirely if a job needing this resource is processed. This implies that jobs
that share the same resource cannot be processed simultaneously. When only res ⋅ 11 is in the 𝛽 field
of the scheduling problem, a job can need any number of resources. This does not capture that every
job in the lithography bay needs only one resource, the reticle. Therefore, we indicate the problem
within this paper by partition in the 𝛽 field of the scheduling problem. Hence, partition is a special case
of res ⋅ 11 resources.
We know from Blazewicz et al. [5] that if the number of machines is 𝑚 ≥ 3 and there are no further
restrictions on the 𝑃 |res ⋅ 11, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗, the problem is 𝒩𝒫-hard. The proof is based on a reduction
from partition into triangles and uses multiple resources per job. It is proven by Garey and Johnson [14]
that 𝑃 2|res ⋅ 11, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 can be solved in polynomial time by a reduction to the matching problem.

The problem can also be viewed as a special case of 𝑃𝐷|res 1 ⋅ 1| ∑𝑗 𝐶𝑗. In 𝑃𝐷|res 1 ⋅ 1| ∑𝑗 𝐶𝑗,
we have dedicated machines and are given only one resource of a certain quantity 𝑐𝛿 and every job
needs exactly 1 from that resource. We can rewrite 𝑃 |partition| ∑𝑗 𝐶𝑗 to 𝑃𝐷|res 1 ⋅ 1| ∑𝑗 𝐶𝑗 by taking
𝑐𝛿 equal to the number of machines and introducing a dedicated machine for every resource, such
that all jobs that share a resource have to be processed on the same machine. One could also view
𝑃 |partition| ∑𝑗 𝐶𝑗 as a special version of scheduling with conflicts. In scheduling with conflicts, we
have again parallel machines, the total completion time objective and jobs cannot be processed at the
same time if they share an edge in the conflict graph 𝐺 = (𝐽, 𝐸) with an edge between two jobs if they
share the same resource. In our problem, 𝐺 is a collection of cliques.

Our contribution is as follows. First we prove that allowing preemptions to the problem does not
change the problem. Using that, we conclude that in each optimal schedule for 𝑃 |partition| ∑𝑗 𝐶𝑗, all
jobs sharing the same resource must be processed in order of processing time. Restricting the problem
to 𝑝𝑗 = 1 is proven to be polynomially solvable. Thereafter we look at an approximation algorithm for
𝑃 |partition| ∑𝑗 𝐶𝑗, based on a variant of the shortest processing time (SPT) rule that takes the partition
constraints into account. We prove that it gives a (2− 1𝑚)-approximation and show that it cannot give an
𝛼-approximation with 𝛼 < 4

3 . In the last three sections we look at three related problems and show that
they are 𝒩𝒫-hard. The first problem has additional processing set restrictions for resources, meaning
each resource has a set ℳ𝑟 of machines on which it can be used. From this, we can also conclude
that the problem with unrelated machines, i.e. 𝑅|partition| ∑𝑗 𝐶𝑗, is also 𝒩𝒫-hard. This is the situation
of the scheduling of Photolithography machines in practice. The second related problem assumes that

2.2. Definitions 9

resources are unmovable, meaning that once a resource is used on a machine, it can thereafter only
be used on that specific machine. In the last related problem, each job has at most 𝑞 resources with
𝑞 ≥ 2 a constant.

2.2. Definitions
Before we begin our analysis of the problem and its solutions, we first formally define partition as part
of the 𝛽 field and some intermediary concepts. We have 𝑚 identical machines and let 𝐽 be the set of
jobs that are to be scheduled. Each 𝑗 ∈ 𝐽 has a processing time 𝑝𝑗 and each machine can only process
a single job at a time. We will denote 𝐶𝑗 as the completion time of job 𝑗 in a feasible schedule for an
instance. We want to minimize the sum of the completion times (total completion time).

Definition 1. If partition is in the 𝛽 field, there is a partition 𝑅 of 𝐽 , i.e., there is a collection of subsets
𝑅 = {𝑟1, … , 𝑟𝑠} with 𝑟𝑘 ⊆ 𝐽 , where every job is contained in exactly one of the subsets. If 𝑗, 𝑗′ ∈ 𝑟𝑘, 𝑗
and 𝑗′ cannot be processed at the same time. Furthermore, we want to define which resource is used
by which job. Let 𝑟𝑗 = {𝑟𝑘 ∈ 𝑅 | 𝑗 ∈ 𝑟𝑘}, i.e., all subsets that contain job 𝑗. If two jobs share the same
resource, we will denote this by 𝑟𝑗 = 𝑟𝑗′ , which implies that 𝑟𝑗 ∩ 𝑟𝑗′ ≠ ∅.

When we look at a job, we will often consider the other jobs that share the same resource. We will,
therefore, introduce the concept of slack, which, intuitively, is the amount of time before and after the
job that its resource is not being used.

Definition 2. A job 𝑗 has positive slack 𝑑+ ≥ 0, which is the largest non negative number, such that
in a given schedule all jobs 𝑗′ ∈ 𝐽 which have the same resource and start after job 𝑗. More formally,
we define 𝑑+ as

𝑑+ ∶= min{𝐶𝑗′ − 𝑝𝑗′ − 𝐶𝑗|𝑗′ ∈ 𝐽 satisfies 𝑟𝑗′ = 𝑟𝑗 and 𝐶𝑗′ > 𝐶𝑗}

where we define +∞ as the minimum over the empty set.
Similarly, a job 𝑗 has negative slack 𝑑− ≤ 0, which is the largest non negative number, such that all
jobs 𝑗′ ∈ 𝐽 which have the same resource and start before job 𝑗, finish at least 𝑑− time units before 𝑗
starts. More formally,

𝑑− ∶= min{𝐶𝑗 − 𝑝𝑗 − 𝐶𝑗′ |𝑗′ ∈ 𝐽 satisfies 𝑟𝑗′ = 𝑟𝑗 and 𝐶𝑗′ < 𝐶𝑗}

where we define +∞ as the minimum over the empty set.
The slack 𝑑 > 0 of a job 𝑗, we define as 𝑑 = min{𝑑+, 𝑑−}.

We defined the slack of a job by considering all jobs that share the same resource, but often we
are only interested in the last job before and the first job after a job 𝑗 that use the same resource. We
therefore introduce the following concept.

Definition 3. Let 𝑑+ be the positive slack of 𝑗, we call a job pair (𝑗, 𝑗′) a blocking pair if 𝑟𝑗 = 𝑟𝑗′ and
𝐶𝑗 = 𝐶𝑗′ − 𝑝𝑗′ − 𝑑+. Thus, 𝑗′ is the first job to start after 𝐶𝑗 that uses the same resource as job 𝑗. A
blocking pair (𝑗, 𝑗′) is tight if 𝑑+ = 0.

Given a tight pair where the two jobs are not on the same machine, it can be advantageous to con-
struct a schedule were they actually are on the same machine. We will call this operation ‘untangling’.
Before we define it properly however we need to first define a job’s suffix.

Definition 4. Let job 𝑗 be processed on machine 𝑖. The suffix of job 𝑗, 𝒮(𝑗), are all jobs 𝑗′ ∈ 𝐽 that
are also processed on machine 𝑖 with 𝐶′

𝑗 ≥ 𝐶𝑗 (excluding job 𝑗).

Definition 5. Given a tight pair (𝑗, 𝑗′), let 𝑖 be the machine on which 𝑗 is processed and 𝑖′ be the
machine on which 𝑗′ is processed. Untangling (𝑗, 𝑗′) is the operation that changes the schedule by

10 2. Theoretical Results

swapping suffices between the machines 𝑖 and 𝑖′, i.e., we move 𝑗′ and 𝑆(𝑗′) to machine 𝑖 and 𝑆(𝑗) to
machine 𝑖′.

Since we work with parallel machines, untangling will not change any of the start or completion times
of the jobs. Hence, it will not create any resource conflicts and the objective function remains the same.

2.3. Problem Properties
In this section, we consider the structure of optimal solutions. We show that there is no non-trivial
idle time in an optimal solution and that given a resource, the jobs using that resources are scheduled
from shortest to longest. We will continue by looking at the complexity of the problem. Whether or not
𝑃 |partition| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard remains an open problem, but we can show that when 𝑝𝑗 = 1 the prob-
lem is polynomially solvable. We also show that the problem with preemptions is equal to the problem
without preemptions.

We first note that if |𝑅| < 𝑚 the problem becomes trivial. In that case, one will put all jobs which
use the same resource in shortest processing time order on one machine. We continue by looking at
idle times in a solution.

Lemma 6. For every instance of 𝑃 |partition| ∑𝑗 𝐶𝑗 there exists an optimal solution that contains no
idle times.

Proof. Suppose that, in an optimal schedule with idle times. We begin by untangling all tight pairs. If
an idle time remains, we consider the last idle time, which appears on machine 𝑖 that starts on time 𝑡1
and ends at time 𝑡2. Since we have untangled all tight pairs, the resource used by the job on machine
𝑖 starting at time 𝑡2 is not used until time 𝑡2. Hence, we can start the processing of this job earlier. We
can then schedule the job either at time 𝑡1 or at the last time before 𝑡2 its resource was used. This
would reduce the completion time of this job. Therefore, after untangling, there cannot be any idle
times. Since untangling does not change completion times there is an optimal schedule without idle
times.

In the proof, we saw it is easy to turn an arbitrary optimal schedule into a schedule where tight pairs
(𝑗, 𝑗′) are processed on the same machine. We call such a schedule a tight schedule.

Definition 7. A tight schedule is a schedule without any idle time and in which each tight blocking
pair (𝑗, 𝑗′) is executed at the same machine

Notice that untangling results in jobs using the same resource being processed one after another
on the same machine. We will call these job sequences trains

Definition 8. A train sequence 𝑇 (𝑗1) in a schedule is a maximal sequence of consecutively jobs
𝑗1, 𝑗2, ..., 𝑗𝑐 on the same machine using the same resource.

Notice that a tight schedule only consists of train sequences 𝑇 (𝑗𝑘) with nonzero slack between the
train sequences of the same resource, where the 𝑗𝑘 are the first jobs to be scheduled when a machine
changes resource.

We continue by looking at the order in which jobs that use the same resource are processed. We
will prove that this is from shortest to longest processing time. We will prove this by first looking at
the problem with preemptions, notated by 𝑃 |partition,prmp| ∑𝑗 𝐶𝑗. In a preemptive schedule, the total
amount of processing done on the job needs to be equal to its processing time (𝑝𝑗), but jobs can be
interrupted at any time and the processing done is not lost. A job can thus be split into multiple parts,
possibly processed on different machines. We begin by defining these more precisely.

2.3. Problem Properties 11

Definition 9. A job part 𝑗𝑙 is the 𝑙th maximal part of the job 𝑗 that is processed without interruption
on a single machine with positive length. The superscript 𝑙 will be omitted when it is of no importance.
A pair of job parts (𝑗, 𝑗′) is called a blocking pair if 𝑟𝑗 = 𝑟𝑗′ and 𝑗′ is the first job part to start after 𝑗
that uses the same resource as job part 𝑗. A blocking pair (𝑗, 𝑗′) is tight if job part 𝑗′ starts at the time
𝑗 ends, i.e., 𝑑+ = 0.

The definitions for blocking pairs, slack, suffix, train sequences, tight schedules and untangling can
easily be extended to the case of job parts.

Lemma 10. In an optimal schedule for 𝑃 |partition,prmp| ∑𝑗 𝐶𝑗 all jobs sharing the same resource
must be processed in SPT-order, i.e., if job 𝑗 and 𝑗′ both use resource 𝑟 ∈ 𝑅 and 𝑝𝑗 < 𝑝𝑗′ then 𝐶𝑗 < 𝐶𝑗′ .
Furthermore, if 𝐶𝑗 < 𝐶𝑗′ , all job parts of 𝑗 will be processed before any job parts of 𝑗′.

Proof. Suppose we have an optimal schedule 𝑆 where there is not the case. Then there is a resource
𝑟 ∈ 𝑅 and two jobs using this resource (𝑟𝑗 = 𝑟𝑗′), job 𝑗 and job 𝑗′, with 𝐶𝑗 < 𝐶𝑗′ and 𝑝𝑗 > 𝑝𝑗′ . From
𝑆 we get an ordering of the jobs using resource 𝑟. Let 𝑗𝑆(𝑟,𝑝) denote the 𝑙th job finishing in 𝑆 using
resource 𝑟.
Create a new schedule 𝑆′ which is identical to 𝑆 except for all jobs using resource 𝑟. We remove from 𝑆
all job parts using resource 𝑟. This will remove 𝑡 = ∑𝑗∈𝐽|𝑟𝑗=𝑟 𝑝𝑗 units of processing from the schedule.
We fill these units of processing again with the jobs using resource 𝑟 but now we process them in an
SPT-order. We processes the first job in the ordering 𝑗𝑆′(𝑟,1) in the first 𝑝𝑗𝑆′(𝑟,1)

units of 𝑡. We schedule
the second job in the ordering 𝑗𝑆′(𝑟,2) in the first 𝑝𝑗𝑆′(𝑟,2)

units of 𝑡 after 𝐶𝑗𝑆′(𝑟,1)
and so on until all jobs

using resource 𝑟 are scheduled. The resource 𝑟 will be used in the same time as in 𝑆 by only a single
job, hence 𝑆′ is a feasible schedule. Furthermore, it holds that 𝐶𝑗𝑆(𝑟,1)

≤ 𝐶𝑗𝑆(𝑟,𝑝)
∀𝑝, since

𝑝𝑗𝑆′(𝑟,1)
+ 𝑝𝑗𝑆′(𝑟,2)

+ … + 𝑝𝑗𝑆′(𝑟,𝑝)
≤ 𝑝𝑗𝑆(𝑟,1)

+ 𝑝𝑗𝑆(𝑟,2)
+ … + 𝑝𝑗𝑆(𝑟,𝑝)

. (2.1)

Since 𝑝𝑗 > 𝑝𝑗′ , equation (2.1) is satisfied with inequality for the 𝑙 job and 𝑆 cannot be optimal.

Theorem 11. There is an optimal schedule for 𝑃 |partition,prmp| ∑𝑗 𝐶𝑗 without any preemptions.

Proof. Assume not, then take any optimal tight schedule with a minimal amount of preemptions. Let 𝑡1
be the time of the last occurring preemption, let job 𝑗 be the job that is being interrupted with resource
𝑟 on machine 𝑖, let 𝑗𝑙 be the respective job part. Let 𝑡2 be the time that job part 𝑗𝑙+1 starts on machine
𝑖′. Let 𝑗′ be the job part on machine 𝑖 that starts at 𝑡1 and let 𝑟′ be its resource.
We know that 𝑡2 > 𝑡1, otherwise we would not have a tight schedule. Furthermore, following from
Lemma 10, resource 𝑟 cannot be used by another job between 𝑡1 and 𝑡2.
We also know that 𝑖 ≠ 𝑖′ by the following argument illustrated in Figure 2.1. Assume 𝑖 = 𝑖′. Take 𝜖 > 0
as the minimal negative slack of all train sequences between 𝑡1 and 𝑡2 on machine 𝑖. Then, one can
move all jobs between 𝑡1 and 𝑡2 on machine 𝑖 𝜖 to the front and then split 𝑗𝑙 on 𝑡1 − 𝜖 and move the
second part from [𝑡1 − 𝜖, 𝑡1] to [𝑡2 − 𝜖, 𝑡2]. Since there is no preemption after 𝑡1, at least one job fin-
ishes earlier in this new situation and no jobs finishing later. Thus, the original schedule was not optimal.

We know that job 𝑗′ cannot end before or on 𝑡2. As illustrated in Figure 2.2, if it would, one could
move job 𝑗′ 𝜖 > 0 to the front, where 𝜖 is the negative slack of job 𝑗′. This would split the job part 𝑗𝑙

on 𝑡1 − 𝜖 and moving the part that was executed during the interval [𝑡1 − 𝜖, 𝑡1] to the back of 𝑗′. This
leads to a feasible schedule, since we defined 𝑡2 as the time that job part 𝑗𝑙+1 starts and resource 𝑟 is
not used between 𝑡1 and 𝑡2. Furthermore, since 𝑗 is a finishing job part and it finishes 𝜖 earlier, this will
lead to a schedule with better objective value.

As a result, there is only possible situation that can occur with the last preemption: The last pre-
emption is at a different machine than where it later continues and job 𝑗′ starts at 𝑡1 on machine 𝑖 and
does not finish before or on 𝑡2. The partial schedule is shown in Figure 2.3.

12 2. Theoretical Results

𝑗𝑙 𝑗𝑙+1

𝑡1 𝑡2

⋯

𝑗𝑙 𝑗𝑙+1

𝑡1 − 𝜖 𝑡2 − 𝜖
⋯

move 𝜖 to front

Figure 2.1: Situation where 𝑖 = 𝑖′. The squiggly line represents a preemption.

𝑗𝑙

𝑗𝑙+1

𝑡1 𝑡2

𝑗′𝑖

𝑖′

move 𝜖 to front

𝑗𝑙 𝑗𝑙

𝑗𝑙+1

𝑡1 − 𝜖 𝑡2

𝑗′𝑖

𝑖′

Figure 2.2: Finding a better solution if 𝐶𝑗′ ≤ 𝑡2

𝑗𝑙

𝑗𝑙+1

𝑡1 𝑡2

𝑗′𝑖

𝑖′

𝑆(𝑗′)

𝑆(𝑗)

Figure 2.3: Only possible situation in an optimal schedule with preemption.

Let 𝑆(𝑗) be job part 𝑗𝑙+1 on machine 𝑖′ and its suffix and let 𝑆(𝑗′) be job part 𝑗′ on machine 𝑖 and
its suffix. The jobs in these sets all finish, as 𝑗𝑙 is the last preemption. When we look at the number of
jobs in both sets, there are two possibilities:

• |𝑆(𝑗)| < |𝑆(𝑗′)|. Figure 2.4 illustrates this case. Take amaximal 𝜖 > 0 such that all train sequences
in 𝑆(𝑗) can start 𝜖 later (i.e. have 𝑑+ ≥ 𝜖) and all train sequences in 𝑆(𝑗′) can start 𝜖 earlier (i.e.
have 𝑑− ≥ 𝜖), while staying in a feasible schedule. Move the sets in the mentioned directions and
move the interval [𝑡1 − 𝜖, 𝑡1] of job 𝑗 on machine 𝑖 to machine 𝑖′ on the interval [𝑡2, 𝑡2 + 𝜖]. Also,
move 𝑗𝑙+1 𝜖 to the back and 𝑗′ 𝜖 to the front. Clearly, this is a feasible schedule. All job parts in the
sets 𝑆(𝑗) and 𝑆(𝑗′) are no preemptions, thus the objective value changes by 𝜖(|𝑆(𝑗)| − |𝑆(𝑗′)|),
and therefore becomes smaller. Hence, this situation cannot happen in an optimal solution.

• |𝑆(𝑗)| ≥ |𝑆(𝑗′)|. Figure 2.5 illustrates this case. Take a maximal 𝜖 > 0 such that all train se-
quences in 𝑆(𝑗) can start 𝜖 earlier (i.e. have 𝑑− ≥ 𝜖) and all train sequences in 𝑆(𝑗′) can start
𝜖 later (i.e. have 𝑑+ ≥ 𝜖), while staying a feasible schedule. Move the sets in the mentioned
directions and move the interval [𝑡2, 𝑡2 + 𝜖] of job 𝑗 on machine 𝑖′ to machine 𝑖 on the interval
[𝑡1, 𝑡1 + 𝜖]. Also move job 𝑗𝑙+1 to the front and 𝑗′ to the back. Clearly, this is a feasible schedule.
All job parts in the sets 𝑆(𝑗) and 𝑆(𝑗′) are no preemptions, thus the objective value changes by
𝜖(|𝑆(𝑗′)| − |𝑆(𝑗)|). Hence, |𝑆(𝑗)| > |𝑆(𝑗′)| cannot happen in an optimal solution.

2.3. Problem Properties 13

𝑗𝑙

𝑗𝑙+1

𝑡1 𝑡2

𝑗′𝑖

𝑖′

move 𝜖 to back

move 𝜖 to front

𝑗𝑙

𝑗𝑙+1

𝑡1 − 𝜖 𝑡2

𝑗′𝑖

𝑖′

Figure 2.4: Finding a better solution if |𝑆(𝑗)| < |𝑆(𝑗′)|

𝑗𝑙

𝑗𝑙+1

𝑡1 𝑡2

𝑗′𝑖

𝑖′

move 𝜖 to front

move 𝜖 to back

𝑗𝑙

𝑗𝑙+1

𝑡1 + 𝜖 𝑡2

𝑗′𝑖

𝑖′

Figure 2.5: Finding a better solution if |𝑆(𝑗)| > |𝑆(𝑗′)|

Therefore, in an optimal solution, |𝑆(𝑗)| = |𝑆(𝑗′)|. Since the 𝜖was chosenmaximal in the |𝑆(𝑗)| ≥ |𝑆(𝑗′)|
case, there must be a new tight pair, created by moving the suffices backward and forward. Untangle
new tight pairs, such that the schedule becomes tight again. In the new schedule, it must hold that
again |𝑆(𝑗)| = |𝑆(𝑗′)|, because otherwise the solution was not optimal. It is possible that (one of the)
newly tight pairs was (𝑗𝑙, 𝑗𝑙+1), in that case a preemption was removed contradicting the assumption
that the number of preemptions was minimal. If not, keep repeating moving the suffices and job parts
as described and untangling. This can be done only a finite number of times since there is a maximum
number of tight pairs (bounded by 𝑛) and because during this process, tight pairs remain tight and no
new job parts are created (and with it new preemptions). Hence, there is an optimal schedule containing
no preemptions.

Following from Theorem 11 and Lemma 10, we know that 𝑃 |partition,prmp| ∑𝑗 𝐶𝑗 and
𝑃 |partition| ∑𝑗 𝐶𝑗 have the same objective value and we obtain the following result.

Theorem 12. In an optimal schedule for 𝑃 |partition| ∑𝑗 𝐶𝑗, all jobs sharing the same resource are
processed in SPT-order, i.e., if job 𝑗 and 𝑗′ both use resource 𝑟 ∈ 𝑅 and 𝑝𝑗 < 𝑝𝑗′ then 𝐶𝑗 < 𝐶𝑗′ .

This has as a consequence, that 𝑃 |partition| ∑𝑗 𝐶𝑗 is a special case of 𝑃 |prec| ∑𝑗 𝐶𝑗. Without loss
of generality we can assume that the jobs are ordered according to their processing times, 𝑗1 ≺ 𝑗2 ≺
… ≺ 𝑗𝑛, breaking ties arbitrarily. Then define 𝑗 ≺𝑃 𝑗′ in the precedence graph if and only if 𝑗 ≺ 𝑗′

and 𝑗 and 𝑗′ have the same resource. The problem is even a special case of 𝑃 |chains| ∑𝑗 𝐶𝑗, where

14 2. Theoretical Results

the precedence graph is a union of chains. We know from literature that 𝑃 |chains| ∑𝑗 𝐶𝑗 is strongly-
𝒩𝒫-hard [13]. However, the chains in our precedence graph are in order of processing time, making
it impossible to make any conclusions about the complexity of our problem.

We continue by looking at 𝑝𝑗 = 1, since 𝑃3|res.11, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard. Surprisingly, with at
most one resource per job, the problem becomes polynomially solvable.

Theorem 13. 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is polynomially solvable.

Proof. The problem can be reduced to an instance of the Min-Cost Flow problem. Next to the source
node 𝑠 and the target node 𝑡, we construct three sets of nodes 𝑉𝐽 , 𝑉res,pos, 𝑉 ′

res,pos and 𝑉𝑀,pos. The set
𝑉𝐽 corresponds to the jobs. It has 𝑛 nodes; one for every job. The set 𝑉res,pos corresponds to resource
needed and the completion time/position of the job on a machine in the schedule. Completion time
and position on a machine are in this case equal since 𝑝𝑗 = 1 and we may assume no idle times from
Lemma 6. The set 𝑉res,pos has 𝑛|𝑅| nodes. The set 𝑉 ′

res,pos is a duplicate of these nodes. The set
𝑉M,pos corresponds to machine used and the completion time/position of the job on the machine in the
schedule. It has 𝑚𝑛 nodes.
We start by constructing arcs with cost 0 and capacity 1. The first set of arcs is constructed from 𝑠
to every node in 𝑉𝐽 . From every node 𝑣𝑗 ∈ 𝑉𝐽 , we construct an arc to every node in 𝑉res,pos that
corresponds to the resource needed by the job 𝑗. We construct from every node 𝑣𝑟,𝑝 ∈ 𝑉res,pos an
arc to the corresponding node with the same resource and position 𝑣′

𝑟,𝑝 ∈ 𝑉 ′
res,pos. Next, we construct

from every node 𝑣′
𝑟,𝑝 ∈ 𝑉 ′

res,pos an arc to every node in 𝑉𝑀,pos having the same position 𝑝. Lastly, we
construct arcs with capacity 1 and cost equal to position 𝑝 from every node 𝑣𝑚,𝑝 ∈ 𝑉𝑀,pos to 𝑡. We thus
have 𝑛(1 + 𝑛 + |𝑅| + |𝑅|𝑚 + 𝑚) arcs. Lastly, we require that we have at least 𝑛 units of flow from 𝑠 to 𝑡.

Jobs Resource &
Position

Machine &
Position

𝑠

𝐽1

𝐽4

𝑀1, 1

𝑀2, 4

𝑡

𝐽2

𝐽3

𝑟1, 1

𝑟1, 2

𝑟1, 3

𝑟2, 1

𝑟2, 2

𝑟1, 4

𝑟2, 3

𝑟2, 4

𝑀1, 2

𝑀1, 3

𝑀1, 4

𝑀2, 1

𝑀2, 2

𝑀2, 3

1

2

3

4

1

2

3

4

𝑟1, 1′

𝑟1, 2′

𝑟1, 3′

𝑟1, 4′

𝑟2, 1′

𝑟2, 2′

𝑟2, 3′

𝑟2, 4′

Figure 2.6: Min Cost-Flow instance for 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 with 4 jobs and 2 resources.

Suppose we have an instance of 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 with objective value 𝑐 and consider its
corresponding Min-Cost Flow instance. We put one unit of flow in the network for every job in the
schedule of 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 corresponding to the job, its position, which machine and which
resource used. For example, for a job 𝑗 on position 𝑝 machine 𝑀 using resource 𝑟, we put one unit
of flow from 𝑠 to 𝑡 through nodes 𝑣𝐽 , 𝑣𝑟,𝑝, 𝑣′

𝑟,𝑝 and 𝑀, 𝑝. Since no jobs share the same machine or
resource at a given position, every node 𝑣 ∈ 𝑉 {𝑠, 𝑡} will have at most one unit of flow going in and

2.4. Shortest Processing Time First 15

going out. Thus, we have a feasible flow. Furthermore, we only put flow on edges from 𝑣𝑚,𝑝 ∈ 𝑉𝑀,pos
to 𝑡, if and only if we also have a job with corresponding machine 𝑚 and position 𝑝, thus we have a flow
of cost 𝑐. The reverse is also true by this construction and hence we have an objective value of 𝑐 for
𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 if and only if we have an objective value of 𝑐 for its corresponding Min-Cost
Flow instance.

Note that, the above proof can easily be adjusted to the problem where one has more than one
unit of a resource available, by setting the capacities of the arcs between 𝑉res,pos and 𝑉 ′

res,pos equal to
the amount of resources one has. Furthermore, notice that one could put the costs on a different set
of edges. In this way, one can also show that 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝑤𝑗𝐶𝑗 is polynomially solvable by
setting the cost of the edges between 𝑣𝐽 and 𝑣𝑟,𝑝 equal to 𝑤𝑗 times the position.

Since we know that 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is polynomially solvable, one might wonder what
happens when the processing time of each job is bounded, i.e. 1 ≤ 𝑝𝑗 ≤ 𝑐, where 𝑐 is a constant. A
simple Shrinking algorithm would be to create an instance of 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 by setting all
processing times in our original problem to one. We then solve this problem using the construction
in Theorem 13 to obtain an optimal schedule 𝑆Opt

𝑝𝑗=1. We can then construct a feasible schedule for
𝑃 |partition, 1 ≤ 𝑝𝑗 ≤ 𝑐| ∑𝑗 𝐶𝑗 in the following way: All jobs in 𝑆Opt

𝑝𝑗=1 start at a given integer 𝑠𝑗 ∈ ℤ+,
since 𝑝𝑗 = 1. We can create a feasible solution 𝑆Alg from 𝑆Opt

𝑝𝑗=1 by setting the starting time for all jobs
to 𝑐𝑠𝑗. In this way, in every time interval 𝑐𝑖 ≤ 𝑡 ≤ 𝑐(𝑖 + 1) with 𝑖 ∈ ℤ+, every machine will only work
on one product. There also will not be any resource conflicts, since there were none in 𝑆Opt

𝑝𝑗=1 in the
corresponding interval 𝑖 ≤ 𝑡 ≤ (𝑖 + 1).

Proposition 14. The Shrinking algorithm gives a 𝑐-approximation for 𝑃 |partition, 1 ≤ 𝑝𝑗 ≤ 𝑐| ∑𝑗 𝐶𝑗.

Proof. Let Opt denote the optimal value for 𝑃 |partition, 1 ≤ 𝑝𝑗 ≤ 𝑐| ∑𝑗 𝐶𝑗 and 𝑆Opt the optimal schedule
and Opt𝑝𝑗=1 denote the optimal value for 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗. The Schrinking algorithm gives a
feasible solution of cost 𝑐Opt𝑝𝑗=1, so it suffices to show that Opt ≥ Opt𝑝𝑗=1. Using 𝑆Opt, we can find a
schedule 𝑆𝑝𝑗=1 for our constructed instance of 𝑃 |partition, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗. This is done by scheduling
all jobs 1 time unit before there completion time in 𝑆Opt. Thus all completion times in 𝑆𝑝𝑗=1 will be the
same as in 𝑆Opt. Furthermore, since 1 ≤ 𝑝𝑗 ≤ 𝑐 in 𝑆Opt, there will be no resource conflict in 𝑆𝑝𝑗=1, since
there were none in 𝑆Opt.

Note that, one can remove all idle time in 𝑆Alg by using the untangling operation found in the proof
of Lemma 6.

2.4. Shortest Processing Time First
The shortest processing time first (SPT) rule is optimal for a few scheduling problems. One of which is
𝑃 || ∑𝑗 𝐶𝑗. In this section, we will look at how well it performs for 𝑃 |partition| ∑𝑗 𝐶𝑗. Before we can do
this however we need to adjust the rule slightly to cope with the resources.

Definition 15. The SPT-available rule schedules the jobs according to a list. This list contains all
jobs ordered for shortest to largest processing time. At any point in time, when a machine is available
for processing. The rule selects the first job in the list for which the resource is not in use. It then
removes the job from the list. If multiple machines are available at time 𝑡 and a job is selected of which
the resource was not available just before time 𝑡, the algorithm will put this job on the machine that was
previously using this resource. Otherwise the rule will choose an arbitrary available machine. No job
is added to a machine that is available if the resource is in use of all jobs on the list.

16 2. Theoretical Results

Because of the way we defined the SPT-available rule, jobs that share the same resource and that
are processed one after another will be scheduled on the same machine. In other words, the SPT-
available rule produces a tight schedule. This schedule also has no idle times, since if at time 𝑡 a
job 𝑗 of resource 𝑟 is scheduled on machine 𝑚 which would create an idle time, then it could not be
scheduled on that machine earlier due to some other job 𝑗′ using the same resource on some machine
𝑚′. 𝑗 can only be scheduled at time 𝑡 since 𝑗′ just finished. But the rule states that job 𝑗 then has a
preference for machine 𝑚′ over 𝑚 (creating a tight schedule).
The SPT-rule is optimal for 𝑃 || ∑𝑗 𝐶𝑗. Hence, one might wonder whether this is also the case with the
SPT-available rule for 𝑃 |partition| ∑𝑗 𝐶𝑗. Example 1 shows that this is not the case.

Example 1: (SPT-available not optimal)
Consider 2 machines with 12 jobs that use 3 resources. We divide the jobs 𝐽 into 3 groups
depending on the resource used, 𝐽 = 𝐽1 ∪ 𝐽2 ∪ 𝐽3. We have 4 jobs in 𝐽1 = {𝑗1, … , 𝑗4} with
𝑝1 = … = 𝑝4 = 1 using the first resource. We have another 4 jobs in 𝐽2 = {𝑗5, … , 𝑗8} with
𝑝5 = … = 𝑝8 = 1 using the second resource. Lastly, we have 4 jobs in 𝐽3 = {𝑗9, … , 𝑗12} with
𝑝9 = … = 𝑝12 = 1 + 𝜀 with 𝜀 > 0 using the third resource.

4 1 4 1 4 1 + 𝜀

SPT-available rule

Optimal

Figure 2.7: Optimal and SPT-available schedule for Example 1

The SPT-available rule will schedule the jobs in 𝐽1 ∪ 𝐽2 first on the two machines and will
then at time 4 schedule the jobs in 𝐽3 on one machine one after another. This will result
in an objective value of 46 + 10𝜀. An optimal schedule would be to schedule first two jobs
from 𝐽1 on the first machine and then all jobs from 𝐽3. On the secondmachine all jobs from
𝐽2 are scheduled first and then the last two jobs from 𝐽1. This results in a schedule with
objective value 42 + 10𝜀. Hence SPT-available is not optimal.

The SPT-available rule is not optimal for 𝑃 |partition| ∑𝑗 𝐶𝑗, but it might give a good approximation.
Example 1 gives a type of instance that is hard to tackle for the SPT-available rule. We generalize this
example to find a lower bound on the approximation factor.

Lemma 16. The SPT-available rule does not give an 𝛼-approximation for
𝑃 |partition| ∑𝑗 𝐶𝑗 with 𝛼 < 4

3 .

Proof. Consider the instance ℐ with 3 machines and job set 𝐽 = 𝐽𝐴 ∪ 𝐽𝐵. 𝐽𝐴 consists of 3𝑐 jobs of
length 1, that all use their own resource, with 𝑐 ∈ ℤ+ even. The set 𝐽𝐵 consist of 3𝑐 jobs of length 1 + 𝜀
with 𝜀 > 0, that all share the same resource, i.e., 𝑟𝑗 = 𝑟𝑗′ , ∀𝑗, 𝑗′ ∈ 𝐽𝐵.
The SPT-available rule will first schedule 𝑐 jobs from 𝐽𝐴 on every machine. Then, it will schedule at
time 𝑐 all jobs from 𝐽𝐵 on one machine. Let ALGℐ be the objective value of the SPT-available rule for
instance ℐ. Then,

ALGℐ = 3
2 𝑐(𝑐 + 1) + 3𝑐2 + 3

2 𝑐(3𝑐 + 1)(1 + 𝜀)
= 9𝑐2 + 3𝑐 + 1

2 (9𝑐2 + 3𝑐)𝜀

2.4. Shortest Processing Time First 17

An optimal schedule would schedule the 𝐽𝑏 jobs on a single machine and schedule the 𝐽𝐴 jobs evenly
on the remaining two machine. Let OPTℐ be the objective value of the optimal schedule for instance
ℐ. Then,

OPTℐ = 2 3
4 𝑐(3

2 𝑐 + 1) + 3
2 𝑐(3𝑐 + 1)(1 + 𝜀)

= 27
4 𝑐2 + 3𝑐 + 1

2 (9𝑐2 + 3𝑐)𝜀

Thus,

ALGℐ
OPTℐ

≥ lim
𝑐→∞

lim
𝜀→0

9𝑐2 + 3𝑐 + 1
2 (9𝑐2 + 3𝑐)𝜀

27
4 𝑐2 + 3𝑐 + 1

2 (9𝑐2 + 3𝑐)𝜀

= lim
𝑐→∞

9𝑐2 + 3𝑐
27
4 𝑐2 + 3𝑐 = 4

3

We will proceed by giving an upper bound to the approximation ratio by using an approach similar
to the approach used by Chekuri et al. [10] to show a 2-approximation for the problem of minimizing
weighted completion time on 𝑚 parallel machines with in-tree precedence constraints. We begin by
defining the minimum completion time of every job, based on the fact that by Theorem 12 all jobs
sharing the same resource must be processed in SPT-order. Without loss of generality we can assume
that the jobs are ordered according to their processing times, 𝑗1 ≺ 𝑗2 ≺ ⋯ ≺ 𝑗𝑛, breaking ties arbitrarily.

Definition 17. The minimum completion time 𝑘𝑗 for each job 𝑗 is given by

𝑘𝑗 = 𝑝𝑗 + ∑
𝑗′|𝑟𝑗′ =𝑟𝑗 and 𝑝𝑗′ ≺𝑝𝑗

𝑝𝑗′ .

Define OPT𝑚 as the optimal value for a given instance of jobs on 𝑚 machines and let OPT𝑚
res be the

optimal value for the instance of jobs on 𝑚 machines with partition constraints. Clearly, OPT1 = OPT1
res

for each instance since the additional constraints do not interfere with the optimal schedule for one
machine. Notice that the optimal schedule for one machine and for parallel machines is created by the
SPT rule [11]. Let 𝐶1

𝑗 denote the completion time of job 𝑗 in an optimal schedule using one machine
(with or without partition constraints) and 𝐶𝑚

𝑗 the completion time of job 𝑗 in an optimal schedule for 𝑚
machines without partition constraints.

Lemma 18. 1𝑚OPT1 ≤ OPT𝑚 ≤ OPT𝑚
res for each instance.

Proof. Clearly, the last inequality holds, as an optimal schedule for the problem with constraints is
always a feasible solution to the problem without the partition constraints. Hence, we only have to
show the first inequality.
Sort the jobs from small to large processing times. Let 𝑗 be arbitrary but fixed job and let 𝑃𝑗 = ∑𝑗

𝑖=1 𝑝𝑖
be the sum of all processing times of the jobs that have a smaller or equal processing time. Clearly
𝐶𝑚

𝑗 ≥ 1𝑚 𝑃𝑗, since 1𝑚 𝑃𝑗 is the earliest time 𝑗 can finish. We also have that 𝑃𝑗 = 𝐶1
𝑗 , since the SPT-rule is

optimal. Thus, for every job 𝑗 we also have that 1𝑚 𝐶1
𝑗 ≤ 𝐶𝑚

𝑗 from which the first inequality follows.

We can now prove the upper bound for the SPT-available rule.

Theorem 19. The SPT-available rule gives a (2 − 1𝑚)-approximation for
𝑃 |partition| ∑𝑗 𝐶𝑗.

Proof. Let 𝐶𝐺
𝑗 be the completion time of job 𝑗 in schedule created by the SPT-available rule. We begin

by proving by induction that

𝐶𝐺
𝑗 ≤ (1 − 1

𝑚) 𝑘𝑗 + 1
𝑚𝐶1

𝑗 , ∀𝑗 ∈ 𝐽. (2.2)

18 2. Theoretical Results

The jobs that are the first to be scheduled on amachine are also the first of their resource. Therefore,

𝐶𝐺
𝑗 = 𝑝𝑗

= (1 − 1
𝑚) 𝑝𝑗 + 1

𝑚𝑝𝑗

= (1 − 1
𝑚) 𝑘𝑗 + 1

𝑚𝐶1
𝑗

in that case.
Now assume that Equation (2.2) holds for any job 𝑗′ ≺ 𝑗. Then, in particular, it also holds for the job 𝑗′

that is scheduled right before job 𝑗 on the same machine. We distinguish the following two cases:

• 𝑗′ and 𝑗 use the same resource.. 𝑗 is scheduled right after 𝑗′ and thus

𝐶𝐺
𝑗 = 𝐶𝐺

𝑗′ + 𝑝𝑗

≤ (1 − 1
𝑚) 𝑘𝑗′ + 1

𝑚𝐶1
𝑗′ + 𝑝𝑗 (by induction)

= (1 − 1
𝑚) (𝑘𝑗′ + 𝑝𝑗) + 1

𝑚(𝐶1
𝑗′ + 𝑝𝑗)

≤ (1 − 1
𝑚) 𝑘𝑗 + 1

𝑚𝐶1
𝑗 .

• 𝑗′ and 𝑗 use different resources. This implies that 𝑗 was scheduled at the first possible free
machine and not at a later possibility because of the resource constraints. Define job 𝑗″ as the
job that is right before 𝑗 in the schedule for one machine, i.e. the last 𝑗″ in the ordering such that
𝑗″ ≺ 𝑗. For the starting time of job 𝑗 (equal to 𝐶𝐺

𝑗′) it then holds that 𝐶𝐺
𝑗′ ≤ 1𝑚 𝐶1

𝑗″ . Using this we
see that:

𝐶𝐺
𝑗 = 𝐶𝐺

𝑗′ + 𝑝𝑗

≤ 1
𝑚𝐶1

𝑗″ + 𝑝𝑗

= (1 − 1
𝑚) 𝑝𝑗 + 1

𝑚(𝐶1
𝑗″ + 𝑝𝑗)

≤ (1 − 1
𝑚) 𝑘𝑗 + 1

𝑚𝐶1
𝑗 (since 𝑝𝑗 ≤ 𝑘𝑗 ∀𝑗).

Hence, we can conclude that (2.2) holds for all jobs 𝑗 ∈ 𝐽 .

Note that ∑𝑗 𝑘𝑗 ≤ 𝑂𝑃𝑇 𝑚
𝑟𝑒𝑠, since 𝑘𝑗 ≤ 𝐶𝑗 in any feasible schedule for 𝑃 |partition| ∑𝑗 𝐶𝑗 by the

definition of the minimal completion time 𝑘𝑗. Using equation (2.2) we get:

∑
𝑗

𝐶𝐺
𝑗 ≤ ∑

𝑗
(1 − 1

𝑚) 𝑘𝑗 + ∑
𝑗

1
𝑚𝐶1

𝑗 (using (2.2))

= (1 − 1
𝑚) ∑

𝑗
𝑘𝑗 + 1

𝑚 ∑
𝑗

𝐶1
𝑗

≤ (1 − 1
𝑚) 𝑂𝑃𝑇 𝑚

res + 𝑂𝑃𝑇 𝑚
res (Lemma 18)

≤ (2 − 1
𝑚) 𝑂𝑃𝑇 𝑚

res

2.5. Machine Subset Constraints 19

2.5. Machine Subset Constraints
Since we do not know the complexity of 𝑃 |partition| ∑𝑗 𝐶𝑗, it is interesting to look at related problems.
We will look at several of these related problems. We begin by considering the problem where jobs
that share the same resource can only be processed on a subset of the machines.

We can add processing set restrictions by adding ℳ𝑗 to the 𝛽 field of a scheduling problem, as
found in [22]. This means that for each job 𝑗, there is a set ℳ𝑗 ⊆ {1, ..., 𝑚} such that 𝑗 can only be
scheduled on machines in ℳ𝑗. Let us define a variation called processing set restrictions for resources
as follows: for each resource 𝑟 ∈ ℛ there is a set ℳ𝑟 ⊆ {1, ..., 𝑚} such that all jobs sharing resource
𝑟 can only be scheduled on machines in ℳ𝑟. We denote these restrictions as ℳ𝑟 in the 𝛽 field.

Corollary 20. 𝑃 |partition, ℳ𝑟, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is polynomially solvable.

This is a consequence of Theorem 13. One could use the same algorithm, but only include edges
𝑣′

𝑟,𝑝 to 𝑣𝑖,𝑝 if 𝑖 ∈ ℳ𝑟.

Consider the following NP-complete problem from [15].

Definition 21. 3-PARTITION Given positive integers 𝑚 and 𝑏, and a multiset of 3𝑚 integers 𝐴 with
∑𝑎∈𝐴 𝑎 = 𝑚𝑏, and 𝑏/4 ≤ 𝑎 ≤ 𝑏/2 for all 𝑎 ∈ 𝐴, does there exist a partition (𝐴1, ..., 𝐴𝑚) of 𝐴 into 3
element sets such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑚, ∑𝑎∈𝐴𝑖

𝑎 = 𝑏?
This problem is NP hard in the strong sense. Using this, we will prove the following theorem.

Theorem 22. 𝑃 |partition, ℳ𝑟| ∑𝑗 𝐶𝑗 is NP hard in the strong sense.

Proof. Assumewe have an instance of 3-PARTITION. Since 3-PARTITION is NP-complete in the strong
sense, we may assume that 𝑚𝑏 is bounded by a polynomial in 𝑚, which is crucial for our proof. Define
𝑁𝑐 = 2𝑚𝑏 and 𝐶 = 8𝑚𝑏. Create an instance of 𝑃 |𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, ℳ𝑟| ∑𝑗 𝐶𝑗 with 2𝑚 machines and the
following jobs:

• for all 𝑎 ∈ 𝐴 make job 𝑎𝑗, with processing time 𝑝𝑎𝑗
= 𝑎, a unique resource 𝑟(𝑎𝑗) and ℳ𝑟(𝑎𝑗) =

{1, 2, ..., 𝑚}. These jobs represent the integers that should be partitioned over the first 𝑚 ma-
chines.

• for all 1 ≤ 𝑖 ≤ 𝑚 make 𝑁𝑐 jobs called ‘𝐶 ’-jobs with processing time 𝐶, resource 𝑖 and ℳ𝑖 =
{𝑖, 𝑚 + 𝑖}, so for each 𝑖, there are 𝑁𝑐 jobs with length 𝐶, all sharing the same resource, that can
only be scheduled on machines 𝑖 and 𝑚 + 𝑖.

• for all 1 ≤ 𝑖 ≤ 𝑚 make job 𝑟𝑖, also called a release date job with processing times 𝑝𝑟𝑖
= 𝑏 and

resource 𝑖, so it shares its resource with a sequence of ‘𝐶 ’-jobs and can only be scheduled on
machines 𝑖 and 𝑚 + 𝑖.

• for all 1 ≤ 𝑖 ≤ 𝑚 make job 𝐷𝑖, also called a ‘𝐷’-job, with processing time 𝑝𝐷𝑖
= 𝑁2

𝐶𝐶, resource
𝑟(𝐷𝑖) and ℳ𝑟(𝐷𝑖) = {𝑚 + 𝑖}, so its resource is unique and can only be scheduled on machine
𝑚 + 𝑖.

Define 𝑍+ = 𝑚𝑏 + 𝑚 (𝑁𝐶𝑏 + (𝐶 + 𝑁𝐶𝐶) 𝑁𝐶
2) + 𝑚(𝑏 + 𝑁2

𝑐 𝐶) + 2𝑚𝑏. We will show that the optimal
schedule for the scheduling problem has objective value 𝑍∗ ≤ 𝑍+ if and only if the 3-PARTITION in-
stance is a yes-instance.

Assume that the 3-PARTITION instance is a yes-instance, then the following schedule is a feasible
solution: We can find 𝐴𝑖 with |𝐴𝑖| = 3 s.t. ∑𝑚

𝑎∈𝐴𝑖
𝑎 = 𝑏 for all 𝑖. Schedule each of these 𝐴𝑖 at the

beginning of one of the first 𝑚 machines. Process the jobs from small to big in their processing times
per machine. Start the release date jobs 𝑟𝑖 at machines 𝑚 + 𝑖 at 𝑡 = 0. Process the ‘𝐶 ’-jobs from 𝑡 = 𝑏

20 2. Theoretical Results

and onwards at the first 𝑚 machines. Start each ‘𝐷’ job 𝐷𝑖 at machine 𝑚+𝑖 at 𝑡 = 𝑏. For a visualization
of this schedule see Figure 2.8. The objective value of such a solution is equal to

𝑍𝑓𝑒𝑎𝑠 = 𝑚 ⋅ 𝑏⏟
release date jobs

+ 𝑚 (𝑁𝐶 ⋅ 𝑏 + (𝐶 + 𝑁𝐶 ⋅ 𝐶)𝑁𝐶
2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

‵𝐶′ jobs

+ 𝑚 (𝑏 + 𝑁2
𝐶 ⋅ 𝐶)⏟⏟⏟⏟⏟⏟⏟

‵𝐷′ jobs

+ 𝑍𝐴⏟
𝑎𝑗 jobs

,

with 7
4 𝑚𝑏 ≤ 𝑍𝐴 ≤ 2𝑚𝑏 since the following: 𝑏

4 ≤ 𝑎𝑗 ≤ 𝑏
2 , and the 𝑎𝑗 jobs are sorted from small to big

in their processing times per machine, so the worst case scenario is if 𝐴𝑖 only has jobs of processing
times 𝑏

3 and the best case scenario is if 𝐴𝑖 has jobs of processing times 𝑏
4 , 𝑏

4 and 𝑏
2 . Since 𝑍𝑓𝑒𝑎𝑠 ≤ 𝑍+,

we can conclude that 𝑍∗ ≤ 𝑍+.

⋮

𝑎𝑗 𝑎𝑗 𝑎𝑗
𝑎𝑗 𝑎𝑗 𝑎𝑗
𝑎𝑗 𝑎𝑗 𝑎𝑗

⋮ ⋮

𝑏
…
…
…

…

…
…
…

…

…

𝐷1
𝐷2
𝐷3

⋮

⋮

𝑁𝐶 ’𝐶’-jobs per machine

𝑚

𝑚

Figure 2.8: Feasible schedule for reduction in the case of a yes-instance.

We will show that if the 3-PARTITION instance is a no-instance, the optimal schedule has an ob-
jective value 𝑍∗ > 𝑍+. Let 𝑍∗ = 𝑍∗

𝑟 + 𝑍∗
𝐶 + 𝑍∗

𝐷 + 𝑍∗
𝑎 with 𝑍∗

𝑟 ,𝑍∗
𝐶 ,𝑍∗

𝐷 and 𝑍∗
𝑎 the sum of the completion

times of the release date jobs, ‘𝐶 ’-jobs, ‘𝐷’-jobs and 𝑎𝑗-jobs respectively. Notice that 𝑚𝑏 is a lower
bound on 𝑍∗

𝑟 since the jobs cannot start before 𝑡 = 0. In the same way, 𝑚𝑁2
𝐶𝐶 is a lower bound on 𝑍∗

𝐷.
A lower bound on 𝑍∗

𝑎 is 7
4 𝑚𝑏, this is because if only the 𝑎𝑗-jobs were to be scheduled on 𝑚 machines,

SPT-order would be optimal and would have 3 jobs on every machine. Suppose not, then there is a
machine 𝑖1 with 4 jobs or more. Then there is another machine 𝑖2 with 2 or less jobs. Moving the first
job 𝑗 on machine 𝑖1 to machine 𝑖2 would result in at least 3 jobs finishing 𝑝𝑗 earlier and at most 2 jobs
finishing 𝑝𝑗 later at machine 𝑖2. This leads to a contradiction that SPT is optimal. So we may assume
each machine has exactly 3 jobs for finding the lower bound of 𝑍∗

𝑎. Then ∑𝑚
𝑖=1(3𝑎𝑖1 + 2𝑎𝑖2 + 𝑎𝑖3) is

minimal if one chooses all 𝑎𝑖1 and 𝑎𝑖2 to be 𝑏
4 , i.e. as small as possible. This implies 𝑎𝑖3 = 𝑏

2 , as
∑3𝑚

𝑖=1 𝑎𝑗 = 𝑚𝑏 and 𝑏
4 ≤ 𝑎𝑗 ≤ 𝑏

2 for all 𝑗. This leads to a total completion time and therefore a lower
bound of 𝑚 (𝑏

4 + 𝑏
2 + 𝑏) = 7

4 𝑚𝑏 for 𝑍∗
𝑎.

If we have a no-instance, we argue that in the optimal schedule ∃𝑎𝑗 with completion time bigger
than 𝑏. Assume not, then all first 𝑚 machines are processing 𝑎𝑗 jobs until 𝑏, since ∑3𝑚

𝑗=1 𝑎𝑗 = 𝑚𝑏 . If
there is a machine processing more than three 𝑎𝑗 jobs, it would have to be four 𝑎𝑗 jobs of length 𝑏

4 , so
that the 𝑎𝑗 jobs are all finished before or at 𝑏. But then, there is also a machine processing only two
𝑎𝑗 jobs of length 𝑏

2 , otherwise another machine would have to finish its 𝑎𝑗 jobs after 𝑏. Switching a 𝑏
2

job with two 𝑏
4 jobs would then result in a smaller objective value. Hence, all machines are processing

exactly three 𝑎𝑗 jobs with ∑𝑎𝑗∈𝐴𝑖
𝑎𝑗 = 𝑏 for all 1 ≤ 𝑖 ≤ 𝑚. Then we would find a partition, leading to

a contradiction. So there must be an 𝑎𝑗 finishing after 𝑏. Since 𝑎𝑗 ∈ ℕ for all 𝑗, we can find an 𝑎𝑗 with
completion time ≥ 𝑏 + 1. We distinguish 4 cases:

• At least one ‘𝐶 ’-job is scheduled before the 𝑟𝑖 job with the same resource. Let 𝑁𝑖 be the num-
ber of ‘𝐶 ’-jobs on machines 𝑖 and 𝑚 + 𝑖 scheduled before the corresponding release job 𝑟𝑖.

2.5. Machine Subset Constraints 21

Then 𝑟𝑖 starts at 𝑁𝑖𝐶 or later. The lower bound on 𝑍∗
𝑟 becomes 𝑚𝑏 + 𝐶 ⋅ ∑𝑚

𝑖=1 𝑁𝑖. Then
∑𝑚

𝑖=1 ((𝑁𝐶 − 𝑁𝑖)𝑏 + (𝐶 + 𝑁𝐶𝐶) 𝑁𝐶
2) is a lower bound of 𝑍∗

𝐶 . Using the other lower bounds for
𝑍∗

𝑎 and 𝑍∗
𝐷, we obtain the following lower bound for 𝑍∗:

𝑚𝑏 + 𝐶 ⋅
𝑚

∑
𝑖=1

𝑁𝑖 +
𝑚

∑
𝑖=1

((𝑁𝐶 − 𝑁𝑖)𝑏 + (𝐶 + 𝑁𝐶𝐶)𝑁𝐶
2) + 𝑚𝑁2

𝐶𝐶 + 7
4𝑚𝑏.

Then
𝑍∗ − 𝑍+ ≥ (𝐶 − 𝑏)

𝑚
∑
𝑖=1

𝑁𝑖 − 𝑚𝑏 − 1
4𝑚𝑏 > 0,

using that 𝐶 = 8𝑚𝑏 and ∑𝑚
𝑖=1 𝑁𝑖 > 0.

• All ‘𝐶 ’-job are scheduled after the 𝑟𝑖 job with the same resource, but at least one ‘𝐶 ’-job is sched-
uled on one of the last 𝑚 machines. We split this up into two subcases:

– At least one such ‘𝐶 ’-job is scheduled before a ‘𝐷’-job on the same machine. We know all
‘𝐶 ’-jobs start after 𝑏, hence 𝑍∗

𝐶 ≥ 𝑚(𝑁𝐶𝑏 + (𝑁𝐶𝐶 + 𝐶) 𝑁𝐶
2). Then 𝑍∗

𝐷 ≥ 𝑚𝑁2
𝐶𝐶 + 𝑏 + 𝐶

since one ‘𝐷’-job starts after 𝑏 + 𝐶. Using the other lower bounds we get

𝑍∗ − 𝑍+ ≥ 𝑏 + 𝐶 − 𝑚𝑏 − 1
4𝑚𝑏 > 0,

using that 𝐶 = 8𝑚𝑏.
– At least one such ‘𝐶 ’-job is scheduled after a ‘𝐷’-job on the same machine. Let 𝑖 be the

resource of one such ‘𝐶 ’-job and 𝐷𝑖 the corresponding ‘𝐷’-job. Then the ‘𝐶 ’-job finishes at
𝑁2

𝐶𝐶 + 𝐶 or later, while any ‘𝐶 ’-job scheduled not after a 𝐷’-job would have a maximum
completion time of ∑3𝑚

𝑗=1 𝑎𝑗 + 𝑏 + 𝑁𝐶𝐶, which is the sum of all processing times of jobs that
could possibly be scheduled on machine 𝑖. Hence 𝑍∗

𝐶 ≥ 𝑚(𝑁𝐶𝑏+(𝑁𝐶𝐶 +𝐶) 𝑁𝐶
2)+(𝑁2

𝑐 𝐶 +
𝐶 − (𝑚𝑏 + 𝑏 + 𝑁𝐶𝐶)). Using the lower bounds for 𝑍∗

𝑟 , 𝑍∗
𝑎 and 𝑍∗

𝐷, we get

𝑍∗ − 𝑍+ = 𝑁2
𝐶𝐶 + 𝐶 − (𝑚𝑏 + 𝑏 + 𝑁𝐶𝐶) − 𝑚𝑏 − 1

4𝑚𝑏 > 0,

using that 𝐶 = 8𝑚𝑏 and 𝑁𝐶 = 2𝑚𝑏.

• All ‘𝐶 ’-job are scheduled after the 𝑟𝑖 job with the same resource, all ‘𝐶 ’-jobs are scheduled on
the first 𝑚 machines, but least one ‘𝐶 ’-job is scheduled before an 𝑎𝑗 job on the same machine.
All ‘𝐶 ’-jobs are scheduled after 𝑏, hence 𝑍∗

𝐶 ≥ 𝑚(𝑁𝐶𝑏 + (𝐶 + 𝑁𝐶𝐶) 𝑁𝐶
2). At least one 𝑎𝑗 has

completion time bigger than 𝐶 +𝑏, while for any 𝑎𝑗 not scheduled after an ‘𝐶 ’-job has a completion
time smaller or equal to ∑3𝑚

𝑗=1 𝑎𝑗 + 𝑏 = 𝑚𝑏 + 𝑏, so 𝑍∗
𝑎 ≥ 7

4 𝑚𝑏 + (𝐶 + 𝑏 − 𝑚𝑏 − 𝑏). Using the lower
bounds for 𝑍∗

𝑟 and 𝑍∗
𝐷, we get

𝑍∗ − 𝑍+ ≥ (𝐶 − 𝑚𝑏) − 𝑚𝑏 − 1
4𝑚𝑏 > 0

using that 𝐶 = 8𝑚𝑏.

• All ‘𝐶 ’-job are scheduled after the 𝑟𝑖 job with the same resource, all ‘𝐶 ’-jobs are scheduled on the
first 𝑚 machines and all ‘𝐶 ’-job are scheduled after the 𝑎𝑗 jobs on the same machine. Notice that
the feasible solution in Figure 2.8 is structured in a similar way. At least one machine 𝑖 should
have an 𝑎𝑗 job with completion time at least 𝑏 + 1. So the sequence of ‘𝐶 ’-jobs on machine i
should start at 𝑏 + 1 or later. This means that 𝑍∗

𝐶 ≥ 𝑚 (𝑁𝐶𝑏 + (𝐶 + 𝑁𝐶𝐶) 𝑁𝐶
2) + 𝑁𝐶 . Using the

lower bounds on 𝑍∗
𝑟 , 𝑍∗

𝑎 and 𝑍∗
𝐷, we get:

𝑍∗ − 𝑍+ ≥ 𝑁𝑐 − 𝑚𝑏 − 1
4𝑚𝑏 > 0,

using that 𝑁𝐶 = 2𝑚𝑏.

22 2. Theoretical Results

So if the 3-PARTITION instance is a no-instance, 𝑍∗ > 𝑍+, hence the reduction is complete.

We can use Theorem 22 to show that our original problem with unrelated machines instead of
parallel machines is 𝒩𝒫-hard. This problem is actually the problem found in the lithography bays of
the European semiconductor factories [4].

Corollary 23. 𝑅|partition| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard in the strong sense.

Proof. We can reduce any decision variant instance 𝐼𝑃 of𝑃 |𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, ℳ𝑟| ∑𝑗 𝐶𝑗, asking whether there
exists a feasible solution with total completion time smaller than 𝑇 , to a decision variant instance 𝐼𝑅
of 𝑅|𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛| ∑𝑗 𝐶𝑗 asking the same question. This is done by simply removing the processing set
restrictions for resources and changing the processing times to:

𝑝𝑖𝑗 = {𝑝𝑗 if 𝑖 ∈ ℳ𝑟(𝑗)
𝑇 if 𝑖 ∉ ℳ𝑟(𝑗)

where ℳ𝑟(𝑗) denotes the machine restriction for 𝑟(𝑗), the resource of job 𝑗. Clearly, any feasible sched-
ule for 𝐼𝑃 is also a feasible schedule for the mapped instance 𝐼𝑅 with the same total completion time.
Hence if we have a yes-instance for 𝐼𝑃 , we also have a yes-instance for 𝐼𝑅. However, if we have a
no instance for 𝐼𝑃 , all feasible solution for 𝐼𝑃 have a total completion time at least 𝑇 . This means that
all schedules for 𝐼𝑅 processing only 𝑗 on 𝑖 ∈ ℳ𝑟(𝑗) for all 𝑗, also have total completion time at least 𝑇 .
However, any schedule processing at least one 𝑗 on an 𝑖 ∉ ℳ𝑟(𝑗) also has a total completion time at
least 𝑇 , because of such a job 𝑗. Hence 𝐼𝑅 is also a no-instance.

Theorem 22 also implies the next corollary.

Corollary 24. 𝑃 |partition, ℳ𝑗| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard in the strong sense.

This can be seen fairly easy, since 𝑃 |partition, ℳ𝑟| ∑𝑗 𝐶𝑗 is a special case of 𝑃 |partition, ℳ𝑗| ∑𝑗 𝐶𝑗.
However, if we restrict to two parallel machines and 𝑝𝑗 = 1 for all jobs, the problem becomes

polynomially solvable.

Theorem 25. 𝑃2|partition, ℳ𝑗, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 can be solved in 𝑂(𝑛3).

Proof. This problemwill be converted into amaximummatching problem, which can be solved in 𝑂(𝑛3).
Assume that 𝑀𝑗 ≠ ∅, otherwise no feasible solution exists. Let 𝑗 = 1, ..., 𝑛 be the jobs of the instance.
Construct an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = {1, ..., 𝑛} and 𝐸 the set of edges for which it
holds that (𝑖, 𝑗) ∈ 𝐸 if jobs 𝑖 and 𝑗 can be scheduled at the same time, i.e. 𝑖 and 𝑗 use a different
resource and ℳ𝑖 ∪ ℳ𝑗 = {1, 2}. Find the maximal matching in 𝐺. The optimal schedule is then found
by first scheduling the found matches. After that, the other jobs are scheduled alone on any possible
machine in any order. This is optimal, since changing the order of matches or non-matched jobs does
not change the objective value. In no case it’s better to schedule a non-matched job before a matched
pair. Since the matching we found is maximal, the jobs cannot be rearranged, such that more jobs can
be executed simultaneously.

2.6. Unmovable Resources
Moving the resources can be a costly operation. Thus one might also consider the case were the
resources are also fixed on a machine. We therefore consider the problem where every resource can
only be used on one machine. We define unmovable as an addition to the partition constraint, were all
jobs 𝑗 ∈ 𝑟𝑘 have to be processed on the same machine.

Theorem 26. 𝑃 |partition,unmovable, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard.

2.7. Two Resources per Job 23

Proof. We give a polynomial time reduction from the 3-Partition problem as defined in Definition 21.
We introduce in 𝑃 |partition,unmovable, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 𝑚 machines and a number of jobs equal to
𝑛 = ∑𝑎∈𝐴 𝑎 and a number of resources equal to 3𝑚, where 𝑀 is a large number. For every element of
𝑎 ∈ 𝐴, we associate a number of jobs equal to 𝑎 sharing the same resource. If we have a yes-instance
of 3-Partition, then, ∀𝑖 ∈ {1, … , 𝑚}, we can schedule all jobs associated with 𝑎 ∈ 𝐴𝑖 to machine 𝑖. All
machines will then be busy processing until time 𝑏. This will give us an objective value 𝑚

2 𝑏(𝑏 + 1). If we
have a no-instance of 3-Partition, we cannot distribute the jobs evenly over the machines and thus the
objective value will be greater than 𝑚

2 𝑏(𝑏 + 1). Hence, there exists a solution to 3-Partition if and only
if 𝑃 |partition,unmovable, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 as constructed above has an objective value of 1

2 𝑚𝑏(𝑏 + 1).
Note that, one might have a yes-instance of 𝑃 |partition,unmovable, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗, where on one ma-
chine there are 4 resources being used. If this is the case, these resources all have 𝑏/4 associated jobs
and since it is a yes-instance, there also must be a machine using only 2 resources with 𝑏/2 associated
jobs. An easy switch of the last 𝑏/2 units of processing of these two machine, will turn this also in a
yes-instance for 3-Partition.

2.7. Two Resources per Job
Because the problem was motivated by the scheduling problem found in the lithography bays of the
semi-conductor industry, we are mainly interested in the case that there is only one resource per job.
However, one might also wonder what happens if there is more than one resource needed per job.
We will therefore continue by looking at instances with at most 𝑞 resources per job. We introduce
partition(𝑞) for the 𝛽 field of the scheduling problem. If partition(𝑞) is in the 𝛽 field, there is a collection
of subsets 𝑅 = {𝑟1, … , 𝑟𝑅} with 𝑟𝑘 ⊆ 𝐽 , where every job is contained in at most 𝑞 subsets. If there
exist an 𝑟𝑘 ∈ 𝑅 such that 𝑗, 𝑗′ ∈ 𝑟𝑘, 𝑗 and 𝑗′ cannot be processed at the same time.
The problem 𝑃 |partition(q), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is a special case of 𝑃 |res⋯ , types = ℛ, 𝑝𝑖 < 𝑝|𝑓 with 𝑓 ∈
{∑𝑗 𝑤𝑗𝐶𝑗, ∑𝑗 𝑇𝑗, ∑𝑗 𝑈𝑗}. Here, 𝑠 is the number of resources and there are ℛ types of jobs. A type of
a job 𝑗 is defined as the tuple (𝑝𝑗, ℛ1(𝑗), … , ℛ𝑠(𝑗)), where ℛ𝑢(𝑗) is the amount of resource 𝑢 required
by job 𝑗. Note that, in our case, |𝑅| = ℛ = 𝑠. Brucker and Krämer [7] show that it can be solved in
𝑂(ℛ(𝑝 + 𝑠)𝑛ℛ𝑝 + ℛ2𝑝𝑛ℛ(𝑝+2)), resulting in the following corollary.

Corollary 27. 𝑃 |partition(𝑞), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is polynomially solvable for every 𝑞 ∈ ℤ, if the number
of resources, |𝑅|, is bounded.

However, we will now show that the problem becomes 𝒩𝒫-hard when the number of resources is
not bounded, even with 𝑞 = 2.

Theorem 28. 𝑃 |partition(𝑞), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard for every 𝑞 ≥ 2, if the number of machines
𝑚 and resources |𝑅| are unbounded.

Proof. We will prove this by a reduction from edge coloring. In the edge coloring problem, one assigns
colors (or labels) to the edges of a graph 𝐺 = (𝑉 , 𝐸), such that no two incident edges have the same
color. Let Δ be the maximum node degree in the graph 𝐺, then Holyer [18] shows that it is 𝒩𝒫-hard
to decide for an arbitrary graph 𝐺 whether or not it can be colored using only Δ colors.
We can reduce this problem to 𝑃 |partition(2), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 as follows. Suppose we are given graph
𝐺 = (𝑉 , 𝐸) with |𝐸| = 𝑚. Take the number of machines equal to 𝑚. Introduce a resource for every
node 𝑢 ∈ 𝑉 , |𝑅| = |𝑉 |. We also introduce a job (with 𝑝𝑗 = 1) for every edge 𝑒 = {𝑢, 𝑣} and these jobs
require the resources that are associated with nodes it connects (i.e. 𝑢 and 𝑣). Thus every resource
will be used at most Δ times and every job uses exactly 2 resources. Lastly, we introduce (Δ − 1)𝑛
dummy jobs (with 𝑝𝑗 = 1), that do no require a resource. Figure 2.9 shows an example of the reduction.

We claim that there exists an edge coloring of graph 𝐺 using only Δ colors if and only if the instance
of 𝑃 |partition(2), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 has an optimal value of 1

2 Δ(Δ + 1)𝑚. Suppose we are given a solution

24 2. Theoretical Results

1

2 3

4

(a) Graph 𝐺 = (𝑉 , 𝐸)

1 2 1 3 2 3

3 4 2 4

time∆

𝑛
m
ac

hi
ne

s

(b) Optimal schedule for instance the instance. Dashed lined jobs
represent dummy jobs and number represent the resources

Figure 2.9: Example of the reduction from edge coloring to 𝑃 |partition(2), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 with a graph
with Δ = 3

to edge coloring problem which uses Δ colors, then we can put each color on a different time slot. So
all jobs associated with an edge of the first color will be put on machines in the first time slot. We fill up
all unused machine time until time Δ with dummy jobs. Since jobs only share a resource if they were
incident in the graph, we will not have any resource conflict and all machines will be filled with jobs until
time Δ, thus resulting in an objective value of 1

2 Δ(Δ + 1)𝑚.
Suppose we have a solution of the above instance of 𝑃 |partition(2), 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 with objective value
1
2 Δ(Δ + 1)𝑚. Then in each time slot we look for the jobs associated with a node and give them the
same color. Since the objective value is 1

2 Δ(Δ + 1)𝑚 there are no jobs after time Δ, hence there are
only Δ colors. Since all jobs associated with incident edges share a resource, no two incident edges
will share the same color and hence we have found an edge coloring using Δ colors.

2.8. Conclusion
In this paper, we considered the problem of minimizing the total completion time while scheduling jobs
that each use exactly one resource, 𝑃 |partition| ∑𝑗 𝐶𝑗. Although the complexity of 𝑃 |partition| ∑𝑗 𝐶𝑗
remains unclear, we saw that similar problems such as 𝑃 |partition, ℳ𝑟| ∑𝑗 𝐶𝑗, 𝑃 |partition(2), 𝑝𝑗 =
1| ∑𝑗 𝐶𝑗 and 𝑃 |partition,unmovable, 𝑝𝑗 = 1| ∑𝑗 𝐶𝑗 are 𝒩𝒫-hard. Therefore, we conjecture that
𝑃 |partition| ∑𝑗 𝐶𝑗 is 𝒩𝒫-hard as well.
The problem 𝑃 |partition| ∑𝑗 𝐶𝑗 always has an optimal solution where jobs sharing the same resource
are ordered by the processing time. Such an optimal solution might even be more structured. For
example, it remains open whether or not there is always an optimal solution that yields the SPT order
property on each machine for all jobs on that machine.
We showed that the SPT-available rule gives a (2 − 1𝑚)-approximation. This bound may not be tight.
There is a lower bound of 4

3 on the approximation factor. Closing this gap is another interesting open
problem, as well as designing other approximation algorithms with better approximation ratios.

3
Exact Algorithms

This chapter will introduce several exact methods for 𝑃 |partition| ∑𝑗 𝐶𝑗. Four algorithms are based
on an integer linear programming (ILP) problem, meaning the problem is modeled using only integer
decision variables. The fifth algorithm is based on a mixed integer linear programming (MILP) problem,
meaning the problem is modeled using decision variables of which a subset is restricted to be integer.
These models can be solved using a variation of different solvers. All models, except for the model in
Section 3.2, are based on other models found in the literature. Note that we do not expect solvers to be
able to solve these models in polynomial time. Solving (mixed) integers linear programs is 𝒩𝒫-hard in
general. Finally we discuss a dynamic programming algorithm.

Throughout the (Mixed) Integer Linear Programs, we will use the following notations: ∀𝑗: for all jobs
𝑗 ∈ 𝐽 , ∀𝑖: for all machines 1 ≤ 𝑖 ≤ 𝑚, ∀𝑡: for all possible starting/ending times 𝑡 ∈ 𝑇 and ∀𝑟𝑘: for all
resources 𝑟𝑘 ∈ 𝑅.

3.1. ILP with Starting Time Variables
The first model is an integer linear program for 𝑅|partition| ∑𝑗 𝑤𝑗𝐶𝑗, based on themodel for𝑅|| ∑𝑗 𝑤𝑗𝐶𝑗
using time-indexed variables on starting times from [28]. The processing times 𝑝𝑖𝑗 are assumed to be
integer. One additional type of constraint has been added (3.1d) for each resource 𝑟𝑘 ∈ 𝑅, with 𝑅 the
set of resources. Our decision variables are as follows:

𝑥𝑖𝑗𝑡 = {1, if job 𝑗 starts at time 𝑡 on machine 𝑖
0, else

25

26 3. Exact Algorithms

We then get the following integer linear program:

minimize
𝑥

∑
𝑖,𝑗,𝑡

𝑤𝑗 ⋅ 𝑥𝑖𝑗𝑡 ⋅ (𝑡 + 𝑝𝑖𝑗) (3.1a)

s.t. ∑
𝑖,𝑡

𝑥𝑖𝑗𝑡 = 1, ∀𝑗 (3.1b)

∑
𝑗

𝑡
∑

𝑠=𝑡−𝑝𝑖𝑗+1
𝑥𝑖𝑗𝑠 ≤ 1 ∀𝑖, ∀𝑡 (3.1c)

∑
𝑗∈𝑟𝑘

∑
𝑖

𝑡
∑

𝑠=𝑡−𝑝𝑖𝑗+1
𝑥𝑖𝑗𝑠 ≤ 1 ∀𝑟𝑘, ∀𝑡 (3.1d)

𝑥𝑖𝑗𝑡 ∈ {0, 1} ∀𝑖, ∀𝑗, ∀𝑡 (3.1e)

This model can be further simplified for 𝑃 |partition| ∑𝑗 𝐶𝑗 by setting 𝑝𝑖𝑗 = 𝑝𝑗 and 𝑤𝑗 = 1 for all
𝑗 ∈ 𝐽 . One can best read the second constraint as: at time 𝑡 on machine 𝑖, at most one job may be
active. The third constraint is similar, but should then hold for each resource, over all machines.

The number of decision variables for this model is 𝑚 ⋅ 𝑛 ⋅ |𝑇 |, where 𝑇 is the set of possible starting
times. The size of this set is 𝒪(2𝑛) in theory, but is smaller in practice if we find an upper bound 𝑡𝑚𝑎𝑥
on the possible starting times. A possible value for 𝑡𝑚𝑎𝑥 could be ∑𝑗 𝑝𝑗/𝑚 + max𝑘{𝑞𝑘}, which is the
average ending time of the machines, with the largest resource appended to it.

3.2. ILP with Preemptions

This model is inspired by Theorem 11 which states that the optimal values of 𝑃 |partition| ∑𝑗 𝐶𝑗 and
𝑃 |partition,prmp| ∑𝑗 𝐶𝑗 are the same. Thus, one can just allow for preemptions. The decision variables
are defined as follows:

𝑥𝑘𝑡 = {1, if resourse 𝑟𝑘 is used at the interval [𝑡, 𝑡 + 1]
0, else

𝑦𝑗𝑡 = {1, if job 𝑗 finishes at time 𝑡 + 1
0, else

Theorem 10 states that in any optimal solution of 𝑃 |partition,prmp| ∑𝑗 𝐶𝑗, the jobs must be pro-
cessed in order of shortest processing time per resource. Hence, if a resource has been used for a
certain amount of time, we can identify which jobs have been finished. This can be done in the following
way: let 𝑞𝑗 be the cumulative processing time for job 𝑗, that means that 𝑞𝑗 time units of that resource
must have been processed, until that job is done. For example, if resource 𝑟𝑘 has jobs of lengths 3, 4
and 6. Then, the cumulative processing times are 3, 7 and 13. Then we have the following integer linear

3.3. ILP with Precedence Constraints 27

program:

minimize
𝑥,𝑤

∑
𝑡,𝑗

𝑦𝑗𝑡(𝑡 + 1) (3.2a)

s.t. ∑
𝑘

𝑥𝑘𝑡 ≤ 𝑚, ∀𝑡 (3.2b)

𝑡
∑
𝑠=0

𝑥𝑘𝑡 ≥ 𝑦𝑗𝑡𝑞𝑗, ∀𝑡, ∀𝑗 (3.2c)

∑
𝑡

𝑦𝑗𝑡 = 1, ∀𝑗 (3.2d)

∑
𝑡

𝑥𝑘𝑡 = ∑
𝑗|𝑟𝑗=𝑟𝑘

𝑝𝑗, ∀𝑟𝑘 (3.2e)

𝑥𝑘𝑡 ∈ {0, 1} ∀𝑟𝑘, ∀𝑡 (3.2f)
𝑦𝑗𝑡 ∈ {0, 1} ∀𝑗, ∀𝑡 (3.2g)

Constraint (3.2b) is to make sure that there are at most 𝑚machines active at any interval. Constraint
(3.2c) is to find when jobs are actually finished. Constraint (3.2e) has been added to make sure that
the machines stay inactive after all jobs have finished. This is not a necessary constraint, but makes
the set of optimal solutions smaller.

Note that this model may be able to be extended to 𝑃 |partition,prmp| ∑𝑗 𝑤𝑗𝐶𝑗, since we conjecture
that the proof of Theorem 10 can be adjusted for the case with weights. The jobs are then ordered in
order of shortest weighted processing time (𝑝𝑗/𝑤𝑗). After an optimal solution has been found for this
integer linear program, the solution still needs to be transformed into a schedule without preemption.
Using Theorem 11, one can construct an algorithm that removes these preemptions in a structured
way.

The number of decision variables for this model is (𝐾 + 𝑛) ⋅ 𝑡𝑚𝑎𝑥, with 𝐾 the number of resources
and 𝑡𝑚𝑎𝑥 an upper bound on the completion times. Again, a possible value for 𝑡𝑚𝑎𝑥 could be ∑𝑗 𝑝𝑗/𝑚+
max𝑗{𝑞𝑗}, which is the average ending time of the machines, with the largest resource appended to it.

3.3. ILP with Precedence Constraints
Theorem 12 states that all jobs are in order of shortest processing time per resource. Hence, we can
describe our problem as a special case of scheduling with chain precedence constraints and use the
following integer linear program for scheduling with precedence constraints (𝑃 |prec| ∑𝑗 𝑤𝑗𝐶𝑗) from
[23]. We have the following decision variables:

𝑥𝑗𝑡 = {1, if job 𝑗 finishes at time 𝑡
0, else

We conjecture that the proof of Theorem 12 can be adjusted for the problemwith weights (𝑃 |partition| ∑𝑗 𝑤𝑗𝐶𝑗).
The jobs are then ordered in shortest weighted processing time (𝑝𝑗/𝑤𝑗). One can simply put the weights

28 3. Exact Algorithms

to 1 if they are not required. We can define the following Integer Linear Program for 𝑃 |partition| ∑𝑗 𝑤𝑗𝐶𝑗:

minimize
𝑥

∑
𝑗

𝑤𝑗 ∑
𝑡

𝑥𝑗𝑡 ⋅ 𝑡 (3.3a)

s.t. ∑
𝑡

𝑥𝑗𝑡 = 1, ∀𝑗 (3.3b)

∑
𝑗,𝑡∈[𝑡′,𝑡′+𝑝𝑗)

𝑥𝑗𝑡 ≤ 𝑚, ∀𝑡′ (3.3c)

∑
𝑡<𝑡′+𝑝𝑗′

𝑥𝑗𝑡 ≤ ∑
𝑡<𝑡′

𝑥𝑗′𝑡, ∀𝑗, 𝑗′, 𝑡′ ∶ 𝑗 ≺𝑃 𝑗′ (3.3d)

𝑥𝑗𝑡 = 0 ∀𝑗, ∀𝑡 < 𝑝𝑗 (3.3e)
𝑥𝑗𝑡 ∈ {0, 1} ∀𝑗, ∀𝑡 (3.3f)

Remember that 𝑗 ≺ 𝑗′ if 𝑗 comes before 𝑗′ in the list of jobs sorted on shortest (weighted) processing
time and that 𝑗 ≺𝑃 𝑗′ if 𝑗 ≺ 𝑗′ and 𝑗 and 𝑗′ use the same resource. Constraints (3.3b) and (3.3c) are to
ensure that each job is scheduled exactly once, and at most 𝑚 jobs are active at the same time. Notice
that in Constraint (3.3d), ∑𝑡<𝑡′+𝑝𝑗′

𝑥𝑗𝑡 will be 1 if and only if job 𝑗 finishes before 𝑡′ + 𝑝𝑗′ . Hence, then
job 𝑗′ should finish before 𝑡′.

We can use a different set of constraints for (3.3d):

∑
𝑡

𝑡 ⋅ 𝑥𝑗,𝑡 + 𝑝𝑗′ ≤ ∑
𝑡

𝑡 ⋅ 𝑥𝑗′,𝑡, ∀𝑗, 𝑗′ ∶ 𝑗 ≺𝑃 𝑗′

since ∑𝑡 𝑡 ⋅ 𝑥𝑗,𝑡 is equal to the time that job 𝑗 ends. Hence this new equation can be read as ”job 𝑗
must end at least 𝑝𝑗′ time units before job 𝑗′ finishes if 𝑗 precedes 𝑗′ ”.

The number of decision variables for this model is 𝑛 ⋅ |𝑇 |, where 𝑇 is the set of possible completion
times.

3.4. MILP with Precedence Constraints
This model is based on the model from van den Bogaerdt [27]. The original model has a combination of
precedence constraints and partition constraints, as well as additional release dates for each partition
and due dates for each job. One can put all release and due dates to 0 to simplify to model. We
also used Theorem 12 to simplify the partition constraints, since we know in which order the jobs
must be processed per partition (or resource). This way, the partition constraints become precedence
constraints in the model.

𝐶𝑗 = is the completion time of job 𝑗

𝑌𝑖,𝑗 = {1, if job 𝑗 is scheduled on machine 𝑖
0, else

𝑋𝑗,𝑗′ = {1, if job 𝑗 is scheduled before job 𝑗′on the same machine
0, else

3.5. Dynamic Programming 29

Then we can define the following Mixed Integer Linear Program for our problem:

minimize
𝑥

∑
𝑗

𝐶𝑗 (3.4a)

s.t. ∑
𝑖

𝑌𝑖,𝑗 = 1, ∀𝑗 (3.4b)

𝑌𝑖,𝑗 + ∑
𝑖′≠𝑖

𝑌𝑖′,𝑗′ + 𝑋𝑗,𝑗′ ≤ 2 ∀𝑖, ∀𝑗 ≺ 𝑗′ (3.4c)

𝐶𝑗′ − 𝐶𝑗 + 𝐿(3 − 𝑋𝑗,𝑗′ − 𝑌𝑖,𝑗 − 𝑌𝑖,𝑗′) ≥ 𝑝𝑗 ∀𝑖, ∀𝑗 ≺ 𝑗′ (3.4d)
𝐶𝑗 − 𝐶𝑗′ + 𝐿(2 − 𝑋𝑗′,𝑗 − 𝑌𝑖,𝑗 − 𝑌𝑖,𝑗′) ≥ 𝑝𝑗′ ∀𝑖, ∀𝑗 ≺ 𝑗′ (3.4e)
𝐶𝑗′ − 𝐶𝑗 ≥ 𝑝𝑗′ ∀𝑗 ≺𝑃 𝑗′ (3.4f)
𝐶𝑗 ≥ 𝑝𝑗 ∀𝑗 (3.4g)
𝑌𝑖,𝑗 ∈ {0, 1} ∀𝑖, ∀𝑗 (3.4h)
𝑋𝑗,𝑗′ ∈ {0, 1} ∀𝑗, 𝑗′ (3.4i)

Remember that 𝑗 ≺ 𝑗′ if 𝑗 comes before 𝑗′ in the list of jobs sorted on processing time and that 𝑗 ≺𝑃 𝑗′

if 𝑗 ≺ 𝑗′ and 𝑗 and 𝑗′ use the same resource. Constraint (3.4b) makes sure each job is scheduled exactly
once. Constraint (3.4c) states that 𝑋𝑗,𝑗′ = 0 if 𝑗 and 𝑗′ are scheduled on different machines. In the third
constraint, a large constant 𝐿 is being used. This should be a large number, such that the constraint is
only enforced if 𝐿 is multiplied with 0. For example, in the case of Constraint (3.4d), 𝐶𝑗′ − 𝐶𝑗 ≥ 𝑝𝑗 only
needs to hold if 𝑋𝑗,𝑗′ = 𝑌𝑖,𝑗 = 𝑌𝑖,𝑗′ = 1, so 𝑗 is scheduled before 𝑗′ on the same machine 𝑖. 𝐿 should
be an upper bound on 𝐶𝑗′ − 𝐶𝑗 + 𝑝𝑗, hence we choose 𝐿 = ∑𝑗 𝑝𝑗 − min𝑗{𝑝𝑗} + max𝑗{𝑝𝑗}. Constraint
(3.4e) is similar to (3.4d), but is enforced if 𝑗 is scheduled after 𝑗′ on the same machine 𝑖. Constraint
(3.4f) models our partition constraint as precedence constraints.

The number of decision variables for this model is 𝒪(1
2 𝑛2 + 𝑛 ⋅ 𝑚).

3.5. Dynamic Programming
The exact solution can also be computed using dynamic programming. In the algorithm, the jobs are
sorted in order of processing time per resource. The jobs are then scheduled one by one iteratively. The
next job to be scheduled has to be the shortest job of one of the 𝐾 resources, resulting in a maximum
of 𝐾 subproblems per iteration. Hence it has a runtime of 𝒪(𝐾𝑛).

4
Heuristics

In this chapter, several different heuristics for 𝑃 |partition| ∑𝑗 𝐶𝑗 are described. In practice, it may be
useful to use a heuristic instead of an exact algorithm, since the runtime of the exact algorithms from
Chapter 3 are expected to be exponential in terms of the input size. First we will look at the SPT-
available rule and an algorithm which is closely related to it, called semi-SPT-available. The next two
heuristics are based on dynamic programming. Although the runtimes of those algorithms are also
exponential in terms input size, it is interesting to see how well they operate, and until which size of
input they may be a good alternative. Finally, we will look at heuristics based on LP relaxations.

4.1. SPT-available
SPT-available is the greedy algorithm already discussed in Section 2.4. In summary, the algorithm
sorts the list of jobs in order of processing time and then schedules each job at the first available
time. Remember that Section 2.4 states that it gives a (2 − 1𝑚)-approximation and it cannot give an
𝛼-approximation with 𝛼 < 4

3 . It will be interesting to inspect the accuracy of SPT-available for differently
distributed data, as it may depend greatly on the type of instances. The runtime of this algorithm is
𝒪(𝑛 log𝑛), since the jobs must be sorted in order of shortest processing time.

4.2. Semi-SPT-available
Semi-SPT-available is an algorithm, designed with SPT-available and its limitations in mind. As seen
in Example 1, SPT can perform poorly if an instance contains several longer jobs using the same
resource. The new algorithm should prevent scheduling all jobs of that resource at the end. To do this,
it keeps track of how much time a resource should still be scheduled to be used, we call this 𝑃𝑘 for each
resource 𝑟𝑘. If at any time the largest-to-be-scheduled resource will finish late (𝑃𝑘 + 𝑡 > ∑𝑗 𝑝𝑗/𝑚 with
𝑡 the first possible starting time for the to be scheduled jobs), all jobs of that resource will be scheduled
at the first possibility. Otherwise, schedule the job with the shortest processing time at the earliest
possibility. The runtime is 𝒪(𝑛 log𝑛), due to the sorting of the jobs.

4.3. Dynamic Programming Heuristics
The two following heuristics are based on the exact dynamic programming algorithm from Section 3.5,
but allow substantially fewer subproblems. The first difference is that we only allow solutions where
the jobs are also ordered in processing time per machine. This is because we conjecture that there is
always an optimal solution, with jobs sorted per machine. Furthermore, instead of creating (a maximum
of) 𝐾 subproblems, we only allow the creation of two kinds of subproblems, inspired by the algorithms
SPT-available and Semi-SPT-available:

31

32 4. Heuristics

• scheduling of the job with the shortest processing time (SPT order)

• scheduling of the job with the shortest processing time of the resource which has the largest
amount of time yet to be processed from all resources that are allowed to be scheduled at that
time.

This makes the running time of the heuristic of order 𝒪(2𝑛). This is still exponential, but can already
be used for larger instances than the exact dynamic programming method.

The second heuristic reduces the amount of subproblems even further by creating the second set
of subproblems only if that resource will finish late, i.e. 𝑃𝑘 + 𝑡 > ∑𝑗 𝑝𝑗/𝑚.

Notice that the subproblems seem to be unique quite often, since each subproblem depends on the
already scheduled jobs and the times the machines and the resources become available. Hence, the
dynamic programming part of this algorithm will not be used very often, as not a lot of the subproblems
overlap. We chose to still incorporate the dynamic programming function instead of creating a new
recursive function, since the dynamic programming part does not consume a lot of runtime andmemory,
but can help stabilize the function for big numbers. However, recursive functions are expected to have
similar results.

4.4. LP Relaxations
In an LP relaxation, one solves the (mixed) integer program, but without the integrality restrictions. The
(non-integer) solution of this linear program is then used to create a solution for the original problem.
The conversion used for our LP relaxations creates a list of the jobs sorted on their average starting
times and then schedules the jobs at the first possibility in that order. The choice for average starting
times is based on the fact that any optimal integer solution would remain optimal after the conversion.
The average starting would then simply be equal to the starting time of a job, and rescheduling the jobs
in this order will give the exact same schedule. This is in contrast with sorting on average completion
time for example. In Figure 4.1 one can see that an optimal solution sorted and then rescheduled on
completion time is not optimal.

2 2

1 4 4

2

1

2

21

4 42

1

Figure 4.1: Example of rescheduling optimal solution in order of completion time does not give
optimal solution.

Although the relaxation method should be polynomial, assuming that the processing times are
bounded, the number of variables becomes large quite fast.

5
Experimental Results

In this chapter, the proposed exact algorithms and heuristics will be assessed. This will be done using
two different kinds of data: uniformly distributed processing times and processing times based on the
semiconductor industry. The algorithms will be evaluated based on their average runtimes, the size of
instance they can handle and their accuracy.

5.1. Implementation
MATLAB was used for the implementation of our algorithms together with opti toolbox [12] for solving
the (mixed) integer linear programs for the exact algorithms and the linear programs for some of the
heuristics. The opti toolbox would automatically select the solver for each instance for each linear
program. For (Mixed) Integer Linear Programming, opti toolbox chooses from the following four solvers:

• CBC (https://projects.coin-or.org/Cbc/),

• GLPK (http://www.gnu.org/software/glpk/),

• LP_SOLVE [3] and

• SCIP [1].

For Linear Programming, opti toolbox chooses from the following seven solvers:

• CLP (https://projects.coin-or.org/Clp),

• CSDP [6],

• CSDP [2],

• GLPK (http://www.gnu.org/software/glpk/),

• LP_SOLVE [3],

• OOQP [16] and

• SCIP [1].

During the testing, the choice for the usage of solver was left to the opti toolbox, as the impact of the
usage of different solvers was not studied.

In all the linear programs, sparse matrices were used to speed up the process and also to signifi-
cantly decrease the required memory space.

33

https://projects.coin-or.org/Cbc/
http://www.gnu.org/software/glpk/
https://projects.coin-or.org/Clp
http://www.gnu.org/software/glpk/

34 5. Experimental Results

5.2. Test Data
The data our algorithms have been tested on can be divided into two different categories. The first
category is called uniform, as the processing times of the jobs are uniformly distributed. For input
values 𝑚, 𝐾, 𝑛 and 𝑝𝑚𝑎𝑥, instances are created that use all 𝐾 resources and that have processing
times 𝑝𝑗 ∈ ℕ taken from a uniform distribution going from 1 to 𝑝𝑚𝑎𝑥. The second category is based
on the test data of [4], also researching the semiconductor industry. For input values 𝑚, 𝐾 and 𝑛,
instances are created in the following way:

• Processing time per wafer for resources are uniformly random generated on the interval [5, 10].

• For the first 𝐾 jobs, the resource for the 𝑗th job is the 𝑗th resource. The remaining jobs have a
randomly selected resource.

• With a probability of 0.9, the number of wafers for a job is 25. For the other jobs, the number of
wafers are uniformly random generated on the interval [1, 25].

• The processing time of each job is now determined by the processing time per wafer of its resource
times the number of wafers.

We will also refer to this kind of data as non-uniform.

5.3. Exact Algorithms Results
The following algorithms were tested:

• ILP start var, which is the algorithm solving the integer linear program based on variables indi-
cating the starting times of jobs at machines from Section 3.1.

• ILP preempt, which is the algorithm solving the integer linear program allowing preemptions from
Section 3.2.

• ILP prec v1, which is the algorithm solving the integer linear programwith precedence constraints
from Section 3.3, using the first variant for constraint (3.3d).

• ILP prec v2, which is the algorithm solving the integer linear programwith precedence constraints
from Section 3.3, using the second variant for constraint (3.3d).

• MILP, which is the algorithm solving themixed integer linear programwith precedence constraints
from Section 3.4.

• Dynamic, which is the dynamic programming algorithm from Section 3.5.

All the tests on the exact algorithms were done 50 times per set of input variables, to decrease the
variance of the found averages. In the figures, one may see dotted lines in the charts. These dotted
lines represent that the measured results are not to be trusted, but may give an indication on how the
algorithm would perform. In most of these cases, the algorithm stopped working due to errors like
maximum nodes reached. The maximum on the number of nodes was chosen automatically by the
solvers. This value could have been chosen differently, but it was chosen not to do so. This was since
the computer sometimes already was overloaded during the testing with the current maximum number
of nodes, meaning that the computer became temporarily unresponsive or sometimes even crashed
completely. By using a computer with better hardware, using different (commercial) solvers and/or by
allowing more iterations, one might then be able to solve the problems for bigger values of 𝑛. Note that
if a line stops at a certain 𝑛, we stopped testing that algorithm because of earlier results.

5.3. Exact Algorithms Results 35

Figure 5.1: Average running time for 𝑚 = 2, 𝐾 = 3 and 𝑝𝑚𝑎𝑥 = 5 for the exact algorithms. Dotted
lines represent that the algorithm did not always succeed in optimizing and thus the measured results

are not to be trusted, but may give an indication on how the algorithm would perform.

ILP with Preemptions
This algorithm performed poorly. In Figure 5.1, one can see that even for small problems, the algorithm
is already quite slow compared to the other exact algorithms. Note that the algorithm didn’t always fully
optimize the integer linear program for 𝑛 ≥ 8, due to maximum nodes reached. The bad performance,
compared to the other algorithms, is probably due to the great amount of decision variables, combined
with the fact that there are a lot of optimal solutions. Because of this, we decided to not further test this
algorithm.

MILP
The MILP model didn’t perform that well either. Although it has a similar running time for 𝑚 = 2, 𝐾 = 3,
𝑝𝑚𝑎𝑥 = 250 compared to the other algorithms, it has large runtimes for almost all other input settings.
For example, in Figure 5.2 one can see the difference between uniform and non-uniform for 𝑚 = 2,
𝐾 = 3. We also included the results for 𝑚 = 3, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 250, for which one can notice that the
solver did not always find optimal values for the instance with only eight jobs.

Other Algorithms and Overall Performance
We continued testing the other algorithms. The results of this can be found in Figure 5.3. For the tests,
we kept increasing 𝑛 until the computer became unresponsive because MATLAB stopped working and
crashed. Note that the algorithms based on (Mixed) Integer Linear Programs perform better on the
uniform data set. This is mainly due to the fact that 𝑝𝑚𝑎𝑥 is smaller, and thus the amount of deci-
sion variables is smaller. One can see clearly that the runtime of the dynamic programming algorithm
strongly depends on the number of resources. For 𝐾 = 3, the algorithm is the fastest of all algorithms
up until 20 jobs. But for 𝐾 = 4, the other methods seem to be a lot faster. Overall, the exact algorithms
are not able to solve big instances. From these tests, it seems that ILP prec v2 is the best overall choice
for exact algorithm, since it performs well for most tested inputs. However, the algorithms might not be
suitable for use in practical settings. For example, in a semiconductor fabrication plant, there could be
37 machines and 700 jobs that are to be scheduled. These exact algorithms with the current solvers
are not able to solve the instances.

36 5. Experimental Results

(a) 𝑚 = 2, 𝐾 = 3, non-uniform (b) 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 250

(c) 𝑚 = 3, 𝐾 = 8, 𝑝𝑚𝑎𝑥 = 250

Figure 5.2: Average running time of tested exact algorithms. Dotted lines represent that the algorithm
did not always succeed in optimizing and thus the measured results are not to be trusted, but may

give an indication on how the algorithm would perform.

(a) 𝑚 = 2, 𝐾 = 3, non-uniform (b) 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 25

(c) 𝑚 = 3, 𝐾 = 4, non-uniform (d) 𝑚 = 3, 𝐾 = 4, 𝑝𝑚𝑎𝑥 = 25

Figure 5.3: Average running time of tested exact algorithms. Dotted lines represent that the algorithm
did not always succeed in optimizing and thus the measured results are not to be trusted, but may

give an indication on how the algorithm would perform.

5.4. Heuristics Results 37

5.4. Heuristics Results
The following algorithms were tested:

• SPT, which is the algorithm called SPT-available, scheduling the jobs in order of shortest pro-
cessing time, as explained in Section 4.1.

• Semi SPT, which is the algorithm called semi-SPT-available, scheduling the jobs in order of short-
est processing time, unless a resource is already ending after ∑𝑗 𝐶𝑗/𝑚 as explained in Section
4.2.

• Dynamic 1, which is the using dynamic programming creating only 2 subproblems each iteration
as explained in Section 4.3.

• Dynamic 2, which is a slight modification to Dynamic 1, creating even less subproblems as ex-
plained in Section 4.3.

• LP Relax 1, which creates a solution based on a relaxation of the first version of the integer linear
program with precedence constraints from Section 3.3. The method to convert its solution into
an integer solution is explained in Section 4.4.

• LP Relax 2, which creates a solution based on a relaxation of the second version of the integer
linear program with precedence constraints from Section 3.3. The method to convert its solution
into an integer solution is explained in Section 4.4.

All the tests on the heuristics were done 100 times per set of input variables, to decrease the vari-
ance of the found averages. In the figures, one may see dotted lines in the charts. These dotted lines
represent that the measured results are not to be trusted, but may give an indication on how the algo-
rithm would perform. In most of these cases, the algorithm stopped working due to errors like maximum
nodes reached. By using a computer with more space and/or by allowing more iterations, one might
then be able to solve the problems for bigger values of 𝑛.

Redefining Accuracy Ratio
The quality of a heuristic mainly depends on the running time and the accuracy. The running time will be
measured as the average running time. One could measure the accuracy as the average performance
ratio, i.e. the ratio between the found solution and the optimal solution. However, an optimal solution
is not always available as our exact algorithms don’t work sufficiently. Hence we will have to choose
a different measure. One option would be to use a lower bound om the optimal solution. However,
the only known lower bounds are the optimal value of 𝑃 || ∑𝑗 𝐶𝑗 and relaxations of the (mixed) integer
linear programs. The optimal value of 𝑃 || ∑𝑗 𝐶𝑗 is not a good choice, since the lower bound is too
low. More often than not, the optimal values differ with a factor bigger than 2. However, the relaxations
are not robust and stop working for already quite small instances. Hence, we propose the following
measure: the ratio between the found solution and the best found solution by any of the heuristics. This
may not always be equal to the average performance ratio, but tests up until 𝑛 = 20 show that it seems
to be almost always equal to the performance ratio in the tests using all six heuristics. Remember
though, that the quality of this measure becomes less reliable as the number of heuristics one tests
simultaneously decreases. Nevertheless, it remains a good way to measure the difference in accuracy
between the heuristics.

Relaxations
The ILP relaxation stopped working quite fast. For example, in Figure 5.4, one can see that the algo-
rithms might be interrupted early at just 11 jobs. This was mostly due to errors such as maximum nodes
reached. This resulted not only in non-optimal solutions, but also in large running times. Probably, the

38 5. Experimental Results

average accuracy ratio will be a bit better than the dotted lines in Figure 5.4b. This is because the solu-
tions are based on the non-optimal solutions from the relaxations. For big 𝑛, the relaxation algorithms
quickly became the slowest heuristics. We decided to stop testing the algorithms as they were clearly
not suitable for use in large scale problems.

(a) Average run-time. (b) Average accuracy ratio.

Figure 5.4: Experimental results for all heuristics 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 100. Dotted lines represent
that the algorithm did not always succeed in optimizing and thus the measured results are not to be

trusted, but may give an indication on how the algorithm would perform.

Runtime
We will further investigate the quality of the other four heuristics. These were tested on the settings
(𝑚 = 2, 𝐾 = 3), (𝑚 = 3, 𝐾 = 4) and (𝑚 = 3, 𝐾 = 8), all for non-uniformly and uniformly distributed
processing times. The 𝑝𝑚𝑎𝑥 was chosen to be equal to 250, as the maximal processing time in the non-
uniformly case is also 250. The first thing we notice is that dynamic 1 is by far the slowest algorithm.
This is because it creates a (possible) exponential number of subproblems. The average runtime of
dynamic appears to become larger as 𝐾 increases. This can be explained as follows. If the smallest
job uses the biggest resource, only one subproblem will be created. If 𝐾 increases, the chance of this
happening decreases. Hence, the dynamic 1 function actually becomes more and more exponential.
All other algorithms processed everything within a fraction of a second. As expected though, dynamic 2
is slightly slower than SPT and Semi-SPT. The greedy algorithms executed everything in 2milliseconds,
whereas dynamic 2 sometimes took sometimes a tenth of a second. With 𝑛 becoming even bigger, this
difference may become bigger.

Accuracy
The results are displayed in Figure 5.6. Remember that the accuracy is measured as the ratio between
the found value and the best found value. As expected, the accuracy of the algorithms depends on the
type of data. For example, SPT clearly performs better for uniformly distributed processing times. This
could be explained in the following way. In the non-uniformly data, if a resource has a long processing
time, there is a big chance that all its jobs also have long processing times. In this case the SPT algo-
rithm will put these long jobs at the end of the schedule, just like in Example 1. In the case of uniformly
distributed processing times, such situation will not happen as often.

As 𝐾 increases, the accuracy of SPT and Semi-SPT becomes better. This could be due to the fact
that SPT seems to perform better as 𝐾 gets bigger, since the chance that a resource is needed at the
same time for another job becomes smaller. Also, the Semi-SPT algorithm will look more like SPT,
since the chance that a color is big enough to end after the threshold becomes smaller. In all cases,
the dynamic functions seem to outperform the greedy algorithms SPT and Semi-SPT. This is logical

5.4. Heuristics Results 39

(a) 𝑚 = 2, 𝐾 = 3, non-uniform (b) 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 250

(c) 𝑚 = 3, 𝐾 = 4, non-uniform (d) 𝑚 = 3, 𝐾 = 4, 𝑝𝑚𝑎𝑥 = 250

(e) 𝑚 = 3, 𝐾 = 8, non-uniform (f) 𝑚 = 3, 𝐾 = 8, 𝑝𝑚𝑎𝑥 = 250

Figure 5.5: Average running time of best tested heuristics.

since they check more possible solutions. For example, SPT is always a subproblem of the dynamic
functions.

In Table 5.1 one can see the maximal found accuracy ratio in all executed tests. Here, one can see
that although the average accuracy ratios of Semi-SPT, Dynamic 1 and dynamic 2 are all under 1.01,
the algorithms can give a solution of at least a 12.5%, 4.9% and 12.5% bigger than the optimal solution.

40 5. Experimental Results

𝑚 K pmax SPT Semi SPT Dyn 1 Dyn 2 LPHeur2 LPheur3
2 3 25 1,179 1,125 1,021 1,125 1,006 1,109
2 3 100 1,161 1,068 1,049 1,116 1,000 1,038
2 3 250 1,157 1,119 1,000 1,062
2 3 non-uniform 1,258 1,087 1,009 1,087 1,023 1,045
3 4 250 1,148 1,059 1,000 1,059
3 4 non-uniform 1,235 1,115 1,010 1,103
3 8 250 1,092 1,063 1,020 1,037
3 8 non-uniform 1,163 1,049 1,000 1,048

Overall maximum 1,258 1,125 1,049 1,125 1,023 1,109

Table 5.1: The maximal found accuracy ratio, which is a lowerbound on the approximation ratio

(a) 𝑚 = 2, 𝐾 = 3, non-uniform (b) 𝑚 = 2, 𝐾 = 3, 𝑝𝑚𝑎𝑥 = 250

(c) 𝑚 = 3, 𝐾 = 4, non-uniform (d) 𝑚 = 3, 𝐾 = 4, 𝑝𝑚𝑎𝑥 = 250

(e) 𝑚 = 3, 𝐾 = 8, non-uniform (f) 𝑚 = 3, 𝐾 = 8, 𝑝𝑚𝑎𝑥 = 250

Figure 5.6: Average accuracy ratio of best tested heuristics.

5.5. Conclusion 41

5.5. Conclusion
The exact algorithms seem too slow for use in practice with big instances. If an exact algorithm would
be used, we would recommend using the second variant of the integer linear program with precedence
constraints from Section 3.3. This is because this algorithms seems to perform better for both data
sets. However, different applications may lead to differently distributed data. Hence, other models
may perform better depending on the application.

We would not recommend using a relaxation of an integer linear program as a heuristic as they
are not able to solve for big instances. The use of the other algorithms depends on the application.
We would recommend semi-SPT over SPT, since the runtimes are similar, but the accuracy of semi-
SPT outperforms SPT. However, if one searches for nearly-optimal solutions, we would recommend
using Dynamic 1 (which is more accurate) or Dynamic 2 which is faster), depending on the time the
algorithm may take. As with most heuristics, testing is required for each application to find the most
suited heuristic.

6
Conclusion and Future Work

6.1. Conclusion
This thesis is about the scheduling problem denoted by 𝑃 |partition| ∑𝑗 𝐶𝑗. Although the complexity of
the problem has not yet been determined, we succeeded in finding important properties of the problem.
Examples of this are the fact that allowing preemptions does not change the problem and the fact that
all jobs must be in order of processing time per resource in an optimal solution. These theorems help
us to understand the problem and may help to come up with new bounds on approximation algorithms
or even new proofs about its complexity. A corollary of these theorems is that 𝑃 |partition| ∑𝑗 𝐶𝑗 is a
special case of 𝑃 |chains| ∑𝑗 𝐶𝑗. Hence, algorithms for this problem could be used on our problem.

Furthermore, a greedy algorithm called SPT-available has been studied. Although there are exam-
ples of instances where it is not optimal (with a ratio of 4

3), we also found an upper bound of 2(1 − 1𝑚)
on its approximation ratio.

Some related problems have been studied, such as the problem with machine subset constraints.
It was shown that this problem is 𝒩𝒫-hard in the strong sense. As a corollary, the problem found in
the semi conductor industry having unrelated machines is also 𝒩𝒫-hard.

Next, we created different ILPs for our problem. These exact methods are restricted to small in-
stances because for larger instances the number of variable becomes to large. The methods may be
able to solve for larger instances when using other hardware and/or different solvers. Overall, the sec-
ond version of the ILP model using precedence constraints from Section 3.3 performed the best.

Finally, we studied several heuristics for the problem. Next to the two greedy algorithms SPT-
available and semi-SPT-available, two dynamic programming solutions and two heuristics based on
relaxations were created. If one would want to use heuristics, several heuristics should be tested, as
the accuracy (and sometimes even the runtimes) may depend on the type of instances.

The heuristics based on relaxations are not recommended for use, due to the fact that they could not
solve the medium sized instances. The fastest heuristics were SPT-available and Semi-SPT-available,
followed by the second dynamic programming algorithm. The first dynamic programming algorithm has
exponential runtime, meaning that it has long runtimes for large instances.

The first dynamic programming algorithm has the best accuracy of the tested heuristics, followed by
the second dynamic programming algorithm. Semi-SPT-available seems to have a better approxima-
tion ratio than SPT-available, since the worst approximation ratio encountered in the experiments was
1.258 for SPT-available versus 1.125 for Semi-SPT-available. Hence we would advice to use Semi-

43

44 6. Conclusion and Future Work

SPT-available over SPT-available in applications which desire a quick heuristic for big instances. In
applications where one would like to focus more on the accuracy of the heuristic, we would recommend
using Dynamic 1 (which is more accurate) or Dynamic 2 which is faster), depending on the time the
heuristic may take.

6.2. Future Work
One conjecture which has not been proved is that there is always a solution with all jobs ordered in
processing times per machine. I have a partial proof (not included in the thesis) which excludes many
possible situations, but it still does not cover all cases. Although this conjecture may not have a direct
impact on the solving of the problem, it may help in designing new (approximation) algorithms or prov-
ing their bounds.

We also conjecture that the proof of Theorem 12 can be adjusted to proof that in an optimal solution
for 𝑃 |partition| ∑𝑗 𝑤𝑗𝐶𝑗 the jobs are ordered in order of weighted completion time (𝑝𝑗/𝑤𝑗) per resource.

The problem 3-PARTITIONwas used for the reduction of 𝑃 |ℳ𝑗,partition| ∑𝑗 𝐶𝑗. This𝒩𝒫-complete
problem has beenmentioned in some other reductions for related problems andmay be the key to prov-
ing our partition constraint problem with parallel machines to be 𝒩𝒫-hard. It would be interesting if one
could combine the proofs of 𝑃 |chains| ∑𝑗 𝐶𝑗 and 𝑃 |partition, ℳ𝑗| ∑𝑗 𝐶𝑗 (both having a reduction from
3-PARTITION) for proving this.

An interesting observation is that the relaxations of some of the integer linear programs seem to
give the same optimal value as the corresponding integer linear program. It would be interesting to test
this more intensively and see whether a good conversion algorithm can be created to create integer
solutions from the non-integer optimal solution of the relaxations. One would then be able to create
an approximation algorithm, or maybe even create an exact pseudo-polynomial-time algorithm. If the
latter would be possible, one would have a proof for the problem being weakly 𝒩𝒫-hard.

It would be interesting to find a bound on the approximation ratio for the Semi-SPT-available algo-
rithm or develop examples in which it does not perform well.

The choice for solvers of the (M)ILP’s and LP’s has been done by opti toolbox. However, choosing
different solvers may effect the experimental results. It would be interesting to test different solvers,
maybe even some commercial solvers, to see whether the runtimes of the methods become better.

The approximation ratios of the heuristics could only be approximated, since there was no sufficient
lower bound on the optimum. Hence, there were only conclusions based on relative accuracy. Finding
a better lower bound would give better insight in the actual performance of the heuristics. It may be
interesting to try to bound the order of the runtime of the second dynamic algorithm in something other
than 2𝑛. The algorithm clearly creates only one subproblem during most of its iterations and if a second
subproblem is created, its size is remarkably smaller most of the time.

Finally, most of the research in this thesis focuses on the problem with parallel machines. However,
it would be interesting to also develop exact algorithms and heuristics for the problem with unrelated
machines.

Bibliography

[1] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, Jul 2009. ISSN 1867-2957. doi: 10.1007/s12532-008-0001-1. URL
https://doi.org/10.1007/s12532-008-0001-1.

[2] Steven J Benson, Yinyu Ye, and Xiong Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10(2):443–461, 2000.

[3] Michel Berkelaar, Kjell Eikland, Peter Notebaert, et al. lpsolve: Open source (mixed-integer) linear
programming system. Eindhoven U. of Technology, 2004.

[4] Abdoul Bitar, Stéphane Dauzère-Pérès, Claude Yugma, and Renaud Roussel. A memetic al-
gorithm to solve an unrelated parallel machine scheduling problem with auxiliary resources in
semiconductor manufacturing. Journal of Scheduling, 19(4):367–376, 2016.

[5] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling subject to resource
constraints : Classification and complexity. Discrete Applied Mathematics, 5:11–24, 1983.

[6] Brian Borchers. Csdp, ac library for semidefinite programming. Optimization methods and Soft-
ware, 11(1-4):613–623, 1999.

[7] Peter Brucker and Andreas Krämer. Polynomial algorithms for resource-constrained and multi-
processor task scheduling problems. European Journal of Operational Research, 90(2):214–226,
1996.

[8] Peter Brucker, Bernd Jurisch, and Andreas Krämer. Complexity of scheduling problems with multi-
purpose machines. Annals of Operations Research, 70:57–73, 1997.

[9] James Bruno, Edward G Coffman Jr, and Ravi Sethi. Scheduling independent tasks to reduce
mean finishing time. Commun. ACM, 17(7):382–387, 1974.

[10] Chandra Chekuri, Rajeev Motwani, Balas Natarajan, and Clifford Stein. Approximation techniques
for average completion time scheduling. SIAM Journal on Computing, 31(1):146–166, 2001.

[11] Richard Walter Conway, William L Maxwell, and Louis W Miller. Theory of scheduling. Addison-
Wesley, 1967.

[12] Jonathan Currie, David I Wilson, et al. Opti: lowering the barrier between open source optimizers
and the industrial matlab user. Foundations of computer-aided process operations, 24:32, 2012.

[13] Jianzhong Du, Joseph YT Leung, and Gilbert H Young. Scheduling chain-structured tasks to
minimize makespan and mean flow time. Information and Computation, 92(2):219–236, 1991.

[14] Michael R Garey and David S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

[15] Michael RGarey and David S Johnson. Computers and intractability: a guide to NP-completeness.
WH Freeman and Company, San Francisco, 1979.

[16] E Michael Gertz and Stephen JWright. Object-oriented software for quadratic programming. ACM
Transactions on Mathematical Software (TOMS), 29(1):58–81, 2003.

45

https://doi.org/10.1007/s12532-008-0001-1

46 Bibliography

[17] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling, a survey. Annals of Discrete Mathe-
matics, 5:287–326, 1979.

[18] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–720,
1981.

[19] WA Horn. Minimizing average flow time with parallel machines. Operations Research, 21(3):
846–847, 1973.

[20] Teun Janssen, Céline Swennenhuis, Abdoul Bitar, Thomas Bosman, Dion Gijswijt, Leo van Iersel,
Steèphane Dauzére-Pérès, and Claude Yugma. Parallel machine scheduling with a single re-
source per job. arXiv:1809.05009, 2018.

[21] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977. ISSN 0167-5060. doi: 10.1016/
S0167-5060(08)70743-X.

[22] Joseph Y-T Leung and Chung-Lun Li. Scheduling with processing set restrictions: A survey.
International Journal of Production Economics, 116(2):251–262, 2008.

[23] Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear programming
relaxations. arXiv preprint arXiv:1707.08039, 2017.

[24] Robert McNaughton. Scheduling with deadlines and loss functions. Management Science, 6(1):
1–12, 1959.

[25] René Sitters. Two NP-hardness results for preemptive minsum scheduling of unrelated parallel
machines. In International Conference on Integer Programming and Combinatorial Optimization,
pages 396–405. Springer, 2001.

[26] Wayne E Smith. Various optimizers for single-stage production. Naval Research Logistics Quar-
terly, 3(1-2):59–66, 1956.

[27] Pim van den Bogaerdt. Multi-machine scheduling lower bounds using decision diagrams. Master’s
thesis, Delft University of Technology, 2018. https://repository.tudelft.nl/.

[28] Tjark Vredeveld and Cor Hurkens. Experimental comparison of approximation algorithms for
scheduling unrelated parallel machines. INFORMS Journal on Computing, 14(2):175–189, 2002.

https://repository.tudelft.nl/

	List of Figures
	Introduction
	Background
	Notation
	Previous Work
	Structure of the Thesis

	Theoretical Results
	Introduction
	Definitions
	Problem Properties
	Shortest Processing Time First
	Machine Subset Constraints
	Unmovable Resources
	Two Resources per Job
	Conclusion

	Exact Algorithms
	ILP with Starting Time Variables
	ILP with Preemptions
	ILP with Precedence Constraints
	MILP with Precedence Constraints
	Dynamic Programming

	Heuristics
	SPT-available
	Semi-SPT-available
	Dynamic Programming Heuristics
	LP Relaxations

	Experimental Results
	Implementation
	Test Data
	Exact Algorithms Results
	Heuristics Results
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

