<]
TUDelft

Delft University of Technology

Exact solution methods for the Resource Constrained Project Scheduling Problem with a
Flexible Project Structure

van der Beek, T.; van Essen, J.T.; Pruijn, J.F.J.; Aardal, K.I.

Publication date
2022

Published in
Optimization Online

Citation (APA)
van der Beek, T., van Essen, J. T., Pruijn, J. F. J., & Aardal, K. I. (2022). Exact solution methods for the
Resource Constrained Project Scheduling Problem with a Flexible Project Structure. Optimization Online.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

A. Notation

Variables
Vi 1if activity ¢ € N is selected for the NEES and zero otherwise

W; 1 if activity ¢ € N is selected for the MOES and zero otherwise

X 1if activity ¢ € N is executed at time t € T, zero otherwise

Y, 1if group g € H is selected and zero otherwise

Z; 1if activity ¢ € N is selected as successor activity and zero otherwise

Parameters
ag Activating activity of selection group g € G

d; Duration of activity ¢ € N
fi Latest finish time of activity i € N
ki Usage of resource r € R for activity i € V.

l Lower bound on objective.

M Very large number

n Number of non-dummy activities

Si Earliest start time of activity ¢ € N
U Upper bound on objective.

¢(P) Number of vertices in path P
Ar Capacity of resource r € R

Sets

E(@) Active edges representing a CRP

EW() Final edges representing a CRP

E™) New edges representing a CRP

G Selection groups

H Selection groups with full precedence

N Activities

R Resources

Sy Successor activities of selection group g € G

T Time periods

C; Cutting planes for activity i € N

Fi Forced activities for activity i € N

P Precedence relationships (tuples of 2 activities)

P; Predecessors of activity j € IV in the precedence graph

Ri(A) All paths starting in ¢ and ending in an activity in set A, with
only the last activity in set A

S; Successors of activity ¢ € N in the precedence graph

V(P) Vertex set of path P

r All activity pairs (i,7) if ¢ € N and j € N are successors in the
selection graph of the same selection group

S) Pairs (i, j) of activities where ¢ is reachable from j of vice versa

O; All activities that are reachable from activity ¢ € N

Q; Successors of activity ¢ € IV in the selection graph

B. Dummy variables

Lemma 2

Consider a selection group g € G for which Sy does not contain the final
activity n + 1. This selection group will be modified such that at least one
successor i € Sq has to be executed if the activator ay is executed, instead of
exactly one. This can be achieved by applying the following algorithm:

Step 1 Let Sy = {i:i€ Sy, {k:k €G,i€ Sp,k# g} # 0} be a subset of
Sy containing only activities that are also successors of another group.
Create a dummy activity D; for each successor activity i € S;.

Step 2 Create a selection group h with ap, = ay and Sy = {D; : i € Sp} U
{ie Sy\ S}

Step 3 Create a selection group h; for each i € S; with ap, = D; and
Sp, = {i}.

Step 4 Remowve selection group g.

Proof. The algorithm adds dummy activities for all activities i € S;. We
first show that if we do this for all activities ¢ € S, instead, we impose an
‘at least one’ constraint instead of an ‘exactly one’ constraint. After that,
we show that if we remove all dummy activities (and corresponding groups)
for i € Sy \ S;, the solution stays feasible and the optimal solution value
does not change.

First, apply the algorithm with S, = S;. Now, Constraints (Ld)) and
impose for selection group h that if ap is executed, exactly one dummy
variable has to be executed. Consequently, Constraints impose that at
least one activity ¢ € Sy has to be executed, since activity ¢ € Sy can also
be executed when the activating dummy activity D, is not executed.

Let A be the problem instance obtained by performing the algorithm for
S; = Sy. Furthermore, let B be the problem instance we obtain by using S’;
instead of S;. Converting A to B can be done as follows: For each activity
i€ S\ 5’;, remove dummy activity D;, remove selection group h;, and
replace successor activity D; in selection group h by the original successor
activity 7.

To show that the ‘at least one’-criterium also holds for B, we will show
that each solution X to instance A can be converted to a solution Y to
instance B and vice versa, while keeping the same objective value.

Let X be a solution to problem A. We now show that solution X can
be converted to a feasible solution Y for problem B with the same objective
value. Converting is done by projecting all values of X on Y and modifying
the values for i € S, \ Sp if needed.

Firstly, we consider the case where activity i € S, \ Sy is not executed
in solution X. By Constraints , it follows that dummy activity D; is
also not executed. Therefore, removing D; and selection group h; does not
cause any infeasibilities and Y remains a feasible solution for B.

Secondly, consider the case where activity i € S, \ S!; is executed. If
dummy activity D; was executed, the number of executed successor activ-
ities for selection group h stays the same in solution Y, which therefore
remains feasible for problem B. If D; was not executed, which is possible
considering Constraints , there is an infeasibility in problem B for group
h in Constraints . However, since activity ¢ is not the successor of any
other group, it can be set to not executed. This does not cause any infea-
sibilities because Constraints impose in the direction of activator to
successor and not in the reverse direction.

Therefore, any solution X for problem A can be converted to a solution
Y for problem B. Since the value of the objective activity n + 1 is not
changed, the objective value remains equal.

Next, we show that a solution Y for problem B can be converted to a
solution X for problem A with equal objective value. This is done by pro-
jecting Y on X and setting the values for the dummy activities as required.

Again, consider activity i € 5’; \ Sg. If this activity is not executed, set
the corresponding dummy activity D; to not executed in X as well. Then,
the problem remains feasible.

Now, consider the case where activity i € Sy \ Sy is executed. In this
case, none of the dummy activities are executed and dummy activity D; can
be set to executed in solution X to obtain a feasible solution. Similar as for
the reverse case, the objective activity n + 1 is not changed, and therefore,
the objective value remains equal.

Thus, there exists a solution X for problem A if and only if there exists
a solution Y for problem B with the same objective value. Therefore, the
‘at least one’-criterium from problem A is also imposed on problem B. [

	Notation
	Dummy variables

