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A. Notation

Variables
Vi 1if activity ¢ € N is selected for the NEES and zero otherwise

W; 1 if activity ¢ € N is selected for the MOES and zero otherwise

X 1if activity ¢ € N is executed at time t € T, zero otherwise

Y, 1if group g € H is selected and zero otherwise

Z;  1if activity ¢ € N is selected as successor activity and zero otherwise

Parameters
ag Activating activity of selection group g € G

d; Duration of activity ¢ € N
fi Latest finish time of activity i € N
ki Usage of resource r € R for activity i € V.

l Lower bound on objective.

M Very large number

n Number of non-dummy activities

Si Earliest start time of activity ¢ € N
U Upper bound on objective.

¢(P) Number of vertices in path P
Ar Capacity of resource r € R



Sets

E(@) Active edges representing a CRP

EW() Final edges representing a CRP

E™) New edges representing a CRP

G Selection groups

H Selection groups with full precedence

N Activities

R Resources

Sy Successor activities of selection group g € G

T Time periods

C; Cutting planes for activity i € N

Fi Forced activities for activity i € N

P Precedence relationships (tuples of 2 activities)

P; Predecessors of activity j € IV in the precedence graph

Ri(A) All paths starting in ¢ and ending in an activity in set A, with
only the last activity in set A

S; Successors of activity ¢ € N in the precedence graph

V(P)  Vertex set of path P

r All activity pairs (i,7) if ¢ € N and j € N are successors in the
selection graph of the same selection group

S) Pairs (i, j) of activities where ¢ is reachable from j of vice versa

O; All activities that are reachable from activity ¢ € N

Q; Successors of activity ¢ € IV in the selection graph

B. Dummy variables

Lemma 2

Consider a selection group g € G for which Sy does not contain the final
activity n + 1. This selection group will be modified such that at least one
successor i € Sq has to be executed if the activator ay is executed, instead of
exactly one. This can be achieved by applying the following algorithm:

Step 1 Let Sy = {i:i€ Sy, {k:k €G,i€ Sp,k# g} # 0} be a subset of
Sy containing only activities that are also successors of another group.
Create a dummy activity D; for each successor activity i € S;.

Step 2 Create a selection group h with ap, = ay and Sy = {D; : i € Sp} U
{ie Sy\ S}

Step 3 Create a selection group h; for each i € S; with ap, = D; and
Sp, = {i}.



Step 4 Remowve selection group g.

Proof. The algorithm adds dummy activities for all activities i € S;. We
first show that if we do this for all activities ¢ € S, instead, we impose an
‘at least one’ constraint instead of an ‘exactly one’ constraint. After that,
we show that if we remove all dummy activities (and corresponding groups)
for i € Sy \ S;, the solution stays feasible and the optimal solution value
does not change.

First, apply the algorithm with S, = S;. Now, Constraints (Ld)) and
impose for selection group h that if ap is executed, exactly one dummy
variable has to be executed. Consequently, Constraints impose that at
least one activity ¢ € Sy has to be executed, since activity ¢ € Sy can also
be executed when the activating dummy activity D, is not executed.

Let A be the problem instance obtained by performing the algorithm for
S; = Sy. Furthermore, let B be the problem instance we obtain by using S’;
instead of S;. Converting A to B can be done as follows: For each activity
i€ S\ 5’;, remove dummy activity D;, remove selection group h;, and
replace successor activity D; in selection group h by the original successor
activity 7.

To show that the ‘at least one’-criterium also holds for B, we will show
that each solution X to instance A can be converted to a solution Y to
instance B and vice versa, while keeping the same objective value.

Let X be a solution to problem A. We now show that solution X can
be converted to a feasible solution Y for problem B with the same objective
value. Converting is done by projecting all values of X on Y and modifying
the values for i € S, \ Sp if needed.

Firstly, we consider the case where activity i € S, \ Sy is not executed
in solution X. By Constraints , it follows that dummy activity D; is
also not executed. Therefore, removing D; and selection group h; does not
cause any infeasibilities and Y remains a feasible solution for B.

Secondly, consider the case where activity i € S, \ S!; is executed. If
dummy activity D; was executed, the number of executed successor activ-
ities for selection group h stays the same in solution Y, which therefore
remains feasible for problem B. If D; was not executed, which is possible
considering Constraints , there is an infeasibility in problem B for group
h in Constraints . However, since activity ¢ is not the successor of any
other group, it can be set to not executed. This does not cause any infea-
sibilities because Constraints impose in the direction of activator to
successor and not in the reverse direction.



Therefore, any solution X for problem A can be converted to a solution
Y for problem B. Since the value of the objective activity n + 1 is not
changed, the objective value remains equal.

Next, we show that a solution Y for problem B can be converted to a
solution X for problem A with equal objective value. This is done by pro-
jecting Y on X and setting the values for the dummy activities as required.

Again, consider activity i € 5’; \ Sg. If this activity is not executed, set
the corresponding dummy activity D; to not executed in X as well. Then,
the problem remains feasible.

Now, consider the case where activity i € Sy \ Sy is executed. In this
case, none of the dummy activities are executed and dummy activity D; can
be set to executed in solution X to obtain a feasible solution. Similar as for
the reverse case, the objective activity n + 1 is not changed, and therefore,
the objective value remains equal.

Thus, there exists a solution X for problem A if and only if there exists
a solution Y for problem B with the same objective value. Therefore, the
‘at least one’-criterium from problem A is also imposed on problem B. [
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