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Abstract:

pownstream a hydraulic construction the original bed of a watercourse
is usually protected against scour. This scour is caused by changes of
the watermovement due to the construction. Nevertheless scour occurs
downstream this protection. The scouring process can be described by
an empirical relation. The most important parameter of this relation
has to be determined by means of model investigation, which can be a
considerable effort. This paper reveals another method to determine
this key parameter.

1. INTRODUCTION

To describe the problem of local scour downstream a construction, the
definition sketch figure 1 is introduced. In the Netherlands it is
common practice to use a bed protection with a length greater than the
reattachment length.
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Figure 1 Definition sketch

The time development of the scour hole depth can be formulated by the
empirical relation [Breusers, 1965, vd Meulen and Vinje 1975, d=
Graauw and Pilarczyk 1980].
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4. RELATION BETWEEN al AND WATER MOVEMENT

In order to create 2 design graph for hydraulic constructions and

scour protections the £ollowing assumption is made.

"The rate of scour downstream & nydraulic construction is Very much
influenced by the turbulence of the watermovement downstream the
hydraulic construction.”

enlarged by the construction. Over the

The rate of turbulence is
length of the bed protection this turbulence is reduced by

dissipation. The rate of turbulence can be defined as follows.
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This equation describes the balance of conveczion, production ang
dissipation of turbulent energy. When the velocz:y field is known,
this equation can simply be solved. From the distcibution of k the
relative turbulence r can be calculated with equzzion (8).
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In this equation a value of 1.0 has been used for the parameter C. For
a fully developed boundary layer a value of 0.8 Zs commonly used.

The calculated rate of turbulence is shown == figure 7 for a

bed protection length of ten times the original w=:ter depth (dotted
line). Some two-dimensional model measuremer:ts ([Delft Hydraulics
Laboratory, investigation nr. M648/M863, 1972] =sve been added, which
seem to confirm the validity of the mathematical model. Also, some
three-dimensional model measurements have been aziad [Delft Hydraulics
Laboratory, investigation nr. M847, 1972]. T:zes three-dimensional
measurements indicate a greater turbulence if the wvertieal
constriction is rather small. The difference iz turbulence between
two- and three-dimensional constructions seems => diminish when the
vertical constriction becomes larger. This ZiI=dicates that the
turbulence caused by the vertical constriction =w=:omes dominant.
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§. SYNTHESIS

combining the data from the figures 5 and 7 yields a relation between
al and the turbulence r. It can be stated, that the relation according
to figure 8 produces an unique
L == value for @  for a certain
f value of r, without any
| & Theea-dimansionst variation due to the type of
ot the construction (two- or
dgp/ﬂ three-dimensional). To improve
the wvalidity of this figure
some extra data has been added.
2k ;f? This data is derived as well
g from model investigations by
i the Delft Hydraulics Laboratory
! [Investigation nr. M731, 1963]
i as from prototype measurements
- at the Storm Surge Barrier in
the Eastern Scheldt [Report
r[z] — Q635, 1988].
The investigation nr. M731
Figure 8 dl versus r gives information about the
scouring rate, when a relative
short bed protection is applied (four times the waterdepth). The
mathematical model is used to calculate the turbulence. At the Storm
Surge Barrier - for reasons of extreme safety - a much longer bed
protection was applied : about twenty times the waterdepth, which
means 600 meters |

7. CONCLUSIONS

- the relation between the scour parameter o and the wvertical
constriction is not unique. The value of & is influenced by the type
of the construction.

- by redefining the scour parameter &, on the 1local velocity the
prediction of this parameter can be improved. The relation between o
and the vertical constriction is however still not unique. 1
- by introducing the turbulence as a reference parameter an uniform
relation for al can be obtained. Therefore it is possible in future to
determine a cofrect value for o without scale model investigations. A
calculation of the velocity “and the turbulence field with a
mathematical model is sufficient. This means a considerable saving on
design effort. This relation is wvalid for various bed protection
lengths, beyond the reattachment point.
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