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Summary

From Synthetic Vehicle Load Observations to Bridge Criticality and Beyond.

Vehicle load investigation is crucial for assessing the reliability of existing road infras-
tructure, given the potential threats posed by extreme traffic loads, including risks to road
transport operations and the integrity of pavements and bridges. The most reliable source
for gathering massive vehicle load information is Weigh-in-Motion (WIM) technology.
WIM systems play a pivotal role in collecting data on vehicular loads, individual axle
loads, vehicle types, and axle counts, holding significant relevance in engineering for the
design of new bridges and the reliability assessment of existing structures. However, the
inherent high costs associated with WIM systems have limited their adoption, leading
many regions to rely on the use of less sophisticated traffic counters (LSTC). The drawbacks
of such alternatives, including inaccurate axle counting during high truck volumes and
the absence of vehicle weighing, must be considered when assessing the reliability of road
infrastructure at a network level.

One of the first steps in the reliability assessment of road infrastructure at the network
level is the identification of critical locations within the network. This involves, for example,
identifying critical road locations due to extreme gross vehicle weights and critical bridge
locations due to extreme load effects. The goal is to generate optimal bridge intervention
programs taking into account these performance indicators to minimize costs. Therefore,
in cases where WIM data is unavailable (or limited), the computation of synthetic WIM
observations becomes crucial. Synthetic WIM observations should approximate statistical
characteristics (including dependencies). of real traffic data.

After the introduction section of this dissertation, the second chapter discusses a method-
ology for generating probabilistic models describing the weight and length of various heavy
vehicle types. By analyzing WIM measurements from the Netherlands and Brazil, the sec-
ond chapter presents a set of Gaussian Copula-based Bayesian Networks (GCBNs). The
primary objective is to construct a WIM data model specifically for heavy vehicles (total
weight exceeding 34 kN) using data from the studied WIM stations. The constructed model
generates statistically representative synthetic data of the primary variables in a WIM
dataset, including vehicle type, gross vehicle weight, individual axle loads, total vehicle
length, and inter-axle distances. To enhance usability, a graphical user interface for Dutch
highway WIM locations has been developed, and a major update has been made to an
existing MATLAB software to quantify GCBNs. The demonstrated methodology proves
widely applicable, improving upon prior results by enabling the generation of inter-axial
distance observations, incorporating multiple data sources into the modeling process, and
providing software for researchers and practitioners interested in generating synthetic
observations based on vehicle type distribution.

The third chapter explores the utilization of hazard maps for pinpointing critical lo-
cations associated with extreme vehicle load events, a crucial aspect in evaluating the
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reliability of road infrastructure. Acknowledging the increasing pressure on road systems
attributed to outdated highways, and the rising percentage of trucks exceeding legal weight
limits. As mentioned, as the deployment of WIM systems is limited, road managers often
use LSTCs. However, they lack the capacity to measure vehicular axle loads, prompting the
introduction of a methodology that uses LSTC data to estimate axle loads and map extreme
gross vehicle weights. A case study focusing on the major highways in Mexico demon-
strates the feasibility of this approach, where the absence of WIM stations is compensated
by data from a network of 1,777 counting stations and origin-destination surveys. The
study utilizes GCBNs to generate synthetic site-specific axle loads, enabling the calculation
of gross vehicle weights for selected return periods using extreme value analysis (EVA)
and facilitating the identification of hazardous locations. Over 180 million heavy vehicles
were simulated, and due to the numerous simulations needed, a fully open-source software
tool, based on Python, was developed to quantify GCBNs. This development derived from
a major update from an earlier implemented closed-source version of the software. These
findings, complemented by an interactive web map and graphical user interface, lay the
groundwork for maintenance strategies for existing roads and bridges.

The fourth chapter emphasizes the major role of bridge structures in a country’s trans-
portation system, managed through Bridge Management Systems (BMS). Despite the
conventional four-module structure of BMS, many countries operate single-module BMSs
primarily focused on inventory management. This limitation impedes their ability to make
decisions regarding the risk and reliability of the bridge stock. The lack of structural as-
sessments for numerous bridges underscores the need for a holistic network reassessment.

Traffic load effects on bridges, especially extreme load effects (ELEs), are crucial for
infrastructure safety and reliability. However, challenges arise when studying traffic
load effects at a network scale due to the absence of WIM systems in many locations and
insufficient detailed bridge inventory information. In response, we introduce amethodology
to map and estimate extreme load effects due to heavy vehicle traffic. By employing GCBNs,
the methodology allows for the simulation of site-specific traffic conditions, providing an
understanding of heavy vehicle interactions. The incorporation of extreme value theory
enhances the accuracy of estimating extreme load effects, ensuring a comprehensive
assessment of bridge criticality at the network level. Furthermore, the case study involving
Mexico’s national bridge network of 576 structures demonstrates the practical application
of the methodology, showcasing its effectiveness in identifying bridges in need of inspection
based on limited available information. The methodology’s adaptability and simplicity
make it a valuable tool for countries operating with single-module BMSs, offering a pathway
for more informed and prioritized maintenance strategies for their bridge infrastructure.

Bridge networks face degradation from aging, heavy traffic loads, and natural disasters,
posing risks to service quality and safety. Effective bridge management with constrained
funding requires objective assessments for the optimal utilization of aging bridges. Mainte-
nance, repair interventions, and strategic planning can enhance infrastructure availability
while minimizing costs. Previous studies emphasize the need to consider both direct and
indirect costs associated with transport disruptions in optimal planning, as traveler delays
during bridge closures can incur costs higher than those of the bridge repair itself. Integrat-
ing performance indicators from individual bridges at the network level enhances overall
bridge system performance, surpassing traditional structural rating-based planning.
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The fifth chapter introduces a methodology for optimizing maintenance and repair
activities in bridge networks, taking into account central and non-central interventions.
This integrative multi-system and multi-stakeholder optimization approach considers
bridges as components of a transportation system, addressing the additional costs due to
the interconnected effects of interventions on individual bridges within the network. The
formulation accounts for deterioration, budget constraints, and time between interventions,
extending existing frameworks by incorporating repair interventions. Furthermore, the
methodology allows the inclusion of various performance indicators for bridge prioriti-
zation. The affordable computational time of the mathematical program allows practical
applicability to portfolios containing a large number of bridges. The methodology provides
practical guidance for estimating both direct and indirect costs, making it a valuable tool
for efficiently planning interventions within extensive bridge networks.

This thesis focuses on enhancing the reliability estimates of bridges at a network
level by addressing four key subjects that effectively model dependence between traffic
load variables. The aim is to assist decision-making in bridge management strategies,
particularly in regions where WIM data is limited, and a single-module BMS may fall short
in detecting critical locations beyond visual inspections. The proposed approach advocates
for advanced tools utilizing probabilistic-based reliability methodologies, enabling the
formulation of strategic action plans aimed at preserving the structural integrity of road
bridges, thereby minimizing disruptions and safety risks for society.
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Samenvatting

Van Synthetische Voertuigbelastingobservaties tot Brugkritikaliteit en Verder.

Voertuigladingonderzoek is cruciaal voor het beoordelen van de betrouwbaarheid van
bestaande weg infrastructuur, gezien de potentiële bedreigingen die extreme verkeersladin-
gen met zich meebrengen, waaronder risico’s voor wegtransportoperaties en de integriteit
van verhardingen en bruggen. De meest betrouwbare bron voor het verzamelen van uitge-
breide voertuigladingsinformatie is Weigh-in-Motion (WIM) technologie. WIM-systemen
spelen een belangrijke rol bij het verzamelen van gegevens over voertuigladingen, indivi-
duele asladingen, voertuigtypen en asaantallen, en zijn van groot belang in de techniek
voor het ontwerp van nieuwe bruggen en de betrouwbaarheidsevaluatie van bestaande
structuren. De inherente hoge kosten die gepaard gaan met WIM-systemen hebben echter
hun adoptie beperkt, waardoor veel regio’s afhankelijk zijn van minder geavanceerde
verkeersmeters (LSTC). De nadelen van dergelijke alternatieven, waaronder onnauwkeu-
rige astelling tijdens hoge vrachtwagenvolumes en de afwezigheid van voertuigweging,
moeten in overweging worden genomen bij het beoordelen van de betrouwbaarheid van
weg infrastructuur op netwerkniveau.

Een van de eerste stappen in de betrouwbaarheidsevaluatie van weg infrastructuur
op netwerkniveau is de identificatie van kritieke locaties binnen het netwerk. Dit houdt
bijvoorbeeld in dat kritieke weglocaties worden geïdentificeerd vanwege extreme bruto
voertuiggewichten en kritieke bruglocaties vanwege extreme laadeffecten. Het doel is om
optimale bruginterventieprogramma’s te genereren rekening houdend met deze prestatie-
indicatoren om kosten te minimaliseren. Daarom wordt, in gevallen waarin WIM-gegevens
niet beschikbaar zijn (of beperkt), de berekening van synthetische WIM-waarnemingen
cruciaal. Synthetische WIM-waarnemingen moeten de statistische kenmerken (inclusief
afhankelijkheden) van echte verkeersgegevens benaderen.

Na de inleidende sectie van deze dissertatie bespreekt het tweede hoofdstuk een me-
thodologie voor het genereren van probabilistische modellen die het gewicht en de lengte
van verschillende zware voertuigtypen beschrijven. Door WIM-metingen uit Nederland en
Brazilië te analyseren, presenteert het tweede hoofdstuk een set van op Gaussian Copula
gebaseerde Bayesian Networks (GCBN’s). Het primaire doel is om eenWIM-gegevensmodel
te construeren dat specifiek gericht is op zware voertuigen (totaal gewicht van meer dan 34
kN) met behulp van gegevens van de bestudeerde WIM-stations. Het geconstrueerde model
genereert statistisch representatieve synthetische gegevens van de primaire variabelen in
een WIM-dataset, waaronder voertuigtype, bruto voertuiggewicht, individuele asladingen,
totale voertuiglengte en inter-asafstanden. Om de bruikbaarheid te verbeteren, is er een
grafische gebruikersinterface ontwikkeld voor WIM-locaties op Nederlandse snelwegen,
en is er een grote update uitgevoerd op bestaande MATLAB-software om GCBN’s te kwan-
tificeren. De gedemonstreerde methodologie blijkt breed toepasbaar en verbetert eerdere
resultaten door de generatie van inter-asafstandswaarnemingen mogelijk te maken, meer-
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dere gegevensbronnen in het modelleringsproces te integreren en software te bieden voor
onderzoekers en praktijkmensen die geïnteresseerd zijn in het genereren van synthetische
waarnemingen op basis van voertuigtypeverdeling.

Het derde hoofdstuk verkent het gebruik van gevarenkaarten voor het pinpointen van
kritieke locaties die verband houden met extreme voertuiglaadevenementen, een cruciaal
aspect bij het evalueren van de betrouwbaarheid van weg infrastructuur. Dit hoofdstuk
erkent de toenemende druk op wegsystemen als gevolg van verouderde snelwegen en
het stijgende percentage vrachtwagens dat de wettelijke gewichtslimieten overschrijdt.
Zoals eerder vermeld, is de inzet van WIM-systemen beperkt, waardoor wegbeheerders
vaak gebruikmaken van LSTC’s. Deze systemen hebben echter niet de capaciteit om de
asladingen van voertuigen te meten, wat de introductie van een methodologie noodza-
kelijk maakt die LSTC-gegevens gebruikt om asladingen te schatten en extreme bruto
voertuiggewichten in kaart te brengen. Een casestudy die zich richt op de belangrijkste
snelwegen in Mexico toont de haalbaarheid van deze aanpak aan, waarbij de afwezigheid
van WIM-stations wordt gecompenseerd door gegevens van een netwerk van 1.777 tel-
stations en oorsprong-bestemmingsonderzoeken. De studie maakt gebruik van GCBN’s
om synthetische locatie-specifieke asladingen te genereren, waardoor de berekening van
bruto voertuiggewichten voor geselecteerde terugkeertijdsperioden mogelijk wordt ge-
maakt met behulp van extreme waarde-analyse (EVA) en de identificatie van gevaarlijke
locaties vergemakkelijkt. Meer dan 180 miljoen zware voertuigen werden gesimuleerd, en
vanwege het aantal benodigde simulaties werd er een volledig open-source softwaretool
ontwikkeld, gebaseerd op Python, om GCBN’s te kwantificeren. Deze ontwikkeling is
voortgekomen uit een grote update van een eerder geïmplementeerde gesloten-source
versie van de software. Deze bevindingen, aangevuld met een interactieve webkaart en
grafische gebruikersinterface, leggen de basis voor onderhoudsstrategieën voor bestaande
wegen en bruggen.

Het vierde hoofdstuk benadrukt de belangrijke rol van brugstructuren in het transport-
systeem van een land, beheerd via Bridge Management Systems (BMS). Ondanks de con-
ventionele vier-module structuur van BMS, opereren veel landen met enkelvoudige-module
BMS’en die zich voornamelijk richten op voorraadbeheer. Deze beperking belemmert hun
vermogen om beslissingen te nemen over het risico en de betrouwbaarheid van de brug-
genvoorraad. Het gebrek aan structurele beoordelingen voor talrijke bruggen onderstreept
de noodzaak voor een holistische herbeoordeling van het netwerk.

De effecten van verkeerslading op bruggen, vooral extreme laadeffecten (ELE’s), zijn
cruciaal voor de veiligheid en betrouwbaarheid van infrastructuur. Echter, er ontstaan
uitdagingen bij het bestuderen van verkeersladingseffecten op netwerkschaal door de
afwezigheid van WIM-systemen op veel locaties en onvoldoende gedetailleerde brugin-
ventarisinformatie. In reactie hierop introduceren we een methodologie om extreme
laadeffecten als gevolg van zwaar verkeer in kaart te brengen en te schatten. Door gebruik
te maken van GCBN’s maakt de methodologie de simulatie van locatie-specifieke verkeers-
omstandigheden mogelijk, wat inzicht biedt in de interacties van zware voertuigen. De
integratie van extreme waarde-theorie verbetert de nauwkeurigheid van het schatten van
extreme laadeffecten, wat zorgt voor een uitgebreide beoordeling van de kritikaliteit van
bruggen op netwerkniveau. Bovendien toont de casestudy met het nationale brugnetwerk
van Mexico, bestaande uit 576 structuren, de praktische toepassing van de methodologie
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aan, waarbij de effectiviteit in het identificeren van bruggen die inspectie nodig hebben op
basis van beperkte beschikbare informatie wordt belicht. De aanpasbaarheid en eenvoud
van de methodologie maken het een waardevol hulpmiddel voor landen die werken met
enkelvoudige-module BMS’en, en bieden een pad voor meer geïnformeerde en prioritaire
onderhoudsstrategieën voor hun bruginfrastructuur.

Brugnetwerken ondervinden degradatie door veroudering, zware verkeersladingen
en natuurrampen, wat risico’s met zich meebrengt voor de servicekwaliteit en veiligheid.
Effectief brugbeheer met beperkte financiering vereist objectieve beoordelingen voor de
optimale benutting van verouderende bruggen. Onderhoud, reparatie-interventies en
strategische planning kunnen de beschikbaarheid van infrastructuur verbeteren terwijl
de kosten worden geminimaliseerd. Eerdere studies benadrukken de noodzaak om zowel
directe als indirecte kosten die verband houden met transportonderbrekingen in optimale
planning in overweging te nemen, aangezien vertragingen voor reizigers tijdens brugslui-
tingen kosten kunnen veroorzaken die hoger zijn dan die van de brugreparatie zelf. Het
integreren van prestatie-indicatoren van individuele bruggen op netwerkniveau verbetert
de algehele prestaties van het brugensysteem, wat de traditionele planning op basis van
structurele beoordelingen overstijgt.

Het vijfde hoofdstuk introduceert een methodologie voor het optimaliseren van onder-
houds en reparatieactiviteiten in brugnetwerken, waarbij zowel centrale als niet centrale
interventies in overweging worden genomen. Deze integratieve optimalisatiebenadering
voor meerdere systemen en belanghebbenden beschouwt bruggen als componenten van
een transportsysteem en pakt de extra kosten aan die voortvloeien uit de onderlinge effec-
ten van interventies op individuele bruggen binnen het netwerk. De formulering houdt
rekening met veroudering, budgetbeperkingen en de tijd tussen interventies, en breidt
bestaande kaders uit door reparatie-interventies op te nemen. Bovendien maakt de metho-
dologie de opname van verschillende prestatie-indicatoren voor brugprioritering mogelijk.
De betaalbare rekentijd van het wiskundige programma maakt praktische toepasbaarheid
mogelijk voor portefeuilles met een groot aantal bruggen. De methodologie biedt prakti-
sche richtlijnen voor het schatten van zowel directe als indirecte kosten, waardoor het een
waardevol hulpmiddel is voor het efficiënt plannen van interventies binnen uitgebreide
brugnetwerken.

Deze thesis richt zich op het verbeteren van de betrouwbaarheidsschattingen van brug-
gen op netwerkniveau door vier belangrijke onderwerpen aan te pakken die effectief de
afhankelijkheid tussen verkeersladingvariabelen modelleren. Het doel is om de besluitvor-
ming in brugbeheerstrategieën te ondersteunen, met name in regio’s waar WIM-gegevens
beperkt zijn en een enkelvoudige-module BMS mogelijk tekortschiet in het detecteren van
kritieke locaties buiten visuele inspecties. De voorgestelde aanpak pleit voor geavanceerde
tools die gebruikmaken van probabilistisch gebaseerde betrouwbaarheidmethodologieën,
waardoor de formulering van strategische actieplannen mogelijk wordt die gericht zijn op
het behoud van de structurele integriteit van wegbruggen, en daarmee verstoringen en
veiligheidsrisico’s voor de samenleving minimaliseren.
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Introduction

This thesis explores the properties of Gaussian copula-based Bayesian networks (GCBNs),
extreme value analysis (EVA), and optimization techniques. By focusing on their application
in traffic load analysis to estimate bridge reliability at the network level, particularly in bridge
networks where traffic data is limited. GCBNs are graphical models that represent multivariate
probability distributions. This thesis utilizes GCBNs to model crucial variables for bridge
reliability analysis, such as axle loads and inter-axle distances of heavy vehicles. To enhance
the reliability analysis of bridges, the EVA approach is used for accurately predicting extreme
load effects induced by axle loads of heavy vehicles. The reliability of a bridge is a key indicator
of its structural integrity and safety. Consequently, integrating this key indicator into optimal
budget allocation at a bridge network level will enhance the development of more effective
scheduling for bridge maintenance and repair activities. As a case study, this thesis focuses
on the Mexican bridge network comprising 576 bridges situated along the toll-free fifteen
major highway corridors. These corridors extend over approximately 20000 kilometres and
accommodate more than 55% of the country’s highway traffic flow.

1.1 Motivation
The backbone of any country’s transportation system is its national highway networks.
These networks are essential to ensure the mobility of people and goods, supporting
international trade links [1, 2]. Nevertheless, road infrastructure is under increasing
pressure. On one hand, a large part of the highway infrastructure is outdated, which means
that many of the roads and their assets need to be repaired or replaced. On the other hand,
the percentage of trucks that exceed the maximum legal weight is increasing.

One of the most critical components within highway networks is their inventory of
bridge structures. When bridges are not used or maintained properly, disruptions occur in
the traffic network. These disruptions create stress within the network, leading to increased
travel costs and potential economic losses [3]. Globally, bridge infrastructure is ageing. In
the American continent, bridge inventories indicate that the majority were constructed
between 1960 and 1980 [4, 5]. Similarly, in Europe, most bridges were built between 1970
and 2001 [6]. Past structural design deficiencies, structural deterioration, and increasing
traffic volume reveal the need for a structural reassessment of the entire bridge network



1

2 1 Introduction

infrastructure to address ageing concerns. The need becomes evident when considering
the impact of non-operational bridges on the entire network. Therefore, a system-level
analysis is crucial, taking into account both the direct costs and the indirect costs associated
with unavailability.

Effectively monitoring vehicle loads within the road network is necessary to maintain
the condition of its critical assets. Truck overloading has become a common phenomenon
worldwide, especially in developing countries [7–10]. Overloaded vehicles introduce un-
certainty and raise safety concerns for road infrastructure [11–13]. According to [14], the
1,000-year gross vehicle weight (GVW) can be used to determine the so-called “aggressive-
ness” of traffic for bridges. By examining extreme GVWs of numerous sites and applying
Bayesian updating techniques, the posterior distribution of extreme GVWs for lightly traf-
ficked sites can be obtained [15]. With this information, extreme vehicles can be modelled
addressing the challenge of their typically having very few records [16]. Therefore, it is
important to identify hazardous road locations, which are sites where there is potential for
infrastructure damage due to extremely overloaded vehicles. These are locations where
the extreme values of GVWs are higher than the GWs of standard trucks. Additionally,
identifying bridge locations where the extreme values of load effects surpass those obtained
with the design live loads is essential. This identification process serves as an aid for
ensuring the safety and reliability of the entire network.

Identification and mapping of hazardous locations is the initial phase for the develop-
ment and implementation of maintenance strategies. The utilization of hazard location
maps allows for the visual identification of changes and patterns within the overall in-
frastructure system. These types of maps have been used widely and recently in the field
of reliability engineering as a tool for emergency management and mitigation planning
purposes (see [17–19] for example). In transport engineering, hazard maps have been
employed to present various aspects, such as optimal evacuation paths on the road network
during toxic gas leak incidents [20], welfare loss as a measure of road network perfor-
mance [21], rainfall-induced flooding to plan road closures ahead of heavy precipitation
events [22] and management and prevention of landslides disaster risk for regional roads
[23]. Regarding overload vehicles, maps have been used as a tool for investigating fatigue
resulting from truck overloading [24], heavy vehicle traffic volume prediction [25], and
analysis of oversize-overweight truck routes[26] to name a few.

With the previous ideas in mind, it becomes clear that one of the most important
elements of transport network reliability analysis is the traffic loads. The most reliable
source of information for describing traffic characteristics is the data collected by Weigh-In-
Motion (WIM) systems. WIM is a technology that allows measuring vehicle attributes while
the vehicle is travelling at full highway speed. Hence, significant amounts of data such as
axle loads, vehicle type, and inter-axle distance are collected. Consequently, WIM systems
are widely used around the world. For instance, countries such as Slovenia, Ireland, and
England, operate 216 WIM sites installed in their national road networks [27]. However,
when information regarding individual traffic loads is scarce or not available, computer
simulations have become the most prominent approach to estimating them.

Implementing probabilistic-based assessment methods for traffic loads at the network
level, considering the dependence structure of the traffic data is important. This holds the
potential to enhance the reliability analysis of road infrastructure by estimating perfor-
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mance indicators and developing optimal bridge management strategies. This perspective
is particularly relevant for regions or bridge networks where WIM systems are not the
primary source of traffic data. The highways of Mexico, particularly the major highway
corridors, provide an example of the challenges faced due to the lack of WIM systems. The
primary issue in this context is the overloading of vehicles, which significantly increases
the deterioration of road and bridge infrastructure. Without WIM systems to monitor the
current gross vehicle weights and axle loads, it becomes difficult to assess the effects of
these loads on the bridges within the network. This lack of information reduces the ability
to manage the maintenance and repair interventions effectively, as the effects caused by
heavy loads are not accurately taken into account. Bridge managers now acknowledge
that effective planning should consider performance indicators and user costs associated
with transport disruptions of other bridges due to spatial proximity, and not solely rely on
budget availability [28]. Such improvements have the potential to reduce societal impact
and lead to more efficient investments in road infrastructure.

1.2 Knowledge gaps
The following paragraphs discuss the knowledge gaps associated with the development
and application of more accurate assessment methods for hazard identification due to
traffic loads in road infrastructure where WIM data is limited. The thesis focuses on four
main aspects, i.e., (a) synthetic WIM data generation, (b) mapping extreme gross vehicle
weights, (c) extreme bridge loading caused by traffic loads, and (d) optimal bridge portfolio
intervention scheduling.

Regarding the computation of synthetic WIM data, to achieve accurate simulations of
WIM observations, it is important to model the statistical correlations between variables.
While previous studies have utilized methods such as empirical factors, linear correlations,
and copulas for this purpose (see[29], [30], [31], [32] for example), they have primarily
focused on axle loads or fixed inter-axle distances, overlooking the broader context by
grouping vehicles with similar characteristics and not taking into account all the different
types of vehicles in the database. This suggests a knowledge gap in adequately addressing
the statistical correlations among variables in WIM data, especially when considering the
diverse range of vehicle types.

Accurately estimating and mapping traffic loads, particularly extreme gross vehicle
weights (EGVW), requires measuring individual axle loads, often achieved through WIM
systems. However, permanentWIM stations incur substantial costs, making it economically
unfeasible to deploy the required number of stations to cover the entire road network.
To address this challenge, many countries employ origin-destination surveys and less-
sophisticated traffic counters (LSTC), such as manual counting or pneumatic road tubes,
for cost-effective insights into road usage and traffic patterns [33, 34].

Generally, LSTCs do not provide data regarding individual axle loads [35, 36] unless
static weighing is used, in which trucks usually have to make a time-consuming stop
on a scale at a weigh station, and inspections are carried out [37]. Due to the logistical
difficulties of static weighing, only a small amount of data is usually collected. While
numerous studies and techniques have focused on data generation and collection, the
mapping of extreme traffic loads using information obtained from LSTCs remains limited.
Hence, there is a need for a framework for estimating and mapping site-specific traffic
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loads in locations where WIM data is scarce or not available.
Extensive research has been conducted on modeling extreme bridge loading caused

by traffic loads, with studies such as those by [38–41]. However, the majority of prior
work is based on the assumption of having complete traffic data from WIM systems and
comprehensive information on bridge geometry and material properties. Additionally,
these studies often focus on individual bridges or small sets of bridges with different span
lengths. While such studies serve as a foundation for calibrating bridge design codes,
estimating characteristic values for the load effects of an entire bridge network is often
impractical [38].

This gives rise to two main challenges when investigating the extreme load effects
(ELE) of traffic loads on bridges at a network scale. First, in many locations, the use of WIM
systems is not viable due to their high costs. Second, bridge inventories commonly lack
detailed information on the geometric and material properties of bridges. These challenges
underscore the necessity of addressing the knowledge gap in comprehensive methodologies
for assessing the impact of traffic loads on bridges at the network level, whose outcomes
are capable of presenting condensed information such as maps. To the best of the authors’
knowledge, there is a lack of scientific literature concerning interactive, publicly available
maps that depict EGVWs, ELEs, or performance indicators related to load effects in bridge
networks. Such maps could significantly aid in the decision-making process regarding the
development of maintenance and repair interventions for bridge networks.

Research has demonstrated that incorporating performance measures from each in-
dividual bridge into optimal budget allocation algorithms for bridge portfolio intervention
scheduling can significantly enhance the overall performance of bridge systems [42]. For
effective intervention programs, it is clear that optimal planning should consider both
the direct and user costs associated with transport disruptions, rather than solely budget
availability [28]. Furthermore, at a network level, a significant number of bridge structures
need to be analyzed, making it infeasible to re-analyze each bridge on an annual basis.
Consequently, systems that continuously monitor bridge conditions are established to
plan interventions based on structural ratings and prioritization indexes, which justify the
funding of conservation actions [43].

Numerous studies have shown how to allocate maintenance resources for a group
of bridges or individual bridges in a transportation network (see for example, [44], [45]
and [46]). However, existing studies often overlook the interconnected effects of bridge
interventions on individual bridges within a network, particularly in terms of their spatial
proximity. This highlights the need to develop comprehensive and computationally efficient
methodologies for optimizing bridge intervention scheduling. Such methodologies should
take into account bridge performance indicators, direct costs associated with bridges, user
costs, and the additional costs incurred by interventions on neighbouring bridges within
the network system.

1.3 Research Aim andQuestions
This thesis aims to improve the reliability estimates of bridges at a network level by
quantifying site-specific extreme values of traffic loads. It examines the extreme effects
of these loads, such as bending moments and shear forces, on the bridges. The goal is to
enhance the development of optimal bridge intervention strategies, particularly in locations
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where traffic load information is limited. This aim is reflected in the main research question:

How can enhance bridge reliability estimates by integrating probabilistic quantification of
traffic data to provide site-specific traffic load extremes to aid the development of effective

intervention strategies?

The main question is analyzed with four key research questions, which are addressed
in various chapters.

1. How to generate synthetic traffic data taking into account the appropriate statistical
dependence of axle loads and inter-axle distances of real observations? (Chapter 2)

2. How to identify the road locations with the highest extreme values of gross vehicle
weights using data from origin-destination surveys and less-sophisticated traffic
counters? (Chapter 3)

3. How to identify bridges where the extreme values of the load effects associated with
the actual loads exceed those obtained with the design live loads when traffic data
and bridge information are limited? (Chapter 4)

4. How to develop an optimal maintenance and repair program for bridge networks
based on critical interventions and performance indicators? (Chapter 5)

1.4 Scope and outline
This section briefly describes the methods used for the different chapters of the research.
Figure 1.1 outlines the general structure of the thesis, encompassing four research topics,
aligned with the four research questions:

(i) Generate synthetic data statistically representative of the real heavy vehicles obser-
vations.

(ii) Identify road hazardous locations due to extreme gross vehicle weights.

(iii) Estimate bridge criticality as a performance indicator of the impact of traffic loads.

(iv) Optimal intervention program for bridge networks based on performance indicators
considering direct and indirect costs.

After this introduction, Chapter 2, research topic (i), introduces the main definitions
and concepts of GCBNs used in this thesis, together with a methodology for simulating site-
specific synthetic axle loads of heavy vehicles using GCBNs to address Research Question
1. Chapter 3, research topic (ii), introduces the case study and addresses Research Question
2 by proposing a five-step methodology to identify hazardous locations due to gross vehicle
weights (GVW) using GCBNs and EVA to estimate extreme GVWs. While Chapter 2 uses
Weigh-In-Motion (WIM) observations for model development and validation, Chapter 3
applies this methodology to the case study where WIM systems are not the primary source
of traffic data.
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In Chapter 4, research topic (iii), a methodology is presented to evaluate bridge criticality
as a load effect performance indicator, assessing how a structure responds to in-service
traffic loads compared to its response under the design live load model provided by the
bridge owner, addressing Research Question 3.

The final research question is answered in Chapter 5, research topic (iv), where a
methodology for optimizing maintenance and repair intervention scheduling is proposed,
considering bridges as integral components of a transportation system. This takes into
account factors such as deterioration, budget constraints, the time between two consecutive
interventions, and the load effect performance indicator.

Finally, in Chapter 6, the main conclusions are presented, and recommendations for
future research are provided.

Research topics

Introduction

Conclusion

(i) Generate synthetic data statistically 

representative of the real heavy vehicles 

observations.

(iii) Estimate bridge criticality as 

performance indicators for traffic 

load effects.

(ii) Identify road hazardous 

locations due to extreme gross 

vehicle weights.

(iv) Optimal intervention program for bridge 

networks based on performance indicators 

considering direct and indirect costs.

Figure 1.1: General outline of this thesis. Each research topic is related to one of the research questions and
chapters.

1.5 Contribution
The main contribution of this thesis is that it provides an integral study of the in-service
traffic loads and their effects on bridges, along with a bridge budget allocation program for
maintenance and repair interventions in a network-level context. All the methodologies
provided herein are adaptable and can be implemented in any bridge network. They uti-
lize probabilistic quantification of traffic data obtained through less sophisticated traffic
information techniques than WIM systems. This is particularly valuable in locations where
data is limited. By employing these methods, bridge reliability estimates are improved,
contributing to the development of a more robust bridge management system. Further-
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more, this research compiled, analysed and produced the largest dataset of extreme gross
vehicle weights, extreme traffic load effects (bending moments and shear forces) on bridges,
and bridge performance indicators resulting from traffic loads for Mexico’s fifteen major
highway corridors.

Chapter 2 presents an improved methodology for computing synthetic WIM observa-
tions of heavy vehicles through GCBNs. The model accurately simulates the dependence
structure of empirical data and can be applied at any WIM location, providing site-specific
synthetic WIM records and site-specific vehicle types.

Chapter 3 offers an accurate estimation of site-specific characteristic loads that can
assist in identifying hazardous locations. This is especially useful when WIM data is
unavailable but common traffic counters data is available. The methodology presented in
Chapter 4 presents various advantageous attributes, including the capability to identify
bridges that require more detailed inspections based on their condition as assessed by the
methodology. It offers a simple conceptualization that is easy to apply and only requires
basic information regarding traffic and bridge characteristics. This research provides the
first comprehensive spatial analysis and the largest dataset of extreme gross vehicle weights
and extreme traffic load effects in bridges of the studied road network.

Chapter 5 provides a novel methodology for optimizing intervention scheduling that
considers bridges as components of a transportation system, addressing a significant gap
by considering the interconnected effects of interventions on individual bridges within the
network system. Furthermore, it provides practical guidance for estimating both direct
and indirect costs through the analysis of an actual bridge network. This can be applied
in conjunction with various bridge ranking systems that rely on performance indicators,
including condition state and traffic load effects criticality. This makes it a valuable tool
for efficiently planning interventions within extensive bridge networks.

Lastly, an open-source implementation based on Python programming language of
a closed-source programming and numeric computing platform (MATLAB) toolbox to
quantify, visualize, and validate GCBNs has been developed including new features [47].
Simultaneously, the MATLAB toolbox [48] has received significant updates to enhance its
functionality.
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Gaussian Copula-based
Bayesian Networks for

modelling Weigh-in-Motion
System Data

Weigh-in-motion (WIM) systems help to collect data such as vehicular loads, individual
axle loads, vehicle type, and the number of axles. This is relevant in engineering because
traffic load performs an essential function in the design of new bridges and in the reliability
assessment of existing ones. Therefore, when WIM data is not available, computing synthetic
WIM observations that adequately approximate the statistical dependence between variables
is important. This chapter presents a methodology to generate statistical models to describe
the weight and length of different vehicle types. WIM measurements from the Netherlands and
Brazil were analyzed, and a set of Gaussian Copula-based Bayesian Networks is presented.
Significant improvements have been made by allowing the generation of observations of inter-
axial distance, permitting the use of several sources of data in modelling, and making software
available to researchers and practitioners interested in generating synthetic observations based
on the distribution of vehicle types. This chapter shows that the methodology here presented is
widely applicable and depends only on the assessment of vehicle type configuration.

Parts of this chapter have been published verbatim in Mendoza-Lugo, M. A., Morales-Nápoles, O., & Delgado-
Hernández, D. J. (2022). A Non-parametric Bayesian Network for multivariate probabilistic modelling of Weigh-
in-Motion System Data. Transportation Research Interdisciplinary Perspectives, 13, 100552. doi: https://doi.org/
10.1016/j.trip.2022.100552 andMendoza-Lugo, M. A., & Morales-Nápoles, O. (2023). Version 1.3-BANSHEE; A
MATLAB toolbox for Non-Parametric Bayesian Networks. SoftwareX, 23. doi: https://doi.org/10.1016/j.softx.2023.
101479

https://doi.org/10.1016/j.trip.2022.100552
https://doi.org/10.1016/j.trip.2022.100552
https://doi.org/10.1016/j.softx.2023.101479
https://doi.org/10.1016/j.softx.2023.101479
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2.1 Introduction
Vehicle load investigation is essential for the reliability assessment of existing road in-
frastructure because the exceedance of legal weight limits may cause serious threats to
road transport operations and road infrastructure. For example, by increasing the risk
of deterioration of pavements and bridges. One approach for describing the traffic flow
characteristics is data gathered through WIM systems.

Applications of the data gathered by the Weigh-in-Motion system include reliability
assessment of bridges, pavements and, monitoring of overloaded traffic. Consequently,
WIM systems are widely used around the world. However, WIM systems are expensive in
terms of initial capital costs and life cycle maintenance costs. As a result, a large number of
countries or regions around the world do not operate any WIM system at present. They are
mostly using common techniques such as pneumatic road tubes, some disadvantages of this
technique include inaccurate axle counting when truck volumes are high and the absence of
vehicle weighing [29]. Therefore, computing good artificial WIM data modelling statistical
correlations between the variables is relevant in road infrastructure safety assessment
because an accurate model enhances the reliability estimation.

The aim of the research in this chapter is to construct a WIM data model of heavy
vehicles (total weight above 34 kN) from data obtained in the available WIM stations.
In order to generate synthetic data statistically representative of the real observations.
The model is constructed using a Bayesian network (BN) type previously identified in
literature as the Non-parametric Bayesian network (NPBN). For clarity, it is now denoted
it as Gaussian copula-based Bayesian network (GCBN) in reference to its underlying theory.
Unlike previous studies, the model provides data that describes all the main variables of
a WIM data set i.e. vehicle type, gross vehicle weight, individual axle loads, total vehicle
length, and inter-axle distances. Furthermore, to make use of the model more convenient, a
graphical user interface (GUI) of the Dutch available highway WIM locations is developed.

In Section 2.2, the main definitions and concepts of GCBNs used in the work are pre-
sented. In Section 2.3, the framework for generating synthetic WIM data is presented.
Observations of six Dutch WIM locations by clustering the vehicle types by vehicle con-
figuration are used. Section 2.5 present the main results and the validation of the GCBN
models. Next, in Section 2.6, two case studies of the framework are presented: an GCBN
quantified with WIM observations collected in Rotterdam city in the Netherlands by classi-
fying vehicle types according to the number of axles, and an GCBN quantified with data
collected in Araranguá city in Brazil by clustering vehicle types by classification WIM
codes. As will be seen later, the validation of the methodology is performed with the Dutch
case (Section 2.3.1) while the cases in Section 2.6 are presented as examples of the use
of the methodology. Section 2.7 presents the developed GUI together with one possible
application of the model when WIM data is not available. Finally, the conclusions are
drawn in Section 2.8.

2.2 Gaussian Copula-based Bayesian Networks
When modelling multivariate probability distributions, Bayesian Networks (BNs) are con-
sidered effective tools [49]. BNs are directed acyclic graphs (DAG), consisting of nodes and
arcs. The nodes of BNs represent random variables and the arcs represent the probabilistic
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relations between these variables [50]. A BN encodes the probability density or mass func-
tion on a set of variables 𝑿 = {𝑋1, ...,𝑋𝑛} by specifying a set of conditional independence
statements in the DAG associated with a set of conditional probability functions [51]. A
major overview of applications of BNs may be found in [52], [53] and [54].

One type of BN which has the advantage of managing hundreds of variables in a rapid
manner is the Gaussian copula-based Bayesian Network (GCBN)1. The GCBN methodology
proposes a technique for dealing with any one-dimensional marginal distribution (as long
as it is invertible) while inducing the dependence structure given by the DAG of the BN
using one parameter copulas for which zero correlation entails independence [55]. The
theory of GCBNs introduced in [56] is based around bivariate copulas. Distributions are
assigned to the nodes and one (conditional) parameter copulas to the arcs of the DAG [57].
Copulas are a class of bivariate distributions whose marginals are uniform [58]. The copula
of two continuous random variables 𝑋𝑖 and 𝑋𝑗 with 𝑖 ≠ 𝑗 is the function 𝐶 such that their
joint distribution can be written according to equation (2.1) [51]. For one parameter copula
families, the vector of parameters 𝜽 in equation (2.1) provides a relationship between the
copula and measures of association namely rank correlation (𝑟) which assess the strength
of the monotonic relationship between variables.

𝐹𝑋𝑖 ,𝑋𝑗 (𝑋𝑖,𝑋𝑗 ) = 𝐶𝜃 [𝐹𝑋𝑖(𝑋𝑖), 𝐹𝑋𝑗 (𝑋𝑗 )] (2.1)

In an GCBN, different bivariate copulas parameterized by rank correlation so that zero
correlation implies independence, can in principle be used for different arcs. For large
models, the usage of the Gaussian copula grants computational advantages. In fact, this
is the main advantage of the choice of Gaussian copulas in our framework. In [59] the
authors have provided evidence for accepting the Gaussian copula as a valid underlying
model for WIM data when compared with the Gumbel and Clayton copulas. As will be
seen later in Section 2.5, the choice of the Gaussian copula still renders valid results for
applications of the proposed model. Hence, to simplify and reduce the joint distribution
sampling, the Gaussian copula is assumed. The Gaussian copula, with 𝜌 as a parameter, is
given by equation (2.2). Where Φ𝜌 is the bivariate standard normal cumulative distribution
function with product-moment correlation 𝜌 and Φ−1 the inverse of the one dimensional
(1D) standard normal distribution function. A correlation equal to 0 implies independence
for the Gaussian copula.

𝐶𝜌(𝑢,𝑣) = Φ𝜌[Φ−1(𝑢),Φ−1(𝑣)]; (𝑢,𝑣) ∈ [0,1]2 (2.2)

The dependence measure of interest is the conditional rank correlation due to its
relationship with conditional copulas. The conditional rank correlations of 𝑋𝑖 and 𝑋𝑗 given
𝑋𝑘 = 𝑥𝑘 , ...,𝑋𝑧 = 𝑥𝑧 are [51]:

𝑟(𝑋𝑖,𝑋𝑗 ∣ 𝑋𝑘 = 𝑥𝑘 , ...,𝑋𝑧 = 𝑥𝑧) = 𝑟(𝑋𝑖,𝑋𝑗 ) (2.3)

where 𝑋𝑖 and 𝑋𝑗 have the conditional distribution of 𝑋𝑖,𝑋𝑗 ∣ 𝑋𝑘 = 𝑥𝑘 , ...,𝑋𝑧 = 𝑥𝑧 . Mathemat-
ical details can be found in [60].
1In previous literature, Gaussian copula-based Bayesian Networks are sometimes referred to as “non-parametric"
Bayesian networks (NPBN). This study uses however sometimes parametric one-dimensional margins and hence
the name “Gaussian copula-based Bayesian Network" is used.
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The relationship between the parameter 𝜌 and the Gaussian copula correlation 𝑟 is
given by equation (2.4) [61]. Partial correlations can be computed from correlations with
the recursive equation (2.5) [62]. Partial correlations are equal to conditional correlations
for the joint normal distribution. To compute the correlation matrix of the standard normal
transformation of X by using equation (2.5) and the conditional independence statements
of the BN. Rank correlation could be converted to partial correlations with equation (2.4).

𝜌(𝑋,𝑌 ) = 2𝑠𝑖𝑛(
𝜋
6
𝑟(𝑋,𝑌 )) (2.4)

𝜌1,2;3,...,𝑚 =
𝜌1,2;4,...,𝑚−(𝜌1,3;4,...,𝑚)(𝜌2,3;4,...,𝑚)√

(1−𝜌21,3;4,...,𝑚)(1−𝜌22,3;4,...,𝑚)
(2.5)

In an GCBN, the immediate precursor of a node 𝑋𝑖 are called parents denoted by
𝑝𝑎(𝑋𝑖). For each variable 𝑋𝑖 with 𝑚-parents, 𝑋1 = 𝑝𝑎1(𝑋𝑖), ...,𝑋𝑘 = 𝑝𝑎𝑚(𝑋𝑖), associate the
arc 𝑝𝑎𝑗 (𝑋𝑖)→ 𝑋𝑖 with the rank correlation. The assignment is empty if 𝑝𝑎(𝑋𝑖) = ∅.

𝑟[𝑋𝑖,𝑝𝑎𝑗 (𝑋𝑖)], 𝑗 = 1
𝑟[𝑋𝑖,𝑝𝑎𝑗 (𝑋𝑖)|𝑝𝑎1(𝑋𝑖), ...,𝑝𝑎𝑗−1(𝑋𝑖)], 𝑗 = 2, ...,𝑚

(2.6)

In general, [55] show that given: i) a DAG with𝑚 nodes specifying conditional indepen-
dence relationships in an GCBN; ii) 𝑚 random variables 𝑋1, ...,𝑋𝑚, assigned to the nodes,
with invertible distribution functions 𝐹1, ..., 𝐹𝑚; iii) the (non-unique) specification Equa-
tion (2.6) of conditional rank correlations on the arcs of the GCBN; iv) a copula realizing all
correlations ∈ (−1,1) for which correlation 0 entails independence; the joint distribution of
the 𝑚 variables is uniquely determined. The joint distribution satisfies the characteristic
factorization Equation (2.7) and the conditional rank correlations in Equation (2.6) are
algebraically independent.

𝑓 (𝑋𝑖, ...,𝑋𝑚) =
𝑛

∏
𝑖=1

𝑓𝑋𝑖 |𝑝𝑎(𝑋𝑖) (2.7)

The following criteria are established in order to read conditional independence state-
ments of the graph: i) 𝑋1 is not marginally independent of 𝑋3 (𝑋1 ̸⟂ 𝑋3) i.e. 𝑋1⃝→ 𝑋2⃝→ 𝑋3⃝,
ii) 𝑋1 and 𝑋3 are conditionally independent given 𝑋2 (𝑋1 ⟂ 𝑋3 ∣ 𝑋2) i.e. 𝑋1⃝← 𝑋2⃝→ 𝑋3⃝ and
iii) 𝑋1 and 𝑋3 are not conditionally independent given 𝑋2 (𝑋1 ̸⟂ 𝑋3 ∣ 𝑋2) i.e 𝑋1⃝→ 𝑋2⃝← 𝑋3⃝.
In [49, 60] more details and a complete discussion of the semantics of a BN is presented.

In order to find a given conditional distribution, the conditional distribution on the
standard normal transformation of X is calculated. Then, by using the inverse distribution
function of each one-dimensional margin, themargins are transformed back to their original
units. For a complete treatment of the GCBN framework, the reader is referred to [55]
and references therein. Now that the concepts of the GCBN used in this work have been
introduced, the steps for building the network of interest will be presented.

2.3 Framework for generating synthetic WIM data
In this section, the methodology to generate synthetic WIM data through Gaussian Copula-
based Bayesian Networks is presented. Figure 3.1 shows the whole framework divided into
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four categories: WIM data, One-dimensional marginal distributions, dependence structure
and GCBN output and validation.

A time period of 
WIM data is 

obtained
Filters are applied to the data Vehicle types are created 

One-dimensional distributions 
are fitted

The dependence structure of the 
WIM data is modeled with a GCBN 

 Samples are are generated by 
the GCBN.

Filters are applied to the  
generated data 

The outcome is compared  to the 
WIM data by means of test statistics

WIM data

1-D marginal distributions 
and dependece model

GCBN output and 
validation

Figure 2.1: Framework for building the GCBN and generating WIM samples.

First, a period ofWIM observations is obtained. The data collected throughWIM system
includes the type of vehicle, road and direction, vehicle length [cm], gross vehicle weight
[kN], one observation per axle load [kN], distance from vehicle front to first axle [cm],
and one observation per inter-axle distance [cm]. Filters are applied to the data in order to
detect and exclude unreasonable measurements or possible errors of the WIM system’s
vehicle classification algorithm. Then, vehicle types are created either by clustering vehicles
based on the number of axles, body configuration (trailer, semi-trailer, bus, single unit,
etc.) or vehicle classification according to the classification code of the WIM system (this
will be further discussed in section 2.3.1). A one-dimensional probability distribution is
fitted for each axle load and inter-axle distance of the created vehicle types (section 2.3.2).
Next, the dependence structure of the WIM data is modelled through a GCBN in which
the nodes represent the individual axle loads and individual inter-axle distances and the
arcs represent probabilistic dependence between connected nodes (section 2.3.3). Once the
model has been adequately quantified, a sample of a size similar to the WIM observations
in the analysed period is generated by the model. Then, filters are applied to the samples to
leave out non-heavy vehicles and unreasonable values. Finally, the outcome is compared
statistically with respect to the WIM data (section 2.5). Each step within the framework is
detailed next.

2.3.1 Weigh In Motion data
According to [63], a measurement period of about one month outside public holidays in
the Netherlands is representative of the traffic load distribution in highways. Thus, WIM
data corresponding to April 2013 for three Dutch locations in both the right (-R) and the
left (-L) driving directions, were used. The measurements were taken in highways A12 (km
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42) Woerden, A15 (km 92) Gorinchem and A16 (km 41) Gravendeel. Thus, in this chapter,
when referring for example to data from the A15 in the right direction is written as A15-R
and similarly for all other data sources.

The number of observations available ranged from 124347 in the A15-L to 220840 in
the A16-L. Moreover, previous research shows that WIM observations have a number of
incorrect measurements [64],[65], [66]. In this chapter, twenty seven filter criteria were
applied as presented in Table A.1.1, described in [27] and [67]. Furthermore, Table 2.1
shows an overview of the number of WIM registrations that were removed based on the
filtering criteria.

Table 2.1: Percentage of filtered vehicles.

A12-L A12-R A15-L A15-R A16-L A16-R
Vehicles in the database 165373 161589 124449 124789 220920 203598
Vehicles after filter criteria 161519 152537 120216 121179 215530 199751
% of filtered vehicles 2,3% 5,6% 3,4% 2,9% 2,4% 1,9%

Once the filtering procedure is completed, a total of 264 different vehicle codes were
observed in the April 2013 WIM data with five main body configurations: Buses (B),
Tractor—Semitrailer—Trailer (R), Tractor—Semitrailer (T), Single-unit multi-axle vehicle
and/or Single unit multi-axle vehicle—Semitrailer (V) and Others vehicles (O). Figure A.1.1
shows an overview of the vehicle codes observed in the WIM measurements. The codes
used in the WIM system consist of letters and digits that define the sequence of axle groups.
For example, a seven axle vehicle with the configuration Tractor—Semitrailer with one
axle at the front of the cabin and two at the rear and the rear semitrailer with a quad is
coded as T12O4. Notice that the letter O in the T12O4 code represents the semitrailer
unit (oplegger in Dutch). Because of the database size, it is not feasible to investigate the
complete configuration of axle loads for each vehicle. Therefore, 26 vehicle types were
created. These are presented in Table 2.2, grouped per vehicle configuration and number
of axles. Letters represent the vehicle configuration and digits correspond to the number
of axles. The complete table with all vehicle categories in the WIM system is presented in
Table A.1.2. It may be observed that in the data corresponding to the A12-L highway all
vehicle types are present. However, for the other data sets, two categories were excluded.
This is the case of category O6 (according to the notation in the second column of Table 2.2),
for data sets A12-R, A16-L, and A16-L and category O11 for data sets A15-L, A15-R, and
A16-R. Also, the resulting filtered data does not include vehicles with more than eleven
axles.

2.3.2 One-dimensional marginal distributions for individual
axle load

Once the data are filtered and the vehicle types are created, for each axle load, a one-
dimensional marginal distribution is approximated with a Gaussian Mixture (GM) [68].
Gaussian Mixture distribution has been used in previous studies [32, 69, 70] because of
its ability to approximate multi-modal distributions. These are typical for individual axle
loads in WIM data. A GM is a weighted sum of 𝐺 Gaussian densities (each one referred to
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Table 2.2: Created vehicle types from most observed WIM observations.

Vehicle (𝑖) Type No. Axles (𝑛𝑖) Code
1 B2 2 B11
2 B3 3 B111 B12
3 O3 3 O3
4 O4 4 O4
5 O5 5 O5
6 O6 6 O6
7 O8 8 O8
8 O9 9 O9
9 O10 10 O:
10 O11 11 O>
11 R5 5 R11111
12 R6 6 R111111 R11112 R11211 R1122
13 R7 7 R111121 R11113 R11221 R1123 R1222
14 R8 8 R112121 R12221 R1223
15 R9 9 R121221
16 T3 3 T11O1
17 T4 4 T11O4 T11O11 T12O1
18 T5 5 T11O3 T11O21 T11O111 T12O2 T12O11 T21O11
19 T6 6 T11O4 T11O1111 T12O3 T12O21 T12O111
20 T7 7 T12O4 T12O1111
21 V2 2 V11
22 V3 3 V11A1 V12 V21 V111
23 V4 4 V11A2 V11A11 V13 V22 V211 V1111
24 V5 5 V11A12 V12A2 V12A11
25 V6 6 V12A12 V22A2 V22V11
26 V7 7 V22A12

as a component) expressed as follows:

𝑓 (𝑥) =
𝐺
∑
𝑔=1

𝜋𝑔𝜙(𝑥 ∣ 𝜇𝑔 ,𝜎𝑔) (2.8)

where 𝑔 = 1, ...𝐺, ∑𝑔 𝜋𝑔 = 1 are the mixture weights and 𝜙(𝑥 ∣ 𝜇𝑔 ,𝜎𝑔) are components
of Gaussian densities with parameters 𝜇𝑔 and 𝜎𝑔 .

The expectation maximization (EM) algorithm [71] is used to fit the Gaussian Mixtures
to the individual axle load data per vehicle type. The relative goodness-of-fit Akaike infor-
mation criterion (AIC) [72] is used to choose the best-fitting Gaussian mixture distribution
that describes individual axle loads per vehicle type. The AIC score rewards models with
high log-likelihood while accounting for the number of parameters to prevent over-fitting.
The model with the lower AIC score is expected to have a balance between its ability to fit
the data and avoid over-fitting. As a result, the number of components of the fitted distri-
butions ranged from four to seven. As observed in [67], by adding more components, the
tail of the fitted distribution function is increasingly dominated by individual observations
in the tail of the distribution which would result in an overestimation of individual axle
loads. A total of 837 distributions were fitted for all locations. As an example, Figure 2.2
shows the fitted GM distribution function for the vehicle type B3 in highway A15-L, and
its parameters are presented in Table 2.3.

Although fitting a GM distribution to axle loads is an appropriate approach, this is not
the case for the inter-axle distances because, differently to axle loads, there are a finite
number of or vehicle lengths according to vehicle category. Therefore, for each inter-axle
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Figure 2.2: Gaussian mixture of 4 components fitted distribution function for vehicle type B3 in highway A15-L:
(a) Axle 1 load [kN]; (b) Axle 2 load [kN]; (c) Axle 3 load [kN].

Table 2.3: Gaussian mixture components for vehicle type B3 in highway A15-L.

Axle 1 load [kN] Axle 2 load [kN] Axle 3 load [kN]
Component 𝜇 𝜎 𝜋 Component 𝜇 𝜎 𝜋 Component 𝜇 𝜎 𝜋

1 52.40 5.89 0.506 1 98.67 8.52 0.400 1 51.25 15.47 0.197
2 66.13 16.76 0.115 2 70.51 2.92 0.074 2 42.08 5.90 0.358
3 68.37 7.01 0.347 3 82.98 3.92 0.260 3 50.66 7.67 0.441
4 39.79 12.26 0.032 4 95.89 21.78 0.266 4 99.61 2.45 0.003
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distance and vehicle length, the empirical cumulative distribution function (ECDF) is used,
defined as:

𝐹𝑛(𝑥) =
1

𝑁 +1

𝑁
∑
𝑖=1

𝐈 {𝑋𝑖 ≤ 𝑥} (2.9)

where 𝐈 is the indicator function, namely 𝐈 {𝑋𝑖 ≤ 𝑥} is one if 𝑋𝑖 ≤ 𝑥 and zero otherwise.
Now that the data to be used in our framework and the one-dimensional marginal distribu-
tions have been described, the characterization of probabilistic dependence is presented.

2.3.3 Dependence
After the one-dimensional marginal distributions for the random variables were selected,
the dependence structure of the WIM observations was modelled with a Gaussian copula-
based Bayesian Network. A total of 26 submodels, that correspond to each vehicle type
are built from each of the six WIM databases. Let 𝑖 = {1,2,3, ...,26} be a set of indices
corresponding to the 26 vehicle types, previously presented in Table 2.2, and 𝑛 a set whose
elements represent the number of axles of each vehicle type (see Table 2.2). 𝑋𝑖,𝑗 denotes
the random variable representing the 𝑗 𝑡ℎ axle load. Notice that 𝑗 = {1, ..., 𝑛𝑖} according to
the 𝑖𝑡ℎ vehicle type. 𝑋𝑖,𝑛𝑖+1 denotes total vehicle length. Inter-axle distance per vehicle type
𝑖 is denoted as 𝑋𝑖,𝑛𝑖+1+𝑗 . The first inter-axle distance per vehicle type 𝑋𝑖,𝑛𝑖+2 corresponds to
the distance between the front of the vehicle and the first axle. Our data does not report
the distance between the last axle and the end of the vehicle and hence it is not modelled.

Notice that the model assumes that within axle load and inter-axle distance nodes
𝑋𝑖,𝑗 ⟂ 𝑋𝑖,𝑗−2|𝑋𝑖,𝑗−1 for ∀𝑗 , where 𝐴 ⟂ 𝐵|𝐶 means that A and B are conditionally independent
given C. This assumption indicates, for example, that for a particular intermediate axle
(or intermediate inter-axle distance), if the values of the loads (or distances) of two axles
adjacent to it were known, knowing the value of any other axle load (or inter-axle distance)
not adjacent to it would not update the distribution of the particular intermediate axle load
(or inter-axle distance).

The gross vehicle weight per vehicle type (𝐺𝑉𝑊𝑖) is given by Equation (2.10). The
total vehicle length of the vehicle type 𝑖 is 𝐿𝑖 = 𝑋𝑖,𝑛𝑖+1. Notice that 𝐺𝑉𝑊𝑖 and 𝐿𝑖 are
deterministic functions of vehicle type 𝑖. For example, if 𝑖 = 2 (vehicle type B3 according
to Table 2.2), then the gross vehicle weight of B3 is the sum of its individual axle loads,
i.e. 𝑊2 = 𝑋2,1+𝑋2,2+𝑋2,3 and its total length is 𝐿2 = 𝑋2,4. Therefore, 𝐺𝑉𝑊 is the random
variable representing vehicle weight regardless of vehicle type. The distribution of gross
vehicle weight is often used when investigating bridge reliability for certain elements of the
bridge. Similarly, as for 𝐺𝑉𝑊 , 𝐿 is a random variable representing vehicle length regardless
of the vehicle type. If the distance between the last axle and the end of the vehicle were to
be required, this could be computed per vehicle type as: 𝑋𝑖,𝑛𝑖+1 −∑𝑖𝑋𝑖,𝑛𝑖+1+𝑗 .

𝐺𝑉𝑊𝑖 =
𝑛𝑖
∑
𝑗=1

𝑋𝑖,𝑗 (2.10)

As an example, a representation of the GCBN for highway A15-L is shown in Figure 2.3.
In this case, 𝑖 = {1,2,3, ...,25}. The model consists of 301 nodes and 436 arcs. The arcs
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represent correlations between axle loads, between axle loads and total vehicle length, and
between inter axle distance per vehicle type.
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Figure 2.3: BN model for A15-L highway of the WIM system in the Netherlands. The left side of the network
represents the 𝑋𝑖,𝑗 axle loads. The right side represents the vehicle length 𝑋𝑖,𝑛𝑖+1 and the inter-axle distances
𝑋𝑖,𝑛𝑖+1+𝑗 .

The unconditional rank correlations 𝑟(𝑋𝑖,𝑗 ,𝑋𝑖,𝑗−1), for all 𝑖 and for 𝑗 > 1, between
individual axle loads and inter-axle distances per vehicle type for the GCBN A15-L model
can be found in Tables A.2.1 and A.2.2. Notice that the correlation of the last axle load
(𝑋𝑖,𝑛𝑖 ) to total vehicle length (𝑋𝑖,𝑛𝑖+1 ) is also presented. No clear pattern regarding its size or
direction is observed across vehicle types. For example, as can be seen in Table A.2.1, the
correlation ranges between (roughly) -0.3 and 0.79. A possible reason for this dependence
is the design length of the vehicle according to its purpose. For example, longer vehicles
might be able to carry heavier loads in the last axle which could explain a correlation as
high as 0.79. As mentioned earlier this pattern is not clear across vehicle types. Further
investigation of this dependence could be a way to improve the model here presented. The
corresponding conditional rank correlations matrices between the random variables, as
colour maps, for the six WIM locations can be found in Figures A.2.1 to A.2.3.

In order to implement the GCBN model, a significant update to the MATLAB toolbox
BANSHEE [73] has been developed and is presented in the following section.

2.4 Version 1.3 - BANSHEE
This update (v1.3) to BANSHEE introduces a major new functionality and additional
features [48]. The original software BANSHEE [73] was released in 2020 and comprised
five functions:

(I) bn_rankcorr

(II) bn_visualize

(III) cv_statistics

(IV) gaussian_distance
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(V) inference

These functions allow for quantifying the BN, validating the underlying assumptions of
themodel, visualizing the network and its corresponding rank correlationmatrix, and finally
making inferences with a BN based on existing or new evidence. In Version 1.3 of BANSHEE,
function (III) has beenmodfied tomake the t copula available. Function (IV) allows for choos-
ing different sample sizes for the validation. Function (V) has been modified to allow users
to freely define a one-dimensional parametric distribution function for each node in the BN.
Notice that by default non-parametric (empirical) marginal distributions are assigned to the
nodes. Additionally, three new functions are available: (VI) generate_samples, (VII)
sample_based_conditioning and (VIII) conditional_margins_plot. Function
(VI) allows to explicitly increase the number of unconditional samples of the BN. Function
(VII) allows conditionalizing nodes on intervals. Function (VIII) allows visualizing the
comparison between unconditional and conditional histograms of the BN samples when a
non-parametric BN model is used. On the other hand, when a parametric model is used,
function (VIII) shows the cumulative distribution functions plots comparison between
unconditional and conditional nodes. Figure 2.4 depicts BANSHEE’s new structure. For
more detailed information on previous functions, the reader is referred to the original
paper [73] and to the BANSHEE v1.3 documentation.

BANSHEE

(II)

bn_visualize

(I)

bn_rankcorr
(III) 

cvm_statistics

(IV) 

gaussian_distance

(V)

inference

(VI)

generate_samples

(VIII)

conditional_margins_plot

(VII)

sample_based_conditioning

Figure 2.4: Functions (I) to (V) correspond to the main functions of the previous release v1.X. Changes were
made in functions (III) to (V) (boxes filled in light-blue). Functions (VI), (VII), and (VIII) (boxes filled in light-grey)
correspond to the newly added functions.

The BANSHEE documentation (quick start guide) has been updated, which is now
available at https://github.com/mike-mendoza/matlab_banshee. The documentation in-
cludes a user guide with examples and how to use the functions available. BANSHEE v1.3
comprises two major changes compared to BANSHEE 1.X: (1) It is possible to quantify fully
parametric BNs. The user can employ one-dimensional parametric distribution function
for each node in the BN and user-defined (un)conditional rank correlations for the edges
and (2) Three new functionalities have been added. These major changes, while retaining
the original software functionality, make BANSHEE more robust and versatile overall.

After the detailing of three categories of the framework and the software developed, in
the successive section, the results and validation of the GCBN will be presented.

https://github.com/mike-mendoza/matlab_banshee
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2.5 Results
2.5.1 Model output
The output of the model is a data set, similar to the WIM measurements, with 26 columns.
The first column corresponds to vehicle type according to the notation in the second column
of Table 2.2. The second corresponds to gross vehicle weight (𝐺𝑉𝑊 ) in kN. Columns 3 to
13 to individual axle loads (𝐴) in kN. The 14th column to total vehicle length (𝐿) in m, the
15th to the distance from vehicle front to the first axle (𝐷1) in m, and columns 16 to 25 to
individual inter-axle distance in m, i.e. distance from axle 1 to axle 2 (𝐷2), distance from
axle 2 to axle 3 (𝐷3) and so on. Not a number (NaN) strings are placed in fields where no
data is computed. An example of the output table is presented in Tables 2.4 and 2.5. Note
that the gross vehicle weight is the sum of the individual axle load observations.

Table 2.4: BN model data set output (1st to 13th column).

Type GVW A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
V5 303.97 64.74 93.89 48.20 43.53 53.60 NaN NaN NaN NaN NaN NaN
T4 222.66 58.27 59.71 51.35 53.33 NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
T3 176.42 59.62 51.29 65.51 NaN NaN NaN NaN NaN NaN NaN NaN
T6 283.02 58.14 57.4 50.20 35.99 43.29 38.01 NaN NaN NaN NaN NaN

Table 2.5: Table 2.4 (continued,14th to last column).

L D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
18.95 1.73 5.21 1.37 6.51 1.42 NaN NaN NaN NaN NaN NaN
13.19 12.80 30.40 52.20 1.44 NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ...

16.77 20.40 43.50 68.30 NaN NaN NaN NaN NaN NaN NaN NaN
17.16 16.80 32.10 14.10 5.96 1.36 1.39 NaN NaN NaN NaN NaN

2.5.2 Validation
To validate the model, one month period of random samples per WIM location were
generated from the corresponding GCBNmodel. As an example, the observed and simulated
𝑊 and 𝐿 for the A15-L highway (165000 random samples) are presented in Figure 2.5.
Selected test statistics, the Nash–Sutcliffe model Efficiency Coefficient (NSE) [74] and the
Mean Absolute Error (MAE) [75] are summarised in Table 2.6. The NSE takes values in
(−∞,1], where 1 indicates a perfect fit while the MAE takes values within [0,∞), where
zero indicates a perfect fit.

To graphically assess if the generated synthetic data represent the real WIM obser-
vations the scatter plot presented in Figure 2.5 is used. The scatter plot was created by
plotting the sorted WIM observations against the sorted synthetic observations for a single
simulation. If both datasets are the same, one would expect to see the points lying in a
straight line. As can be seen, Figure 2.5a shows that the model slightly underestimates
𝐺𝑉𝑊 (for this particular realization) in the interval between 900 kN and 1100 kN and
Figure 2.5b shows a slight overestimation of 𝐿 in the interval between 12 m to 17 m. In
general, as expected, for axle loads, more deviations with respect to the original data are
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observed in the tail of the distribution of 𝐺𝑉𝑊 . Nevertheless, the model provides an overall
good fit for the data. This can also be observed in the results of Table 2.6, where the values
of NSE and MAE for 𝐺𝑉𝑊 and 𝐿 are close to 1 and 0 respectively. For example, for the
A15-L highway, the NSE and MAE values for 𝐺𝑉𝑊 are 0.99 and 0.46 respectively, while for
𝐿 the corresponding values are 0.96 and 0.35.
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Figure 2.5: Comparison of Gross Vehicle Weight (a) and Total Vehicle Length (b) through a one-month period of
observed and simulated data

Table 2.6: Test statistics of the model for different WIM locations in The Netherlands.

Highway Gross vehicle weight Total Vehicle Length
NSE MAE NSE MAE

A12-L 0.99 0.30 0.98 0.24
A12-R 0.99 0.37 0.98 0.25
A15-L 0.99 0.46 0.96 0.35
A15-R 0.99 0.48 0.97 0.30
A16-L 0.99 0.25 0.97 0.26
A16-R 0.99 0.32 0.97 0.25

Additionally, Figure 2.6 and Figure 2.7 shows the correlation matrix plot of axle loads
and inter-axle distances for both, the observed and simulated data. The figures show the
results of the most observed vehicle type (T5) at the A15-L highway. Notice that, the
correlations of the simulated data between each axle load and the correlation between
each inter-axle distance differ slightly compared to the WIM data. This means that the
GCBN model, under the assumption of the normal copula, correctly approximates the
dependence structure of the empirical data. Furthermore, Figure 2.8 shows the exceedance
probability plots comparison of the observed and simulated variables, gross vehicle weight,
and total vehicle length at the A15-L. As can be seen in Figure 2.8, the synthetic data
shows similar behaviour as the observed data at the tail of the distributions. Figures A.2.4
to A.2.6 show the same comparison plots for the other locations under study. Notice
that this corresponds to a single realization of our GCBN. Perfect agreement between the
observed data and every simulation is neither expected nor desired. Rather, approximating
the general traffic configuration is the aim of the model especially for later use in the
investigation of infrastructure reliability.



2

22 2 Gaussian Copula-based Bayesian Networks for modelling Weigh-in-Motion System Data

A15-L

-4 -2 0 2 4
A5   

-4 -2 0 2 4
A4   

-4 -2 0 2 4
A3   

-4 -2 0 2 4
A2   

-4 -2 0 2 4
A1   

-4
-2
0
2
4

A
5 

  

-4
-2
0
2
4

A
4 

  

-4
-2
0
2
4

A
3 

  

-4
-2
0
2
4

A
2 

  

-4
-2
0
2
4

A
1 

  

0.77 0.69 0.69 0.69

0.77 0.82 0.83 0.82

0.69 0.82 0.99 0.97

0.69 0.83 0.99 0.98

0.69 0.82 0.97 0.98

(a)

A15-L

-4 -2 0 2 4
A5   

-4 -2 0 2 4
A4   

-4 -2 0 2 4
A3   

-4 -2 0 2 4
A2   

-4 -2 0 2 4
A1   

-4
-2
0
2
4

A
5 

  

-4
-2
0
2
4

A
4 

  

-4
-2
0
2
4

A
3 

  

-4
-2
0
2
4

A
2 

  

-4
-2
0
2
4

A
1 

  

0.75 0.62 0.61 0.59

0.75 0.81 0.80 0.78

0.62 0.81 0.98 0.96

0.61 0.80 0.98 0.98

0.59 0.78 0.96 0.98

(b)

Figure 2.6: Comparison between axle loads generated by the GCBN model and the WIM data of the T5 vehicle
type in highway A15-L: (a) Correlation matrix for the empirical data standard transformed; (b) Correlation matrix
for the synthetic data standard transformed
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Figure 2.7: Comparison between inter axle distances generated by the GCBN model and the WIM data of the T5
vehicle type in highway A15-L: (a) Correlation matrix for the empirical data standard transformed; (b) Correlation
matrix for the synthetic data standard transformed



2.5 Results

2

23

0 200 400 600 800 1000 1200

GVW [kN]

10-6

10-4

10-2

100

P(
X

 >
 x

)
A15-L

Observed
Simulated

(a)

5 10 15 20 25 30

L [m]

10-6

10-4

10-2

100

P(
X

 >
 x

)

A15-L

Observed
Simulated

(b)

Figure 2.8: Exceedance probability plots comparison between variables of interest (𝑊 and 𝐿) generated by the
GCBN model and the WIM data in highway A15-L: (a) Gross vehicle weight distribution [kN] for original data and
data generated with GCBN model. (b) Total vehicle length distribution [m] for original data and data generated
with GCBN model.

Diverse engineering applications are often interested in determining the extreme ob-
servations of the phenomena. Thus, accurate synthetic data should be able to approximate
them. Table 2.7 shows the load corresponding to the heaviest (Max 𝐺𝑉𝑊 ) and longest
vehicles (Max 𝐿) in the original data. It shows their corresponding exceedance probability
and the value observed in one simulation of the GCBN for the same probability of ex-
ceedance 𝑃(𝑋 > 𝑥) = 1−𝑃(𝑋 ≤ 𝑥). This is shown for the six locations under investigation.
For example, the heaviest vehicle observed at A15-L has a total weight of 1085.89 kN with
a probability of exceedance of 𝑃(𝑋 > 𝑥) ≈ 8.52𝐸−06 (as can be seen in Figure 2.8a). The
gross vehicle weight in the simulation with a probability of exceedance of 8.52𝐸−06 has
a 𝐺𝑉𝑊 of 1067.94 kN. This means that the difference between observed and simulated
Max 𝐺𝑉𝑊 at A15-L is around 1.62%. Similarly, the longest vehicle observed at A15-L has a
𝐿 = 27.58 m with 𝑃(𝑋 > 𝑥) ≈ 8.52𝐸−06 (see Figure 2.8b). The total vehicle length in the
simulation with a probability of exceedance of 8.52𝐸−06 has a 𝐿 = 27.57 m. The resulting
difference between observed and simulated Max 𝐿 at A15-L is around 0.4%. According to
Table 2.7, highway A12-R has the biggest difference for Max 𝑊 and Max 𝐿 with 2.59% and
3.58%, respectively. The smallest difference can be found in highway A16-R with 0.06% for
Max 𝐺𝑉𝑊 and 0.88% for Max 𝐿. Overall, the differences between the estimations from the
observed and simulated data are minor for all study locations. This shows that the perfor-
mance of the method and GCBN models can be considered effective. In order to further
investigate model validity a split-sample analysis is performed. Appendix A.2 presents a
comparison between synthetic data generated by the model quantified with the training
data set (80%) and the observations of the test data set (20%). This is a commonly used
split fraction in traffic analysis (see [76–78], for example). The observations correspond
to the A16-R highway. From these results, it is clear that the performance of the model is
in agreement with the results of the GCBN model quantified with the unsplit data set. In
order to profit from all data available, further, all our analysis is performed with models
quantified with the full data set.
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Next, to show the adaptability of the framework, two case studies are presented in
Section 2.6: (i) a GCBN quantified using data of a Dutch city road by classifying vehicle
types according to the number of axles, and (ii) a GCBN using data of a Brazilian highway,
classifying vehicle types according to the automatically generated WIM vehicle codes.

Table 2.7: Comparison of the simulated heaviest and largest vehicles.

highway 𝑃(𝑋 > 𝑥) Observed Simulated Difference % Observed Simulated Difference %Max GVW [kN] Max GVW [kN] Max L [m] Max L [m]
A12-L 6.19E-06 1080.50 1090.01 0.88 29.62 29.05 1.92
A12-R 6.54E-06 1096.87 1068.43 2.59 29.36 28.31 3.58
A15-L 8.52E-06 1085.50 1067.94 1.62 27.58 27.57 0.04
A15-R 8.34E-06 1085.89 1075.20 0.98 29.11 28.93 0.62
A16-L 4.67E-06 1016.26 1007.44 0.87 28.36 28.26 0.35
A16-R 5.03E-06 1044.21 1044.80 0.06 27.23 27.47 0.88

2.6 Case studies
2.6.1 GCBN from Rotterdam city WIM data
One WIM station in the municipality of Rotterdam (South Holland, The Netherlands) is
considered for this case study. The WIM system was located in the bridge Beukelsbrug in
the S115 city route. The observations correspond to May 2013. In total, 14 different heavy
vehicle codes were observed in the S115 WIM data set. The WIM recorded vehicle codes
are only numbers that define the sequence of axle groups. These codes differ from the
ones found in the WIM system of the Dutch highways described in Section 2.3.1. Hence, a
similar classification as the one presented in Table 2.2 is not possible.

Moreover, Figure 2.9 shows a comparison of the exceedance probability plots of 𝐺𝑉𝑊
and 𝐿 between the Dutch WIM locations (A16-L with the lowest heavier 𝐺𝑉𝑊 observation
and A12-R with the highest heavier 𝐺𝑉𝑊 measurement) and the S115 location. As can be
seen in Figure 2.9, as expected, heavier and longer vehicles circulate on the Dutch highways
compared to those circulating on regional roads. Consequently, the GCBN purposed in
Section 2.3.2 does not meet the requirements to compute similar S115 city route WIM
observations. Hence as a consequence, a new model has to be quantified with data from
Rotterdam. By modifying the vehicle classification and then applying the framework
described in Section 2.3, the synthetic WIM data can be generated. For this case study,
vehicle types were created grouping them by the number of axles. Therefore, four vehicle
types were generated as presented in Table 2.8.

Table 2.8: Created vehicle types WIM vehicle codes grouped by number of axles.

Vehicle (𝑖) Type No. Axles (𝑛𝑖) Codes
1 2 axles vehicle 2 2 11
2 3 axles vehicle 3 12 21 111
3 4 axles vehicle 4 22 31 211 1111
4 5 axles vehicle 5 212 221 311 1211 2111

A total of 14 Gaussian Mixtures (9 Gaussian mixtures of 4 components, 3 GM of 5
components and 2 GM of 6 components) were fitted to the axle loads choosing the best
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Figure 2.9: Exceedance probability plots of: (a) Gross vehicle weight [kN] and (b) Total vehicle length [m] for the
locations: A12-R, A16-R, and S115.

fit according to the AIC criterion. Figure 2.10 shows the GCBN model for the S115 WIM
location with 𝑖 = {1,2, ...4}. The DAG consists of 34 nodes and 46 arcs. A random sample
with a size similar to the WIM observations was generated from the GCBN model. The
comparison between the S115 location WIM data and that generated by the model is
presented in Figure 2.11. The figure was generated with 6000 samples. As can be seen, the
Figure 2.11a shows that the model slightly underestimates 𝐺𝑉𝑊 in the interval between
400 kN to 600 kN. In Figure 2.11b no important deviations are presented. Overall, the model
approximates well the measured gross vehicle weight and total vehicle length.

X
1,1

X
1,2

X
1,3

X
1,4

X
1,5

X
2,1

X
2,2

X
2,3

X
2,4

X
2,5

X
2,6

X
2,7

X
3,1

X
3,2

X
3,3

X
3,4

X
3,5

X
3,6

X
3,7

X
3,8

X
3,9

X
4,1

X
4,2

X
4,3

X
4,4

X
4,5

X
4,6

X
4,7

X
4,8

X
4,9

X
4,10

X
4,11

LGVW

Figure 2.10: GCBN model for S115 road WIM location. The left side of the network represents the 𝑋𝑖,𝑗 axle loads.
The right side represents the vehicle length 𝑋𝑖,𝑛𝑖+1 and the inter axle distances 𝑋𝑖,𝑛𝑖+1+𝑗 .

2.6.2 GCBN from Araranguá, Brazil WIM data
For this case study, WIM data provided by the Transport and Logistics Laboratory (Lab-
Trans) of the Santa Catarina Federal University (UFSC for its acronym in Portuguese) is
analysed using the automatically determined WIM codes to assign vehicle types. The data
was gathered at the Federal Highway route BR-101 km 418, located in the city of Araranguá
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Figure 2.11: Comparison between variables of interest generated by the GCBN model and the WIM data in S115
location: (a) Gross vehicle weight distribution [kN] for original data and data generated with the GCBN model,
(b) Total vehicle length distribution [m] for original data and data generated with the GCBN model.

in the South of Brazil. The measurements were taken in April 2014. The data set has a total
of 66820 vehicles with gross vehicle weight above 34 kN.

Following the framework for generating WIM synthetic data, described in Section 2.3,
the WIM database is analyzed. About 6.2% of the observations were excluded and 45
different classification codes were found with vehicles from 2 up to 8 axles. The codes
were automatically determined by the WIM system according to the Brazilian National
Department of Transport Infrastructure (DNIT for its acronym in Portuguese) [79]. As
stated in [79], the numbers in the code correspond to the number of axles and the letters
to vehicle classification. To name a few: C is a Tractor—Trailer, S a Tractor—Semitrailer,
and I is a Trailer—Semitrailer with an inter-axle distance of more than 2.4 m. Letter D
corresponds to a tandem (group of 2 axles), T to a tridem (group of 3 axles), and Q to a
quad (group of 4 axles). For example, a 2C2 vehicle represents a Tractor with 2 axles plus a
2 axles Trailer. The 45 classification codes (or vehicle types) are presented in Table 2.9.

Table 2.9: Registered vehicle classification codes in the WIM data set of BR-101 highway. April 2014.

Vehicle(𝑖) Type No. Axles(𝑛𝑖) Vehicle(𝑖) Type No. Axles(𝑛𝑖) Vehicle(𝑖) Type No. Axles(𝑛𝑖)
1 2C 2 16 3C 3 31 3S2 5
2 2C2 4 17 3C2 5 32 3S3 6
3 2CB 2 18 3C3 6 33 3T4 7
4 2D4 6 19 3D4 7 34 3V5 8
5 2DL 4 20 3DB 3 35 4C 4
6 2I1 5 21 3DL 5 36 4CD 4
7 2I2 4 22 3I1 6 37 4DB 4
8 2I3 5 23 3I2 5 38 4DT 7
9 2LD 5 24 3I3 6 39 4R2 6
10 2N3 5 25 3JD 6 40 Unknown 3 axles 3
11 2N4 6 26 3LD 6 41 Unknown 4 axles 4
12 2S1 3 27 3N3 6 42 Unknown 5 axles 5
13 2S2 4 28 3P5 8 43 Unknown 6 axles 6
14 2S3 5 29 3QD 7 44 Unknown 7 axles 7
15 3BC 3 30 3S1 4 45 Unknown 8 axles 8

A total of 230 Gaussian Mixtures were fitted to one-dimensional axle loads choosing the
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best fit according to the AIC criterion. Next, the dependence structure can be constructed.
Figure 2.12 shows the GCBNmodel for the BR-101 highwaywith 𝑖= {1,2, ...45}. The network
consists of 507 nodes and 735 arcs. Finally, a random sample with a size similar to the WIM
observations was generated from the GCBN model. The comparison between the BR-101
WIM data and that generated by the BN model is presented in Figure 2.13. The figure was
generated with 71000 samples as described in Section 2.3.3.
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Figure 2.12: GCBN model for the 45 vehicle types of the WIM system in BR-101 highway located in Araranguá,
Brazil. The left side of the network represents the 𝑋𝑖,𝑗 axle loads. The right side represents the vehicle length
𝑋𝑖,𝑛𝑖+1 and the inter-axle distances 𝑋𝑖,𝑛𝑖+1+𝑗 .
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Figure 2.13: Comparison between variables of interest generated by the GCBN model and the WIM data in BR-101
highway: (a) Gross vehicle weight distribution [kN] for original data and data generated with the GCBN model;
(b) Total vehicle length distribution [m] for original data and data generated with the GCBN model.

As can be seen in Figure 2.13a, the exceedance probability computed with synthetic
observations shows a deviation in the interval of 750 kN to 850 kN with respect to the
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one computed with WIM measurements. Nevertheless, the model still approximates the
maximum values of the empirical distribution. The computed values for 𝐿 are quite similar
to the observed ones (see Figure 2.13b). As has been noted, in this case, the methodology
for computing synthetic WIM observations also approximates the data. The results are
consistent for all studiedWIM locations. In the following section, a Graphical User Interface
(GUI) for the six Dutch WIM highway locations will be presented. The GUI illustrates a
possible use of the model when WIM data is not available. The GUI is used to compute
synthetic WIM observations using data collected through (for example) traffic counters as
input.

2.7 Graphical User Interface application
When WIM data is not available due to the scarcity or absence of proper equipment, the
most utilized devices to collect traffic data are the pneumatic road tubes. The change in
air pressure within the tube is measured as the vehicle’s wheels pass over the tube [35].
Pneumatic road tubes are mainly used for vehicle classifications, estimation of average
daily traffic and estimation of direction of travel. Consequently, information regarding
axle loads and inter-axle distances can not be collected. Therefore, to have an insight into
possible axle loads and axle inter-distances the GCBN described in Section 2.3 with data
obtained from pneumatic road tubes as input, i.e. vehicle classification and proportion of
vehicle types, can be used.

A simple stand-alone Graphical User Interface (GUI) of the six Dutch highways WIM
locations model described in Sections 2.3.1 to 2.3.3 has been developed. Notice that no
fitting or goodness of fit procedures are implemented in the GUI. Rather, the results from
the fitting and goodness-of-fit procedures, BANSHEE v1.3, and the created vehicle types
introduced in Section 2.3.2 are the core of the GUI engine. To exemplify the use of the GUI,
a speculative example is presented. Using data from pneumatic road tubes gathered in
the low-speed lane of the Paseo Tollocan Avenue (Mexican federal highway 15) located
in the city of Toluca Mexico. The data was obtained in the last week of August 2014. The
information was provided by the Autonomous University of the State of Mexico (UAEMex).
Table 2.10 shows the number of observed vehicles per vehicle type according to the vehicle
classification of the Ministry of Communications and Transport (SCT for its acronym in
Spanish) of Mexico [80]. Table 2.10 shows also the GCBN equivalent vehicle types (matched
with the Mexican types according to their body configuration) and the proportions of the
registered vehicles by the pneumatic road tubes.

Now, it is possible to enter the information in Table 2.10 into the GUI (see Figure 2.14) to
compute the axle loads and inter-axle distances together with gross vehicle weight and total
vehicle length. Thus, the information obtained by the pneumatic road tubes is extended.
It is noted that the matched SCT and WIM GCBN vehicle types shown in Table 2.10 may
not precisely mirror reality, given the substantial variations in truck populations across
different nations. However, we employ this approach purely for illustrative purposes, using
the matched types as examples to show the GUI’s functionality.

The output of the GUI are histograms (Figure 2.15a) and exceedance cumulative plots
(Figure 2.15b) of 𝐺𝑉𝑊 and 𝐿. Additionally, the computed observations can be stored in
a comma-separated value (CSV) file. For this example, to compute the observations, the
so-called “Hypothetical highway" which is the mixture of the six available highways in
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Table 2.10: Selected corresponding vehicle types.

SCT WIM GCBN No. Vehicles Proportion
B2 B2 11041 0.68000
C2 V2 3576 0.22020
C3 V3 887 0.05462
C4 V4 2 0.00012
T2S2 T4 7 0.00043
T3S2 T5 523 0.03220
T3S3 T6 184 0.01133
T2S1R2 R5 2 0.00012
T2S2R2 R6 10 0.00062
T3S2R2 R7 3 0.00018
O9 O9 5 0.00031
Total 16240 1

the GUI is used. This means that each computed observation comes from one randomly
selected GCBN Dutch highway model. A quick user guide for the GCBN WIM graphical
user interface can be found in A.3.

Figure 2.14: GUI Main window

As can be seen in Figure 2.15, the maximum 𝐺𝑉𝑊 is around 600 kN and the maximum 𝐿
is approximately 25m. The most frequent vehicles are the ones with 100 kN to 150 kN and
those with a total length of 11m to 12.5m. Which correspond to Buses (B2) and single-unit
two-axle vehicles (V2) representing around 90% of the total observed vehicles.
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(a) (b)

Figure 2.15: GCBN WIM GUI output: (a) 𝐺𝑉𝑊 and 𝐿 histograms. (b) 𝐺𝑉𝑊 and 𝐿 exceedance probability plots.

2.8 Conclusions
An improved methodology to compute synthetic WIM observations of heavy vehicles
through GCBNs has been presented. The model provides data that describes: vehicle type,
gross vehicle weight, individual axle loads, total vehicle length, and inter-axle distances. In
total eight high dimensional GCBNs with up to 507 nodes and 735 arcs were quantified.
The first six GCBNs were quantified with data corresponding to six WIM locations of
the highway network of the Netherlands. 26 vehicle types were created grouping the
registered vehicles in the WIM data set per vehicle configuration and per number of axles.
The seventh GCBN was quantified using WIM observations collected in a city route in
Rotterdam City, The Netherlands. 4 vehicle types were created classifying vehicle types
by the number of axles. Data collected in Araranguá city in Brazil were used to quantify
the last GCBN. For this model, 45 vehicle types were created according to the vehicle
classification WIM codes.

The GCBN models properly simulate the dependence structure of the empirical data.
The correlations of the simulated data between axle loads and inter-axle distances slightly
deviate from the ones computed with the WIM observations. Small differences in the
exceedance probabilities of the empirical and simulated data can be observed for 𝐺𝑉𝑊
in the range of 800 kN to 1000 kN. For 𝐿, the models show a minor overestimation of the
exceedance probabilities of lengths in the interval between 12 m and 17 m. Nevertheless,
the models provide a good fit for the data. Values of NSE for 𝐺𝑉𝑊 and 𝐿 are in the interval
of 0.97 to 0.99 and, while for MAE are in the range of 0.24 to 0.48. The difference between
the estimation of the tail of the distributions, i.e., the heaviest vehicle and longest vehicle for
the same probability of exceedance are around 0.04% and 3.6%. In general, it can be noted
that all presented GCBNmodels correctly approximate theWIM observations. Additionally,
to make use of the GCBN model more convenient, a Graphical User Interface (GUI) for the
models of the six Dutch WIM highways has been developed. A potential application of
the model when WIM data is not available was presented by using the GUI to compute
synthetic WIM observations. Using data collected through traffic counters, gathered in
Toluca City in central Mexico, as input.

The framework for computing synthetic WIM observations here presented can be
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applied in any WIM location, using site-specific WIM records and site-specific vehicle
types. The key aspect of the methodology is a good assessment of the vehicle types
when constructing the model. Usually, previous studies have constructed vehicle types
by grouping per number of axles. This vehicle classification works. However, often more
insight into the different vehicle types is required. In these cases, a better classification can
be performed, for example, by using the WIM automatically generated codes or grouping
vehicles by body configuration. Our methodology allows the use of these classifications.
Thus, more accurate data can be simulated. The next steps in our research correspond to the
application of the models here presented in risk and reliability of individual infrastructure
(bridges for example) and road networks including multiple infrastructures.
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3
Mapping hazardous locations

on a road network due to
extreme gross vehicle

weight.

This chapter investigates the application of hazard maps in identifying critical locations
associated with extreme vehicle load events. Examining extreme vehicle loads can offer
valuable insights into the reliability of road infrastructure. Weigh-In-Motion (WIM) systems
are commonly employed for this purpose; however, their limited availability often necessitates
the use of less-sophisticated traffic counters (LSTCs). Unfortunately, LSTCs are unable to
measure vehicular axle loads, posing a significant drawback. To overcome this limitation,
this chapter proposes a methodology that utilizes data from LSTCs to estimate axle loads
and map extreme gross vehicle weights. To demonstrate the feasibility of this approach, a
case study concentrating on the major highway corridors in Mexico is presented. While WIM
stations are absent, data from a network of 1,777 counting stations and origin-destination
surveys are available. By quantifying Gaussian copula-based Bayesian networks using the
existing information, synthetic site-specific axle loads are generated. Subsequently, gross
vehicle weights for selected return periods are computed. The study findings facilitate the
identification of hazardous locations for road infrastructure due to extreme gross vehicle
weights. Additionally, an interactive web map and a graphical user interface to generate
synthetic axle loads are provided. These tools, along with the proposed methodology, can serve
as the foundation for maintenance strategies for existing roads and bridges.

Parts of this chapter have been published verbatim in Mendoza-Lugo, M. A., Morales-Nápoles, O. (2023).
Mapping hazardous locations on a road network due to extreme gross vehicle weights. Reliability Engineering
and System Safety. doi: https://doi.org/10.1016/j.ress.2023.109698 and Koot, P., Mendoza-Lugo, M.A., Paprotny,
D., Morales-Nápoles, O., Worm, D.T.H., Ragno, E. (2023). PyBanshee version (1.0): A Python implementation of
the MATLAB toolbox BANSHEE for Non-Parametric Bayesian Networks with updated features. SoftwareX. doi:
https://doi.org/10.1016/j.softx.2022.101279

https://doi.org/10.1016/j.ress.2023.109698
https://doi.org/10.1016/j.softx.2022.101279
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3.1 Introduction
Healthy infrastructure and road systems are fundamental requirements for economic
success since they facilitate the mobility of people and goods and provide links that support
international trade [1, 2]. However, road infrastructure is under increasing pressure. On
one hand, a large part of the highway infrastructure is outdated, which means that many
of the roads and their assets need to be repaired or replaced. On the other hand, the
percentage of trucks that exceed the maximum legal weight is increasing. Nowadays, truck
overloading is a common phenomenon throughout the world, especially in developing
countries [7–10].

In terms of traffic loads, hazardous road locations are sites where infrastructure damage
may occur due to extremely overloaded vehicles. These are locations where the extreme
values of gross vehicle weights (EGVW) exceed those of non-overloaded trucks. Conse-
quently, areas with heavier truck traffic may be more likely to exceed design load limits. By
using hazard road location maps and analyzing trends, it becomes possible to identify areas
of potential risk, thereby facilitating the development and implementation of maintenance
strategies.

To map extreme gross vehicle weights (EGVW), it is essential to measure individual axle
loads, typically obtained through WIM systems. In cases where information on individual
axle loads is limited or unavailable, computer simulations have become the most prominent
approach to estimating them. Due to the intricate nature of vehicle configurations, the
dependence structure of the data becomes complex. Among the available tools, Bayesian
Networks (BNs) have been used for modelling WIM data [51, 59, 81] as they provide a
means to represent the intricate dependency structures inherent in WIM data. Furthermore,
BNs enable inference in the presence of evidence.

While numerous studies and techniques have focused on data generation and collection,
the mapping of extreme traffic loads using information obtained from LSTCs remains
limited. To address this gap, this chapter introduces a framework for estimating and
mapping site-specific traffic loads in locations where WIM systems do not serve as the
primary source of traffic data. The development of the methodology in this study is guided
by three primary objectives: (a) conducting a large-scale simulation of site-specific traffic
loads, (b) accurately estimating EGVWs across an entire road network, and (c) performing
spatial analysis through the utilization of geographic information system (GIS) software.

The proposed methodology consists of five essential tasks: (i) analysis of available
traffic data, (ii) simulation of site-specific traffic loads, (iii) extreme value analysis to assess
gross vehicle weights, (iv) generation of return period maps, and (v) identification of
hazardous locations due to EGVWs. To accomplish these objectives, this chapter introduces
a straightforward method that employs GCBNs to simulate site-specific synthetic axle
loads of heavy vehicles. Moreover, it utilizes extreme value theory to estimate EGVWs. The
methodology offers various advantages. Firstly, it demonstrates the capability to identify
locations requiring attention based on the model’s assessment of their condition. Secondly,
the methodology requires basic information concerning traffic characteristics. Lastly, the
methodology proposed exhibits the flexibility to be applied to any road network, enhancing
its adaptability and applicability. To implement the proposedmethodology, the fifteenmajor
highway corridors in Mexico are selected as a case study. This selection was motivated
by the limited utilization of WIM systems in the country and the unavailability of WIM
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public databases. In total, a comprehensive set of 1777 site-specific BNs were quantified to
simulate over 180 million heavy vehicles for assessing the studied road network.

The value of the proposed methodology is to provide an accurate estimation of the
characteristic loads that can assist in the identification of hazardous locations, taking into
account site-specific information on traffic configuration and a non-site-specific distribution
of axle loads per vehicle type when WIM data is not available at the network level but
LSTCs data is. To do so, the appropriate statistical dependence of axle loads per vehicle
type is described through site-specific BNs. Simpler models that ignore such dependence or
the site-specific character of the traffic configuration would lead to a severe overestimation
of the characteristic loads.

In subsequent sections, the proposed framework to identify hazardous locations and
the case study will be presented (Section 3.2). Next, the available datasets will be explained
in Section 3.3. Then, in Section 3.4 the model with the variables considered in the research
along with its use in the road network is presented. Later, in Section 3.6 extreme value
analysis is employed to estimate gross vehicle weights for 50 and 1000-year return periods.
Section 3.7 present the results of the practical application of the methods proposed in
Section 3.4 and Section 3.6. Finally, in Section 3.8 the conclusions of the research will be
drawn.

3.2 Mapping hazardous locations framework
In this section, the methodology to identify and map hazardous locations on a road network
due to extreme gross vehicle weights is presented. GCBN is used to simulate site-specific
gross vehicle weight distributions and extreme value analysis of gross vehicle weights
to find the gross vehicle event with selected return periods at a specific site. Figure 3.1
shows the proposed framework. First, the available traffic data sources of the road network
of interest are gathered, cleaned, and analysed to obtain the variables of interest. The
variables of interest are the type of vehicle, gross vehicle weight and individual axle loads
(Section 3.3). It is important to note that special vehicles, such as large cranes or other
oversized trucks that require a special permit to circulate, are excluded from the calculation
of gross vehicular weight presented in this chapter. It is assumed that the authorities are
aware of these vehicles and that special measures are taken for the movement of these
vehicles to ensure that they do not pose a hazard to the public and the infrastructure. Then,
site-specific synthetic observations are generated using an GCBN quantified with origin-
destination information (Section 3.4). Next, a gross vehicle weight extreme value analysis is
performed to obtain characteristic values with selected return periods (Section 3.6). Then,
the computed extreme gross vehicle weights are mapped and spatial analysis is performed
(Section 3.7.1). Finally, the generated maps allow for identifying clusters of vehicular
weights whose 50- or 1000- years return periods are high, hence, hazardous locations can
be spotted (Section 3.7.2.).

In this research, the fifteen Mexican major highway corridors have been chosen to
test how the methodology works. Mexico has around 377659 km of highway network
divided into four main sub-networks: i) federally administered network, ii) feeder network,
iii) rural network and iv) improved road network. The federally administered network
is the main component of the national road transportation system. It serves around 98%
of the passengers that move between cities and around 74% of the land cargo [82]. The
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Site-specific synthetic
axle loads generation

using GCBN .

GVW Extreme Value
Analysis

Traffic data
analysis

Hazardous locations due to
extreme GVW identification.

Extreme GVW maps

Figure 3.1: Framework for identifying and mapping hazardous locations.

increase in demand in Mexico due to economic and population growth will be translated
into growth in the number of vehicles transiting the road network and increased vehicle
loads. An important part of the federally administered highway network are the 15 major
highway corridors (MHC), presented in Figure 3.2. The Network is shown in Figure 3.2 is
managed by the Ministry of Communications and Transportation (SCT, for its acronym in
Spanish). It is the pillar of the national transportation system, linking different regions of
the country and connecting important cargo and passenger hubs. In the following sections,
each step within the framework is detailed.
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Figure 3.2: Major highway corridors.

3.3 Traffic data
This section describes the two sources of data used: the statistical field study of the domestic
road transportation database and the road data database. In addition, the information
provided by each of these two sources is outlined and the variables of interest are presented.
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3.3.1 EECAN database
The Statistical Field Study of Domestic Road Transportation (EECAN, for its acronym in
Spanish) database is a compilation of data of vehicles travelling through origin-destination
survey stations (SS) installed in the federally administered highway network [83]. The
surveys have been conducted for four consecutive days per year by the Mexican Ministry of
Communications and Transports, in a varying number of stations surveyed every year from
1991 until 2017. For example, three survey stations were installed in 1992 and twenty-seven
stations were installed in 1994, representing the lowest and highest number of stations
installed respectively in the years where surveys were conducted. The EECAN database
presents information regarding vehicle attributes (such as plate, occupants, vehicle type,
vehicle weight and axle weights), transported load and origin-destination data. In particular,
the information concerning vehicle attributes is of interest, i.e., vehicle type, gross vehicle
weight (𝑔𝑣𝑤) and individual axle weights.

In total, 366 survey stations have been installed of which 223 (from 2002 until 2017) are
publicly available on the website of the Mexican Transport Institute (IMT, for its acronym in
Spanish) [84]. The 223 stations include data from about 1.3 million surveyed vehicles. The
recorded EECANmeasurements were filtered according to previous literature regarding the
filtering rules for identifying erroneous axle load data [27, 67, 85]. The following criteria
are applied: (i) Gross vehicle weight under 34 kN (3.5 t). Only heavy vehicles are considered.
(ii) Sum of axle loads not within 0.49 kN of the gross vehicle weight. (iii) Any axle load
exceeding 147 kN (15 t) where this axle represents more than 85% of the gross vehicle
weight. (iv) Any axle weight larger than 392 kN (40 t). The reliability of an individual
truck’s record is questioned if any axle load exceeds 40 t. (v) Mismatch between vehicle
type and the number of axle loads, and (vi) duplicate records. Note that (ii) and (iii) are
employed as established in the basic data cleaning criteria of WIM data in Slovakia. [85].

After all the filters were applied, the most common heavy vehicles (𝑉 ) types are: C2,
C3 (single unit vehicles with two or three axles), T3S2 (three-axle tractor plus two-axle
semitrailer), T3S3 (three-axle tractor plus three-axle semitrailer) and T3S2R4 (three-axle
tractor plus two-axle semitrailer plus four-axle trailer). The codes of the Mexican vehicle
types are given by the Ministry of Communications and Transport [80]. These five vehicle
types account for around 95 percent of the total surveyed heavy vehicles which is in line
with what is reported in [83]. The vehicle type or code (𝑖𝑡ℎ vehicle type), its corresponding
number of axles (𝑛𝑖), and its visual representation (silhouette) are presented in Table 3.1.

Table 3.1: Main heavy vehicle types with 𝐺𝑉𝑊 ≥ 34 kN found in ECCAN database.

Silhouette Vehicle (𝑖) Type (code) No. axles (𝑛𝑖)
1 C2 2
2 C3 3
3 T3S2 5
4 T3S3 6
5 T3S2R4 9

As an example, Table 3.2 presents an overview of the gross vehicle weights found in
2017 per vehicle type for the 223 studied survey stations. The first column corresponds to
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vehicle type, the second to their corresponding proportion of the traffic flow, followed by
the median of the gross vehicle weight distribution (𝐺𝑉𝑊 ). The fourth and fifth columns
show the maximum 𝑔𝑣𝑤1 permitted according to the Mexican standards [80] and the
percentage of overloaded vehicles correspondingly. Additionally, the sixth and seventh
columns show the recorded maximum 𝑔𝑣𝑤 and the corresponding year. As expected,
the nine-axle vehicle T3S2R4 is the heaviest vehicle in the database with a maximum
gross vehicle weight of 975.76 kN in 2004. Figure 3.3 shows basic statics (5th, 50th, 95th
percentiles and maximum) of the 𝐺𝑉𝑊 distribution of the vehicle type T3S2R4. Notice
that the maximum gross vehicle weight reported each year is under 980 kN, this could
suggest that this is the maximum capacity of the scales used in the survey stations. In
addition, it can be observed that before 2005, the 95th percentile of 𝐺𝑉𝑊 exceeds the
maximum permitted 𝑔𝑤𝑣. Speculatively, this could be an indication of a change in the
devices used to measure axle weights.

Table 3.2: 2017 summary per vehicle type and maximum gross vehicle weight (𝑔𝑣𝑤) reported from the year 2002
to 2017 for the 223 studied survey stations.

Vehicle
type

2017
Max gvw
[kN] YearProportion of the

traffic flow (%)

𝐺𝑉𝑊
median
[kN]

gvw max
permit [kN]

Overloaded
vehicles (%)

C2 24.4 70.6 186.34 0.6 300 2008
C3 15.9 131.4 269.69 9.6 414.8 2009
T3S2 17.6 226.5 456.01 14.4 873.7 2014
T3S3 8.4 404.0 529.56 23.0 892.4 2011
T3S2R4 28.7 423.6 740.41 26.4 975.7 2004
Oth 5.00 – – – – –

Figure 3.3: Basic statistics for vehicle type T3S2R4 from the year 2002 to 2017 (223 studied survey stations).
Notice that the 2007 and 2016 data are missing. This is because unreasonable measurements (such as excessive
𝑔𝑣𝑤 and total number of axles - individual axle weights mismatch) were found.

1𝐺𝑉𝑊 (uppercase) is used to denote the random variable representing gross vehicle weight, whereas 𝑔𝑣𝑤
(lowercase) denotes a specific value of 𝐺𝑉𝑊 .
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3.3.2 Datos viales (road data, in English) database
The second source of traffic data is the Datos viales (road data, in English) database. With
the purpose of knowing the yearly traffic trends, the SCT installed a set of automatic
vehicle counters in key locations of the highway network. The observations gathered are
published by the Department of Infrastructure [86]. This database constitutes one of the
most comprehensive sources of traffic information in Mexico, as the records have details
for more than 11000 counting stations. It includes information such as (i) name of the
road; (ii) name of the counting station (CS); (iii) travel lane direction (TLD) 2; (iv) annual
average daily traffic (AADT); and (v) the proportion of vehicle types (including nine vehicle
types: the 5 vehicle types described in Section 3.3.1 plus vehicle types M, A, B and Otros
that correspond to motorcycles, automobiles, buses and “others") that conform the traffic
flow. However, information regarding gross vehicle weight and individual axle loads is not
available. Table 3.3 and Table 3.4 presents an example of the Datos Viales database.

Table 3.3: Datos Viales 2018 example for two counting stations.

Road name Rute CS TLD Latitude Longitude
Toluca - Morelia MEX-015 Tuxpan 2 19.55236 -100.4710
Chalco - Tláhuac EM-CDMX Tláhuac 1 19.26436 -98.9926
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 3.4: Table 3.3 (Continued).

AADT M A B C2 C3 T3S2 T3S3 T3S2R4 Otros
5610 3 82.2 0.8 10.3 1.3 1.3 0.9 0.1 0.1
10860 4.4 85.3 0.3 7.4 1.0 0.8 0.7 0.0 0.1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

The database was filtered to take into account only the CSs that are located at the
fifteen major highway corridors, as a result, 1777 counting stations were obtained. Given
that the interest of this work is vehicles with a total vehicle weight of 35 kN or more (heavy
trucks). Motorcycles, automobiles, buses and “others" were left out of the records. Then,
by subtracting their corresponding proportion of the traffic volume from the AADT, the
average daily truck traffic (AADTT) is obtained.

For illustration purposes, Figure B.2.1 shows the locations of the 233 EECAN survey
stations and the 1777 Datos Viales counting stations that are taken into account in this study.
Despite a large number of counting stations, as mentioned before, the Datos Viales database
does not include measurements of axle loads or gross vehicle weight. Consequently, in
order to estimate the missing data, statistical models that correctly simulate the dependence
structure between the vehicle variables are used. With this intention, the next section will
present a Gaussian copula-based Bayesian Network to simulate synthetic EECAN axle
loads.
2In Datos Viales database, the number 1 in TLD column indicates the direction of traffic corresponding to the
increasing road numbering, number 2 indicates the direction of traffic flow of the decreasing road numbering
and number 0 indicates both directions.
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3.4 Site-specific synthetic axle loads generation
Chapter 2 provides a methodology that employs GCBNs to simulate axle loads of heavy
vehicles. The use of GCBNs provides computational advantages for large models. Therefore,
this chapter proposes the use of GCBNs to investigate extreme values of heavy vehicle
load events for situations when a limited amount of data (or no data) is available. Along
these lines, for the case study, a GCBN model is proposed to create realistic synthetic
axle load observations, similar to those presented in the EECAN database. This approach
serves as a basis for the study of extreme gross vehicle weights at the counting stations
where information on individual axle loads is not available. To quantify the GCBN the
methodology presented in previous studies such as [51, 59, 81, 87] is used. For details of
the methodology, the reader is referred to [81]. Variables included in the model (variables
of interest) are vehicle type, gross vehicle weight, and individual axle loads.

3.4.1 EECAN Gaussian copula-based Bayesian Network
The approach to quantifying the ECCAN GCBN (GCBNEECAN) consists of several steps.
First, the measurements obtained from all EECAN locations (introduced in Section 3.3.1)
were combined to build a national network level representative sample of the five main
types of heavy trucks as shown in Table 3.1. Moreover, the measurements from 2016 were
left out because of the excessive maximum gross vehicle weight reported per vehicle type.
For example, vehicles C2 with up to 85.2 tonnes (835 kN) and vehicles T3S2 with 𝑔𝑣𝑤
of 265 tonnes (2598 kN). This was also observed in the IMT 2017 report [88] in which the
authors recommend the supervision of the field and data processing work of the company
in charge of information gathering.

Then, once the EECAN database was filtered and unreasonable measurements were
left out, a total of 755173 heavy vehicles remained (214465 C2, 134298 C3, 276994 T3S2,
68020 T3S3, and 61396 T3S2R4). The dependence structure of the data was modelled
with 26 nodes (variables of interest) and 45 arcs illustrated in Figure 3.4. The model
was built in the python-based open source software PyBanshee [47, 48] which allows for
quantifying the GCBN, analysing the underlying assumptions of the model, visualizing its
corresponding rank correlation matrix and its DAG.

Each “row" of nodes in Figure 3.4 represents one of the vehicle types illustrated in
Table 3.1. Individual nodes represent individual axle loads. Let 𝑖 = {1,2, ...,5} be a set of
indices corresponding to the 5 vehicle types. It is noted that 𝐴𝑖,𝑗 is used to denote the
random variable representing the 𝑗 𝑡ℎ axle load. Additionally, 𝑗 = {1, ..., 𝑛𝑖} according to the
𝑖𝑡ℎ vehicle type, where 𝑛𝑖 is the largest index (axle number) corresponding to vehicle type 𝑖
(see the 3rd column of Table 3.1). The model assumes that for a particular intermediate axle
if the load values of two axles adjacent to it were known, knowing the value of any other
axle load not adjacent to it would not update the distribution of the particular intermediate
axle.

The gross vehicle weight per vehicle type (𝐺𝑉𝑊𝑖) is given by 𝐺𝑉𝑊𝑖 =∑𝑛𝑖
𝑗=1𝐴𝑖,𝑗 . 𝐺𝑉𝑊𝑖

is a deterministic function of vehicle type 𝑖. For example, if 𝑖 = 3 (5 axles vehicle, type
T3S2, according to Table 3.1), then the gross vehicle weight of T3S2 is the sum of its
individual axle loads, i.e. 𝐺𝑉𝑊3 = 𝐴3,1+𝐴3,2+𝐴3,3+𝐴3,4+𝐴3,5. Therefore, 𝐺𝑉𝑊 (the node
at the top of the Figure 3.4) is the random variable representing vehicle weight regardless
of vehicle type.
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Figure 3.4: EECAN Gaussian copula-based Bayesian Network (GCBNEECAN)

The arcs in Figure 3.4 between individual axle loads nodes per vehicle type correspond
to the (un)conditional rank correlations, 𝑟(𝐴𝑖,𝑗 ,𝐴𝑖,𝑗−1). These are presented in Table 3.5.
The first two columns indicate the vehicle type 𝑖 and its corresponding code, and the third
column, the corresponding number of axles (𝑛𝑖). Every entry in the next eight columns
indicates the rank correlations between the first and second axle (𝐴𝑖,1,𝐴𝑖,2), second and
third (𝐴𝑖,2,𝐴𝑖,3), and so on until the 8th and 9th axle (𝐴𝑖,8,𝐴𝑖,9) per vehicle type. Notice that,
as the number of axles increases, the correlations are stronger in the axles close to the end
of the vehicle.

Table 3.5: Rank correlation per vehicle type between axles.

Vehicle (𝑖) Type No Axles (𝑛𝑖) 𝐴𝑖,1,𝐴𝑖,2 𝐴𝑖,2,𝐴𝑖,3 𝐴𝑖,3,𝐴𝑖,4 𝐴𝑖,4,𝐴𝑖,5 𝐴𝑖,5,𝐴𝑖,6 𝐴𝑖,6,𝐴𝑖,7 𝐴𝑖,7,𝐴𝑖,8 𝐴𝑖,8,𝐴𝑖,9

1 C2 2 0.63
2 C3 3 0.56 0.79
3 T3S2 5 0.52 0.90 0.82 0.90
4 T3S3 6 0.41 0.91 0.79 0.85 0.85
5 T3S2R4 9 0.40 0.93 0.86 0.92 0.83 0.90 0.86 0.92

Each axle load of each vehicle type was fitted to a Gaussian Mixture distribution (GM).
Which is a weighted sum of 𝐺 Gaussian densities [68] (see Equation (2.8)).

For each fitted distribution, visual inspection on the right tail of the distribution (to best
represent heaviest axle loads) and the relative goodness-of-fit Akaike information criterion
(AIC) [72] were used to select a distribution. A two-sample Kolmogorov-Smirnov (KS) test
[89] was used on the selected distribution to test the hypothesis that the sample and the
selected distribution come from the same population. If the KS test was not rejected then
the selected distribution was regarded as a valid representation of the sample and used
further in the analysis. As a result, a total of 25 GMs were estimated (one GM per axle load
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of each vehicle type) ranging from 4 to 6 components. As an example, Table 3.6 shows the
best-fitted Gaussian mixture distributions corresponding to the axle loads of vehicleC2. For
this vehicle, its axle loads were approximated with GMs of 𝐺 = 6 components. Figure B.1.1
shows a comparison between the EECAN axle loads observations of the vehicle type C2
and synthetic random observations generated with the corresponding six-components GM
model. In Tables B.1.1 to B.1.4 the GMs for the other vehicle types used in this work can be
found.

Table 3.6: Gaussian mixture components representing both axles of vehicle type C2

Axle 1 (𝐴1,1) Axle 2 (𝐴1,2)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.29 23.32 4.24 1 0.23 22.87 4.59
2 0.15 43.2 6.17 2 0.14 89.47 14.90
3 0.31 16.69 3.49 3 0.17 48.66 7.83
4 0.05 52.86 10.82 4 0.06 91.55 32.62
5 0.17 32.38 5.03 5 0.14 66.66 10.42
6 0.02 71.84 23.79 6 0.26 35.28 6.82

In order to investigate model validity, the EECAN data set was split into 80:20, i.e., 80%
of the data set becomes the training set and 20% of the data set becomes the testing set.
This split ratio has been used frequently in several traffic analysis studies (see [76–78], for
example). Later, 𝑁 ′ un-conditional samples (synthetic observations) using the GCBNEECAN
model are generated, where 𝑁 ′ is the number of observations in the testing set. Figure 3.5
shows a comparison between the observed 𝐺𝑉𝑊 of the testing set and the synthetic 𝐺𝑉𝑊
computed with theGCBNEECAN model per vehicle type. This allows us to graphically assess
if the synthetic observations can represent the 𝐺𝑉𝑊 reported in the EECAN database.

The scatter plots in Figure 3.5 were created by plotting the sorted gross vehicle weights
of the testing set against the sorted synthetic 𝐺𝑉𝑊 s for a single simulation with 𝑁 ′ =
151035 samples. The dataset was grouped by vehicle type because the output of the model
is a simultaneous sample (different every time the model is run) for all five vehicle types.
If the test datasets and the synthetic dataset are the same, one would expect to see the
points lying in a straight line. Additionally, the selected test statistics, Nash–Sutcliffe model
Efficiency Coefficient (NSE) [74] and the Mean Absolute Percentage Error (MAPE) [90] are
presented in each scatter plot. The NSE takes values in (−∞, 1], where 1 indicates a perfect
fit while the MAPE takes values within [0, ∞), where zero indicates a perfect fit.

As can be seen, Figure 3.5 shows that (for this particular realization) for vehicle type
C2 the model slightly underestimates 𝐺𝑉𝑊 in the interval between 260 kN and 300 kN. In
the scatter plot that corresponds to vehicle type C3 there is an overestimation for 𝐺𝑉𝑊
from 350 kN to 400 kN approximately. For vehicle type T3S2, the underestimation occurs
for 𝐺𝑉𝑊 from 650 kN to 700 kN. Synthetic observations of the six-axle vehicle T3S3
show that the model underestimates 𝐺𝑉𝑊 in the interval between 370 kN and 500 kN,
and overestimates in the interval between 650 kN and 800 kN. Finally, for vehicle type
T3S2R4 there is an overestimation for 𝐺𝑉𝑊 from 180 kN to 250 kN and from 930 kN to
980 kN approximately. In general, as expected, more deviations with respect to the original
data are observed in the tails of the distribution of gross vehicle weight, particularly for the
six-axle and nine-axle vehicles. Regardless, the synthetic observations provide an overall
very good representation of the original data. This can also be observed in the results of
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test statistics, where the values of NSE and MAPE are close to 1 and 0 respectively for each
vehicle type.

All things considered, the GCBNEECAN quantified with the train data set captures the
main complexities of the axle loads reported in the EECAN data set to a good degree and
can be considered effective. However, in order to profit from all data available, further,
all our analysis is performed with the GCBNEECAN quantified with the full data set. In
the next section, the combination of the Datos viales database and the proposed Gaussian
copula-based Bayesian Network model for predicting axle loads for counting stations where
no axle information is provided.

3.4.2 Site-specific Gaussian copula-based Bayesian Network
This section briefly describeS the site-specific synthetic Datos Viales axle loads genera-
tion approach based on the GCBNEECAN. The results will be further used to compute
extreme vehicle weights with selected return periods. First, the input data is defined.
Let 𝑐 = {1,2, ...,1777} be a set of indices corresponding to the 1777 counting stations of
the Mexican major highway corridors presented in Section 3.2 and 𝑘𝑐 = {1,2, ...,5} a set
whose elements represent the number of vehicle types registered in counting station 𝑐.
Then, the necessary input data are: (i) 𝑐 and 𝑘𝑐 , (ii) the heavy vehicle types that con-
form to the traffic flow (𝑉𝑖,𝑐), (iii) the proportion of the traffic flow per vehicle type 𝑖
(𝑝𝑖,𝑐) and, (iv) the annual average daily truck traffic (AADTT𝑐). In fact, (ii) and (iii) are
the vehicle distribution at any given location 𝑐 of interest. Next, a site-specific GCBN𝑐
model is quantified using only the 𝑘𝑐 vehicle types registered in the counting station
𝑐, i.e, GCBN𝑐 = GCBNEECAN (𝑘𝑐 ;𝑉𝑖,𝑐 ;𝑝𝑖,𝑐 ,AADTT𝑐). Finally, 𝑁𝑐 =∑𝑘𝑐

𝑖=1(AADTT𝑐 ⋅ 𝑝𝑖,𝑐) un-
conditional samples using the site-specific GCBN𝑐 is computed. Therefore, the output of
the model is site-specific synthetic EECAN axle load observations (from synthetic vehicles
equal to the daily average) for the CS of interest. The output database contains the vari-
ables: vehicle type, gross vehicle weight and individual axle loads. The Figure 3.6 presents
an overview of our approach for generating representative EECAN synthetic axle loads.
In total 1777 site-specific GCBNs were quantified (one site-specific GCBN per counting
station).

To clarify the axle loads generation approach, an example of generating one day
of synthetic observations for one of the 1777 counting stations is presented. For this
example, the CS Veracruz is selected (𝑐 = 1567). First, the input data of the counting
station is extracted from the Datos viales database. As can be seen in Table 3.7, the
vehicle types that conform to the traffic flow are: 𝑉1,1567 = C2, 𝑉2,1567 = C3, 𝑉3,1567 = T3S2,
𝑉4,1567 = T3S3 and 𝑉5,1567 = T3S2R4. Their corresponding proportions 𝑝𝑖,1567 of the total
vehicles are: 𝑝1,1567 = 48.4%, 𝑝2,1567 = 9.1%, 𝑝3,1567 = 18.3%, 𝑝4,1567 = 12.5% and 𝑝5,1567 = 11.7%.
Next, since the five vehicle types presented in Table 3.1 were registered, i.e. 𝑘1567 = 5,
the corresponding site-specific GCBN1567 is similar to the one presented in Figure 3.4.
Finally, 𝑁1567 = AADTT1567 = 2746 un-conditional samples using the GCBN1567 model are
computed.

The output is a database presented in a 12-column table with synthetic axle load
observations (different every time the model is run), of the vehicles with up to nine axles
registered in the CS. For example, Table C.3.1 corresponds to the output database of one
day simulation of axle loads for the Veracruz CS. The first column in table Table C.3.1
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Figure 3.5: Scatter plots comparison synthetic 𝐺𝑉𝑊 versus test 𝐺𝑉𝑊 observations: (a) Vehicle type C2; (b)
Vehicle type C3; (c) Vehicle type T3S2; (d) Vehicle type T3S3 and (e) Vehicle type T3S2R4
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1. Input:
i. CS c and vehicle types 𝑘𝑐
ii. Vehicle type 𝑉𝑖,𝑐
iii.Proportion of traffic flow 𝑝𝑖,𝑐
iv. Annual average daily truck

traffic AADTT𝑐

2. Site-specific GCBN

GCBNEECAN    𝑘𝑐; 𝑉𝑖,𝑐; 𝑝𝑖,𝑐; AADTT𝑐  = CGBN𝑐

3. Un-conditional samples:

𝑁𝑐 =
𝑖=1

𝑘𝑐
AADTT𝑐 ∙ 𝑝𝑖,𝑐

4. Output:
Synthetic observations:

•Vehicle type
•Gross vehicle weight
•Individual axle
loads

Figure 3.6: Generation of site-specific synthetic observations based on the GCBN quantified with EECAN database.

Table 3.7: Input data for the site-specific EECAN GCBN model CS Veracruz

Location (19.2153512, -96.211168) Traffic information

1
8

°0
′N

2
1

°0
′N

99°0′W 96°0′W 93°0′W

State of Veracruz

CS Veracruz

Major highway corridors

AADTT: 2746

𝑉𝑖 𝑝𝑖
C2 0.484
C3 0.091
T3S2 0.183
T3S3 0.125
T3S2R4 0.117
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represents the id of the synthetic observation, the second the vehicle type, the third the
total vehicle weight (gvw) in kN, and columns 4 to 12 the individual axle load (A) in
kN. “Not a Number" (NaN) entry is placed in the fields where no data is computed. For
example, the 6-axle vehicle T3S3 will have three NaN cells corresponding to the weight
of the seventh, eighth and ninth individual axles. Notice that the 𝑔𝑣𝑤 is the sum of the
individual axle loads. Furthermore, a graphical user interface (GUI) called EECAN BN
GUI is developed to provide a user-friendly graphical interface to compute site-specific
synthetic observations based on the GCBNEECAN model. This graphical user interface can
be found at the corresponding repository of this work3.

To further compute the return periods of gross vehicle weights 450 days of traffic loads
in each one of the 1777 counting stations that are located at the fifteen major highway
corridors are simulated. This means that 1777 site-specific GCBNs were quantified. In total,
axle loads of around 180 million heavy vehicles were computed.

Table 3.8: Example of a random realization (output) of the GCBN1567 for Veracruz CS.

Type gvw A1 A2 A3 A4 A5 A6 A7 A8 A9
1 C2 66.35 11.89 54.45 NaN NaN NaN NaN NaN NaN NaN
2 C2 44.90 24.69 20.21 NaN NaN NaN NaN NaN NaN NaN
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2743 T3S3 563.82 45.72 99.69 107.75 114.14 96.64 99.88 NaN NaN NaN
2744 T3S2 314.48 35.71 69.74 77.06 64.63 67.33 NaN NaN NaN NaN

3.5 PyBanshee
In order to quantify the 1777 site-specific GCBNs to simulate the axle loads of around
180 million heavy vehicles, a big implementation has been made. PyBanshee [47], the
Python-based version of MATLAB BANSHEE [48, 73] is introduced. Python offers distinct
advantages over MATLAB when it comes to numerous computations. One notable strength
lies in the open-source nature of Python. This facilitates the integration of a wide array of
external tools and libraries. The scalability of Python across diverse computational tasks,
coupled with its robust support for parallel and distributed computing makes a preferred
choice for introducing our software fully open-source so that it can be more accessible to
non-MATLAB licensed users.

In addition to the functionalities available in our first release (MATLAB BANSHEE), Py-
Banshee allows for the use of (i) fully parametric one-dimensional margins, (ii) user-defined
sample sizes for model-validation tests based on the Hellinger distance, (iii) getting user-
defined sample sizes of the GCBN, (iv) sample based conditioning and (v) advanced graphics
for the underlying graph of the Bayesian Network and the visualization of the comparison
between the histograms of the unconditional and conditional marginal distributions.

Feature (i) is useful when the interest is in values that have not been observed in a
particular sample. For example in civil engineering percentiles with a low probability of
exceedance are often required for design purposes. These are obtained by extrapolation
using a parametric one-dimensional margin. Regarding (ii), since model validation is
3Instructions for download and install EECAN BN GUI can be found at https://github.com/mike-mendoza/
extreme_gvw_mexico/tree/main/EECAN_NPBN

https://github.com/mike-mendoza/extreme_gvw_mexico/tree/main/EECAN_NPBN
https://github.com/mike-mendoza/extreme_gvw_mexico/tree/main/EECAN_NPBN
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still in its infancy when it comes to GCBNs, it is often desired to estimate the minimum
sample size at which the null hypothesis would not be rejected to give some guidance
about statistical power. Feature (iii) is useful when statistically robust results are needed.
This can be done by increasing the number of samples drawn from the GCBN. Sample-
based conditioning (feature (iv)) is implemented to allow for conditionalizing on intervals.
Advanced graphics (feature (v)) are implemented to facilitate further analysis for users. In
this manner, PyBanshee and MATLAB BANSHEE v1.3 exhibit the same available features
(see Section 2.4).

3.5.1 Software description
Similarly to its MATLAB predecessor, the code of PyBanshee consists of a set of functions.
These functions allow for quantifying the CGBN, analyzing the underlying assumptions
of the model, visualizing the network and its corresponding rank correlation matrix, and
making inferences with an GCBN based on existing observations or new evidence. In
addition, new functions were added to: generate random samples of the GCBN, perform
sample-based conditioning, and visualize unconditional and conditional distributions. To
show and better explain the features of PyBanshee, examples are provided as standalone
scripts.

3.5.2 Software architecture
The PyBanshee package contains six Python files (.py extension files) in which eight
main functions are located as can be seen in Figure 3.7. The main functions are:

(1) bn_rankcorr, to compute the BN rank correlation matrix. It requires a defined
directed acyclic graph (DAG, as a list) and a matrix of data (as a DataFrame).
Additionally, it includes an option to compute the BN rank correlation without such
data;

(2) bn_visualize, to visualize the structure of the defined GCBN. In this release,
an GCBN with marginal histograms inside of the nodes can be displayed (feature
(v));

(3) cvm_statistics, to measure the degree of agreement of the Gaussian copula
with the data based on the Cramer–von Mises statistic;

(4) gaussian_distance, to perform model validation based on the distance be-
tween the empirical (ERC) and Bayesian Network’s rank correlation (BNRC) matrices
and the empirical normal rank correlation matrix (NRC) using data. The distance is
computed based on the d-calibration score ([91]). PyBanshee allows users to define
different sample sizes (feature (ii));

(5) inference, to compute the uncertainty distribution of nodes other than those
that the user conditionalized on. In this release, parametric distributions can be an
input for the inference function (feature (i));

(6) conditional_margins_hist, to visualize the comparison between uncondi-
tional and conditional histograms (feature (v)) of the inference function output;
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(7) generate_samples, to explicitly increase the number of unconditional samples
of the GCBN (feature (iii));

(8) sample_based_conditioning, to conditionalize nodes on intervals (feature
(iv)).

PyBanshee

rankcorr.py bn_plot.py copula_test.py d_cal.py prediction.py sample_bn.py

(2)
bn_visualize

(1)
bn_rankcorr

(3) 
cvm_statistics

(4) 
gaussian_distance

(5)
inference

(7)
generate_samples

(6)
conditional_margins_hist

(8)
sample_based_conditioning

Figure 3.7: PyBanshee structure. Functions (1) to (5) correspond to the main functions of the previous MATLAB
release. Changes were made in functions (2), (4), and (5) (boxes filled in light-blue) to add feature (v), feature (ii),
and feature (i) correspondingly. Functions (6), (7), and (8) (boxes filled in light-grey) correspond to the newly
added functions (features (v), (iii) and (iv) respectively).

For more detailed information on the functions, illustrative examples, and their corre-
sponding scripts, the reader is referred to the original sources [47, 48, 73].

3.6 Return periods of gross vehicle weights
The Mexican Ministry of Communications and Transports and the Mexican Institute of
Transport (IMT) suggest a return period for the road bridge design loads of 50 years
[92]. Likewise, in the traffic road models for road bridges, load model one (LM1), and
load model two (LM2) [93] a characteristic value of a 1000-year return period for traffic
loads on the main roads in Europe is specified. Therefore, as the Mexican bodies suggest,
estimations of extreme events of gross vehicle weight with a 50-year return period (𝐺𝑉𝑊50).
Additionally, for comparative purposes, the 𝐺𝑉𝑊 with a 1000-year return period (𝐺𝑉𝑊100)
is also presented. Assumptions are made for the calculation of extreme loads based on
254 working days per year, excluding weekends and holidays. Data for 450 days are
computed and extrapolated to determine the return periods of interest as per CS. Extreme
value theory has been widely used to assess extreme events in many areas of application,
including recently, machine learning, environmental incidents and risk assessment [94–
96]. Regarding traffic loads, extreme value projections have been extensively used (see
[97–99] for example). For this work, the conventional generalized extreme value approach
[100, 101] is used. The 450 days per CS were filtered and only the block maximum is
retained. A block length of one day is used, i.e., the maximum gross vehicle weight per day
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and per CS was retained. The daily maxima selection responds to a limitation on the data
available. Follow-up research could use monthly or yearly maxima (if available) or a peak
over-threshold approach to construct the distribution of extremes.

The tail of the distribution for the determination of extreme vehicle events is of particu-
lar interest. Furthermore, to avoid unrealistic estimates, the subset extrapolation averaging
(SEA) approach [102] was used. A representative subset of 120 gross vehicle weight daily
maxima observations per counting station 𝑐 (𝐺𝑉𝑊𝑑,𝑐) was randomly sampled from the
computed synthetic data. In principle, with 120 observations, 𝐺𝑉𝑊𝑑,𝑐 would be represen-
tative of the computed 450 days of synthetic observations. Later, the subset is fitted and
extrapolation is performed to estimate the characteristic values 𝐺𝑉𝑊50,𝑐 and 𝐺𝑉𝑊1000,𝑐 .
Regardless, to reduce the potentially poor performance of extrapolation, subsetting was
performed by fitting and extrapolation steps 30 times (each time with different random
sampled 𝐺𝑉𝑊𝑑,𝑐). Therefore, the characteristic values reported in this work are the ones
corresponding to the 50th percentile of 𝐺𝑉𝑊50,𝑐 and 𝐺𝑉𝑊1000,𝑐 distributions.

To find the statistical distribution that “best" fits the empirical distributions the Akaike
Information Criterion (AIC) measure is used. AIC values for different parametric distri-
butions varied significantly between counting stations. On average, the AIC value was
the lowest for the generalized extreme value (GEV) distribution. However, extrapolations
performed using this distribution gave unrealistically large gross vehicle weights for several
stations. Considering that the outcome of an extrapolation is highly dependent on the
distribution type, to improve the fitting procedure the truncation of the likelihood [103] is
chosen to find the parameters and distributions to better describe the data. This is done
by selecting a truncated gross vehicle weight 𝑔𝑣𝑤0,𝑐 . The choice of 𝑔𝑣𝑤0,𝑐 value is guided
by two considerations: (i) the larger the truncated value, the better the found distribution
will accurately describe the tail of the frequency distribution and (ii) the smaller the trun-
cated load, the more data is involved in the tail analysis and the smaller the uncertainty
in the found distribution parameters. First, the data in 𝐺𝑉𝑊𝑑,𝑐 = 𝑔𝑣𝑤1,𝑐 , 𝑔𝑣𝑤2,𝑐 , ..., 𝑔𝑣𝑤𝑚,𝑐
is rearranged so that: 𝑔𝑣𝑤1,𝑐 , ..., 𝑔𝑣𝑤𝑙,𝑐 ≤ 𝑔𝑣𝑤0,𝑐 and 𝑔𝑣𝑤𝑙+1,𝑐 , ..., 𝑔𝑣𝑤𝑚,𝑐 > 𝑔𝑣𝑤0,𝑐 . Now, the
likelihood function of the sample 𝑔𝑣𝑤𝑐 can be written as follows:

𝐿𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤𝑐 ;a𝑐) =
{
𝐹𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤0,𝑐 ;a𝑐)

}𝑙
𝑚
∏
ℎ=𝑙+1

𝑓𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤𝑐,ℎ;a𝑐) (3.1)

where a𝑐 is the parameter vector of the distribution per counting station 𝑐, 𝑚 the is
the number of total gross vehicle weights in the sample. The first factor in the right-hand
term of the Equation (4.3) (

{
𝐹𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤0,𝑐 ;a𝑐)

}𝑙) means that for values smaller than 𝑔𝑣𝑤0,𝑐
we only include the probability that they are smaller than 𝑔𝑣𝑤0,𝑐 . In the other hand, the
second factor (∏𝑚

ℎ=𝑙+1 𝑓𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤𝑐,ℎ;a𝑐)) means that for values greater or equal than 𝑔𝑣𝑤0,𝑐
only their probability density is included. For mathematical convenience, the logarithm is
used instead of the likelihood itself, which is calculated according to Equation (3.2). The
logarithm of the likelihood is monotonically increasing with the likelihood itself, so the
maximum likelihood estimator for a𝑐 can also be determined by maximizing the logarithm
of the likelihood. This method is used in [59] and in [104] to advise the Dutch authorities
regarding overloaded vehicles.
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log𝐿𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤𝑐 ;a𝑐) = 𝑙 log𝐹𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤0,𝑐 ;a𝑐)+
𝑚
∑

ℎ=𝑘+1
log𝑓𝑔𝑣𝑤𝑐 (𝑔𝑣𝑤𝑐,ℎ;a𝑐) (3.2)

Two types of extreme value distributions are considered, the Gumbel and the Weibull
distribution. A truncated value 𝑔𝑣𝑤0,𝑐 that corresponds to the 95th percentile of 𝐺𝑉𝑊𝑑,𝑐 is
used. For each distribution type, the maximum likelihood estimator of the parameters is
determined. In general, for the counting stations included in this study, the “truncated"
Gumbel performs better compared to the “truncated" Weibull and GEV distributions. As
an example, Figure 3.8 show the fitted Gumbel, Weibull, GEV, and “truncated" Gumbel
distributions comparison for one randomly sampled subset of the synthetic observations
of CS Veracruz (𝑐 = 1567, presented in Section 3.4.2). Notice that for this particular case,
the GEV and Weibull distributions provide larger characteristic gross vehicle weights.
In contrast, the “regular" Gumbel fit produces significantly lower characteristic vehicle
weights. The “best" fit is provided by the “truncated" Gumbel distribution as a function of
the truncated value 𝑔𝑣𝑤0,1567 = 1064.63 kN.

Figure 3.8: Exceedance probability plot comparison. In blue, the gross vehicle weight fitted distribution as a
function of a 𝑔𝑣𝑤0,𝑐 = 1064.63 kN. The triangle marker represents the extrapolated value that corresponds to a
𝑔𝑣𝑤 with a 50-year return period. The square marker represents the extrapolated value that corresponds to a 𝑔𝑣𝑤
with a 1000-year return period.

Additionally, Figure 3.9 shows the characteristic value distribution resulting from the
SEA approach and their respective reported characteristic values, 𝑔𝑣𝑤50,1567 = 1190.0 kN
and 𝑔𝑣𝑤1000,1567 = 1215.0 kN. Figure B.3.1 presents a simple sensitivity analysis on SEA
in terms of the number of extrapolations performed. In this case, for 𝐺𝑉𝑊50,1567, the
difference between the reported value estimated with a 30 times extrapolation averaging
and 500 times is around 0.42% while compared to the 1500 times is 0.33%. Based on these
results, performing 30 times the extrapolation step does not affect drastically the results and
reduces the computational cost. As has been noted, the subset and extrapolation averaging
approach is performed on each of the counting stations. Hence, the characteristic values
reported in the next section are the result of 30x1777 fitted distributions.
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(a) (b)

Figure 3.9: Empirical cumulative distribution of computed 𝐺𝑉𝑊50,1567 and 𝐺𝑉𝑊1000,1567 values for Veracruz CS.
The red line represents the 50th percentile (reported value). (a) Distribution of 𝐺𝑉𝑊50,1567 values (b) Distribution
of 𝐺𝑉𝑊1000,1567 values.

3.7 Results
3.7.1 Mapping extreme gross vehicle weights in Mexico
Following the procedures described in Sections 3.4.2 and 3.6, synthetic observations and
extreme gross vehicle weights have been estimated for 1777 studied counting stations. As a
result, the distributions 𝐺𝑉𝑊50 and 𝐺𝑉𝑊1000 represent the characteristic values of interests
for 𝑔𝑣𝑤s with 50 and 1000-year return periods. A summary of the estimated gross vehicle
weights can be found in Table 3.9. The data is grouped into seven 𝑔𝑣𝑤 classes according
to the 5th, 15th, 25th, 50th, 75th, and 95th percentiles of the empirical distribution of
characteristic gross vehicle weight with a 1000-year return period. The first column of
Table 3.9 represents the 𝑔𝑣𝑤 interval of each one of the classes, and the second and third
columns represent the lower bound (LB) and the upper bound (UB) of the corresponding
class in kN. The fourth column shows the number of counting stations (No of CSs) with a
120-day return period estimated extreme gross vehicle weight within the LB-UB interval.
Similarly, in columns five and six the number of CSs for 𝐺𝑉𝑊50 and 𝐺𝑉𝑊1000 is presented.
In general, around 80% of the CS has 𝑔𝑣𝑤50 above 980 kN (100 tons). This is to be expected
because, according to the EECAN database, the median value of the maximum gross vehicle
weight observed in all studied survey stations corresponds to 964 kN. Additionally, as
reported in [105, 106] trucks with GVW over 1000 kN were recorded in central Mexico
(Irapuato – La Piedad highway). Notice that 29 stations will have values that will surpass
1258 kN (column 5 in Table 3.9) for return periods of 50 years, while for return periods
of 1000 years, 86 stations will surpass the P95 percentile (column 6 in Table 3.9). This
represents 1.63% and 4.83% of the stations respectively.

Figure 3.10 shows the map of the computed 𝑔𝑣𝑤50 per counting station. The histogram
of frequencies for 50-year return period vehicular weight across the whole country is
included in the upper right corner of the map. A similar map for 𝐺𝑉𝑊1000 is presented in
Figure B.4.2. Additionally, the corresponding interactive web map can be found at https://
mike-mendoza.github.io/extreme_gvw_mexico. The open-source Geographic Information
System (GIS) software QGIS 3.10.14 was used to produce the maps and to perform the

https://mike-mendoza.github.io/extreme_gvw_mexico
https://mike-mendoza.github.io/extreme_gvw_mexico
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Table 3.9: Number of counting stations per 𝑔𝑣𝑤 class and per characteristic value

Class LU [kN] UB [kN]
𝐺𝑉𝑊50 𝐺𝑉𝑊1000

No. of CSs No. of CSs

𝑔𝑣𝑤min < 𝑔𝑣𝑤 ≤ 𝑃5 342 772 106 90
𝑃5 < 𝑔𝑣𝑤 ≤ 𝑃15 772 960 222 177
𝑃15 < 𝑔𝑣𝑤 ≤ 𝑃25 960 1022 197 178
𝑃25 < 𝑔𝑣𝑤 ≤ 𝑃50 1022 1131 546 443
𝑃50 < 𝑔𝑣𝑤 ≤ 𝑃75 1131 1190 433 446
𝑃75 < 𝑔𝑣𝑤 ≤ 𝑃95 1190 1258 244 357
𝑃95 < 𝑔𝑣𝑤 ≤ 𝑔𝑣𝑤max 1258 1333 29 86

spatial analysis of extreme gross vehicle weights. Regarding the map in Figure 3.10, simple
geometric markers (circles) were chosen for representing individual counting stations to
increase legibility. The colours of the geometric markers used to symbolize the seven 𝑔𝑣𝑤
classes of Table 3.9 are in accordance with the colour code provided by the inverted spectral
cpt-city colour ramp. As can be seen in Figure 3.10, two groups are clearly distinctive the
lightest and the heaviest heavy vehicles. The lightest heavy vehicles (up to 𝑔𝑣𝑤 772 kN,
blue circles) are found on the major highway corridors Del Pacf́ico located on the Pacific
coast and Transpeninsular Baja California in the Baja California peninsula in northwestern
Mexico. On the other hand, the heaviest heavy vehicles (𝑔𝑣𝑤 above 1258 kN, red dots)
are mostly concentrated in the major highways corridors México —Nuevo Laredo, Piedras
Negras, México —Puebla, Progreso and Manzanillo —Tampico, Lazaro Cardenas. These pass
through the states of Veracruz, Puebla, México, Querétaro, Guanajuato, San Luis Potosí,
Colima and Jalisco.

A kernel density map is produced to represent the global trend of the heaviest gross
vehicle weights with a 50-year return period (HGVW50, those above 1190 kN). The map
was created at 1 km2 grid cells, with a bandwidth of 100 km, determined by kernel den-
sity interpolation using a quartic kernel shape and weighted by the number of observed
T3S2R4 vehicles per CS. As a result, Figure 3.11 shows a heat map of the concentration
of statistically heaviest vehicle type (T3S2R4) compared with the estimated HGVW50. As
can be seen, the majority of the counting stations with a 𝑔𝑣𝑤 > 1190 kN follow the paths
of the hotspots. Important clusters of T3S2R4s were formed in the central region, while
some less intense clusters were emerging on the Pacific coast and Baja California regions.

Locations with a higher proportion of heavy vehicles in their traffic volume are expected
to suffer more significant damage to their road infrastructure. These observations are
important because they show that the method is able to detect trends in extreme gross
vehicle weights for the counting points considered in this study.

3.7.2 Discussion
The analysis of the extreme gross vehicle weights by major highway corridor needs at first
an overview of corridor-specific extreme 𝐺𝑉𝑊 distributions. Thus, additional analyses
were performed after dividing the study counting stations into fifteen groups (each group
corresponds to one major highway corridor). Let ℎ = {1,2,3, ...15} be a set of indices
corresponding to the fifteen major highway corridors in accordance with the enumeration
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Figure 3.10: Gross vehicle weight [kN] for a 50-year return period.
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Figure 3.11: T3S2R4 heat map compared to the heaviest 𝐺𝑉𝑊50.
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presented Figure 3.2. To identify hazardous locations, corridor-specific percentiles (5th,
25th, 50th, 75th and 95th) of the extreme gross vehicle weights empirical distributions
𝐺𝑉𝑊 ℎ

50 and 𝐺𝑉𝑊 ℎ
100 are computed. Then, 𝑔𝑣𝑤 values that lie at the upper extremes of

each corridor-specific distribution (the 95th percentiles) are analysed. This is because
the distribution of extreme gross vehicle weights for a given MHC tends to be negatively
skewed. Hence, using mean values for analysis will provide a deceitful insight compared
to an analysis carried out with extreme values. In particular, the 95th percentile of the
gross vehicle weight with a 50-year return period (𝐺𝑉𝑊 ℎ

50,P95) distributions ranges from
1064.46 kN to 1266.87 kN. It is highest in MHCs México —Nuevo Laredo, Piedras Negras
(𝑔𝑣𝑤2

50,P95 = 1266.87 kN) and México —Puebla, Progreso (𝑔𝑣𝑤11
50,P95 = 1263.35 kN). As the

map presented in Figure 3.10 suggests, the lowest values of 𝐺𝑉𝑊 ℎ
50,P95 can be found in the

major highway corridors Del Pacífico with 𝑔𝑣𝑤15
50,P95 = 1122.70 kN and Transpeninsular Baja

California with 𝑔𝑣𝑤6
50,P95 = 1064.46 kN. The latter represents a difference of 16% compared

with the 𝑔𝑣𝑤2
50,P95 of the México —Nuevo Laredo, Piedras Negras corridor. Similar behaviour

can be observed when comparing the computed 95th percentiles of the corridor-specific
𝑔𝑣𝑤 distributions with a return period of 1000 years. The reader can find the corridor-
specific percentiles for 50-, and 1000-year sorted by the corresponding 95th percentile in
Tables B.4.1 and B.4.2.

For 1000-year events, 𝑔𝑣𝑤1000,P95 range from 1086.75 kN to 1293.36 kN. Overall an aver-
age increase of 2.24% is expected when comparing 𝑔𝑣𝑤50,P95 with 𝑔𝑣𝑤1000,P95. The biggest
increase (+2.91%) could be found in the major highway corridor Del Pacífico which has a
𝑔𝑣𝑤15

50,P95 = 1122.7 kN, this value increases to 𝑔𝑣𝑤15
1000,P95 = 1155.43 kN. As an illustration,

Figure 3.12 shows the computed corridor-specific percentiles of 𝐺𝑉𝑊 ℎ
50. The red markers

in Figure 3.12 represents the 𝑔𝑣𝑤ℎ
1000,P95 values. From the discussion in this section, it is

shown that México —Nuevo Laredo, Piedras Negras and México —Puebla, Progreso major
highway corridors present the heaviest heavy vehicles events than the other corridors.

Figure 3.12: 𝐺𝑉𝑊 comparison between the fifteen major highway corridors of Mexico
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3.8 Conclusions
This chapter developed a methodology to identify potentially hazardous locations of
a road network by computing and mapping extreme gross vehicle weights when axle
load information is scarce using data obtained from less-sophisticated traffic counters.
The extreme traffic events were computed using extreme value theory and Gaussian
copula-based Bayesian Network (GCBN) approach. Later, the open-source Geographic
Information System software QGIS was used to produce maps of extreme traffic events.
The methodology was applied to the 15 major highway corridors network of Mexico.

Although the information regarding gross vehicle weight or axle loads is nonexistent
for all the studied counting stations, this chapter deals with this scarcity by presenting the
first GCBN dependence model to generate synthetic axle loads of Mexican heavy vehicles
(GCBN𝐸𝐸𝐶𝐴𝑁 ). The GCBN was quantified using manual axle load measurement of 223
origin destinations surveys conducted from 2002 until 2017. Therefore, the axle loads
derived from GCBN𝐸𝐸𝐶𝐴𝑁 should provide a good approximation to the true distribution of
the heavy vehicles found in the studied counting stations.

More than 180 million synthetic heavy vehicles were computed using 1777 site-specific
GCBNs that correspond to the studied counting stations. Later, extreme value analysis was
performed to estimate the characteristic values of gross vehicle weight with a 50-year return
period (𝐺𝑉𝑊50) and a 1000-year return period (𝐺𝑉𝑊1000) in each counting station. The
analysis was further refined to improve the fitting procedure with a truncated likelihood by
selecting a truncation gross vehicle weight 𝑔𝑣𝑤0,𝑐 that corresponds to the 95th percentile
of daily maxima gross vehicle weight distribution per counting station 𝑐.

In terms of heaviest vehicles, the results indicate that the hazardous locations with
𝐺𝑉𝑊50 > 1190 kN are located primarily on major highway corridors number 2, 3, 7, 9,
and 11 (see Figures 3.2 and 3.11), particularly segments that cross the federal entities:
Aguascalientes, Colima, Guanajuato, Jalisco, México, Nuevo Leon, Puebla, Querétaro,
Tabasco, Tamaulipas and Zacatecas. The same is true when analysing 1000-year events. It
is suggested that future EECAN (Statistic Field Study of Domestic Road Transportation)
studies focus on these regions.

This chapter delivered the first comprehensive spatial analysis and the largest dataset
of Mexico’s extreme gross vehicle weights (or elsewhere in the scientific literature as far as
the authors are aware) with a 50-year and 1000-year return period. This demonstrates the
capability and applicability of the methodology requiring basic information concerning
traffic characteristics. Additionally, a user interface is provided to facilitate the generation
of synthetic axle load observations. It acknowledges the limitations of the data used and
advocates for utilizing WIM systems to obtain additional traffic data. This will lead to more
accurate and reliable results in traffic load analysis.

The methodology presented in this chapter is limited to the investigation of extreme
loads, specifically extreme gross vehicle weights. However, this methodology can be
extended to assist in the investigation of failure mechanisms in bridges. The heaviest
vehicles cannot be interpreted as the most hazardous for bridges without a comprehensive
understanding of specific characteristics. This consideration is particularly relevant in the
context of short-span bridges, where the load effects generated by a group of axles may
present a greater risk than the gross vehicle weight of the truck. In such cases, the presented
methodology can easily be implemented to study other extreme loads, such as extreme
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individual axle loads or extreme truck tandems. Decision-makers can benefit from the
tools and methodologies presented in this chapter, which outline the steps for identifying
locations with the highest extreme load values. This information can significantly aid
in bridge health monitoring. Furthermore, since decision-makers often seek information
about extreme load locations, road network analysis can help identify clusters of areas
with extreme gross vehicle weights. Overall, this methodology for computing and mapping
extreme gross vehicle weights can be applied virtually in any country or road network
where traditional traffic counts are the primary source of traffic data.
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4
Estimating bridge criticality
due to extreme traffic loads

in highway networks

Around the world, an increasing amount of bridge infrastructure is ageing. The resources
involved in the reassessment of existing assets often exceed available resources and many
bridges lack a minimum structural assessment. Therefore, there is a need for comprehensive
and quantitative approaches to assess all the assets in the bridge network to reduce the risk of
collapse, damage to infrastructure, and economic losses. This chapter proposes a methodology
to quantify the structural criticality of bridges at a network level. To accomplish this, long-
run site-specific simulations are conducted using Bayesian Networks and bivariate copulas,
utilizing recorded traffic data obtained from permanent counting stations. To enhance the
dataset, information from Weigh-in-Motion systems from different regions was integrated
through a matching process. Subsequently, the structural response resulting from the simulated
traffic is assessed, and the extreme values of the traffic load effects are obtained for selected
return periods. Site-specific bridge criticality as a performance indicator for traffic load effects
is derived by comparing the extreme load effects with the design load effects. The outcomes are
mapped to facilitate visualization employing an open-source geographic information system
application. To illustrate the application of the methodology, a total of 576 bridges within
a national highway network are investigated, and a comparison with a popular simplified
method is shown. The methodology herein presented can be used to assist in assessing the
condition of a bridge network and prioritizing maintenance and repair activities by identifying
potential bridges subjected to major load stress.

Parts of this chapter have been published verbatim inMendoza-Lugo, M. A., Nogal, M., Morales-Nápoles, O.
(2023). Estimating bridge criticality due to extreme traffic loads in highway networks. Engineering Structures.
doi: https://doi.org/10.1016/j.engstruct.2023.117172

https://doi.org/10.1016/j.engstruct.2023.117172
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4.1 Introduction
The backbone of any country’s transportation system is its national highway networks and
its bridge structures stock. Bridge management systems (BMS) are employed to control
the bridge stock and provide data on the structural performance of bridges. A typical BMS
consists of four modules, the Inventory Module, the Inspection Module, the Maintenance,
Repair and Rehabilitation Module and the Optimisation Module [107]. In many countries,
their Bridge Management Systems (BMSs) are limited to the inventory module (single-
module BMS). As a result, these BMSs are rarely used to make decisions regarding the risk
and reliability of the bridge stock. However, single-module BMSs have revealed that bridge
infrastructure is becoming old and outdated worldwide. Consequently, monitoring bridge
loads, especially vehicular loads, is essential for maintaining bridge safety conditions. The
data obtained fromWIM is essential for many applications such as the calculation of bridge
performance indicators [108, 109]. To compute these performance indicators based on
traffic load monitoring, the primary step involves determining the load effects caused by
the current traffic conditions.

Numerous bridges lack a minimum structural assessment, which should include pro-
cesses such as visual inspection, site-specific traffic assessment, basic numerical models,
examination of structural materials, and documentation review. This assessment serves to
identify early concerns and maintenance needs, allowing bridge owners to prioritize further
interventions based on the findings. Therefore, for bridge management the reassessment
of the entire network is necessary. Information regarding the deterioration state of bridges
and their structural behaviour over time are critical elements for bridge management on a
network scale [110, 111]. For example, recent studies in bridge maintenance strategies, use
deep reinforcement learning (DRL)-based methods [112–114]. The DRL approach facilitates
the selection of improved bridge maintenance strategies through interactive processes. It
can be adjusted to obtain various performance metrics [115]. The inclusion of traffic loads
can serve as one of the input parameters for DRL approaches.

Analyzing traffic load effects on bridges, particularly the extreme values of the load
effects (ELEs) is essential to assess the influence of heavy traffic on bridges. ELEs repre-
sent the maximum forces, usually bending moments and shear forces, experienced by a
bridge during its lifetime. This analysis is crucial for ensuring the safety and reliability
of infrastructure design and maintenance. Various probabilistic methods have been de-
veloped for this purpose, for example in [116] a methodology of extrapolating maximum
load effects based on the level-crossing theory was introduced, [117] presents a Bayesian
framework for predicting non-stationary bridge maximum traffic load effects and [97]
proposes a clustering algorithm based on the generalized extreme value mixture model for
data classification and extreme value extrapolation. However, the most common methods
to estimate traffic ELEs include (i) fitting the Rice formula to the level-crossing rate of
traffic load effects and extrapolating the load effects under the assumption of a stationary
Gaussian process [118, 119]; (ii) the peak-over-threshold method. In which the data above
the threshold is fitted to the Generalised Pareto distribution [29, 120], and (iii) the block
maxima method in which the load effect due to each vehicle is computed and the maximum
values of the selected block of time (usually one day) are selected and fitted to one of the
three extreme value (EV) distributions, i.e., Gumbel, Weibull, and Frechet. The reader is
referred to [121] for a complete overview of the techniques to estimate extreme load effects
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on bridges.
On the other hand, one of the most popular simple methods of computing ELEs on

two-lane bridges is the (extended) Turkstra’s Rule [122, 123]. According to this rule, the
N-year loading event, where N could be any return period in years, is generated when
the N-year truck encounters a more frequent truck, such as the one-month or one-week
truck. Another variation of Turkstra’s rule, as reported by [124], suggests that for bridges
with high lateral distribution, the critical loading event for bending moment involves a
very heavy vehicle, 60% to 80% of 1000-year Gross Vehicle Weight (GVW), in the slow
lane and a moderately heavy vehicle (50 to 60 tons) in the fast lane. In the case of shear
at the supports, the dominant event type is usually a single extremely heavy truck in the
slow lane, 75% to 95% of the 1000-year GVW. Despite its accuracy in specific scenarios,
Turkstra’s Rule has shown significant inaccuracies in other cases [125, 126].

Two main problems exist when studying the effects of traffic loads on bridges at a
network scale. (i) In many locations, WIM systems are not a viable option due to their
elevated costs. Traditional traffic counters are the option when a large volume of traffic
data is needed. The disadvantage of these devices is that axle loads are typically not mea-
sured. (ii) Bridge inventories usually lack detailed information regarding the geometric and
material properties of the bridges. Typically, the information contained in the inventories
is the number of spans, the length of the bridge, and its width. Specific information on
cross-section, material strengths, and steel reinforcement is rarely recorded. These two
problems highlight the need for approaches and methodologies that can overcome the lim-
itations imposed by cost constraints and insufficient inventory information. Furthermore,
when large-scale studies are needed, maps are needed because of their ability to present
summarised information that can be required in the decision-making process. Different
engineering fields such as hydraulic, wind, seismic, and transport engineering [127–130]
have used maps as a useful tool for hazard modelling. However, to the best of the authors’
knowledge, maps of ELEs or load effects performance indicators of a bridge network do
not exist in the scientific literature.

In this chapter, a valuable methodology that allows mapping and estimating the extreme
load effects due to heavy vehicle (HV) traffic is introduced. Our main objective is to evaluate
the structural effect of actual traffic loads in comparison to its effect under the design live
load model provided by the bridge owner. This comparison serves as a means to assess the
criticality of bridges as performance indicators for traffic load effects at the network level.
The specific traffic configuration at each site and the limited information available on single-
module BMSs have been considered. This is of relevance for bridge maintenance strategies
since it can help the development of strategies to prioritise maintenance, especially in
locations or bridge networks in which WIM systems are not the main source of traffic
data. The development of the methodology had a dual purpose: (a) to perform a large-
scale simulation of site-specific truck traffic and compute its effects on corresponding
bridges and (b) to estimate the ELEs of an entire bridge network and perform spatial
analysis using geographic information system (GIS) software. The methodology consists
of four tasks: site-specific traffic simulation, numerical modelling and analysis of bridge
structures, extreme value analysis for ELEs, and bridge criticality computation. To achieve
these objectives, this chapter proposes a simple method that uses Gaussian copula-based
Bayesian Networks to simulate site-specific synthetic observations of HVs, copulas to
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characterize inter-vehicle gaps that will simulate traffic flow and extreme value theory
to estimate ELEs. The methodology presents various favourable attributes, such as the
capability to identify bridges that require more detailed inspections due to their condition
as assessed by the model, a simple conceptualization that is easy to apply and requires only
basic information regarding traffic and bridge characteristics, the flexibility to be applied
to any bridge network, and the ability to help create a more robust single-module BMS.

To illustrate the use of the methodology, the national bridge network of Mexico is
selected. Mexico’s national bridge network is a clear example in which there is no WIM
information available and is bound to a single-module BMS. Therefore, the results of the
applied methodology will allow for easily identifying bridges in need of inspection given
the limited information available. The remaining document is organized as follows. In
Section 4.2 the methodology together with the bridge network case study is presented. The
application of the method for one particular bridge is shown in Section 4.3. The results
regarding all bridges on the example network, and the comparison with the simplified
Turkstra’s Rule method are given in Section 4.4. Finally, in Section 4.5, the conclusions are
drawn.

4.2 Methodology to estimate extreme load effects
and bridge criticality

The aim of this research is to determine and map the extreme load effects and the bridge
criticality arising from traffic loads across a bridge network, where data obtained from
WIM systems is not the principal source. In order to carry out this extensive task, a simple
methodology is presented, shown in Figure 4.1, that can be summarized into four main
tasks. (i) Site-specific traffic simulation; statistically representative synthetic traffic is
simulated based on real traffic data from the study sites by modelling correlations between
the variables of interest (axle loads, inter-axle distances, and inter-vehicle gaps). This
step leverages previous research (see [81, 87, 131]). (ii) Numerical modelling and analysis
of the bridge structures; selected load effects time histories of the bridges under study
are computed by applying the synthetic traffic to a numerical model of the structures.
(iii) Extreme value analysis for extreme load effects; statistical analysis of load effects
time histories by extreme value theory is carried out to characterize extreme events with
selected return periods. (iv) Calculation of the bridge criticality; load effect performance
indicators are derived by comparing the extreme load effects with the design load effects.
In addition, the computed extreme events and bridge criticality are mapped to visually
identified changes, trends, and hot spots that may require attention and support in the
design and implementation of maintenance strategies.

This study is conducted using open-source tools. The analysis is done through Python
programming language, extensively used nowadays. The Python libraries used in this work
(in addition to the main libraries such as NumPy, pandas and SciPy) are PyBanshee [47]
and pyvinecopulib [132] for traffic simulation, PyNite [133] for the computation
of the load effects on bridges and Geopandas [134] to work with the geospatial data.
The outcome maps are implemented using QGIS v3.10 [135], a free and open-source cross-
platform desktop geographic information system (GIS) application. To enhance clarity and
ease the introduction of the methodology, the four tasks will be described in the following
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Figure 4.1: Framework estimating extreme load effects and bridge criticality.

sections, using the case study as a context.

4.2.1 Case study: Major highway corridors bridge network of
Mexico

The most important elements of the national road network of Mexico are the toll-free
fifteen major highway corridors (MHC) which extend over 20000 km approximately and
account for over 55% of the country’s highway traffic flow. The toll-free MHC network is
managed by the Ministry of Communications and Transportation (SCT, for its acronym in
Spanish). The fifteen MHC are shown in Figure 3.2.

Mexican bridge system
Mexico has a system for bridge management, conservation, and maintenance called the
Mexican Bridges System (SIPUMEX, for its acronym in Spanish). This system logs the
structural state of individual assets in order to program maintenance work. The SIPUMEX
database [136], provides general information, such as the name of the bridge, construction
date, total bridge length, number of spans, material, and type of structure. Concerning
traffic data, the database provides design load, annual average daily traffic (AADT), the
vehicle types and the vehicle type distribution that constitutes the traffic flow per bridge.
However, the only reported vehicle types are trucks, buses and normal passenger cars and
no further specification is presented.

For the purpose of this investigation, the filter criteria shown in Table 4.1 is applied.
These criteria have been selected to align with the objectives of the presented study. Firstly,
bridges situated on the fifteen MHCs under examination (filter 1) are included. Secondly,
according to SCT standards [137], a bridge is defined as having a minimum span length of
6 meters (filter 2). Furthermore, the study focuses on heavy traffic loads, hence only road
bridges are considered (filter 3). This criterion aligns with SCT standards, which stipulate a
minimum carriage width of 4 meters for road bridges (filter 4) [137]. It is important to note
that SCT manages only Overpass bridges (filter 5). To simplify the structural analysis, only
non-horizontal curved, non-skewed, and concrete bridges (filters 6, 7, 8) are considered.
Additionally, the methodology used to estimate bridge criticality requires bridges with
reported design live loads (filter 9). Finally, the inclusion of the span length criterion was
intended to eliminate any erroneous measurements or inconsistencies within the dataset
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(filter 10). As a result, 576 bridges remained, hereafter referred to as the major highway
corridors bridge database (MHCB).

Table 4.1: Filter criteria to select the bridges under study.

Filter
no. Criteria Number of bridges

remained after the filter

Number of
filtered
bridges

1 Bridges located at the 15 MHC 1776 5828
2 Minimum span length of 6 m 1552 224
3 Road bridges 1416 136
4 Minimum carriageway width of 4 m 1390 26
5 Overpass bridges (PSV for its acronym in Spanish) 1317 73
6 Non-horizontally curved bridges 1222 95
7 Non-skew bridges 801 421
8 Concrete bridges 695 106
9 Bridges with reported design live load 675 20
10 The sum of span lengths should be equal to the total bridge length 576 99

Figure 4.2 shows a general statistical characterization of the MHCB database. Regarding
the age of the structures, around 65% of the bridges (376 bridges) are 50 years old or more,
most of them constructed in 1960 (older than 60 years, see Figure 4.2a). The most frequent
max span length is 6.6 m (Figure 4.2b). Similarly, most of the bridges have a carriage
width of 7 m (two lanes, Figure 4.2c). Approximately, 50% of the bridge structures are
single-span systems, while the other structures consist of multi-span bridges with up to
seventeen spans, out of which 28 are continuous bridges (Figure 4.2d). As can be seen
in Figure 4.2e around 67% of the bridges (387 bridges) were originally designed for load
model HS15-44 (three-axle AASHTO standard HS truck with a gross vehicle weight
(𝐺𝑉𝑊 ) of 24.5 t approximately [138]) or HS20-44 (three-axle AASHTO standard HS
truck with GVW ≈ 32.6 t [138]). The remaining were designed for the Mexican vehicles
T3S3 (three-axle truck plus three-axle semitrailer) and T3S2R4 (three-axle truck plus
two-axle semitrailer plus four-axle trailer). Regarding the condition of the bridges, 234
structures (41%) have a 2 or 1 rating which corresponds to bridges with minor problems
and bridges in good condition (see Figure 4.2f).

Traffic data
As mentioned in Section 4.2.1, information regarding traffic in the SIPUMEX database
is limited. Additionally, the use of WIM systems in Mexico is very scarce [139, 140].
Nevertheless, in an effort to know the yearly traffic trends on the Mexican highway
network, the SCT installed a set of automatic vehicle counters and survey stations in key
locations. As a result, the Mexican authorities publish the two most important traffic data
sources in Mexico: the road data (Datos viales in Spanish) database [141] and the statistic
field study of domestic road transportation (EECAN, for its acronym in Spanish) database
[84], previously described in Sections 3.3.1 and 3.3.2.

4.2.2 Site-specific traffic simulation
In order to generate accurate synthetic traffic data statistically representative of the real
observations, statistical correlations between the variables of interest need to be modelled.
Previous studies such as [29–31], have simulated traffic data using empirical factors, linear
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Figure 4.2: General statistical characterization of the bridges under study.(a) Year: Max = 2008, Min = 1940, Mode
= 1960. (b) Length[m]: Max = 58.1, Min = 6.0, Mode = 6.6. (c) Width[m]: Max = 25.5, Min = 5.5, Mode = 7.0. (d) No.
spans: Max = 17, Min = 1, Mode = 1. (e) Vehicle type: Mode = HS20. (f) Rating: Max = 4, Min = 0, Mode = 2.

correlations, and copulas. These studies focus only on axle loads, some provide fixed
inter-axle distances and in most of them, the correlation between axle loads is not taken
into account. However, it is of interest to modelling GVW, individual axle loads, inter-axle
distances and inter-vehicle gaps. With this aim, the Bayesian Network approach presented
in [131] which is based on previous studies such as [51, 67, 142] and recently used in [143]
is used. This approach is explained in the following sections.

Synthetic heavy vehicles
The GCBNmodelGCBNEECAN developed by [131] (see Section 3.4.1) is used. As the name of
the model suggests, GCBNEECAN allows the generation of synthetic axle load observations
similar to those reported in the EECAN database. The model, originally quantified with
over 750000 HVs, consists of 26 nodes representing individual axle loads of the five HVs
presented in Table 3.1 and 45 arcs corresponding to the (un)conditional rank correlations
between axle loads (see Figure 3.4). The output of the GCBN model is a database (different
every time that the model runs) that contains the variables: vehicle type, gross vehicle
weight and individual axle loads.

One of the limitations of the GBBNEECAN model is that inter-axle distances and inter-
vehicle gaps are not modelled, as information on these variables is not recorded in the
EECAN database or in other available Mexican traffic sources. The most reliable technol-
ogy that delivers loads and wheelbases (inter-axle distances) is WIM, unfortunately, as
mentioned in Section 4.2.1, the use of WIM systems in Mexico is very scarce, and publicly
available WIM data is non-existent. To complement the missing data information from a
Dutch WIM database is used. WIM traffic observations taken on highways A12 (kilometre
point, KP, 42) Woerden, A15 (KP 92) Gorinchem and A16 (KP 41) Gravendeel in April
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2013 constitute the database. It includes information on more than 150000 HVs grouped
into more than 200 vehicle classes according to their WIM codes. This database has been
employed in several studies such as [67, 81, 144, 145].

For a complete overview and details regarding the accuracy of the GCBN model
GCBNEECAN, the reader is referred to the original source [131]. In this source, EECAN
measurements are discussed, including the application of filtering criteria to ensure data
quality and the utilization of Gaussian Mixture distributions to model individual axle loads
to deal with the uncertainty of the measurements. Similarly, for detailed information
regarding specific details and the modelling of dependence and uncertainty in the Dutch
WIM database, the reader is referred to [81].

As the SCT report [146] provides the only reliable source of inter-axle distances for the
five main Mexican heavy vehicles, the Dutch and Mexican vehicles based on the number
of axles, number of consecutive axles, and body configuration have been matched. The
consecutive axles are defined as those with centre distances ranging from 100 cm to 243 cm
apart, as specified in previous literature [147, 148]. For example, the Mexican vehicle T3S2
will correspond to the Dutch WIM code T12O2. For each matched vehicle, inter-axle
distance samples from the WIM data have been selected, which exhibited similar mean
and coefficient of variation as reported in [146]. Then, the Pearson correlation between
inter-axle distances of the matched vehicles is calculated and the resulting values are stored.
Five empirical GCBNs, one for each vehicle type, to generate synthetic samples of inter-axle
distances have been created. As an example, Figure 4.3 shows the GCBN for vehicle type
T3S2, which consists of five nodes representing individual inter-axle distances and four arcs
corresponding to the (un)conditional rank correlations between inter-axle distances. For
each group of axle loads of a particular vehicle type generated with the GCBNEECAN model,
the inter-axle distances are generated using the corresponding inter-axle distance GCBN.
Table C.1.1 presents a comparison between the general statistics mean and coefficient of
variation between the synthetic inter-axle distances and the reported in the SCT study. A
similar approach used for axle space modeling is described in [81].

Figure 4.3: T3S2 Inter-axle distances GCBN. 𝐷𝑖,𝑗 denotes a random variable representing the 𝑗 𝑡ℎ inter-axle
distance of the vehicle type 𝑖 (𝑖 = 3 correspond to vehicle type T3S2). 𝐷𝑖,1 is the distance between the front of
the vehicle and the first axle, 𝐷𝑖,2 is the distance of the first axle to the second, and so on. The arcs correspond to
the (un)conditional rank correlations between individual inter-axle distances.

Inter-vehicle gaps using copulas
The distance between vehicles (gaps) has been studied by many researchers. Some used
standard free-flow models by modelling the distance between stationary vehicles with a
beta distribution (for example see [38, 149]). Others have used advanced techniques, such as
traffic microsimulation based on Intelligent Driver Model [150], which is capable to model
car following or lane changing [151, 152]. These advanced techniques are needed when
conducting detailed and local-scale bridge analyses, such as the performance of hinged
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joints [153]. On the other hand, when a global bridge assessment is conducted, standard
free-flow models can serve to simulate the distance between vehicles and to indicate the
transverse position with the lane where the vehicle is located [152].

For this work, a free-flow traffic pattern is assumed for all lanes of all bridges under
study. This is because the traffic loading congestion effect is usually more characteristic of
long-span bridges [154] and urban studies due to the complexity of the traffic network and
abundant local detours [155]. In order to capture the dependence between gaps [124], a
copula-based approach is used. The copula-based approach can characterize the random
variable inter-vehicle gap by estimating its auto-correlation. This approach has been
used in [51, 142, 143]. Copulas are joint distributions with uniform marginals in [0,1].
Any multivariate joint distribution can be written in terms of a copula that describes the
dependence between the random variables and their corresponding uni-variate marginal
distribution functions [156]. For specific details regarding copula modelling the reader is
referred to [157] and references therein.

Let 𝑌 denote a random variable representing the inter-vehicle gap with distribution 𝐹𝑌 .
Since the time series {𝑌𝑡} , 𝑡 ∈ℕ are the interest, the conditional distribution function of a
bivariate copula 𝐶𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} is given by

𝐻 (𝑦 |𝑦𝑡−1) = 𝑃(𝑌𝑡 ≤ 𝑦𝑡 |𝑌𝑡−1 = 𝑦𝑡−1) = 𝐶𝜃𝑌 (𝐹(𝑦𝑡)|𝐹(𝑦𝑡−1)) (4.1)

where 𝐶𝜃𝑌 (𝐹(𝑦𝑡)|𝐹(𝑦𝑡−1)) is the conditional copula and it would model the order 1 auto-
correlation for the time series of interest. 𝜃𝑌 are the parameters that summarize the
dependence between 𝐹(𝑦𝑡) and 𝐹(𝑦𝑡−1). To model the inter-vehicle gaps the following
assumptions are made: (1) Only HVs are considered, (2) the distance from the HV’s rear to
the front of the subsequent HV is considered, (3) correlations between lanes are not taken
into account, (4) due to the absence of reliable inter-vehicle gap data for Mexico, the Dutch
WIM database from highway A12 (see Section 4.2.2) is used to model the inter-vehicle gaps
and (5) only weekdays are considered. Hence, the vehicle gaps simulation algorithm can
be summarized as follows:

i Select only the weekdays of the month and group each day dataset by hours.

ii Select the first weekday and the vehicle gaps observations of the first hour 𝐹(𝑦𝑡).

iii Fit the suitable copula 𝐶𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)}.

iv Repeat steps ii and iii for the remaining hours of the day and weekdays. Let ℎ𝑟 =
{1,2, ...24} be a set representing hours of a day and 𝑑 = {1,2, ...20} the set that represent
weekdays. Hence, for the study WIM dataset, 480 copulas 𝐶𝑑,ℎ𝑟

𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} for
one lane are quantified.

v Simulate the desired vehicle gaps for the first hour using the conditional copula
according to the best-fitted copula. Use as seed for the first value of the next hour
and the last value of the previous hour.

In total, 960 (2 lanes x 20 weekdays x 24 hrs/day) copulas are quantified Bayesian
information criterion [158] is used to select the best-fit copula. As an example, Table C.2.1
shows the copula fits of weekday 𝑑 = 7 (9 of April 2013). The first column corresponds
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to the hour of the day. The 2nd column corresponds to the copula notation. Columns 3
and 4 to the name of and parameter of the copula correspondingly. The 5th column to
Spearman’s 𝜌 rank correlation [159]. The last column corresponds to the percentage of the
total HVs in one day per hour. Notice that for this particular case, stronger correlations
can be found at the latest hours of the day and the traffic volume is mostly concentrated
between 4:00 hrs and 18:00 hrs. Additionally, Figure 4.4 shows 5 days of HV inter-vehicle
gaps observations. Peaks occur at the end (or beginning) of each day since fewer HVs
circulate in the early hours of the day. It is important to note that traffic densities, and
consequently inter-vehicle gaps, are site-sensitive and can vary significantly based on the
specific characteristics and conditions of each country’s transportation network. However,
for the purpose of demonstrating the methodology presented here and acknowledging
the unique characteristics of the study network, it is pointed out that the traffic volume
of HVs in the study network is lower compared to the Dutch highway A12 WIM location.
Consequently, the results obtained from the analysis may be conservative.
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Figure 4.4: Inter-vehicle gaps time series of observations measured in the WIM station A12 left lane corresponding
to the days 8 to 12 of April 2013.

Traffic simulation
In order to simulate site-specific HV traffic flow for each one of the 576 bridges in the
MHCB, SIPUMEX, EECAN and Datos Viales are merged. First, by using QGIS neighbor
analysis is conducted to find the nearest counting station to each bridge. The resulting
output provides a map of the spatial distribution of the nearest counting stations (298 in
total) to each of the bridges under study. The traffic information provided by the resulting
counting stations is used to simulate the traffic passing by a particular bridge. It should be
noted that the information regarding HV types in the three databases corresponds to the
HV types presented in Table 3.1.

Let {𝑏} = {1,2, ...,576} be a set of indices that correspond to the 576 bridges under
study and {𝑐} = {1,2, ...,298} a set of indices corresponding to the 298 counting stations.
𝐾𝑐 = {1,2, ...,5} a set whose elements represent the number of total HV types registered in
counting station 𝑐. 𝐻 is a set whose elements represent the individual HV types presented
in Table 3.1. The necessary input data to compute site-specific traffic for a bridge 𝑏 are: (i)
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the number of HV types at the closest counting station of the study bridge 𝑏 (𝐾 𝑏
𝑐 ), (ii) the

subset 𝐼 ⊆ 𝐻 , with 𝐾𝑐 elements, registered in 𝑐 (𝐼 𝑏𝑐 ), (iii) the proportion of the traffic flow
per HV type 𝑖 ∈ 𝐼 (𝑝𝑏𝑐,𝑖) and, (iv) the annual average daily truck traffic (AADTT𝑏

𝑐 ). Therefore,
a site-specific GCBN𝑏

𝑐 model is quantified using only the 𝐾 𝑏
𝑐 vehicle types registered in the

counting station 𝑐 travelling over bridge 𝑏, i.e, GCBN𝑏
𝑐 =GCBNEECAN (𝐾 𝑏

𝑐 ; 𝐼 𝑏𝑐 ;𝑝𝑏𝑐,𝑖;AADTT𝑏
𝑐).

𝑁 𝑏
𝑐 =∑𝐾𝑏

𝑐
1 (AADTT𝑏

𝑐 ⋅ 𝑝𝑏𝑐,𝑖) un-conditional samples using the site-specific GCBN𝑏
𝑐 have been

computed. The output of the model is the site-specific synthetic axle load observations
for the bridge of interest. Finally, for each vehicle generated, inter-axle distances and
inter-vehicle gaps are assigned as described in Section 4.2.2. The output database contains
𝑘 = 1, ...,𝑁 𝑏

𝑐 HVs with the attributes: vehicle type, gross vehicle weight, individual axle
loads, individual inter axle distances and the gaps between vehicle 𝑘 and vehicle 𝑘−1.

4.2.3 Numerical modelling and analysis of the bridge struc-
tures

In this work, two load effects are considered, i.e., the absolute bending moment (𝑀 in
kNm) and the absolute shear force (𝑉 in kN). For computational efficiency purposes, the
methodology to analyse the bridge structures and determine the load effects is based on
the method of influence lines. This approach is a conventional engineering technique that
employs influence lines to illustrate how a load effect, such as moment, shear force, reaction,
or deflection, changes at a specific point or component of a structure as a concentrated
loading action moves across the structure. In essence, an influence line visually depicts
the variation of the load effect as the concentrated loading action traverses the structure
[160, 161].

To perform the structural analysis of the 576 bridges, the following assumptions are
made: (1) the bridges are modelled as a series of interconnected beams,(2) the analysis
is based on the principles of the Euler-Bernoulli beam theory, (3) to address the lateral
distribution of loads, the weights of trucks travelling in the fast lane are adjusted using lane
factors. Regarding bending moments, an equal contribution is considered from each lane,
which is represented by a factor of 1. As for shear force, a factor of 0.45 is applied based on
the references [124, 162], (4) second-order effects are neglected, (5) dynamic effects due to
moving loads are neglected and (6) independent streams of synthetic traffic are generated
for each lane [162]. It is important to note that the numerical modelling to perform the
structural analysis is based on the linear assumption. However, the design of a bridge is
based on the non-linear assumption in order to capture more complex behaviour such as
fatigue and buckling.

The procedure for computing the load effects is as follows. First, a grid is specified in
each bridge with a grid size of 0.2 m, resulting in a total of ⌈𝐿𝑏/0.2⌋+1 individual positions
along the structures, where 𝐿𝑏 is the total length in m of the bridge 𝑏. The number of
individual positions varies since each bridge has different lengths. A discrete unit load is
applied on each position along the bridge to compute the resulting bending moments and
shear forces cases. These results are gathered in two matrices 𝐔𝑏

𝑀 and 𝐔𝑏
𝑉 that represent the

bending moments and the shear forces caused by the point load in each point on the grid
along bridge 𝑏. By using the superposition principle, each resulting matrix is multiplied
by the axle loads vector 𝐀 of each convoy of vehicles (or single vehicle). Hence, the axle
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loads can be acting in any of the grid points. For each situation, the unit matrices are
multiplied by the value of the moving axle loads. Finally, the sum of the multiplication
leads to the load effect for the particular convoy or single vehicle driving through bridge 𝑏
(𝐌 = 𝐔𝑏

𝑀 ⋅𝐀 for example). The envelope of all load effects caused by each vehicle provides
the maximum load effects.

4.2.4 Extreme value analysis for extreme load effects
Previous studies have provided an assessment of statistical approaches for evaluating
load effects using different quantities of data (see for example [163–165]). One of the
most comprehensive studies in this regard was conducted by [121]. In this study, seven
statistical inference methods, including Peaks-Over-Threshold, Generalized Extreme Value
(GEV), Box–Cox, Normal, Rice formula, Bayesian Inference, and Predictive Likelihood, were
critically reviewed. The results of this study revealed that, among these seven methods, the
approach of fitting block-maximum data to a GEV distribution is the most widely employed
and accepted technique for analyzing bridge traffic loading, typically using a one-day block
size.

The block maxima approach has a drawback because it considers only one extreme
event in each time block, potentially leading to the omission of significant data. On the
other hand, this method offers numerous advantages for load effects analysis. It stands
out as the default choice, appreciated for its practicality in capturing daily variations and
versatility in handling various scenarios. The main advantage is the time referencing
of the data, a crucial requirement when computing lifetime probabilities of exceedance,
leading to effectiveness in estimating characteristic values in simple and complex scenarios.
Consequently, extreme value analysis based on the block maxima method is used in this
work to estimate the ELEs on the bridges under investigation.

Assuming that the block maxima load effects are independent, the block maxima is fitted
to one of the extreme value distributions described in Equation (4.2), which corresponds to
the GEV distribution, where 𝜇 is the location parameter, 𝜎 is the scale parameter and 𝜉 is
the shape parameter. There are three types of extreme value distributions characterized by
the parameter 𝜉 . When the parameter 𝜉 equals 0, the distribution is a Gumbel distribution,
when 𝜉 is greater than 0, it is a Fréchet, and when 𝜉 is less than 0, it is a Weibull distribution
[166]. As noted by [167], finite or bounded variables cannot have a maximal domain of
attraction of Fréchet type. Given that the load effects cannot take infinite values, only
Gumbel or Weibull distributions are possible [121]. Therefore, these two types of extreme
value distributions are considered.

𝐹(𝑥;𝜇,𝜎, 𝜉) =
⎧⎪⎪
⎨⎪⎪⎩

exp(−(1+ 𝜉 (
𝑥−𝜇
𝜎 )

− 1
𝜉

)) , if 𝜉 ≠ 0

exp(−exp(−
𝑥−𝜇
𝜎 )) , if 𝜉 = 0

(4.2)

For this work, the load effect data for each bridge are grouped into blocks of one day
and the maximum value in each block is recorded (daily maxima). Maximum likelihood
estimation is the preferred method for estimating the parameters that better describe the
daily maxima data. In addition, to find the parameters and distributions, the likelihood
function has been truncated [103, 168]. This is done by selecting a truncated load effect
value 𝑥0. The choice of 𝑥0 is guided by two considerations: (i) the larger the truncated
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value, the better the found distribution will accurately describe the tail of the frequency
distribution and (ii) the smaller the truncated load, the more data will be used in the part of
the likelihood function that accounts for the tail. The data in x = {𝑥1, 𝑥2, ..., 𝑥𝑛} is rearranged
so that: {𝑥1, ..., 𝑥𝑙}≤ 𝑥0 and {𝑥𝑙+1, ..., 𝑥𝑛}> 𝑥0. The truncated-likelihood function of the sample
x can be written according to Equation (4.3).

𝐿𝑥(𝑥;a) = {𝐹𝑥(𝑥0;a)}𝑙
𝑛

∏
ℎ=𝑙+1

𝑓𝑥(𝑥ℎ;a) (4.3)

where a is the parameter vector of the distribution. The vector of parameters can be
determined as usually by maximizing the logarithm of the likelihood. The first factor in
the right-hand term of the Equation (4.3) ({𝐹𝑥(𝑥0;a)}𝑙) means that for values smaller than
𝑥0, the probability that they are smaller or equal than 𝑥0 are only considered. On the other
hand, the second factor (∏𝑛

ℎ=𝑙+1 𝑓𝑥(𝑥,ℎ;a)) means that for values greater or equal to 𝑥0, the
usual approach to likelihood estimation using the probability density is taken. This method
is also used in Section 3.6. It is noted that a truncation value is set that corresponds to the
upper nearest integer ⌈2√𝑛⌋ observation, i.e., 𝑥0 = 𝑥⌈2√𝑛⌋ where 𝑛 is the total number of
observations. A similar approach is used in [169, 170].

It is noted that, for the estimation of ELEs, it is assumed that traffic follows a stationary
process. This assumption is based on previous studies, for example, [117, 171, 172], which
show that the increase in traffic volume and the proportion of heavy trucks have an
insignificant impact on the predicted ELEs. Specifically, at a 20-year return period, the
increase in predicted ELEs is insignificant. Whereas, at a 75-year return period, the
increase is generally moderate. Additionally, when using the GEV distribution to model the
maximum LE values, the shape and scale parameters do not vary significantly over time
despite traffic growth. Sampling-based extreme value analysis is the most straightforward
approach for accurate time-variant reliability assessment [173].

To sum up, extreme value analysis is performed to estimate the ELEs. Six parametric
distribution fits are applied to the daily maxima load effects per bridge. These distribu-
tions are Gumbel (Gumbel), two-parameters Weibull (Weibull2), three-parameters Weibull
(Weibull3); and the corresponding fitted distributions with truncated likelihood function
of 𝑥0, Gumbel𝑥0 ,Weibull2;𝑥0 andWeibull3;𝑥0

4.2.5 Bridge criticality
The criticality of the bridge, as defined in this chapter in Equation (4.4), refers to the ratio
(𝑟) between the extreme traffic load effect observed (LE𝑂) and the characteristic load effect
induced by the design live load model (LE𝐷). Consequently, 𝑟 can serve as a meaningful
load effect bridge performance indicator. For example, in the case study mentioned earlier
in Section 4.2.1, it was found that the design of 414 bridges took into account the AASHTO
standards for live loads [138], specifically the HS15-44 and HS20-44 vehicles. These
vehicles consist of a semitrailer truck with a gross vehicle weight of 240.2 kN and 320.2 kN,
respectively, or an equivalent lane load (see Figure C.3.4a). To compute the characteristic
values, the type of loading to be used (truckload or lane load) will be the one that generates
the maximum load effect. The remaining 162 bridge structures were designed using the
Mexican six-axle HVs T3-S3 and nine-axle HV T3-S2-R4 with their corresponding
maximum allowable loads established in [147]. It is worth mentioning that these live loads
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are based neither on probabilistic analysis of traffic loads nor on bridge structural capacity
but on road capacity.

In order to identify the critical bridges in the network due to traffic loads, an analytical
comparison is conducted between the actual ELEs and the characteristic values resulting
from the design live loads. Locations where a value of 𝑟 exceeds one indicate that the
estimated ELE surpasses the characteristic value specified by the corresponding live load
model. In such cases, the bridges are considered critical due to the potential for load
exceedance. It is important to note that, in the context of this research, "critical" bridges
do not refer to the overall safety of the structure. The bridge performance indicator 𝑟
(bridge criticality) is not necessarily linked to the risk of failure of the structure. While
this indicator and failure risk might be correlated in reinforced concrete bridges, this may
not be true for prestressed concrete bridges, as they typically have a large capacity to
sustain additional bending load effects after reaching the ultimate design bending moment.
Hence, 𝑟 is not intended to be interpreted as a safety factor; rather, it provides valuable
information for comparing the extreme traffic load effects caused by site-specific traffic
with those caused by the reported design live load model.

𝑟 =
LE𝑂
LE𝐷

(4.4)

4.3 Illustrative example application to a specific
bridge

The proposed framework is applied to the entireMHCB network. For the sake of illustration,
specific results for a selected bridge are presented in this section. Results at a network level
are discussed in Section 4.4. The bridge El Rosario I is studied in the following illustrative
example application. The characteristics of the traffic data for the site are first described.
Site-specific traffic simulation is next performed. Later the load effects are computed and
finally, the load effects are analysed and ELEs are estimated.

According to the SIPUMEX database, El Rosario I is a two-lane nine spans continuous
bridgewith a total length of 264.4m. It has aminimum span length of 25.8m and amaximum
span length of 30.8 m. Built in 1982, the bridge is located in the state of Baja California Sur
on the MHC number 6 Transpeninsular Baja California. The nearest counting station is
Rosario de Arriba located around 4 km west over the same MHC. The annual average daily
truck traffic that circulates by this station is 444 HVs with the following configuration:
45% C2, 9.7% C3, 43% T3S2, 1.4% T3S3 and 0.9% T3S3R4. This information serves
as input for the GCBN model. According to the notation introduced in Section 4.2.2, in
El Rosario I bridge (𝑏 = 9), with information of the counting station Rosario de Arriba
(𝑐 = 60), the five vehicle types presented in Table 3.1 are registered, i.e., 𝐾 9

60 = 5. Hence the
vehicle types that conform to the traffic flow are 𝐼 960 = {C2, C3, T3S2, T3S3, T3S2R4}.
Their corresponding proportions 𝑝960,𝑖 of the total vehicles are: 𝑝960,1 = 0.45, 𝑝960,2 = 0.097,
𝑝960,3 = 0.43, 𝑝960,4 = 0.014 and 𝑝960,5 = 0.009. The corresponding site-specific direct acyclic
graph that represents the GCBN9

60 model is shown in Figure 3.4.
A total of 𝑁 9

60 = AADTT9
60 = 444 un-conditional samples using the GCBN9

60 model
have been coputed. The inter-vehicle gaps are simulated using the approach described in
Section 4.2.2. The output is a database of the synthetic site-specific traffic load observations
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(different every time the model is run). Table C.3.1 presents the generated synthetic traffic of
one day and Figure C.3.1 shows the corresponding bar plot of the number of HVs simulated
per hour for lane 1 of the bridge El Rosario I.

Once the synthetic traffic is computed, the load effects of interest for each vehicle are
calculated according to the procedure described in Section 4.2.3 and the envelope of the
results is found. The absolute maximum values of the bending moments and shear forces
envelopes per day obtained are stored. In total 200 days are simulated. Therefore 200
daily maxima load effects are obtained. The resulting envelopes of one day of the bending
moments are presented in Figure 4.5.
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Figure 4.5: Load effects envelopes for the continuous bridge El Rosario I corresponding to one day of traffic
simulation. Envelope of bending moments.

As described in Section 4.2.4, the ELEs are computed with a return period of 50 years
and 1000 years according to the specifications [174, 175] correspondingly. As stated in
[176], it is considered that there are 254 working days excluding weekends and holidays
in Mexico. The daily absolute maxima load effects are fitted to the selected parametric
distributions. Figure 4.6 shows the comparison of the fitted distributions presented in
Section 4.2.4 for the absolute bending moment for bridge El Rosario I. The parametric
distributionsWeibull2 and Gumbel produce significantly lower characteristic values for
this particular case. A visual inspection suggests that the best fit is provided either by
Gumbel𝑥0 or Weibull3;𝑥0 with 𝑥0 = 2838.4 kNm. However, using the Akaike Information
Criterion (AIC) [177] to measure the quality of the fitting,Weibul3 (black dashed line in
Figure 4.6) is the selected distribution that better describes the data. The estimated extreme
bending moments are 3614 kNm and 3766 kNm with 50-year (𝑀50) and 1000-year (𝑀1000)
return periods, respectively. When analysing the absolute shear force for the same bridge,
the best fit is provided byWibull2;𝑥0 with 𝑥0 = 681.7 kN. The estimated extreme shear forces
are 928 kN and 1011 kN with 50-year (𝑉50) and 1000-year (𝑉1000) return periods accordingly.

Finally, the load effect bridge performance indicator (Section 4.2.5), denoted as 𝑟 is
computed to evaluate the performance of the bridge under consideration. According to the
SIPUMEX database, for the design of the bridge, the AASHTO standard truck HS20-44
model is used as the representative design live load model. The maximum bending moment
induced by the design live load model (𝑀𝐷) amounts to 4501.4 kNm. Additionally, the
maximum shear force caused by the same design live load model (𝑉𝐷) corresponds to
928.1 kN. Subsequently, the load effect performance indicator for the bending moment,
considering a 50-year return period is 𝑀50,𝑟 = 𝑀50/𝑀𝐷 = 3614/4501 = 0.80. Similarly,
the load effect performance indicator for the shear force is 𝑉50,𝑟 = 𝑉50/𝑉𝐷 = 928/982 =
0.95. When the obtained performance indicators are contrasted with the load effects
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Figure 4.6: Exceedance probability plot comparison bridge El Rosario I. In blue circles, the absolute bending
moment daily maxima values. The vertical grey solid line represents the value of the maximum daily maxima
recorded observation. The star markers represent the extrapolated value that corresponds to an ELE with a
50-year (𝑀50). The triangle markers represent an ELE with a 1000-year (𝑀1000) return period.

corresponding to a 1000-year return period, the resulting ratios for the bending moment
and shear force are 0.84 and 1.03, respectively. These ratios are denoted as 𝑉1000,𝑟 and
𝑀1000,𝑟 .

4.4 Extreme Load Effects at a network level
The methodology explained in section 4.2 and illustrated in section 4.3 is applied to the 576
bridges of the MHCB. Over 159 million HVs are simulated using 278 site-specific GCBNs.
The loading effect on the respective bridge of each HVs has been calculated. This long-run
traffic load simulation involves a high computational cost of around 13000 core hours,
performed on the DelftBlue supercomputer at TU Delft [178]. Out of the 576 maximum
254-day load effects computed, 529 are caused by individual HVs and 47 by a convoy of
vehicles. For illustration purposes, Figure C.3.2 shows the vehicle types that caused the
maximum 254-day absolute bending moment and the corresponding 𝐺𝑉𝑊 distribution of
the first two lanes of all bridges. Notice that around 96% of the studied bridges have two
lanes. A bi-modal-like distribution can be observed for the 𝐺𝑉𝑊 with two peaks at around
580 kN and 950 kN. These values are likely to be due to the vehicles meeting the maximum
allowable 𝐺𝑉𝑊 and overweight vehicles, correspondingly. The max 𝐺𝑉𝑊 according to
Mexican standards [147] is 740.41 kN. The vehicle types C2 and C3 caused the maximum
bending moment in only five bridges.

Extreme value analysis is performed on each one of the bridges under study to find the
characteristic values of the load effects. In order to select a particular distribution for the
maximum at each bridge AIC together with visual inspection was used. AIC values for
different parametric distributions vary significantly between bridge structures mainly due
to the large variation in moments and shear forces calculations across bridges (notice that
for all bridges 254 daily maxima are used). In general, mostly theWeibull3 distribution and
theWeibull2;𝑥0 distribution are the ones that better describe the individual daily maxima
load effects.
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Once all the distributions that better describe the data are selected, the ELEs𝑀50,𝑀1000,
𝑉50 and 𝑉1000 are estimated for the 576 bridges. Let 𝐸 denote a random variable representing
any of the four estimated ELEs. The resulting ELEs are categorised into 6 classes according
to: [𝐸min,𝐸5), [𝐸5,𝐸25), [𝐸25,𝐸50), [𝐸50,𝐸75), [𝐸75,𝐸95) and [𝐸95,𝐸max]. Where 𝐸𝑞 denotes the
qth percentile of the distribution of 𝐸. As an example, the ELE 𝑀50 map is presented in
Figure 4.7, to increase legibility, simple geometric square markers are used to represent
individual bridges. The colour code of the geometric markers represents each of the 6
𝑀50 percentile classes. For this example the 6 classes are (in kNm):[592,800), [800,1327),
[1327,2507), [2507,4918), [4918,9320) and [9320,16124]. The corresponding histogram of
frequencies of the computed 𝑀50 distribution is presented at the bottom of the figure. The
highest extreme bendingmoment with a return period of 50 years (1623.8 kNm) corresponds
to the 7-span bridge Rio Fuerte located in the northwest region of Sinaloa state (star shape
maker in Figure 4.7). This result is expected since Rio Fuerte bridge has one of the largest
spans of the database (44.7 m). A similar map for 𝑉50 can be found in Figure C.4.3 in the
appendix. Mapping the site-specific extreme traffic load effects allows the identification of
the most critical bridges for which more detailed information or immediate traffic-related
actions may be required.

Figure 4.7: Extreme load effects map for the maximum absolute bending moment with a 50-year return period.
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4.4.1 Comparison with a simple popular method
When applying Turkstra’s Rule it is assumed that the trucks meet at the critical point of the
influence line, which represents an extreme loading event. However, the extreme loading
events consist of very heavy trucks meeting near, but not exactly at, this critical point.
Therefore, as pointed out by [179] a more intuitive model would consider placing one of the
trucks at a distance 𝛼𝐿 from the other, where 𝛼 represents a scaling factor (see Figure C.3.3).
It is important to note that the situation differs for the two load effects, resulting in 𝛼𝑀 not
being equal to 𝛼𝑉 .

Through the analysis of simulations that generate the maximum daily maximum load
effects for simply supported two-lane bridges (total of 445 bridges), the application of
Turkstra’s Rule reveals that the 50-year loading event consists of the 50-year truck in the
slow lane, combined with the one-day return period truck for 280 bridges and the one-week
return period truck for the remaining bridges. The values of 𝛼𝑀50 range from 0.02 to 0.70,
while 𝛼𝑉50 varies between 0.06 and 0.89. The selection of 𝛼𝑀 and 𝛼𝑣 values was based on
achieving the closest approximation to the target values, specifically 𝑀50 and 𝑉50 obtained
from the simulations. Based on this investigation, it can be concluded that in 362 out
of the 445 two-lane bridges, the (extended) Turkstra’s Rule yields accurate results with
discrepancies ranging from -0.3% to +3.0% for𝑀50. Conversely, for 𝑉50, the variations range
from -0.3% to +3.9% for the same set of bridges. On the other hand, discrepancies of up to
15.8% and 23.0% are obtained when comparing the values of 𝑀50 and 𝑉50, respectively, in
cases where Turkstra’s Rule fails to produce precise outcomes for bridge analysis.

As can be seen, Turkstra’s Rule simplified model provides accurate estimations of the
ELEs in the majority of the studied bridges. Nevertheless, a trial-and-error approach is
needed to derive the value of alpha. Moreover, the computation of site-specific 50-year
trucks requires extensive simulations. While it is conceivable to construct a moderately
precise model through this method, it is essential to note that the process is both highly
dependent on site-specific factors and time-intensive. Extending Turkstra’s Rule model to
include continuous bridges and three or more lanes is beyond the scope of this chapter.
However, future works will explore the differences between Turkstra’s Rule model and our
approach, specifically incorporating continuous bridges and three or more lanes.

4.4.2 Mapping bridge criticality
In this section, as mentioned in Section 4.2.5 to identify the most critical bridges on the
network, a load effect bridge performance indicator based on the ratio 𝑟 between the
computed extreme load effects and the design load effects is computed. The obtained ELEs
are compared with the characteristic values calculated using the reported design live load
(HS15-44, HS20-44, T3-S3 or T3-S2-R4) at each bridge site. According to [138],
it is assumed that the standard trucks occupy a width of 3.00 m. In load factor design, a
live load factor of 1.67 is adopted. Additionally, a reduction of the live load of 90% and
75% may be used in view of improbable coincident loadings for three lanes and for four
lanes or more, respectively. Because of the absence of a Mexican bridge design code, the
live load factor and live load reductions due to the improbable coincident loadings in lanes
established in the AASTHO standards are assumed.

Figure 4.8, shows the computed 50-year absolute bending moment ratios, 𝑀50,𝑟 , for
all bridges under study. These ratios indicate that, in most cases, the 𝑀50,𝑟 values are
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significantly higher when compared to those generated by the AASHTO standard HS
truck live loads. Specifically, they can be up to 1.71 times larger for bending moments
(similarly, up to 1.67 times larger for shear forces). On the other hand, when considering
the ratios computed with the maximum allowable Mexican HVs, a different trend emerges.
In this case, the load effects computed using the maximum allowable values specified in the
Mexican standard exceed those computed using our approach, which is based on observed
data. Therefore, Figure 4.8 reveals that the computation of ELEs ratios on bridges subjected
to AASHTO loads results, usually, in lower load effects than when considering Mexican
allowable HVs. Notice that the ratio decreases as the year of construction progresses. The
results of the ratios presented above are in line with the fact that the AASHTO standard
HS trucks, which were commonly used until the early 2000s for the structural design of
bridges in Mexico, underestimate the values of the load effects (shear forces and bending
moments) for design [180, 181]. As a result, in 2001 the Mexican Institute of Transportation
proposed a live load model named IMT-66.5 [174] better aligned with the actual traffic load
demands.
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AASHTO standard HS trucks live load
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Figure 4.8: Computed extreme load effects ratios per bridge per year. Maximum absolute bending moment with
50-year return period ratios (𝑀50,𝑟 )

The computed ratios are categorised into 6 classes according to the 5th, 25th, 50th,
75th, and 95th percentiles of the corresponding distribution, i.e., [𝑟min, 𝑟5), [𝑟5, 𝑟25), [𝑟25, 𝑟50),
[𝑟50, 𝑟75), [𝑟75, 𝑟95) and [𝑟95, 𝑟max]. For illustration, Figure 4.9 present the ratios 𝑀50,𝑟 map. A
similar map of 𝑉50,𝑟 can be found in Figure C.4.6. As can be seen, the lowest ratio values
for both extreme traffic load effects (between 0.41 and 0.67) are mostly concentrated on
the bridges located on corridors that cross the states of Sinaola, Guanajuato, and Guerrero
accordingly. The ratio is approximately 1-1.3 in most parts of the major corridors highway
network. The highest ratios (above 1.42) are primarily concentrated on the highway that
connects the cities of Caborca and Sonoyta in northern Mexico. To exemplify a simple use
of maps as a tool, a characterization of the computed load effect indicators is presented in
the following section.
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Figure 4.9: Extreme bending moment with 50-year return period ratios (𝑀50,𝑟 ). Each pentagon shape marker
represents a computed ratio per bridge. The star marker represents the bridge with the highest𝑀50,𝑟 corresponding
to Arboledas bridge 𝑀50,𝑟 = 1.71.
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4.4.3 Comparison of bridge criticality at major highway cor-
ridors

In order to perform a load effect bridge criticality characterization, the fifteen MHCs, shown
in Figure C.4.1, were considered. The percentage of bridges with 𝑟 considering load effects
with a 50-year return period greater than one, i.e. %𝑀50,𝑟 > 1 and %𝑉50,𝑟 > 1 are presented in
Figure 4.10 for all corridors. It can be observed that both indicators have similar behaviour
with the exception of corridor number 14 in which the %𝑀50,𝑟 > 1 is more than double the
%𝑉50,𝑟 > 1 (89% - 39%). The highest %𝑀50,𝑟 > 1 values are presented in the MHC Peninsula
de Yucatán (corridor number 14, 89%), Circuito Transístmico (corridor number 13, 76%) and
México-Nogales, Tijuana (corridor number 1, 71%) Whereas the highest %𝑉50,𝑟 > 1 can be
found in corridors number 1, 7 (Acapulco -Veracruz) and 13. In addition, corridors México-
Tuxpan and Altiplano presented a value of 0% due to the fact that these corridors have few
bridges, 2 and 3 bridges respectively. Among the MHCs, it is clear that MHC number 14 is
the corridor where attention is needed since the estimated characteristic loading in 16 out
of its 18 bridges is greater than the design values specified by the corresponding live load
model reported in SIPUMEX database. With 145 bridges in total, México-Nogales, Tijuana
(MHC number 1) is the corridor with more bridges in theMexican Federal highway network.
This corridor is another point of attention since 103 of its bridges have a %𝑀50,𝑟 > 1 and 93
bridges (64%) a %𝑉50,𝑟 > 1. It is likely that perturbations on the bridges of these corridors
will generate certain stress levels in their road network generating at least an increase in
user travel costs. Notice that by omitting corridors number 4 and number 10 the average
percentage of bridges with %𝑀50,𝑟 > 1 is 62% and the average %𝑉50,𝑟 > 1 is 46.5%. It is clear
that more than half of the existing bridges in the network need attention.
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Figure 4.10: Percentage of bridges with a 𝑀50,𝑟 and 𝑉50,𝑟 above 1 per major highway corridor.

The previous description was focused on 50-year LEs, but the trends are also repre-
sentative of other return periods. In contrast to the Mexican standards, in the Eurocode
EN 1991-Part 2: Traffic load on bridges [175] the characteristic values are defined with a
return period of 1000 years instead of 50 years due to the requirement of serviceability and
sustainability of the structures. For example, when considering bending moments with a
1000-year return period, the number of bridges in the most critical group (ratios between
1.55 and 1.72) increases from 31 to 68. As can be seen, the return period is a crucial factor
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in risk analysis and design. Events with low probabilities may result in greater casualties,
direct losses, and indirect effects. The corresponding maps of ELEs with a return period of
1000 years can be found in the appendix (Figures C.4.2, C.4.4, C.4.5 and C.4.7). Additionally,
the supplementary material presents individual maps for 𝑀50, 𝑉50,𝑀50,𝑟 , and 𝑉50,𝑟 for each
MHC. An interactive map has also been produced using QGIS. The map can be accessed at
https://mike-mendoza.github.io/eles_mexico/.

As illustrated, the methodology and maps presented help to visually identify changes,
trends, and hot spots that may require attention on a large bridge network. For the Mexi-
can authorities, the maps delivered herein give the first clear picture of the distribution
of extreme load effects on concrete bridges due to traffic loads at the Mexican highway
network. They provide relevant information that can support the development of a compre-
hensive approach to bridge management to prioritize structural inspection or maintenance
interventions.

4.5 Conclusions
This chapter has presented a 4-step method to estimate and map the extreme bending
moments, extreme shear forces, and load effect performance indicators due to traffic
in a bridge network at a national scale as realistically and accurately as possible when
information is scarce. This approach permits the visualization and measurement of the
criticality of elements in the network. Hence, to some extent, the degree to which individual
bridges require attention. The criticality of the bridge, as described in this research, relates
to the relationship between the chosen extreme traffic load effect and the load effect caused
by the design live load model.

The method is low information-intensive per bridge. The necessary information in most
cases is usually available in countries with at least one-module bridge management system.
Regarding the bridge data, it requires the number of spans and the corresponding length,
the number of lanes and the corresponding width, and the design live load. Regarding traffic
information, the method requires the Annual Average Daily Traffic and the proportion per
vehicle type that conforms to the traffic flow.

The method uses Gaussian copula-based Bayesian Networks to generate site-specific
synthetic observations of heavy vehicles. To simulate traffic flow a copula-based approach
is used to characterize the inter-vehicle gap by estimating its auto-correlation. A long-
run traffic load simulation is used to obtain the traffic load effects on the bridges. Then,
the extreme load effects are estimated using the block maxima extreme value analysis
approach. The comparison of the obtained values with the design loads reveals interesting
information about the criticality of the existing infrastructure. To illustrate the method, it
has been applied to a case study involving the bridge network located along the fifteen
major toll-free highway corridors in Mexico, which comprises a total of 576 bridges. The
results of this study were then used to create four main maps that provide a comprehensive
understanding of the load effects on the bridges within a national highway network,
enabling the identification of spatial patterns and relationships. It is recommended to draw
attention to bridges with values of bridge criticality greater than one. This recommendation
does not imply that these bridges experience greater degradation, require more frequent
inspections, or incur higher maintenance costs. Rather, it suggests that these bridges should
be highlighted for more thorough and reliable inspections.

https://mike-mendoza.github.io/eles_mexico/
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The main advantages of this methodology include its simplicity and ease of application
due to its straightforward conceptualization. Additionally, the required data can be obtained
from basic information about the bridges and traffic, as well as publicly available databases,
making it highly flexible and applicable to nearly any bridge network. This study encounters
certain limitations. Firstly, it relies on a restricted amount and variety of data from a specific
bridge network. Therefore, it does not take into account factors such as the impact of ageing
on individual bridge structures and bridge component ratings. Secondly, the computational
cost of the method increases proportionally with the number of bridges under consideration,
making complex structural analyses resource-intensive and demanding extensive material
and geometrical data. Lastly, the approach used to estimate characteristic values of load
effects primarily relies on the block maxima extreme value analysis method. The sensitivity
of the results to a different choice (Peaks-Over-Threshold method for example) has not
been tested. However, the goal was to develop a universal, simple method to aid local
authorities in regions where WIM systems are not the primary source of traffic data. It is
important to note that this chapter acknowledges the limitations of existing traffic data
sources and emphasizes the crucial role of collecting additional data through WIM systems.
Therefore, it does not suggest that WIM traffic data is unnecessary but rather advocates
for its use to obtain reliable results in traffic loading analysis by collecting accurate and
substantial amounts of traffic data.

Future work based on the methodology can investigate its applicability in other net-
works to test its ability as a general approach. Regions in the United States and Europe
in which data from robust BMS and WIM systems are available can be used to apply the
methodology in its corresponding networks. It is possible, for instance, to quantify a BN
model with WIM datasets and analyse its performance relative to the Mexican quantifica-
tion presented in this chapter, as well as to combine those data. In this manner, several
scenarios can be made with an increase in traffic volume and different vehicle configura-
tions passing through specific bridges. Further research can explore the use of different
approaches for estimating ELEs. In particular, the Peaks-Over-Threshold method seems like
a natural starting point. Additionally, consider the integration of WIM data from diverse
regions to assess its influence on the bridge criticality results. Finally, researchers could
explore ways to integrate the methodology into decision-making processes by combining
bridge performance measurements such as condition rating and bridge criticality presented
here to optimize preventive maintenance schedules of all the bridges of the network.
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5
Network-level optimization

approach for bridge
interventions scheduling

This chapter presents a novel extension of the multi-system optimization method known as the
3C concept tailored for optimizing budget allocation for bridge interventions at the network
level. The extended methodology takes into account the interdependencies among the bridges
in the portfolio caused by the spatial proximity of objects within the network. It incorporates
direct and user costs, bridge performance indicators, as well as a bridge deterioration model. A
real case involving a bridge portfolio of 555 bridges is presented to demonstrate the practicality
of the methodology which efficiently determines the optimal intervention sequence. For an
analysis period of 18 years, the proposed methodology achieved a 23% reduction in total costs
by combining repairs for bridges with high to severe damage and maintenance for the rest.
This improvement is in comparison to the bridge management agency approach, which relies
on maintenance. As the results are derived from an optimized procedure, they outperform
human intuition in managing complex bridge networks, especially during extended analysis
periods. The methodology presented could help transportation agencies to implement and
explore various scenarios by adjusting the time between consecutive interventions and budget
constraints supporting a comprehensive analysis and informed decision-making process.

Parts of this chapter have been published verbatim inMendoza-Lugo, M. A., Nogal, M., Morales-Nápoles, O.
(2024). Network-level optimization approach for bridge interventions scheduling. Structure and Infrastructure
Engineering. doi: https://www.tandfonline.com/doi/full/10.1080/15732479.2024.2403568

https://www.tandfonline.com/doi/full/10.1080/15732479.2024.2403568
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5.1 Introduction
Bridge networks are susceptible to degradation caused by factors such as ageing, heavy
traffic loads, and natural disasters. Such degradation may result in failures that compromise
service quality and create safety hazards [182]. Together with constrained funding for
bridge management, this underscores the need for objective assessments to achieve better
utilization of existing aging bridges [183]. To maintain the functionality of the transport
infrastructure and related service parameters, bridge managers have come to recognize
that effective planning of interventions can significantly enhance the availability of their
infrastructures while minimizing costs.

For effective intervention programs, it is clear that optimal planning should consider
both the direct and user costs associated with transport disruptions, rather than solely
budget availability [28]. Previous research indicates that when bridges are full or partially
closed, the resulting traveler delays can incur indirect costs several times the actual cost
of the bridge [184–186]. These higher costs require bridge owners to allocate resources
toward optimal strategies for bridge interventions.

Furthermore, at a network-level, a significant number of bridge structures need to be
analyzed, making it infeasible to re-analyze each bridge on an annual basis. Consequently,
systems that continuously monitor bridge conditions are established to plan interventions
based on structural ratings and prioritization indexes to justify the funding of conservation
actions [43]. At the network level, it has been shown that integrating performancemeasures
from all individual bridges into optimal budget allocation algorithms can enhance the overall
performance of bridge systems [42].

There is an increasing literature on optimal bridge management planning. This litera-
ture can be divided into three main categories: (i) Deterioration modeling, (ii) Ranking of
management alternatives and (iii) Maintenance planning using optimization techniques
[187–189]. The first (i) focuses on developing models to predict the deterioration of bridges
over time, and the second (ii) compares different options based on their effectiveness and
other factors for bridge prioritization. However, these approaches do not take into consid-
eration constraints such as environmental impact, traffic demand, and budget constraints,
which are crucial for a bridge intervention program at the network level. To overcome this,
the third category (iii) uses optimization techniques to take into account constraints and
find the optimal management scheduling for bridges.

In a bridge-level, generally, six intervention approaches1 are taken: do-nothing; mainte-
nance, repair, rehabilitation, and improvement; and total replacement. Do-nothing involves
minimal intervention but risks long-term deterioration. Maintenance implies routine activ-
ities to preserve the bridge in good condition. Repair fixes defects that affect functionality,
safety, or performance. While rehabilitation restores the bridge to a better state to increase
the service life. Improvement enhances the bridge beyond its original condition to meet
new requirements, and total replacement means replacing the entire asset with a new one,
often incorporating modern technology [46, 190, 191].

[192] developed a bi-objective optimizationmodel that minimizes the total rehabilitation
action cost and maximizes the performance as a result of the latest rehabilitation action
1It is noted that previous literature often categorizes and refers to these actions in two main groups: preventive
maintenance (which includes maintenance and minor repairs) and corrective maintenance (including major
repairs, rehabilitation, improvements, and replacements).
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applied to bridge decks. In [44], an optimal budget allocation framework is proposed for
maintenance, repair, and total replacement actions for bridge portfolios that minimize the
agency costs to have bridges in the portfolio in their like-new state.

Amulti-objective optimizationmodel using an exponential chaotic differential evolution
algorithm is introduced in [45]. The model includes maximization of performance condition
of bridge elements, minimization of agency and user costs, minimization of duration of
traffic disruption, and minimization of environmental impact. In [193], optimization is
performed to obtain optimal maintenance strategies associated with objectives related to
connectivity and maintenance cost, taking into account the conditional failure of network
connectivity given the failure of a specific bridge.

[194] presented a methodology to establish the optimal timing conditions for each
standard maintenance and rehabilitation intervention used by the Indiana Department
of Transportation for each highway bridge, thereby developing long-term, condition-
based schedules. Furthermore, the effects on the bridge performance trend resulting from
the differences between post-treatment and pre-treatment interventions were explored.
However, no budget constraints were taken into account in the optimal scheduling process.

At the bridge network level, [195] developed a specific bridge stock model to optimize
the allocation of funds for selecting maintenance or rehabilitation policies for the Bridge
Management System of Chiapas State in Mexico. This involved utilizing joint optimization
of maintenance and rehabilitation policies that employ a genetic algorithm to find the
optimal costs for different policies, taking into consideration the deterioration process with
Markovian transition matrices.

[46] developed a bridge management system to determine the overall optimality of
investment decisions based on a desired combination of selected performance measures.
This approach enables making investment choices based on optimal forecasted performance.
The methodology involves conducting a multi-criteria utility function for the selection of
bridge interventions, which includes optimizing the identification and evaluating network-
level solution approaches.

These previous examples show how to allocate maintenance resources for a group of
bridges or individual bridges in a transportation network. However, there are a few studies
that consider the impact resulting from executing interventions, such as the interconnected
effects of interventions on individual bridgeswithin the network caused by spatial proximity.
[196] presented a framework for optimizing preventive maintenance scheduling in bridge
networks, considering the correlation between bridge states and utilizing a probabilistic
model. This model accounts for the expected damage levels of two bridges subjected to the
same extreme event scenario and their spatial proximity. However, an important aspect of
this methodology is its computational efficiency and the absence of real-data-based cost
evaluations for the interventions. [197] presented an integrative multi-system method,
known as the 3C concept, to account for infrastructure connectivity by considering the
spatial proximity of objects within infrastructure networks. This involves formalizing a
mathematical method for intervention scheduling at a network level, capable of obtaining
the most efficient intervention program. These examples underscore the importance of
developing intervention programs for spatially close and functionally connected structures
simultaneously.

In this study, a novel extension of the integrative multi-system optimization 3C concept
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is introduced. This extension, named B-3C, focuses on optimizing budget allocation for
bridge interventions at the network level, specifically for maintenance and repair activi-
ties. B-3C builds upon the core principles of the 3C framework but introduces additional
elements and modifications tailored to address optimal budget allocation for bridge in-
tervention programs. The existing framework has been extended by incorporating two
types of interventions while maintaining the mathematical linearity of the problem. This
mathematical property ensures its applicability to portfolios containing a large number of
bridges. Furthermore, it considers factors such as deterioration, budget constraints, and the
time between two consecutive interventions. The B-3C methodology for optimizing bridge
intervention scheduling addresses a significant gap by considering the interconnected
effects (additional costs) of interventions on individual bridges within the network system
caused by the spatial proximity of the bridges. Additionally, the methodology herein
presented provides practical guidance for estimating both direct and user costs through
the analysis of a real-data-based bridge network. It can be applied in conjunction with
various bridge ranking systems that rely on performance indicators, including condition
state and traffic load effects criticality, making it a valuable tool for efficiently planning
interventions within extensive bridge networks.

The remainder of the chapter is organized as follows. In Section 5.2, the theoretical
introduction of the concepts used in this study are presented. This section also includes the
framework for optimizing intervention activities on bridge networks and the mathematical
formulation of the optimization problem. Section 5.3 presents a numerical example to
illustrate the applicability of the proposed optimization model. Section 5.4 presents the pro-
posed optimization model applied to a bridge portfolio of 555 bridges. Finally, conclusions
are drawn in Section 5.5 together with the proposed future work.

5.2 Methodology
In the context of this study, the goal of optimal intervention planning for a bridge network
is to schedule interventions for each bridge in a manner that minimizes the overall inter-
vention cost. While bridge managers often face other explicit goals, such as minimizing
vulnerability to damage or maximizing the average condition of the bridge network ([46]),
our primary interest is solely to minimize the total cost of interventions. Figure 5.1 illus-
trates a simplified version of the proposed framework for optimal intervention planning
used in this research. First, relevant information about the bridges within the network is
gathered, cleaned, and analyzed to obtain key variables for the analysis. These variables
include bridge type, number of spans, construction costs, bridge rating, and average annual
daily traffic. If construction costs are not available, they can be estimated using parametric
cost models. Additionally, the direct and user costs associated with bridge interventions at
the initial time step of the analysis are calculated. Next, the rate of bridge deterioration is
estimated using a bridge deterioration model. Then, the associated direct and user costs are
determined as well. The 3C concept extended to bridge portfolios (B-3C concept) is applied.
Finally, the methodology yields an optimal intervention program aimed at minimizing
the overall intervention costs. It should be noted that the framework depicted in Figure
1 does not cover all aspects of bridge intervention planning. A practical application of
this framework is illustrated in Section 5.3. The following section will introduce the B-3C
concept and its mathematical formulation.
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Figure 5.1: Optimal intervention planning of a bridge network framework.

5.2.1 Integrative multi-system optimization approach: 3C con-
cept.

The integrative 3C concept is an approach, firstly introduced by [197], for optimal inter-
vention planning accounting for the interdependencies between assets that may belong
to several infrastructure systems. It includes three stages: (i) centralize, (ii) cluster, and
(iii) calculate. In stage (i), intervention types are classified into central and non-central.
Central intervention types are those that must occur at a pre-established time moment,
where neither delay nor advance is permitted.

During stage (ii), the non-central interventions are clustered with the planned central
interventions while respecting some predefined individual constraints, such as the time
interval between two successive interventions of the same type. Every 𝑘 intervention
is assigned two values, 𝐺𝑚𝑖𝑛,𝑘 and 𝐺𝑚𝑎𝑥,𝑘 , which are two externally imposed constraints
that represent the minimum and maximum time intervals, respectively, between two
interventions of the same type. This is the case for maintenance interventions. Since
central intervention types are carried out with a fixed time interval, 𝐺𝑚𝑖𝑛,𝑘 and 𝐺𝑚𝑎𝑥,𝑘 are
set equal.

In the final stage (stage iii), the optimization of the intervention program that meets the
conditions initially set is calculated. The primary objective of the 3C optimization process
is to minimize the overall cost of implementing interventions. This total cost is divided
into two components: the direct cost of the interventions themselves and the user costs
associated with the interruption of the service of any affected assets. This optimization
approach is straightforward and easily scalable. The ability to differentiate between central
and non-central intervention types is highly advantageous as it enables effective planning
of interventions in systems with numerous interconnected objects, taking into account
their interdependencies. For a complete overview of the 3C concept, the reader is referred
to [197].

5.2.2 Extension of 3C concept to bridge portfolio: B-3C con-
cept

As mentioned in Section 5.1, in this study to optimize budget allocation for intervention
planning within bridge networks, two distinct types of interventions will be considered;
maintenance and repair. This represents a methodological extension, as the 3C concept
only considers one possible intervention per asset. Maintenance refers to actions taken
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proactively to ensure that a bridge gradually wears and tears as expected, while repair refers
to actions that emend defects that affect functionality or safety. Maintenance activities are
classified as non-central interventions whereas repair activities are classified as central
interventions.

Given the methodology’s consideration of interactions among various assets, it is
important to account for the interdependencies that exist between bridges within the
network. Interdependencies can be classified into physical and geographical. Physical
interdependency refers to the existence of a physical connection between two objects, such
as two bridges in a series. Geographical interdependency arises when in the case of an
event, such as an intervention, can affect the functionality of multiple bridges due to spatial
proximity.

Bridge total costs
Developing a comprehensive and universally applicable methodology for estimating bridge
maintenance and repair costs within the context of bridge service life management is
challenging. This is due to the substantial variability in costs arising from diverse circum-
stances. For the purpose of this research, a global intervention cost function, based on
[198] and [197], is utilized and described according to Equation (5.1):

𝐶 = 𝐶𝑀 +𝐶𝑈 |𝑀 +𝐶𝑅 +𝐶𝑈 |𝑅 (5.1)

where 𝐶 represents the total cost of the bridge, 𝐶𝑀 stands for bridge maintenance cost, 𝐶𝑈 |𝑀
refers to the bridge user costs due to maintenance interventions, 𝐶𝑅, represents the bridge
repair cost, and 𝐶𝑈 |𝑅 indicates the bridge user costs resulting from repair interventions.

Bridge maintenance and repair costs
Estimating maintenance work costs often requires adjustments once the work is in progress
[199]. The Organization for Economic Co-operation and Development proposes that
maintenance costs should ideally constitute approximately 3% of the asset value [200].
In contrast, the investment in bridge maintenance in Mexico is around 1% of the bridge
value [201]. Historical data from UK local authority indicates that their maintenance
budgets have traditionally ranged between 0.3% to 0.5% of the bridge construction cost
[202]. Similarly, a study on bridge maintenance of the Tamar bridge located in southwest
England has observed that the mean annual cost of maintenance is around 0.35% of the
total bridge value, according to [203]. Nevertheless, such generalized numbers may lack
the necessary specificity for accurately evaluating the maintenance expenses of individual
bridge interventions.

Regarding bridge repair costs, the expenses are on average 5% of the initial bridge cost
[204]. However, for a more practical application, [198] has developed a more pragmatic
approach, building upon the methods introduced by [205] and [206]. This approach offers
a straightforward way to estimate repair costs, 𝐶𝑅, by taking into account the bridge
reliability levels obtained. It introduces two crucial factors: 𝑓𝑅 (see Equation (5.4)), which
represents repair costs as a percentage of the total bridge value, 𝐶𝐵𝑉 . The total bridge value
is a function of 𝑓𝐵, which indicates the bridge importance in the transport network and
impacts the construction cost, 𝐶0. Consequently, the following relationships have been
established:
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𝐶𝑅 = 𝑓𝑅𝐶𝐵𝑉 (5.2)

𝐶𝐵𝑉 = 𝑓𝐵𝐶0 (5.3)

𝑓𝑅 = 0.3613𝛽2−2.8572𝛽+5.622; max(𝑓𝑅) = 2.0 (5.4)

Notice that the maximum value for 𝑓𝑅 is 2 (200%), applicable to bridges in critical
condition. The reliability indices for various damage levels are presented in [198], [205],
and [206], as shown in Table 5.1. The bridge importance factor according to [198] can be
estimated using Equation (5.5):

𝑓𝐵 = 1+
1
5
[0.25(𝑆𝑅𝐶 + 𝑆𝐴𝐴𝐷𝑇 + 𝑆𝐷𝐷)+0.125(𝑆𝐿𝑆 + 𝑆𝑇𝐿)] (5.5)

where 𝑆𝑅𝐶 denotes the road category grade; 𝑆𝐴𝐴𝐷𝑇 represents the average annual daily
traffic grade; 𝑆𝐷𝐷 indicates the detour distance; 𝑆𝐿𝑆 stands for the largest span grade; and
𝑆𝑇𝐿 represents the total length of the bridge grade. Each of these parameters is assigned
a grade from 1 to 5 [207]. As has been noted, the direct cost of each bridge intervention
depends on two factors: the geometric characteristics of the bridge, represented by 𝐶𝐵𝑉 ,
and the condition of the bridge at the time of intervention, denoted by 𝑓𝑅. It is important to
note that in the context of the work done by [198], this approach is under the assumption
of full-bridge repair. However, this method is adopted for its practicality in estimating
repair costs.

Grades for assessment of bridge importance factor 𝑓𝐵 in the network level according to
five criteria [207]. Adjusted to the size of the MHC network under study.

Table 5.1: Values of reliability index given damage level

Damage level Description Reliability index 𝛽
1 Minor damage. No influence on the stability, durability, or traffic

safety.
3.8

2 Slight damage. Safety in tolerable range, no impact on traffic. 3.3
3 Medium damage. Safety in tolerable range, medium impact on

traffic, traffic obstruction.
3.0

4 High damage. Safety under minimum requirements, durability
and traffic are severely affected.

2.3

5 Demolition imminent. Component failure. 𝛽 <2.3

Bridge user costs
In the context of global cost-benefit analyses of bridge interventions, an increase in bridge
user travel time due to congestion relative to the partial or complete closure of the bridge
will result in indirect costs [208]. To estimate these costs in terms of daily money loss due
to prolonged commuting time the approach of [206] based on the fundamental concepts of
[209] is used. Hence, the bridge user costs, 𝐶𝑈 , are calculated as follows:

𝐶𝑈 = 𝐴𝐴𝐷𝑇 𝐶𝑣𝑒 𝑇𝑈 (5.6)
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where 𝐴𝐴𝐷𝑇 is the average annual daily traffic on the bridge, 𝐶𝑣𝑒 are the user costs per
vehicle based on the estimated prolonged travel time and 𝑇𝑈 is the unavailability period
caused by the bridge intervention. Hence, as mentioned in Section 5.2.2, two user costs are
considered: the bridge user costs due to maintenance intervention 𝐶𝑈 |𝑀 , and the bridge
user costs due to repair activities 𝐶𝑈 |𝑅.

The estimation of 𝐶𝑣𝑒 requires numerous parameters, such as intervention urgency,
bridge size and type, to be taken into consideration. Due to the variability involved, the
approach presented in [198] to calculate 𝐶𝑣𝑒 for the unavailability period of one month is
employed, as described by the following equation:

𝐶𝑣𝑒 = (𝑊 𝑃𝑣𝑒𝑤𝑎+𝛼𝑊 𝑃𝑣𝑒𝑤𝑏) 𝑡𝑝 (5.7)

where 𝑊 is the average daily wage earned by a passenger, 𝑃𝑣𝑒 represents the average
number of passengers per vehicle, 𝑤𝑎 and 𝑤𝑏 represents the number of weekdays and
weekend days considered correspondingly, 𝛼 is a factor that accounts for the fraction of
costs associated with weekend days and 𝑡𝑝 the estimated prolonged travel time.

Definition of the relationship matrices
Let’s assume a bridge portfolio that represents a bridge network 𝐵 = {1, ....,𝑁 }. To model the
interdependencies among the bridges in the network, an interaction matrix 𝐈 is employed.
This squarematrix, defined in Equation (5.8), utilizes interaction coefficients 𝐼𝑖,𝑗 to determine
whether one bridge affects another. Intervention on one bridge may partially affect other
bridges in the network, thus the interdependency between bridges in the network is not
necessarily binary [197]. This is mainly due to the existence of alternative routes. In
such situations 0 < 𝐼𝑖,𝑗 < 1. In this study, to quantify this partial influence, the travel time
reliability between bridges 𝑖 and bridge 𝑗 according to Equation (5.9) is employed. Where
min{𝑡𝑟𝑖,𝑗 } is the minimum route travel time of all the routes available between bridge 𝑖 and
bridge 𝑗 under normal conditions and min{𝑡𝑟int,𝑖,𝑗 } is the minimum travel time of all the
routes available between bridge 𝑖 and bridge 𝑗 under the intervention at bridge 𝑖 [210].
It is noted that 𝑡𝑟int,𝑖,𝑗 is dependent on the estimated prolonged time, 𝑡𝑝 , caused by the
intervention on bridge 𝑖, i.e., 𝑡𝑟int,𝑖,𝑗 = 𝑡𝑟𝑖,𝑗 + 𝑡𝑝,𝑖.

𝐼𝑖,𝑗 = 0, means that bridge 𝑖 does not influence bridge 𝑗 , whereas 𝐼𝑖,𝑗 = 1 signifies the
opposite, i.e., bridge 𝑖 has a full influence on bridge 𝑗 mainly due to the absence of alternative
routes between the bridges for example. The interaction matrix can be asymmetric due
to non-reciprocal interactions, but its diagonal terms are fixed at 𝐼𝑖,𝑖 = 1 to indicate that
a bridge always interacts with itself. Equation (5.9) implies that as 𝑡𝑝 becomes long, the
value of 𝐼𝑖,𝑗 approaches 1. Conversely, for short durations of 𝑡𝑝 , 𝐼𝑖,𝑗 tends to 0.

𝐈 = [𝐼𝑖,𝑗 ] =
⎡
⎢
⎢
⎣

𝐼1,1 ... 𝐼1,𝑁
⋮ ⋱ ⋮

𝐼𝑁 ,1 ... 𝐼𝑁 ,𝑁

⎤
⎥
⎥
⎦

(5.8)

𝐼𝑖,𝑗 = 1−
min{𝑡𝑟𝑖,𝑗 }
min{𝑡𝑟int,𝑖,𝑗 }

= 1−
min{𝑡𝑟𝑖,𝑗 }

min{𝑡𝑟𝑖,𝑗 + 𝑡𝑝,𝑖}
(5.9)

To indicate which intervention type 𝑘 affects each bridge 𝑖, a relation matrix 𝐑 is
established. The components 𝑟𝑖,𝑘 take binary values, 𝑟𝑖,𝑘 = {0,1}, determining whether bridge
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𝑖 is affected by intervention 𝑘, with 𝑘 = {1,2, ...,2𝑁 }. In the context of bridge interventions,
where each bridge can have either maintenance or repair, the range for 𝑘 is as follows:
𝑘 = {1, ...,𝑁 } corresponds to maintenance interventions, while 𝑘 = {𝑁 +1, ...,2𝑁 } represents
repair interventions. For instance, intervention 𝑘 = 1 is maintenance for bridge 1, and
intervention 𝑘 = 𝑁 +1 corresponds to the repair of bridge 1. When 𝑟𝑖,𝑘 = 0, it means that
bridge 𝑖 is not affected by intervention 𝑘, while 𝑟𝑖,𝑘 = 1 implies the opposite. The relation
matrix is:

𝐑 = [𝑟𝑖,𝑘] =
⎡
⎢
⎢
⎣

𝑟1,1 ... 𝑟1,𝑁 𝑟1,𝑁+1 ... 𝑟1,2𝑁
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑟𝑁 ,1 ... 𝑟𝑁 ,𝑁 𝑟𝑁 ,𝑁+1 ... 𝑟𝑁 ,2𝑁

⎤
⎥
⎥
⎦

(5.10)

Objective function
In this study, the optimum intervention plan can be achieved by minimizing the total
intervention cost for the total time of analysis. This cost includes the direct intervention
costs as well as the user costs caused by the unavailability of the bridge, i.e., partial closure
of the bridge due to the intervention as mentioned in Section 5.2.2. The minimization
process should consider both the condition of the bridges and the budget limitations. Within
the context of bridge networks, the optimization problem can be expressed as:

min
𝐃 [(𝐶𝑀 +𝐶𝑈 |𝑀)+(𝐶𝑅 +𝐶𝑈 |𝑅)] (5.11)

where𝐃= {𝑑𝑖,𝑡}, with dimensions of𝑁 ×2𝑇 , is a decision matrix. This matrix indicates when
each intervention occurs during the total time of analysis, which is discretized in 𝑇 time
step components representing a Δ𝜏 time interval. Thus, the total time of analysis is 𝑇Δ𝜏.
To clarify, two distinct ranges have been defined, 𝑡 = {1, ..., 𝑇 } corresponds to maintenance
interventions, and 𝑡 = {𝑇 + 1, ...,2𝑇 } represents repair interventions. For example, 𝑡 = 1
indicates maintenance interventions occurring during the first time step, and 𝑡 = 𝑇 +1
indicates repair interventions occurring during the first time step of the analysis period.

The total direct cost of bridge maintenance is given by:

𝐶𝑀 =
𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐶𝑀𝑖 𝑑𝑖,𝑡 (5.12)

where 𝐶𝑀𝑖 ∈ ℝ+ is the direct cost of performing maintenance of bridge 𝑖. 𝑑𝑖,𝑡 ∈ {0,1} are the
components of the decision matrix indicating at which time step 𝑡 each maintenance type
is conducted.

The total bridge user costs caused by the maintenance given by:

𝐶𝑈 |𝑀 =
𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

𝐶𝑈 |𝑀𝑖 𝛿 ([𝐼𝑖,𝑗 ]
⊤ 𝑟𝑖,𝑘 𝑑𝑖,𝑡) , for 𝑘 = 1, ...,𝑁 (5.13)

where 𝐶𝑈 |𝑀𝑖 ∈ ℝ+ is the user costs of bridge 𝑖 caused by performing maintenance. The
function 𝛿(.) represents the Kronecker delta defined as follows:

𝛿(𝑥) =
{
0 if 𝑥 = 0
1 if 𝑥 ≠ 0 (5.14)
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The Kronecker delta is applied to every element of the resulting matrix, which has
dimensions of 𝑁 × 𝑇 . This use of the Kronecker delta in Equation (5.14) enables the
assessment of clustering interventions by incorporating the user costs for an affected
bridge only once, even if multiple interventions impacting its performance are happening
simultaneously.

The total direct cost of bridge reparation is given by:

𝐶𝑅 =
𝑁
∑
𝑖=1

2𝑇
∑
𝑡=𝑇+1

𝐶𝑅𝑖 𝑑𝑖,𝑡 (5.15)

where 𝐶𝑅𝑖 ∈ ℝ+ represents the direct cost of performing reparation per bridge 𝑖.
The total bridge user costs caused by the reparation is given by:

𝐶𝑈 |𝑅 =
𝑁
∑
𝑖=1

2𝑇
∑
𝑡=𝑇+1

𝐶𝑅|𝑈 𝑖 𝛿 ([𝐼𝑖,𝑗 ]⊤ 𝑟𝑖,𝑘 𝑑𝑖,𝑡) , for 𝑘 = 𝑁 +1, ...,2𝑁 (5.16)

where 𝐶𝑈 |𝑅𝑖 ∈ ℝ
+ is the user costs of bridge 𝑖 caused by performing repair. It is noted that

each maintenance or reparation intervention is assumed to be entirely performed within a
time interval.

Constraints
The first constraint set imposes a minimum time interval between any two successive
maintenance interventions of type 𝑘 per bridge 𝑖, denoted by𝐺𝑚𝑖𝑛,𝑘,𝑖. As repair interventions
are assumed to be central, these interventions do not have any minimum time requirements
just the fixed repair time. This first constraint is defined by:

0 ≤
𝑡+𝐺𝑚𝑖𝑛,𝑘,𝑖−1

∑
𝑠=𝑡

𝑑𝑖,𝑠 ≤ 1 𝑡 = 1→ 𝑇 −𝐺𝑚𝑖𝑛,𝑘,𝑖+1, 𝑘 = 1…𝑁 , 𝑖 = 1…𝑁 (5.17)

The constraints defined by restrict any two successive interventions of type 𝑘 per
bridge 𝑖 to have a time interval not larger than 𝐺𝑚𝑎𝑥,𝑘,𝑖, as shown by Equation (5.18) for
maintenance interventions and by Equation (5.19) for repair interventions. Equation (5.19)
indicates that the reparation intervention should not be carried out after 𝐺𝑚𝑎𝑥,𝑘,𝑖. It is
assumed that 𝐺𝑚𝑎𝑥,𝑘,𝑖 for 𝑘 = {𝑁 +1, ...,2𝑁 } is equal to 𝐺𝑚𝑎𝑥,𝑘,𝑖 for 𝑘 = {1, ...,𝑁 }:

𝑡+𝐺𝑚𝑎𝑥,𝑘,𝑖−1

∑
𝑠=𝑡

𝑑𝑖,𝑠 ≥ 1 𝑡 = 1→ 𝑇 −𝐺𝑚𝑎𝑥,𝑘,𝑖+1, 𝑘 = 1…𝑁 , 𝑖 = 1…𝑁 (5.18)

𝑡+𝐺𝑚𝑎𝑥,𝑘,𝑖−1

∑
𝑠=𝑡

𝑑𝑖,𝑠 ≥ 1 𝑡 = 𝑇 +1→ 2𝑇 −𝐺𝑚𝑎𝑥,𝑘,𝑖+1, 𝑘 = 𝑁 +1…2𝑁 , 𝑖 = 1…𝑁 (5.19)

In the context of the analysis, it is important to consider the scenario where repair
interventions are required, and maintenance interventions are not needed for the remainder
of the time under examination. Let 𝐵𝑚 represent a subset of the bridges under study 𝐵,
containing 𝑚 elements, which represent the bridges requiring repair, i.e., 𝐵𝑚 =

{
𝑏𝑗
}
⊂ 𝐵.
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Consequently, the bridges in 𝐵𝑚 do not require any maintenance interventions. This
constraint set can be defined as follows:

𝑇
∑
𝑡=1

𝑑𝑗 ,𝑡 = 0 for 𝑗 = 1, ...,𝑚 (5.20)

2𝑇
∑
𝑡=𝑇+1

𝑑𝑗 ,𝑡 = 1 for 𝑗 = 1, ...,𝑚 (5.21)

The maintenance and repair costs for each bridge vary significantly from one time
step to another, and there is a limited budget, denoted as 𝐸𝑡 , for the bridge owner [211].
This budget limitation constraint only impacts the direct costs related to maintenance and
repair interventions. The budget limitation constraint is defined as:

𝑁
∑
𝑖=1

(𝐶𝑀𝑖 𝑑𝑖,𝑡 +𝐶𝑅𝑖 𝑑𝑖,𝑡+𝑇 ) ≤ 𝐸𝑡 for 𝑡 = 1, ..., 𝑇 (5.22)

Notice that the mathematical problem defined in Section 5.2.2 is a mixed-integer linear
optimization problem where the variables (𝑑𝑖,𝑡 ) are binary.

5.3 Illustrative application
5.3.1 Case study description: Mexican Bridge System
The backbone of Mexico’s national road network comprises fifteen major highway corridors
(MHC), which extend over 20000 km approximately. These corridors account for more
than 55% of the country’s highway traffic flow [212]. To effectively manage, preserve, and
maintain the numerous bridges within this network, Mexico employs the Mexican Bridge
System, known as SIPUMEX (for its acronym in Spanish) [136]. Managed by the Mexican
agency Ministry of Communications and Trasport (SCT, for its acronym in Spanish),
SIPUMEX plays a pivotal role by documenting the structural condition of individual assets
and allowing the scheduling of necessary maintenance activities. As of 2009, SIPUMEX
data indicates that there are a total of 576 bridges strategically positioned within the MHC
network.

SIPUMEX employs a rating index (𝐵𝑅) system to determine the condition of bridges
and to carry out the necessary actions for their maintenance or reparation. This scale
ranges from 0 for bridges that are in excellent condition to 5 for bridges with significant
harm that requires immediate attention. The bridge scale, description and corresponding
time intervals between two consecutive interventions, 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 , are presented in
Table 5.2. It is noted that the time intervals in the description are only established for rating
indices 𝐵𝑅 = {3,4,5}. However, to offer a comprehensive illustration in this study, uniform
increases of 2 years for the remaining rating indices are assumed. For 𝐵𝑅 = 2, the time
interval ranges from 𝐺𝑚𝑖𝑛 = 5 and 𝐺𝑚𝑎𝑥 = 7 and for 𝐵𝑅 = 1, the time interval ranges from
𝐺𝑚𝑖𝑛 = 7 and 𝐺𝑚𝑎𝑥 = 9.
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Table 5.2: SIPUMEX rating scale.

𝐵𝑅 Description 𝐺𝑚𝑖𝑛 𝐺𝑚𝑎𝑥

0 Recently built or repaired structures, no problems. – –
1 Bridges in good condition. No attention is required. 7 9
2 Structures with minor problems, indefinite time frame for attention. 5 7
3 Significant or medium damage, repair required within 3 to 5 years. 3 5
4 High to severe damage, repair required within 1 to 2 years. 1 2
5 Extreme damage or risk of total failure. Repair required immediately or within one year 0 1

5.3.2 Intervention cost estimation
To quantify the financial aspects of the intervention planning, construction costs are esti-
mated. The estimation of intervention costs, related to bridge maintenance and reparation,
is conducted following the methodology presented in Section 5.2.2.

To illustrate this process, a specific example is provided. The MHC number 3, known
as Querétaro-Ciudad Juárez in which a total of twelve bridges are located, as shown in
Figure 5.2. The general information related to these bridges is summarized in Table 5.3.
This information is derived from the SIPUMEX database and provides a concise overview
of the key characteristics of these bridges. The construction costs, 𝐶0, are estimated using
the parametric cost approach specified by the SCT, for the year 2023, as documented in
[213]. The specific cost breakdown for each bridge type is presented in Tables D.1.1 to D.1.3.
It is noted that these costs are direct costs associated with the construction of the bridges,
which depend on geometric characteristics such as the number of lanes, maximum span
length, and maximum bridge height.

A value of 18 years is selected to encapsulate the maximal temporal extent of the
interventions at least twice, in accordance with Table 5.3. The time interval Δ𝜏 = 1 year,
thus 𝑇 = 18. Nevertheless, the methodology allows for a wider (or narrower) range of years
to be used for the purpose of different analyses.

Figure 5.2: Bridges with a 𝐵𝑅 > 0 located at MHC 3. Labels located next to each bridge represent its corresponding
ID number.
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Table 5.3: General information about bridges with a 𝐵𝑅 > 0 located at the MHC 3. Bridge construction cost, 𝐶0, in
millions of Mexican pesos (MMP, 1 MP ≈ 0.05 EUR.)

Bridge (i) Name Lanes Spans Max
span[m]

Total
length[m] AADT 𝐵𝑅

𝐶0
[MMP] 𝛽 𝐺𝑚𝑖𝑛

[Years]
𝐺𝑚𝑎𝑥
[Years]

1 San Pedro 4 1 9.8 9.8 6997 1 19.03 3.82 7 9
2 Maravillas 2 2 6 11.9 8009 2 3.28 3.30 5 7
3 San Antonio 2 1 18.7 18.7 5114 2 11.28 3.30 5 7
4 La Sed 2 1 10.5 10.5 4919 2 10.35 3.30 5 7
5 Sombreretillos 2 1 11.6 11.6 4378 2 10.35 3.30 5 7
6 Cerro Gordo 2 1 15.7 15.7 4748 1 11.28 3.82 7 9
7 El Sabino 2 2 7.3 14.6 9703 3 3.67 3.00 3 5
8 Apaseo el Alto II 2 2 6.4 12.7 12619 2 3.40 3.30 5 7
9 Las Nieves 2 2 6.3 11.7 5033 1 3.25 3.82 7 9
10 Los Gemelos I 2 1 6.1 6.1 5033 2 7.25 3.30 5 7
11 Los Gemelos II 2 1 6.1 6.1 5033 1 7.25 3.82 7 9
12 Nuevo Rio Grande 2 3 20.7 61.7 2850 2 11.54 3.30 5 7

To calculate the total intervention cost 𝐶𝐵𝑉 , Equations (5.3) and (5.5) are employed,
utilizing the relevant data sourced from the SCT. The bridge repair costs 𝐶𝑅 are determined
using Equations (5.2) and (5.4). The grades for the computation of 𝑓𝐵 adjusted to the size
of the MHC network under study are shown in Table D.2.1. A direct association with the
values of 𝐵𝑅 shown Table 5.2 and the damage levels shown in Table 5.1 is made according
to the corresponding descriptions. Hence the values of the reliability index 𝛽 are directly
inferred from the rating values. For example, a bridge with 𝐵𝑅 = 4 corresponds to 𝛽 = 2.3.
It is noted that while the inferred 𝛽 values serve the purpose of exemplification, they may
not precisely correspond with reality. For the sake of simplicity, it is assumed that the
maintenance costs, 𝐶𝑀 , are equivalent to 15% of the repair costs, i.e., 𝐶𝑀 = 0.15𝐶𝑅. This is
roughly equivalent to 3% of the bridge construction costs suggested by [200], particularly
for bridges with a rating index of 2, a characteristic shared by the majority of bridges under
study. It is noted that this assumption is made to illustrate and facilitate the use of the
methodology presented herein. However, it is acknowledged that the assumption needs to
be validated for all bridges, especially those with rating indices different from 2.

The user costs arising from the unavailability of bridges due to intervention actions
are obtained using Equation (5.6). When bridge maintenance is executed, assuming that
intervention works are conducted separately for each lane, a prolonged travel time (𝑡𝑝) of
approximately 1.5 minutes is considered. Furthermore, the unavailability period, 𝑇𝑈 , due
to maintenance is approximated at 2 months. The repair work duration spans 11 months,
with a corresponding 𝑡𝑝 of approximately 5 minutes, taking into account available alternate
routes and considering that repair works are performed independently for each lane. This
means that under neither of the two interventions under study will the bridge ever be
fully closed. It is noted that, in practice, 𝑡𝑝 could exceed the assumed values. This could
depend on numerous factors such as the location and area of the bridges. However, for
simplification purposes, the assumed unavailability periods and prolonged travel times are
derived following the recommendations of [205] and [198].

For calculations involving the user costs, 𝐶𝑈 and 𝐶𝑣𝑒 (see Equation (5.7)), an average
hourly wage (𝑊 ) of 36.62 MP (Mexican pesos) and an average of 1.8 passengers per vehicle
(𝑃𝑉 ) are considered, both obtained from data gathered by the National Institute of Statistics
and Geography (INEGI, for its acronym in Spanish) [214] and the Mexican Institute of



5

96 5 Network-level optimization approach for bridge interventions scheduling

transport (IMT, for its acronym in Spanish) [215] correspondingly. Additionally, 20 week-
days (𝑤𝑎) and 10 weekend days (𝑤𝑏) are considered. To derive an estimate for weekend
days, it is considered a cost equivalent to 50% (𝛼 = 0.5) of the workday cost. The obtained
intervention costs for the bridges located at MCH 3 are shown in Table 5.4. In Appendix D.2,
a numeric example of the estimation of the intervention cost for one bridge is presented.

Table 5.4: Intervention costs in millions of Mexican pesos (MMP, 1 MP ≈ 0.05 EUR).

Bridge (i) 𝐶𝐵𝑉
[MMP]

𝐶𝑀
[MMP]

𝐶𝑈 |𝑀
[MMP]

𝐶𝑅
[MMP]

𝐶𝑈 |𝑅
[MMP]

1 31.40 0.05 0.29 0.31 5.77
2 5.25 0.10 0.33 0.67 9.90
3 18.61 0.36 0.21 2.38 6.32
4 17.08 0.33 0.20 2.19 4.05
5 17.08 0.33 0.18 2.19 5.41
6 18.61 0.03 0.20 0.19 5.87
7 6.05 0.27 0.40 1.83 11.99
8 5.60 0.11 0.52 0.72 15.60
9 5.36 0.01 0.21 0.05 6.22
10 11.96 0.23 0.21 1.53 4.15
11 11.96 0.02 0.21 0.12 4.15
12 19.32 0.37 0.35 2.47 4.31

5.3.3 Bridge deterioration modeling
Bridge deterioration modelling plays a crucial role in formulating effective bridge mainte-
nance programs. An accurate estimation of a bridge’s rate of deterioration enables bridge
owners to plan their budgets efficiently for necessary interventions. In this context, the use
of a deterioration model based on the Simplified Kaplan-Meier probabilistic deterioration
model specifically designed for prestressed concrete superstructures in the United States
[216] is illustrated. This simplified deterioration model adopts the characteristics of a
stationary Markov-chain model.

In the United States, bridge ratings range from 0 to 9, with 9 being in excellent condition.
On the other hand, Mexican bridges follow a scale from 5 to 0, where 0 represents an
excellent condition or recently built/repaired structures. To align these differing rating
systems, a straightforward correspondence is established based on the interpretation of
each rating. For instance, a US bridge rated at 7, categorized as being in Good Condition,
corresponds to a Mexican bridge with a rating of 1. It is noted that this example might
not represent the actual relationship between the bridge rating systems of the United
States and Mexico. Bridge rating systems are considerably intricate and encompass various
other influential factors. For comprehensive and bridge-specific models, sophisticated
methodologies such as Time In Condition Rating or Markov Transition Probability should
be employed [216].

The transition probability matrix used for making predictions about condition rat-
ings based on the Simplified Kaplan-Meier probabilistic deterioration model simplifies to
Equation (5.23):



5.3 Illustrative application

5

97

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.96 0.04 0 0 0 0 0 0 0
0 0.94 0.06 0 0 0 0 0 0
0 0 0.97 0.03 0 0 0 0 0
0 0 0 0.91 0.09 0 0 0 0
0 0 0 0 0.96 0.04 0 0 0
0 0 0 0 0 0.99 0.01 0 0
0 0 0 0 0 0 0.75 0.25 0
0 0 0 0 0 0 0 0.75 0.25
0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.23)

For illustrative purposes, the costs associated with the bridge El Sabino (bridge 𝑖 = 7,
according to Table 5.3) for deterioration for the first 11-year costs are shown in Table 5.5. It
is noted that the parameters 𝐺min,𝑘 and 𝐺max,𝑘 maintain a consistent value over the entire
duration of the analysis, regardless of the extent of degradation encountered by the bridge
at each time step. This consistency arises from the underlying applied degradation model.
Specifically, the bridge rating remains unchanged during intervals between two successive
maintenance interventions that occur within intervals of less than 15 years, particularly
in cases where the initial rating of the bridge is below 4. As can be seen in Table 5.5, the
rating of bridge El Sabino (initial rating of 3) changes to 3.25 after 11 years. However, due
to rounding, the rating value remains classified as 3. In the case of bridges with an initial
rating of 4, progression to level 5 occurs within a mere 3-year time frame. As a result,
repairing these bridges within the initial 2 years presumably would be a more cost-effective
strategy than their continuous maintenance.

Table 5.5: Bridge El Sabino intervention costs associated with bridge deterioration rating using the Simplified
Kaplan-Meier probabilistic deterioration model

Year 0 1 2 3 4 5 6 7 8 9 10
𝐵𝑅 3.00 3.01 3.03 3.05 3.07 3.10 3.12 3.15 3.18 3.22 3.25
𝛽 3.00 2.99 2.98 2.97 2.95 2.93 2.91 2.89 2.87 2.85 2.83
𝑓𝑅 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.38 0.40 0.41 0.43

𝐶𝑅[MMP] 1.83 1.87 1.92 1.98 2.05 2.12 2.21 2.30 2.40 2.51 2.62
𝐶𝑀 [MMP] 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.35 0.36 0.38 0.39

Notice that the costs shown in Table 5.5 must be affected according to a simple invest-
ment principle. A capital denoted as CAP, when invested over 𝑇Δ𝜏 years at an interest
rate of 𝑖𝑟 , leads to an outcome denoted as 𝐶 = CAP(1+ 𝑖𝑟)𝑇Δ𝜏 [217]. Employing an interest
rate of 4.5%, which corresponds to the average inflation rate of Mexico during the interval
2012-2022 [218]. The total cost of bridge maintenance interventions 𝐶𝑀 +𝐶𝑈 |𝑀 per bridge
and the total cost of bridge repair interventions 𝐶𝑅 +𝐶𝑈 |𝑅, for the first 5 years, are shown
in Table 5.6.

Once the direct costs given the deterioration model and the user costs are estimated
for all the bridges under study, the following section presents the application of the B-3C
concept optimization model.

5.3.4 Relationship matrices
In the MCH 3, there are three clusters of bridges closely located to each other, assuming
that a bridge pertains to a cluster when the distance between other bridges is less than
or equal to 10 km, as illustrated in Figure 5.2. These clusters are: 1) bridges 𝑖 = {5,6}, 2)
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Table 5.6: Annual total costs of bridge maintenance, 𝐶𝑀 +𝐶𝑈 |𝑀 , and repair, 𝐶𝑅 +𝐶𝑈 |𝑅 , interventions. Costs in
[MMP]

Bridge (i)
𝐶𝑀 +𝐶𝑈 |𝑀 [MMP] 𝐶𝑅 +𝐶𝑈 |𝑅

Year
0 1 2 3 4 0 1 2 3 4

1 0.34 0.35 0.38 0.40 0.42 6.08 6.38 6.70 7.03 7.39
2 0.43 0.45 0.48 0.51 0.53 10.57 11.08 11.60 12.15 12.73
3 0.57 0.61 0.65 0.70 0.74 8.70 9.19 9.71 10.25 10.82
4 0.53 0.57 0.61 0.65 0.69 6.24 6.61 7.00 7.41 7.84
5 0.51 0.55 0.58 0.62 0.67 7.60 8.03 8.48 8.96 9.46
6 0.22 0.24 0.25 0.26 0.28 6.06 6.34 6.65 6.97 7.30
7 0.67 0.71 0.75 0.80 0.84 13.82 14.48 15.19 15.94 16.75
8 0.63 0.66 0.69 0.73 0.77 16.31 17.08 17.88 18.71 19.59
9 0.22 0.23 0.24 0.25 0.26 6.28 6.56 6.86 7.18 7.51
10 0.44 0.47 0.50 0.53 0.56 5.68 6.00 6.33 6.68 7.05
11 0.23 0.24 0.25 0.26 0.28 4.27 4.47 4.68 4.91 5.14
12 0.72 0.77 0.82 0.87 0.93 6.78 7.19 7.61 8.06 8.54

bridges 𝑖 = {7,8} and 3) bridges 𝑖 = {7,8,9}. Any intervention on one bridge within a cluster
will impact the performance of other bridges in the same cluster. Performing interventions
either on bridges 𝑖 = {1,2,3,4,12} will not affect any of the other bridges.

For example, Table 5.7 presents the information necessary to compute the interaction
matrix for cluster 3 (see Figure 5.3) assuming a 𝑡𝑝 = 5 minutes for all bridges. The first
two columns display the bridge indices, indicating the direction of travel flow from bridge
𝑖 to 𝑗 . The third column represents the route travel time between bridge 𝑖 and bridge 𝑗 ,
assuming free flow and a constant travel speed of 60 km/hr. The fourth column denotes the
prolonged travel time caused by the intervention. Columns five to seven display the route
travel time between bridge 𝑖 and bridge 𝑗 caused by intervention on bridge 𝑖. Columns eight
to ten correspond to computed the elements of the interaction matrix, 𝐼 , resulting from
intervention on bridge 𝑖 using Equation (5.9). Finally, column eleven shows the selected
element for the interaction matrix, which corresponds to the maximum value obtained
from interventions on individual bridges, i.e., the maximum value of columns eight to ten.

Figure 5.3: Bridges 𝑖 = {9,10,11,12}, according to the notation presented in Table 5.3 and shown in Figure 5.2.

It is noted that 𝐼10,𝑗 shows higher values when compared to 𝐼9,𝑗 and 𝐼11,𝑗 . This suggests
that intervention in bridge 𝑖= 10 has a more significant influence on other bridges, implying
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Table 5.7: Travel times (in minutes), and partial effects caused by intervention in bridges 𝑖 = {9,10,11}.

𝐵𝑖 𝐵𝑗 𝑡𝑟𝑖,𝑗 𝑡𝑝,𝑖 𝑡𝑟int,9,𝑗 𝑡𝑟int,10,𝑗 𝑡𝑟int,11,𝑗 𝐼9,𝑗 𝐼10,𝑗 𝐼11,𝑗 max𝐼𝑖,𝑗
9 10 1.44 5.00 6.44 1.44 1.44 0.78 0.00 0.00 0.78
9 11 1.45 5.00 6.45 6.45 1.45 0.78 0.78 0.00 0.78
10 11 0.04 5.00 0.04 5.04 0.04 0.00 0.99 0.00 0.99
10 9 1.44 5.00 1.44 6.44 1.44 0.00 0.78 0.00 0.78
11 9 1.45 5.00 1.45 6.45 6.45 0.00 0.78 0.78 0.78
11 10 0.04 5.00 0.04 0.04 5.04 0.00 0.00 0.99 0.99

a potentially more disruptive scenario compared to interventions on bridges 𝑖 = 9 and
𝑖 = 11. However, to capture the biggest influence, the maximum values of the computed
interactions are selected. The result can be read as follows: executing an intervention in
bridge 𝑖 = 9 will affect 78% partially bridge 𝑖 = 10 and 𝑖 = 11. Performing and intervention
in bridge 𝑖 = 10 will affect 99% partially bridge 𝑖 = 112.

Using the same procedure for the other clusters, results show that an intervention in
bridge 𝑖 = 5 will affect 34% partially bridge 𝑖 = 6 and an intervention in bridge 𝑖 = 7 will
affect 56% partially bridge 𝑖 = 8. Therefore, the interactions between the bridges in MHC 3
can be mathematically represented using Equation (5.24):

𝐼 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0.34 0 0 0 0 0 0
0 0 0 0 0.34 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0.56 0 0 0 0
0 0 0 0 0 0 0.56 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0.78 0.78 0
0 0 0 0 0 0 0 0 0.78 1 0.99 0
0 0 0 0 0 0 0 0 0.78 0.99 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.24)

Each intervention is associated with a specific bridge. As a result, a total of 𝐾 = 24
intervention types are established, since there are 12 bridges and 2 possible interventions
(i.e., maintain or repair) for each bridge. This breaks down into 12 maintenance intervention
types 𝑘 = {1, ..,12} and 12 repair intervention types 𝑘 = {13, ...,24} according to the notation
presented in Section 5.2.2. In Equation (5.25) the relation matrix between these intervention
types and the bridges is shown:

𝑅 = [𝐼12|𝐼12] (5.25)

where 𝐼12 represents the identity matrix of size 12×12

5.3.5 MHC 3 results
The optimal intervention program is obtained through the optimization problem Equa-
tion (5.11) to Equation (5.22). In the given example, the most critical state is defined as
those exhibiting substantial damage, necessitating interventions within a timeframe of
3 to 5 years for bridge 𝑖 = 7 (see Table 5.3). Consequently, no immediate bridge repairs
2It is noted that bridges 𝑖 = 10 and 𝑖 = 11 are in close proximity. By reviewing the bridge database and satellite
images, these bridges span two adjacent branches of a river.



5

100 5 Network-level optimization approach for bridge interventions scheduling

are necessary. However, to delve into the application of the B-3C method, two scenarios
are presented, (1) a case where no repair is needed and (2) a case where bridge 𝑖 = {7,8,9}
must be repaired. For Scenario (1) an annual budget constraint of 0.61 MMP (𝐸𝑡 = 0.61 for
𝑡 = {1, ..., 𝑇 }) it is assumed, roughly equivalent to 0.6% of the MHC 3 bridge network total
value. Additionally, an interest rate of 4.5% is applied. On the other hand, for Scenario (2),
where repairs are indeed necessary, and prompt action is preferred within the initial two
years due to cost escalation, an extra annual budget of 1.2 MMP. i.e., 𝐸𝑡 = 1.2 for 𝑡 = {1,2}
and 𝐸𝑡 = 0.61 for 𝑡 = {3, ..., 𝑇 } is allocated. This budget (1.2 MMP) constitutes approximately
1.2% of the MHC 3 bridges value, specifically dedicated to facilitating the required repairs.

Given the escalating costs resulting from the bridge degradation, an initial inference
might be that initiating interventions during the initial years of analysis would lead to cost
benefits. However, adopting this approach would require a more frequent intervention
schedule over the study period. The advantage of the methodology presented herein is the
ability to determine the optimal sequence that minimizes the total number of interventions
while ensuring early implementation to reduce overall expenses.

The number of decision variables of the demonstrative example is 𝑇 ×𝐾 = 18×24 = 432
(𝐾 = 16 is the number of intervention types). The optimization problemwas solved using the
Pythonscipy [219]Mixed-Integer Linear Programming algorithm scipy.optimize.milp.
Tables 5.8 and 5.9 show the optimal intervention program of the intervention types for a
period of 18-time steps for Scenario (1) described in Section 5.3.4.

In the figure depicted in Table 5.8, every row on the graph represents the intervention
program of one intervention type, where blue squares represent maintenance intervention
and red triangles represent repair intervention (see Scenario (2) Table D.3.1). As can be
seen, the optimization algorithm assigns the year of intervention, according to the decision
matrix D, in order to minimize the total cost at the end of the study period given the
minimum and maximum time between interventions and the annual budget constraints.
The table in Table 5.8 shows, in net present value, both the annual budget constraint and the
direct cost. Additionally, the ratio between direct cost and the annual budget is presented,
which shows that the total direct cost is always below the annual budget available.

Table 5.9 shows an overview of the optimal intervention program. The first column
identifies the bridges in the provided example. The second column indicates the recom-
mended year for conducting repair interventions. Columns 3, 4, and 5 display the years
assigned for three maintenance interventions. The remaining columns, 6 to 10, present
the corresponding total costs for the interventions. Similarly, the results of Scenario (2)
are depicted in Table D.3.2. The total cost for Scenario (1) corresponds to 𝐶𝑆1 = 22.82 MMP
while for Scenario (2), the total cost is 𝐶𝑆2 = 76.65 MMP. 𝐶𝑆1 amounts to approximately
30% of the total cost 𝐶𝑆2 . However, when considering only the total direct cost for both
scenarios, 𝐶𝐷𝑆1

and 𝐶𝐷𝑆2
respectively, the direct cost in Scenario (1), 𝐶𝐷𝑆1

= 11.42 MMP,
represents roughly 2% more of the total direct cost seen in Scenario (2) (𝐶𝐷𝑆2

= 11.15MMP).
This comparison suggests that when looking solely at the direct cost, Scenario (1) could be
a more effective strategy due to its higher investment compared to Scenario (2). However,
the lower direct cost of Scenario (2) is attributed to the state of bridges 𝑖 = 8 and 𝑖 = 9
with 𝐵𝑅 = 2 and 𝐵𝑅 = 1 respectively, leading to cheaper intervention costs. In real-life
bridge scenarios, these bridges would not need repair, as shown in Table 1. In a practical
scenario where bridges requiring repair have 𝐵𝑅 ≥ 3, Scenario (2) may be a better strategy.
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By allocating an additional budget for repair, some bridges will be completely repaired,
resulting in a healthier infrastructure network. It is crucial to highlight the importance of
considering the interconnected effects of interventions on individual bridges within the
network system. If these effects are not taken into account, i.e., 𝐼 = [𝐼12] the total cost could
be significantly underestimated. For example, without considering the spatial proximity of
the bridges for Scenario (1), the total cost corresponds to 𝐶𝑆1 |𝐼=[𝐼12] = 19.12 MMP. However,
this estimation would be erroneous, representing a deviation of 3.6 MMP from the actual
value. This discrepancy translates to approximately 3.6% of the total value of the bridge
network.

Table 5.8: Optimal intervention program Scenario (1). Annual cost expressed in net present value (NPV). 𝐸𝑡 :
annual budget constrain, 𝐶𝐷 : total direct cost (𝐶𝑀 +𝐶𝑅).

Intervention program Annual cost (NPV)

Year 𝐸𝑡 [MMP] 𝐶𝐷 [MPP] 𝐶𝐷
𝐸𝑡

1 0.61 0.10 16%
2 0.61 0.33 54%
4 0.61 0.46 75%
5 0.61 0.55 89%
6 0.61 0.55 89%
7 0.61 0.42 68%
9 0.61 0.41 67%
10 0.61 0.56 92%
11 0.61 0.57 94%
12 0.61 0.47 76%
13 0.61 0.52 86%
14 0.61 0.52 85%
15 0.61 0.44 73%
16 0.61 0.50 82%
17 0.61 0.52 85%
18 0.61 0.16 27%

Table 5.9: Overview of Scenario (1) results. Total cumulative cost, 𝐶 = 22.82 MMP, total direct cost, 𝐶𝐷 = 𝐶𝑀 +𝐶𝑅 =
11.38 MMP. int𝑛: intervention number in year 𝑡Δ𝜏.

Bridge (i) Repair Maintenance 𝐶𝑅 𝐶𝑀 𝐶𝑀 |𝑈 𝐶𝑅|𝑈 𝐶int1 int1 int2 int3
1 – 1 10 – 0.0 0.19 0.58 0.0 0.77
2 – 4 11 18 0.0 0.71 0.99 0.0 1.70
3 – 7 14 – 0.0 1.54 0.42 0.0 1.96
4 – 2 9 16 0.0 1.99 0.61 0.0 2.60
5 – 4 11 17 0.0 2.22 0.73 0.0 2.95
6 – 1 10 – 0.0 0.11 0.53 0.0 0.64
7 – 5 10 15 0.0 1.78 1.88 0.0 3.66
8 – 6 12 – 0.0 0.41 1.62 0.0 2.04
9 – 1 10 – 0.0 0.03 1.06 0.0 1.09
10 – 5 12 – 0.0 0.85 1.15 0.0 2.00
11 – 1 10 – 0.0 0.07 1.15 0.0 1.22
12 – 6 13 – 0.0 1.48 0.70 0.0 2.19

Total 0.00 11.38 11.42 0.00 22.82
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5.3.6 Agency intervention program comparison
To evaluate the cost-effectiveness of the solutions, a comparison is made between the
optimal intervention scheduling and the existing SIPUMEX intervention program adopted
by the SCT, which operates in two stages. (I) Preliminary prioritization, this phase relies
on the automated ranking system based on key factors such as bridge rating, average
annual daily truck traffic (𝐴𝐴𝐷𝑇𝑇 ), and average annual daily traffic (𝐴𝐴𝐷𝑇 ). (II) Final
prioritization, a manual ranking process prioritizes bridges initially identified as high-
ranking (urgent interventions) in the preliminary phase, while the rest are assessed by
performing an individual review of the bridges and looking for the most damaged according
to the condition of the individual components and photographic reports until the estimated
budget has been reached [220, 221]. Usually, it is assumed that the minimum number
of interventions implies the minimum cost [222]. This implies that the time within two
consecutive interventions is 𝐺𝑚𝑖𝑛 = 𝐺𝑚𝑎𝑥 .

In Table 5.10, the comparison of intervention programs for Scenario (1) is shown. The
table presents data regarding the bridges, including their ranking based on the SIPUMEX
preliminary prioritization, the corresponding maintenance years, the total cost of these
interventions (𝐶∗), the total cost using the B-3C approach (𝐶), and the percentage of
savings obtained. The B-3C program achieves savings for most bridges. However, when
considering the total cost, the results reveal that the optimal plan leads to a 14% reduction
in costs compared to the SIPUMEX approach. Notice that, using the SIPUMEX approach
for this particular example, there are 312 = 531441 (3 time-steps between 𝐺𝑚𝑖𝑛,𝑘 , 𝐺𝑚𝑎𝑥,𝑘
and 12 bridges) possible combinations of time between intervals. The minimum total
cost is obtained with 𝐺𝑚𝑎𝑥 = {5,7,7,7,7,7,7,7,9,9,9,9} resulting in a total 𝐶∗ = 26.54 MMP.
Additionally, taking into account the budget constraint of Scenario (1), it is notable that
the allocated budget will be fully utilized by year 11, i.e, SIPUMEX costs are over the
budget. Consequently, there will be no remaining budget for years 15 and 16, resulting
in 7 bridges lacking maintenance intervention. The primary drawback of the SIPUMEX
approach becomes evident in the large number of combinations that need evaluation to
obtain the minimum total cost. For example, if applied to the entire network under study,
it would necessitate assessing 3555 possible combinations, which is impractical.

Table 5.10: Comparison of the total cost between the bridge agency (𝐶∗) and the B-3C (𝐶) intervention programs
for 𝑇 = 18 years. int∗𝑛: intervention number in year 𝑡Δ𝜏 according agency approach.

Bridge(𝑖) 𝐵𝑅 AADTT AADT 𝐺𝑚𝑎𝑥 Maintence 𝐶∗ 𝐶 Saving
[Years] int∗1 int∗2 int∗3 [MMP] [MMP] [%]

7 3 2367 9703 5 6 11 16 3.83 3.66 4
10 2 3133 5033 7 8 15 – 1.73 2.00 -16
8 2 2778 12619 7 8 15 – 2.17 2.04 6
5 2 2211 4378 7 8 15 – 2.1 2.95 -40
3 2 2163 5114 7 8 15 – 3.08 1.96 36
4 2 2128 4919 7 8 15 – 2.97 2.60 12
12 2 1956 2850 7 8 15 – 3.71 2.19 41
2 2 893 8009 7 8 15 – 3.13 1.70 46
9 1 3133 5033 9 10 – – 1.06 1.09 -3
11 1 3133 5033 9 10 – – 1.19 1.22 -3
1 1 2348 6997 9 10 – – 1.19 0.77 35
6 1 2211 4748 9 10 – – 0.38 0.64 -68

Total 26.54 22.82 14
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5.3.7 Additional travel time sensibility analysis.
The additional travel time, 𝑡𝑝 , depends on the type of intervention and the size of the bridge,
which varies on every bridge in the network. Unfortunately, detailed data on the prolonged
time required for each bridge is not available. As such, the precise quantification of time
per bridge falls beyond the scope of this investigation.

It is expected that if there is a greater travel time, the total intervention cost will
increase. On the other hand, reducing the travel time will decrease the total cost. Which
is reflected directly in the interaction matrix, 𝐼 (see Equation (5.9)). However, this also
affects the scheduling using the current bridge agency approach. For comparison purposes,
Scenario (1) is selected to model three cases of delay caused by maintenance: a 2-minute
delay, a 30-minute delay, and a linear function that depends on the bridge area (𝐵𝐴), i.e.,
𝑡𝑝 = 0.01𝐵𝐴+1.45. The linear relationship is established such that the minimum prolonged
time (the prolonged time for the smallest bridge) is 2 minutes, and the maximum prolonged
time is 62 minutes.

It is noted that these cases are for exemplification purposes only and do not represent
the reality of individual bridges or any bridge network. The results are presented in
Table 5.11. As observed, the table illustrates the sensitivity of total costs to the choice of
prolonged travel time. Additionally, the table shows the savings percentage associated with
the comparison between the two approaches. These percentages indicate the potential cost
savings achieved by opting for the B-3C program over the agency program. For instance,
at a prolonged time of 2 minutes, B-3C achieves approximately 11.4% savings in terms of
total intervention costs. Overall, the B-3C methodology consistently reduces the total cost
compared to the agency, under identical assumptions.

Table 5.11: Comparison of the total costs for Scenario (1) between the agency approach (𝐶∗) and B-3C
(𝐶).Intervention programs for 𝑇 = 18 years assuming different prolonged times.

𝑡𝑝 [min.] 𝐶∗ [MMP] 𝐶 [MMP] Saving [%]
2 28.51 25.26 11.40
30 297.92 265.51 10.88
Linear 45.99 37.32 18.85

5.4 Application to the entire bridge portfolio
After explaining the proposed methodology and presenting results for the bridges at MHC
3, the optimal intervention plans for the entire bridge portfolio. For this investigation,
bridges with a rating greater than 0 are used as a case study, i.e., 555 bridges in total. The
geographical distribution of these bridges can be visualized in Figure 5.4.

According to the information in Table 5.2, bridges with a rating of 5 are marked for
repair. It is noted that, as reported in the SIPUMEX database, no bridges fall into this
category. Consequently, there is no immediate need for bridge repairs based on the available
data. Nonetheless, for cost comparison, similar to the case illustrated in Section 5.3.4, two
scenarios are presented. The first one, Scenario (3), assumes that no repairs are necessary.
The second, Scenario (4), assumes a case where bridges with a rating above 3 require repair
(17 bridges). Furthermore, since one of the advantages of the proposed methodology is that
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Figure 5.4: Location of the bridges under study.

central interventions can be chosen based on any bridge performance indicator, a Scenario
(5) is also considered. For this scenario, the load effect performance indicator, which refers
to the ratio between the extreme traffic load effect selected and the characteristic load effect
induced by the design live load model [223], is used. Particularly the bending moment
with a 50-year return period performance indicator𝑀50𝑟 . Scenario (5) assumes that bridges
with 𝐵𝑅 > 3 or 𝑀50𝑟 > 1.56 require repair intervention (38 bridges). For complete details
regarding 𝑀50𝑟 bridge performance indicator, the reader is referred to [223].

Similar to the approach detailed in Section 5.3.2, the Simplified Kaplan-Meier prob-
abilistic deterioration model is used, the percentage of interaction, the analysis period,
and the interest rate. Intervention costs were estimated as outlined in Section 5.2.2. In
terms of budget limitations, for Scenario (3) an annual budget of 1.35% of the total bridge
network value (98.44 MMP) is assumed. Regarding Scenario (4) and (5) approximately
1.5% of the total bridge network value (around 109.3 MMP) was allocated for the first two
years to cover repairs for the selected bridges. For subsequent years, the budget constraint
was set to about 1% of the total bridge network value (69.3 MMP). Notice that the budget
limitations presented represent the minimum required funds to apply interventions to all
the bridges under study.

The optimization problem involved a total of 19980 variables, including 1110 inter-
vention types. The optimization procedure was executed using the Python algorithm
scipy.optimize.milp on a laptop running Windows 10, equipped with an Intel
Core i7–8665U CPU @ 1.90GHz, and 32 GB of RAM. The entire simulation process took
approximately 28 minutes. The budget constraints, total direct costs and total costs of
the optimal intervention plan for the 555 studied are presented in Table 5.12. A graphical
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representation of the optimal intervention plan for Scenario (4) is shown in Figure 5.5
while the corresponding plan for Scenarios (3) and (5) are shown in Figures D.3.1 and D.3.2.
The estimated intervention costs and the optimal program overview can be found in the
supplementary material.

Table 5.12: Overview of optimal intervention results for Scenarios (3), (4) and (5).

Scenario 𝐸𝑀 [MMP] 𝐸𝑅 [MMP] 𝐶𝐷 [MMP] 𝐶 [MMP]
(3) 98.44 – 2060.49 2829.02
(4) 69.30 109.3 1523.69 2360.10
(5) 69.30 109.3 1543.42 2560.29
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Figure 5.5: Optimal intervention program for the 555 bridges under Scenario (4).

The analysis reveals three distinct cost scenarios for managing bridge infrastructure.
First, the total cost for performing maintenance exclusively (𝐶𝑆3 ), amounts to approxi-
mately 2828.98 MMP. Second, the alternative strategy involves repairing bridges with a
condition index 𝐵𝑅 > 3 and maintaining the others (𝐶𝑆4 ). This approach leads to a cost of
approximately 2359.95MMP. Finally, the total cost obtained for Scenario (5) 𝐶𝑆5 amounts
to approximately 2560.29 MMP. Opting for the 𝐶𝑆4 approach results in a cost reduction of
16.5% compared to the 𝐶𝑆3 strategy.

The cost ratio between the Scenarios (3) and (4) approaches shows the economic
advantage of the 𝐶𝑆4 strategy. Specifically, 𝐶𝑆4 correspond to 83.5% of the cost of 𝐶𝑆3 . This
indicates that the 𝐶𝑆4 approach is more cost-effective, saving nearly 17% of the expenses
associated withmaintenance. Additionally, the analysis considers the direct costs associated
with both strategies. For the 𝐶𝑆3 approach, the direct cost (𝐶𝐷𝑆3

), amounts to 2060.49 MMP.
In contrast, the 𝐶𝑆4 approach provides lower direct costs, with 𝐶𝐷𝑆4

of 1523.69MMP. This
difference results in a 26% reduction in direct costs when opting for the 𝐶𝑆4 approach. The
direct costs of scenarios (4) and (5) are virtually identical, the cost ratio 𝐶𝑆4/𝐶𝑆5 corresponds
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to 92.1%. The marginal difference suggests that opting for strategy (5) might be a better
choice, as it benefits more bridges while guaranteeing the adaptability of the bridge network
to the actual traffic load demands.

Furthermore, when comparing the total cost of Scenario (3) with the total cost obtained
with the agency approach (𝐶∗ = 3075.9MMP, assuming the time within two consecutive
interventions 𝐺𝑚𝑖𝑛 = 𝐺𝑚𝑎𝑥 ) described in Section 5.3.6, an 8% reduction in total costs is
observed when applying the B-3C approach. It is noted that when the interaction effects
within the bridges are not taken into account, i.e., 𝐼 = [𝐼555] the total costs for Scenario (3)
corresponds to 𝐶𝑆3 |𝐼=[𝐼555] = 2621.93 MMP, representing a deviation of 266.6 MMP from the
actual value (2.8% of the bridge network total value). When compared with the optimal
result of Scenario (4) with the agency approach a reduction of around 23% was found. It
is pointed out that given the budget constraints, opting for the agency approach will be
enough to fund interventions up to year 15.

5.5 Conclusions
This chapter presents a novel methodology for optimizing bridge intervention planning,
named B-3C approach, based on the multi-system optimization technique known as the in-
tegrative 3C concept. The proposed methodology takes into consideration the interactions
between various assets within a bridge network, including different types of interventions.
To model these interactions, the employed approach utilizes an interaction matrix capable
of representing diverse interdependencies caused by the spatial proximity of the bridges.
Additionally, a relation matrix is established to specify which intervention type affects
each asset. In the specific context under study, the focus is on two intervention types:
maintenance and repair. Furthermore, the methodology enables the distinction between
central and non-central intervention types by considering the time intervals between suc-
cessive interventions. This allows the incorporation of various bridge performance metrics
into the analysis, facilitating the prioritization of central interventions. The intervention
scheduling approach is formalized by developing an optimization mathematical model that
incorporates pre-established constraints.

The main goal of the optimization process in this study is to minimize the total cost
associated with implementing interventions. This objective is achieved through the uti-
lization of a global intervention cost function that accounts for the direct costs of the
interventions, the user costs resulting from the interventions, and the bridge deterioration
model. It is acknowledged that bridge managers often encounter additional optimization
goals, or agencies may have varying performance criteria for different bridges or groups of
bridges. However, in most cases, during a given planning exercise, minimizing costs would
support the manager in economically prioritizing bridges to address specific optimization
goals.

To demonstrate the practicality of the presented methodology, a numerical example
involving a network of 555 bridges and four scenarios is provided. This methodology
offers a clear benefit by helping to determine the most efficient sequence for interven-
tions that minimize the overall number of required interventions while ensuring early
implementation to lower costs. The results of the numerical example emphasize the clear
cost-saving advantages and the importance of including the interaction matrix. Specifi-
cally, by combining bridge repairs for those with a condition rating index exceeding 3 and
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maintenance for the rest, a reduction of 23% in the total cost is achieved when compared to
the bridge management agency approach based on exclusive maintenance. Notably, when
the interaction matrix is not considered, deviations in total costs of up to 3.6% of the total
bridge network value have been observed. Furthermore, a step-by-step description of how
to incorporate the bridge state into the cost estimation is offered. This estimation, which is
a function of the bridge reliability index, is dynamically considered in the optimization
process.

It is noted that the principal sources of uncertainty in this study are the deteriora-
tion model, the average annual inflation rate, and the extent of the impact induced by
interventions on other bridges, as indicated by the interaction matrix. The interaction
matrix analysis focuses solely on bridges 𝑖 to 𝑗 (or vice-versa). In cases where additional
interventions on other bridges are simultaneous with bridges 𝑖 and 𝑗 , the interaction matrix
cannot account for this scenario. This limitation arises from the nature of our simplified
network analysis to estimate travel time calculations, which do not allow for the straight-
forward addition of various elements in the interaction matrix. However, the variables
have been quantified in a simplified manner solely for illustrative purposes. Properly
quantifying these variables for each bridge within the network will lead to a more precise
estimation of the optimal intervention plan. The limitations of this study underscore the
necessity for future studies to (1) explore more advanced methodologies for computing the
interaction matrix and (2) investigate the effects of different intervention activities, such
as rehabilitation and replacement, and their integration into the framework. This deeper
exploration will contribute to refining our approach and enhancing our understanding of
how various repair strategies impact optimization outcomes.

While the optimal intervention program derived from the analysis may initially appear
random, these findings result from a rigorous optimization process. They exhibit better
performance compared to what could be achieved through human intuition, especially
when dealing with extended analysis periods and complex bridge networks with numerous
assets. Hence, the methodology presented herein highlights its practical value as a bridge
management optimization tool. It can help transportation agencies to implement and
explore various scenarios by adjusting the time between consecutive interventions and
budget constraints. This methodology helps by facilitating the assessment and comparison
of associated costs to support a more comprehensive analysis and informed decision-
making.
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6
Conclusions

This thesis has presented developments on one topic with different components to en-
hance the reliability estimates of bridges at a network level to assist the development and
implementation of optimal bridge intervention strategies. These components include the
generation of synthetic data for heavy vehicles, identification of hazardous road locations,
estimation of bridge criticality, and scheduling of optimal interventions. While each of the
chapters in this thesis contains a discussion of specific results and conclusions, Section 6.1
summarizes the main findings for the four research topics, and Section 6.2 summarizes
the main recommendations for both case study, as well as further research. Section 6.3
provides some closing remarks.

6.1 Main findings
6.1.1 Synthetic data of heavy vehicles
In Chapter 2, an enhanced methodology for computing synthetic WIM observations of
heavy vehicles is introduced, utilizing GCBNs. Resulting in a model that outputs compre-
hensive data, including vehicle type, total vehicle weight, individual axle loads, total vehicle
length, and inter-axle distances. Eight high-dimensional GCBNs were quantified, with
six of them based on WIM data from the Netherlands highway network. The remaining
GCBNs were quantified using WIM data from a city route in Rotterdam and Araranguá
(Brazil). The GCBN models accurately replicate the dependence structure of empirical data,
with minor differences observed between simulated and observed axle loads and inter-axle
distances.

To enhance accessibility, a GUI was developed for the six Dutch WIM highways under
study. The model’s applicability in the absence of WIM data was demonstrated by using
the GUI with data gathered with less-sophisticated traffic counters from Toluca (Mexico).
The presented framework for synthetic WIM observations can be applied using data from
any WIM location, incorporating site-specific records and vehicle types. The following key
findings are presented:

• Simulating the different vehicle types presented in a WIM database, using GCBNs,
can be achieved either by clustering vehicles based on the number of axles, body
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configuration, or vehicle code classification.

• GM distributions can effectively model axle loads and GVWs of heavy vehicles due
to the inherent multimodal nature of the data. This is particularly evident in the
distinct modes observed, such as empty trucks and loaded trucks, when analyzing
GVWs for example.

• Using empirical distributions for modelling inter-axle distances exhibits better per-
formance when compared with continuous distributions. This is due to the finite
number of vehicle distances associated with distinct vehicle types.

• Filtering criteria are essential to exclude irrelevant or erroneous data, reducing the
risk of misleading information. This process ensures that quality data are retained
for analysis, enhancing the consistency and accuracy of the results.

• Heavier and longer vehicles circulate on the Dutch motorways compared to those
circulating on city routes. This trend is primarily due to the capacity of a motorway
to accommodate larger vehicles and longer distances, while city routes often have
restrictions on vehicle size and weight.

• The primary goal of the model is to approximate the general traffic configura-
tion, rather than aiming for exact replication of every individual observation in
the database, particularly for future investigations into bridge reliability assessment.

6.1.2 Road hazardous locations identification
Chapter 3 introduces a methodology to identify potentially hazardous locations within a
road network by computing and mapping EGVWs when axle load information is limited.
The study focuses on the 15 major highway corridors network of Mexico, utilizing data
from less-sophisticated traffic counters. The extreme traffic events are computed using
extreme value theory and a Gaussian copula-based Bayesian Network (GCBN) approach.
The GCBN model, named GCBN𝐸𝐸𝐶𝐴𝑁 , is developed to generate synthetic axle loads for
Mexican heavy vehicles, utilizing axle load measurements from 223 origin-destination
surveys conducted between 2002 and 2017. Over 180 million synthetic heavy vehicles are
computed using 1777 site-specific GCBNs corresponding to the studied counting stations.
The analysis includes estimating characteristic values of GVWwith a 50-year return period
and a 1000-year return period, revealing hazardous locations on major highway corridors.

Furthermore, a user interface is provided to facilitate the generation of synthetic axle
load observations of Mexican heavy vehicles. The importance of using WIM systems for
additional traffic data to enhance accuracy and reliability is acknowledged. The following
key findings are presented:

• By analyzing data from 1,777 vehicle counting stations, it has been further validated
that the methodology developed in Chapter 2 can effectively estimate individual axle
loads using heavy vehicle configurations, i.e., vehicle type, number of axles, and the
corresponding proportions of the traffic flow.

• Extrapolations using the generalized extreme value distribution resulted in unrealis-
tically large gross vehicle weights at several stations. This outcome highlighted the



6.1 Main findings

6

111

significant impact of the chosen distribution type on extrapolation results. To ad-
dress this, the fitting procedure was improved by truncating the likelihood function.
By setting a gross vehicle weight (GVW) threshold, it was ensured that for values
below this threshold, only the probability of being smaller than the threshold was
considered, and for values at or above the threshold, only the probability density
was included. This approach provided a more accurate representation of the data.

• The methodology for estimating and mapping extreme GVWs effectively detects
trends in extreme GVWs at the counting points analyzed in this study. This is
evidenced by the similarities between the heat map showing the concentration of the
statistically heaviest vehicle type and the estimated heaviest GVWs with a 50-year
return period.

• Regarding the statistical analysis of the databases used in this study, it was found
that the most common heavy vehicle types, accounting for 95% of surveyed heavy
vehicles, are C2, C3, T3S2, T3S3, and T3S2R4. Among these, the nine-axle T3S2R4 is
the heaviest vehicle type in the database, with a maximum recorded gross vehicle
weight of 975.76 kN, reported in 2004. Additionally, the maximum gross vehicle
weight reported each year is consistently under 980 kN, suggesting that this may be
the maximum capacity of the scales used at the survey stations.

• Around 80% of the study stations have gross vehicle weights with a 50-year return
period (𝐺𝑉𝑊50) exceeding 980 kN (100 tons). This is consistent with data from
the EECAN database, which shows that the median value of the maximum GVW
observed across all survey stations is 964 kN. Furthermore, trucks with GVWs over
1000 kN have been recorded in central Mexico, specifically on the Irapuato – La
Piedad highway.

• Hazardous locations with 𝐺𝑉𝑊50 > 1190 kN (above the 75th percentile of the es-
timated 𝐺𝑉𝑊50 values) are concentrated along specific major highway corridors.
These corridors cross several federal entities, including Colima, Tabasco, México,
Puebla, Nuevo León, Tamaulipas, Querétaro, Guanajuato, Aguascalientes, Jalisco,
and Zacatecas. This concentration, speculatively, can be attributed to several factors:
(i) Colima hosts the largest seaport in the country. (ii) Tabasco hosts one of most of
Mexico’s important oil, industrial and commercial seaports. (iii) México and Puebla
are leading regions in the automotive industry. The most important industrial corri-
dos (iv) The Northern Economic Corridor runs through Nuevo León and Tamaulipas
and (v) The Bajío Industrial Corridor along Querétaro, Guanajuato, Aguascalientes,
Jalisco, and Zacatecas.

6.1.3 Bridge criticality estimation
Chapter 4 presents a four-step methodology for estimating bridge criticality as a load effect
(extreme bending moment and extreme shear force) performance indicator in a national
bridge network, particularly under conditions of limited information. The approach allows
for visualizing and evaluating the criticality of individual bridges within the network by
assessing the relationship between extreme traffic load effects and those generated by the
design live load model. The method is characterized by its low information intensity per
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bridge including the number of spans, length, lanes, width, and design live load to name
a few. Traffic information requirements include Annual Average Daily Traffic and the
proportion per vehicle type.

By using GCBNs to generate site-specific synthetic observations of heavy vehicles, the
traffic flow is simulated by estimating inter-vehicle gaps using auto-correlated couplas.
Long-run traffic load simulations provide insights into bridge load effects, and extreme
load effects are estimated using the block maxima extreme value analysis approach. The
four-step methodology is applied to a case study involving 576 bridges on major toll-free
highways in Mexico, the outputs of the methodology are comprehensive national highway
network maps, identifying spatial patterns and relationships of extreme load effects and
bridge criticality. The following key findings are presented:

• Low correlations between inter-vehicle gaps (the space between two vehicles travel-
ling in the same lane on a highway) are consistently noted across the majority of
hours throughout the day. This pattern implies relatively independent behaviour
during different hours, except for instances during both peak hours and low-traffic
hours.

• Inter-vehicle gaps are site-sensitive and can vary significantly based on the specific
characteristics and conditions of each region’s transportation network. Hence the
correlation behavior of inter-vehicle gaps is strongly influenced by the database.

• The maximum load effect is caused by individual heavy vehicles in around 92% of
the bridges under study. This phenomenon is attributed to the prevalent short span
lengths characterizing the majority of bridges within the network.

• Regarding the two-lane bridges included in the bridge network under study (445 in
total), the application of Turkstra’s Rule simplified model reveals that the 50-year
loading event consists of the 50-year truck in the slow lane, combined with the
one-day return period truck for 280 bridges and the one-week return period truck
for the remaining 165 bridges.

• Turkstra’s Rule simplified model provides accurate estimations of the extreme load
effects in 362 out of the 445 two-lane bridges with discrepancies ranging from -0.3%
to 3.9%. Nevertheless, a trial-and-error approach is needed to derive the value of the
axle placing distance alpha.

• The bridge criticality performance indicator for bending moment and shear force
with a 50-year return period indicates that, in most cases, the obtained values are
significantly higher when compared to those generated by the AASHTO standard
HS truck live loads. Specifically, they can be up to 1.71 times larger for bending
moments and up to 1.67 times larger for shear forces. This may raise concerns
about accelerated structural deterioration, increased maintenance costs, and a higher
frequency of inspections.

• The highest bridge criticality values (ratios above 1.42) are primarily concentrated
on the highway that connects the cities of Caborca and Sonoyta in northern Mexico.
This could be attributed to the design live load model employed for these bridges.



6.1 Main findings

6

113

Given that these are short-span bridges, the design live load assumes a truckload of
320 kN (HS15). However, according to the findings outlined in Chapter 3, a GVW
with a 50-year return period ranging between 1022 and 1131 kN is expected for these
particular locations.

6.1.4 Optimal intervention scheduling
Chapter 5 introduces the B-3C approach, a novel methodology for optimizing bridge in-
tervention planning based on the integrative 3C concept of multi-system optimization.
The approach considers interactions among diverse bridges in a bridge network, incor-
porating intervention types, and a deterioration model with a focus on maintenance and
repair interventions. The methodology formulates an optimization mathematical model to
minimize the total cost associated with interventions. It employs an interaction matrix to
represent interdependencies and a relation matrix to specify intervention additional costs.
Additionally, incorporates direct and user costs, along with a bridge deterioration model,
subject to predetermined constraints.

The optimization process aims to efficiently sequence interventions, minimizing the
overall number of interventions while ensuring cost reduction. The effectiveness of the B-
3C approach is illustrated through a numerical example featuring a portfolio of 555 bridges
within theMexican bridgemanagement system, SIPUMEX. Five distinct scenarios, including
a comparative analysis with the SIPUMEX scheduling approach, further demonstrate the
efficacy of the methodology. The following key findings are presented:

• Regarding the Simplified Kaplan-Meier probabilistic deterioration-based model, it is
observed that for bridges rated on a scale from zero to five (where zero indicates a new
bridge and five indicates an immediate bridge intervention), such as the SIPUMEX
bridge rating, the bridge rating remains marginally unchanged during intervals
between two successive maintenance interventions that occur within intervals of
less than 15 years. This trend is particularly notable when the initial rating of the
bridge is below four.

• Furthermore, in the case of bridges with an initial SIPUMEX bridge rating of four,
deterioration to level five occurs within a 3-year time frame. As a result, repairing
these bridges within the initial two years suggests a more cost-effective strategy
than their continuous maintenance.

• Combining bridge repairs for those with a condition rating index exceeding three and
maintenance for others results in a substantial 23% reduction in total costs compared
to an exclusive SIPUMEX maintenance approach.

• It is noted the importance of considering the interconnected effects (additional
indirect costs) of interventions on individual bridges within the network system.
The total cost could be underestimated if the interconnected effects are not taken
into account. For example, for the case study, a discrepancy of approximately 3.6%
of the total value of the bridge network was found.

• Incorporating bridge performance indicators, such as condition state and the criti-
cality of traffic load effects, can help differentiate between central and non-central
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intervention priorities. Additionally, considering deterioration models and the inter-
dependencies among bridges in the portfolio, which arise due to the spatial proximity
of objects within the network, when developing optimal budget allocation algorithms,
can improve the overall performance of bridge systems.

6.2 Recommendations
6.2.1 Recommendation for the case study
In Chapters 3 and 4 we delivered the first comprehensive spatial analysis and the largest
dataset of extreme gross vehicle weights, extreme traffic load effects (bending moments
and shear forces) in bridges, and bridge performance indicators due to traffic loads (bridge
criticality) for the fifteen major highway corridors of Mexico. This work not only shows
the applicability of the proposed methodologies but also underscores the practical utility
of the generated maps in identifying potential hazardous locations. The findings lead to
the following recommendations:

• It is suggested that future Statistic Field Study of Domestic Road Transportation,
EECAN, study focus on the corridors a) México —Nuevo Laredo, Piedras Negras and
b) México —Puebla, Progreso since they present the heaviest vehicle events compared
to other corridors.

• It is suggested that Weight-In-Motion (WIM) system stations be installed on major
highway corridors: a) México—Nuevo Laredo, Piedras Negras, b) Querétaro—Ciudad
Juárez, c) Acapulco—Veracruz, d) Manzanillo—Tampico, Lázaro Cárdenas, and e) Méx-
ico—Puebla—Progreso. Particularly, in the highway segments that cross the federal
entities: Aguascalientes, Colima, Guanajuato, Jalisco, México, Nuevo León, Puebla,
Querétaro, Tabasco, Tamaulipas, and Zacatecas. This is because, in those locations,
gross vehicle weights exceeding 1190 kN (𝐺𝑉𝑊50 > 1190) with a return period of 50
years were found.

• It is recommended that future SIMPUMEX inspections gather more detailed infor-
mation on bridges with a load-effect performance indicator for bending moment
above 1, considering a 50-year return period (𝑀50,𝑟 > 1). This recommendation is
particularly pertinent for reinforced concrete bridges, as prestressed concrete bridges
typically have a large capacity to sustain traffic loads. Special attention should be
given to highway corridors where the highest percentage of bridges with 𝑀50,𝑟 > 1
is found, corresponding to major highway corridors: a) Peninsula de Yucatán (89%),
b) Circuito Transístmico (76%), and c) México-Nogales, Tijuana (71%).

• It is recommended that future SIMPUMEX inspections gather more detailed infor-
mation on bridges with a load-effect performance indicator for share force above
1, considering a 50-year return period (𝑉50,𝑟 > 1). Particularly, in highway corridors
where the highest percentage of their bridges with 𝑉50,𝑟 > 1 is presented, corre-
sponding to major highway corridors: a) México-Nogales, Tijuana (60%), b) Acapulco
-Veracruz (58%), and c) Circuito Transístmico (60%).

• Future SIMPUMEX studies should prioritize inspections on two out of the fifteen
major highway corridors: a) Peninsula de Yucatán and b) México-Nogales, Tijuana.
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This is because, in a), the estimated characteristic load effect in 16 out of its 18 bridges
exceeds the design values specified by the corresponding live load model reported
in the SIPUMEX database. Similar behaviour is observed in b) with 103 of its 145
exceeding the design values. Additionally b) is the major highway corridor with the
most bridges in the Mexican Federal highway network.

• It is recommended to consider the additional costs resulting from spatially proximate
interventions on individual bridges within the network when allocating the budget
for bridge maintenance and repair activities. Failing to account for these costs may
result in underestimating the total costs involved.

• Regarding optimal budget allocation for bridge maintenance and repair activities,
it is suggested to consider repairing bridges with SIPUMEX bridge rating above 3
(𝐵𝑅 > 3) or 𝑀50,𝑟 > 1.56 and provide matinees to the rest of the bridges. This strategy
benefits more bridges while guaranteeing the adaptability of the bridge network to
the actual traffic load demands.

• It is recommended that the Mexican authorities provide more freely available com-
prehensive bridge data, such as materials and longitudinal and transversal layouts.
This data would not only enrich academic understanding but also serve the public
interest by promoting transparency and awareness of infrastructure quality and
safety.

6.2.2 Recommendation for future research
Based on the conclusions and findings discussed in the previous chapters, a set of recom-
mendations arises to enhance the approaches employed in this thesis.

• Dependence between axle loads in longer vehicles: Further investigation into the
dependence between axle loads in longer vehicles could enhance the model for
generating synthetic heavy vehicles. This exploration may offer formal evidence
supporting the idea that longer vehicles have the capacity to carry heavier loads on
the last axle, explaining the high correlations associated with this specific axle.

• Validation of load effects: Further validation is essential to confirm load effects using
real bridge-specific influence lines. Theoretical influence lines may deviate from real
ones due to uncertainties related to bridge conditions, including support conditions
and changes in bridge stiffness.

• Alternative methods for estimating extreme load effects (ELEs): Moreover, future
investigations can explore alternative methods for estimating ELEs. In particular, the
Peaks-Over-Threshold method appears to be a logical initial approach. Additionally,
the Bayesian Inference statistical method can be employed to investigate the influence
of statistical uncertainty in parameters of the distribution models, due to the limited
amount of data, used to compute characteristic values.

• Applicability of Methodologies: Future research can assess the applicability of the
methodologies presented in various networks to measure their effectiveness as a
general approach. Regions where robust BMSs and WIM data are available (United
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States and Europe for example) present opportunities for applying themethodology to
their respective networks. For instance, quantifying a Bayesian Network model with
WIM datasets and evaluating its performance relative to the Mexican quantification,
as well as combining these datasets, could provide valuable insights. This approach
allows for creating multiple scenarios with varying traffic volumes and different
vehicle configurations crossing specific bridges.

• Methodology Extensions: The methodologies presented in Chapters 3 and 4 are
currently limited to the investigation of extreme loads, bending moments, and shear
forces. However, potential extensions of this methodology to assist in the investiga-
tion of fatigue or other failure mechanisms in bridges are viable.

• Principal Sources of Uncertainty: It is important to note that the principal sources of
uncertainty in the methodology presented in Chapter 5 are: the deterioration model,
the extent of the impact induced by interventions on other bridges (indicated by the
interaction matrix), and the average annual inflation rate. Properly quantifying these
variables for each bridge within the network will lead to a more precise estimation
of the optimal intervention plan.

6.3 Closing remarks
This thesis focuses on enhancing the reliability estimates of bridges at a network level for
the development and implementation of intervention strategies. The central theme involves
four research topics. Within each of these topics, the approaches employed have proven
effective in modeling the dependence between traffic load variables. This enhances the
accuracy of reliability estimates, thereby helping decision-making in bridge management
strategies.

While basic road infrastructure management tools, such as a single-module Bridge
Management System, fulfill their purpose in overseeing locations or bridges at a fundamen-
tal level, there is room for improvement, particularly in addressing risks that cannot be
detected by visual inspections. A viable solution involves implementing tools that facilitate
the acquisition, processing, and comprehensive analysis of information using risk-based
and probabilistic reliability methodologies. This approach enables the formulation of
strategic action plans aimed at preserving structural integrity and ensuring user safety.

The insights presented in this thesis advocate for integrating these subjects into our
reliability estimates and bridge management decisions due to their alignment with the ex-
isting knowledge base. Acknowledging the limitations and uncertainties of the approaches
used, the primary objective was to develop a general and straightforward framework to
assist local authorities in regions where WIM systems are not the primary source of traffic
data providing them with the tools necessary to make more informed bridge management
decisions.
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A
Modelling Weigh-in-Motion

System Data

A.1 Traffic data

Figure A.1.1: Most observed vehicle codes in the Dutch WIM measurements (April 2013).
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Table A.1.1: Filtered criteria described in [27] and [67].

Filter
1 Wheelbase length less than 1 m.
2 Wheelbase less than 30 m and first or last spacing above 10 m.
3 Wheelbase larger than 40 m.
4 Trucks with axle load bellow or equal to 0 tons.
5 Any axle weight larger than 40 tons.
6 Any axle weight larger than 15 tons and above 85% of gross vehicle weight.
7 Trucks with gross weight below or equal to 0 tons.
8 Sum of axle loads not within 50 kg of gross vehicle weight.
9 Truck with closely spaced, i.e. less or equal to 2 m first two axles,

one of which is larger than 10 tons and over 2.5 times heavier than other axles.
10 First spacing larger than 15 m.
11 Any spacing less than 0,4 m.
12 Miss match between the number of axle spacings and the number of axle loads.
13 Sum of axle spacings not within 50 mm of wheelbase.
14 Number of axles below or equal to 1.
15 First axle spacing in the interval of 10 m – 15 m.
16 Each spacing in the range of 0,4 m – 0,7 m.
17 Each spacing in the range of 0,7 m – 1,0 m.
18 Each axle load in the interval of 25 tons – 40 tons.
19 Each axle load below 0,5 tons.
20 Vehicles with the same WIM identification number (ID).
21 Vehicles with a gross vehicle weight below 3,56 tons.
22 Vehicles with a gross vehicle weight above 112 tons.
23 Vehicles with a speed greater than 120 km/h.
24 The vehicles with gross vehicle weight larger than 71.3 tons and or

length bumper-to–bumper above 25,5 m and axle spacing
above 12,5 m (data related to a combination of two vehicles).

25 Vehicles with inter-axle distances less than 75 cm.
26 Duplicate records.
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Table A.1.2: Created vehicle types from all observed Dutch WIM codes (April 2013).

Item Class Code
1 B2 B11 B2
2 B3 B111 B12 B3
3 O3 O3
4 O4 O4
5 O5 O5
6 O6 O6
7 O8 O8
8 O9 O9
9 O10 O=
10 O11 O>
11 R5 R11111 R1112 R1211 R122

12 R6 R111111 R11112 R11121 R1113 R11211 R1122 R12111
R1212 R123 R1311 R132

13 R7

R1111111 R111112 R111121 R11113 R111211 R11122 R112111
R124 R13111 R133 R2221 R223 R11311 R1123
R1132 R115 R121111 R12112 R1213 R12211 R1222
R11212 R11221

14 R8

R11111111 R1111112 R1111121 R111113 R111122 R1112111 R111212 R111221 R11123 R1121111 R112112 R112121
R11213 R112211 R11222 R1124 R113111 R11312 R11321 R1133 R1211111 R121112 R121121 R12113
R121211 R12122 R1214 R122111 R12212 R12221 R1223 R12311 R1232 R125 R131111 R1313
R13211 R1322 R134 R2123 R2213 R2222 R224

15 R9

R1112121 R1112211 R11124 R1121121 R112113 R1122111 R112221 R11223 R1125 R1134 R12111111 R1211112
R1211121 R121113 R1212111 R121212 R121221 R12123 R1221111 R122112 R122121 R12213 R1224 R123111
R12321 R1233 R126 R1314 R132111 R13221 R1323 R1332 R1341 R135 R1413 R144
R2214 R2223 R225 R234 R3312 R54

16 T3 T11O1
17 T4 T111O1 T11O11 T11O2 T12O1 T21O1 T2O2

18 T5 T111O11 T111O2 T11O111 T11O12 T11O21 T11O3
T12O11 T12O2 T21O11 T21O2 T2O21 T2O3 T3O2

19 T6 T111O111 T111O12 T111O21 T111O3 T11O1111 T11O112 T11O121 T11O13 T11O211 T11O22 T11O31 T11O4
T12O111 T12O12 T12O21 T12O3 T21O111 T21O12 T21O21 T21O3 T2O22 T2O4 T3O3

20 T7 T111O112 T111O121 T111O13 T111O22 T111O31 T111O4 T12O1111 T12O112 T12O121 T12O13 T12O211 T12O22
T12O31 T12O4 T21O211 T21O22 T21O4 T3O4

21 V2 V11
22 V3 V111 V11A1 V12 V21 V3
23 V4 V1111 V112 V11A11 V11A2 V121 V13 V211 V22 V4
24 V5 V111A11 V111A2 V11A111 V11A12 V12A11 V12A2 V21A11 V21A2

25 V6 V1111A11 V1111A2 V111A111 V111A12 V112A11 V112A2 V121A11 V12A111 V12A12 V12A21 V12A3 V13A11
V13A2 V211A11 V211A2 V21A12 V22A11 V22A2

26 V7 V1111A111 V1111A12 V1111A3 V112A111 V112A12 V112A21 V112A3 V121A111 V121A12 V121A3 V13A111 V13A12
V13A21 V13A3 V211A12 V211A3 V22A111 V22A12 V22A21 V22A3 V4A12
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A.2 GCBN Model
table A.2.1 shows the unconditional rank correlations 𝑟(𝑋𝑖,𝑗 ,𝑋𝑖,𝑗−1), for all 𝑖 and 𝑗 > 1
(according to the notation in section 2.3.3), between individual axle loads per vehicle type
for the GCBN A15-L model. The first two columns indicate the vehicle type 𝑖 and the
name, the third column, the corresponding number of axles (𝑛𝑖). Every entry in the next
10 columns indicates the rank correlations between the first and second axle (𝑋𝑖,1,𝑋𝑖,2),
second and third (𝑋𝑖,2,𝑋𝑖,3), and so on until the 10th and 11th axle (𝑋𝑖,10,𝑋𝑖,11) per vehicle
type. The last column indicates the rank correlations between the last vehicle axle and the
total vehicle length (𝑋𝑖,𝑛𝑖 ,𝑋𝑖,𝑛𝑖+1 ). As the number of axles increases, the correlations are
stronger in the axles close to the end of the vehicle. In contrast, the correlation between
𝑋𝑖,𝑛𝑖 and 𝑋𝑖,𝑛𝑖+1 and, as is expected, is low.

Table A.2.1: Rank correlation per vehicle type between axles A15-L location.

Vehicle (𝑖) Type No Axles (𝑛𝑖) 𝑋𝑖,1,𝑋𝑖,2 𝑋𝑖,2,𝑋𝑖,3 𝑋𝑖,3,𝑋𝑖,4 𝑋𝑖,4,𝑋𝑖,5 𝑋𝑖,5,𝑋𝑖,6 𝑋𝑖,6,𝑋𝑖,7 𝑋𝑖,7,𝑋𝑖,8 𝑋𝑖,8,𝑋𝑖,9 𝑋𝑖,9,𝑋𝑖,10 𝑋𝑖,10,𝑋𝑖,11 𝑋𝑖,𝑛𝑖 ,𝑋𝑖,𝑛𝑖+1

1 B2 2 0.87 0.2
2 B3 3 0.81 0.85 0.31
3 O3 3 0.62 -0.1 0.09
4 O4 4 0.61 0.03 0.73 0.26
5 O5 5 0.64 0.06 0.66 0.73 0.04
6 O6 6 0.32 0.08 0.95 0.63 0.99 -0.28
7 O8 8 0.75 0.81 0.79 0.65 0.95 0.93 0.97 -0.19
8 O9 9 0.75 0.61 0.85 0.49 0.83 0.99 0.99 0.98 0.27
9 O10 10 0.73 0.4 0.49 0.71 0.71 0.98 0.99 0.99 0.98 -0.79
10 R5 5 0.7 0.22 0.6 0.92 -0.04
11 R6 6 0.01 0.16 0.94 0.47 0.96 0.43
12 R7 7 0.42 0.12 0.89 0.84 0.89 0.99 0.08
13 R8 8 0.48 0.41 0.66 0.76 0.8 0.87 0.94 -0.06
14 R9 9 0.48 0.66 0.62 0.37 0.98 0.85 0.99 0.99 -0.16
15 T3 3 0.45 0.54 0.36
16 T4 4 0.58 0.74 0.96 0.4
17 T5 5 0.77 0.82 0.99 0.98 0.05
18 T6 6 0.44 0.28 0.65 0.99 0.99 -0.2
19 T7 7 0.51 0.51 0.63 0.95 0.96 0.93 -0.21
20 V2 2 0.81 0.54
21 V3 3 0.59 0.6 -0.21
22 V4 4 0.42 0.42 0.9 -0.1
23 V5 5 0.56 0.59 0.59 0.93 0.12
24 V6 6 0.57 0.45 0.55 0.72 0.95 -0.05
25 V7 7 0.49 0.36 0.7 0.46 0.83 0.99 -0.15

Similarly, table A.2.2 shows the rank correlations between individual inter-axle distances
per vehicle type. The first two columns indicate the vehicle type (𝑖) and the corresponding
name, the third column, the number of axles per vehicle type (𝑛𝑖). The fourth column
indicates the rank correlation between the total vehicle length and the first axle distance
(𝑋𝑖,𝑛𝑖+1 ,𝑋𝑖,𝑛𝑖+1+1 ). The next 10 columns indicate the rank correlations between the first and
second axle distance (𝑋𝑖,𝑛𝑖+1+1 ,𝑋𝑖,𝑛𝑖+1+2 ), second and third (𝑋𝑖,𝑛𝑖+1+2 ,𝑋𝑖,𝑛𝑖+1+3 ), and so on until
the 10th and 11th axle (𝑋𝑖,𝑛𝑖+1+10 ,𝑋𝑖,𝑛𝑖+1+11 ) per vehicle type. Notice that the correlations
almost zero is observed in some cases. The corresponding rank correlations matrices
between the random variables, as colour maps, for the six WIM locations can be found
in figures A.2.1 to A.2.3. After the detailing of three categories of the framework, in the
successive section the results and validation of the GCBN will be discussed.

figures A.2.1 to A.2.3 shows the corresponding rank correlations matrices between the
random variables, as colour maps, for the six studied dutch WIM locations described in
section 2.3.1.
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Table A.2.2: Rank correlation per vehicle type between inter axle distances for A15-L location.

Vehicle (𝑖) Type No Axles (𝑛𝑖) 𝑋𝑖,𝑛𝑖+1 ,𝑋𝑖,𝑛𝑖+1+1 𝑋𝑖,𝑛𝑖+1+1 ,𝑋𝑖,𝑛𝑖+1+2 𝑋𝑖,𝑛𝑖+1+2 ,𝑋𝑖,𝑛𝑖+1+3 𝑋𝑖,𝑛𝑖+1+3 ,𝑋𝑖,𝑛𝑖+1+4 𝑋𝑖,𝑛𝑖+1+4 ,𝑋𝑖,𝑛𝑖+1+5 𝑋𝑖,𝑛𝑖+1+5 ,𝑋𝑖,𝑛𝑖+1+6 𝑋𝑖,𝑛𝑖+1+6 ,𝑋𝑖,𝑛𝑖+1+7 𝑋𝑖,𝑛𝑖+1+7 ,𝑋𝑖,𝑛𝑖+1+8 𝑋𝑖,𝑛𝑖+1+8 ,𝑋𝑖,𝑛𝑖+1+9 𝑋𝑖,𝑛𝑖+1+9 ,𝑋𝑖,𝑛𝑖+1+10

1 B2 2 0.63 0.11
2 B3 3 0.28 -0.03 0.03
3 O3 3 0.04 0.11 -0.33
4 O4 4 0.06 0.15 0.37 0.13
5 O5 5 0.16 0.34 0.54 -0.39 -0.22
6 O6 6 0.48 0.18 -0.09 -0.28 -0.42 0.01
7 O8 8 0.09 0.14 -0.84 -0.49 -0.82 -0.39 -0.52 -0.23
8 O9 9 0.44 0.27 -0.77 -0.79 -0.82 -0.39 -0.28 -0.05 0.73
9 O10 10 0.6 0.77 0.18 0.32 -0.64 -0.58 -0.22 0.46 0.35 0.01
10 R5 5 0.15 -0.07 0.51 0.19 0.05
11 R6 6 -0.1 -0.23 -0.27 -0.31 -0.07 0.07
12 R7 7 0.16 0.03 -0.11 -0.68 -0.09 -0.75 0.33
13 R8 8 0.15 0 0.07 -0.54 -0.19 -0.71 -0.68 0.25
14 R9 9 0.23 0.18 -0.35 -0.49 -0.64 -0.49 -0.55 -0.41 0.32
15 T3 3 0.22 -0.16 -0.06
16 T4 4 0.27 -0.13 0.02 -0.25
17 T5 5 0.28 -0.21 -0.07 -0.18 0.25
18 T6 6 0.21 0.15 0.15 -0.22 -0.27 0.59
19 T7 7 -0.08 -0.16 0.41 -0.16 -0.26 -0.27 -0.06
20 V2 2 0.52 0.31
21 V3 3 0.18 0.07 -0.21
22 V4 4 0.28 0.17 0.75 -0.1
23 V5 5 0.41 0.15 -0.25 -0.39 -0.38
24 V6 6 0.29 0.03 -0.48 -0.41 -0.22 -0.15
25 V7 7 0.08 0.07 -0.71 -0.04 -0.06 -0.41 -0.19

(a) (b)

Figure A.2.1: Bayesian Network rank correlation matrix corresponding to the Dutch A12 highway. a) left lane
and b) right lane.
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(a) (b)

Figure A.2.2: Bayesian Network rank correlation matrix corresponding to the Dutch A15 highway. a) left lane
and b) right lane.

(a) (b)

Figure A.2.3: Bayesian Network rank correlation matrix corresponding to the Dutch A16 highway. a) left lane
and b) right lane.



A.2 GCBN Model

A

125

(a) (b)

Figure A.2.4: Comparison between variables of interest generated by the BN model and the WIM data in highway
A15: (a) Total vehicle weight [kg] comparison right lane; (b) Total vehicle length [cm] comparison right lane.

(a) (b)

(c) (d)

Figure A.2.5: Comparison between variables of interest generated by the BN model and the WIM data in both
driving directions of highway A12: (a) Total vehicle weight [t] comparison left lane; (b) Total vehicle length [m]
comparison left lane; (c) Total vehicle weight [t] comparison right lane; (d) Total vehicle length [m] comparison
right lane.
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(a) (b)

(c) (d)

Figure A.2.6: Comparison between variables of interest generated by the BN model and the WIM data in both
driving directions of highway A16: (a) Total vehicle weight [t] comparison left lane; (b) Total vehicle length [m]
comparison left lane; (c) Total vehicle weight [t] comparison right lane; (d) Total vehicle length [t] comparison
right lane.
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Split data analysis
To further investigate model validity, we split the data set into an 80:20 ratio (80% of

the data set goes into the training set and 20% of the data set goes into the testing set).
figure A.2.7 shows a comparison between synthetic data generated by the model quantified
with the training data set and the observations of the test data set. The observations
correspond to the A16-R highway. Additionally, figure A.2.8 shows the same comparison
for the two-axle vehicle B2 of total vehicle weight, total vehicle length, axle loads and inter-
axle distances. As can be seen in figures A.2.7 and A.2.8 the model is able to represent the
data points in the training data set to a good degree. Same type of analysis was performed
with data corresponding to other highways and vehicle types in our database. The patterns
are similar to those briefly presented here. The model captures the main complexities of
the data set.

(a) (b)

Figure A.2.7: Comparison between data generated by the trained model and test data set for a)total vehicle weight
and b)total vehicle length (all vehicle types)
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(a) (b)

(c) (d)

(e) (f)

Figure A.2.8: Comparison between data generated by the trained model and test data set: a)total vehicle weight,
b) and c) axle loads, d) total vehicle length and e) and f) inter-axle distances of the vehicle type B2.
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A.3 GUIqick user guide
The Graphical User Interface GCBN WIM computes synthetic WIM data. The observations
correspond to April 2013 for three Dutch locations in both the right (R) and the left (L)
driving directions. The measurements were taken on highways A12 (km 42) Woerden, A15
(km 92) Gorinchem, and A16 (km 41) Gravendeel. Additionally, a hypothetical highway
was created which is a combination of all six available WIM locations in the model. Thus,
each simulated vehicle randomly chooses one of the locations to compute the synthetic
data. The 26 codes (vehicle types) used in the GUI WIM consist of a letter and a number
that define the number of axles. The letter represents the vehicle configurations: Buses (B),
Tractor - Semitrailer - Trailer (R), Tractor - Semitrailer (T), Single-unit multi-axle vehicle
and/or Single unit multi-axle vehicle - Semitrailer (V) and Others vehicles (O). For example,
a seven-axle vehicle with the configuration Tractor - Semitrailer is coded as T7. The vehicle
types and the silhouette are presented infigure A.3.1.

Figure A.3.1: Available vehicle types.

To compute the desired amount of WIM observations, in the main window of the GUI
(see figure A.3.2), the user can choose between the 26 vehicle types and the seven locations
(A12-L, A12-R, A15-L, A15-R, A16-L, A16-R, and Hypothetical). The option for choosing
the desired units is also available. Additionally, there are three main checkboxes: (i) vehicle
type subset, (ii) correlation matrix plot, and (iii) Bayesian network plot. Which actions are
described next:

(i) If the “Vehicle Type Subset" check box is selected. The user needs to select at least
4 of the available 26 vehicle types and provide their corresponding proportions.
Otherwise, 26 vehicle types will be used to generate synthetic observations.

(ii) If the “Correlation Matrix Plot" check box is selected. The rank correlation matrix
plot will be shown as a colour map (figure A.3.3a)

(iii) If the “Bayesian Network Plot" check box is selected. The Non-Parametric Bayesian
Network (GCBN) direct acyclic graph will be shown (figure A.3.3b).
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Figure A.3.2: GUI main window.

If the user chooses a Hypothetical highway no rank correlation matrix plot nor GCBN
direct acyclic graph will be shown. Once all the values are set, by pressing the button
“Compute” the synthetic WIM observations will be generated. Plots of histograms and
exceedance probability plots of total weight (𝑊 ) and total vehicle length (𝐿) will be gen-
erated automatically (see figure A.3.4). Finally, the computed data can be stored in a
comma-separated values (CSV) file by pressing the button “Save CSV”.
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(a) (b)

Figure A.3.3: a) Rank correlation matrix colour map and b) GCBN direct acyclic graph.

(a) (b)

Figure A.3.4: a) Computed 𝑊 and 𝐿 histograms b) Computed 𝑊 and 𝐿 exceedance probability plots.





B

133

B
Mapping hazardous locations
due to extreme gross vehicle

weights.

B.1 Axle load distributions

Figure B.1.1: Agreement between simulated and observed axle loads for vehicle type C2. The results from the
two-sample Kolmogorov-Smirnov (KS) test indicate that it is likely that the two samples were drawn from the
same distribution (D test statistic is close to 0). Moreover, since the p-value is greater than 0.05, there is sufficient
evidence to conclude that the two datasets come from the same distribution.
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Table B.1.1: Gaussian mixture components representing the axles of vehicle type C3

Axle 1 (𝑋2,1) Axle 2 (𝑋2,2) Axle 3 (𝑋2,3)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.26 29.07 4.25 1 0.23 53.13 8.68 1 0.2 50.73 8.84
2 0.22 44.09 5.60 2 0.16 90.66 15.36 2 0.15 89.28 13.78
3 0.03 74.24 25.71 3 0.32 35.98 6.89 3 0.34 34.77 6.61
4 0.13 18.92 4.26 4 0.17 73.85 10.98 4 0.17 72.35 10.30
5 0.08 53.1 7.98 5 0.06 85.45 29.88 5 0.1 20.15 5.15
6 0.28 37.23 4.58 6 0.07 19.48 4.00 6 0.05 96.98 22.68

Table B.1.2: Gaussian mixture components representing the axles of vehicle type T3S2

Axle 1 (𝑋3,1) Axle 2 (𝑋3,2)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.14 30.15 7.97 1 0.24 44.91 7.02
2 0.34 41.76 4.50 2 0.21 73.99 8.50
3 0.03 55.98 10.27 3 0.16 88.02 11.86
4 0.3 34.95 5.29 4 0.13 34.26 8.45
5 0.16 48.07 5.44 5 0.2 58.76 7.09
6 0.03 75.6 23.81 6 0.05 93.94 23.34

Axle 3 (𝑋3,3) Axle 4 (𝑋3,4) Axle 5 (𝑋3,5)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.23 43.06 7.29 1 0.23 38.18 6.65 1 0.19 53.04 7.5
2 0.22 73.39 8.92 2 0.19 68.63 9.08 2 0.18 83.79 13.05
3 0.17 86.65 12.64 3 0.17 84.18 12.61 3 0.2 68.81 9.25
4 0.14 33.24 8.30 4 0.2 53.38 7.56 4 0.06 86.96 25.67
5 0.21 57.26 7.30 5 0.15 28.07 7.33 5 0.14 28.13 7.05
6 0.05 90.06 25.59 6 0.06 88.59 23.79 6 0.22 38.18 6.57

Table B.1.3: Gaussian mixture components representing the axles of vehicle type T3S3

Axle 1 (𝑋4,1) Axle 2 (𝑋4,2) Axle 3 (𝑋4,3)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.32 45.12 7.78 1 0.08 105.73 20.99 1 0.2 83.34 10.66
2 0.15 24.56 5.35 2 0.25 48.12 7.53 2 0.21 47.88 8.60
3 0.52 39.41 5.76 3 0.21 96.78 12.63 3 0.21 95.17 14.33
4 0.02 63.54 21.11 4 0.14 31.62 7.90 4 0.12 63.96 10.37
- - - - 5 0.14 66.85 8.74 5 0.09 99.49 22.58
- - - - 6 0.19 86.06 9.70 6 0.17 33.56 8.28

Axle 4 (𝑋4,4) Axle 5 (𝑋4,5) Axle 6 (𝑋4,6)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.21 41.88 9.92 1 0.2 26.38 6.53 1 0.19 40.7 9.57
2 0.12 86.78 21.10 2 0.19 71.44 10.59 2 0.24 76.29 9.72
3 0.27 80.15 12.58 3 0.09 89.81 19.52 3 0.04 85.43 28.74
4 0.18 65.32 11.33 4 0.13 55.51 9.81 4 0.22 27.53 7.46
5 0.22 27 7.75 5 0.21 83.43 11.50 5 0.14 58.66 9.63
- - - - 6 0.18 38.4 8.51 6 0.17 89.03 14.89
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Table B.1.4: Gaussian mixture components representing the axles of vehicle type T3S2R4

Axle 1 (𝑋5,1) Axle 2 (𝑋5,2) Axle 3 (𝑋5,3)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.4 38.02 4.59 1 0.2 74.38 12.72 1 0.2 81.85 13.71
2 0.1 16.37 2.56 2 0.25 39.78 7.03 2 0.1 21.52 3.78
3 0.28 45.85 7.58 3 0.19 89.59 14.73 3 0.13 90.99 16.70
4 0.21 30.76 5.03 4 0.22 57.16 9.15 4 0.19 51.84 8.09
5 0 62.11 24.00 5 0.03 99.79 28.09 5 0.22 37.93 6.53
- - - - 6 0.1 21.72 3.69 6 0.16 67.07 9.54

Axle 4 (𝑋4,4) Axle 5 (𝑋4,5) Axle 6 (𝑋5,6)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.24 33.87 7.93 1 0.22 51.19 9.49 1 0.06 90.35 28.24
2 0.08 82.52 22.18 2 0.22 84.81 13.82 2 0.3 48.27 10.56
3 0.19 51.16 9.87 3 0.25 33.26 7.22 3 0.33 73.99 14.28
4 0.2 83.85 14.37 4 0.11 20.28 4.53 4 0.32 29.28 8.14
5 0.16 64.9 11.00 5 0.17 66.87 10.88 - - - -
6 0.13 21.48 5.56 6 0.03 85.2 26.05 - - - -

Axle 7 (𝑋5,7) Axle 8 (𝑋5,8) Axle 9 (𝑋5,9)
𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN] 𝑔 𝜋𝑔 𝜇𝑔 [kN] 𝜎𝑔 [kN]
1 0.19 59.04 10.20 1 0.11 16.46 4.82 1 0.26 30.87 6.24
2 0.26 32.19 6.45 2 0.18 79.69 14.29 2 0.14 83.11 18.19
3 0.08 74.13 21.19 3 0.25 30.88 5.91 3 0.23 71.99 14.47
4 0.19 74.71 13.88 4 0.17 60.41 10.13 4 0.09 15.79 4.35
5 0.12 19.12 5.83 5 0.09 87.04 18.43 5 0.27 48.69 8.86
6 0.16 45.98 7.71 6 0.19 46.65 7.82 - - - -
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B.2 Vehicular survey and counting stations

(a)

(b)

Figure B.2.1: Vehicular survey and counting stations. a) Installed EECAN survey stations from 2002 to 2017 (233
survey stations) and b) Installed Datos viales counting stations in 2018 (1777 counting stations). Notice that not
all the survey stations are located on the MHC.
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B.3 Sensitivity analysis on SEA

(a) (b)

(c) (d)

Figure B.3.1: Sensitivity analysis on SEA in terms of the number of extrapolations performed for CS Veracruz
(𝑐 = 1567). (a) Distribution of 𝐺𝑉𝑊50,1567 values computed 500 times, (b) Distribution of 𝐺𝑉𝑊1000,1567 values
computed 500 times, (c) Distribution of 𝐺𝑉𝑊50,1567 values computed 1500 times, (d) Distribution of 𝐺𝑉𝑊1000,1567
values computed 1500 times. The red line represents the 50th percentile (reported value).
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B.4 Extreme Gross Vehicle Weights

Table B.4.1: Percentiles of the gross vehicle weight with 50-years return period distribution (𝐺𝑉𝑊50) per major
highway corridor

Major highway corridor 𝑔𝑣𝑤50
P5 P25 P50 P75 P95

06. Transpeninsular Baja California 621.5 850.9 944.6 1006.4 1064.5
15. Del Pacifico 676.6 803.5 923.6 993.0 1122.7
04. México – Tuxpan 802.5 984.0 1049.1 1110.4 1132.9
01. México – Nogales, Tijuana 773.9 1034.8 1130.5 1167.8 1192.5
14. Peninsular de Yucatán 902.3 976.2 1101.1 1148.8 1196.4
05. Mazatlán – Matamoros 762.3 1019.0 1068.5 1145.9 1201.7
03. Querétaro – Ciudad Juárez 926.0 1101.1 1146.3 1183.6 1222.3
10. Altiplano 1041.7 1111.5 1141.1 1177.7 1227.0
08. Veracruz – Monterrey, Matamoros 986.7 1110.7 1156.2 1189.1 1227.6
13. Circuito Transístmico 857.2 1077.2 1140.6 1173.4 1228.9
09. Manzanillo – Tampico, Lázaro Cárdenas 797.5 1029.0 1128.3 1192.4 1236.1
12. Puebla – Oaxaca – Ciudad Hidalgo 806.0 1020.4 1103.8 1142.0 1244.5
07. Acapulco – Veracruz 870.8 1015.0 1102.1 1160.7 1249.4
11. México – Puebla – Progreso 955.6 1073.3 1160.3 1231.0 1263.4
02. México – Nuevo Laredo, Piedras Negras 980.7 1114.3 1167.8 1218.2 1266.9

Table B.4.2: Percentiles of the gross vehicle weight with 1000-years return period distribution (𝐺𝑉𝑊1000) per
major highway corridor

Major highway corridor 𝑔𝑣𝑤1000
P5 P25 P50 P75 P95

06. Transpeninsular Baja California 648.1 877.8 971.3 1026.6 1086.8
15. Del Pacifico 690.9 822.0 949.7 1017.7 1155.4
04. México – Tuxpan 818.7 1004.3 1075.5 1132.6 1161.3
01. México – Nogales, Tijuana 792.0 1058.6 1150.4 1190.2 1215.7
14. Peninsular de Yucatán 919.7 998.8 1121.2 1174.2 1224.1
05. Mazatlán – Matamoros 782.7 1041.0 1093.3 1169.5 1224.9
03. Querétaro – Ciudad Juárez 951.5 1122.6 1169.7 1204.8 1248.8
08. Veracruz – Monterrey, Matamoros 1007.7 1137.0 1177.7 1212.0 1253.8
10. Altiplano 1061.4 1130.1 1166.0 1203.7 1254.1
13. Circuito Transístmico 883.3 1094.0 1161.4 1201.8 1258.1
09. Manzanillo – Tampico, Lázaro Cárdenas 815.8 1049.5 1147.5 1215.5 1268.0
12. Puebla – Oaxaca – Ciudad Hidalgo 832.5 1041.2 1127.0 1167.0 1271.2
07. Acapulco – Veracruz 891.7 1038.4 1125.1 1182.9 1274.9
11. México – Puebla – Progreso 974.4 1094.3 1182.5 1255.0 1290.4
02. México – Nuevo Laredo, Piedras Negras 1001.0 1135.1 1194.1 1242.2 1293.4
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Figure
B.4.2:Grossvehicle
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1000-yearreturn
period.
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C
Estimating bridge

criticality due to extreme
traffic loads.

C.1 Inter-axle distances

Table C.1.1: Inter-axle distances (D) general statistics, mean and coefficient of variation (cv) comparison. Reported
(Rep.) in [146] and simulated (Sim.)

Type Statistic 𝐷1−2 𝐷2−3 𝐷3−4 𝐷4−5 𝐷5−6 𝐷6−7 𝐷7−8 𝐷8−9

Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim.

C2 mean 528.12 529.54 – – – – – – – – – – – – – –
cv 0.71 0.19 – – – – – – – – – – – – – –

C3 mean 502.42 502.56 127.22 128.98 – – – – – – – – – – – –
cv 0.10 0.11 0.06 0.07 – – – – – – – – – – – –

T3S2 mean 452.39 452.80 135.99 134.72 818.04 837.25 115.11 129.19 – – – – – – – –
cv 0.12 0.14 0.07 0.10 0.17 0.11 0.09 0.07 – – – – – – – –

T3S3 mean 545.81 455.43 136.74 135.31 657.99 661.64 119.01 128.73 117.43 128.84 – – – – – –
cv 0.09 0.14 0.70 0.04 0.16 0.11 0.08 0.07 0.08 0.08 – – – – – –

T3S2R4 mean 481.79 455.12 141.95 137.82 672.76 653.05 122.27 128.87 238.21 197.12 118.88 129.07 591.94 577.82 110.78 129.05
cv 0.10 0.21 0.07 0.12 0.28 0.08 0.16 0.08 0.08 0.07 0.20 0.07 0.20 0.15 0.10 0.07

C.2 Auto-correlated time series

1Notice that low correlations are observed in the majority of the hours throughout the day. This observation
suggests relatively independent behaviour during different hours of the day. This could indicate that the
occurrence of events or patterns on this particular weekday is not strongly influenced by the time of day.
However, since the empirical data observations are limited in quantity, the fitted copula models are used to
generate additional synthetic observations.
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Table C.2.1: Fitted copulas of the auto-correlated time series for weekday number 16.1

Hour Copula Name 𝜃 𝜌 Number of
Observations

0 𝐶16,0
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 0.08 0.06 91

1 𝐶16,1
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -1.01 -0.17 82

2 𝐶16,2
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Joe 1.07 0.06 129

3 𝐶16,3
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Joe 270◦ rotated 1.05 -0.05 275

4 𝐶16,4
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.41 -0.08 622

5 𝐶16,5
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.66 -0.11 559

6 𝐶16,6
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.72 -0.13 387

7 𝐶16,7
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank 0.18 0.03 439

8 𝐶16,8
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.29 -0.05 482

9 𝐶16,9
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 270◦ rotated 0.03 -0.02 505

10 𝐶16,10
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.17 -0.03 443

11 𝐶16,11
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 180◦ rotated 0.07 0.05 449

12 𝐶16,12
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.41 -0.08 492

13 𝐶16,13
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Gumbel 90◦ rotated 1.06 -0.09 400

14 𝐶16,14
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank -0.24 -0.05 387

15 𝐶16,15
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Gaussian -0.11 -0.11 334

16 𝐶16,16
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Frank 0.33 0.06 308

17 𝐶16,17
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 270◦ rotated 0.22 -0.16 190

18 𝐶16,18
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 180◦ rotated 0.12 0.09 151

19 𝐶16,19
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 270◦ rotated 0.03 -0.03 100

20 𝐶16,20
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 0.04 0.03 93

21 𝐶16,21
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Joe 1.10 0.09 83

22 𝐶16,22
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 90◦ rotated 0.36 -0.23 79

23 𝐶16,23
𝜃𝑌 {𝐹(𝑦𝑡), 𝐹(𝑦𝑡−1)} Clayton 90◦ rotated 0.28 -0.19 79

C.3 Synthetic traffic

Table C.3.1: Example of a random realisation (output) of the synthetic traffic for the bridge El Rosario I. The first
column in the table represents the ID of the synthetic observation, the second the vehicle type, the third the gross
vehicle weight in kN and columns 4 to 12 the individual axle load (A) in kN.

ID Type GVW A1 A2 A3 A4 A5 A6 A7 A8 A9
0 T3S2 157.20 30.01 34.33 34.57 30.69 27.61 – – – –
1 T3S2 315.58 34.81 73.55 69.13 71.22 66.87 – – – –
. . . ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
208 C3 137.40 34.87 39.18 63.35 – – – – – –
209 T3S2 231.84 47.70 47.29 34.74 52.82 49.30 – – – –
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table C.3.1 Continued. The first column of this table corresponds to the 13th column of table C.3.1 representing
the total length of the HV in meters, columns 14 to 22 represent individual inter-axle distances (D in m) and the
last column the inter-vehicle gap (IVG in m.)

Length D1 D2 D3 D4 D5 D6 D7 D8 D9 IVG
16.76 1.78 3.81 5.62 1.31 1.31 – – – – –
15.95 1.91 3.71 4.77 1.79 1.79 – – – – 606.07

⋮ ⋮ . . . ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
8.37 0.84 4.33 1.02 – – – – – – 542.97
16.55 1.76 3.73 5.56 1.32 1.32 – – – – 464.49

1 3 5 7 9 11131517192123
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Figure C.3.1: One random simulation of 24 hours of traffic flow of bridge El Rosario I Lane 1.
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Figure C.3.2: Lanes 1 and 2 distributions of vehicle types that caused the maximum 200-day absolute bending
moment for the studied bridges. (a)-(b) Bar plot of individual vehicle type counts. (c)-(d) Gross vehicle weight
histogram.
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(a)

(b)

Figure C.3.3: Traffic scenario that causes the extreme loading event for two-lane simple supported birdges. a)
same direction lanes, b) opposite direction lanes
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or

--Truck load-- --Lane load--

26.7 kN 106.8 kN 106.8 kN
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86.7 kN for V
60.0 kN for M
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4.3m-9.1m4.3m

or

--Truck load-- --Lane load--

36.5 kN 142.3 kN 142.3 kN

HS20-44

115.6 kN for V
80.0 kN for M

9.3 kN/m

GVW = 320.2 kN
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3 x 88.5 kN2 x 95 kN73.5 kN

T3-S3
GVW = 529 kN
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GVW = 645.5 kN
T3-S2-R4
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(b)

Figure C.3.4: Traffic Live load models reported in SIPUMEX database (a) AASHTO Standard HS Trucks and lane
loadings, (b) Maximum allowable axle loads for the trucks types T3-S3 and T3-S2-R4
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C.4 Extreme load effects and bridge criticality
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D
Optimization approach for

managing bridge
interventions.

D.1 Parametric construction costs

Table D.1.1: Parametric construction costs in Mexican Pesos (MP). Concrete beam bridges without intermediate
structure. Includes: cuts, fills, abutments, accesses, superstructure with pre-stressed concrete beams, asphalt layer,
joints, parapets and signage. For concrete slab bridges, 70% of the costs are assumed.

No. of
lanes

Max
span

Unit Direct cost [MP]

2 15 Bridge 10 353 778
2 25 Bridge 11 280 353
2 30 Bridge 14 559 583
2 40 Bridge 14 127 962
4 15 Bridge 19 032 768
4 25 Bridge 20 106 031
4 30 Bridge 26 460 126
4 40 Bridge 34 544 300
6 15 Bridge 34 258 983
6 25 Bridge 36 190 855
6 30 Bridge 47 628 227
6 40 Bridge 47 628 227
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Table D.1.2: Parametric construction costs in Mexican Pesos (MP). Overhead vehicular passes (PSV). Includes: cuts,
fills, accesses, superstructure with pre-stressed concrete beams, asphalt layer, joints, parapets and signage. For
concrete slab bridges, 70% of the costs are assumed.

No. of
lanes

Max
span [m]

No.
lanes to
cross

Unit Direct cost [MP]

2 7 2 Pass 8 898 536
4 7 2 Pass 16 554 835
6 7 2 Pass 26 668 348
2 14 4 Pass 16 102 709
4 14 4 Pass 30 247 888
6 14 4 Pass 44 392 957
2 21 6 Pass 41 786 188
4 21 6 Pass 74 534 110
6 21 6 Pass 107 281 987

Table D.1.3: Parametric construction costs in Mexican Pesos (MP). Concrete beam bridges with intermediate
structure (multi-span bridge). (i) Bridge abutment access. Includes: excavations, backfill, superstructure, asphalt
layer, joints, parapets and signage. (ii) Bridge. Includes: cuts, fills, abutments, accesses, foundations, superstructure
with pre-stressed concrete beams, asphalt layer, joints, parapets and signage. For concrete slab bridges, 70% of the
costs are assumed.

No. of
lanes

Max
height

Unit Direct cost [MP]

2 – Set 1 563 989
4 – Set 2 172 942
6 – Set 3 191 973
2 5.5 m 144 205
2 15 m 161 613
2 20 m 243 584
2 30 m 153 424
4 5.5 m 196 204
4 15 m 244 212
4 20 m 254 072
4 30 m 281 301
6 5.5 m 261 561
6 15 m 263 614
6 20 m 253 445
6 30 m 296 772

D.2 Intervention cost estimation

To illustrate this process, a specific example is provided for the bridge El Sabino. According
to Table 5.3, this bridge has an 𝐵𝑅 = 3. Hence the corresponding value of the reliability
index is 𝛽 = 3 according Table 5.1. The grades to compute the bridge importance factor 𝑓𝐵
are shown in Table D.2.1. The corresponding grades are: 𝑆𝑅𝐶 = 5, 𝑆𝐴𝐴𝐷𝑇 = 2,𝑆𝐷𝐷 = 5, 𝑆𝐿𝑆 = 1
and 𝑆𝑇𝐿 = 1. For the sake of simplicity, the assumption is adopted that the maintenance
costs, 𝐶𝑀 , are equivalent to 15% of the repair costs, i.e., 𝐶𝑀 = 0.15𝐶𝑅.
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Table D.2.1: Grades for assessment of bridge importance factor 𝑓𝐵 in the network level according to five criteria
[207]. Adjusted to the size of the MHC network under study.

Road
𝑆𝑅𝐶

Annual Average
𝑆𝐴𝐴𝐷𝑇

Detour
𝑆𝐷𝐷

Longest
𝑆𝐿𝑆

Total
𝑆𝑇𝐿Category Daily Traffic Distance Span Length

[N Vehicles] [km] [m] [m]
unknown road 1 <70 1 adjacent lane 1 <6 1 <6 1
local road 2 70–1944 2 <5 2 6–19 2 6–170 2
inter–state road 3 1944–3819 3 5–20 3 19–32 3 170–334 3
state road 4 38919–5693 4 20–60 4 32–45 4 334–499 4
highway 5 >5693 5 >60 5 >45 5 >499 5

𝑓𝐵 = 1+
1
5
[0.25(5+2+5)+0.125(1+1)] = 1.65

𝑓𝑅 = 0.3613(3)2−2.8572(3)+5.622 = 0.302
𝐶𝐵𝑉 = 1.65(3.67) = 6.05 MMP
𝐶𝑅 = 0.302(6.05) = 1.83 MMP
𝐶𝑀 = 0.15(1.83) = 0.27 MMP

Regarding the user costs arising from the unavailability of bridges due to intervention
actions, Equation (5.6) for its computation is employed. Consequently, 𝐶𝑉 |𝑈 and the total
cost per vehicle per month, for each minute of prolonged travel time, is computed as
follows:

𝐶𝑣𝑒 = [
𝑊 𝑃𝑣𝑒
60

20+0.5
𝑊 𝑃𝑣𝑒
60

10] 𝑡𝑝 (D.2.1)

The user costs arising from the unavailability of the bridge El Sabino due to maintenance
(𝐶𝑈 |𝑀 ) and due to repair (𝐶𝑈 |𝑅) interventions are:

𝐶𝑣𝑒|𝑀 =[
36.62(1.8)

60
20+0.5

36.62(1.8)
60

10]1.5 = 41.20 MP⋅day
vehicles⋅month

𝐶𝑣𝑒|𝑅 =[
36.62(1.8)

60
20+0.5

36.62(1.8)
60

10]5 = 137.33 MP⋅day
vehicles⋅month

𝐶𝑈 |𝑀 =
9703(41.20)1
1000000

= 0.40 MMP

𝐶𝑈 |𝑅 =
9703(137.33)9

1000000
= 11.99 MMP

D.3 Optimal intervention program for specific sce-
narios
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Table D.3.1: Optimal intervention program Scenario (2). Annual cost expressed in net present value (NPV). 𝐸𝑡 :
annual budget constrain, 𝐶𝐷 : total direct cost (𝐶𝑀 +𝐶𝑅).

Intervention program Annual cost (NPV)

Year 𝐸𝑡 [MMP] 𝐶𝐷 [MPP] 𝐶𝐷
𝐸𝑡

1 1.81 1.75 97%
2 1.81 1.52 84%
5 0.61 0.41 67%
6 0.61 0.41 67%
7 0.61 0.39 64%
8 0.61 0.40 66%
9 0.61 0.41 67%
10 0.61 0.18 30%
12 0.61 0.51 84%
13 0.61 0.51 83%
14 0.61 0.48 79%
15 0.61 0.49 80%
16 0.61 0.50 83%

Table D.3.2: Overview of Scenario (2) results. Total cumulative cost, 𝐶 = 76.6MMP, total direct cost, 𝐶𝐷 =𝐶𝑀 +𝐶𝑅 =
11.2 MMP. int𝑛: intervention number in year 𝑡Δ𝜏.

Bridge (i) Repair Maintenance 𝐶𝑅 𝐶𝑀 𝐶𝑀 |𝑈 𝐶𝑅|𝑈 𝐶int1 int1 int2 int3
1 – 2 10 – 0.0 0.2 0.6 0.0 0.8
2 – 7 14 – 0.0 0.4 0.7 0.0 1.1
3 – 6 13 – 0.0 1.4 0.4 0.0 1.9
4 – 2 9 16 0.0 2.0 0.6 0.0 2.6
5 – 2 8 15 0.0 1.9 0.7 0.0 2.6
6 – 2 10 0.0 0.1 0.5 0.0 0.6
7 1 – – – 1.8 0.0 0.0 18.7 20.6
8 2 – – – 0.8 0.0 0.0 24.4 25.1
9 2 – – – 0.1 0.0 0.0 15.9 15.9
10 – 7 14 – 0.0 1.0 1.2 0.0 2.1
11 – 2 10 – 0.0 0.1 1.2 0.0 1.2
12 – 5 12 – 0.0 1.4 0.7 0.0 2.1

Total 2.7 8.5 6.5 59.0 76.6
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Figure D.3.1: Optimal intervention program for the 555 bridges under Scenario (3).
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Figure D.3.2: Optimal intervention program for the 555 bridges under Scenario (5).
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Turn up the volume
Ten songs that I enjoy deeply

Before leaving, I would like to emphasize that music is a creative and supportive force.
Everything I have shared with you throughout these pages would not have been possible
without music. While I have a deep, almost religious appreciation for reggae (preferably in
the format of vinyl records), my musical tastes are quite diverse. There are times when I
immerse myself in cumbias for an entire week, spend countless hours enjoying rancheras,
or listen for days to the songs my parents played during our road trips. However, I must
confess that I have a strong preference for more melodic tunes. Every time I listen to the
songs I am about to share with you, they always make me want to turn up the volume to
the maximum. It is difficult to create a list of favorite songs because it is a function of both
your mood and your environment. Hence, every song listed here is presented without a
specific order, and their percentage of enjoyment content (PEC) is often interchangeable.

1. Hold Down - The Kingstonians. This song conveys the initial phrase of the thesis:
’Small axe fall big tree,’ which can be interpreted as a synonym for the idea that
persistence and determination can overcome larger obstacles or challenges.

2. Sitting Round the Bend - The Hamlins. A massive hit. The first time I heard it
was on a sound system in UK. I was tired, but as soon as the first notes of that organ
played, boom! The energy shot up to the max.

3. Bag-A-Boo - Clancy Eccles. A song that arises from the rivalry between producers
Clancy Eccles and Lee Perry is a true musical gem, especially due to the hypnotizing
flute that is in sync with the reggae shuffle.

4. Don’t you rock my boat - Bob Marley and the Wailers. Bob Marley is not just
roots reggae. The rock steady version of Don’t you rock my boat is everything you
could ask for in a good rock steady: masterful melodies and deep soul.

5. Big Big Boss - Jhonny Moore. A really motivating song, where the trumpet of
Johnny ’Dizzy’ Moore, a founding member of the pioneering group The Skatalites,
makes you feel like a king, no matter where you are.

6. Reality - Joy Mack. Lovers rock at its finest—truly a heart-wrenching song for
those who no longer want to be in an unfair relationship and have come to appreciate
themselves.
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7. Saturday Night is Here Again - Panchila La Touche. This song breathes life into
its listener; there is nothing more to say, just listen to it.

8. Down Stairs Rock - Determinations. Since I started my journey into Jamaican
music, reggae made in Japan has always been one of my favorites. Determinations
was an exciting, dynamic, and fantastic band from Osaka, and their massive ska song
’Down Stairs Rock’ always makes me jump.

9. Runnin’ Away - Frisco feat. Chee. Frisco, another Japanese reggae band for which
I have great admiration, is my favorite band from the Far East, and I have all their
albums. ’Running Away’ is a piece that masterfully combines the rhythm of the
classic ’Love Has Found Its Way’ by Dennis Brown with the lyrics of ’Running Away’
by Sly and the Family Stone.

10. Contra El Dragón - Los Acosta. Because not everything is reggae. A hero, a
princess, a dragon, and cumbia—what more could you ask for to be happy (or not...)
and motivated?

A few more that do not fit due to lack of space and time.

• Corazón Solitario - Alberto Pedraza
• Dile - ICC
• Compré una cantina - Cardenales de Nuevo León
• Al gato y al ratoń - Banda Machos
• Hello Dolly - Pat Satchmo
• I’m the Ruler - Anthony Rocky Ellis.
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