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Quantifying restoration time of pipelines after earthquakes: 13 

Comparison of Bayesian belief networks and fuzzy models 14 

Critical infrastructures are an integral part of our society and economy. Services 15 

like gas supply or water networks are expected to be available at all times since a 16 

service failure may incur catastrophic consequences to the public health, safety, 17 

and financial capacity of the society. Several resilience strategies have been 18 

examined to reduce disaster risk and evaluate the downtime of infrastructures 19 

following destructive events. This paper introduces an indicator-based downtime 20 

estimation model for buried infrastructures (i.e., water and gas networks). The 21 

model distinguishes the important aspects that contribute to determining the 22 

downtime of buried infrastructure following a hazardous event. The proposed 23 

downtime model relies on two inference methods for its computation, Fuzzy 24 

Logic (FL) and Bayesian Network (BN), which are adapted for the current 25 

application. Finally, through a case scenario, a comparison of the two inference 26 

methods, in terms of results and limitations, is presented. Results show that both 27 

methods incorporate intuitive knowledge and/or historical data for defining fuzzy 28 

rules (in FL) and estimating conditional probabilities (in BN). The difference 29 

stands in the interpretation of the outcome. The output of the FL is a membership 30 

that defines how well the downtime fits the fuzzy levels while the BN output is a 31 

probability distribution that represents how likely the downtime is in a certain 32 

state. Nevertheless, both approaches can be utilized by decision-makers to easily 33 

estimate the time to restore the functionality of buried infrastructures and plan 34 

preventive safety measures accordingly.  35 

Keywords: resilience; downtime; lifelines; infrastructure; fuzzy logic; Bayesian 36 

network; restoration 37 
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Introduction 44 

Water and gas distribution pipes, coupled with other critical infrastructure systems, contribute to 45 

the economic development and quality of life of modern communities. During recent seismic 46 

events, such as the 1995 Kobe and 2016 Kumamoto earthquakes, the water and gas distribution 47 

networks were severely damaged [1-4]. Failures of the water distribution network can have 48 

consequences on other existing nearby infrastructures, such as gas pipes (e.g., water is required 49 

in processing plants of natural gas), potable water, and wastewater conveyance systems, leading 50 

to poor public health conditions [5, 6]. Integrity of critical infrastructures, therefore, has aroused 51 

attention to the seismic safety of lifeline systems. 52 

Functionality of the infrastructure, under emergency conditions, can be evaluated by 53 

studying resilience of critical infrastructures that are prone to many disruptive events or 54 

inadequate maintenance [7-13]. In the seismic resilience estimation, one such matrix of interest 55 

to the decision-making is downtime. The downtime is defined as the time from the occurrence 56 

of the hazard event (to), where there is a loss of functionality of the system, to the time when the 57 

functionality is completely restored (t1) (Figure 1) [14-16]. 58 

59 
Figure 1. Conceptual Downtime (DT) of a system 60 

61 
Although several studies have been carried out on downtime [17-19], downtime 62 

estimation is still challenging since the data and the input parameters that are required for the 63 

estimation are not completely available, highly uncertain, and rapidly evolving in time [20-23]. 64 

The “uncertain” parameters such as the finance and procurement process, economic and human 65 

resources are important factors in the definition and estimation of the downtime. Few downtime 66 

models include the contribution of uncertain factors as they differ depending on the condition of 67 

the affected area. Therefore, the main challenge in estimating the restoration time deals with 68 
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randomness, vagueness, and ignorance-type uncertainties [8, 24-26]. The typology and 69 

definition of uncertainty within the engineering community is extensive and often discordant 70 

[27]. Klir and Yuan [25] have broadly categorized uncertainty into two basic types: vagueness 71 

and ambiguity (see Table 1 for an extensive list of the uncertainty types). Besides, the 72 

uncertainties and interdependencies that exist in the downtime estimation, render rule-based 73 

systems and graphical models a viable alternative [20-22]. Interdependency, in this context, 74 

refers to the statistical relationships between the input parameters of the downtime estimation 75 

model.  76 

Table 1. Definition of uncertainty types 77 
Uncertainty Definition 

Imprecise  Not clear, not accurate  

Vagueness Not clearly explained or expressed, and therefore understandable in different ways. 
Results in uncertain or ill-defined meaning  

Ambiguity Unclear or confusing as data can have different meanings 
Ignorance  Lack of knowledge, lack of reliable information about the phenomenon of interest  

Inconsistent 
Unpredictable and behaves differently in a situation that warrants the same behavior. 
Data inconsistency occurs when data is stored in different formats in two databases or if 
data must be matched between database 

Random Data randomness occurs when data is defined without method or conscious choice 
 78 

In recent years, several techniques have been proposed and investigated based on fuzzy 79 

theory or evidence theory [21, 28-30] and Bayesian network (BN) [20, 31-33] to represent 80 

uncertainty and vagueness. A summary of recent literature on Fuzzy logic and Bayesian 81 

network applications is presented in Table 2. Fuzzy systems have been proposed to deal with 82 

vagueness, which is caused by uncertainty in observation, and to represent ambiguous data 83 

when available information is limited [34-36]. Bayesian networks, on the other hand, have long 84 

been applied as a cause-effect analysis tool for simulating the behavior of a system in situations 85 

of high uncertainty and missing data in many fields of study, ranging from social science to 86 

economics [37]. For instance, BN is efficient for handling risk assessment and decision-making 87 

under uncertainty [38] and it is typically used in risk analysis applications [39], such as seismic 88 

risk analysis [20, 40], earthquake disaster risk index [41], reliability engineering [42, 43], and 89 

safety management [44-46]. BNs have been implemented extensively to analyze and measure 90 

the resilience of critical infrastructures, such as waterspouts, supply chains, and manufacturing 91 
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[47-52]. For example,  Hosseini and Barker [53] proposed a methodology to quantify resilience 92 

as a function of absorptive, adaptive, and restorative capacities through Bayesian networks with 93 

the application on an inland waterway port.  In recent years, BNs have been employed in 94 

different water related issues as management tools [54-57]. Roozbahani et al. [58]  developed a 95 

framework based on prediction of groundwater level using Bayesian networks model. The 96 

model was evaluated for restoring the Birjand aquifer in Iran in different hydrological 97 

conditions. A Hybrid Bayesian Networks (HBNs) was employed to develop an intelligent 98 

model for hydraulic simulation and operational performance evaluation of the agricultural water 99 

distribution system [59]. However, to this date, no downtime estimation model for pipeline 100 

networks that uses FL or BN inference methods can be found in the literature. Although the 101 

comparison among probabilistic and non-probabilistic frameworks has been addressed in 102 

several works [60-64], in most cases, the comparison is made at the theoretical level without a 103 

practical perspective [65]. Furthermore, a comparison between the two approaches focusing on 104 

the treatment and representation of the uncertainty in the recovery time estimation is still 105 

missing.  106 

The primary goal of this paper is to introduce a system-based downtime estimation 107 

model for pipeline systems following a hazardous event. This proposed system includes 108 

important aspects of downtime and the different uncertainty types. The contribution of this 109 

paper is summarized as follows: 110 

1) Developing a generic downtime estimation model for pipeline systems considering 111 

all relevant aspects of downtime. 112 

2) Accounting for different types of input information and uncertainties by integrating 113 

FL and BN inference methods within the model. 114 

3) Presenting a case scenario to demonstrate the applicability of the introduced 115 

downtime estimation model using both inference methods and considering the 116 

water network as a pipeline system. 117 

4) Comparing the performance of both inference methods within the proposed 118 

downtime model 119 
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The downtime estimation model presented in this paper is targeted as a support tool for 120 

decision-makers to learn the overall repair time of their systems and help them prioritize the 121 

financial resources during the planning and management of disasters accordingly. It also 122 

provides a more general downtime model that adds to the existing literature. The remainder of 123 

the paper is organized as follows: Section 2 is devoted to the development of the downtime 124 

estimation model and to the description of the key indicators that are identified from past 125 

studies. Section 3 presents the case scenario that will be used to demonstrate the proposed 126 

downtime estimation approach. Sections 4 and 5 are dedicated to reviewing the basic 127 

knowledge of the FL and BN, respectively, and their implementation within the downtime 128 

estimation model. Section 6 compares the two approaches in terms of outputs and limitations. 129 

Finally, conclusions are drawn in Section 7 together with the proposed future work.  130 

Table 2. Recent literature on Fuzzy Logic and Bayesian Network methodologies  131 

Reference Goal Methodology Results 
Muller [66] Assess the resilience of 

critical infrastructures 
Fuzzy approach The approach helps 

identifying important 
criteria to evaluate the 
resilience of 
infrastructures 

He and Cha [67] Modeling the recovery 
of critical 
infrastructures 

Graph theory Recovery time is 
sensitive to the relative 
importance between 
systems 

Hosseini and Barker 
[46] 

Evaluation of 
resilience-based 
supplier 

Bayesian Network Flexibility of variable 
types, inference 
analysis, accounting for 
uncertainty 

Ferdous et al. [28] Handling uncertainty in 
a Quantitative Risk 
Analysis (QRA) 

Fuzzy approach Fuzzy-based 
approaches properly 
address the 
uncertainties in expert 
knowledge 

Hosseini and Barker 
[53] 

Quantifying resilience 
of infrastructures 

Bayesian Network Bayesian Network can 
quantify resilience 
from qualitative 
variables. Backward 
analysis of BN 
provides insights to 
achieve a specific level 
of resilience for port 
decision-makers  

This paper  Estimate recovery time 
of pipelines 

Fuzzy approach and 
Bayesian Network 

Downtime estimation 
model adaptable to any 
pipeline system 

 132 
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Downtime model for water and gas lifelines  133 
Indicators selection and clustering 134 

Developing the downtime estimation model for water and gas infrastructures starts by selecting 135 

the indicators that affect the downtime. All factors that contribute to the downtime estimation – 136 

geological, engineering, economic, social, and political factors – have been considered while 137 

selecting the indicators. The selection procedure starts from the target indicator, the downtime, 138 

which is decomposed into factors and sub-factors that together define it [68]. To reduce the 139 

subjectivity in selecting the downtime indicators, three criteria were considered: validity, 140 

measurability, and coherence [68, 69]. A total of 31 key indicators have been selected based on 141 

an extensive review of previous publications and studies [41, 68, 70, 71]. The indicators 142 

collected from the literature have been filtered to obtain mutually exclusive indicators. This has 143 

led to rejecting a number of indicators either because they are not relevant or because they 144 

overlapped with other indicators. The indicators can be classified under four main indices: (i) 145 

“Exposed infrastructure” (EI), (ii) “Earthquake intensity” (E), (iii) “Available human resources” 146 

(HR), and (iv) “Infrastructure type” (I) (Table 3-Table 6). Figure 2 illustrates the downtime 147 

estimation model and the hierarchical relationships between the indices and the indicators. To 148 

construct the downtime model, casual and logical relationships among the downtime indicators 149 

are identified based on expert knowledge and published literature. The indicators are clustered 150 

as follows:  151 

• Group 1: indicators referring to economic and financial reserves that support the 152 

capacity of a community to effectively respond to and recover from a disaster. 153 

• Group 2: indicators referring to the exposure level of infrastructure. These indicators are 154 

composed of indicators related to the evaluation of the infrastructure’s post-disaster 155 

condition and indicators related to the characteristics of the analyzed infrastructure. 156 

• Group 3: Indicators related to the seismic event. These indicators represent the hazard 157 

demand a community will be subject to. 158 

• Group 4: indicators referring to the availability of humans, composed of policy and 159 

planning indicators as well as indicators related to the affected area. 160 
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In the following, every index and its indicators are described in detail. 161 

 162 

Figure 2. Downtime assessment model for water and gas infrastructure 163 
 164 
Exposed Infrastructure (EI) 165 
Table 3 lists the EI indicators along with their state, the performance measure, and the 166 

sources used to obtain them (when available). The EI index, describing how effectively 167 

and efficiently a community can respond to recover from short-term and long-term 168 

impacts, is quantified through the Maintenance degree of the infrastructure, which 169 

represents the state of deterioration of the infrastructure. Infrastructures wear out with 170 

time and use, so proper and timely maintenance must be periodically conducted. 171 

Neglecting proper maintenance leads to a decline in the infrastructure’s condition. 172 

Therefore, in this work, it is assuming that a higher maintenance rate would lead to a 173 

lower likelihood of damage as well as a lower recovery time. The EI index also relies on 174 

the Priority of the infrastructure system, which is defined by the number of Served 175 

people and the Service importance of the infrastructure within the community, the Anti-176 

seismic technology of the structure and the Recovery type. The Recovery type includes 177 

indicators representing the Verification phase, which is the sum of the time and effort 178 

required for the Engineer evaluation, the Building phase, the Financing phase, 179 

indicators related to the Seismic event, and it is also affected by the analyzed 180 

“Infrastructure type” index.  The Engineer evaluation indicator, which is the time teams 181 
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of specialists (e.g., engineers) need to define and compare the assessments and give 182 

feedback on the potentially damaged infrastructure after the inspection, is based on the 183 

Structural inspection process and the quantification of the damages represented by the 184 

Damage assessment indicator [72].  The Building phase, sub-classified into Repair effort 185 

and Engineering consolidation, provides all those processes of design and intervention 186 

which aim at restoring the structural characteristics of the structure. The Financing Phase 187 

is divided into the Financing planning indicator, which represents the time the expert 188 

needs to plan and distribute properly funds and resources in the right manner, and the 189 

Procurement process. The Procurement process indicator is the time required to make an 190 

offer by an individual or business for a product or service. In the aftermath of a 191 

disastrous event, it is very important to shorten the procurement process in such a way 192 

to speed up the recovery process [20]. Finally, the Seismic event indicator depends on the 193 

Event repetition indicator and on the “Earthquake intensity” index.  194 

The indicators that are related to the “Exposed infrastructure” index are described in 195 

Table 3. Information about the “Infrastructure type” index and “Earthquake intensity” 196 

index along with their indicators are described separately in Table 5 and Table 6.  197 

Table 3. Description of the “Exposed infrastructure” indicators 198 
Indicator/Index State Performance measure/Reference 

Exposed Infrastructure Low Visual inspection/Expert opinion  
 High  
  

Maintenance Degree 
Poor   

Medium Visual inspection/Expert opinion 
Good   

  
Served people  

Low ≤ 20% Population 
Medium 20%<Served People<50% Population 

High > 50% Population [73] 
Anti-seismic Infrastructure Yes Earthquake resistant  

No Earthquake non-resistant 
  

Service Importance 
Low   

Medium Visual inspection/Expert opinion 
High   

  
Priority of intervention 

   

Low   
Medium Visual inspection/Expert opinion 

High   

Recovery Type  Easy   
 Difficult Visual inspection/Expert opinion 

Very Difficult  [71] 
 Short 
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Financing Phase  Medium Visual inspection/Expert opinion 
Long [71] 

 
Procurement Process 

Reactive Major hazards 
Emergency State of emergency taken off 
Accelerated Immediate needs [71, 74] 

 
Building Phase 

Easy   
 Difficult Visual inspection/Expert opinion 

Very Difficult [71]  
 

Engineer Evaluation 
Short 

 

Medium Visual inspection/Expert opinion 
Long [71] 

 
Structural Inspection 

Short  
Medium Visual inspection/Expert opinion 

Long [71] 
 

Damage Assessment  
Short  

Medium Visual inspection/Expert opinion 
Long [71] 

Event Repetition Once First shock  
Many Aftershocks [71] 

 
Seismic Event   

Dangerous 6<M76 
Very Dangerous 7<M≤8 

Extremely Dangerous  M>8 
 

Financing Planning 
Short 

 

Medium Visual inspection/Expert opinion 
Long [71] 

 
Repair Effort 

Short 
 

Medium Visual inspection/Expert opinion 
Long [71] 

 
Verification phase  

Short  
Medium Visual inspection/Expert opinion 

Long [71] 
 

Engineering Consolidation 
Easy 

 

Difficult Visual inspection/Expert opinion 
Very Difficult   

 199 

Availability of Human Resources (HR) 200 
Information on the “HR” index and its indicators is presented in Table 4. As shown in Figure 2, 201 

the “HR” index is influenced by three indicators: the occurrence of Other emergencies at the 202 

same time, the availability of a structured and defined Planning indicator, and the 203 

characteristics of the Impacted area. The Planning indicator is used in the framework to 204 

represent the emergency response and recovery planning. It can be assessed by consulting a 205 

city’s local planning experts [20].  206 

Table 4. Description of “Availability HR” indicators 207 
Indicator/Index State Performance measure Reference 

Availability HR 
Low 

Expert opinion [75] 
High 

Other Emergencies 
Yes 

Expert opinion  
No 

Planning Indicator  Bad Inadequate and inactive [68]  
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Good Inadequate or inactive  [41] 

Excellent Adequate and active 

Impacted Area  

Small   
[41] Medium Visual inspection/Expert opinion 

Large   

Mobility and Access  

Easy   
[41] Medium Visual inspection/Expert opinion 

Hard   

Urban Area 

Small  50.000<Population<200.000  [71]  
[73] 
 [41]  

  

Medium 200.000<Population<500.000 

Large Population>= 500.000 

Weather Condition  

Very bad T ≤32°F or T ≥90°F   
 [68] 
[41]  Bad 32°F<T ≤55°F and 75°F ≤T<90°F 

Good 55 °F<T < 75°F 

PCGDP 

Low ≤5 
[41] 
 [76] Medium 5<PCGDP<40 

High >40 

Population 

Low <50.000 
 [73] 
[41]  Medium 50.000<Population≤<00.000 

High Population>= 500.000 

Urbanization   

Low < 0  
 [41] 
[77] Medium 0 < Urbanization rate <3 

High > 3  

 208 

The Impacted area indicator can be divided into three sub-indicators: the Weather condition of 209 

the affected area, the easiness of Mobility and access into the area, and the characteristics of the 210 

urban area. The Mobility and access indicator is dependent on the conditions of the post-211 

earthquake transportation system, the number of debris, and the “Earthquake intensity” index. 212 

The Weather condition indicator is expressed in terms of the temperature [68]. Four ranges have 213 

been selected to describe the Weather condition indicator, as listed in Table 4.  214 

Besides, the Urban area indicator is identified by Per Capita Gross Domestic Product 215 

(PCGDP), which is the indicator of a nation’s living standards, the Population density of the 216 

impacted area, and the Urbanization degree [76-78].  217 

Infrastructure Type (I) 218 

Outlined in Table 5 are the types of infrastructures that are considered in the proposed 219 
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downtime model: water and gas networks. The “Infrastructure type” is a key index in the 220 

downtime evaluation since it affects the Recovery type indicator and the downtime output  [70].  221 

Table 5. Description of “Infrastructure Type” indicators  222 
Indicator/Index State Performance measure/Reference 

Infrastructure Type  
Water [8]   

Gas      

 223 
Earthquake Intensity (E) 224 

Table 6 below presents the “Earthquake Intensity” (E) index, which expresses the severity of the 225 

earthquake to which a city will be subject. The E index influences the Seismic event and the 226 

Mobility and access indicators and directly the downtime output node. It is defined by 227 

combining the Epicentral distance and the Earthquake magnitude indicators. Distance from the 228 

epicenter is related to the observed damage such that the farther a system is located from the 229 

epicenter, the less damage is observed in the system. The epicentral distance is defined as 230 

(close, far, and very far). Four groups of Richter magnitude scale are used to classify the 231 

Earthquake magnitude indicator, (Strong 6-7, Major 7-8, Severe 8-9, Violent 9-10). The 232 

“Earthquake Intensity” index is classified into four groups of Mercalli intensity scale ranging 233 

from least perceptive to most severe: (Weak MMI-MMIII, Strong MMIV-MMVI, Severe 234 

MMVII-MMX, Violent MM>MMX).  235 

Table 6. Description of “Earthquake intensity” indicators 236 
Indicator/Index State Performance measure 

Epicentral distance 

Close 

Visual inspection/Expert opinion Far 

Very far 

Earthquake magnitude 

Strong M 6-6.9 

Major M 7-7.9 

Severe M 8-8.9 

Violent M 9-9.9 

Earthquake Intensity 

Weak MMI-MMIII 

Major MMIV-MMVI 

Severe MMVII-MMX 

Violent MM>MMX 

 237 
Demonstrative example 238 

In this section, the proposed downtime model is verified with the water network of the city of 239 
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Calascibetta in Sicily, Italy (see Figure 3). Calascibetta water distribution network has been 240 

recently installed, replacing the previous one due to intensive water leakage.  241 

 242 

Figure 3. Calascibetta Water Distribution Network  243 

The earthquake considered in the analysis is the 7.4 magnitude earthquake, known as “Noto 244 

valley earthquake”, that hit almost the whole of eastern Sicily (Italy) on the 11th of January 245 

1693. The earthquake caused about 60.000 injuries and affected an area of 5.600 square 246 

kilometers. Although the exact position of the epicenter remains uncertain, it is believed that it 247 

was close to the coast. The earthquake was followed by tsunamis that devasted the coastal part 248 

of the Ionian Sea and in the Straits of Messina. Simulating an emergency scenario consists of 249 

assigning a performance measure to each downtime indicator (e.g., Procurement process, 250 

Service importance of the infrastructure, Impacted area, etc.) of the potentially damaged 251 

infrastructures. Downtime indicators should be given qualitative judgments by an expert in the 252 

related field. In this work, some of the states of the indicators have been assumed (e.g., Damage 253 

Assessment, Financing Planning, Repair Effort) while others have been determined through 254 

available data (e.g., Population, Per Capita GDP, Urbanization). The input indicators used to 255 

quantify the downtime are summarized in Table 7. The state of each basic input indicator in 256 

Table 7 has been selected from the state ranges in Table 3-Table 6. 257 

Table 7. Input data used to assess the downtime of water network 258 
Basic input indicator State 

Damage assessment  Long 
Structural inspection Medium 
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Financing Planning  Medium 
Procurement Process Emergency 

Repair Effort  Long 
Engineering Consolidation Very Difficult 

Earthquake magnitude  Major 
Epicentral distance Far 
Event Repetition  Many 

Service Importance High 
Served People  High 

Maintenance Degree Medium 
Anti-seismic Infrastructure No 

Infrastructure Type Water 
Per Capita GDP Medium 

Population Low 
Urbanization Medium 

Weather condition  Good 
Other Emergencies  Yes 
Planning Indicator  Bad 

 259 
Table 8. Description of the downtime indicator 260 

Output State Performance measure 

Downtime 

Very Low 0 - 4 days 

Low 5 - 10 days 

Medium 11 - 24 days 

High 25 - 40 days 

Very High 41 days and more 

 261 

Five downtime intervals (e.g., states) are introduced to discretize the downtime output see 262 

Table 8). The five ranges for the downtime indicator have been determined after observing raw 263 

data and restoration curves from a previous study [8]. That is, it has been noticed that most 264 

infrastructures take time within these ranges to recover their functionality; therefore, the 265 

different ranges for the states have been defined based on that. In the next section, the downtime 266 

of the water network of the city of Calascibetta, Sicily (Italy) is estimated using two inference 267 

methods, FL and BN.    268 

Downtime estimation using Fuzzy Logic 269 

This section illustrates an overview of the FL theory and the methodology adopted for 270 

estimating the downtime of buried pipelines after earthquakes for cases with high uncertainty.  271 
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Fuzzy Logic theory  272 
The concept of fuzzy set and the theory behind it was introduced by [79] to deal with the 273 

vagueness and subjectivity of human judgment in using linguistic terms in the decision-making 274 

process [80, 81]. While in the classical binary logic a statement can be valued by an integer 275 

number, zero or one corresponding to true or false, in the fuzzy logic a variable x can be a 276 

member of several classes (fuzzy sets) with different membership grades (µ) ranging between 0 277 

(x does not belong to the fuzzy set) and 1 (x completely belongs to the fuzzy set) [82]. Fuzzy 278 

logic became a key factor in several fields such as Machine Intelligence Quotient (MIQ) to 279 

mimic the ability of humans, industrial applications, and earthquake engineering. The fuzzy 280 

logic consists of three main steps: a) Fuzzification; b) Fuzzy inference system, and c) 281 

Defuzzification (see Figure 4).  282 

 283 

Figure 4. Fuzzy Inference System (FIS) 284 

Step a: Fuzzification – Membership Functions 285 

As mentioned before, the basic input indicators (i.e. those with oval shape in Figure 2) could 286 

have different states (also called linguistic quantifiers in Fuzzy logic) (see Table 3, Table 4, and 287 

Table 5). The number of states for these indicators is not constant (i.e., some have only two, 288 

some have three, and the others have four states). However, to implement the fuzzy theory in 289 

the DT model easily, the number of states is set to three states for all indicators (e.g., low, 290 
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medium, and high or small, medium, and large, etc.). Taking into account more than 3 states 291 

(e.g., five states) leads to a more complicated fuzzy process. The main difficulty in designing 292 

membership functions is caused by the necessity to establish fuzzy levels and intervals. This 293 

difficulty could be increased if more states are considered since more membership functions 294 

would then be necessary to apply the fuzzy logic. In terms of fuzzy rules, a high number of 295 

states corresponds to a high number of fuzzy rules to cover all the possible permutations of the 296 

states. Consequently, designing membership functions and determining fuzzy rules become 297 

complicated. Increased number of states can, of course, make the results more specific; 298 

however, this comes at the cost of input demand: the expert would then need to provide more 299 

detailed membership functions and more rules, which could be not practical. Choosing three 300 

states is thought to provide the best balance between input demand and output clarity. Thus, in 301 

this paper, only three states are considered for every indicator. Linguistic quantifiers (i.e., states) 302 

assigned to the basic indicators are transformed into equivalent numbers (fuzzy numbers) on a 303 

range [0 1]. In this work, transformed values close to 0 (e.g., 0.20, 0.30) correspond to low 304 

downtime (i.e., values are closer to the low membership function), while values close to 1 (e.g., 305 

0.8, 0.9) correspond to high downtime. The basic indicators and the corresponding fuzzy values 306 

are listed in Table 9.  307 

The fuzzification step converts the input values into a homogeneous scale by assigning 308 

corresponding membership functions concerning their specified granularities [82]. The 309 

definition of membership functions is the main step on which all the other subsequent 310 

operations are based. Such functions, representing the fuzzy sets, can take different shapes 311 

(triangular, trapezoidal, and Gaussian, etc.) according to the situations, although regular shapes 312 

are commonly used [83]. There are many possible ways of selecting membership functions of 313 

fuzzy variables. Selection of membership functions can be intuitive or based on logical 314 

operations (Ross 1995), For instance, triangular or trapezoidal fuzzy membership functions are 315 

usually used to represent linguistic variables since their simplicity to apply fuzzy operations 316 

[34].  317 
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The membership functions considered in the methodology are based on triangular fuzzy 318 

numbers (TFNs). The granulation assigned to each indicator is illustrated in Figure 5. As 319 

indicated, while the membership function and the granulation of downtime indicators are 320 

represented using three-tuple membership values (µL, µM, µH), the downtime output is 321 

represented using five-tuple membership values (µVL
DT, µL

DT, µM
DT, µH

DT, µVH
DT) and each 322 

membership value is associated with five downtime intervals (e.g., states), very low (VL), low 323 

(L), medium (M), high (H), and very high (VH) to have more precise results.  324 

Table 9. Basic input indicator and transformation 325 
Basic input indicator Field observation Transformation 

Damage assessment  Long 0.80 
Structural inspection Short 0.20 
Financing Planning  Medium 0.50 

Procurement Process Emergency 0.50 
Repair Effort  Long 0.90 

Engineering Consolidation Very Difficult 0.90 
Earthquake magnitude Major 0.35 

Epicentral distance Far 0.50 
Event Repetition  Many 0.80 

Service Importance High 0.80 
Served People  High 0.80 

Maintenance Degree Medium 0..50 
Antiseismic Infrastructure No 0.90 

Infrastructure Type Water 0.35 
Per Capita GDP Medium 0.50 

Population Low 0.20 
Urbanization Medium 0.50 

Weather condition  Good 0.20 
Other Emergencies  Yes 0.90 
Planning Indicator  Bad 0.80 

 326 
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 327 
Figure 5. Membership function and granulation for the input indicators and the downtime indicator 328 

After selecting the transformation value for each downtime indicator, one can enter the 329 

corresponding membership graph (see Figure 5) and obtain the membership degree. The results 330 

are listed in Table 10. 331 

Table 10. Fuzzification process 332 
Basic input indicator Fuzzification 

Damage assessment (µSAD, µMAD, µLAD) = (0, 0.38, 0.62) 
Structural inspection (µSSI, µMSI, µLSI) = (0.55, 0.45, 0) 
Financing Planning (µSFP, µMFP, µLFP) = (0, 1, 0) 
Procurement Process (µRPP, µEPP, µAPP) = (0, 1, 0) 
Repair Effort (µSRE, µMRE, µLRE) = (0, 0.15, 0.85) 
Engineering Consolidation (µEEC, µDEC, µVDEC) = (0, 0.15, 0.85) 
Earthquake magnitude (µLEM, µMEM, µHEM) = (0.35, 0.65, 0) 
Epicentral distance (µLED, µMED, µHED) = (0, 1, 0) 
Event Repetition (µLER, µMER, µHER) = (0, 0.38, 0.62) 
Service Importance (µLSI, µMSI, µHSI) = (0, 0.38, 0.62) 
Served People (µLSP, µMSP, µHSP) = (0, 0.38, 0.62) 
Maintenance Degree (µPMD, µMMD, µGMD) = (0, 1, 0) 
Anti-seismic Infrastructure (µLVI, µMVI, µHVI) = (0, 015, 0.85) 
Infrastructure Type  (µLIT, µMIT, µHIT) = (0.35,0.70,0) 
Per Capita GDP (µLPCGDP, µMPCGDP, µHPCGDP) = (0, 1, 0) 
Population (µLP, µMP, µHP) = (0.55, 0.45, 0) 
Urbanization rate (µLUR, µMUR, µHUR) = (0, 1, 0) 
Weather condition (µVBEW, µBEW, µGEW) = (0.55, 0.45, 0) 
Other Emergencies (µLOE, µMOE, µHOE) = (0, 0.15, 0.85) 
Planning Indicator (µBPI, µGPI, µEPI) = (0, 0.38, 0.62) 

 333 
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Step b: Aggregation through Fuzzy rules 334 

The relationships between inputs and outputs are defined through the fuzzy rule base (FRB) that 335 

is derived from heuristic knowledge of experts or historical data. The Mamdani Fuzzy Logic 336 

inference method, known as the Max-Min method, is implemented in this work, as it is the most 337 

suitable when the fuzzy system relies on expert knowledge and experience [84].  Mamdani 338 

systems are composed of IF-THEN rules of the form “IF x is A (antecedent) THEN y is B 339 

(consequent)”. Each rule delivers a partial conclusion, which is aggregated to the other rules to 340 

provide a conclusion (aggregation). The aggregation of the rules determines a rule base that is 341 

valid over the entire application domain. In general, there is no single best method to generate 342 

fuzzy rules; rather the choice is context-dependent. To determine fuzzy rules that govern the 343 

system when information is scarce or missing, expert-based knowledge (knowledge base) is 344 

used to combine all the different variables allowing the system to take care of all the different 345 

possibilities that could happen. The use of the fuzzy rule-based method allows decision-makers 346 

to express their preferences in a modular fashion and update the fuzzy inference system by 347 

using new information as it becomes available [85]. The fuzzy rules are defined using a 348 

weighting method that allows identifying the impact of the input towards the output [21, 22]. 349 

The results of the rules are then combined to get a final output through the inference process. 350 

The process is performed by using fuzzy set operations to describe the behavior of a complex 351 

system for all values of inputs. Mamdani’s inference system consists of three connectives: the 352 

aggregation of the antecedents in each rule (AND connectives), implication (IF-THEN 353 

connectives), and aggregation of the rules (ALSO connectives). As Figure 2 shows, many 354 

indicators are considered in the downtime estimation model, and consequently, several fuzzy 355 

rules are required to combine them. In a fuzzy-based model, an increase in the number of input 356 

values results in an exponential increase in the number of rules [86]. Different strategies are 357 

presented to deal with the high number of rules: (i) identification of functional relationships, (ii) 358 

sensory fusion, (iii) rule hierarchy, and (iv) interpolation [87]. Magdalena [88] showed that a 359 

decomposition at the level of indicators is a proper solution. For instance, from Figure 2, it can 360 

be shown that the “Exposed infrastructure” index has four inputs: Maintenance degree, 361 
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Recovery type, Anti-seismic infrastructure, and Priority. Using a three-tuple fuzzy number, 362 

which corresponds to three states (e.g., low, medium, and high), the number of rules required to 363 

combine the indicators is 34 = 81. According to the process described by [88], the hierarchical 364 

structure can be decomposed at the level of indicators by introducing intermediate connections 365 

among the indicators at different levels of the hierarchy and by defining intermediate rules. 366 

Figure 6 illustrates the hierarchical fuzzy decomposition for the “Exposed infrastructure” index. 367 

As shown, pairs of indicators are aggregated through intermediate rules (temporary rules), 368 

which are TR1, TR2, TR3, and TR4. The output of the intermediate inference is then aggregated 369 

through fuzzy rule based R1, R2, and R3. Thus, a new rule hierarchy is developed, and the 370 

number of rules is reduced to 7·3^2 = 63, where 7 are the rules, 3 are the fuzzy states for each 371 

indicator (e.g., low, medium, and high), and 2 is the number of indicators aggregated at each 372 

level of the hierarchy. 373 

 374 

Figure 6. Hierarchical fuzzy rule base decomposition for the “Exposed Infrastructure” index 375 
 376 
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For example, the Engineer evaluation and Financing phase are aggregated through TR1. 377 

The output of TR1 is then aggregated with the Building phase indicator through R1 to obtain the 378 

Verification Phase. The three-tuple fuzzy set output at each level of the hierarchical scheme is 379 

defuzzified to obtain a single crisp value. In turn, this value is fuzzified into the next level. An 380 

example of the fuzzy rule assigned for combining the Damage assessment and Structural 381 

inspection to obtain Engineer evaluation (see Figure 2) is given in Table 11. The indicators are 382 

combined taking into account their importance towards the output [21, 22]. Thus, in the table, 383 

every indicator (i.e., DA and SI) is assigned a weighting factor that distinguishes its importance 384 

towards the output (i.e., EE).  385 

Table 11. Fuzzy rule for Engineer Evaluation  386 
Rule DA 

W=2 
SI 

W=1 EE 

1 S S S 

2 S M S 

3 S L M 

4 M S M 

5 M M M 

6 M L M 

7 L S M 

8 L M L 

9 L L L 
 387 

Using the fuzzy rule base (Table 11), the Engineer evaluation is computed as follows: 388 

𝜇!"" = max	(min(0,0.55) ,min(0, 0.45)) = 0
𝜇#"" = max	(min(0,0) ,min(0.38,0.55) ,min(0.38,0.45) ,min(0.38,0) ,min(0.62,0.55)) = 0.55

𝜇$"" = max(min(0.62,0.45) ,min(0.62,0)) = 0.45
      (1) 389 

Step c: Defuzzification to calculate corresponding crisp outputs  390 

The last step of the FL is the defuzzification process that represents the inverse of the 391 

fuzzification process. The purpose of the defuzzification step is to defuzzify the output fuzzy set 392 

resulting from the inference process and obtain a final crisp number. Different defuzzification 393 

methods can be found in the literature, such as the Center-of-Gravity (CoG) and Mean of 394 

Maximum (MoM) methods. At each level of the hierarchical scheme, fuzzy outputs are 395 
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defuzzified through the center of gravity (also known as the center of area) method. This 396 

defuzzification method calculates the area under the membership functions within the range of 397 

the output, then computes the geometric center of the area as follows: 398 

                                           𝐶𝑜𝐴 =
∫ "($)∙$'$!"#!
!"$%
∫ "($)'$!	"#!
!"$%

                                                   (2) 399 

where f(x) is the function that shapes the output fuzzy set after the inference process and x 400 

stands for the real values inside the fuzzy set support [0,1]. Using the center of gravity 401 

technique, the Engineer Evaluation is defuzzify as 0.54. The defuzzification of the other 402 

indicators is done in the same fashion.                                                                                               403 

The downtime of water lifeline is given through inferencing the “Availability of human 404 

resources”, the “Infrastructure type”, the “Earthquake intensity”, and the “Exposed 405 

infrastructure” indices as (µVL
DT, µL

DT, µM
DT, µH

DT, µVH
DT) = (0,0,1,0,0). According to the 406 

downtime membership functions, considering the highest membership value, the downtime of 407 

the water network may be classified as medium (11-24 days).  408 

Sensitivity analysis of fuzzy membership functions  409 

A sensitivity study is conducted in this work to perform a series of different simulations per 410 

type of membership function to reduce the subjectivity in the choice of membership functions 411 

and to identify the best result in terms of downtime. Such a sensitivity analysis allows 412 

understanding how the variation in the shape of the membership function affects the overall 413 

effectiveness of the system. It is performed by repeating the whole fuzzy inference procedure, 414 

modifying membership functions at a time (triangular, trapezoidal, and Gaussian membership 415 

function), keeping unvaried all the other features, thus performing 3 different simulations. From 416 

each of the 3 simulations performed, information concerning the downtime indicators and the 417 

output (i.e., the. downtime) is obtained.  418 

By analyzing the results obtained (see Figure 7), it is possible to conclude that the investigated 419 

membership functions provide similar results for the downtime output (around 0.6). This means 420 
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that membership functions do not have a high impact on the fuzzy inference procedure within 421 

the proposed downtime assessment model.  422 

 423 

 424 

Figure 7. Histograms representing the downtime results obtained through the analyzed membership 425 
functions 426 

 427 

Downtime estimation using Bayesian network 428 

This section describes the BN approach and the methodology performed for quantifying the 429 

recovery time of damaged water and gas lifelines following earthquakes. 430 

Bayesian network theory 431 
The Bayesian network (BN), also known as Bayesian Belief Network or Causal Probabilistic 432 

Network, belongs to the family of probabilistic graphical models (GMs). It is structured based 433 

on Bayes’ theorem that permits graphical probabilistic relationships among a set of variables 434 

[89]. Bayesian networks can update prior probabilities of some unknown variable when some 435 

evidence describing that variable exists. The uncertain variables in a BN model can be 436 

graphically represented through vertices (nodes) with an edge representing the casual 437 

relationship between two vertices and the uncertainties can be expressed through subjective 438 

probabilities [43, 89]. The ability of BN to represent graphically real-world applications where 439 

there are frequently many uncertain and unknown variables makes the approach suitable for 440 

experts’ knowledge.  441 
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Let V = (X1, X2, X3) be the set of variables in a BN whose structure specifies a conditional 442 

relationship. An outgoing edge from X1 to X3 indicates that the value of variable X3 is dependent 443 

on the value of X1 variable. Thus, X1 is the parent node of X3, and X3 is a child node of X1. An 444 

illustrative example of BN with three variables is illustrated in Figure 8.  445 

 446 

Figure 8. An example of BN with three variables  447 

In this work, the BN includes (see Figure 9): 448 

a) Design of BN by adding nodes that represent considered indicators and the 449 

corresponding states (e.g., low, medium, and high) and definition of parent-child 450 

relationships through causal arrows. 451 

b) Estimation of unconditional and conditional probabilities for parent and child 452 

nodes, respectively (parameterizing the network).  453 

c) Estimation of the downtime conditional probabilities. 454 

d) Inference system and output evaluation (i.e., the downtime).  455 
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 456 
 457 

Figure 9. Steps for a Bayesian Network (BN) development 458 

 459 

Step a: Graphical network and parent-child relationships 460 

 461 
The graphical Bayesian Network of the proposed DT assessment model (see Figure 2) is built 462 

through Netica software [90]. A set of links are used to define parent-child relationships among 463 

the downtime indicators. Casual relationships among the downtime indicators are measured by 464 

conditional probability distributions. Conditional distributions are usually referred to as 465 

conditional probability tables (CPT). The casual relationships between indicators and 466 

corresponding CPT are established based on expert knowledge and published literature. The BN 467 

model built using Netica software is depicted in Figure 10.  468 
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 469 

Figure 10. The Bayesian Network of the Downtime indicators using Netica software 470 

Step b: Assigning unconditional and conditional probabilities  471 

The main concept of BN results from the Bayes’ theorem in which the relation between two 472 

nodes, hypothesis A (parent) and evidence E (child), is represented as: 473 

                                                           𝑝(𝐴|𝐵) = ()𝐵*𝐴+	$	((-)
((.)

                                                     (3) 474 

where p(A|B) is one’s belief for hypothesis A upon observing evidence B, p(B|A) is the 475 

likelihood that B is observed if A is true, p(A) is the probability that the hypothesis holds, and 476 

p(B) is the probability that the evidence takes place. Furthermore, p(A|B) is known as posterior 477 

probability and p(A) is defined as a prior probability.  478 

Once the downtime indicators have been connected by a set of links defining parent-child 479 

relationships among them, a set of Conditional Probabilities Tables (CPTs), where the 480 

likelihood of the child node to assume a certain state under a given state of its parent, is 481 

assigned. The specification of the parameters of the probabilistic dependence model (i.e., the 482 

cause-effect relation) represented via a Conditional Probability Table (CPT) is one of the pillars 483 

of BN. Depending on the available data (prior knowledge, expert-based information, 484 

observations, etc.), CPT can be populated in several manners [91-93]. That is, different 485 

assumptions can be made, and different methods are available, which might lead to uncertainties 486 

in the BN results [94]. In the situation where data are scarce, estimating CPTs may become 487 
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challenging. A possible solution is relying on expert knowledge elicitation, which means 488 

experts are asked to give qualitative statements or relative measures. In the BN, the probabilities 489 

can be subjectively defined. The BN enable converting empirical distribution and subjective 490 

probabilities in the analysis. The approach used to estimate conditional probabilities for all 491 

nodes of the downtime network is further described in [20]. 492 

In the case of independent indicators with no parents, the CPT is reduced to an unconditional 493 

probability Table (UPT). To establish unconditional probabilities (UPs) of parent nodes, the 494 

basic inputs are assigned equal weights 1/n following the principle of insufficient reasoning, 495 

where n is the number of states 496 

However, for the downtime output itself, another procedure is adopted to come up with the 497 

conditional probabilities. The approach uses past data on infrastructure restoration in the form 498 

of restoration fragility curves [8].  499 

Step c: Estimation of downtime conditional probabilities 500 

The complete database used for estimating the conditional probabilities of the downtime node is 501 

listed in Table 12. This database is transformed into cumulative probability restoration curves of 502 

the analyzed lifelines. 503 

The database was collected from published literature for earthquakes that have occurred after 504 

the ‘60s because there was little or no reliable information about the damage caused by earlier 505 

earthquakes. Data used to design the restoration curves of the water and gas systems have been 506 

divided into 4 sets based on the earthquake intensity: Strong 6-7; Major 7-8; Severe 8-9; and 507 

Violent 9-10). For each lifeline, a group of restoration curves considering the four magnitude 508 

ranges have been developed. Table 13 shows the data sets considered in realizing the restoration 509 

curves, extracted from Table 12. 510 

Table 12. Number of affected infrastructures and the corresponding total recovery time  511 
  Water Gas   
  No.    DT (days) No.    DT (days) 
Loma Prieta 10 (14), (4), (3), (1.5), (2), (1), (3), (3), (7), (4) 5 (30), (16), (11), (10), (10) 
Northridge 6 (7), (2), (58), (12), (67), (46) 4 (7), (30), (5), (4) 
Kobe 3 (0.5), (8), (73) 3 (84), (11), (25) 
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Niigata 3 (14), (28), (35) 3 (28), (35), (40) 
Maule 4 (42), (4), (16), (6) 2 (10), (90) 
Darfield 2 (7), (1) 1 (1) 
Christchurch 1 (3) 2 (14), (9) 
Napa 6 (20), (0.9), (0.75), (2.5), (12), (11) 1 (1) 
Michoacán 4 (30), (14), (40), (45) - - 
Off-Miyagi 1 (12) 3 (27), (3), (18) 
San Fernando - - 2 (10), (9) 
The Oregon Resil. Plan 1 (14) 1 (30) 
LA Shakeout Scenario 1 (13) 1 (60) 
Tohoku Japan 8 (4.7), (47), (1), (26), (7), (1), (47), (47) 6 (54), (2), (30), (3.5), (13), (18) 

Niigata 3 (15), (4), (10) 2 (180), (2) 
Illapel 1 (3) - - 
Nisqually - - - - 
Kushiro-oki 3 (6), (3), (5) 2 (22), (3) 
Hokkaido Toho-oki 3 (9), (3), (5) - - 
Sanriku 3 (14), (12), (5) - - 
Alaska 5 (14), (5), (1), (7), (14) 3 (1), (5), (2), (14) 
Luzon 3 (14), (14), (10) - - 
El Asnam 1 (14) - - 
Tokachi-oki - - 2 (30), (20) 
Kanto 1 (42) 2 (180), (60) 
Valdivia 1 (50) - - 
Nihonkai-chubu 1 (30) 1 (30) 
Bam 3 (14), (10) - - 
Samara 1 (2) - - 
Arequipa 3 (32), (34) - - 
Izmit 2 (50), (29) 1 (1) 
Chi-Chi 1 (9) 1 (14) 
Alaska 2002 10 (14), (4), (3), (1.5), (2), (1), (3), (3), (7), (4) 1 (3) 

 512 

Three statistical distributions are used to fit data collected in the form of restoration curves: 513 

gamma, exponential, and lognormal cumulative distributions as these are the common 514 

distributions to model the downtime. The cumulative step function of the water and gas 515 

distribution infrastructures is shown in Figure 11. Gamma, exponential, and lognormal 516 

cumulative distributions are plotted against the stepwise function to visualize the distribution fit.  517 

Table 13. Downtime data and corresponding frequencies for water and gas networks with EM 6-7, 7-8, 8-518 
9, and 9-10 519 
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 520 

Figure 11. Cumulative frequencies with three theoretical CDF distributions for (a) water distribution 521 
infrastructure, and (b) gas distribution infrastructure for the data corresponding to EM 6-7. 522 

Figure 12 shows the frequency histogram of the downtime data and the probability density 523 

function (PDF) of the gamma, exponential, and lognormal distributions related to (a) the water 524 

network infrastructure and (b) the gas network for earthquake magnitude range EM 6-7.  525 
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 526 

Figure 12. Histograms and PDF fitting distributions for (a) the water distribution, and (b) the gas network 527 
infrastructure for the data corresponding to EM 6-7 528 

Since the plotted PDFs present a similar trend, it is not simple to choose the distribution with 529 

the best fit relying only on visual interpretation. Therefore, the goodness-of-fit tests (GOF) are 530 

used to identify the appropriate distribution for the empirical data [20]. Goodness-of-fit of a 531 

statistical model is a method that determines how well a model fits a set of observations. Two 532 

tests for Goodness-of-fit are used in this work the identify the distribution with the best fit: the 533 

Kolmogorov-Smirnov (K-S) and Chi-Square tests. The gamma distribution is selected to fit the 534 

downtime data of both infrastructure systems. The parameters of the chosen distribution have 535 

been determined using the Least Squares Parameter Estimation method. The restoration curves 536 

for water and gas infrastructures are plotted using two factors: (i) the number of days needed to 537 

restore full service (horizontal axis); (ii) the probability of a complete restoration (vertical axis). 538 

The restoration curves are classified under four groups of Richter magnitude scale: 6-7 Strong, 539 

7-8 Major, 8-9 Severe, and 9-10 Violent, as shown in Figure 13. 540 
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 541 
Figure 13. Restoration curves of the Water and Gas lifelines based on the earthquake magnitude  542 

Once the restoration curves are developed, the estimation of probabilities for the downtime 543 

output is carried out. The downtime conditional probabilities obtained for every couple of 544 

“downtime state-earthquake magnitude” for the water and gas networks are listed in Table 14. 545 

The results obtained from the restoration curves are assumed to correspond to high 546 

infrastructure exposure and low available human resources, and they are considered the 547 

baselines for estimating the probabilities for other combinations in the CPT of downtime. 548 

Fragility restoration curves, designed using real data of past earthquakes, are used to calibrate 549 

the model through an iterative calibration procedure. That is, knowing the intensity of the 550 

studied earthquake, it is possible to obtain real downtime of the analyzed infrastructure system. 551 

The calibration is done by modifying the model parameters so that the downtime outcome of the 552 

model matches the real downtime from the real data. Table 15 presents a portion of the 553 

conditional probability table of the downtime indicators. In the table, the baselines resulted from 554 

the restoration curves are highlighted in bold and they are the starting point for estimating the 555 

probabilities of other combinations. The conditional probabilities of other combinations are 556 

estimated respecting that the horizontal sum must be equal to one (second probability axiom).  557 

Table 14. Downtime probabilities of the water and gas systems given four seismic intensities  558 
Lifeline Time Span Strong Major Severe  Violent 

Water System 

0-4 29% 17% 19% 20% 
5-10 23% 18% 23% 22% 
11-24 27% 28% 31% 30% 
25-40 12% 17% 16% 16% 
40+ 6% 11% 7% 8% 

Gas System 0-4 10% 18% 2% 20% 
5-10 23% 21% 18% 24% 
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11-24 39% 30% 53% 33% 
25-40 19% 17% 22% 15% 
40+ 7% 9% 4% 6% 

 559 
Table 15. Conditional probability table (CPT) for the downtime output of the water and gas infrastructure 560 
Infrastructure       

Type 
Earthquake     

Intensity 
Exposed      

Infrastructure 
Av. HR Very Low Low Medium High Very High 

Water Strong High High 0,2946 0,2275 0,2737 0,1355 0,0687 

Water Strong High Low 0,2947 0,2289 0,2740 0,1360 0,0687 

Water Strong Low High 0,2948 0,2291 0,2742 0,1360 0,0689 

Water Strong Low Low 0,2950 0,2292 0,2743 0,1369 0,0690 

Water Major High High 0,1826 0,2087 0,2889 0,1868 0,1330 

Water Major High Low 0,1826 0,2089 0,2889 0,1869 0,1332 

Water Major Low High 0,1826 0,2092 0,2890 0,1870 0,1340 

Water Major Low Low 0,1826 0,2092 0,2891 0,1870 0,1340 

… … … … … … … … … 

Gas Strong High High 0,1035 0,2255 0,3885 0,2098 0,0726 

Gas Strong High Low 0,1035 0,2255 0,3885 0,2099 0,0726 

Gas Strong Low High 0,1036 0,2256 0,3885 0,2100 0,0727 

Gas Strong Low Low 0,1036 0,2326 0,3389 0,2200 0,1050 

Gas Major High High 0,1762 0,2171 0,3125 0,1735 0,1206 

Gas Major High Low 0,1762 0,2172 0,3125 0,1735 0,1206 

Gas Major Low High 0,1763 0,2172 0,3125 0,1736 0,1206 

Gas Major Low Low 0,1763 0,2173 0,3126 0,1736 0,1210 

… … … … … … … … … 

 561 

Step d: Inference and downtime estimation 562 

BN’s structure learning and inference for the downtime are performed using the commercial 563 

software Netica [95]. Construction of the BNs requires a list of the uncertain variables, the 564 

possible states of the discrete variables and possible ranges of the continuous variables, the 565 

relationship among the variables, and the conditional probabilities for the inference. Once the 566 

indicators and the corresponding states/ranges (see Table 7) and probabilities have been 567 

assigned, the BN is compiled. The probabilities solve the network by finding the marginal 568 

posterior probabilities that some indicators will be in a particular state given the input indicators 569 

and the conditional probabilities [96]. The DT results for the water network are shown in Figure 570 

14. From the analysis, the downtime output shows a chance of 30.9 to be in the state medium.  571 
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 572 
Figure 14. Downtime evaluation for water network  573 
 574 
 575 

Sensitivity analysis 576 

 577 
Sensitivity analysis is implemented to identify and rank critical input indicators that contribute 578 

significantly to the output result (i.e., the downtime). Sensitivity analysis allows identifying the 579 

variation in the system’s reliability given a variation in the input values assuming that the inputs 580 

are uncertain [97]. In this work, two different sensitivity methods have been implemented. The 581 

first sensitivity analysis, known as Sensitivity to findings has been applied on the Bayesian 582 

network and it is based on the variance reduction and entropy reduction since the input 583 

indicators considered in the downtime model have discrete and continuous values [90, 98, 99]. 584 

The variance reduction method calculates the variance reduction of the expected real value of a 585 

query node Q (i.e., the downtime) due to a finding in a varying variable node I (e.g., Recovery 586 

type, Earthquake intensity). The variance of the real value Q given the evidence I, V(q|i) is 587 

computed using the following equation: 588 

                                              (𝑞|𝑖) = ∑ 𝑝(𝑞|𝑖)[𝑋/ − 𝐸(𝑄|𝑖)]0/                                        (4) 589 

where q = state of the query node Q, i = state of varying variable node I, p(q|i) = conditional 590 

probability of q given i, Xq = value corresponding to state q, and E(Q|i) = expected real value of 591 

Q after the new finding i for node I.  592 

Entropy reduction calculates the expected reduction in mutual information of Q from a finding 593 

for variable I. The formula is provided below: 594 

                                    𝑄𝑅 = 	𝐻(𝑄) − 𝐻(𝑄|𝐼) = ∑ ∑ 𝑃(𝑞, 𝑖) 123'[5(/,7)]
5(/)5(7)7/                       (5) 595 

where H(Q) and H(Q|I) are the entropy before the new findings and after the new findings. By 596 

selecting the query node and choosing Sensitivity to findings in Netica, a report will be 597 
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displayed indicating how much the query node would be influenced by a single finding at each 598 

of the other nodes (varying nodes) through different sensitivity measures (i.e., variance 599 

reduction and entropy reduction).  600 

The results of the sensitivity analysis for the DT due to a finding at another node are provided in 601 

Figure 15. Only indicators (parent and child nodes) showing a significant contribution towards 602 

the DT output have been indicated (i.e., epicentral distance, earthquake magnitude and 603 

intensity, recovery type, mobility and access, and infrastructure type). 604 

 605 

 606 

Figure 15. Sensitivity analysis of downtime node 607 

 608 
For query node Downtime, Earthquake Intensity has the highest contribution (0.58% variance 609 

reduction and 0.93% entropy reduction) followed by Infrastructure Type (0.44% variance 610 

reduction and 0.78% entropy reduction), Mobility and Access (0.06% variance reduction and 611 

0.07% entropy reduction), and Recovery Type (0.02% variance reduction and 0.08% entropy 612 

reduction). Earthquake Magnitude, Epicentral Distance, and Exposed infrastructure have very 613 

low contributions. That is, the variance reduction and entropy reduction for the three indicators 614 

are below 0.05%. The result of sensitivity analysis allows the decision-makers to identify the 615 

input parameters that affect the output most and prioritize them in the decision-making.  616 
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The second sensitivity analysis is the Sobol sensitivity method. It has been carried out by 617 

considering the basic input indicators in Fuzzy Logic. Sobol sensitivity analysis determines the 618 

contribution of each basic input indicator and their interactions to the overall model output 619 

variance. That is, it is based on variance decomposition techniques to provide a quantitative 620 

measure of the contributions of the input to the output variance. A pre-Sobol sensitivity analysis 621 

is necessary to perform the Sobol sensitivity analysis and it consists of deciding the parameters 622 

in the model to be varied and defining the parameter range, including the lower and upper 623 

bounds. After performing the pre-Sobol sensitivity analysis, the parameter sets can be generated 624 

through the Sobol sequence, and the running model output can be simulated. The outputs will be 625 

used to calculate the total and first-order sensitivity analysis. The Sobol sensitivity indices 626 

presented different features: (i) are positive values, (ii) parameters with sensitivity indices 627 

greater than 0.05 are considered significant, and (iii) the total-order sensitivity indices are 628 

greater than the first-order sensitivity indices. To implement the Sobol sensitivity method, 20 629 

basic input indicators are investigated to identify the indicators that have a significant 630 

contribution towards the DT output. In this work, 10,000 samples per input are used for Monte 631 

Carlo-based Sobol indices. Figure 16 shows the sensitivity analysis results of the most 632 

influencing basic input indicators in the downtime estimation. The results indicate that the 633 

Epicentral distance indicator is the most important indicator contributing to ∼90% of the model 634 

output variability, followed by the important indicators Infrastructure type and Service 635 

importance.  636 
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 637 

Figure 16. Total-order sensitivity analysis 638 

Backward propagation analysis 639 

The backward analysis (diagnostic reasoning) is a useful feature of BN that allows decision-640 

makers to improve the performance of a system by setting a desirable state of the DT and 641 

getting the parameters that assure the predefined DT state. In backward analysis, observation is 642 

made for a specific indicator, usually a target indicator (e.g., the downtime node in this work), 643 

and then the BN calculates the marginal probabilities of unobserved indicators by propagating 644 

the impact of the observed indicator through the network in a backward fashion. For instance, if 645 

the downtime state is set to very low (i.e., 100% of chance to be in the state very low), the 646 

“Exposed infrastructure” index is 58.9% high, the “Availability of Human Resources” index is 647 

54.2% high, and the “Earthquake intensity” index is 45% weak. The marginal probabilities of 648 

the other unobserved indicators are shown in Figure 17. 649 
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 650 

Figure 17. Backward analysis scenario when the expected downtime is set to very low 651 

Results and comparison 652 

FL and BN inference methods have been applied to estimate the downtime of the water 653 

infrastructure of the city of Calascibetta in Sicily, Italy. The application of both 654 

approaches allows performing a comparison of the modeling and quantification of the 655 

downtime. Both inference methods incorporate intuitive knowledge or historical data 656 

for defining fuzzy rules (in FL) and estimating conditional probabilities (in BN). 657 

Involving the use of experts in the generation of fuzzy rules (in FL) and probabilities (in 658 

BN) for different systems for which data are not available is a critical aspect of the 659 

downtime estimation model. In BN inference method, we can see uncertainty in the 660 

results in the form of probability dispersion (or variance) due to the basic inputs that are 661 

uncertain in the first place. That is, the principle of insufficient reasoning is applied to 662 

the basic inputs, i.e., the states of the inputs have an equal probability of occurrence.  FL 663 

and BN inference methods can be implemented without being familiar with the 664 

mathematical details and probabilistic analysis. This is an important feature as complex 665 

mathematical formulations to provide direct inputs in the proper form of FL and BN are 666 

not required. Furthermore, in the definition of the input values, BN is less sensitive to 667 
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less precise information than FL. That is, when the uncertainty of the inputs is 668 

significant, FL provides results less certain than BN. Both methodologies show similar 669 

results, and the recovery time output follows the same trend. FL and BN inference 670 

methods differ in their interpretation of the output. The output of the FL is a 671 

membership that defines how well the downtime fits the fuzzy levels, e.g., the 672 

downtime output for the water utility belongs to level Very Low with a membership 673 

degree of 0, to Low with a degree of membership of 0.19, to Medium with a degree of 674 

membership of 0.81, to High with a membership degree of 0, and to Very High with a 675 

degree of membership of 0. The BN output is a probability distribution that represents 676 

how likely the downtime is in a certain state, e.g., in the case of water lifeline shown in 677 

Figure 14, the downtime output has a 21.4 chance of being in state Very Low, 22.7 of 678 

being in state Low, 30.9 of being in state Medium, 16.1 of being in state High, and 8.93 679 

of being in state Very High. Consequently, the BN output probability distribution tends 680 

to be easier to interpret as well as more intuitive than FL output, which is in the form of 681 

a fuzzy set.  682 

One of the advantages of the proposed downtime estimation model based on BN 683 

inference method is the capability to easily update the downtime model when new data 684 

and information is available. The powerful feature of BN for generating different what-685 

if scenarios allows running several scenarios and determining the efficient means of 686 

reducing the downtime. Another advantage of applying BN inference method to the 687 

downtime model is the diagnostic reasoning. The backward analysis of BN enables 688 

setting a desirable state of the downtime and getting the indicators that provide the 689 

predefined downtime state. By doing that, decision-makers can improve the 690 

performance of their systems. Moreover, it is possible to estimate the probability of 691 

another node if the evidence for the given nodes is known. This would provide 692 
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flexibility in BN approach. Updating the downtime model based on FL requires more 693 

time since it can be done manually by adjusting fuzzy rules and changing the shape of 694 

the membership functions. Moreover, in the case of new information, fuzzy rules need 695 

to be changed. This requires a good knowledge of the system to effectively apply FL. In 696 

terms of easiness of implementing the two approaches to the downtime estimation 697 

model, both BN and FL frameworks are easy to build but estimating conditional 698 

probabilities in BN for each child node of complex systems can be challenging. To sum 699 

up, the two proposed inference systems can be implemented to cover two possible 700 

conditions: (i) data is (partially) available but uncertain, and (ii) data is not available or 701 

limited. That is, Bayesian Network is proper when statistics are available, while the 702 

Fuzzy Logic approach is a suitable solution to deal with less or unavailable data. 703 

Therefore, each approach is applicable for different cases.  704 

The results obtained from BN and FL approaches can be used to help and support 705 

decision-makers (e.g., engineers and managers) prioritize financial resources in the 706 

planning and management of post-disaster strategies. By analyzing the downtime 707 

results, decision-makers can optimize their action by prioritizing activities and choosing 708 

proper recovery measures to assure the functionality of the infrastructures and to assign 709 

appropriate resources. Risk planners, previously concerned with protection and 710 

prevention, are now more interested in the ability of such infrastructures to withstand 711 

and recover from disruptions in the form of resilience-building strategies. Moreover, the 712 

sensitivity analysis results can be used to pinpoint which indicators are effective to 713 

reduce risk, use it for decision-maker to assign appropriate resource, and determine the 714 

most efficient and effective means of reducing risk and improving resilience. For 715 

instance, the estimated downtime values (i.e., medium downtime) of the water 716 

infrastructure of the city of Calascibetta in Sicily may be reduced by improving some 717 
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sensitive and influential indicators that require special attention, such as the Mobility 718 

and Access and the Recovery Type indicators, and the “Availability of Human 719 

Resources” index. The utility managers must take appropriate preventive action (e.g., 720 

maintenance or replacement of the analyzed pipe after inspection) to avoid its failure 721 

and improve the resilience against future hazard events.  722 

 723 

Conclusion 724 

There is a growing interest in the infrastructure resilience concept. Ensuring appropriate 725 

performance levels of civil infrastructure systems is one of the aspects to be considered 726 

when it comes to community resilience. The key contributions of this paper are 727 

summarized as follows. First, this paper proposes an indicator-based downtime model to 728 

estimate the downtime of lifeline infrastructure, namely water and gas networks. The 729 

proposed model can be easily adapted to any pipeline system by changing the input 730 

indicators. The downtime estimation model benefits from two inference methods for its 731 

computation: Bayesian Network (BN) and Fuzzy Logic (FL). The model can 732 

accommodate different types of input as well as input uncertainties. The inference 733 

methods are considered as two alternatives that can be used in slightly different 734 

circumstances to deal with the uncertainties that affect the recovery estimation of 735 

damaged infrastructures. The downtime estimation model is applied to the city of 736 

Calascibetta in Sicily, Italy, by considering the “Noto valley earthquake” that hit 737 

Calascibetta on the 11th of January 1693 with a magnitude M 7.4 on the Richter scale. 738 

Such an illustration could help users choose the best among the two inference methods 739 

given the case they have.  740 

The downtime estimation model presented in this paper is targeted as a support tool for 741 

decision-makers to evaluate the overall repair time and quantify the priorities of the 742 

repair activities. Results from the case scenario, in terms of probability of being in a 743 
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given state (BN) and the degree of membership (FL), can be used to pursue the best 744 

strategies during the planning and management post-disaster processes, manage and 745 

minimize the impacts of seismic events, and promptly recover damaged infrastructures.  746 

The main limitation of the proposed model is that some of the fuzzy rules in FL and 747 

conditional probabilities in BN are knowledge-based. Thus, the model development and 748 

analysis are subjective to the quality of the expert knowledge. This is unavoidable since 749 

the main feature of BN and FL is to rely on expert judgment in cases where data are 750 

sparse or not available. This can be partially addressed by asking multiple experts. 751 

Moreover, developing expert-driven Bayesian networks and Fuzzy logic systems 752 

require significant development due to the large number of variables. Although both 753 

inference systems are conceptually easy, they are not very simple to build.  754 

Future work of this study will be oriented towards the following directions. 755 

1. The proposed downtime estimation model can be further enhanced by merging both 756 

FL and BN in a single model. This is possible through the use of linguistic 757 

quantifiers and fuzzy number-based probabilities to assess unconditional and 758 

conditional probabilities. The BN inference is then performed to estimate the 759 

downtime of the analyzed infrastructures.  760 

2. The downtime assessment model can be extended to include the interdependency of 761 

infrastructure networks since infrastructure systems are not isolated from each other 762 

but rely on one another to be functional.  763 

3. A procedure to evaluate the interdependency among the downtime indicators, as 764 

well as their weighting factors, will be further addressed.  765 
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