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A Generalization of the Convolution Theorem
and Its Connections to Non-Stationarity

and the Graph Frequency Domain
Alberto Natali , Student Member, IEEE and Geert Leus , Fellow, IEEE

Abstract—In this paper, we present a novel convolution
theorem which encompasses the well known convolution the-
orem in (graph) signal processing as well as the one related
to time-varying filters. Specifically, we show how a node-wise
convolution for signals supported on a graph can be expressed
as another node-wise convolution in a frequency domain graph,
different from the original graph. This is achieved through
a parameterization of the filter coefficients following a basis
expansion model. After showing how the presented theorem
is consistent with the already existing body of literature, we
discuss its implications in terms of non-stationarity. Finally, we
propose a data-driven algorithm based on subspace fitting to
learn the frequency domain graph, which is then corroborated
by experimental results on synthetic and real data.

Index Terms—Graph signal processing, convolution, non-
stationarity, frequency domain.

I. INTRODUCTION

CONVOLUTION is the core operation in signal processing
and machine learning systems. Its use is at the heart of

digital filters [2] for audio applications and time series predic-
tion [3], as well as for convolutional neural networks in deep
learning [4], enabling scalable architectures and endowing a
notion of locality among samples, properties exploited in, e.g.,
object recognition [5].

The three key operations defining a convolution are the shift,
the scale and the sum. The shift is responsible to capture the
underlying signal domain and brings the notion of locality and
proximity among samples: in time, for instance, successive
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applications of the shift (in that case corresponding to a delay)
give previous time samples. The scale defines how the shifted
samples are weighted before summing them, and different
weighting schemes lead to different structural properties (such
as invariants) of the architecture implementing the convolution.
The notion of regularity in time and in space, which are two
very well structured domains, is reflected in the definition of
their frequency domain. Specifically, a signal in these domains
can be decomposed into elementary building blocks (such as
sine waves) which endow a physical interpretation with a well
understood meaning of variability. In a less structured domain
modeled by a graph, this definition is not tight and multiple
interpretations are possible.

Graph signal processing (GSP) [6] extends the convolution
principle to data residing on graphs by means of graph filters
(GFs) [7], [8], [9], [10], architectures which are parametric on
the mathematical structure defining the shift operation. While in
temporal signal processing this shift operator is mathematically
represented by the (lower) shift/delay matrix, in GSP the graph
shift operator (GSO) depends on the underlying network do-
main. The eigendecomposition of the GSO reveals its respective
frequencies: specifically, the eigenvalues of the shift are the
frequencies. In temporal signal processing these frequencies are
the well-known complex roots of unity which obey a natural
ordering, and the associated (normalized) eigenvectors are the
Fourier modes (remember that the delay matrix is a particular
case of a circulant matrix). In GSP, however, different shifts
have different eigenvalues and hence different frequencies. In
this case, an ordering purely based on their numeric value might
not be meaningful and a more structured frequency domain, for
instance captured by a graph, might convey more information.
This is the recent line of work explored in [11], [12], which we
exploit here.

By relying on the novel notion of dual graph [11], which
models the support of the frequency domain as a graph, in
this work we introduce a new convolution theorem which gen-
eralizes the (graph) convolution theorem and the one related
to time-varying filters. To do this, we adopt so-called node-
varying graph filters (NV-GFs) [7] and we show how a node-
varying convolution in one domain (captured by the primal
graph) can be expressed as a node-variant convolution in the
other domain (captured by the dual graph), while remaining
consistent with the pre-existing body of literature. Based on the
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proposed theorem, we outline models for non-stationary graph
signals. Finally, we propose an algorithmic approach to learn
the dual graph from data with a subspace fitting approach [13]
resorting to sequential convex programming [14] to tackle the
non-convexity of the problem. The validity of this approach is
finally corroborated by simulations on synthetic and real data.

Remark 1: Differently from temporal signal processing,
where the shift operator remains consistent in time and fre-
quency domains, such uniformity does not typically hold in
graph-based signal processing and the notion of shift becomes
inherently more intricate. We believe that to construct a prin-
cipled and elegant framework for addressing shift-variance and
non-stationarity within a graph context, employing the concept
of the dual graph is essential. This will be more evident in the
following sections.

A. Related Works

Although this work is novel in its genre, many of the con-
cepts it relies on have been recently introduced. Modeling the
frequency domain through a graph has been proposed in [11],
[12], and similar efforts to interpret such a domain differently
from ordering the eigenvalues of the GSO is given by means of
embeddings in [15], [16]. Node-variant graph filters as a way
to extend classical time-varying filters to the graph setting have
been introduced in [7], while graph signal stationarity argu-
ments and their implications have been studied in [17], [18].
Non-stationarity of random graph signals has been exploited in
[19] in the context of network topology identification.

B. Contributions

We summarize the specific contributions of this work as
follows:

1) We propose a convolution theorem which encompasses
the (graph) convolution theorem and the one related to
time-varying filters; we show how the latter are spe-
cific instantiations of the proposed theorem for particular
choices of the GSO and the scaling scheme;

2) We introduce novel non-stationary graph signal models;
3) We devise an algorithmic procedure to learn the dual

graph from input-output and output-only data. The prob-
lem formulation can be cast as a blind polynomial re-
gression, as such also applicable to graph-agnostic tasks,
such as polynomial interpolations and jitter correction
in communication applications. The solution approach
relies on a subspace fitting method and it is accompa-
nied by a theoretical study of the ambiguities present in
the problem.

4) We showcase the validity of our findings on synthetic and
real data with numerical simulations.

II. PRELIMINARIES

Graphs and Graph Signals. We consider data residing on
a non-Euclidean domain, which we formally model by a graph
G = (V, E ,S), where V = {1, . . . , N} is the set of nodes (or
vertices), E ⊆ V × V is the set of edges, and S is an N ×N

matrix that represents the graph structure. The matrix S is called
the graph shift operator (GSO), since it plays a role akin to
the delay operator in temporal signal processing. Specifically,
its entries [S]ij ∈ C for i �= j are different from zero only if
nodes i and j are connected by an edge; typical examples of
such a matrix are the (weighted) adjacency matrix W [20] and
the graph Laplacian L [6]. A graph signal is then the vector
x ∈ C

N , where xi : V → C is the value collected at node i.
In this manuscript, for the sake of simplicity, we consider the

shift operator S to admit an eigenvalue decomposition (EVD)
written as S=VΛV−1, with V an invertible matrix collecting
the eigenvectors and Λ=Diag(λ) a diagonal matrix collecting
the eigenvalues λ of S. A fundamental assumption in GSP is
that the matrix V provides a basis for expressing signals living
on S, and with favorable discrete Fourier transform (DFT)-
like properties providing a notion of frequency similar to the
one in temporal signal processing. For this reason, the matrix
V−1 is often referred to as the graph Fourier transform (GFT)
and the projection of x onto this basis, i.e., x̂=V−1x as the
GFT signal.

Filtering on Graphs. Given a graph S, a classical graph
filter (C-GF) of order L− 1 is the matrix polynomial:

H(p,S) =
L−1∑

l=0

plS
l, (1)

where p= [p0, . . . , pL−1]
� ∈ C

L collects the graph filter coef-
ficients (taps). The application of the filterH(p,S) on a signal x
to obtain a new signal y, i.e., y =H(p,S)x, is often referred to
as graph filtering or graph convolution, as it respects the scale-
sum-shift principle of convolution. With a few simple calcula-
tions, it is easy to show that in the (graph) frequency domain,
a graph convolution is expressed as a pointwise multiplication;
this is the (graph) convolution theorem, which can be expressed
as follows:

y =

L−1∑

l=0

plS
lx ⇐⇒ ŷ =

L−1∑

l=0

plΛ
lx̂ (2)

with ŷ =V−1y the GFT of y. Notice that such a filter is
isotropic, meaning that for each l = 0, . . . , L− 1, the filter co-
efficient pl is shared among all the nodes of the shifted signal
Slx; for this reason a C-GF is an example of a node-invariant
graph filter.

A more versatile and flexible version of (1) is the so-called
node-variant graph filter [7], which allows a per-node weight-
ing scheme of each shifted version of the input signal. Due to
its relevance in this work, we distinguish among two flavours of
a NV-GF, henceforth referred to as type-I and type-II, defined,
for a given graph S and fixed order L− 1, respectively as:

HI(P,S) =

L−1∑

l=0

Diag(pl)S
l, (3)

HII(P,S) =

L−1∑

l=0

Sl Diag(pl), (4)
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where P ∈ C
N×L collects the filter coefficients P= [p0, . . . ,

pL−1] with pl := [pl1, . . . , plN ]� ∈ C
N the l-th hop filter tap

vector. As a short-hand notation, we will use HI and HII to
refer to the NV-GF in (3) and (4), respectively; when convenient
for clarity of exposition, we will explicitly write HI(P,S)
or HII(P,S) concordantly. The application of a NV-GF on
a signal x to obtain a new signal y will be referred to as
node-variant graph convolution. From a theoretical point of
view, both NV-GF types have the same expressive behavior, yet
the order of shifting and weighing is reversed. Specifically, in
type-I, each node performs a linear combination of the (shifted)
signal values of neighboring nodes, where the weights of the
linear combination are neighbor-specific; in type-II, each node
performs a linear combination of the (shifted) signal values of
neighboring nodes, which have been already scaled by such
nodes. Nonetheless, both can be implemented with the same
complexity and in a distributed manner [7].

Dual Graph. Although often not explicitly stated in the
academic literature, the support of the GFT signal x̂ is described
by the eigenvalues λ of S, which correspond to a discretiza-
tion/sampling of a continuous domain, either the real line R or
the complex plane C. This is consistent with the discrete signal
processing notion of frequency domain: when S represents a
cycle graph, possibly capturing the time domain, its eigenvector
matrix V−1 coincides with the (normalized) DFT matrix, and
its eigenvalues λ with the complex frequencies on the unit
circle, i.e., λ= [1, e−j2π/N , . . . , e−j2π(N−1)/N ].

However, a modern line of research attempts to model the
(graph) frequency domain by means of a graph [11]. The moti-
vation behind this line of research relies on the fact that classical
signal processing tasks usually performed in the frequency do-
main, such as frequency-shifting, do not have their counterpart
in GSP. Furthermore, given that a graph signal is inherently
associated with a graph structure, it is desirable to establish
a corresponding Fourier representation that is also inherently
linked to a graph structure. This leads to the notion of a dual
graph1 Sf =VfΛfV

−1
f , which represents the support for the

GFT signal x̂. Because we want the GFT V−1
f associated to the

dual graph to map x̂ back to the signal x, i.e., x=V−1
f x̂, and

we know that x=Vx̂, we must have Vf =V−1.
Thus, the primal graph provides spectral templates for the

graph frequency domain, i.e., the eigenvectors Vf for the dual
graph Sf are known once we know those of S. The only
unknown is then the eigenvalue matrix Λf := Diag(λf ), which
can be found, for instance, with an axiomatic or an optimization
approach [11], or in a data-driven manner as we will show in
Section IV. We anticipate that our criterion for estimating λf

will be to express the graph filter coefficients P as a low-degree
polynomial in such a λf . Although [12] proposes λf = λ�, we
do not see this as a favorable definition, since in our view it
only holds when specified to the “temporal” graph; in all the
other cases, especially for undirected graphs, it would imply
that primal and dual eigenvalues always coincide. Such an

1Not to be confused with the dual graph notion in graph theory, as the
graph which has a vertex for each face of the original graph.

interpretation would be inconsistent with the desirable proper-
ties highlighted in [11, Axioms (1-3)].

III. AN ENCOMPASSING CONVOLUTION THEOREM

In this section we propose a convolution theorem which en-
compasses the graph convolution theorem [cf. (2)] introduced in
Section II and the convolution theorem related to time-varying
filters, which will be introduced later on to highlight similarities
and differences. This generalization is made possible by using
the node-variant graph filters (3) and (4) with an appropriate
parametrization of the filter coefficients. Specifically, we show
how a limited order NV-GF in the primal domain can be ex-
pressed as a limited order NV-GF in the frequency domain
(henceforth referred to also as the “dual domain”). This is
formally stated in the following theorem.

Theorem 1 (Node-variant convolution theorem): Consider
a type-I NV-GF HI defined over the graph S with filter taps
{pl}L−1

l=0 , i.e., HI(P,S), and assume that a dual graph Sf with
dual graph frequencies λf describing the dual domain is given.
Assume also that each filter tap vector pl can be expressed as
a polynomial of order K − 1 in λf . Then, there exists a set of
coefficients {p̂k}K−1

k=0 for which the type-I NV-GF HI(P,S)
in the primal domain corresponds to a type-II NV-GF HII on
the dual graph Sf with filter taps {p̂k}K−1

k=0 , i.e., HII(P̂,Sf ).
Proof: By multiplying both sides of (3) with the GFT

matrix V−1, we have:

ŷ =V−1
L−1∑

l=0

Diag(pl)S
lx=V−1

L−1∑

l=0

Diag(pl)VΛlx̂. (5)

Next, we use a basis expansion model (BEM) [21] to express
the NV filter coefficients {pl}L−1

l=0 as a linear combination of
a dual graph dependent basis. Specifically, we express each pl

through powers of the dual eigenvalues λf , representing our
basis expansion; that is:

pl =

K−1∑

k=0

clkλ
k
f =Ψfcl (6)

with Ψf := [1, λf , . . . ,λ
K−1
f ] the Vandermonde matrix of

dual eigenvalues and cl := [cl0, . . . , cl(K−1)]
� the expansion

coefficients for the l-th primal filter tap vector pl. With this
choice, substituting (6) in (5), we have:

ŷ =V−1
L−1∑

l=0

Diag

(
K−1∑

k=0

clkλ
k
f

)
VΛlx̂

=
K−1∑

k=0

V−1 Diag(λk
f )VDiag

(
L−1∑

l=0

clkλ
l

)
x̂

=

K−1∑

k=0

Sk
f Diag(p̂k)x̂ (7)

where p̂k :=
∑L−1

l=0 clkλ
l =Ψĉk is the k-th hop filter tap vec-

tor on the dual graph, with Ψ := [1,λ, . . . ,λL−1] the Van-
dermonde matrix of primal eigenvalues, and ĉk := [c0k, . . . ,
c(L−1)k]

� the expansion coefficients for the k-th dual filter
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Fig. 1. General convolution theorem. A node-variant graph convolution in
the primal domain is equivalent to a node-variant graph convolution in the
dual domain.

tap vector p̂k. So in the frequency domain, we also obtain a
NV-GF denoted as HII =

∑K−1
k=0 Sk

fdiag(p̂k). Whenever the
dependency on the dual filter coefficients and shift operator is
necessary, we use HII(P̂,Sf ), where P̂ is the N ×K matrix
of coefficients P̂= [p̂0, . . . , p̂K−1].

This theorem allows us to delineate a general convolution the-
orem encompassing (2) as a special case, which relies on node-
variant graph filtering and is pictorially described in Fig. 1, as
follows:

y =

L−1∑

l=0

Diag(pl)S
lx ⇐⇒ ŷ =

K−1∑

k=0

Sk
f Diag(p̂k)x̂ (8)

pl =Ψfcl ⇐⇒ p̂k =Ψĉk (9)

The connection between the primal and the dual node-
variant graph filters defined in (8) is given by the K × L
expansion coefficients conveniently stored in the matrix C=
[c0, . . . , cL−1] = [ĉ0, . . . , ĉK−1]

�. This enables also to con-
cisely express the node-variant coefficients in the primal and
dual domain as P=ΨfC and P̂=ΨC�, respectively.

Remark 2: The same type of theorem construction can be
obtained by reversing the types of filters adopted in the primal
and dual domain; that is, applying a type-II NV-GF in the
primal domain is equivalent to applying a type-I NV-GF in
the dual domain, with the graph filter coefficients following
the parametrization in (9).

Corollary 1: Given a graph signal x, the application of a
node-variant graph filter HI(P,S) in the primal domain fol-
lowed by the GFT V−1 is equivalent to the application of the
GFT followed by a node-variant graph filter HII(P̂,Sf ) in the
dual domain. In other words, it holds (see also Fig. 1):

V−1HI(P,S) =HII(P̂,Sf )V
−1. (10)

In temporal signal processing, the frequency representation
of windowing in the time domain is the convolution between the
spectra of the signal and the window. Because a node-variant
convolution of order L− 1 is nothing else than the application
of L windows on shifted versions of the input graph signal x, a
similar result can be derived in the graph setting; the following
corollary expresses this.

Corollary 2: Given an input graph signal x and a type-I
NV-GF HI(P,S), with each {pl}L−1

l=0 parametrized as in (9),
a node-variant graph convolution of order L− 1 in the primal
domain is equivalent to the sum of L classical graph convolu-
tions in the dual domain, each one with as input a (modulated)
version of x̂; that is:

ŷ =

L−1∑

l=0

H(cl,Sf )(λ
l � x̂) (11)

=H(c0,Sf )x̂+ . . .+H(cL−1,Sf )(λ
L−1 � x̂) (12)

Proof: From the first equality of (7), we have:

ŷ =

L−1∑

l=0

K−1∑

k=0

clkV
−1 Diag(λk

f )VΛlx̂

=

L−1∑

l=0

(
K−1∑

k=0

clkS
k
f

)
Λlx̂

=

L−1∑

l=0

H(cl,Sf )(λ
l � x̂) (13)

Notice how the filter coefficients in (13) are the expansion
coefficients cl associated to the primal filter coefficients pl.

An important consequence of Corollary 2 is that windowing
in the primal domain is equivalent to a C-GF in the dual domain;
we will rely upon this when introducing non-stationary signal
models in Section III-C.

A. Consistency With the Graph Convolution Theorem

Because a C-GF is a NV-GF with constant filter taps, we
expect that our introduced theory encompasses the existing
one. Indeed, we can formally show that the graph convolution
theorem (2) falls within the introduced theory. To see this,
consider pl = pl1, ∀ l, i.e., the case in which each vector of
filter taps pl is constant over the nodes, thus corresponding
to the C-GF as in (1). The column space of P is then one-
dimensional, specifically spanned by the all-one vector. By
construction, the first column of the Vandermonde matrix is the
all-one vector. Thus, from (9), we have that cl necessarily needs
to be cl = [pl,0

�]�, i.e.,:

[p11, . . . , pL−11] =

⎡

⎢⎢⎣

1 · · · λK−1
0,f

...
. . .

...

1 · · · λ
(K−1)
f,N−1

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

p1 · · · pL−1

0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥⎥⎥⎦

(14)

meaning that only the first row ĉ0 of C is different from zero.
In other words, any λf can be used, as it will be zeroed-out
by the matrix C. As we will see later on, this also means that
we cannot learn any dual graph from stationary graph signals,
since any λf would suffice. From the right equations in (8)-(9),
we have that:

ŷ = S0
f Diag(p̂0)x̂=Diag(Ψp)x̂, (15)
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which shows how the proposed theory fits within the princi-
ple that a classical graph convolution (node-invariant GF) is a
pointwise multiplication in the frequency domain.

Likewise, one can similarly show that if p̂k = p̂k1, ∀ k, i.e.,
the case in which each vector of filter taps p̂k in the frequency
domain is constant over the nodes (frequencies), then only
c0 = p̂ := [p̂0, . . . , p̂K−1]

� is different from zero. This leads
to a pointwise multiplication (windowing) [cf. (9) left] in the
primal domain:

y =Diag(p0)S
0x=Diag(Ψf p̂)x, (16)

which also complies with Corollary 2.
Another interesting relation arises when considering a

NV-GF with pli = pi for all l; i.e., the case in which each node
i uses the same weight pi (possibly different from pj of node
j) for the diffused sequence {x,Sx, . . . ,SL−1x}. In this case,
multiple λf and C satisfy the theorem; for instance we can
choose λf = [p1, . . . , pN ]� and cl = [0, 1,0�]�, i.e.,:

⎡

⎢⎣
p11�

...
pN1�

⎤

⎥⎦=

⎡

⎢⎣
1 p1 · · · pK−1

1
...

...
...

1 pN · · · p
(K−1)
N

⎤

⎥⎦

⎡

⎢⎢⎢⎣

0 · · · 0
1 · · · 1
... · · ·

...
0 · · · 0

⎤

⎥⎥⎥⎦ (17)

This implies that:

ŷ = Sf Diag(p̂1)x̂= Sf Diag(Ψ1)x̂, (18)

so that each x̂i is multiplied with p̂1i = [1, λi, . . . , λ
L−1
i ]1.

B. Relationship With Time-Varying Channel Propagation

The proposed theory also generalizes, to the graph setting,
concepts which are familiar in the context of time-varying chan-
nel propagation [22], arising for instance in mobile communi-
cation scenarios. In that case, the received signal y at time n,
i.e., y[n], is modeled as2:

y[n] =
L−1∑

l=0

p[n, l]x[n− l], (19)

where p[n, l] denotes the channel impulse response of the
l-th path at the n-th time instant, and x[n− l] is the transmitted
signal at the (n− l)-th time instant. The gains associated to
the different paths are assumed to be time-varying and approx-
imated by a basis expansion model [21]; specifically:

pl =
K−1∑

k=0

clkbk, (20)

where pl = [p[0, l], . . . , p[N − 1, l]]� stores the evolution of
the filter impulse response over the N time instants, bk ∈ R

N

is the k-th basis function, and clk is the coefficient associated
to the l-th path and the k-th basis function. This alleviates the
effort of having to deal with NL channel coefficients (usually
a very high number), and converts the model into a simpler one
with only LK BEM coefficients.

2We use square brackets to indicate that the argument is a time index and
not a graph node.

It is easy to show that we can write (19) in matrix-vector
form, by taking into account (20), as:

y =
K−1∑

k=0

Diag(bk)

(
L−1∑

l=0

clkD
l

)
x (21)

where x= [x[0], . . . , x[N − 1]]� and D is the N ×N lower
delay matrix; notice how the matrix

∑L−1
l=0 clkD

l implements a
standard convolutional filter in time and observe its similarities
with the left equation in (8). Next, denote with F ∈ C

N×N

the normalized DFT matrix, and with fk its kth column; the
classical complex exponential BEM uses the Fourier basis as
basis functions in (20), i.e., bk =

√
N fk. As such the gains pl

associated to the l-th path [cf. (20)] are modelled as smoothly-
varying over time and hence expressed with a small number
K of Fourier basis functions. Increasing K accommodates for
faster changes.

With this choice, (21) can be expressed in the frequency
domain as:

ŷ = Fy =

K−1∑

k=0

FDiag(
√
N fk)

L−1∑

l=0

clkF
HDiag(

√
N fl)Fx

=

L−1∑

l=0

(
K−1∑

k=0

clkD
k

)
Diag(

√
N fl)x̂. (22)

While in (21) the matrix D shifts in the time domain, in (22)
it shifts in the frequency domain; however, such shift matrix
is the same in both domains. This is different when looking at
the graph counterpart in (7), where the two shift matrices might
be different.

Remark 3: It is worthwhile to point out that the notion of
smoothness for signals and filter coefficients is different in
temporal and graph signal processing. In the time domain the
basis to express smoothness for signals and filter coefficients
is the same, both coinciding with the normalized DFT ma-
trix. In GSP, the basis to express smoothness of graph signals
and graph filter coefficients is different. Our theory shows that
smoothness of graph signals is determined by the eigenvectors
of the primal graph, while smoothness of the filter coefficients
is determined by the Vandermonde matrix containing the dual
graph frequencies.

All in all (22) is the time domain counterpart of (7), by
choosing the primal eigenvector matrix V to be V = FH and
the basis functions λk

f to be λk
f =

√
N fk.

C. Non-Stationarity

In this section we study how and where (non-)stationarity
of graph signals stands within the introduced theory. From
[17], a process y is said to be weakly stationary on a GSO S
if the covariance matrix Cy := E[yyH ] commutes with S or,
equivalently, if y can be written as the output of a C-GF H
[cf. (1)] when excited with a white input x, i.e., y =Hx. As a
consequence, the covariance matrix Cŷ of the GFT process ŷ
is diagonal, revealing the power spectral density of the process
y on its diagonal.

While [17] offers conditions to identify and model stationary
graph signals, it does not explore non-stationary signal models;
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this is our first attempt in that direction. Worth to mention is the
work of [19], where a network topology identification approach
is put forth to learn the GSO S given a set of realizations of a
non-stationary graph signal y modelled with a classical graph
convolution (2). There, however, non-stationarity is only con-
sidered with respect to node-invariant GFs, thus restricting the
non-stationarity model taxonomy. Indeed, the (non-)stationarity
of a random graph signal y obtained as y =Hx for a generic
graph filter H and an excitation input x, depends either on the
type of graph filter or the properties of the input x. Precisely
a non-stationary graph signal y can be either modelled as the
output of a shift-invariant graph filter with a non-stationary
input or as the output of a node-variant graph filter when excited
with a white input. The following properties and propositions
formally describe these claims.

Property 1. Given input x and output y =HI(P,S)x,
it holds:

Cy =HI(P,S)CxHI(P,S)H (23)

with Cx := E[xxH ]. Moreover:

Cŷ =V−1CyV. (24)

Depending on the structure of the graph filter HI(P,S) and
the input signal x, the ensuing propositions can be derived.
Unless explicitly stated differently, we assume that the graph
filter coefficient matrix P respects the parametrization in (9),
i.e., P=ΨfC, for some order L,K.

Proposition 1: If x is a white graph signal, then [cf.
Corollary 1]:

Cy =HI(P,S)HI(P,S)H (25)

Cŷ =HII(P̂,Sf )HII(P̂,Sf )
H . (26)

In general, this means that y is non-stationary on S and ŷ is
non-stationary on Sf .

Proposition 2: If L= 1 and x is a white signal (stationary
by definition), then ŷ is stationary on Sf .

From (24), we can see that if Cy is diagonal, then Sf com-
mutes with Cŷ and as such ŷ is stationary on Sf , with a power
spectral density (in the primal domain) equal to the eigenvalues
of Cŷ . This can happen only if L= 1 and x is a white signal,
where the convolution simply becomes y =Diag(p0)x, i.e., a
windowing in the primal domain. The covariance matrix Cy is
then Cy =Diag(p0)

2 and the cross correlation in y is zero. In
this case the covariance matrix Cŷ of the process ŷ in the dual
domain is not diagonal in general, since it reads as:

Cŷ =V−1 Diag(p0)
2V. (27)

From (27), we can then conclude that y is non-stationary on S
and, more importantly, SfCŷ =CŷSf , i.e., Sf commutes with
Cŷ . This implies that ŷ can be expressed as the output of a
node-invariant graph filter in the dual domain when excited with
white input, i.e., ŷ =H(p̂,Sf )x̂ for some limited order filter
coefficients p̂, rendering the estimation of the dual graph (see
Section IV) a node-invariant graph filter estimation problem [7],
[23]. This extends the classical notion of windowing in time
domain (for instance used in power spectral density estimation),

which corresponds to a frequency-invariant convolution in the
frequency domain. A generalization of this is given for L > 1
and a general signal x, for which Corollary 2 applies.

Proposition 3: If L= 1 and x is a non-white yet stationary
graph signal with covariance Cx =VΛxV

H , then ŷ is not
stationary on Sf since:

Cŷ =H(c;Sf )ΛxH(c;Sf )
H (28)

for some coefficients c ∈ R
K , does not commute with Sf .

Proposition 4: If pl = pl1, ∀ l, and x is not stationary on S,
then y is not stationary on S and ŷ is not stationary on Sf .
Indeed we have that the covariance matrix of y:

Cy =H(p;S)CxH(p;S)H (29)

does not commute with S; likewise Sf does not commute with
Cŷ =V−1CyV.

In other words, a node-invariant graph convolution of a non-
stationary process x results in a non-stationary process y on
S (and non-stationary GFT ŷ on Sf ). While this result is not
novel, we include it here to ensure a comprehensive coverage.

The introduced propositions provide a way to artificially
generate non-stationary graph signals on a given GSO S by
filtering white noise, as explained next.

Generating non-stationary graph signals. Remember that
Cŷ =V−1CyV has to be diagonal for y to be stationary on
S. Thus, non-stationary graph signals on S can be generated as
long as Cy is not diagonalizable by V (which would render Cŷ

diagonal). In particular, if we want our GFT random process ŷ
to have a specific covariance matrix equal to Cŷ =V−1CyV,
for some positive semidefinite (PSD) Cy we can generate ran-
dom samples ŷ as:

ŷ =V−1RVx̂ (30)

where R is a matrix such that Cy =RRH and x̂ is a white
input; equivalently, in the primal domain:

y =Rx. (31)

A simple example of such generation process is given by set-
ting Cy =Diag(p) for some p� 0, so that (31) is a window-
ing operation in the primal domain, corresponding to a node-
invariant graph convolution [cf. (30)] in the dual domain. With
this choice, however, ŷ is stationary on Sf [cf. Proposition 2]. If
this is not sought-after, a general non diagonal PSD Cy should
be used.

IV. DUAL GRAPH IDENTIFICATION

So far we have assumed the knowledge of Sf . In this section,
we put forth a data-driven procedure to learn the dual graph
eigenvalues λf in such a way that the resulting graph Sf re-
spects the theory developed in Section III. For simplicity, we
restrict our attention to the case of an undirected primal graph
with real-valued GSO S and real-valued graph signals and filter
coefficients. The problem setting is the following: consider T
graph signals Y = [y1, . . . ,yT ] which can be modelled as non-
stationary on the graph S as the result of filtering T (possibly
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unknown) input graph signals X= [x1, . . . ,xT ] with a NV-
GF HI(P,S), i.e., Y =HI(P,S)X. In particular, similar to
temporal signal processing, we assume that the orders K and
L are much smaller than N . Then the problem of identifying
the dual graph can be formalized as follows:

Given Y (and possibly X), find a dual graph Sf which
is consistent with Theorem 1. In other words, find the
dual eigenvalues λf such that a NV-GF HI on S with
L�N can be expressed as a NV-GF HII on Sf with
K �N .

To tackle this problem, we adopt a two-step approach: in
step i) we learn the filter taps P of the NV-GF HI(P,S) which
best fit the available data, developing two distinct approaches
for the input-output and output-only scenarios; in the second
step ii) we find the dual eigenvalues λf by exploiting (9),
i.e., we fit the model P=ΨfC, which is a specific structured
matrix factorization with a Vandermonde factor. We solve this
problem by following the recently proposed approach in [24]
relying on a subspace method followed by successive convex
programming.

A. Graph Filter Estimation With Input-Output Data

The goal of this section is to estimate the graph filter coeffi-
cients P from a set of data pairs D = {(xt,yt)| t= 1, . . . , T},
all obtained using the same node-varying graph filter. By vec-
torizing the expression Y =HI(P,S)X we obtain:

y =

L−1∑

l=0

vec(Diag(pl)S
lX)

=

L−1∑

l=0

((SlX)� ◦ IN )pl

= [X� ◦ IN , · · · , (SL−1X)� ◦ IN ] vec(P)

=A vec(P) (32)

where y = [y�
1 , . . . ,y

�
T ]

�, A= [X� ◦ IN , · · · , (SL−1X)� ◦
IN ] ∈ C

NT×NL and ◦ denotes the Khatri-Rao product. An
estimate of P can then be obtained as:

P= unvec(A†y), (33)

where A† = (AHA)−1AH is the pseudo-inverse of A. The
computational complexity of this step is dominated by the
method employed to solve (33), which in MATLAB is based
on the QR decomposition, incurring a cost of O(N3L2T ).
Since A is very sparse due to the Hadamard structure, ad-hoc
implementations can potentially lower this cost.

B. Graph Filter Estimation With Output-Only Data

The goal of this section is to estimate the graph filter coeffi-
cients P with the only knowledge of the output graph signals
Y ∈ R

N×T . We assume that each yt can be modelled as the out-
put of a NV-GF when excited with a white input xt ∼ N (0, I),
which is not directly observable. A viable approach is then
to fit the (empirical) second order information of the process

which, together with the filter parametrization (3), leads to the
following optimization problem:

min
P

‖Ĉy −HI(P,S)HI(P,S)�‖2F (34)

where Ĉy = (1/T )YY� is the sample covariance matrix (Y
is already centered).

Problem (34) is non-convex in P; thus, to alleviate the non-
convexity, we consider instead the simpler (yet, again non-
convex) problem:

min
P,U

‖R−HI(P,S)U‖2F s.t. U�U= I (35)

where R is a square matrix such that Ĉy =RR�, and U is
an N ×N orthogonal matrix. By exploiting the SVD of the
matrix Y, i.e., Y =UyΛyV

�
y , possible choices for R are R=

(1/
√
T )UyΛyU

�
y and R= (1/

√
T )UyΛy .

Observe that the solutions of (34) and (35) coincide in the
absence of noise and as T →∞. In other words,P� is a solution
of (34) if and only if it is also a solution of (35), for some orthog-
onal U�. This equivalence is formally stated in the following
lemma, where we denote HI(P,S) as H(P) for simplicity.

Lemma: The system of equations Ĉy =H(P)H(P) has so-
lution P� if and only if the system of equations R=H(P)U
has solution (P�,U�) for an orthogonal matrix U�.

Proof: (⇐) Let P�,U� be the solution of R=H(P)U.
This is clearly also a solution of the other system of equations,
since:

H(P�)U�U��H(P�)� =H(P�)H(P�)�

=RR� = Ĉy. (36)

(⇒) Let P� be the solution of Ĉy =H(P)H(P). The (thin)
SVD of matrix R and H(P�) can be written as:

R=UrΣrV
�
r (37)

H(P�) =UrΣrV
�
h (38)

from which it follows that R=H(P�)U� with U� =VhV
�
r .

Despite the fact that (35) is not jointly convex in P and
U, it is convex in P for a fixed U; moreover, for a fixed P,
it reduces to the well-studied orthogonal Procrustes problem
[25], for which a closed form solution exists albeit its non-
convexity. Thus, an alternating minimization over P and U can
be put forth, as follows: a) first, given the estimate of U at the
(n− 1)th iteration, i.e., U(n−1), the estimation problem at the
nth iteration for the filter taps matrix P reads as:

P(n) = argmin
P

‖R−HI(P,S)U(n−1)‖2F , (36a)

which can be solved in closed form by considering Y =R and
X=U(n−1) in (32). The solution of (36a) is then b) used in
the next step to refine the estimate of the unitary matrix U, i.e.:

U(n) = argmin
U

‖R−HI(P
(n),S)U‖2F

s.t. U�U= I (36b)

for which the closed form solution is U(n) =VpU
�
p , where

Up and Vp are the left and right singular vector matrices,
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Fig. 2. Illustration of the problem: a number of functions (L= 3) are
sampled (filled points) in N = 8 locations (gray dotted lines). The problem
is to recover the sampling locations and the polynomial coefficients with as
only knowledge the function values, the function they belong to, and ordered
such that the sampling points for all functions are aligned (shown on the right
in the figure at λ= 5).

respectively, of the matrix product R�HI(P
(n),S), that is,

R�HI(P
(n),S) =UpΛpV

�
p , with Λp the matrix of singular

values. The solution of (36b) is then fed again into (36a),
unless a predefined number of iterations or stopping criterion
is reached. The main computational load per iteration stems
from calculating matrix P in (36a), typically incurring a cost
of O(N4); overall the cost is then O(IN4) with I the number
of iterations.

C. Dual Graph Frequency Estimation

The next step is to learn the dual graph frequencies λf , which
are the only unknowns of the dual GSO Sf . In order to do this,
consider again the matrix form of (6):

P=Ψf (λf )C (39)

where we explicitly wrote Ψf as a function of λf to highlight
the fact that the matrix is entirely determined by its second
column λf , representing our unknown. Then, the problem we
aim to solve can be formally stated as follows:

Given the matrix P ∈ R
N×L, recover the input vector

λf ∈ R
N and the coefficient matrix C ∈ R

K×L such
that (39) holds as accurately as possible.

Although the problem can be approached from a pure
algebraic point of view as a structured matrix factorization, a
pleasing geometrical interpretation of (39) is given by inter-
preting the vectors p0, . . . ,pL−1 as function values obtained
by sampling L distinct polynomials p0(λf ), . . . , pL−1(λf ),
all with degree K − 1, in the same N unknown locations
λf,0, . . . , λf,N−1. The goal is to recover the original locations
(and polynomial coefficients) from the available sampled func-
tion values. The only side information we have about these
sampling points is i) which function they belong to and ii) that
they are ordered in such a way that the related sampling points
are aligned. See Fig. 2 for an illustration.

Subspace Fitting. Assume we start by considering the fol-
lowing optimization problem to estimate λf and C:

min
λf ,C

1

2
‖P−Ψf (λf )C‖2F , (40)

which can be solved, for instance, with an alternating min-
imization approach, without guarantee of convergence to a
global optimum.

An alternative subspace method can be devised when L≥K.
We then consider the economy-size SVD of matrix P, i.e.,
P=UΣZ�, where U ∈ R

N×K and Z ∈ R
L×K are the left

and right singular vectors, respectively, and Σ ∈ R
K×K is the

diagonal matrix of singular values. Since both Ψf (λf ) and U
represent a basis for the column space of P, there exists a non-
singular matrix Q ∈ R

K×K such that Ψf =UQ. The subspace
fitting [13] problem reads then as:

min
λf ,Q

1

2
‖Ψf (λf )−UQ‖2F , (41)

which, upon substituting the pseudoinverse solution Q=
U†Ψf into (41), can be casted as the following equivalent
problem:

min
λf

{f(λf ) :=
1

2
‖ΠΨf (λf )‖2F }, (42)

with Π := IN −UU† the orthogonal projection matrix onto
the orthogonal complement of U. In other words, problem (42)
aims to find a vector λf such that the Vandermonde matrix
Ψf (λf ) is orthogonal to the subspace spanned by the orthog-
onal complement of U. Notice that we require L≥K, so that
the matrix P can have rank K revealing the subspace of the
Vandermonde matrix Ψf (λf ) we want to estimate.

Problem (41) is not convex in λf due to the polynomial de-
gree K (unless K = 2, i.e., the model in (39) is linear in λf ). To
tackle the non-convexity of the problem, we resort to sequential
convex programming (SCP) [14], a local optimization method
that leverages convex optimization, where the non-convex por-
tion of the problem is modeled by convex functions that are
(at least locally) accurate. As in any non-convex problem, the
initial starting point plays a big role; thus, if no prior informa-
tion on the variable is given, a multi-starting point approach is
advisable. The SCP formulation can be found in [24] and in the
Supplemental Material. Overall, the computational complexity
is dominated by computing the left singular vectors of matrix P,
tantamount to a cost of O(NL2).

Remark 4: The nature of the problem and the formulation
(42) share similarities with the MUSIC algorithm [26]. There,
however, the problem considers Ψ�

f instead of Ψf and N
independent 1-dimensional searches can be carried out to find
λf (which would be contained in the second row of Ψ�).
In our case, each column contains all the N variables and an
N -dimensional search is needed, rendering a “scanning” of the
vector variable λf infeasible, unless N is very small.

D. Ambiguities

Notice that (39) is not free of model ambiguities, since differ-
ent pairs (λf ,C) may lead to the same observation matrix P.
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Because we assume that P has rank K, if Ψf and C are the true
matrix factors satisfying (39), then for any K ×K invertible
matrix T, it holds:

P=ΨfTT−1C=Ψ′
fC

′. (43)

However, Ψ′
f needs to be Vandermonde in order for (43) to re-

spect the model structure in (39). As we proved in [24, Theorem
2], matrix T needs in general to be a Pascal matrix.

The consequence of such theorem is that without any added
constraint on Ψf or C in (39), every shifted and scaled ver-
sion of the groundtruth parameter λf (for an appropriate C),
perfectly fits the observation model and is a valid solution for
(42). This is satisfactory for our purpose: a shift and scale of the
graph eigenvalues maintains the same topological structure of
the original graph (removing the self loops caused by the shift);
we will illustrate this in Section V.

V. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments relying on
the theory outlined in Section IV. Specifically, we first test our
learning algorithm on synthetic data to assess the validity of the
approach and its drawbacks; finally, we use it on real data.

A. Synthetic Data

The goal of this section is to validate the approach outlined in
Section IV, by assuming the knowledge of the dual eigenvalues
λf , which however is not used during the training phase but
only used to compute the performance metrics. We have the
following generation and learning phases (also depicted in the
Supplemental Material for visual clarity):

1) Generation.
(a) Dual eigenvalues λf : in order to have control over

the spacing between different eigenvalues, we generate
them with the following strategy. First, we uniformly
sample the eigenvalue domain leading to the grid u :=
[u0, u1, . . . , uN−1]

�, where the distance among two
samples P := un − un−1 is constant for all n. Then, the
actual eigenvalues λf are generated as λf,n = un + jn
where jn ∼ T N (0, (δP/2)2), with T N (0, σ2

j ) a Gaus-
sian distribution with zero mean and standard deviation
σj , yet truncated at σj . The (jitter) parameter δ > 0
specifies the randomness of the eigenvalues. If δ < 1
the eigenvalues maintain the same ranking order as the
uniform samples, while if δ ≥ 1 they can overlap to the
adjacent ones. Notice that in this synthetic setup we are
not interested in creating a “meaningful” dual graph, but
rather assessing whether our algorithmic routine is able
to identify such dual graph.

(b) Filter taps P: we generate the primal node-varying
filter taps P ∈ R

N×L as P=ΨfC, with Ψf the
Vandermonde matrix associated to λf generated in step
(a), and C ∈ C

K×L a random expansion coefficient ma-
trix [cf. (9)] generated as vec(C)∼N (0, IKL). To in-
crease the curvature of the considered polynomials (thus
avoiding to have almost flat curves in the domain of

interest), we perform an extra weighting scheme by in-
creasing the weight of higher order monomials; that is,
we multiply the matrix C with a mask matrix as C←
[1, 21, . . . ,K1]� �C, where the ith column of the mask
matrix is the constant vector containing in all its entries
the value i.

(c) Input-Output Data X,Y: we generate T input graph
signals xt ∼N (0, IN ) and stack them in the matrix
X= [x1, . . . ,xT ]. Then, we filter X with the type-I
NV-GF HI(P,S) to obtain T new (possibly noisy)
graph signals Y = [y1, . . . ,yT ] =HI(P,S)X+
[n1, . . . ,nT ], with nt ∼N (0, σ2IN ) the measurement
noise.

2) Learning. The goal in this phase is to recover the original
λf of step 1(a) from the input-output data {X,Y}. This is
achieved with the algorithmic routine introduced in Section
IV-A and Section IV-C; namely:

(a) Filter Taps P̃: we find an estimate P̃ of the filter taps
P through (33);

(b) Dual eigenvalues λ̃f : we find an estimate λ̃f of λf

with the procedure outlined in Section IV-C, namely,
casting the problem as a subspace fitting problem and
solving it with SCP. During this step, we also esti-
mate the coefficient matrix C of the expansion model
leading to C̃.

Metrics. To assess the validity of the proposed approach, we
consider two different performance metrics, one relative to the
estimation of the filter coefficients P and one relative to the
estimation of the dual eigenvalues λf . For the filter coefficients,
we consider the normalized squared error (NSE), computed as:

NSE(P̃,P) =
‖P̃−P‖2F

‖P‖2F
. (44)

For the dual eigenvalues, recall that we can recover the solution
of problem (42) up to a shift and scaling of the true positions
[cf. Section IV-D]. Thus, as performance metric, we use the
normalized error modulo Pascal (PNE), defined as:

PNE(λ̃f ,λf ) = min
t0,t1

‖λf − (t01 + t1λ̃f )‖22
‖λf‖22

(45)

which measures how far the true eigenvalues are from a linear
transformation of the recovered estimates. Clearly (45) is zero
whenever λ̃f is a solution for (42).

Results. We generate our primal graph S as a random sen-
sor network with N = 40 nodes, using the CVX toolbox [27].
In this setup, each node is randomly sampled from the unit
square, and a 10-nearest neighbor graph is created with edge
weights determined by a Gaussian kernel. Additionally, we set
u0 =−1 and uN−1 =+1 [cf. 1(a)]. We run the algorithm for
different parameter configurations, specifically: the order of the
filter in the primal domain L ∈ {2, . . . , 9}, which is also the
polynomial degree of the primal eigenvalues (cf. (7)); the order
of the filter in the dual domain K ∈ {2, . . . , 9}, with K ≤ L,
which is also the polynomial degree of the dual eigenvalues; the
jitter parameter δ ∈ {1, 10, 100, 1000}; and the noise standard
deviation σ ∈ {0, 0.5, 5, 50}. The number of input (and output)
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Fig. 3. PNE (in dB) as a function of δ with σ = 0 (left) and σ = 50 (center), for different values of L,K; and PNE (in dB) as a function of σ for δ = 1000
(right).

graph signals is set to T = 3000. Due to the non-convexity of
the cost function (42), we run the algorithm with 5 different
starting points λ0

f , one of which is the uniform grid u; this,
together with the jitter parameter δ [cf. Generation (a)] helps us
also understanding the “magnitude” of the objective function’s
non-convex landscape: if the objective function is highly non-
convex, even an initial starting point λ0

f close to the real λf

(meaning a small δ) might incur a very high objective value and
likely end-up in a local minimum. In such a case, a random start-
ing point might be beneficial. The magnitude of non convexity
of the objective function increases by increasing K. Finally,
we compute the performance metrics relative to the solution
associated to the different starting points.

In Fig. 3 we show the PNE (in dB) as a function of δ for
different L=K3, in the noiseless case (left figure) and noisy
case (middle figure); in addition, we show (right) how the PNE
varies as a function of the noise σ for fixed δ = 1000. We
can make the following observations: as expected, for low-
degree polynomials, the algorithm performs better, since the
non-convexity of the problem increases with increasing polyno-
mial order. This is visible from the left and middle figure: for a
small perturbation δ, also high orders yield a good performance;
which degrades by increasing δ. However, when noise is present
in the observations, a random initial starting points (i.e. higher
δ) seems to be beneficial. Moreover, noise in the measurement
(right figure) has obviously a negative impact in the learning
performance, which however enables us to reconstruct the graph
as we can see next.

To visually assess the algorithm’s performance, in Fig. 4
we show, for the noiseless case, the ambiguity-corrected esti-
mated eigenvalues λ̃

c

f (red crosses), together with the original
eigenvalues λf (green circles) and the initial starting point of
the algorithm λ0

f (blue diamonds) for L=K = 3 (top row)
and L=K = 9 (bottom row), both with δ = 1× 104, which
corresponds to a completely random configuration of the eigen-
values. The ambiguity correction is explicitly performed as:

λ̃
c

f = [1 λ̃f ][1 λ̃f ]
†λf , (46)

3For all the plots we set L=K for visualization clarity. To reproduce the
experiments with different parameter settings, we make available the source
code: https://github.com/albertonat/genConv

which is the closest point to λf up to a linear transformation
dictated by the optimal t0 and t1 minimizing (45).

In the L=K = 3 case, the NSE is NSE(P̃,P) = 2.41×
10−29 and the PNE is PNE(λ̃f ,λf ) = 3.34× 10−25; in the
L=K = 9 case the NSE is NSE(P̃,P) = 9.20× 10−23 and
the PNE is PNE(λ̃f ,λf ) = 1.03× 10−1. In both cases the
inferred dual GSO, shown in the middle column of Fig. 4,
correctly reveals the structure of the true dual GSOSf , shown in
the right column; this even though the eigenvalue reconstruction
(left column) is perfect only in the first case. In other words,
even with an inexact (but not random) reconstruction of the
eigenvalues, the algorithm seems to adequately capture the
connections present in the true GSO Sf . The reason behind the
difference in error estimation among the two cases is mainly
due to the high polynomial degree K, which on the analytic
side renders the objective function (42) highly non-convex (and
hence easier for the algorithm to end up in a local minimum);
on the algebraic side it increases the numerical instability of
performing the pseudoinverse of the matrix A required for a
correct estimation of the filter parameter matrix P. Hence, even
a perfect dual graph frequency estimation step fitting perfectly
the estimated P, might fail to perfectly reconstruct the true
eigenvalues λf . For δ = 10, the algorithm improves the PNE
by two orders of magnitude and the inferred eigenvalues λ̃f

nearly overlap the true ones λf .
For the noisy scenario, in Fig. 5 we show the results obtained

by considering the two cases described above (i.e. L=K = 3
and L=K = 9 with δ = 1000), but with a measurement noise
having σ = 50. In this case the NSE is 8.88× 10−6 and the PNE
is 8.72× 10−5, while for the latter the NSE is 9.74× 10−16 and
the PNE is 2.00× 10−1. The eigenvalues and graph reconstruc-
tion is successful despite the fact that the reconstruction of the
filter taps is not perfect as in the noiseless case, which gives
us hope for the robustness of the algorithm when measuring
noisy data.

Overall we can state that from an algorithmic point of view,
the algorithm is robust in presence of a considerable eigenvalue
perturbation δ and noise σ, especially for low polynomial de-
gree. In instances where the polynomial degree is high, the in-
herent non-convex nature of the problem introduces substantial
complexity into the optimization process, which however leads
to a dual graph resembling the original one. In addition, we

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 09:10:28 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/albertonat/genConv


3434 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

0 5 10 15 20 25 30 35 40

Index

-25

-20

-15

-10

-5

0

5

10

15

20

V
al

ue

initial
true
estimated (C)

Dual Inferred (Corrected)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-8

-6

-4

-2

0

2

4

6

Dual

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-8

-6

-4

-2

0

2

4

6

0 5 10 15 20 25 30 35 40

Index

-30

-20

-10

0

10

20

30

V
al

ue

initial
true
estimated (C)

Dual Inferred (Corrected)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
-8

-6

-4

-2

0

2

4

Dual

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

-8

-6

-4

-2

0

2

4

6

Fig. 4. (Noiseless case σ = 0) Results for L=K = 3 (top row) and L=K = 9 (bottom row) with δ = 1× 104. (Left Column) True eigenvalues (green
circles), inferred eigenvalues (red crosses) and initial starting point of the algorithm (blue diamonds); (Center Column) Inferred dual GSO with ambiguity-
correction; (Right Column) True dual GSO Sf .
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Fig. 6. (Left): primal graph of the road network; (Right) dual graph of the
road network, where each node represents a graph frequency. Red (blue) nodes
are the standard low (high) frequencies.

observe that when the NSE is high, meaning that P has not been
properly reconstructed, the PNE is also usually high, which is
somehow expected since we rely on P to estimate the dual
eigenvalues λf .

B. Real Data

In this section we exploit the theory developed in
Section III and Section IV to infer a dual graph from
real data. To evaluate the stationarity level of the given data
Y for a given GSO S, we use the proxy-measure ρ= ‖diag
(V−1CyV)‖22/‖V−1CyV‖2F , which measures the “diagonal
dominance” of the spectral covariance matrix; a value of 1
indicates that the data are stationary.

As performance metrics we monitor two errors: i) the
NSE(Y,HI(P̃,S)X) for the input-output case [cf. IV-A] or the
NSE(R,HI(P̃,S)Ũ) for the output-only case [cf. IV-B] (recall
the definition of the NSE in (44)); and ii) the “corollary error”
[cf. Corollary 1 in (10)]:

εc =
‖V−1HI(P̃,S)−HII(

˜̂
P,Sf )V

−1‖2F
‖V−1HI(P̃,S)‖2F

(47)

which assesses whether the inferred Sf is a “valid” dual graph
consistent with our theorem, i.e., how much the upper and lower
branches of Fig. 1 diverge from each other. To make things
more clear, the P̃ refers to the estimation of the primal filter

tap matrix P either following (33) or (36a), while ˜̂
P refers to

the estimation of the dual filter tap matrix P̂, which is here

computed as ˜̂
P=Ψ†C̃�, with C̃=Ψf (λ̃f )

†P̃, where λ̃f is
the estimation of the dual eigenvaluesλf solving (42). All in all,
error i) concerns the graph filter estimation, while ii) concerns
the dual graph estimation.

1) Traffic Volume: we consider a subsampled version of
the open dataset in [28] which contains T = 1259 traffic
volume measurements at intervals of 15 minutes at N =
13 sensor locations along two major highways in Northern
Virginia/Washington, D.C.; in addition, the physical (road) net-
work is available, see Fig. 6(left). We denote with S the adja-
cency matrix representing the given road network, and withY ∈
R

N×T the (centered) graph signals corresponding to the traffic
volume measurements. These signals exhibit a non-stationary
behavior captured by ρ= 0.54.

In our experiment, we explore both input-output and output-
only scenarios. In the former scenario, we define the input

matrix X by aligning it with Y, shifting each column two
positions to the left; consequently, the learning task revolves
around forecasting the traffic volume 30 minutes ahead. We
initialize the parameters with L=K = 3 and execute the al-
gorithm. Notice that our data was deliberately not partitioned
into training, validation, and test sets, since our primary focus
is optimizing the fitting of our graph filter to the provided data,
rather than evaluating its forecasting performance.

First, we learn the filter coefficients P for both scenarios,
yielding a NSE equal to 8× 10−2 for both. Subsequently, we
use the inferred P̃ to learn the dual eigenvalues λf by solving
(42). The associated dual GSO Sf =V−1 Diag(λ̃f )V, achiev-
ing a corollary error [cf. (47)] εc = 1× 10−1 for scenario 1
and εc = 3× 10−1 for scenario 2, is shown in Fig. 6(right),
where we only display the 50% biggest edges (in absolute
values) to ease the visualization. We color with blue the first half
of the nodes, representing what are usually considered “high
pass” frequencies, and with red the second half of the nodes,
representing what are usually considered the “low pass” fre-
quencies (remember that S is the adjacency matrix). Adjacent
nodes in the graph are not necessarily among consecutive graph
frequencies, as it is commonly assumed in GSP. This shows that
the frequency ordering that is commonly assumed does not fit
our theory and we might obtain a more expressive way to embed
the different graph frequencies.

2) MNIST Dataset: We consider the MNIST dataset of gray-
scale handwritten digits from 0 to 9, focusing on the digit 54

containing T = 5949 images of size 18× 18. We model each
pixel of the image as a node of the primal graph S and its pixel
intensity as the graph signal value at that node. As a preprocess-
ing step, we remove the mean from each pixel and vectorize the
images, thus obtaining a graph signal matrix Y ∈ R

N×T , with
N = 324. As GSO S, we consider the normalized Laplacian
matrix of the 18× 18 grid graph, for which the 5 exhibits a
non-stationary behavior, since ρ= 0.4.

We assume that each yt is the output of a NV-GF HI(P,S)
when excited with a white input xt ∼N (0, I); our goal is then
to learn the filter taps P and subsequently the dual eigenvalues
λf from the available data Y. In this particular scenario, it is
important to highlight that our access is limited to the output
data Y, since the corresponding noise input X is not available.
Consequently, the sole viable approach becomes the output-
only procedure [cf. Section IV-B]. Nevertheless, to navigate this
limitation and to be also able to use the input-output approach
of Section IV-A, we can employ the ensuing rationale to derive
pairs (xt,yt):

(a) compute the covariance matrix Cy =YY�/T and de-
compose it as Cy =RR�;

(b) filter a white input signal xt to generate a new signal yt

as yt =Rxt.
It follows that the yt vector generated in this way follow the
same distribution of the original Y and still represent the digit
5 (up to a sign ambiguity). This time, however, we have the

4Similar results can be obtained with the other digits, see https://github.
com/albertonat/genConv
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Fig. 7. (Left) Illustration of each filter tap {pl}3l=0, following a row-wise stacking, reshaped to have the same shape of the input image. Increasing l renders
the entries of pl less influential for the construction of the final digit; (Right) Dual Graph of the 5-digit. The label indicates the index of the eigenvalues
λi, and the node color indicates whether it is part of the first half (blue) or the second half (red), commonly associated to the low and high pass bands,
respectively. Notice that the graph is connected but due to the edge thresholding (only for the visualization) it is split in two.

associated input X. We run the proposed algorithm for different
orders L and K, with and without input X.

In Fig. 7(left) we show the inferred filter taps P̃, for L= 4,
corresponding to the solution of problem (35) and yielding a
NSE = 3× 10−2; each filter tap {pl}3l=0 has been reshaped to
have the same size of the input image and stacked in a row-wise
fashion. It is interesting to notice how each pl has a digit-shape
look, with a decreasing pixel intensity for increasing filter tap
order L; this indicates pixel-locality as an important factor for
the creation of the final pixel intensity. Since each (reshaped)
filter tap image in Fig 7 pointwise-multiplies a shifted white
input (noise) image of same size (to be finally aggregated), it is
visible how the most influential filter content gathers around the
digit shape for the digit-formation, and decreases its importance
for higher shifts, meaning that the process is local on the pixel
and there are no long term-influences. The same NSE and
P-profile is obtained with the input-output approach.

Once we have the filter tap matrix P̃, we then learn the
dual eigenvalues λf by solving (42). The associated dual GSO
Sf =V−1 Diag(λ̃f )V, achieving a corollary error [cf. (47)]
εc = 9× 10−2, is shown in Fig. 7(right), where we only display
2% of the most significant edges in absolute values5. The node
label i indicates the index associated to λi. As in the previous
experiment, we color the first half of the nodes (representing
now the “low frequency” eigenvalues) with blue, and the other
half with red. Similar results and conclusions can be made
by following the input-output approach, where we obtain εc =
3× 10−2 and the graph is similarly structured as the one in
Fig. 7 (see Supplementary Material).

Together with the previous experiment, the following obser-
vations can be made:

• The connections between the eigenvalues do not follow
the linear ordering as assumed by the traditional real-line
interpretation (in that case, we would only have red-red

5For a graph with N = 324 nodes there would be more than 50k edges
possible.

and blue-blue connections without interactions); this has
consequences when designing graph filters based solely on
the value of the λi, since now the concept of “bands” needs
also to account for the topology.

• Because the dual graph represents the support of the GFT
signals, we can now inspect which neighborhood is in-
fluential for a particular frequency during a convolution
on Sf ; this was not possible with the standard real-line
interpretation, as the convolution operation was a simple
pointwise multiplication.

All in all, these results confirm the commutative nature of the
two branches of Fig. 1, thus rendering the dual convolution a
preferred approach when K <L, or when Sf and/or the GFT
signals exhibit sparsity, in addition to delivering an elegant
theoretical framework.

VI. CONCLUSION

In this work we proposed a convolution theorem which
extends the classical convolution theorem in (graph) signal
processing and the one related to time-varying filters. More
precisely, we illustrate how a convolution in the primal graph
domain can be redefined as a distinct convolution in the dual
graph (frequency) domain, given a suitable filter parametriza-
tion. After illustrating the implications of such a theorem in
terms of non-stationarity of signals, and generative models
thereof, we devise an algorithmic approach based on subspace
fitting and non-convex programming techniques to learn the
dual graph from data when this is not a priori known. We
evaluated the proposed theory and algorithms on synthetic data,
as well as on real data.

While our current theoretical framework holds promise for
practical applications in the future, there are notable challenges
that merit further exploration. A significant gap lies in the
absence of a one-shot procedure to construct the dual GSO
directly from a primal GSO, along with potential graph sig-
nals associated with it. This limitation curtails the broader
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applicability of the proposed theoretical insights. Nonetheless,
multiple extensions of this work are possible. From an algebraic
point of view, an interesting line of research would involve
exploring the connections between Vandermonde and Hankel
matrices, as well as with Krylov subspaces, potentially unveil-
ing new algorithmic solutions to learn the dual eigenvalues.
From a modeling point of view, an interesting extension of
this work would include the node-varying graph filter coef-
ficients also to be time-varying; holding promise for utiliza-
tion in graph autoregressive models. In such cases, leverag-
ing the basis expansion model technique across the temporal
dimension becomes a potential avenue for further investiga-
tion. From an optimization point of view, the use of orthog-
onal polynomials might alleviate the ill-conditioning of the
Vandermonde matrix.

Our hope is that in the coming years, further exploration and
refinement of this research direction will reveal new insights
and methodologies to process signals defined on graphs in a
way previously unfeasible.

REFERENCES

[1] A. Natali and G. Leus, “A general convolution theorem for graph data,”
in Proc. 56th Asilomar Conf. Signals, Syst., Comput., Piscataway, NJ,
USA: IEEE Press, 2022, pp. 48–52.

[2] A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-time signal
processing, vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

[3] H. Lütkepohl, Introduction to Multiple Time Series Analysis. Berlin,
Heidelberg: Springer Science & Business Media, 2013.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[5] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” The Handbook of Brain Theory and Neural Networks.
Cambridge, USA: MIT Press, 1998, pp. 255–258.

[6] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98,
Mar. 2013.

[7] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[8] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard, “Dis-
tributed signal processing via Chebyshev polynomial approximation,”
IEEE Trans. Signal Inf. Process. Over Netw., vol. 4, no. 4, pp. 736–751,
Dec. 2018.

[9] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph filters for
signal processing and machine learning on graphs,” IEEE Trans. Signal
Process., early access, Jan. 10, 2024, doi: 10.1109/TSP.2024.3349788.

[10] D. Wei and Z. Yan, “Generalized sampling of graph signals with the
prior information based on graph fractional Fourier transform,” Signal
Process., vol. 214, 2024, Art. no. 109263.

[11] G. Leus, S. Segarra, A. Ribeiro, and A. G. Marques, “The dual
graph shift operator: Identifying the support of the frequency domain,”
J. Fourier Anal. Appl., vol. 27, no. 3, pp. 1–20, 2021.

[12] J. Shi and J. M. Moura, “Graph signal processing: Dualizing GSP
sampling in the vertex and spectral domains,” IEEE Trans. Signal
Process., vol. 70, pp. 2883–2898, 2022.

[13] M. Viberg and B. Ottersten, “Sensor array processing based on subspace
fitting,” IEEE Trans. Signal Process., vol. 39, no. 5, pp. 1110–1121,
May 1991.

[14] S. Boyd, Sequential Convex Programming, in Lecture Notes. Stanford,
CA, USA: Stanford Univ., 2008.

[15] N. Saito, “How can we naturally order and organize graph Laplacian
eigenvectors?” in Proc. IEEE Statist. Signal Process. Workshop (SSP),
Piscataway, NJ, USA: IEEE Press, 2018, pp. 483–487.

[16] A. Cloninger, H. Li, and N. Saito, “Natural graph wavelet packet
dictionaries,” J. Fourier Anal. Appl., vol. 27, no. 3, pp. 1–33, 2021.

[17] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65,
no. 22, pp. 5911–5926, Nov. 2017.

[18] N. Perraudin and P. Vandergheynst, “Stationary signal processing on
graphs,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477,
Jul. 2017.

[19] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Identifying
the topology of undirected networks from diffused non-stationary graph
signals,” IEEE Open J. Signal Process., vol. 2, pp. 171–189, 2021.

[20] A. Sandryhaila and J. M. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[21] G. B. Giannakis and C. Tepedelenlioglu, “Basis expansion models
and diversity techniques for blind identification and equalization of
time-varying channels,” Proc. IEEE, vol. 86, no. 10, pp. 1969–1986,
Oct. 1998.

[22] Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, “Pilot-assisted time-
varying channel estimation for OFDM systems,” IEEE Trans. Signal
Process., vol. 55, no. 5, pp. 2226–2238, May 2007.

[23] A. Natali, M. Coutino, and G. Leus, “Topology-aware joint graph filter
and edge weight identification for network processes,” in Proc. IEEE
30th Int. Workshop Mach. Learn. Signal Process. (MLSP), Piscataway,
NJ, USA: IEEE Press, 2020.

[24] A. Natali and G. Leus, “Blind polynomial regression,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Piscataway, NJ,
USA: IEEE Press, 2023, pp. 1–5.

[25] B. F. Green, “The orthogonal approximation of an oblique structure in
factor analysis,” Psychometrika, vol. 17, no. 4, pp. 429–440, 1952.

[26] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[27] M. Grant and S. Boyd, “CVX: Matlab software for disciplined con-
vex programming, version 2.1,” CVX. [Online]. Available: https://cvxr.
com/cvx

[28] L. Zhao, O. Gkountouna, and D. Pfoser, “Spatial auto-regressive depen-
dency interpretable learning based on spatial topological constraints,”
ACM Trans. Spatial Algorithms Syst., vol. 5, no. 3, pp. 1–28, 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 09:10:28 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TSP.2024.3349788
https://cvxr.com/cvx
https://cvxr.com/cvx


<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <>
		/NOR <>
		/DEU <>
		/CZE <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <>
		/JPN <>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		
		/RUM <>
		
		/PTB <>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <>
		/POL <>
		/HEB <>
		/SVE <>
		
		/ESP <>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


