
MSc thesis in Geomatics

Floor count from street view
imagery using learning-based
façade parsing

Daniël James Dobson
2023

MSc thesis in Geomatics

Floor count from street view imagery using
learning-based façade parsing

Daniël James Dobson

January 2023

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Daniël James Dobson: Floor count from street view imagery using learning-based façade parsing
(2023)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Cover image was created with the assistance of DALL·E 2

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Dr. Ken Arroyo Ohori
Nail Ibrahimli

Co-reader: Dr. Hugo Ledoux

http://creativecommons.org/licenses/by/4.0/

Abstract

Street view imagery (SVI) is one of the largest (growing) resources in urban analytics. A
global close-up of the urban environment, if you will, which is rich in (untapped) infor-
mation such as floor count. Floor count is useful in many applications, from improving
energy consumption calculations to creation of 3D city models without elevation data. So
far, efforts to extract floor count from SVI are mainly approached as a classification problem
with the use of convolutional neural networks (CNNs). Limitations of this approach include
the need of large (manually annotated) datasets, and uncertainty how these models learn
to count storeys. Therefore, we aim to develop a method that can be trained on available
datasets and determine floor count in a more explainable manner.

In order to make the floor count determination method more transparent, we mimic the
row-wise counting of storeys as humans do: by vertically parsing a column of windows
(and occasional door). Façade parsing is a common computer vision task that we can solve
with deep learning. In this work, we employ the Mask R-CNN framework, that is trained
on publicly available datasets, for the detection and segmentation of windows and doors.
Then, the vertical distribution of detected/segmented windows and doors is estimated by
computing the kernel density estimation function. The floor count is extracted by finding
the number of maxima in the function, as the maxima represent the dense areas of win-
dows and doors on a horizontal axis (i.e. storeys). To improve the results, an automatic
image rectification is added as pre-processing step that enforces the regularity and repeti-
tive occurrence of windows and doors. The full pipeline thus consists of three stages: 1)
automatic image rectification, 2) window and door detection/segmentation with Mask R-
CNN, 3) floor count estimation via maxima finding on the kernel density estimation (KDE)
function. In addition, a small “wild” dataset was created that contains a higher variability in
floor count, image quality and architectural styles, which better reflect real world SVI than
existing façade datasets.

The floor count performance of the full pipeline was evaluated on the Amsterdam Facade
(subset), ECP, eTRIMS and “wild SVI” datasets. Since floor count annotations were miss-
ing, these are manually added. For detection-based data, the best results are an accuracy
of 83% and a mean absolute error (MAE) of 0.17. For normalised segmentation-based data,
the best results are an accuracy of 80% and a MAE of 0.20. Considering the method is still
at its infancy, the results are promising. With further improvements in the pipeline and
addition of automatic façade acquisition, the approach can contribute in large scale extrac-
tion of floor count information from SVI. To encourage further development, the pipeline
prototype, dataset and floor count annotations are open source and will be released on
https://github.com/Dobberzoon/Facade2Floorcount.

v

https://github.com/Dobberzoon/Facade2Floorcount

Acknowledgements

My first words go to my mom, as this opportunity would not have existed without her. You
have my eternal gratitude, and gave me strength to keep believing in myself. Lena, my love,
thank you for giving your relentless support through it all. Floris, who kept climbing with
me, even when I was “niet te genieten”.

Dear Ken, I was lucky to have you as my first mentor. You gave me guidance that I needed
with the most spot-on feedback I could wish for, but foremost, the trust that I could do it.
Thank you, sincerely. Nail, you were always there for me, bouncing ideas back and forth in
our meetings. Also ensuring me, that I was not losing my mind, just doing research. Hugo,
thank you for co-reading, helping me with errors big and small, and your humor.

vii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 2
1.3. Scope . 3
1.4. Thesis Outline . 3

2. Theoretical Background 5
2.1. Regularity of façade elements . 5
2.2. Defining floor count . 7
2.3. Street View Imagery . 9
2.4. Image Rectification . 12
2.5. Deep learning . 14

2.5.1. Mask R-CNN . 17
2.6. Façade parsing . 22

2.6.1. Learning-based façade parsing . 23
2.7. Vertical clustering . 23

2.7.1. HDBSCAN . 24
2.7.2. Density estimation functions . 24
2.7.3. Floor count evaluation . 27

3. Related Work 29
3.1. Floor count from elevation and attribute data . 29
3.2. Floor count from SVI as classification problem 30
3.3. Floor line structures from SVI . 33

4. Experimental design and development 37
4.1. Data preparation . 38

4.1.1. Floor count annotation . 38
4.1.2. Image rectification . 39

4.2. Façade parsing . 40
4.2.1. DeepFacade reproduction . 40
4.2.2. Mask R-CNN training and optimisation 40

4.3. Floor count estimation . 42
4.3.1. FloorLevel-Net . 42
4.3.2. Bivariate approach . 43
4.3.3. Univariate approach . 44
4.3.4. Maxima finding . 46

5. Implementation and Experiments 49
5.1. Software and tools . 49
5.2. Datasets . 49
5.3. Mask R-CNN training and optimisation experiments 52

ix

Contents

6. Results and Analysis 55
6.1. Image rectification experiments . 55

6.1.1. VP estimation . 55
6.1.2. RANSAC and homography transform 55

6.2. Façade parsing results . 56
6.2.1. Detection and segmentation evaluation 57

6.3. Floor count estimation experiments . 59
6.3.1. FloorLevel-Net evaluation . 59
6.3.2. Bivariate vertical clustering evaluation 59
6.3.3. Univariate vertical clustering evaluation 60
6.3.4. Floor count performance evaluation . 61
6.3.5. Failure cases . 64

7. Conclusions 67
7.1. Research overview . 67
7.2. Discussion . 69

7.2.1. Contributions . 69
7.2.2. Limitations . 69
7.2.3. Recommendation for future work . 70

A. Appendix 73
A.1. Experimental design and development . 73

x

List of Figures

1.1. Increasing use of SVI in urban analytics. 1
1.2. Façade parsing example . 2

2.1. Discovery of structural regularity in 3D geometry 5
2.2. Image-based procedural modeling of façades . 6
2.3. A weak structure model for façades . 6
2.4. Symmetry-aware façade parsing with occlusions. 7
2.5. A storey example in IFC model . 7
2.6. Floor count definition and street view limitation 8
2.7. Floor count simplification . 9
2.8. Distortion in street view image, caused by a raindrop 11
2.9. Stitching error and temporal difference . 11
2.10. Automatic rectification of a stereo pair from a façade image 13
2.11. Automatic rectification on singular façade images 13
2.12. Image rectification by vertical and horizontal perspective transformation . . . 14
2.13. Different types of computer vision tasks . 15
2.14. Interpolated precision-recall curve . 17
2.15. Overview of COCO’s evaluation metrics . 17
2.16. A schematic overview of a typical CNN architecture. 18
2.17. The receptive field of one neuron . 18
2.18. Intuitive explanation of feature learning . 18
2.19. R-CNN architecture . 19
2.20. Fast R-CNN architecture . 20
2.21. Faster R-CNN . 20
2.22. Mask R-CNN architecture . 21
2.23. Simplified visualisation of Multi Task Network Cascades 22
2.24. DeepFacade . 22
2.25. Façade parsing results of DeepWindows . 23
2.26. DBSCAN . 24
2.27. Bandwidth selection . 25
2.28. Comparison of Silverman’s rule of thumb and ISJ 26

3.1. CNN-based multiclassifitation approach to floor count determination 30
3.2. Confusion matrix of floor count determination performance ResNet-34 31
3.3. Architecture of TREncNet . 32
3.4. Confusion matrix of floor count determination performance TREncNet 32
3.5. FLN architecture . 33
3.6. Results of floor-level line detection with FloorLevel-Net 34
3.7. Populating object center horizontally with three equally spaced points 35
3.8. Floor segmentation with façade parsing, multi-RANSAC and object center

population . 35

4.1. A compact schematic overview of the proposed three-stage method 37

xi

List of Figures

4.2. Flowchart that details the development steps within the data preparation stage. 38
4.3. Rectification enforcing regularity example . 39
4.4. Flowchart that details the development steps within the façade parsing stage. 40
4.5. Flowchart that details the development steps within the floor count estimation

stage. 42
4.6. HDBSCAN implementation . 43
4.7. Point selection explanation . 44
4.8. Point selection comparison . 45
4.9. Bandwidth and kernel optimisation . 45
4.10. Finding maxima in KDE . 47

5.1. The car of the City of Amsterdam that is used to capture SVI from Amsterdam 50
5.2. Class imbalances in Amsterdam Facade dataset 50
5.3. Examples wild SVI dataset . 52
5.4. The full learning curve is plotted in manual hyperparameter tuning, with a

LR of 0.0001 for 50 epochs . 53
5.5. Sweep configuration chart that gives an overview of the hyperparameters

searched . 54

6.1. Image rectification results by VP estimation. 55
6.2. Image rectification results by direct homography transform. 56
6.3. Large distortion due to image rectification of large angle perspective view image 56
6.4. Mask R-CNN façade parsing examples . 57
6.5. Results of the FloorLevel-Net reproduction . 59
6.6. Results of the bivariate approach . 60
6.7. Results of the univariate approach . 61
6.8. The effect of automatic hyperparameter tuning, shown in a confusion matrix . 63
6.9. Graph visualisations of best results . 64
6.10. Effect of normalisation of segmentation-based data on maxima finding 64
6.11. Undershooting problem of floor count estimation 65

A.1. The complete and detailed overview of the proposed three-staged method and
developments steps . 74

xii

List of Tables

2.1. Mask R-CNN performance with different backbones 21

3.1. Performance floor count determination comparison of machine learning (ML)
approach and geometric approach . 29

3.2. A comparison of the image-based floor count classification works 33

5.1. Performance comparison of façade parsing model, manual versus automatic
hyperparameter tuning . 54

5.2. Comparison of the ResNet-50 FPN and ResNet-101 FPN backbone performance 54

6.1. Detection and segmentation performance on classes in terms of AP 57
6.2. Detection and segmentation performance across different detection sizes and

thresholds . 58
6.3. Floor count determination performance from the manually optimized façade

parsing model . 62
6.4. Floor count determination performance from the automatically optimized

façade parsing model . 62

xiii

Acronyms

GIS geographical information system . 1

SVI street view imagery . 1

GSV Google Street View . 1

OSM Open Street Map . 8

OGC Open Geospatial Consortium . 8

VSVI volunteered street view imagery . 9

VGI volunteered geographic information . 9

API application programming interface . 10

VP vanishing point . 13

mAP mean average precision . 15

AP average precision . 16

IoU intersection over union . 16

CNN convolutional neural network . 17

COCO Common Objects in Context . 17

ANN artificial neural network . 18

R-CNN region-based CNN . 19

RoIs regions of interest . 19

RoI region of interest . 19

FC fully connected . 19

FCN fully convolutional network . 20

MTL multi task learning . 21

KDE kernel density estimation . 24

FFTKDE fast fourier transform kernel density estimation 25

DBSCAN density-based spatial clustering of applications with noise 24

HDBSCAN hierarchical density-based spatial clustering of applications with noise . . . 24

FFT fast fourier transform . 25

ISJ improved Sheather Jones . 26

AMISE asymptotic mean integrated square error . 26

DEM digital elevation model . 29

MAE mean absolute error . 27

ME mean error . 27

FLN FloorLevel-Net . 33

LR learning rate . 41

xv

1. Introduction

1.1. Motivation

Floor count information is important to geographical information systems (GISs) and urban
analytics in many applications, as it improves how we model the built environment. For
instance, having the information on the number of storeys (floors, levels) allows for the gen-
eration of a 3D city model from building footprints through extrusion [Biljecki, 2017]. Thus,
extrusion is possible even when lacking elevation data, as is still the case for many areas in
both developing and developed countries [Hartmann et al., 2016]. It can also help us con-
centrate our sustainability efforts to where it is needed most, as floor count improves energy
modeling by enabling the computation of volume per building layer [private communica-
tion, Swinkels, 2023].

Even though floor count has potential to sharpen our insights on the entire built environ-
ment, cadastral datasets are often missing this crucial information. For example, we found
that the cadastre of the municipality of Amsterdam is missing floor count information for
87.3% of its 196,881 buildings. Other problems raised by the Datateam of the municipality
of Amsterdam include missing records on older buildings and unreliable acquisition on re-
cent buildings [interview, Goes, 2022]. Recent work by Roy et al. [2022] shows it is possible
to infer missing floor count information with a machine learning model that is trained on
cadastral data. It achieved an accuracy of 94.50 % on buildings ≤ 5 storeys, and 52.3 %
for buildings with > 5 storeys. It was trained on attribute data from 294,746 buildings, of
which only 22,328 are open-source. This limits the reproducibility, thus we investigate the
feasibility to infer the data from a different data source that has open-source or low cost
alternatives: street view imagery (SVI).

Figure 1.1.: The use of Street View Imagery in urban analytics and GIS research has steadily increased
since the introduction of Google Street View in 2007. Adopted from [Biljecki and Ito, 2021].

Since the introduction of Google Street View (GSV) in 2007 ([Campkin and Ross, 2016;
Gilge, 2016]), SVI grew to cover half of the world’s population by 2017 ([Goel et al., 2018]).

1

1. Introduction

At this pace, we will have global full global coverage sooner, rather than later. In parallel,
the use of SVI in studies related to the built environment increased significantly (see Fig-
ure 1.1). Besides the growth of SVI coverage, increasing computing power, automation and
advances in computer vision with deep learning have contributed to the rise of SVI in urban
studies ([Biljecki and Ito, 2021]). What makes SVI interesting for the extraction of floor count
(urban analyses), is that SVI can be captured regularly, cost effectively, and with unmatched
perspective and level of detail on the urban environment. It can be regarded as a large scale
close-up of our civilisation.

A common problem in computer vision that is approached with deep learning is façade
parsing; the semantic identification of façade elements, e.g. windows, doors, balconies.
In this work, we aim to extract floor count from SVI with façade parsing, as we recognise
that the regularity in façade design implicitly contains the floor count information. In other
words, we aim to count the number of storeys by using the repetitive occurrence of windows
and doors.

Figure 1.2.: Façade parsing example: identification and segmentation of windows and doors. The aim
in this thesis is to count the number of storeys from the repetitive occurrence of windows and doors.

1.2. Objectives

Using SVI in urban analytics and GIS research becomes increasingly more interesting as its
coverage grows. Since we can benefit from floor count information, even where no eleva-
tion data is available, and given that advances in CV with deep learning (e.g. learning-based
façade parsing) could potentially uncover this information the main objective of this thesis is:

2

1.3. Scope

How to determine floor count in an image with the use of learning-based façade parsing?

A method has been developed that uses learning-based façade parsing to automatically in-
fer floor count from SVI. The development process revealed several obstacles in the use of SVI
and application of learning-based façade parsing, which raised the following subquestions:

• How can we use deep learning for façade parsing?

• How should façade parsing outputs be processed for floor count determination?

• How can we vertically group façade parsing outputs, such that the groups represent
countable storeys?

• What pre- and/or post-processing steps do we need to improve floor count determi-
nation performance?

1.3. Scope

This thesis focuses on the method to automatically determine the floor count from an image,
by the application of learning-based façade parsing and using its detection and segmentation
outputs. This includes data-engineering of the input and output data for the deep learning
model, employing, training and testing of different deep learning models, and various clus-
tering related techniques.

Although some data from current SVI platforms will be acquired, this will be done manu-
ally for testing purposes. This thesis will not explore the automated method to acquire and
extract individual building façades from a SVI database or platform, although observations
from other work regarding the use of APIs will be noted. Also, building façades from SVI
are originally panoramic omni-directional images. In order to extract single building façades
from panoramic omni-directional images, equirectangular projection has to be performed,
but is also not covered in this work. Lastly, the outputs of the floor count determination are
not (automatically) stored in a subsequent or corresponding GIS dataset (e.g. footprint data).

1.4. Thesis Outline

In Chapter 2, the theoretical background describes the underlying principles for how regu-
larity in façades can help determine floor count, define what floor count is and how image
rectification enforces regularity. Then, deep learning concepts and learning-based façade
parsing are introduced. Finally, the vertical clustering methods used for extracting floor
count from façade parsing results are described. This will build the theoretical framework
that bounds the methods used in this thesis and provides the concepts needed to understand
the following chapters. Chapter 3 discusses related work in existing floor count determina-
tion research, and delineates what the limitations are that the proposed method overcomes.
Then, the proposed method is described in detail in Chapter 4. Starting with an overview,
the sections follow the order of the method’s pipeline. The chapter is followed by the im-
plementation details of the methodology in Chapter 5, describing datasets, programming
details and how the experiments are conducted. The results of experiments are assessed
and analysed in Chapter 6, providing a closer look into the learning-based façade parsing
method, but mainly how the floor count determination performs. In addition, results and
discussion are provided on methods that failed as well. Finally, the findings are discussed,
main contributions are described, along with the limitations and future work in Chapter 7.

3

2. Theoretical Background

2.1. Regularity of façade elements

The phenomenon of symmetry in digital data is researched and used extensively in the
fields of computer vision and computer graphics for over half a century [Liu et al., 2010]. A
good overview of symmetry and (structural) façade analysis is given by Zhang et al. [2013].
Symmetry in façade designs is used extensively [Jiang et al., 2016], and the vertical symmetry
is found to be more dominant compared to horizontal symmetry [Aydin and Mirzaei, 2020].
Since storeys are repeated vertical structures in buildings and their façades, a few examples
are highlighted to show how symmetry and regularity are useful in the detection of storeys.

Symmetry detection is used by Pauly et al. [2008] to discover regular structures in point-
based 3D models without prior knowledge of the size, shape and location of the underlying
elements of the model. In the structure detection step of their pipeline the vertical regularity,
represented by the horizontal lines in the lattice structures, corresponds to the occurrence of
storeys (illustrated in Figure 2.1).

Figure 2.1.: The regularity of symmetry in architecture is used in the work of Pauly et al. [2008] to
detect structure in this point-based model of a building. Albeit incomplete in this example, the vertical
structure elements (horizontal lines in lattice structures) correspond to storeys, indicating regularity in
façades can be used to extract floor count.

The image-based work of Müller et al. [2007] utilised the regularity of façade elements
in façade structure detection, where translational symmetries that govern floors (storeys)
and tiles are expected. The input is a single rectified image, and the output is a shape
grammar rule set that can be used for the procedural modeling of 3D models. Uncovering
the structural information could also be used to count the storeys, as one can observe in

5

2. Theoretical Background

Figure 2.2. However, the structure detection takes several minutes per image, which is not
suitable for the large scale extraction of floor count information.

Figure 2.2.: Müller et al. [2007] used the symmetries that govern floors (storeys) and tiles to detect the
façade structure in a single rectified image. Here, the floor numbers do not indicate the floor count,
but the floor type that is detected. Still, the floor count information is implicitly present.

Tyleček and Šára [2010] assumed structural regularity of (façade) elements in terms of
uniform distribution, alignment, spacing and configuration for the application of window
detection. With a probabilistic approach of the embedded structure in the rectified image,
the classifier knows “where to look”. Especially the uniform distribution and alignment
result in finding a (skeleton) structure that captures the underlying storey structures well,
represented by the horizontal lines as illustrated in Figure 2.3. Given that the weak struc-
ture model still results in a number of horizontal lines that correspond with the number
of storeys, indicates an approximation of the vertical distribution (of façade elements) can
achieve floor count estimation.

(a) (b) (c)

Figure 2.3.: A weak structure model for regular pattern recognition applied to (rectified) façade images
by Tyleček and Šára [2010], for the application of window detection. A byproduct of the method is
capturing of the underlying storey structures, represented by the green horizontal lines. Counting the
horizontal lines corresponds to the counting of the number of storeys.

Cohen et al. [2017] leverages regularity information in a sequential optimization approach,
for the segmentation of rectified façade images. The detection of symmetry improves the
façade parsing results especially in occluded areas, recovering the underlying lattice struc-
ture. As illustrated in Figure 2.4, the vertical elements of the lattice structure correspond

6

2.2. Defining floor count

to the storeys, even when occluded. This indicates the regularity assumption can deliver
robust global structural information, even when data or detections are incomplete.

Figure 2.4.: Symmetry-aware façade parsing with occlusions [Cohen et al., 2017]. The use of regularity
results in a robust understanding of the global structure, even when the façade image is (severely)
occluded.

To summarise, previous work shows recognising symmetry in man-made objects and
assuming regularity helps to recover the repeating structures (e.g. storeys) in façades more
robustly. Although proven effective for façade parsing, this approach can be slow and does
not fully make use of learning from data. Thus, a learning-based approach for façade parsing
is applied in this work instead (described later in Section 2.6.1). The regularity assumption is
still a strong precursor for the detection of the global structure of the façade, so the inverse
of the regularity assumption will be used: we assume that façade parsing will result in
elements (e.g. windows and doors) that occur in a regular manner.

2.2. Defining floor count

Basic definitions A storey is a level of a building, as illustrated in Figure 2.5. The number
of storeys in a building is called the floor count, not to be confused with floor numbering.
Storeys are counted as non-negative integers, and fractions are not allowed. In the Nether-
lands, a building level is included as (full) storey if the space is included as utility space (e.g.
(ground) floor, basement or attic), is accessible to humans and has a net-height of 1.5 m or
higher [Gemeente Amsterdam, 2007].

Figure 2.5.: A storey is a building level, example highlighted in green. IFC model AC11-Institute-Var-
2-IFC from Laakso et al. [2012].

7

2. Theoretical Background

Attribute candidates In terms of data attribute for floor count, two candidates are con-
sidered from Open Street Map (OSM) and Open Geospatial Consortium (OGC)’s CityGML
version 3.0. OSM defines building:levels (i.e. floor count) as the number of storeys above
the ground level as non-negative fractions, excluding roof:levels (i.e. attics) from the
count [OpenStreetMap Wiki, 2022]. The ground level is defined as the lowest entrance to a
building. Since version 3.0 of the OGC CityGML standard, the notion of a storey is included
[Kutzner et al., 2020]. Conveniently, the number of storeys is divided into the attributes
storeysAboveGround and storeysBelowGround, stored as a non-negative integer.

Practical limitations In practice, we obtain the floor count from a (street view) image by
counting the windows and/or doors vertically or row-wise. There are a number of limita-
tions to this approach. First, negative storeys (e.g. basements) are in most cases invisible
from the street view. Second, it is very challenging to assess whether an attic is accessible to
humans and has a minimum net-height of 1.5 m from a (street view) image. Third, build-
ings on sloped terrain can result in an ambiguous number of storeys above ground level
(see Figure 2.6) [Biljecki, 2017]. Fourth, there are exception cases that can look like separate
storeys from the outside, such as semi-basements and mezzanines.

Figure 2.6.: In this work, floor count is defined as the number of full storeys above the ground level.
The resulting floor count is stored as an attribute named storeysAboveGround [0..1]. A limitation of a
street view image approach is exposed in the figure, as the floor count depends from which side the
image is taken. When the street view is from the left, the floor count will include storeys A + B + C +
D = 4. When the street view is from the right, the floor count will only include storeys A + B + C = 3
[OpenStreetMap Wiki, 2022].

The first limitation can be met with a compromise by only counting the storeys that are
above the ground level, thus visible from the street view, and to store the value with an
appropriate key. OGC’s storeysAboveGround meets this requirement and will be used as
key, the value will be stored as a non-negative integer as defined by OGC.

The second limitation makes the application of OSM’s building:levels hard to imple-
ment, whereas OGC’s storeysAboveGround does not specify whether or not to include attics.
However, OGC’s CityGML version 3.0 standard is extensive and allows for configuration of
custom logic. The current approach is not capable of detecting roofs or different storey
(types). This could be achieved in the future, and additional CityGML attributes can used
for correction later on.

The third limitation could be solved by applying a rule that defines the ground level. OSM
defines the ground level as the lowest entrance to a building. This means the ground level is
D in Figure 2.6 and highest floor is B, resulting in a count of B + C + D = 3. However, since

8

2.3. Street View Imagery

SVI limits how many views we can obtain from a building, it is hard to tell whether or not
the street view image contains the lowest entrance.

The fourth limitation is problematic with the approach of counting storeys with rows
of windows and doors, since semi-basements have windows visible from the street view. A
mezzanine is considered as a storey when it is a closed space, but the differentiation between
a closed and open mezzanine is not visible from the street view.

Simplified problem In order to account for the second, third and fourth limitations, another
compromise is made. We simplify the problem by regarding the first or lowest visible row
of windows and/or doors as the ground floor, and ignore the concept roof or attic and
count the last or highest visible row of windows and/or doors as a full storey. We use the
storeysAboveGround attribute key, and store the value as a non-negative integer.

(a) Semi-basement. (b) Attic.

Figure 2.7.: The problem of which storey (types) to include in floor count is simplified to counting the
total number of visible rows of windows and/or doors. We disregard the concepts of semi-basements
or attics, as either are counted as a (full) storey.

2.3. Street View Imagery

Data type and sources As motivated in the introduction (Section 1.1), street view imagery
(SVI) is the data type for façade images in current study. In our case, we are working
with panoramic SVI data, from both commercial (Google Street View (GSV)) and open-source
(Mapillary). Mapillary is a platform for volunteered street view imagery (VSVI), a form of
volunteered geographic information (VGI), that is collected through crowdsourcing [Mahabir
et al., 2020]. The challenge working with VSVI is that its data quality is heterogeneous
[Hou and Biljecki, 2022]. We use a subset from Mapillary that is professionally created
by the municipality of Amsterdam (see Section 5.2), hence the quality is homogeneous. A
comprehensive review of SVI in urban analytics and GIS is given by Biljecki and Ito [2021].

Definition SVI In order to maintain a common understanding of SVI in research, we adopt
the following definition of SVI:

9

2. Theoretical Background

“Street view imagery (SVI) is typically a sequence of geotagged, ground level
photographs taken along a trajectory, providing spatially continuous observation
of its vicinity.” [Hou and Biljecki, 2022, p. 6]

SVI quality In the context of façade parsing and large scale extraction of building assets
or attributes, it is important to consider different quality aspects that affect the processing
of SVI. Although SVI acquisition and equirectangular projection are outside of the scope
of this research, these (pre)processes affect the quality of SVI data, thus the performance
of subsequent methods that are applied and developed in current study. Therefore, it is
important to mention how SVI data quality can be described and assessed. Hou and Biljecki
[2022] developed an extensive framework to evaluate the quality of SVI data, that groups
the quality aspects into the categories mentioned below:

1. Image quality

2. Metadata availability and accuracy

3. Spatial quality

4. Temporal quality

5. Logical consistency

6. Redundancy

7. Privacy

We focus on (the elements within) image quality, as image processing is of primary con-
cern in this study. Different elements of image quality are encountered in the development
of methods in this study, in manual creation of a custom SVI dataset, and in selection and
processing of other datasets. In addition to quality aspects mentioned, practical issues found
in image processing of SVI are observed in this work as well, of which a good overview is
given by Gaw et al. [2022]. Coverage related issues are discussed, since these were found to
be most limiting.

Image quality Image size, distortion, obstructions and stitching errors were the most en-
countered image quality issues. The issues are described in the relevant context of deep
learning, façade parsing and other related works with panoramic SVI.

Image size and field of view (horizontal angle) have to be set upon query, when a SVI
dataset is created with an application programming interface (API). The image size and field
of view dictate the image shape and resolution, which can affect training a deep learning
network. A common practice is to make the image size as small as possible, where the
vision task at hand can still be done by a human. Larger image sizes can allow for more
detail in vision tasks, but also increase training time (in deep learning). The image shape
can introduce bias into the deep learning network as well, even if data augmentations (i.e.
resizing images during training) are applied. Another aspect related to image size and
resolution, is the scale of the image. Chen et al. [2022] generated a large SVI dataset of
buildings, containing well over 780,000 buildings under GSV coverage. One of the reasons
only 75% of that dataset resulted in suitable building (façade) images, is that buildings
appeared too small in the image. We found a similar observation when creating a custom
dataset (see Section 5.2), where the road (point of capture) is too far away from the building

10

2.3. Street View Imagery

of interest. Using manual software (spherical image viewer), zooming in was possible to get
a usable scale of the façade image.

Distortion can be caused by the wide angle in panoramic images or equirectangular pro-
jected images, or raindrops [Hou and Biljecki, 2022]. Distortions may also be introduced
with further processing of images, such as image rectification. Especially when the angle
in a perspective view image is large, the distortion after image rectification can be severe as
illustrated in Figure 6.3.

Figure 2.8.: An example of a significant distortion caused by a raindrop near the top of the image,
highlighted in cyan.

Obstructions or occlusion of the image can be caused by (parking) cars, vegetation (e.g.
trees), street signs etc. For the task of façade parsing, vegetation was the most limiting occlu-
sion, then cars. Trees with leaves can occlude large parts of the façade and are permanent,
cars have windows that may be wrongly detected as façade windows. Related to temporal
quality, in GSV the capture time of the same location can be chosen e.g. to a different season
where trees lack foliage or a moment where there is no car(s) blocking the façade of interest.

(a) Summer 2022. (b) Winter 2022.

Figure 2.9.: Difference of distortions present in the same façade from a GSV image, over two different
seasons. Figure 2.9a was captured in June 2022 (summer) with the trees having foliage causing to par-
tially occlude the façade, and has a stitching error highlighted in green. As Figure 2.9b was captured
in March 2022 (winter), the trees lack foliage thus occluding the façade significantly less. The same
area highlighted in cyan has no stitching error, although a small raindrop is introduced.

11

2. Theoretical Background

Stitching errors are rare in modern SVI datasets where a professional image capturing
equipment is used, such as the one mentioned in Figure 5.1 or by GSV [Anguelov et al.,
2010]. Still, stitching errors may occur and can result in an unnatural shape of the façade as
illustrated in Figure 2.9.

Coverage One of the most pressing issues in (large scale) SVI processing, is related to
spatial and temporal SVI coverage [Gaw et al., 2022]. Other work concerning the large scale
processing of SVI have found that poor coverage limits the ability to extract the number
of storeys [Gaw et al., 2022], or results in unacceptable views [Chen et al., 2022]. Possible
explanations are that some buildings might be contained in a building block, are on private
properties where a street image mapping car is not allowed to access [Ning et al., 2022], or
are simply not covered (yet).

In conclusion, it is important to consider different quality aspects of SVI, when using or
developing SVI datasets. For large scale façade parsing and image processing, image quality
and coverage are the most important quality aspects to consider.

2.4. Image Rectification

Real world façade datasets acquired from an SVI source, potentially generated with an API,
will mostly contain perspective view images from various angles. Regularity in the form
of symmetry cannot be assumed for façade elements (i.e. windows and doors) along both
horizontal and vertical axes in perspective view images, meaning we need to apply image
rectification for the assumption to hold. We describe a couple of methods of image rectifica-
tion relevant in the context of façade imagery and large scale image processing.

Tsironis et al. [2017] suggested the automatic rectification of façades from suitably config-
ured calibrated stereo images, by the use of point matching of the planar object, camera cali-
bration and either epipolar geometry or inter-image homography (illustrated in Figure 2.10).
The approach is dependent on a stereo pair and the configuration thereof, and knowledge
of interior camera orientation parameters. The necessity of a stereo pair doubles the dataset
size, which is especially problematic with an eventual large scale application in mind. The
stereo pair configuration refers to position, rotation and orientation of each stereo image,
which need to be within certain boundaries to achieve good results. As the sequences of SVI
are captured automatically, at different driver speeds, different road-façade distances, and
different obstructions at different angles, obtaining consistent and matching stereo pairs is
challenging. In the case of crowdsourced VSVI, camera calibration or knowledge of camera
parameters is often not available. With the intention to minimize dataset size and having
VSVI as a future option, automatic rectification of singular images without the need for cam-
era calibration or knowledge of camera parameters is a more suitable approach.

12

2.4. Image Rectification

(a)

(b)

(c)

Figure 2.10.: Automatic rectification of a stereo pair from a façade image, by the use of point matching.
In 2.10a are the suitably configured input images, in 2.10b the result of point matching, and in 2.10c
the end result of the automatic rectification [Tsironis et al., 2017].

Liu [2011] performed automatic rectification on singular façade images by using RANSAC
on line segment features followed by vanishing point (VP) estimation, VPs are then used to
force dominant lines to become parallel by horizontally and vertically warping the image.
However, this transform only resolves affine transformations and even when VP estimations
are only slightly off, final rectifications are significantly affected [Affara et al., 2016]. Fur-
thermore, Liu [2011]’s method is sensitive to scale which can be problematic with the use
of different SVI/VGI datasets as scaling could vary among them. Wu et al. [2010] added a
VP-refinement step to recover orthogonality and improve VP estimations, though is compu-
tationally expensive [Affara et al., 2016].

The automatic and efficient image rectification method by Affara et al. [2016] works on
singular façade images, by finding the most prevalent horizontal and vertical line segments
with RANSAC, followed by homography transformation. Horizontal and vertical line seg-
ments naturally reside in objects that are rectangular in the real world, such as window and
door frames (see Figure 2.11).

Figure 2.11.: Automatic rectification on singular façade images, that works by finding most prevalent
horizontal and vertical line segments, which naturally reside in objects that are rectangular in the real
world (e.g. windows and doors). As a result of the rectification, the lines in windows and doors are
forced to be parallel, ensuring the applicability of the regularity assumption [Affara et al., 2016].

13

2. Theoretical Background

As a result of the rectification, the most prevalent rectangular elements (i.e. windows and
doors) are structured repetitively along horizontal and vertical axes [Affara et al., 2016]. As
such, the applicability of the regularity assumption is enforced.

Figure 2.12.: Image rectification by applying horizontal (left) and vertical (right) perspective transfor-
mation on a façade image [Affara et al., 2016].

The biggest difference is that the method of Affara et al. [2016] does not require VP estima-
tion. Instead, the best homography is found that aligns vanishing line segments horizontally
and vertically, by decomposition of full transformation H into the combination of two sim-
pler transformations of vertical perspective Hv and horizontal perspective Hh as formulated
in Equation 2.1.

H = Hv Hh (2.1)

As illustrated in Figure 2.12, the parameters for horizontal (dl , dr) and vertical (du, dd)
shifts in image corners, along with corrections in the width w and length l of the image are
used to define the matrices Hv and Hh, formulated in Equation 2.2 and 2.3, respectively.

Hv =

1 + dr−dl
w

−dl
l dl

0 1 + dr−dl
w 0

0 dl−dr
wl 1

 (2.2) Hh =

1 + dd−du
w 0 0

−du
w 1 + dd−du

l du
dd−du

wl 0 1

 (2.3)

The shift parameters are found by filtering line segments’ orientations on a vertical and
horizontal linearity constraint using RANSAC, and transform the filtered line segments into
a vertical and horizontal by solving a minimization problem for (dl , dr) and (du, dd), respec-
tively.

To summarise, it is important to harmonise the input data characteristics and require-
ments of the intended final application. As neither of the mentioned methods are explicitly
evaluated on SVI, it is of interest to study the performance on real world SVI with varying
image quality and characteristics. For the large scale image rectification of SVI/VSVI, an
efficient, automatic image rectification method for singular images by Affara et al. [2016]
promises a suitable method.

2.5. Deep learning

Since we are interested in the application of learning-based façade parsing, it is important
to understand what deep learning and its related concepts are. Façade parsing, an impor-
tant task in the field of computer vision, is approached as different vision tasks: as object
detection and instance segmentation.

14

2.5. Deep learning

Figure 2.13.: Different types of computer vision tasks, from coarse to finer-grained. Top row: classifi-
cation and semantic segmentation. Bottom row: object detection and instance segmentation. Adapted
from Sharma et al. [2022].

Object detection is the classification and localisation of individual objects using bounding
boxes, illustrated in the bottom left of Figure 2.13. Object detection outputs are interesting
since it allows for intraclass differentiation. Intraclass differentiation is the ability to discern
different instances of the same class, which is useful in counting the number of individual
instances within a certain class.

Semantic segmentation is the classification of each pixel. The output is a single segmen-
tation mask without intraclass differentiation, illustrated in top right of Figure 2.13. This
makes the output unsuitable for counting object within a certain class, without further im-
age processing.

Object instance segmentation or simply instance segmentation combines both approaches,
i.e. the classification of each pixel with intraclass differentiation. This is illustrated in bottom
right of Figure 2.13, where each screw is identified with a different colour. An important
difference between object detection and instance segmentation regarding instances, is that
the former allows overlap and the latter does not. This could influence the number of
countable (clusters of) instances.

Evaluation metrics The most common metric to measure an object detector’s performance
is the mean average precision (mAP) metric. The numerical metric helps understanding
the detector’s performance in terms of both precision and recall over different confidence
thresholds. Precision and recall can be useful to measure prediction performance, especially
when classes in the dataset are (very) imbalanced [Kramer, 2016]. The metrics are calculated
based on assessing each detection as true positive (TP), false positive (FP), true negative (TN)
and false negative (FN).

Precision measures the proportion of total number positive predictions that are correctly
identified as positive detections, and is defined as:

15

2. Theoretical Background

precision =
TP

TP + FP
(2.4)

Recall measures the proportion of total number of ground-truths that are correctly identi-
fied as positive detections, and is defined as:

recall =
TP

TP + FN
(2.5)

IoU Whether a prediction is taken into account, is dependent on confidence and intersection
over union (IoU) threshold. Confidence score or “objectness” score is the likelihood an an-
chor box contains an object of a certain class. IoU is defined as:

IoU =
area of overlap
area of union

= (2.6)

In other words, confidence score measures if an object is detected and IoU measures the
correctness of location. Lower (score) thresholds result in more detections thus increasing
recall, whereas higher thresholds result in more accurate predictions at the expense of recall.
The relation between precision and recall can be expressed with average precision (AP) as
single scalar value, i.e. the precision averaged over all levels of recall of a certain class.
average precision (AP) is computed by the area under the interpolated precision-recall curve
[Zeng, 2018], illustrated in Figure 2.14.

16

2.5. Deep learning

Figure 2.14.: The AP is calculated by the area under the interpolated precision-recall curve, which is
the precision averaged over all unique recall levels [Zeng, 2018].

Traditionally, AP averaged over all classes is referred to as mAP. However, most object de-
tection and semantic segmentation related research partake in computer vision challenges
such as the Common Objects in Context (COCO) challenge [Lin et al., 2014]. The COCO chal-
lenge has defined their own metric, which we adopt for comparability. The COCO definition
makes no distinction between AP and mAP, as AP is defined as AP averaged over 10 IoU values
[0.50:0.05:0.95] [Lin et al., 2014]. As such, when referred to AP it is equivalent to mAP. Fur-
thermore, APsmall , APmedium and APlarge are interesting metrics to understand the detector’s
ability to detect different object sizes. Refer to Figure 2.15 for an overview of used COCO
metrics.

Figure 2.15.: Overview of COCO’s evaluation metrics and their corresponding definitions [Lin et al.,
2014].

2.5.1. Mask R-CNN

For the objective of counting storeys, it is interesting to explore processing the outputs of
both object detection and instance segmentation. One framework that allows both object
detection and instance segmentation simultaneously, and proven effective in the application
of façade parsing (see Section 2.6.1), is Mask R-CNN. In order to understand how Mask
R-CNN works, a high-level overview of its underlying components is given.

Convolutional neural network (CNN) is the fundament of each method Mask R-CNN builds
upon, which is an algorithm used for pattern recognition primarily in image data [O’Shea
and Nash, 2015]. A conventional application is an image classifier, as illustrated in top left
of Figure 2.13.

17

2. Theoretical Background

Figure 2.16.: A schematic overview of a typical CNN architecture. The three main layers of CNNs are; 1.
Convolution layer, 2. Pooling layer and 3. Fully-connected layer. The layers help reduce computational
complexity and overfitting of regular ANNs when processing high dimensional vector data such as
image data Hussain et al. [2018].

A CNN is similar to a regular artificial neural network (ANN) being a collection of neurons
that is structured as interconnected layers, where each neuron has learnable weights and
biases. NNs are trained using stochastic gradient descent and are optimized by minimizing
a cost function (loss), and back propagation allows for the weights to be updated during
training. ANNs have the limitations of computational complexity and overfitting [O’Shea
and Nash, 2015], especially when processing high dimensional vector data (i.e. image data).
A CNN reduces the number of trainable parameters by a series of convolution and pooling
layers. A convolution is the application of a kernel or filter on an input that leads to an
activation. As such, a neuron is only connected to a small region of the previous layer
through the receptive field of the filter (see Figure 2.17).

Figure 2.17.: The receptive field of one neuron (pixel) in the next convolution layer [Albawi et al., 2017].

The result is an activation map of feature representations. A simplified explanation can
be illustrated with face detection in Figure 2.18, the first convolutions may detect edges or
corners, later convolutions detect eyes or noses and final convolutions detect whole faces.

Figure 2.18.: A simplified explanation how a series of convolutions detects low-level features (e.g. lines
and corners) in early layers to high-level features (e.g. faces) in final layers [Elgendy, 2020].

18

2.5. Deep learning

The pooling layer helps reducing the number of trainable parameters by reducing the
spatial size of the activation maps. Usually, max-pooling is applied in CNNs where a small
kernel (e.g. 2× 2 with a stride of 2) applies a MAX-function, i.e. only the maximum value of
the kernel’s receptive field is mapped. Finally, a fully-connected layer with a loss function
at the end outputs class scores as a regular ANN.

A drawback of the CNN is that spatial information is lost by convolving and pooling the
input image, creating a localisation problem. Without localisation it is not possible to discern
different objects in an image, and therefore unsuitable for counting objects (e.g. storeys).

Region-based CNN (R-CNN) solves CNN’s localisation problem by employing (class inde-
pendent) region proposals, creating object candidates that are independently classified by
CNNs resulting in classed bounding boxes, i.e. object detection as illustrated in Figure 2.19.
Another important contribution of the work of Girshick et al. [2014] is “supervised pre-
training/domain-specific fine-tuning”, also known as transfer learning.

Figure 2.19.: The R-CNN architecture solved the lack of localisation in CNNs by achieving object detec-
tion through region proposals [Girshick et al., 2014].

Two limitations of R-CNNs are related to the region proposals, causing R-CNN-based ar-
chitectures to suffer in speed, accuracy, or simplicity [Girshick, 2015]. First, many region
proposals are extracted using “selective search” per input image and fed forward to the
CNN. The original work of Girshick et al. [2014] extracted around 2000 region proposals per
image. Second, the coarse localisation provided by the region proposals have to be processed
through a refinement stage in order to attain precise localisation.

Fast R-CNN resolves the speed bottleneck in R-CNN, by simplifying the architecture. The
simplification can be observed by comparing Figure 2.19 and 2.20. Instead of having a multi-
stage architecture where many proposals are fed independently into a CNN , multiple regions
of interest (RoIs) are fed to a CNN at once allowing the CNN to share computations. From
the feature map, each region of interest (RoI) is pooled into a small fixed-size feature map
as necessary for the fully connected (FC) layers it is fed to. The two FC layers perform both
classification and bounding-box regression on the feature map simultaneously. This multi-
task approach does not only improve speed, but the shared representation also improves
accuracy [Girshick, 2015].

19

2. Theoretical Background

Figure 2.20.: Fast R-CNN simplified the architecture to resolve the speed bottleneck in R-CNN. RoIs are
fed to a CNN at once, allowing the CNN to share computations [Girshick, 2015].

Yet, the same non-learning “selective search” algorithm is performed for finding RoIs, and
is the remaining bottleneck in Fast R-CNN [Maity et al., 2021].

Faster R-CNN achieved near real-time object detection, by replacing the selective search
algorithm for finding RoIs with the learning attention-module named Region Proposal Net-
work (RPN) [Maity et al., 2021]. The RPN is a fully convolutional network (FCN) that saves
computation by sharing its feature map with the detection network, essentially localising
and classifying objects concurrently (see Figure 2.21). The Faster R-CNN framework allows
for efficient object detection, allowing intraclass differentiation which is useful for counting
instances. However, this does not leave the possibility to explore the counting of instances
with pixel-level precision.

Figure 2.21.: Faster R-CNN improved Fast R-CNN by replacing the selective search algorithm with the
learning attention-module RPN to find RoIs [Ren et al., 2015].

Mask R-CNN is a simple and flexible framework for object instance segmentation, devel-
oped by Meta AI Research, formerly known as Facebook AI Research (FAIR) [He et al.,
2017]. It is an evolution of the Faster R-CNN framework for object detection [Maity et al.,
2021]. The main contribution is the addition of a branch that predicts a segmentation mask
for each object candidate, in addition to a bounding box and class label. The result is two
outputs for each region of interest: a classed bounding box and an instance segmentation
mask, as illustrated in Figure 2.22. Due to the two outputs, the Mask R-CNN is a two-stage
network.

20

2.5. Deep learning

Figure 2.22.: Mask R-CNN added a branch to Faster R-CNN for the prediction of a segmentation mask
per detection [He et al., 2017].

Backbone Mask R-CNN can instantiated with multiple architectures as backbone. The
convolutional backbone architecture, is used for feature extraction over a whole image [He
et al., 2017]. The backbone follows the network-depth-features naming structure. In the original
paper, ResNet [He et al., 2016] and ResNeXt [Xie et al., 2017] are evaluated with network
depths of 50 or 101 [He et al., 2017]. For features, the Feature Pyramid Network (FPN) [Lin
et al., 2017] gives outstanding performance in terms of accuracy and speed according to
He et al. [2017]. ResNet50-FPN en ResNet101-FPN are opted since these were evaluated on
the Amsterdam Facade training dataset used in this work by Eijgenstein [2021], achieving
good results in terms of AP in both object detection and instance segmentation as shown in
Table 2.1.

Table 2.1.: Mask R-CNN object detection and instance segmentation results with ResNet50-FPN and
ResNet101-FPN backbones on Amsterdam Facade dataset, by Eijgenstein [2021].

Backbone APbbox APsegm

ResNet50-FPN 76.57 77.97
ResNet101-FPN 75.94 77.96

Loss functions The two stage Mask R-CNN has five loss functions. As a reminder, the first
stage is Faster R-CNN’s RPN with corresponding RPN classification and RPN bounding-
box loss functions. The second stage adds three multi-task losses to the head of the added
branch, for classification, bounding-box and mask defined as L = Lcls + Lbox + Lmask [He
et al., 2017]. For the interest of gaining good performance on both object detection and
instance segmentation, our implementation of Mask R-CNN is trained on minimizing the
total loss which is the weighted sum of the five losses combined.

Multi task learning (MTL) In MTL a certain task in the final feature extraction is dependent
on the context of other features. Say the first task is object detection, the second task is
semantic segmentation of each object (i.e. Mask R-CNN) and the third task is detection of
floor count based on the second task. The detection of floor count is called a downstream
task as it follows from the first two and is the actual task of interest (see Fig. 2.23).

21

2. Theoretical Background

Figure 2.23.: Simplified visualisation of Multi Task Network Cascades [Dai et al., 2016].

2.6. Façade parsing

Façade parsing is referred to the semantic segmentation of a façade image [Mathias et al.,
2016], into façade elements such as window, door, balcony, and so on [Liu et al., 2017].
Related work to façade parsing can be categorized into three principal strategies: grammar-
based, image processing and learning-based [Sezen et al., 2022].

Figure 2.24.: DeepFacade: An influential work of Liu et al. [2020], that applies a learning-based ap-
proach to façade parsing which is treated as a semantic segmentation problem.

Grammar-based works assume prior knowledge: a façade adheres to a regular layout
of rectangular shaped objects, organised by a set of man-made (grammar) rules [Teboul
et al., 2011; Wang et al., 2022]. As the grammar-rules are constructed from certain (non-
exhaustive set of) architectural styles, the approach does not generalize well and fails if the
prior knowledge does not apply [Fathalla and Vogiatzis, 2017; Liu et al., 2017].

Image processing or basic computer vision related to pattern recognition (e.g. corner/edge
detection) is dependent on local image values and sensitive to noise [Kong and Fan, 2020].

22

2.6. Façade parsing

2.6.1. Learning-based façade parsing

Learning-based façade parsing does not rely solely on man-made rules of repetitive pat-
tern recognition, but applies deep learning techniques to learn from data. Learning-based
approaches are widely adopted to façade parsing in recent years for detection and segmen-
tation of façade elements.

Schmitz and Mayer [2016] used a CNN for the semantic segmentation of façades yield-
ing state-of-the-art performance on the eTRIMS dataset, without incorporation of any prior
knowledge to the model. Liu et al. [2020] incorporated prior knowledge (i.e. rectangular
symmetry of windows, doors and balconies) into the learning process with a novel sym-
metric loss function, such that their FCN penalized non-rectangular shapes when learning
from the input. Their work, named DeepFacade, is still referred to as the state-of-the-art in
recent papers [Zhang et al., 2022]. DeepFacade is a combination of FCN as main segmen-
tation network with Mask R-CNN as its detector. For comparison, Mask R-CNN is also
evaluated alongside the main segmentation network for semantic segmentation. Liu et al.
[2020] reports 93.9% and 96.7% accuracy on classes of interest window and door with Mask
R-CNN, respectively. Unsurprisingly, Mask R-CNN (with and without modifications) has
been used as main façade parsing method in other works. Including extraction of façade
details (i.e. windows and doors) for addition to LoD2 CityGML models [Zhang et al., 2019],
window detection [Nordmark, 2021; Sun et al., 2022], large-scale façade parsing [Ayenew,
2021],and as façade parsing stage for window, door and sky object instance segmentation on
the Amsterdam Facade dataset in Eijgenstein [2021].

Figure 2.25.: Façade parsing results of DeepWindows [Sun et al., 2022]. A limiting factor for the
determination of floor count would be the lack of door detection. In a few cases, the ground floor has
a door but no windows.

Considering Mask R-CNN compares well to the state-of-the-art today, proven in the detec-
tion/segmentation of windows and doors, and widely available through open-source tool-
ing, thus Mask R-CNN is the framework for both object detection as instance segmentation
of windows and doors in this thesis.

23

2. Theoretical Background

2.7. Vertical clustering

Façade parsing yields detections and segmented instances, in our case of windows and doors
for each image. The goal is to cluster these detections and segmented instances vertically,
such that each cluster represents a storey.

2.7.1. HDBSCAN

In earlier experiments, façade parsing detections are clustered using hierarchical density-
based spatial clustering of applications with noise (HDBSCAN). Regular density-based spatial
clustering of applications with noise (DBSCAN) [Ester et al., 1996] is one of the most used
algorithms for clustering. It works by finding areas that have a higher density (points per
area) than surrounding points [Ledoux et al., 2022]. The density can be tuned with two
defining parameters: ϵ radius and nmin minimum number of cluster points. The aim is to
group areas that have close neighbors, as illustrated in Figure 2.26.

(a) (b) (c)

Figure 2.26.: DBSCAN for clustering points. a) The initial set of points. b) DBSCAN finds density
clusters by recursively checking neighboring points if they are within the search radius ϵ. c) The
resulting clusters of running DBSCAN [Ledoux et al., 2022].

Since the radius ϵ and minimum cluster size nmin have to be set, the method needs tuning
for good results. This is not preferable in large scale analysis, with varying densities among
samples. HDBSCAN performs DBSCAN with more stability by varying ϵ values and incorpo-
rating the result, meaning clusters of varying densities can be found [McInnes et al., 2017].
The method can be used fully automatic, which is useful in large scale analysis of varying
densities.

2.7.2. Density estimation functions

KDE Based on the regularity assumption of façade elements and the observation that win-
dows and doors are structured repetitively in vertical direction, the floor count is determined
by estimation the underlying vertical (y) data distribution. A non-parametric approach to
the problem is taken by performing a univariate analysis, and application of kernel density

24

2.7. Vertical clustering

estimation (KDE) to estimate the probability density function f̂ (x) at ordinate x. The problem
is defined as follows [Silverman, 2018]:

Problem Given n data points {x1, ..., xn}, estimate the underlying density by
function f̂ .

where,

f̂ (x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(2.7)

The principle is to place a kernel function K at each point xi where the sum of n kernel
functions (for n points) is the probability density function f̂ . The KDE plot reveals the curve
of our estimated density function, where the bandwidth h acts as a smoothness parameter.
This simple approach of computing KDE is also referred to as naive KDE.

FFTKDE Naive KDE performs well on small datasets, such as points extracted from win-
dows and door detections (one point per detection). In the processing of the segmentation
data, the size of the dataset grows to the number of pixels in the segmentation mask. The
computational complexity of naive direct evaluation of KDE in Equation 2.7 is O(n2), given m
evaluation points for n data points requiring O(mn) kernel evaluations [Gramacki and Gra-
macki, 2017]. A very fast implementation is the fast fourier transform (FFT) based method,
first described by Wand [1994]. The method consists of two steps.

The first step involves the linear binning (i.e. data discretisation [Wand, 1994]) of the input
n data points, where each point is assigned to the neighboring grid point on a predetermined
equidistant grid. As such, a grid count is computed for each grid point. In the second
step, the kernel is evaluated once on ≤ n points, and then the grid counts and kernel
weights are combined to obtain an approximation of the kernel estimate (KDE). The result is
convolved using a series of discrete convolutions using the FFT, hence the name fast fourier
transform kernel density estimation (FFTKDE). The computation complexity of the FFTKDE is
O(N2d + nlogn), resulting in a runtime of 0.01 seconds for 106 points [Odland, 2022].

Manual optimisation is predominantly achieved by tuning bandwidth parameter h, given
a kernel K with desired properties is selected. The resulting KDE curve is observed and
judged with prior knowledge on the data. This empirical approach is suitable for exploratory
analysis. Figure 2.27 illustrates how the selection of different bandwidths values result in
different representations of the underlying data.

Figure 2.27.: Different bandwidths represent the underlying distribution of the data differently [Van-
derPlas, 2013].

25

2. Theoretical Background

Automatic optimisation is also referred to as the use of reference rules. Since the impor-
tance of bandwidth, most attention literature is given to automatic bandwidth selection. A
review on fully automatic bandwidth selectors by Heidenreich et al. [2013] suggests a sam-
ple size n > 100, which is in line with sample size selection in original papers [Läuter, 1988;
Sheather and Jones, 1991]. The most popular reference rules are Silverman’s rule of thumb
and improved Sheather Jones (ISJ).

Silverman’s rule of thumb assumes that the true density is normally distributed unimodal
data [Silverman, 2018], and performs well when data is somewhat symmetric and does not
have fat tails [Heidenreich et al., 2010].

Figure 2.28.: The difference in data distribution representation as a result of using Silverman’s rule of
thumb compared to ISJ [Odland, 2022].

The underlying data of windows and doors do not fit unimodal data distribution. As a
storey is expected to have a dense region of windows and doors, a façade with multiple
storeys is expected as a multimodal data distribution. ISJ is a plug-in method that signifi-
cantly outperforms Silverman’s rule of thumb in the density estimation of multimodal data
[Odland, 2022]. A plug-in method (e.g. Silverman’s rule of thumb) requires a priori assump-
tions, often a preliminary normal model [Botev et al., 2010], on the unknown data distri-
bution followed by a minimization of the asymptotic mean integrated square error (AMISE)
of density estimator f̂ [Chu et al., 2015]. The a priori assumption leads to significant bias,
and is reduced in the ISJ method by introduction of a pilot density estimate ∥ f ′′(x)∥2 that
is free from normal reference rules [Botev et al., 2010]. However, when observing the dif-
ferences between the two methods in Figure 2.28, the following should be considered. First,
the resulting curve of applying ISJ represents the underlying data more closely in terms of
density, but has a ragged curve. Second, the resulting curve of applying Silverman’s rule
of thumb results in a smooth curve, but a less precise representation of the underlying data
distribution.

Maxima finding An elementary property of the KDE is that the function inherits the con-
tinuous properties of kernel K [Silverman, 2018]. Continuous functions on closed interval
have the property to achieve maximum and minimum values [Fu and Yu, 2020]. Thus, the
extremes of the KDE can be found where maxima are the most dense locations or “peaks”,
and minima are the least dense locations or “breaks” in the data. In our case, the peaks
translate to rows of windows/doors, and breaks translate to the spaces in between the rows.
Each peak/row is interpreted as a storey, which means that the sum of the peaks equals to
the number of storeys or floor count.

In conclusion, we expect that the underlying vertical data distribution of windows and
doors are separate regions that each represent a storey. The naive KDE with manual opti-
misation is a suitable approach for the exploration of vertical data distribution of smaller

26

2.7. Vertical clustering

datasets. With larger datasets the faster FFTKDE is more suitable, and the larger dataset size
allows for automatic bandwidth optimisation methods: Silverman’s rule of thumb and ISJ.
Either methods have different characteristics that have to be considered during the develop-
ment of a floor count estimation method. Maxima finding will be performed as method to
extract the number of vertical clusters, i.e. the estimated floor count.

2.7.3. Floor count evaluation

In order to asses the floor count estimation performance, we describe the following evalua-
tion metrics.

Accuracy is arguably the most common metric to evaluate a model’s overall performance
on a scale from 0 to 1, often expressed as a percentage (%), and is defined as:

Accuracy =
1
n

n

∑
i=1

1(yi = ŷi) (2.8)

The mean absolute error (MAE) is another commonly used metric to compare the predicted
values with the ground truth values, and is defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2.9)

In order to get more understanding on the sign of the error, we employ the mean error (ME)
and normalised standard deviation of the error (σerror). The ME is defined as:

ME =
∑n

i=1 yi − ŷi

n
(2.10)

Since we are dealing with an imbalanced dataset, accuracy score can be misleading about
the performance of the method. In addition, we use harmonic mean of precision and recall,
called f1-score and is defined as:

F1 = 2 ∗ precision ∗ recall
precision + recall

(2.11)

The f1-score is given a value of 0 at worst, and a value of 1 at best. The class imbalance is
accounted for by averaging the f1 score weighted by the support (number of ground truths
per class).

For getting a better understanding for which degree of error is most frequent, we measure
the count in terms of Difference in Count (DiC) Xu et al. [2018]. DiC is calculated as the
difference between the number of predicted instances and the ground-truth:

DiC = #Lpred − #Lgt (2.12)

with |DiC| Xu et al. [2018] being the absolute value of DiC.

27

3. Related Work

The focus of the related work regarding (large scale) floor count determination, is divided
into three categories based on input data type: elevation data, attribute data and SVI data.
The latter is most relevant to current study, thus described in more detail. Furthermore,
research related to the detection and segmentation of floor line structures from SVI are de-
scribed, since floor count information is (implicitly) present.

3.1. Floor count from elevation and attribute data

Elevation-based Many works exist on deriving building height from space-borne data, of
which an overview is given by Iannelli and Dell’Acqua [2017]. From the building height, the
floor count can then be estimated using geometric approaches which are described in Roy
[2022]. In essence, the space-borne data are used to derive building heights (often as a by-
product of a digital elevation model (DEM)/3D city model), and then the height is divided
over a standardised or averaged storey height (e.g. 3 m). A purely geometric approach that
was tested on a subset of a dataset containing 173,152 buildings’ attributes by Roy [2022],
achieved an accuracy of 69.9% and MAE of 0.31 on buildings with 5 or less storeys, and 47.5%
accuracy and MAE of 0.70 on buildings with 5 or more storeys.

Attribute-based Building attribute data (e.g. floor count, height, construction year, use,
etc.) are often embedded in cadastral datasets or 3D city models. For most building at-
tributes there exist GIS standards, such as those described for floor count in Section 2.2. The
general idea is that when the floor count attribute is missing (which is often the case), it
can still be derived from (a combination of) other present attributes. A demonstration of a
machine learning approach to infer floor count of building footprints (attributes) is given
by Roy [2022]. The floor count determination is approached as a regression problem, which
is less restrictive than a classification approach and allowing fractions (i.e. optional half
storeys). Since it is a learning-based approach, most limitations are related to training data
quality and characteristics. The best model achieved an accuracy of 94.50% and a MAE of
0.06 on buildings with 5 or less storeys, and 52.3% accuracy and MAE of 0.62 on buildings
with 5 or more storeys.

Table 3.1.: Performance floor count determination comparison of machine learning (ML) approach and
geometric approach by Roy [2022].

Accuracy (%) MAE

≤ 5 > 5 ≤ 5 > 5

ML 94.50 52.3 0.06 0.62
Geometric 69.90 47.5 0.31 0.70

If (enough) attribute data is available, the demonstrated machine learning approach per-
forms very well for floor count determination on lower storey buildings. The bias towards

29

3. Related Work

lower storey buildings is a limitation of the skew in the training data, which is reflected in
the performance comparison in Table 3.1.

3.2. Floor count from SVI as classification problem

The following related works approach floor count from SVI as a classification problem with
a deep learning approach. Each work is first introduced, followed by explanation of the ap-
proach, and finally limitations with relevant suggestions are described. Then, the observa-
tions on the related works are summarized with key takeaways. Thereafter, the fundamental
differences between the related work and current study are articulated.

Iannelli and Dell’Acqua [2017] were the first to use deep learning to automatically infer
the floor count from SVI. An overall performance in terms of accuracy of 85% was achieved
on a test dataset of 430 images. Most failure cases were an under- or overestimation of one
storey. Main benefits are feasibility and cost efficiency of the method when compared to
labour costs of manual floor count determination.

The floor count determination is addressed as a multiclass classification problem, with five
predefined classes: 0, 1, 2, 3 and 4+ storeys. Each façade image is fed to a pre-trained (i.e.
ImageNet [Deng et al., 2009]) VGG-16 CNN-based architecture [Simonyan and Zisserman,
2014], then re-trained on their own annotated SVI dataset containing 600 images (acquired
through the Google Maps API). Unfortunately, neither their dataset nor model are released
to the public.

The approach has a couple of limitations. First, the decision for using the open-ended
class of 4+ storeys, is based on the limitation of the vertical field of view in SVI from the
Google Maps API response. Second limitation is related to heterogeneous class distribution
in the training dataset, deemed unachievable in practice. Third, most error cases are possibly
due to occlusions. Forth, main drawbacks of using SVI mentioned are limited coverage in
some areas (albeit improving) and temporal quality issues. To improve the work, large-
scale fusion SVI with satellite remote sensing data is suggested and use of improved CNN
architectures.

Figure 3.1.: The VGG-16 CNN pre-trained on the ImageNet dataset , used by Iannelli and Dell’Acqua
[2017]. The network was retrained on 600 street view images to predict one of the five predefined floor
count classes, achieving an accuracy of 85%.

Rosenfelder et al. [2021] proposed a deep learning model using both aerial and street view
imagery, to predict building-level electricity consumption. Floor count is predicted as one
of the intermediate features, achieving overall performance of 90.5% in terms of accuracy
and 0.1 in terms of MAE on a test dataset containing 22,803 images. The main benefits

30

3.2. Floor count from SVI as classification problem

of cost/time effectiveness and feasibility are also mentioned, replacing surveys or manual
measurements.

The floor count determination part of the model is also addressed as a multiclass classifi-
cation problem, with three predefined classes: 1, 2 and 3 storeys. A ResNet-34 CNN-based
architecture is pre-trained on ImageNet, and then re-trained on their own annotated SVI
dataset containing 843 images (acquired through the Google Maps API). Unfortunately, also
their dataset and model are unpublished.

Limitations regarding floor count determination specifically are not mentioned, except
for the 20% of gross errors due to a missing building in the image. Floor count deter-
mination is not the focus in their work, and the number of storeys is concluded to be of
secondary importance in their sensitivity analysis, which could explain the lack of further
details. Nevertheless, practices that improved the overall electricity consumption prediction
performance, and perhaps the underlying floor count determination performance, of their
machine learning pipeline are: BayesSearchCV for automatic hyperparameter optimisation
and application of data augmentations. To improve the work, feature engineering and eval-
uation of other prediction methods are suggested.

Figure 3.2.: The confusion matrix showing the floor count determination performance of the ResNet-34
CNN approach by Rosenfelder et al. [2021]. In this case the CNN predicts three predefined floor count
classes.

Chen et al. [2022] proposed a CNN-based architecture that estimates building attributes
(i.e. foundation height, foundation type, building type and number of storeys) simultaneously
from GSV images for flood risk assessment. An overall floor count prediction performance of
93.5% in terms of accuracy and a 94.6 % F1 score of is achieved, on a test dataset containing
8,593 GSV images. Main benefit of the method mentioned is replacing manual labour.

The floor count determination problem is treated as a binary classification problem, of
two predefined classes: 1 or 2+ storeys. Their CNN-based MTL, called Task Relation Encod-
ing Network (TREncNet), is architecturally modified such that it can learn known relations
among the three different attributes as illustrated in Figure 3.3. In addition, a feature fu-
sion technique is applied that introduces metadata (e.g. camera-to-building distance and
aspect ratio) to the MTL network. Similar to the two aforementioned works, their CNNwas
pre-trained on the ImageNet datasets. The network was re-trained with 33,822 GSV images
along with attribute data. The GSV images were obtained using the Google Maps API. Train-
ing was optimized with hyperparameter search and random augmentations (i.e. brightness,
contrast, flipping, saturation and hue). TREncNet and the dataset used are unpublished.

31

3. Related Work

Figure 3.3.: Chen et al. [2022] developed a MTL CNN architecture called TREncNet, and enhanced
by a feature fusion technique that introduces metadata into the learning process to predict multiple
building attributes including floor count.

Main limitation is related to coverage issues, as roughly half of all building images through
the Google Maps API were unsuitable or not available. A building image may be acquired
at large distance when the distance between the road and building is large, more common
is sparsely populated areas in Florida. Other limitations related to floor count classification
are due to neighboring buildings that confuse the model, noise, ambiguity, occlusions, and
false annotations in ground truth data.

Figure 3.4.: The floor count determination performance of TREncNet shown in a confusion matrix.
The performance is very good in terms of accuracy, but limited considering only 1 or 2 storeys can be
detected [Chen et al., 2022].

Observations The related works of Iannelli and Dell’Acqua [2017]; Rosenfelder et al. [2021];
Chen et al. [2022] (summarised in Table 3.2) interface with current study in terms of learning-
based approach to floor count determination, and use of SVI. On the one hand, it is expected
that performance of learning-based models increase with the size of the training dataset
(with significant but not extreme improvements), and with increasingly more sophisticated
CNN-based models and supporting techniques. On the other hand, while training data
sets increase the predefined floor count classes decrease, making the task arguably easier
with each class less. What the works have in common is the use of transfer learning, use
of GSV datasets, class imbalances, coverage and occlusion issues, and unpublished models
and datasets. Key takeaways for this research are use of transfer learning, use of data
augmentations in model training, taking into account coverage and occlusion issues, and

32

3.3. Floor line structures from SVI

publishing of the method developed and (enriched) dataset.

Table 3.2.: A comparison of the image-based floor count classification works of 1. Iannelli and
Dell’Acqua [2017], 2. Rosenfelder et al. [2021], and 3. Chen et al. [2022].

Architecture Floor count classes Pretrained Accuracy (%) Train/test images

1. VGG-16 0, 1, 2, 3, 4+ Yes, ImageNet 85 600/430
2. ResNet-34 1, 2, 3 Yes, ImageNet 90.5 843/22,803
3. TREncNet 1, 2+ Yes, ImageNet 93.5 33,822/8,593

Differentiation The fundamental difference between the aforementioned works and cur-
rent study, is the approach to the task of floor count determination. Instead of treating floor
count determination as a classification problem, the floor count is estimated by utilising the
underlying data distribution of the façade parsing outputs. The result is that the floor count
is not reduced to a set of predefined classes, but is less restricted and more data-driven.
Another difference is that the errors or failure cases could not be explained with satisfac-
tory or concrete causes. This is due to the black-box working of the CNN-based approach
(with many hidden layers), whereas the proposed method in this research strives to be more
explainable and expose why floor count determination fails for each failure case.

3.3. Floor line structures from SVI

Floor(-level) lines are lines that are related to the structure of a storey. In related works these
are referred to as floor-level lines or simply floor lines. Although floor count is not a direct
concern in these works, the number of storeys is (implicitly) present.

Figure 3.5.: Overview of the FLN architecture: A MTL network that performs façade parsing and
floor-level line detection simultaneously by hard parameter sharing. The input is an image, and the
outputs are two mask for each of the performed tasks. Observe in the bottom left the implementation
of the height-attention layer Wu et al. [2021].

FloorLevel-Net (FLN) [Wu et al., 2021] is designed to detect the floor-level lines of build-
ings from images (see Fig. 3.6). For the detection of separate storeys, two main observations
are made. First, the task of detecting floor-level lines is dependent on the contextual infor-
mation given by the semantic/instance segmentation. Second, to which floor each instance

33

3. Related Work

(i.e. window, door) belongs is dependent on the vertical distribution in the image. The
same observations, the second in particular, could be made for the counting of storeys from
façade parsing results. FLN takes these two observations into account by adoption of a MTL
approach and incorporation of a height-attention module. In deep learning and in the case
of CNNs, a channel attention module is implemented to guide the network what to focus on
when learning/inferring the task of interest [Liu and Milanova, 2018]. In the case of FLN,
the height-attention module is guiding to detect the floor-level lines in a regularly vertical
distribution, resulting in better detection of floor-level lines.

Figure 3.6.: The results of floor-level line detection with FloorLevel-Net, on more orthogonal view
images (left) and perspective view images (right). Note how the floor-level line number corresponds
to the number or count of the storey it is assigned to. In most cases, the highest floor-level line number
corresponds to the floor count. Adapted from [Wu et al., 2021].

The parallel with floor count determination becomes clear when observing Figure 3.6.
Each floor-level line is outputted by the algorithm as five-tuple. For the horizontal and
vertical ranges of each façade, two endpoints are derived for each polyline: (xi

s, yi
s) and

(xi
e, yi

e). Finally, the floor order li is added. So the five-tuple for each polyline is structured as
follows: { xi

s, yi
s, xi

e, yi
e, li }. For the floor count, the highest floor order corresponds to the floor

count of a given façade. Given that the results in Figure 3.6 are robust to either orthogonal

34

3.3. Floor line structures from SVI

or perspective view imagery, the method looks promising for floor count determination on
SVI.

Floor segmentation Håbrekke and Nordstad [2022] performed “floor segmentation” for
the estimation of facade heights, where the number of storeys is used as an intermediate.
The first step is façade parsing of classes window, door and balcony, and is approached as
an object detection problem. The façade detection network used is a YOLO v3 architecture
[Redmon and Farhadi, 2018], that was pre-trained on ImageNet [Deng et al., 2009] and re-
trained on the custom FaçadeWHU dataset containing 900 street view images by Kong and
Fan [2020]. As a second step, each object center is horizontally populated with three equally
spaced points, as illustrated in Figure 3.7.

Figure 3.7.: Håbrekke and Nordstad [2022] populated each object center horizontally with three equally
spaced points.

The result of populating the object centers horizontally, is that the point clusters are denser
horizontally than vertically, forming horizontal “point lines” visualised in Figure 3.8b. This
helps line fitting using multi-RANSAC [Zuliani et al., 2005] in the third step. Additional
restrictive rules avoid lines to intersect, and misalignment or significant deviations. The
“correctness” of the floor segmentation was measured in terms of number of storeys, i.e.
floor count. Of 50 manually assessed façades, the floor count performance was 92% in terms
of accuracy with an “mean error degree” (although not specifically defined, we assume this
corresponds to MAE) of 1.25.

(a) (b)

Figure 3.8.: Floor segmentation with façade parsing, and multi-RANSAC applied on horizontally pop-
ulated object centers [Håbrekke and Nordstad, 2022].

The difference of the method by Håbrekke and Nordstad [2022] and current study, is to
leverage the regularity assumption more directly by first rectifying each image and then to
vertically cluster the points, instead of applying RANSAC with restrictive rules. Although
the results look promising on the 50 manually assessed samples, introducing restrictive rules
can limit the potential to adapt to datasets with varying image quality and characteristics.

35

4. Experimental design and development

From the research objectives defined in Chapter 1, and the literature review conducted in
Chapter 2 and 3, we propose a three staged methodology: 1. data preparation, 2. façade
parsing, and 3. floor count estimation. A compact overview of the methodology is given
below in Figure 4.1, and a comprehensive overview can be found in appendix A.1.

In the first stage, we explain the steps necessary to prepare the data for the following
stages. Except for the dataset selection and creation, which are detailed in Chapter 5. In
the second stage, the deep learning networks investigated and used are described, along
with training and optimisation details. In the third and final stage, data processing steps
and the various methods for vertical clustering, optimisation and floor count estimation are
discussed.

Figure 4.1.: A compact overview of the proposed three-stage method, which consists of: 1) data prepa-
ration, 2) façade parsing, and 3) floor count estimation.

37

4. Experimental design and development

4.1. Data preparation

In the data preparation stage, we explain the development steps in the floor count anno-
tation and image rectification explored. Image rectification is considered to be the main
pre-processing step to the façade parsing stage.

Figure 4.2.: Flowchart that details the development steps within the data preparation stage.

4.1.1. Floor count annotation

Ground-truth data (i.e. floor count annotations) are necessary for evaluation of the floor
count determination method. To the best of our knowledge, there are no façade datasets
that contain floor count annotations. Hence, floor count annotations are added manually
to datasets used in this study (see Section 5.2). The floor count is determined by visual
inspection of each façade image, according to the definition specified in Section 2.2.

For visual inspection of each façade image, a simple script is written in Python to loop
through a file of images, plot each image and request input from the user to enter the number
of storeys. Each record is encoded as storeysAboveGround_gt and the value is stored as a
non-negative integer. The floor count annotations are written to a JSON file as follows:

{

"image_name": {

"storeysAboveGround_gt": int

}

}

The benefits of a JSON file include convenient I/O operations, quick key-value lookup,

38

4.1. Data preparation

and easy transformation to a dataframe for further processing and analysis. The JSON file is
used later for storing predictions in the same file.

During floor count annotation, the datasets are observed with special attention to image
quality aspects, image characteristics and floor count ambiguities.

4.1.2. Image rectification

The rectification is applied on the eTRIMS and custom “in the wild” datasets, as both rep-
resent SVI containing perspective view images. The rectification is not needed for the ECP
and Amsterdam Facade datasets since both are pre-rectified. After data preparation, the
(pre-)rectified images are passed onto the façade parsing stage.

VP estimation In earlier experiments, image rectification by VP estimation is applied, sim-
ilar to the approach mentioned by Liu [2011] as described in Section 2.4. Instead of using
specific horizontal and vertical line segment detection, we use Canny edge detection [Canny,
1986], and apply VP estimation with RANSAC. The homography is computed, and applied
to the image which warps the image towards a fronto parallel view with orthogonal axes.
The tests for this method are only conducted on the “wild SVI dataset”, as the dataset is the
most challenging for image rectification. The image rectification quality is assessed qualita-
tively.

RANSAC and homography transform Instead of finding VPs and then compute the ho-
mography, the implementation by Affara et al. [2016] as described in Section 2.4 is applied.
We run the automatic implementation in MATLAB on the eTRIMS and wild SVI datasets.
Image rectification results are assessed qualitatively, and quantitatively in relation to floor
count estimation improvement.

(a) Perspective view image. (b) Rectified image.

Figure 4.3.: Rectification on a perspective view image from the eTRIMS dataset in 4.3a. Observe how
the rectification result ensures the applicability of the regularity assumption of façade-elements in 4.3b.
As a result, the grouping of storey elements is improved.

39

4. Experimental design and development

4.2. Façade parsing

After the data preparation stage, we use learning-based façade parsing to localize windows
and doors in rectified images. In the following sections we explain which networks are
investigated and how they are implemented.

Figure 4.4.: Flowchart that details the development steps within the façade parsing stage.

4.2.1. DeepFacade reproduction

Initially, we attempted to reproduce the original work of DeepFacade by Liu et al. [2020] for
the façade parsing stage, which is published on GitHub [Liu, 2020]. Even though the reposi-
tory was already mentioned to be “somewhat deprecated” around time of publishing in 2020
by the author, considerable time is put into debugging the code with multiple machines and
operating systems (Mac OS Monterey, Linux Ubuntu 18.04 and Windows 10). Alas, two
and a half years after publishing the code is severely deprecated and not maintained by the
authors, or anyone for that matter. Further experimentation on DeepFacade is discontinued
in current research. For future reference, in order to reproduce DeepFacade the main model
has to be ported to a supported version of the PyTorch library Paszke et al. [2019] along with
all other dependencies. Preferably on an intel-based Linux (virtual) machine under a stable
release of Ubuntu with a NVIDIA GPU supporting CUDA drivers [Nickolls et al., 2008],
which is important for training.

4.2.2. Mask R-CNN training and optimisation

Initialisation of network For Mask R-CNN we make use of transfer learning, as observed
to be useful in training on a relatively small dataset in Chapter 3. The pre-trained weights
are loaded, from a model that is trained on the Common Objects in Context (COCO) dataset.
As the name suggests, the model is pre-trained on common objects, which do not include

40

4.2. Façade parsing

the window and door class. Therefore, we have to re-train the model on our domain specific
classes. We select the window and door as foreground classes, and sky as background class.

First network optimisation As the model is initialised, we start manually configuring the
hyperparameters. Starting from the default hyperparameters, we tune one hyperparameter
at the time with a few training iterations (epochs) to get a feeling for the most important
hyperparameters for the combination of Mask R-CNN and our dataset. In order to under-
stand whether the change had an effect, we observe the performance (i.e. accuracy) and
optimisation curves (training and validation loss). Accuracy is maximised, and the losses
are minimised. All progressions are logged, and training weights are saved with a filename
that translates to the changed hyperparameter and value.

Backbone comparison Once we obtain acceptable results, i.e. accuracy is > 70%, we keep
the hyperparameters constant and compare the two backbones discussed in Section 2.5. Both
backbones are pre-trained on the COCO dataset containing 300K+ images and 2.5M labeled
instances [Lin et al., 2014].

Final optimisation For final optimisation we select the best performing backbone and con-
tinue optimisation of the model’s performance, both manually and automatically.

For manual optimisation, the set of the most performant hyperparameters are selected
and we run a training routine with a high number of iterations to capture the full learning
curve. With the full learning curve we can observe at what number of iteration the model
starts overfitting and select that number as final learning rate (LR) parameter.

Then, with the knowledge of the best configuration of hyperparameters so far we move
onto automatic hyperparameter tuning. We define the set of hyperparameters that we would
like to be ‘searched’, and define the maximum number of routines. This is done exhaustively
in the beginning with a smaller subset of hyperparameters, but this is computationally ex-
pensive. Both Bayesian and random search are applied instead, which are found to lead
to better searches in less routines. Although they are more efficient, the total number of
automatic hyperparameter searches are still limited due to computational costs.

41

4. Experimental design and development

4.3. Floor count estimation

After the façade parsing stage, we arrive at the floor count estimation stage. This stage has
three main lines (see Figure 4.5). FLN, bivariate approach with HDBSCAN, and the univariate
approach with (FFT)KDE. The three main lines are each explained with their additional
development steps (if applicable) in the following sections.

Figure 4.5.: Flowchart that details the development steps within the floor count estimation stage.

4.3.1. FloorLevel-Net

As observed in Section 3.3, FLN orders the the detected floor-level lines with an order num-
ber, where the maximum order number should in most cases correspond to the total number
of storeys. The code of the model is published by the authors along with model weights and
their custom dataset, which facilitates and encourages reproduction. The custom data is a
combination of their own GSV images and the CMP dataset. We run inference of their model
on their data and the ECP dataset, and write the highest floor order number to the ground
truth file for later analysis.

42

4.3. Floor count estimation

4.3.2. Bivariate approach

The second line of development is called the bivariate approach, since we attempt to find
horizontal clusters from the detection pixel-coordinate (x, y) data.

Populate detections with points The location of each detection is represented as a bounding-
box encoded by its spatial extent, i.e. the minimum and maximum pixel-coordinate values in
a four-tuple: bbox = (x0, y0, x1, y1). Similar to the floor segmentation approach of Håbrekke
and Nordstad [2022] discussed in Section 3.3, we populate each center line horizontally with
three equally spaced points.

First, we create horizontal line segments that are denoted by boundary representation
(b-rep), i.e. two bounding points. We get the center from each detection with a built-in
function from Detectron2. We combine the y value of the center with both the minimum and
maximum x values of the bounding box into horizontal center line = (x0, ycenter, x1, ycenter).

Second, we create a function that allows for variable point density in between the lines.
The initial approach is to have 3 equally spaced points per line. Other attempts include
uniform density over entire image width, or proportional between detection and image
width.

HDBSCAN The densified horizontal lines are fed to the next stage, HDBSCAN. We run
HDBSCAN on default parameters, since it is designed to vary search radius ϵ automatically
(a desired feature) as discussed in Section 2.7.

The clustering results are mapped to the pixel-coordinate values and plotted, to qualita-
tively assess the clustering performance while tuning the line densification function.

Figure 4.6.: An illustration how bivariate clustering is implemented, by first finding lines, then popu-
lating each line, and finally applying HDBSCAN.

43

4. Experimental design and development

4.3.3. Univariate approach

The bivariate approach is visually intuitive. However, the information that reveals where the
concentration of window and door rows are, is contained in the vertical distribution of the
data. By analogy, we often count storeys by counting the number of windows in one column.
As such, the vertical data distribution is of primary interest. We isolate the y data and
approach the problem by performing a univariate analysis as defined in Equation 2.7. First
we describe the development line from detection-based data, followed by the development
line from the segmentation-based data.

Detection-based

Point selection As previously mentioned, Mask R-CNN outputs detections as bounding-
boxes. The KDE requires an array of data points as input, so from each detection one
y-point is extracted and appended to an array. The array is sorted in ascending order, which
improves the KDE performance.

Figure 4.7.: For this particular façade, the point selection matters for the outcome of the floor count
determination. Note the smaller windows above the doors (bottom left).

The question arises: which point position from the detection bounding-box should be
selected? Although the location of windows related to symmetry/regularity in façades is
extensively discussed in literature, no statistical analysis is found on the “center (point)
of gravity” of façade elements concerning symmetry and regularity. Therefore, the top,
center and bottom y-points are extracted and fed to separate KDEs, while bandwidth and
kernel are kept constant. By comparing the three different plots in assessment, we gain a
better understanding of the effect of point position selection on the floor count estimation
performance.

44

4.3. Floor count estimation

(a) Top (b) Center (c) Bottom

Figure 4.8.: The KDEs derived from top (4.8a), center (4.8b) and bottom (4.8c) point selection from
façade detections in Fig. 4.7. The smaller windows above the doors result in less clearly separated
peaks in 4.8b and 4.8c, which is an undesired effect as it leads to false positives in more severe cases.

KDE and manual optimisation After point selection, the sorted array of y-points is fed
to the (naive) KDE. The KDE takes two parameters, kernel K and bandwidth h. The band-
width optimisation is done manually for the detection-based data. Each parameter is tuned
separately, while continuously assessed.

For bandwidth optimisation, a range of bandwidths are plotted, with kernel and point
selection kept constant. The curves are compared to one another in terms of curve shape.
Special attention is given to the ability of each corresponding curve to approximate the
correct number of maxima (which will be elaborated on later in this section).

For kernel optimisation, three different kernels with the continuity property are selected:
Gaussian, tricube and cosine. This time, the bandwidth and point selection are kept constant.
The rest of the optimisation procedure is similar. The curves from different kernels are
compared with one another, where special attention is given to the ability of each curve to
approximate the correct number of maxima.

Automatic bandwidth optimisation, e.g. Silverman’s rule of thumb or ISJ, did not work
for our detection-based data points. Most input images in our test set (Amsterdam Fa-
cade dataset) have between 5-20 detections, resulting in the equal amount of data points.
Examples in literature show sample sizes n > 100 for the use of automatic bandwidth opti-
misation.

(a) (b) (c)

Figure 4.9.: The bandwidth and kernel optimisation with the help of plots showing bandwidth range
and three different kernels. Note how bandwidth has a stronger influence on the curve shape.

45

4. Experimental design and development

Segmentation-based

Bitmap to points Mask R-CNN outputs each instance segmentation in the form of a
bitmap. In our case, each bitmap is an array the size of the input image. Each pixel that con-
tains the instance is encoded as True, all other pixels are encoded as False. As mentioned
before, the KDE requires a one dimensional array containing coordinate data, meaning the
bitmaps must be processed before passing onto the KDE. First, an array of zeros in the same
shape as input image is initiated. Each segmentation is concatenated to the zero array, where
each True value is converted to pixel value of 255. The resulting array is gray-scaled and split
into an x- and y-array. The y-array has a larger range and size than the detection-based array,
leading to more resolution in the distribution of points. Compared to the detection-based
array, the segmentation-based data is “spread out”. Noise may be estimated as differences
in the data distribution by the KDE. The method to find the extremes on this data led to erro-
neous errors, especially near the tails of the KDE function. Data normalisation alleviates this
side effect. The results are compared by plotting both the KDE functions of both normalised
and non-normalised segmentation-based data.

FFTKDE and automatic optimisation The size n of the y-array is significantly larger than
the detections-based point arrays. The segmentation-based arrays are up to the size of the
input image, in many cases n ≈ 1000. Conventional KDE runs somewhat slow (seconds per
image), which is not desirable when developing a pipeline towards large scale and automatic
processing of SVI. Therefore a fast convolution-based implementation of KDE using the FFT
(described in Section 2.7) is implemented with the KDEpy library [Odland, 2022].

Another consequence of the larger size of the array, is the option to utilise automatic
optimisation. The optimisation methods described in Section 2.7, i.e. Silverman’s rule of
thumb and ISJ, are implemented with a constant kernel (Gaussian). The oversmoothing
effect of applying Silverman’s on multimodal data is compared with the curve of ISJ, which
is supposed to outperform Silverman’s with multimodal distributions. Both plots are judged
in relation to maxima finding and its performance in floor count estimation.

4.3.4. Maxima finding

The output of both KDE and FFTKDE is a curve (of function f̂), in the format of a grid of
points (array). The implementation of finding the (relative) extremes is done with a SciPy
library named argrelextrema [Kramer, 2016]. It finds the extremes by traversing the array
output of the KDE and comparing neighboring values. A local maximum in an array a

is found when: a(maximum) = a[n-1] < a[n] > a[n+1]. A local minima is found when:
a(minimum) = a[n-1] > a[n] < a[n+1].

The maxima are the most important since the sum is the estimated floor count, which
is written to the corresponding ground-truth file for evaluation. The minima are used in
conjunction with the maxima to find “breaks” in the data, as explained in Section 2.7. The
data that is in between minima is assigned to the maximum in the middle, which enables
mapping the storey number to the corresponding detections. Remember that upon sorting,
the indices of the array are stored for this purpose. Though not necessary for floor count
estimation, it helps visualise the results which in turn is useful for error analysis.

The results of the experiments are evaluated both quantitatively with metrics defined in
Section 2.7 and qualitatively with side-by-side plots of density estimation curves and input
image.

46

4.3. Floor count estimation

(a) Input image with mapped floor count informa-
tion.

(b) Corresponding KDE, plotted with found ex-
tremes.

Figure 4.10.: The extremes of the KDE are used to find the most dense locations of data, called maxima
or peaks. The peaks are where most data points are representing windows and doors, which are
interpreted as storeys. As such, the sum of the peaks is the floor count. The example shows a detection-
based floor count determination.

47

5. Implementation and Experiments

5.1. Software and tools

Python All development of code is written in Python, unless stated otherwise.

Google Colaboratory For the implementation of the façade parsing and floor count esti-
mation stage, an interactive Python Google Colaboratory Pro environment is employed. The
interactive environment allows for quick prototyping, and the pro license allows the use of a
single NVIDIA A100 SXM4 40 GB GPU for fast training and inference of the façade parsing
model.

Detectron2 Mask R-CNN is built with Meta’s Detectron2 platform for AI research [Wu
et al., 2019]. The framework offers faster training than others [Meta AI Research, 2020],
includes a backbone “library”, is open-source, and is designed to be integrated into a Google
Colaboratory environment.

MATLAB For to automatic rectification, a MATLAB implementation is employed pro-
vided by Affara et al. [2016]. Currently, the implementation is limited to Windows due
to a included MEX file for the line segment detection part of the rectification method. This
makes the image rectification part of the data preparation stage separate from the rest of the
pipeline. In future development, the MATLAB implementation could be converted into a
Python-package such that the entire pipeline is in Python.

Repository All developed code, model weights and datasets created and used in this re-
search will be made available online and is open-source. The repository is pending, and will
be published on the following page: https://github.com/Dobberzoon/Facade2Floorcount.

5.2. Datasets

Amsterdam Facade dataset The Amsterdam Facade dataset is central is this thesis as it
is used for training and testing the façade parsing network, as well as for the development
of the floor count determination method. Reasons considered for selecting this dataset are
open data, annotations, and the image and dataset characteristics. Open data makes research
more accessible and reproducible. The annotations in the dataset adhere to the minimum
requirement of façade elements needed to identify a storey; window and door. The annota-
tion style used, COCO-style, is convenient as it is supported by the Detectron2 library used
in this research.

More important are the characteristics of the images in the dataset, as these will signifi-
cantly influence how and what the façade parsing network will learn. The image character-
istics considered are quality, variety and source. Many of the datasets used in façade parsing
studies are often manually rectified, taken with DSLR cameras, small in dataset size and/or
too homogeneous.

49

https://github.com/Dobberzoon/Facade2Floorcount

5. Implementation and Experiments

Although manual rectification leads to good rectification quality, the quality is not repre-
sentative of the (lower) quality from automatic image rectification as is the case for images
in the Amsterdam Facade dataset. Image (acquisition) source will also affect image quality.
DSLR cameras generally take higher quality images with less distortion, when compared
to panoramic cameras found in large scale acquisition of SVI. Moreover, the DSLR camera
can be positioned more consciously, resulting in a front-view perspective. The Amsterdam
Facade dataset is generated with the Amsterdam Panoramabeelden (Panoramic imagery)
API, that can be used to retrieve SVI from Amsterdam. The SVI is acquired with an omnidi-
rectional mobile imaging system, shown in Figure 5.1. The images are closer to real world
SVI in terms of image quality and characteristics.

Figure 5.1.: The car of the City of Amsterdam that is used to capture SVI from Amsterdam, equipped
with a 360◦ Trible MX7 mobile imaging system. Source: [Geospatial, 2022]

Considerations related to the characteristics of the dataset itself, are the size and variety.
With 910 annotated images, the dataset is larger than most datasets used in other façade
parsing studies. In terms of variety, the images originate from the North and West of Ams-
terdam which are chosen due to their relative architectural variation [Eijgenstein, 2020]. Both
size and variety are beneficial for the façade parsing network to learn, which can translate
to better generalisation of the network.

Figure 5.2.: Class imbalances in Amsterdam Facade dataset, containing 910 façade images.

50

5.2. Datasets

One observation made on the Amsterdam Facade dataset is the class imbalance in terms
of number of annotated instances, illustrated in Figure 5.2. The window-class is by far the
most dominant class, which naturally inherent to the real-world occurrence ratio between
windows and doors. This can result in bias towards the majority class (window) in the
façade parsing model.

Evaluation datasets For further evaluation of the proposed method, we included two
benchmark façade parsing datasets: Ecole Centrale Paris (ECP) dataset [Teboul et al., 2010]
and the eTRIMS dataset [Korc and Förstner, 2009]. The ECP dataset contains 104 anno-
tated, rectified and cropped images of Haussmannian style façades in Paris, including seven
labels: window, door, wall, sky, shop, balcony, roof, and chimney. The images are taken
in varying light and weather conditions, which poses a good challenge for the proposed
method. However, the effectivity of the automatic rectification method cannot be measured
since the images are pre-rectified. Hence, the eTRIMS dataset containing 60 annotated, non-
rectified (i.e. perspective view) images are added to the evaluation. The eight-class variant
of the dataset contains labels: window, door, building, car, pavement, road, sky and vegeta-
tion. The evaluation of floor count performance is conducted on eTRIMS before and after
the automatic rectification.

Wild SVI dataset The aforementioned datasets exhibit different image characteristics, which
makes for a well rounded collection of datasets for façade parsing and testing of the auto-
matic rectification. However, none of the datasets are designed for floor count determination,
nor do they reflect the wide variety of different architectural styles or building types that
are encountered in real-world SVI.

In development of the floor count determination prototype, it was found the floor count
values are imbalanced or limited in range. This can lead to bias in the floor count method
or limit thorough assessment. Another notable finding is a certain degree of homogeneity of
architectural styles and building types within each dataset. Although combining the datasets
increases heterogeneity, the combination of datasets still lacks taller buildings with more
than seven storeys, modern architecture (e.g. predominance of glass), or challenging SVI-
related anomalies. An example of the latter is related to a limitation of road-bounded SVI
acquisition, which can result in moderate to severe scaling and perspective-angle variance.

For reasons mentioned, a small custom dataset is created that includes taller buildings (up
until 14 storeys), modern architecture with a predominance of glass and various perspective-
angles and image scales are included. The façades are cropped to contain only a single
building, as multiple-building images are already covered in the eTRIMS dataset. The im-
ages are mostly collected through GSV, and some from Mapillary for comparison. For GSV
images, the automatic pose estimation is used as much as possible to replicate an automatic
pipeline.

51

5. Implementation and Experiments

(a) (b) (c)

(d) (e) (f) (g)

(h)

Figure 5.3.: Some examples of the custom wild street view images dataset, including taller buildings
(with more storeys), modern architecture and varying image scales and perspectives.

5.3. Mask R-CNN training and optimisation experiments

The Mask R-CNN model is trained on the Amsterdam Facade dataset (see Section 5.2). A
80/20 split is used for training and test subset of the dataset. For optimising the training
routine of the model, both manual and automatic hyperparameter tuning are explored.

Manual hyperparameter tuning was performed to get familiar with a few the Mask R-
CNN hyperparameters. Most notable are learning rate (LR), weight decay and warm-up
iterations. These were found to affect the training the most. LR, arguably the most important
hyperparameter, is the factor that controls how much the model changes at each iteration
while minimising a loss function [Goodfellow et al., 2016]. With all other hyperparameters
kept constant, an LR between 0.00025-0.0001 is found to be effective.

52

5.3. Mask R-CNN training and optimisation experiments

Figure 5.4.: The full learning curve is plotted in manual hyperparameter tuning, with a LR of 0.0001
for 50 epochs. With a batch size of 2, one epoch is 392 iterations. Note how the model starts overfitting
slightly beyond 25 epochs.

The problem found with this approach is that more than 10K iterations or 25 epochs are
needed for convergence. It was found that weight decay and warm-up iterations can help to
reach convergence in less iterations. Weight decay is the incremental decrease of LR over a
given set of checkpoints, and warm-up iterations is a routine where the LR is built up from
0 to the base LR in the first few iterations.

Automatic hyperparameter tuning Since resources are limited with the Google Colabora-
tory Pro platform, especially when training with the premium GPU as specified, only so
many training routines can be performed before hitting computing limits. In search for a
better set of hyperparameters that result in better performance with less training, a more
sophisticated approach for hyperparameter tuning is employed. The Weights & Biases li-
brary [Biewald, 2020] is used for an automated hyperparameter search, to explore the space
of possible models. Instead of the classic grid search or parameter sweep, where a manually
specified subset of hyperparameters searched exhaustively, Bayesian and random search are
employed.

53

5. Implementation and Experiments

Figure 5.5.: The sweep configuration chart that gives an overview of the hyperparameters searched,
and which combination resulted in the lowest total loss.

A marginal increase in performance is achieved with automatic tuning compared to man-
ual tuning as shown in Table 5.1. The performance difference as a result of manual versus
automatic tuning on floor count determination performance is measured in Chapter 6.

Table 5.1.: Performance comparison of façade parsing model, manual versus automatic hyperparam-
eter tuning. The automatic tuning resulted in marginally better performance in terms of AP in both
object detection (bbox) and instance segmentation (segm).

Tuning APbbox APsegm

Manual 76 77
Automatic 78 80

Backbone comparison Two conventional backbones, ResNet-50 FPN or ResNet-101 FPN,
are trained and compared in terms of AP in Table 5.2. In our experiments, the ResNet-50 FPN
performed marginally better than the ResNet-101 FPN while also being computationally
cheaper to train. Hence, it is the backbone used in further experimentation unless specified
otherwise.

Table 5.2.: Comparison of the ResNet-50 FPN and ResNet-101 FPN backbone performance in object
detection (bbox) and instance segmentation (segm) in terms of AP. Their best found configuration was
found using the same automatic hyperparameter tuning protocol.

APbbox APsegm

ResNet-50 77.81 79.79
ResNet-101 77.27 79.16

54

6. Results and Analysis

6.1. Image rectification experiments

6.1.1. VP estimation

The results of image rectification by VP estimation and image warping, are shown in Fig-
ure 6.1. The results are paired with the original, so the difference can clearly be observed.
The rectification results in the top row are reasonable, and the regularity assumption is
enforced. However, note how the rectification result 6.1d is substantially warped which
changes aspect ratio. The results in the bottom row are worse. The image in 6.1e is from far
away, some perspective angle and the façade is tall. A challenging façade, but not extreme.
Yet, the image rectification result thereof is extreme. The warping of the image is severe,
such that the rectified image is worse than the original and the regularity assumption is not
enforced. The rectification result in 6.1h has improved regularity, but also in this example
the warping deteriorated the image quality.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1.: Image rectification results by VP estimation.

6.1.2. RANSAC and homography transform

The image rectification results by direct homography transform are shown in Figure 6.2.
The top row are the same images shown in the previous image rectification method (see Fig-
ure 6.1). Most of the results by this method are impressive, when considering enforcement
of the regularity assumption, varying input image scales and qualities, and image warping
whilst keeping aspect ratios within reason.

55

6. Results and Analysis

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2.: Image rectification results by direct homography transform.

It is only in cases where the perspective view angle around > 30◦, that this image rectifi-
cation method starts introducing severe warping that interferes with the aspect ratio of the
image. In the example shown in Figure 6.3, the warping causes the model to fail to detect
the top window. That said, it also improves detection quality on the first two storeys, which
is due to the windows appearing more rectangular in the rectified image.

(a) Perspective view image. (b) Rectified image.

Figure 6.3.: Here we can see that in cases of large angle perspective view, the rectification distorts the
image severely and the top window is no longer detected. This is due to the model having mediocre
performance on smaller objects.

6.2. Façade parsing results

Overall, with a confidence threshold of 0.8 in inference, good façade parsing results are
achieved with the Mask R-CNN as illustrated in Figure 6.4. The results look promising as
input for the next stage, floor count determination.

56

6.2. Façade parsing results

(a) (b) (c) (d)

Figure 6.4.: A few façade parsing results with Mask R-CNN. A confidence threshold of 0.8 results in
few false positives, still detecting and segmenting instances that are partly occluded.

6.2.1. Detection and segmentation evaluation

For the side-by-side evaluation of the detection and segmentation results, inference is per-
formed on the test subset of the Amsterdam Facade dataset with the automatically tuned
model. The object classes evaluated are window, door and sky in Table 6.1. The latter is
included as background-class, increasing the performance of the model overall.

Table 6.1.: A comparison of the object detection and instance segmentation performance on classes
window, door and sky. The performance is measured in terms of class-specific AP.

Window Door Sky

Detection 71 67 95
Segmentation 72 69 98

The Mask R-CNN performs better on the majority class (window) in both detection (71%)
and segmentation (72%), compared to minority class (door) in detection (67%) or segmen-
tation (69%). This is expected with a substantial class imbalance in the training dataset,
though the marginal performance difference is within reason.

57

6. Results and Analysis

Table 6.2.: A comparison of the object detection and instance segmentation performance across differ-
ent detection sizes and thresholds.

APs APm APl AP75 AP50 AP

Detection 55 71 95 88 96 78
Segmentation 57 73 98 89 97 80

From Table 6.2 we can conclude that the façade parsing model performs significantly
better on larger objects (APm, APl) compared to smaller object (APs). This is problematic
for our automatically rectified datasets, as in some cases severe warping causes object sizes
(e.g. windows) to decrease in size. If the model fails to detect a whole row of windows, the
subsequent floor count determination method will detect a storey less. This is exemplified
in the Figure 6.3.

58

6.3. Floor count estimation experiments

6.3. Floor count estimation experiments

6.3.1. FloorLevel-Net evaluation

The reproduction of FLN was successful, and run on a subset of the CMP dataset and the
complete ECP dataset. The results are shown in Figure 6.5. In the top row, we observe the
results on the CMP dataset. FLN is partly trained on the CMP dataset, so the results are
good as expected. However, note how the network detects a false positive in 6.5d. In the
bottom row, we observe the results on the ECP dataset. The results are poor, and unusable
for floor count detection. An interesting finding, is that in most cases the model predicts
between 3 and 5 floor lines, regardless how many storeys the façade has. This indicates
that the network has a strong bias, and training dataset should be diversified for the goal of
counting storeys.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5.: Results of the FloorLevel-Net reproduction, run on the CMP (top) and ECP (bottom)
dataset.

6.3.2. Bivariate vertical clustering evaluation

The bivariate vertical clustering experiments are run on the Amsterdam Facade datasets,
as shown in Figure 6.6. In the top row are successful examples. In the bottom row are
a few failure cases, which exposes the limitations of the approach. Generally, the method
struggles with detections that are not vertically aligned well, or smaller vertical differences
from intraclass variance. As an example, in 6.6h we see that the small windows on top of the
door are detected as a separate cluster from the door and windows to the left. All of these
should belong to the same cluster. Varying in point density did not help, as it would fix
some cases but cause new issues in others. Notice how clusters on similar vertical position,
can still be put into a different cluster due to horizontal separation. This observation led to
the isolation of the y-data.

59

6. Results and Analysis

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6.: Results of the bivariate approach. On the top row are results that are correct. The bottom
row shows failure cases.

6.3.3. Univariate vertical clustering evaluation

The experiments of univariate vertical clustering were most extensive, as the method showed
the most potential early on. In Figure 6.7 are the results of floor count estimation across five
different datasets. The method shows it works with different datasets, meaning it is robust
to varying image quality and characteristics. From the comparison on the bottom row, we
can observe the impact of the rectification pre-processing step on the detection and floor
count estimation performance. Weaknesses are also exposed in the bottom row, such are
occlusions (red car) and surrounding façades that are also detected thus resulting in an
incorrect floor count.

60

6.3. Floor count estimation experiments

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7.: The results of univariate approach to floor count estimation across five different datasets:
Amsterdam Facade (6.7a, 6.7d), ECP 6.7b, eTRIMS (6.7e, 6.7g) en eTRIMS rectified (6.7f, 6.7h).

6.3.4. Floor count performance evaluation

The evaluation of floor count determination performance is summarised in Table 6.3 and 6.4,
to compare between the manually and the automatically optimised façade parsing methods,
respectively. Each table contains the summary of metrics across all datasets mentioned in
Section 5.2, of the detection-based, segmentation-based and normalised segmentation-based
methods.

61

6. Results and Analysis

Table 6.3.: Floor count determination performance from the manually optimized façade parsing model,
across all datasets in terms of MAE, mean error, standard deviation (σ) error, F1-score weighted average
and accuracy. Best results in bold, ↓= lower is better, ↑= higher is better.

Ams. Façade ECP eTRIMS eTRIMS rect wild wild rect

Detection MAE ↓ 0.17 0.80 0.65 0.5 2.24 2.36
based ME ↓ -0.17 -0.80 0.32 0.17 -1.57 -2.18
data σ error ↓ 0.38 0.74 0.93 0.74 3.78 3.45

f1 ↑ 0.83 0.49 0.49 0.53 0.21 0.35
Accuracy ↑ 0.83 0.38 0.48 0.53 0.24 0.32

Segmentation MAE ↓ 0.66 0.88 1.92 7.9 2.10 2.86
based ME ↓ 0.30 -0.86 1.68 7.73 -0.76 0.32
data σ error ↓ 1.77 0.70 4.31 20.65 4.05 5.06

f1 ↑ 0.63 0.38 0.36 0.41 0.44 0.19
Accuracy ↑ 0.64 0.28 0.35 0.38 0.43 0.23

Segmentation MAE ↓ 0.20 0.95 0.60 0.65 1.90 2.23
based ME ↓ -0.20 -0.95 0.30 0.42 -1.90 -2.14
data σ error ↓ 0.40 0.77 0.83 1.11 3.39 3.37
(normalised) f1 ↑ 0.79 0.36 0.49 0.50 0.48 0.28

Accuracy ↑ 0.80 0.27 0.48 0.50 0.48 0.32

Table 6.4.: Floor count determination performance from the automatically optimized façade parsing
model, across all datasets in terms of MAE, mean error, standard deviation (σ) error, F1-score weighted
average and accuracy. Best results in bold, ↓= lower is better, ↑= higher is better.

Ams Façade ECP eTRIMS eTRIMS rect wild wild rect

Detection MAE ↓ 0.19 0.57 0.45 0.34 2.32 2.86
based ME ↓ -0.19 -0.55 0.15 0.03 -1.68 -2.00
data σ error 0.42 0.71 0.84 0.64 3.46 3.21

f1↑ 0.83 0.65 0.67 0.69 0.23 0.23
Accuracy ↑ 0.82 0.54 0.67 0.70 0.23 0.24

Segmentation MAE ↓ 1.0 0.86 2.62 3.28 2.55 5.33
based ME ↓ 0.66 -0.33 2.42 3.15 0.36 3.90
data σ error ↓ 3.20 2.40 5.06 7.44 5.35 10.83

f1↑ 0.63 0.61 0.35 0.51 0.35 0.30
Accuracy ↑ 0.63 0.49 0.35 0.50 0.32 0.29

Segmentation MAE ↓ 0.23 0.66 0.47 0.48 2.00 2.10
based ME ↓ -0.17 -0.66 0.20 0.15 -1.91 -1.90
data σ error ↓ 0.48 0.71 0.80 0.80 2.69 3.05
(normalised) f1 ↑ 0.77 0.59 0.64 0.58 0.26 0.27

Accuracy ↑ 0.78 0.48 0.63 0.58 0.27 0.29

As expected, the method performs the best for the test dataset the façade parsing model is
trained on and the floor count determination method is developed with. The detection-based
method performs best with an MAE of 0.17 and accuracy of 0.83, followed by the normalised
segmentation-based method with an MAE of 0.20 and accuracy of 0.80. The model tends to

62

6.3. Floor count estimation experiments

undershoot (negative ME scores), which can be due to the strict confidence threshold of 0.8 in
the inference module. Considering detection-based and normalised segmentation-based for
both manual and automatic optimised façade parsing methods, the results for all datasets
but wild, the MAE is under 1 storey.

What is interesting regarding the comparison between rectified and non-rectified data,
is that results vary both positively and negatively. This can be explained by the fact that
although rectification enforces regularity, the warping as seen in Figure 6.3 can cause severe
distortion causing the model to fail to detect crucial windows or doors.

(a) Confusion matrix of ECP dataset, with a manually op-
timised façade parsing network.

(b) Confusion matrix of ECP dataset, with a automatically
optimised façade parsing network.

Figure 6.8.: The effect that automatic hyperparameter tuning had was surprising. as the performance
gain in terms of AP were marginal. It means that manual hyperparameter tuning is relevant to the
training and test dataset, but automatic hyperparameter tuning can improve the generalisability of
your model.

When comparing Table 6.3 and 6.4, a general difference is that the former (manually
tuned) excels on the Amsterdam Facade dataset, whereas the latter (automatically tuned)
performs more evenly. Again considering the detection-based and normalised segmentation-
based methods, the automatically tuned model performs significantly better on ECP, eTRIMS
and eTRIMS rectified and only marginally worse on the Amsterdam Facade and wild SVI
datasets. The comparison of the confusion matrices in Figure 6.8 from experiments on the
ECP dataset show from mostly undershooting floor count determination in Figure 6.8a to
mostly correct floor count determination in Figure 6.8b.

63

6. Results and Analysis

(a) (b) (c)

Figure 6.9.: The best results visualised in a histogram in 6.9a, a confusion matrix in 6.9b and a violin
plot in 6.9c.

Concluding the results in Figure 6.9, the results look promising with its main problem
being undershooting the floor count by one storey. It seems a marginal increase in façade
parsing performance already reduced the undershooting problem significantly.

6.3.5. Failure cases

It is clear from comparing segmentation-based and normalised segmentation-based results
that normalisation is a necessary processing step for the floor count determination method
to work properly, which is especially noticeable in the eTRIMS rectified results in Table 6.3.
The phenomenon can be observed in Figure 6.10.

(a) (b) (c)

Figure 6.10.: The automatic ISJ bandwidth optimisation method finds many maxima in non-normalised
data, as the data is relatively spread out for the one storey (see 6.10b). Normalisation “compresses”
the data, such that a single maxima is determined.

The undershooting from floor count determination estimation can be due to non-detection
of smaller windows (e.g. of semi-basements or attic windows), or when façades have a
shop as ground floor. Note that if the minority class door was detected in Figure 6.11a, an
additional storey would have been counted thus would have a correct floor count estimation.
Alas, a car are occluding the door partially, which may confuse the model as the door is non-
rectangular as a result.

64

6.3. Floor count estimation experiments

(a) (b)

Figure 6.11.: The general undershooting of the floor count determination method is often due to non-
detection of smaller windows or unknown class shop.

65

7. Conclusions

7.1. Research overview

The focus of this thesis was to develop an experimental pipeline that explores how auto-
matically extract floor count information with the use of façade parsing from street view
imagery (SVI). Other intentions that were set during the study include large scale applica-
tion, using open-source data and software. The interest and relevance of the research in the
field of geomatics is to tap into a vast and fast growing form of spatial data, SVI. This can
help fill the gap of missing floor count information in GIS datasets and 3D city models, that
is useful to many applications in urban analytics. Deep learning has shown its potential to
gain new insights from data and achieve feats in fields such as computer vision, which gave
reason to believe it could solve a rather intuitive human task that is known as counting the
number of storeys in images. This raised the following question:

How to determine floor count in an image with the use of learning-based façade parsing?

Façade parsing detects and segments the façade elements, which can be used to find vertical
clusters that corresponds to storeys, under the assumption that façade design harnesses reg-
ularity. The best method to find vertical clusters is by means of computing the kernel density
estimation function, and perform maxima finding on the function which corresponds to the
floor count. Image rectification can improve the floor count performance, though the façade
parsing model should be trained to detect smaller objects as well in cases of significant
warping of the image.

Floor count evaluation on the full pipeline show an 83 % accuracy and a MAE of 0.17
on detection-based data. On (normalised) segmentation-based data, an accuracy of 80 %
and MAE of 0.20 are achieved. Considering the relatively small dataset used for training
and development, and with no discrimination made between lower or taller buildings, the
method proves façade parsing is a promising approach for extracting floor count information
from SVI. The following sub-questions will provide more nuance to different aspects of the
main question.

1. How can we use deep learning for façade parsing?

Deep learning has successfully been applied to achieve façade parsing. The Mask R-
CNN framework provided both object detections and instance segmentations. Impor-
tant considerations are dataset selection, transfer learning and hyperparameter tuning.
The dataset selected to train and test the network was as close as possible to the ap-
plication in mind. A pre-rectified dataset from an SVI source, with the distortions
that are to be expected in similar data. Transfer learning is crucial when little data is
available, as it allows for the use of a general trained network to be re-trained on a
relatively small dataset. If smaller dataset fits the target application, good results can
be achieved. Finally, hyperparameter tuning is an essential process to optimise learn-
ing from the dataset. Manual hyper parameter tuning can provide insights on what
parameters are most responsive in the model given the data. Preliminary findings can

67

7. Conclusions

be transferred to automatic hyperparameter tuning to further improve performance.
Furthermore, automatic hyper parameter tuning is beneficial for model generalisation
and making the process more reproducible.

One of the main limitation is related to undershooting, that is caused by the façade
parsing model to fail to detect small or occluded windows/doors. This shows that
major improvements in the floor count determination performance can be made if the
façade parsing model is trained to detect smaller objects, and non-rectangular windows
and doors (due to occlusion).

2. How should façade parsing outputs be processed for floor count determination?

In order to prepare façade parsing outputs for floor count determinations with den-
sity estimation, the outputs should be processed into pixel coordinate-data. First, the
most relevant classes (e.g. window and door) that are available in the training dataset
should be filtered for both detection-based and segmentation-based data. For both
outputs, the x and y dimension have to be split as well. The detections contain spatial
information in the form of spatial extent. In this study, single y-point extraction was
the chosen method to represent each detection, as this allowed for simple input for the
subsequent KDE. It was found empirically that the top-point was the most robust point
for floor count determination performance. The segmentation instances are bitmaps
that need to be converted to pixel coordinate-data. Each segmentation bitmap is con-
catenated, and the result is split into a x and y array. The y array can be passed onto
the KDE. However, findings show that the segmentation-data needs normalisation for
better floor count determination performance via maxima finding.

3. How can we vertically group façade parsing outputs, such that the groups represent
countable storeys?

For the vertical grouping of façade parsing outputs, a univariate distribution analysis
is performed with KDE on both detection- and segmentation-based data. The two
most important parameters for KDE optimisation are bandwidth and kernel. There are
both manual and automatic optimisation of bandwidth. The empirical findings show
that bandwidth is more crucial, as long as a kernel with continuous property is chosen.
From the KDE, maxima are extracted by traversing the KDE output with a “greater than”
comparator. A general finding is that the method worked better on detection-based
data, across all datasets. One reason is the fact that the KDE was manually tuned on the
detection-based data, whereas for the segmentation-based data an automatic method
was chosen for bandwidth optimisation. The difference in optimisation shows that
manual tuning can leverage domain knowledge. However, the performance difference
is acceptable considering the time saved in the optimisation process. The time-saving
aspect can contribute to more widespread applicability of the method in terms of
different datasets, and used as a tool for method calibration onto other datasets.

4. What pre- and/or post-processing steps do we need to improve floor count determi-
nation performance?

In terms of pre-processing, our findings show that image rectification improves perfor-
mance in the eTRIMS dataset marginally overall, whereas the performance on our wild
SVI dataset is marginally worse (excluding non-normalised segmentation-based data).
The reason why rectification did not lead in a substantial improvements in all cases
is related to façade parsing performance. The rectification introduces more distortion,
in some cases severe. The distortions can make object in the images smaller, which is
what the façade parsing model scores lowest on in terms of AP. A possible solution

68

7.2. Discussion

is re-scaling of the rectified images, another solution is to add data augmentations to
the training procedure to better deal with different scaling. More improvements can be
made in the data annotations as well. The dataset contains many train-images that lack
the annotation of small windows. This further explains the mediocre performance of
the façade parsing model on smaller objects. Moreover, some of the annotated images
lack annotations on neighboring façades. This can confuse the model, as the pixels are
very similar to the ones annotated, but will falsely be penalised when predicted.

In terms of post-processing, the results show that segmentation-based façade parsing
outputs need normalisation of the pixel-coordinate data to result in a KDE function that
is not sensitive to noise.

7.2. Discussion

7.2.1. Contributions

This research builds upon learning-based façade parsing works, and contributes by com-
bining existing methods to approach the problem of floor count from SVI in an alternative
way. None of the existing works on (indirect) floor count determination with learning-based
façade parsing, were evaluated on benchmark datasets before.

• Deep learning pipeline for façade parsing that can perform both detection and segmen-
tation, trained on a open-source domain specific dataset, and floor count estimation
module which are all published for further use and development.

• A small dataset that can be used as starting point for dedicated SVI facade parsing and
floor count dataset, along with floor count annotations for well known façade image
datasets.

• Review of and experimentation on other methods that can be useful for how floor
count determination can be achieved from SVI and/or other data.

7.2.2. Limitations

During research and development of the floor count determination method, weaknesses and
limitations of the approach were exposed, which we outline as follows:

• Dataset: The dataset used was not designed with a floor count application in mind.
The dataset was too uniform in the sense of architectural and geographic variabil-
ity, image quality, façade morphology. Neither of the datasets used had floor count
ground-truth data available, and floor count annotations were made manually by vi-
sual inspection (by the author) of the images. However, cases of ambiguity, bias and
non-complete knowledge of the buildings make some of the annotations debatable.

Another limitation of the dataset used was inconsistent window and door annota-
tions, from smaller windows or objects on neighboring façades. This observation was
made when assessing the results, unfortunately too late in the process to improve the
annotations. It is highly recommended to improve the annotations before using the
Amsterdam Facade dataset.

• Breadth of research: Since the exploratory nature of this thesis and the breadth of
development options, there are a couple of investigated methods that were shelved

69

7. Conclusions

or discontinued due to time constraints in the project. In retrospect, the populated
horizontal line clustering could be further improved, quantitatively assessed and tested
on other datasets. The RANSAC method described by Håbrekke and Nordstad [2022]
should also be employed and evaluated on the same data, to get a better understand
how these works compare.

• SVI coverage and practicality of large scale application: During the creation of a
SVI dataset and selection of other SVI /façade datasets, literature and observations
indicated there are significant limitations in the use of SVI for analysing building data.
Hence, the problem of counting storeys was simplified. For instance, not all buildings
are close to an open road, many areas in developing countries are not covered yet,
buildings narrow streets and high risers might be practically impossible to capture
completely. Another practical issue, which is not formally investigated in this research,
is the use of APIs to create SVI datasets, which come with its own set of challenges. One
of which is targeting the façade of interest and isolating it from the rest of the image.

• Computation limitations: There was no formal budget for cloud computing, meaning
small scale cloud computing services were rented. The computation time was lim-
ited as a result, which means the training routines (both manual and automatic) were
conservative.

7.2.3. Recommendation for future work

Based on the limitations and observations made during this research, we formulate the
following recommendations:

• Dataset creation: Since a small performance gain in façade parsing performance, given
that most errors are caused by failure of detection, and that the dataset used for train-
ing has the aforementioned limitations, it is strongly suggested to create a dedicated
SVI façade parsing dataset with an API from an open-source (e.g. Mapillary, OS-
M/Overpass Turbo or otherwise) that is geographically and socio-economically strat-
ified on a global scale, has a high degree of architectural and structural variability,
contains as much ground-truth data on building attributes as possible, and regards
all quality aspects mentioned in Section 2.3 or Hou and Biljecki [2022]. It is strongly
recommended to open source the dataset and code to create it.

If one is interested in working with the GSV API, one could apply for Cloud Credit
funding for academia [Google, 2023]. However, terms and regulations should be thor-
oughly considered.

• Automatic façade retrieval and isolation In relation to dataset creation, a good study
would be on automatic acquisition of SVI data with an API and targeting the correct
building by façade isolation as mentioned in Ogawa et al. [2021].

• Conduct a literature review: on the definitions, regulations, and architectural and
structural design of storeys, and storey variants, such as semi-basements, half-storeys,
mezzanines, attics, roof shapes, and so on. In addition, conduct a corresponding re-
view on GIS standards that regard storeys and (its relation to) floor count.

• More sophisticated model design: FloorLevel-Net reproduction was not a complete
failure. The model was very complex and time consuming to reproduce, but inference
was run successfully. Training the model was not accomplished, and it would be

70

7.2. Discussion

interesting to investigate the method further for its capability to detect floor-level lines
in perspective view SVI. The initial results shown do reveal there is some potential for
use in floor count determination from SVI, and deserves a quantitative assessment after
training on appropriate data.

Another recommendation from using FLN, is to investigate more sophisticated façade
parsing models that employ height and/or symmetry attention modules. The modules
guide the learning process, which can result in achieving higher level semantic beyond
singular elements.

A final recommendation in this context is a research focus on model (inference) speed.
Very few papers, if any, in relation to façade parsing for urban analytics and related
applications mention real-time performance of the model. With large scale applications
in mind, speed is essential. Another opportunity is real-time acquisition of information
as the street view car patrolling around cities.

• Improve vertical clustering: The manual and automatic optimisation of the KDE and
FFTKDE can be further optimised. For instance, a parameter search can be performed
in maximisation of accuracy or minimisation of MAE. The automatic bandwidth op-
timisation can give a good initial guess, and used to configure a range of bandwidth
for the parameter search. Other optimisation method to improve vertical clustering is
regularisation of the detections, as described by Wang [2022].

71

A. Appendix

A.1. Experimental design and development

Page left intentionally blank, figure on the next page.

73

A. Appendix

Figure A.1.: The complete and detailed overview of the proposed three-staged method and devel-
opments steps, which consists of: 1. data preparation, where floor count annotation files are made,
datasets are reviewed, selected and created, and images are rectified; 2. façade parsing, where two
deep learning networks are investigated, of which Mask R-CNN is trained and optimised; 3. floor
count estimation, where detections and segmentations are processed, and followed by vertical cluster-
ing experiments, of which KDE/FFTKDE are further developed and optimised. Finally, all successful
experiments are chained into a full pipeline (follow bold lines), then tested on multiple datasets and
analysed.

74

Bibliography

Affara, L., Nan, L., Ghanem, B., and Wonka, P. (2016). Large scale asset extraction for urban
images. In European Conference on Computer Vision, pages 437–452. Springer.

Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (ICET), pages
1–6. Ieee.

Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L.,
and Weaver, J. (2010). Google street view: Capturing the world at street level. Computer,
43(6):32–38.

Aydin, Y. C. and Mirzaei, P. A. (2020). A novel mathematical model to measure individuals’
perception of the symmetry level of building facades. Architectural Engineering and Design
Management, pages 1–18.

Ayenew, M. (2021). Towards large scale façade parsing: A deep learning pipeline using mask
r-cnn.

Biewald, L. (2020). Experiment tracking with weights and biases. Software available from
wandb.com.

Biljecki, F. (2017). Level of detail in 3D city models. PhD thesis, Delft University of Technology,
Delft, the Netherlands.

Biljecki, F. and Ito, K. (2021). Street view imagery in urban analytics and gis: A review.
Landscape and Urban Planning, 215:104217.

Botev, Z. I., Grotowski, J. F., and Kroese, D. P. (2010). Kernel density estimation via diffusion.
The annals of Statistics, 38(5):2916–2957.

Campkin, B. and Ross, R. (2016). Negotiating the city through google street view. In Camera
Constructs, pages 169–180. Routledge.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, (6):679–698.

Chen, F.-C., Subedi, A., Jahanshahi, M. R., Johnson, D. R., and Delp, E. J. (2022). Deep
learning–based building attribute estimation from google street view images for flood
risk assessment using feature fusion and task relation encoding. Journal of Computing in
Civil Engineering, 36(6):04022031.

Chu, C.-Y., Henderson, D. J., and Parmeter, C. F. (2015). Plug-in bandwidth selection for
kernel density estimation with discrete data. Econometrics, 3(2):199–214.

Cohen, A., Oswald, M. R., Liu, Y., and Pollefeys, M. (2017). Symmetry-aware facade parsing
with occlusions. In 2017 International Conference on 3D Vision (3DV), pages 393–401. IEEE.

75

Bibliography

Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic segmentation via multi-task net-
work cascades. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3150–3158.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee.

Eijgenstein, C. (2020). Chrise96/3D building reconstruction. https://github.com/chrise96/

3D_building_reconstruction [Accessed: 10-8-2022].

Eijgenstein, C. (2021). Automatically enhance citygml lod2 buildings with facade details,
by using a panoramic image sequence and building footprint data. Master’s thesis, Vrije
Universiteit Amsterdam.

Elgendy, M. (2020). Deep learning for vision systems. Simon and Schuster.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–
231.

Fathalla, R. and Vogiatzis, G. (2017). A deep learning pipeline for semantic facade segmen-
tation.

Fu, Y. and Yu, W. (2020). A formalization of properties of continuous functions on closed
intervals. In International Congress on Mathematical Software, pages 272–280. Springer.

Gaw, L., Chen, S., Chow, Y., Lee, K., and Biljecki, F. (2022). Comparing street view imagery
and aerial perspectives in the built environment. ISPRS Annals of Photogrammetry, Remote
Sensing & Spatial Information Sciences, 10.

Gemeente Amsterdam (2007). Kenmerk bouwlaag verblijfsobject. https://www.amsterdam.nl/
stelselpedia/bag-index/catalogus-bag/objectklasse-vbo/kenmerk-bouwlaag/ [Ac-
cessed: 3-1-2023].

Geospatial, T. (2022). Amsterdam boosts efficiency amp; access to spatial data through
trimble-enabled mobile mapping.

Gilge, C. (2016). Google street view and the image as experience. GeoHumanities, 2(2):469–
484.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587.

Goel, R., Garcia, L. M., Goodman, A., Johnson, R., Aldred, R., Murugesan, M., Brage, S.,
Bhalla, K., and Woodcock, J. (2018). Estimating city-level travel patterns using street im-
agery: A case study of using google street view in britain. PloS one, 13(5):e0196521.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Google (2023). Get Cloud credits for your students. https://edu.google.com/programs/

credits/teaching/?modal_active=none [Accessed: 10-1-2023].

76

https://github.com/chrise96/3D_building_reconstruction
https://github.com/chrise96/3D_building_reconstruction
https://www.amsterdam.nl/stelselpedia/bag-index/catalogus-bag/objectklasse-vbo/kenmerk-bouwlaag/
https://www.amsterdam.nl/stelselpedia/bag-index/catalogus-bag/objectklasse-vbo/kenmerk-bouwlaag/
https://edu.google.com/programs/credits/teaching/?modal_active=none
https://edu.google.com/programs/credits/teaching/?modal_active=none

Bibliography

Gramacki, A. and Gramacki, J. (2017). Fft-based fast computation of multivariate kernel
density estimators with unconstrained bandwidth matrices. Journal of Computational and
Graphical Statistics, 26(2):459–462.

Hartmann, A., Meinel, G., Hecht, R., and Behnisch, M. (2016). A workflow for automatic
quantification of structure and dynamic of the german building stock using official spatial
data. ISPRS International Journal of Geo-Information, 5(8):142.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Heidenreich, N.-B., Schindler, A., and Sperlich, S. (2010). Bandwidth selection methods for
kernel density estimation-a review of performance. Available at SSRN 1726428.

Heidenreich, N.-B., Schindler, A., and Sperlich, S. (2013). Bandwidth selection for kernel
density estimation: a review of fully automatic selectors. AStA Advances in Statistical
Analysis, 97(4):403–433.

Hou, Y. and Biljecki, F. (2022). A comprehensive framework for evaluating the quality of
street view imagery. International Journal of Applied Earth Observation and Geoinformation,
115:103094.

Hussain, S., Anwar, S. M., and Majid, M. (2018). Segmentation of glioma tumors in brain
using deep convolutional neural network. Neurocomputing, 282:248–261.

Håbrekke, and Nordstad, F. D. (2022). Estimating the height of facades with street-level
imagery using facade parsing, floor segmentation, and urban rules. Master’s thesis, Nor-
wegian University of Science and Technology.

Iannelli, G. C. and Dell’Acqua, F. (2017). Extensive exposure mapping in urban areas through
deep analysis of street-level pictures for floor count determination. Urban Science, 1(2):16.

Jiang, H., Yan, D.-M., Dong, W., Wu, F., Nan, L., and Zhang, X. (2016). Symmetrization of
facade layouts. Graphical Models, 85:11–21.

Kong, G. and Fan, H. (2020). Enhanced facade parsing for street-level images using convo-
lutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12):10519–
10531.

Korc, F. and Förstner, W. (2009). etrims image database for interpreting images of man-made
scenes. Dept. of Photogrammetry, University of Bonn, Tech. Rep. TR-IGG-P-2009-01.

Kramer, O. (2016). Scikit-learn. In Machine learning for evolution strategies, pages 45–53.
Springer.

Kutzner, T., Chaturvedi, K., and Kolbe, T. H. (2020). Citygml 3.0: New functions open
up new applications. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation
Science, 88(1):43–61.

Laakso, M., Kiviniemi, A., et al. (2012). The ifc standard: A review of history, development,
and standardization, information technology. ITcon, 17(9):134–161.

77

Bibliography

Läuter, H. (1988). Silverman, bw: Density estimation for statistics and data analysis. chap-
man & hall, london–new york 1986, 175 pp.,£ 12.—.

Ledoux, H., Arroyo Ohori, K., Peters, R., and Pronk, M. (2022). Computational modelling of
terrains. Self-published.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017). Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2117–2125.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer.

Liu, C. (2011). Automatic facade image rectification and extraction using line segment fea-
tures. In VISAPP, pages 104–111.

Liu, H. (2020). DeepFacade. https://github.com/liuhantang/DeepFacade [Accessed: 20-5-
2022].

Liu, H., Xu, Y., Zhang, J., Zhu, J., Li, Y., and Hoi, S. C. (2020). Deepfacade: A deep learning
approach to facade parsing with symmetric loss. IEEE Transactions on Multimedia, 22:3153–
3165.

Liu, H., Zhang, J., Zhu, J., Hoi, S. C. H., Liu, H. ., Zhang, J. ., and Zhu, J. . (2017). Deepfacade:
A deep learning approach to facade parsing.

Liu, X. and Milanova, M. (2018). Visual attention in deep learning: a review. Int Rob Auto J,
4(3):154–155.

Liu, Y., Hel-Or, H., Kaplan, C. S., Van Gool, L., et al. (2010). Computational symmetry in
computer vision and computer graphics. Foundations and Trends® in Computer Graphics and
Vision, 5(1–2):1–195.

Mahabir, R., Schuchard, R., Crooks, A., Croitoru, A., and Stefanidis, A. (2020). Crowdsourc-
ing street view imagery: a comparison of mapillary and openstreetcam. ISPRS Interna-
tional Journal of Geo-Information, 9(6):341.

Maity, M., Banerjee, S., and Chaudhuri, S. S. (2021). Faster r-cnn and yolo based vehicle
detection: A survey. In 2021 5th International Conference on Computing Methodologies and
Communication (ICCMC), pages 1442–1447. IEEE.

Mathias, M., Martinović, A., and Van Gool, L. (2016). Atlas: A three-layered approach to
facade parsing. International Journal of Computer Vision, 118(1):22–48.

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hierarchical density based clustering.
J. Open Source Softw., 2(11):205.

Meta AI Research (2020). Benchmarks. https://detectron2.readthedocs.io/en/latest/

notes/benchmarks.html [Accessed: 21-6-2022].

Müller, P., Zeng, G., Wonka, P., and Van Gool, L. (2007). Image-based procedural modeling
of facades. ACM Trans. Graph., 26(3):85.

78

https://github.com/liuhantang/DeepFacade
https://detectron2.readthedocs.io/en/latest/notes/benchmarks.html
https://detectron2.readthedocs.io/en/latest/notes/benchmarks.html

Bibliography

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel programming
with cuda: Is cuda the parallel programming model that application developers have been
waiting for? Queue, 6(2):40–53.

Ning, H., Ye, X., Chen, Z., Liu, T., and Cao, T. (2022). Sidewalk extraction using aerial and
street view images. Environment and Planning B: Urban Analytics and City Science, 49(1):7–
22.

Nordmark, N. (2021). Window detection in facade imagery: A deep learning approach using
mask r-cnn.

Odland, T. (2022). KDEpy. https://kdepy.readthedocs.io/en/latest/index.html.

Ogawa, Y., Oki, T., Chen, S., and Sekimoto, Y. (2021). Joining street-view images and building
footprint gis data. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Searching and Mining Large Collections of Geospatial Data, GeoSearch’21, page 18–24, New
York, NY, USA. Association for Computing Machinery.

OpenStreetMap Wiki (2022). Key:building:levels — OpenStreetMap Wiki. https://wiki.

openstreetmap.org/w/index.php?title=Key:building:levels&oldid=2268226 [Ac-
cessed: 5-11-2022].

O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. J. (2008). Discovering
structural regularity in 3d geometry. In ACM SIGGRAPH 2008 papers, pages 1–11.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems,
28.

Rosenfelder, M., Wussow, M., Gust, G., Cremades, R., and Neumann, D. (2021). Predicting
residential electricity consumption using aerial and street view images. Applied Energy,
301:117407.

Roy, E. (2022). Inferring the number of floors of building footprints in the netherlands.
Master’s thesis, Delft University of Technology.

Roy, E., Pronk, M., Agugiaro, G., and Ledoux, H. (2022). Inferring the number of floors for
residential buildings. International Journal of Geographical Information Science, pages 1–25.

Schmitz, M. and Mayer, H. (2016). A convolutional network for semantic facade segmen-
tation and interpretation. The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 41:709.

79

https://kdepy.readthedocs.io/en/latest/index.html
https://wiki.openstreetmap.org/w/index.php?title=Key:building:levels&oldid=2268226
https://wiki.openstreetmap.org/w/index.php?title=Key:building:levels&oldid=2268226

Bibliography

Sezen, G., Cakir, M., Atik, M., and Duran, Z. (2022). Deep learning-based door and window
detection from building façade. The International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 43:315–320.

Sharma, R., Saqib, M., Lin, C., and Blumenstein, M. (2022). A survey on object instance
segmentation. SN Computer Science, 3(6):1–23.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for
kernel density estimation. Journal of the Royal Statistical Society: Series B (Methodological),
53(3):683–690.

Silverman, B. (2018). Density Estimation for Statistics and Data Analysis. Routledge.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sun, Y., Malihi, S., Li, H., and Maboudi, M. (2022). Deepwindows: Windows instance seg-
mentation through an improved mask r-cnn using spatial attention and relation modules.
ISPRS International Journal of Geo-Information, 11(3):162.

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., and Paragios, N. (2011). Shape grammar
parsing via reinforcement learning. In CVPR 2011, pages 2273–2280. IEEE.

Teboul, O., Simon, L., Koutsourakis, P., and Paragios, N. (2010). Segmentation of building
facades using procedural shape priors. In 2010 IEEE computer society conference on computer
vision and pattern recognition, pages 3105–3112. IEEE.

Tsironis, V., Tranou, A., Vythoulkas, A., Psalta, A., Petsa, E., and Karras, G. (2017). Auto-
matic rectification of building façades. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 42:645.

Tyleček, R. and Šára, R. (2010). A weak structure model for regular pattern recognition
applied to facade images. In Asian Conference on Computer Vision, pages 450–463. Springer.

VanderPlas, J. (2013). Kernel Density Estimation in Python. https://jakevdp.github.io/

blog/2013/12/01/kernel-density-estimation/ [Accessed: 10-1-2023].

Wand, M. (1994). Fast computation of multivariate kernel estimators. Journal of Computational
and Graphical Statistics, 3(4):433–445.

Wang, L. (2022). Detailed facade reconstruction for mahattan-world buildings. Master’s
thesis, TU Delft Architecture and the Built Environment.

Wang, S., Kang, Q., She, R., Tay, W. P., Navarro, D. N., and Hartmannsgruber, A. (2022).
Building facade parsing r-cnn. arXiv preprint arXiv:2205.05912.

Wu, C., Frahm, J.-M., and Pollefeys, M. (2010). Detecting large repetitive structures with
salient boundaries. In European conference on computer vision, pages 142–155. Springer.

Wu, M., Zeng, W., and Fu, C.-W. (2021). Floorlevel-net: Recognizing floor-level lines
with height-attention-guided multi-task learning. IEEE Transactions on Image Processing,
30:6686–6699.

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2. https://

github.com/facebookresearch/detectron2.

80

https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Bibliography

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492–1500.

Xu, L., Li, Y., Sun, Y., Song, L., and Jin, S. (2018). Leaf instance segmentation and counting
based on deep object detection and segmentation networks. In 2018 Joint 10th International
Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium
on Advanced Intelligent Systems (ISIS), pages 180–185. IEEE.

Zeng, N. (2018). An introduction to evaluation metrics for ob-
ject detection. https://blog.zenggyu.com/en/post/2018-12-16/

an-introduction-to-evaluation-metrics-for-object-detection/ [Accessed: 10-
11-2022].

Zhang, G., Pan, Y., and Zhang, L. (2022). Deep learning for detecting building façade ele-
ments from images considering prior knowledge. Automation in Construction, 133:104016.

Zhang, H., Xu, K., Jiang, W., Lin, J., Cohen-Or, D., and Chen, B. (2013). Layered analysis of
irregular facades via symmetry maximization. ACM Trans. Graph., 32(4):121–1.

Zhang, X., Lippoldt, F., Chen, K., Johan, H., Erdt, M., Zhang, X., Lippoldt, F., Chen, K., Johan,
H., and Erdt, M. (2019). A data-driven approach for adding facade details to textured lod2
citygml models. In VISIGRAPP (1: GRAPP), pages 294–301.

Zuliani, M., Kenney, C. S., and Manjunath, B. (2005). The multiransac algorithm and its
application to detect planar homographies. In IEEE International Conference on Image Pro-
cessing 2005, volume 3, pages III–153. IEEE.

81

https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Motivation
	Objectives
	Scope
	Thesis Outline

	Theoretical Background
	Regularity of façade elements
	Defining floor count
	Street View Imagery
	Image Rectification
	Deep learning
	Mask R-CNN

	Façade parsing
	Learning-based façade parsing

	Vertical clustering
	HDBSCAN
	Density estimation functions
	Floor count evaluation

	Related Work
	Floor count from elevation and attribute data
	Floor count from SVI as classification problem
	Floor line structures from SVI

	Experimental design and development
	Data preparation
	Floor count annotation
	Image rectification

	Façade parsing
	DeepFacade reproduction
	Mask R-CNN training and optimisation

	Floor count estimation
	FloorLevel-Net
	Bivariate approach
	Univariate approach
	Maxima finding

	Implementation and Experiments
	Software and tools
	Datasets
	Mask R-CNN training and optimisation experiments

	Results and Analysis
	Image rectification experiments
	VP estimation
	RANSAC and homography transform

	Façade parsing results
	Detection and segmentation evaluation

	Floor count estimation experiments
	FloorLevel-Net evaluation
	Bivariate vertical clustering evaluation
	Univariate vertical clustering evaluation
	Floor count performance evaluation
	Failure cases

	Conclusions
	Research overview
	Discussion
	Contributions
	Limitations
	Recommendation for future work

	Appendix
	Experimental design and development

