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ABSTRACT Quantum protocols commonly require a certain number of quantum resource states to be
available simultaneously. An important class of examples is quantum network protocols that require a certain
number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state
with some probability p in each time step and stores it in a quantummemory that is subject to time-dependent
noise. To maintain sufficient quality for an application, each resource state is discarded from the memory
after w time steps. Let s be the number of desired resource states required by a protocol. We characterize the
probability distribution X(w,s) of the ages of the quantum resource states, once s states have been generated
in a window w. Combined with a time-dependent noise model, knowledge of this distribution allows for
the calculation of fidelity statistics of the s quantum resources. We also give exact solutions for the first and
second moments of the waiting time τ(w,s) until s resources are produced within a windoww, which provides
information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for
statistical quantities describing the expected waiting time E(τ(w,s) ) and the distribution X(w,s), we present
two novel results that aid their computation in certain parameter regimes. The methods presented in this
work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example
of a blind quantum computing protocol, we illustrate how they may be used to infer w and p to optimize the
rate of successful protocol execution.

INDEX TERMS Performance analysis, quantum networks, scan statistics.

I. INTRODUCTION
It is common for quantum computing and quantum network
protocols to require the simultaneous availability of a certain
number of high-quality quantum resource states. In the do-
main of quantum networks, such resource states are typically
entangled pairs of qubits, where the execution of protocols,
such as entanglement distillation andmany quantum network
applications, require multiple entangled pairs to be available
at the same time [1], [2], [3]. Another example of a re-
source state can be found in the domain of quantum comput-
ing, where magic state distillation relies on the presence of
multiple initial magic states [4].
Here, we study the setting in which resource states are

generated using a probabilistic process. In each time step, this

process succeeds in generating one resource state with proba-
bility p. If the state is prepared successfully, it is immediately
stored in a quantummemory that is subject to time-dependent
noise. The process is repeated until all s states required by
a protocol are in memory. Such a setting is ubiquitous in
quantum networking, and (photonic) quantum computing. A
prime example is heralded entanglement generation, which
is commonly used in present-day quantum networks (see,
e.g., [5], [6], [7], [8], [9], and [10]).

If the noise is time dependent, this means that when a state
is placed in a quantum memory its quality will degrade over
time. In practice then, in order to deliver states of sufficient
quality, one often imposes a window of w time steps within
which all s states must be produced. If the states are produced
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FIGURE 1. Setup. In each time step, a probabilistic process generates a
resource state, where p is the probability of success (tick) and 1 − p the
probability of failure (cross). After generation, the resource state is
immediately placed into a quantum memory subject to time-dependent
noise. To ensure the states have sufficient quality to enable a quantum
protocol, states that are older than a specific window w of time steps are
discarded (bin).

within the desired window, the quality of the states is high
enough for the application to succeed. Otherwise, the states
are typically discarded (see Fig. 1). In the context of quantum
repeater protocols, such a window size is also often referred
to as a “cutoff time,” and the analysis across multiple nodes
is generally nontrivial [11], [12], [13], [14], [15], [16]. In the
context of repeater chains, the goal is typically to deliver one
state at a high rate. This is different from our case, where
the goal is to deliver multiple states. If a protocol requires s
quantum resource states of sufficiently high quality to exist
simultaneously, this translates to a requirement of s success-
ful generation events within the window ofw time steps. The
motivation of this work is to quantify the effects of noise on
a quantum protocol—we consider a time window because
states may be subjected to time-dependent noise in memory,
and therefore must be discarded before they are too old. We
remark that our methods apply to many different types of
hardware, including those with long coherence times [17].

When analyzing the performance of protocols that rely on
such a generation of resource states, we are interested in a
number of performance metrics. For example, one may be
interested in the rate at which we can execute a protocol,
the probability that the overall quantum protocol will be suc-
cessful, or a combined metric that considers the number of
successful executions of the quantum protocol per time unit.
To understand and optimize such performance metrics, we
are interested in understanding a number of quantities related
to the system’s ability to prepare the resource states required
by the protocol.
Firstly, one may consider thewaiting time τ(w,s) until there

are s successes within a window of w time steps. We remark
that for fixed parameters (w, s, p) this provides us also with
information about the rate at which a protocol can be carried
out, when executed multiple times. Secondly, we look at the
ending pattern X(w,s) (see Fig. 2), which contains the ages
of the s quantum resources at time τ(w,s). Combined with
a model of decoherence, this can be used to compute the
quality (fidelity) of the resources immediately after the last
state has been produced, which is when the quantum protocol
may be executed. Obtaining the distribution of X(w,s), then,
gives the distribution of the fidelities of the resource states.
The goal of this work is to provide tools that may be used

to analyze the performance of a given quantum protocol for

FIGURE 2. Ending patterns. At the first instance τ(w,s) when a window of
w time steps contains s successes, we are interested in how long ago
each of the s links were generated. This allows one to quantify the
quality of the corresponding resource states. The information of when
the s resource states were produced is contained in the ending pattern
X(w,s).

specific choices of w, s, and p, as well as to choose a combi-
nation of these parameters to optimize its performance.

A. RESULTS
Our main contributions are summarized below.

1) For all values of w, s, and p, we provide formulae for
the first and second moments of τ(w,s) (and therefore,
its mean and variance), and the full distribution of
X(w,s). For (w, s) = (∞, s), these are in a simple closed
form, and similarly for (w, s) = (w, 2). For all other
values of (w, s), we present general formulae, which
are in the form of a linear system that may be solved
numerically. The dimension of the system scales as
ws−1. For largew and s, it is therefore difficult to obtain
closed-form expressions from these systems.

2) We provide an efficient method to find bounds on the
range ofw and p for which E(τ(w,s) ) and X(w,s) may be
approximated by E(τ(∞,s) ) and X(∞,s) to an arbitrary
degree of accuracy. In a practical context, this allows
one to quickly compute thresholds on the window size
such that increasing w further provides no improve-
ment for a protocol rate. Moreover, for appropriate
parameter regimes, this approximation is desirable due
to the fact that the dimension of the linear system to
solve for the expected waiting timeE(τ(w,s) ) and X(w,s)
scales with w and s, as described above. This is in
contrast to the simple closed-form expressions that can
be found for the corresponding quantities in the case
w = ∞.

3) We characterize the behavior of E(τ(w,s) ) and X(w,s) in
the limit of a small probability of success. In particu-
lar, we show that as p → 0, E(τ(w,s) ) scales as p−s,
and that the distribution of X(w,s) becomes uniform.
This result may be used to gain intuition about the
performance of a quantum application when the re-
source generation success probability is small, with-
out needing to perform (potentially lengthy) numerical
computations.

4) We provide a demonstration of how thesemethodsmay
be used in practice. We consider a blind quantum com-
putation (BQC) protocol [18]. In our model, entangle-
ment is consumed in the transmission of qubits from a
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client device to a server device. The model includes
noise due to imperfect entangled links and memory
decoherence. For a setup involving a computation on
four qubits, we provide an example of how themethods
from Section III may be used to choose architecture
parameters that optimize the rate of the protocol.

B. RELATED WORK
To obtain our results, we draw on methods used in the math-
ematical literature known as scan statistics [19], [20]. Scan
statistics is typically concerned with patterns and clusters in
a sequence of random events. This is a field that incorporates
techniques from multiple different areas of mathematics. In
the quantum context, the problem is different from other
areas in caring about the ending pattern distribution. In this
work, we therefore use the approach that makes use of mar-
tingales, because this allows one to obtain both E(τ(w,s) ) and
the distribution of X(w,s) [21]. It is possible to obtain the same
quantities with embedded Markov chains [22], but we con-
tinue here with the martingale method; firstly because the re-
sulting formula has a smaller dimension (it is therefore faster
to compute the quantities of interest), and second because it
has a regular structure that allows us to derive asymptotic re-
sults for small p, which is an experimentally relevant regime.
One of the aims of this work is to characterize both τ(w,s)
and the distribution of the ending pattern X(w,s). However, if
one is only interested in τ(w,s) and not X(w,s), then there exist
other methods to compute E(τ(w,s) ), and also in principle
the full distribution of τ(w,s)—see, e.g., [23] or [24], which
give formulae to obtain the probability generating function
of τ(w,s). To the best of the authors’ knowledge, however,
these also result in a large system of equations, and not the
ending pattern distribution. We therefore do not provide de-
tails of these other methods in this work. Other quantities
related to the distribution of τ(w,s) have been explored in great
depth in the scan statistics literature, which may also have
relevance to the quantum domain. For example, there exist a
number of bounds and approximations forP(τ(w,s) ≤ n) (see,
e.g., [19] for an overview of results), which may prove useful
in allocating time for entanglement generation in a quantum
network schedule. By contrast, in this work, we focus on
the behavior of E(τ(w,s) ) and X(w,s), and their implications
for the performance of quantum protocols. To the best of
the authors’ knowledge, this work is the first to character-
ize the behavior of the ending pattern distribution in certain
parameter regimes, and demonstrate an explicit example of
the application of results from scan statistics to a quantum
protocol.

C. OUTLINE
The rest of this article is organized as follows. In Section II,
the quantities τ(w,s) and X(w,s) are formally defined. In
Sections III-A and III-B, we give formulae for the first and
second moments of τ(w,s), and the distribution of X(w,s). In

Sections III-C and III-D, we present results that aid the un-
derstanding and approximation of these quantities. In Sec-
tion IV-A, the behavior and practical relevance of the results
of Section III are outlined, specifically looking at E(τ(w,s) ).
In Section IV-B, we give an example of how one may use the
results of Section III to choose architecture parameters that
optimize the performance of a BQC protocol. Finally, further
directions are summarized in Section V.

II. PRELIMINARIES
Weview quantum resource generation attempts as a sequence
of i.i.d. Bernoulli trials (Zi)∞i=1 with success probability p =
P(Z1 = 1) > 0. Then, if a protocol requires s ≤ w quantum
resources to coexist, the time taken to complete the appli-
cation is dependent on the waiting time τ(w,s) to produce s
successes within a window of size w. We are also interested
in the ending pattern X(w,s), which completes the process,
because this contains the ages of the s quantum resources
present at time τ(w,s). We denote the set of possible end-
ing patterns as �(w, s). This contains every possible con-
figuration of the s successes within the scanning window,
so that X(w,s) ∈ �(w, s). A visualization of how an ending
pattern realizes the end of the process is given in Fig. 2. More
specifically, we define

�l (s) :=
{
x ∈ {0, 1}l : x1 = xl = 1 ∧

l∑
i=1

xi = s

}
(1)

to be the set of all length-l binary strings x = (x1, . . ., xl ) that
contain s successes, two of which occur at either end of the
string. Then

�(w, s) :=
w⋃
l=s
�l (s) (2)

is the set of ending patterns. The set �(w, s) can be thought
of as containing all clusters of s successes that were produced
within a time less than or equal to w time steps. Note that the
number of possible ending patterns is given by

|�(w, s)| =
(

w − 1

s− 1

)
. (3)

To see this, consider the fact that each ending pattern in
�(w, s) corresponds uniquely to an ending scenario where
the s successes are distributed within the window of w time
steps, as may be seen from Fig. 2. Since the final quantum
resource must always have been prepared at the most recent
time step and therefore is fixed, it remains to distribute the
remaining s− 1 successes within w − 1 time steps, meaning
that the number of possible ending patterns is restricted to
(3). The waiting time τ(w,s) is then defined by

τ(w,s) := min
x∈�(w,s)

{τx} (4)

i.e., this is the time until we see the first ending pattern in
the sequence of Bernoulli trials. Here, τx is the time taken
until one particular ending pattern x is first seen, so that for
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x ∈ �l (s) ⊂ �(w, s)

τx := min{t : (Zt−l+1,Zt−l+2, . . .,Zt ) = x}. (5)

We note that τ(w,s) is well defined because it is bounded
above by a geometric random variable (see Appendix B1).
There is also a relationship between τ(w,s) and the distribu-
tion of X(w,s) given by

P(X(w,s) = x) = P
(
τ(w,s) = τx

)
(6)

recalling that X(w,s) takes the value of the ending pattern that
completes the process. No two ending patterns can realize
the end of the process at the same time since no element of
�(w, s) contains another, and so X(w,s) is well defined.

III. FORMULAE AND APPROXIMATIONS
In the following two sections, we provide exact solutions for
the first and second moments of τ(w,s), and the full distribu-
tion of X(w,s). Formulae are provided for all possible values
of w and s. In Section III-C, we look at approximating the
solutions for a large w. In Section III-D, we characterize the
solution behavior for small p.

A. INFINITE WINDOW
Here, we consider the case where no resource states are dis-
carded (or equivalently when w = ∞) and give solutions for
the first and second moments of τ(∞,s), and the distribution
of X(∞,s). This serves as a useful initial study of the problem,
providing intuition for the case where w is large and finite.
When no states are discarded, the waiting time to see all

of the successes simply becomes a sum of s i.i.d. geometric
random variables with parameter p. This is known as a nega-
tive binomial distribution, and has an exact distribution given
by

P(τ(∞,s) = n) =
(
n− 1

s− 1

)
(1 − p)n−s ps (7)

and expectation

E
(
τ(∞,s)

) = s

p
. (8)

Note that forw′ > w, it is always the case that τ(w′,s) ≤ τ(w,s)
(increasing the window size must always decrease the time
for the process to complete), and so

E
(
τ(w′,s)

) ≤ E(τ(w,s) ), for w′ > w. (9)

In particular, the waiting time for a finite w will always be
greater than or equal to the infinite case. Then, using (8) and
(9), we obtain a simple lower bound in terms of s and p

E
(
τ(w,s)

) ≥ s

p
. (10)

The variance of τ(∞,s) is given by

Var
(
τ(∞,s)

) = s · (1 − p)

p2
(11)

from which we can see that the standard deviation is recip-
rocal in p.

It is also possible to derive a simple expression for the
distribution of X(∞,s). For a binary string x ∈ �l that lives
in the (now infinite) set of ending patterns �(∞, s)

P(X(∞,s) = x) = (1 − p)l−s ps−1 (12)

which can be seen by considering the probability of gener-
ating the remaining l − 1 entries of B after the first success
has been generated. We see that when the window size is
infinite, the probability of generating ending patterns of the
same length is constant.

B. FINITE WINDOW
1) s = 2
When s = 2, it is possible again to derive closed-form so-
lutions for the first and second moments of τ(w,s) and the
distribution of X(w,s). We present below the formulae for
E(τ(w,s) ) and the ending pattern distribution.

In this case, the ending patterns are determined by the time
between the two states, i.e., |�l (2)| = 1. We separate the
process of resource generation into two parts: 1) generation
of the first state and 2) generation of the second state. Gener-
ation of the first link occurs when there is no state stored in
memory. This is not limited by the window, and has a genera-
tion time described by a geometric distribution with parame-
ter p. To finish the process, the generation of the second state
must happen within w − 1 time steps of the first link being
generated.When the process is finished, the time between the
two states is then a geometric distribution conditional on this
event, which occurs with probability 1 − (1 − p)w−1. Then,
letting L ∈ {1, . . .,w − 1} be the number of attempts after
the first state to generate the second

P(L = n) = (1 − p)n−1p

1 − (1 − p)w−1
(13)

which gives the full ending pattern distribution, where L = n
corresponds to X(w,s) ∈ �n+1(2).
Now, letM be the number of times a first state must be gen-

erated until the process is finished. Since this is determined
by the success of the second state within the time window,
we have

M ∼ Geom
(
1 − (1 − p)w−1

)
. (14)

The total time is then given in terms of M and L by

τ(w,2) =
M∑
j=1

Tj + (M − 1)(w − 1) + L (15)

where the random variables Tj ∼ Geom(p) describe the
number of attempts to generate the first state. Now, as shown
in Appendix A

E

⎛
⎝ M∑

j=1

Tj

⎞
⎠ = E(M)E(T1) = 1(

1 − (1 − p)w−1
) · 1

p
(16)
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and

E(L) = 1 − (1 − p)w − wp(1 − p)w−1

p(1 − (1 − p)w−1)
. (17)

The expected waiting time may then be computed as

E(τ(w,2)) = E(M)E(T1) + (E(M) − 1)(w − 1) + E(L)
(18)

from which we obtain

E(τ(w,2)) = 1

p
+ 1

p
(
1 − (1 − p)w−1

) . (19)

The variance of τ(w,2) may also be computed by making use
of (15). The computation is given in Appendix A.

2) s > 2
We now give a formula to exactly compute E(τ(w,s) ) and the
full distribution {P(X(w,s) = x) : x ∈ �(w, s)}, for a finite w.
This is derived using the method from [21], which makes
use of martingales. For completeness, we include an outline
of the derivation in Appendix B2, where a gambling analogy
is introduced to aid understanding. The resulting formula is
in the form of a linear system of size |�(w, s)| + 1 that can
be solved exactly. Each matrix element defining the linear
system can be computed simply and efficiently. Further, in
Appendix B4, we give a formula for the second moment
of τ(w,s), which now involves two linear systems of size
|�(w, s)|. Amartingalemethod is also used for its derivation,
and for this we refer to [24]. The secondmoment of τ(w,s) can
then be used to calculate the variance and standard deviation
of τ(w,s).
Before stating the first formula, we introduce some no-

tation. We define a function ∗ that maps two binary strings
x = (x1, . . ., xk ) and y = (y1, . . ., ym) to a scalar value, given
by

x ∗ y :=
min(k,m)∑
j=1

⎛
⎝ j∏
i=1

δ(xi,ym− j+i )

⎞
⎠ (20)

where for a, b ∈ {0, 1}, the quantity δa,b is defined as

δ(a,b) =
{

1
pa

if a = b

0, otherwise
(21)

where p1 := p and p0 := 1 − p. From (20), we see that the
value of x ∗ y is obtained by comparing the overlap of suc-
cessive substrings of x and y. If two substrings match exactly,
then the corresponding term is included in the sum, and it is
weighted by an amount that is dependent on the Bernoulli
parameter p. Informally, then, x ∗ ymeasures how similar the
structures of x and y are. A simple example of the action of ∗
is given as follows.We consider the action of ∗ on two ending
patterns, recalling (1). Letting s = 3 andw ≥ 7; suppose that
x = 1010001 and y = 100011. Computing (20) then yields

x ∗ y = 1

p1
+ 0 + 0 + 0 + 1

p21
· 1

p30
+ 0 = 1

p1
+ 1

p21p
3
0

.

Since all elements of �(w, s) start and finish with a suc-
cess by their definition in (1), the same initial 1/p term will
be present for any pair of ending patterns. Whether or not
there are higher order terms depends on the overlap of the
successive substrings. In particular, for two ending patterns
x, y ∈ �(w, s), the quantity x ∗ y will be of order 1/ps if and
only if x = y.

Equipped with these definitions, we now give the formula
for the expected waiting time and the ending pattern distri-
bution.
Theorem 1: Let N := |�(w, s)|. After enumerating the

ending patterns as �(w, s) ≡ {x(i) : i = 1, . . .,N}, let

�v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(τ(w,s) )
P
(
X = x(1)

)
P
(
X = x(2)

)
...
...

P
(
X = x(N )

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (22)

Then

A�v = �e1 (23)

where �e1 := (1, 0, . . ., 0)T is a vector of length N + 1, and

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1
−1 x(1) ∗ x(1) x(1) ∗ x(2) · · · x(1) ∗ x(N )
−1 x(2) ∗ x(1) x(2) ∗ x(2) · · · x(2) ∗ x(N )
...

. . .
...

...
. . .

...
−1 x(N ) ∗ x(1) · · · x(N ) ∗ x(N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

The matrix A is invertible since no element of �(w, s)
contains another [21]. The solution for �v therefore always
exists and is unique. One may then solve the linear system
(23) to obtain E(τ(w,s) ) and the ending pattern distribution.
Code is provided in [25] that performs this task. The matrix
A is fully determined by the success probability p and the
parameters w and s. From (3), the dimension of the square
matrix A is |�(w, s)| + 1 = O(ws−1), and so the complexity
of this task is increasingly difficult for large w and s. In the
following sections, we derive results that aid the understand-
ing and computation of the corresponding results in the two
characteristic regimes of large w and small p. Moreover, by
the definition of the star product as given in (20), we see that
each entry of A is a polynomial in 1/p and 1/(1 − p). As
discussed previously, each entry of the submatrix formed by
removing the first row and column is greater than or equal
to 1/p, due to properties of the operator ∗. Entries that do
not take this exact value contain higher order terms in 1/p,
due to the fact that there is a greater overlap of the ending
patterns corresponding to the row and column indices of such
an entry. The entries of the highest power in 1/p are exactly
the diagonal elements and are of order s, because a string
overlaps completely with itself and contains s successes. We
note that in principle, the solutions for �v can be computed
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analytically as functions of p by inverting A directly. How-
ever, due to the scaling of the system with w and s, this is in
practice computationally laborious.

C. APPROXIMATING WITH AN INFINITE WINDOW
Now, one might ask: how large must the window size be for
the approximation w = ∞ to be accurate? This is desirable
due to the simple analytical form of the results for the distri-
butions of τ(∞,s) and X(∞,s), as seen in Section III-A. This is
in contrast to the solutions presented in Section III-B for the
case of a finite w, which scale with w and s. The approxi-
mation becomes valid when the window size has “saturated”
the process, so that increasing the window size does not
provide any significant improvement for the rate. Alterna-
tively, the approximation becomes accurate when P(τ(w,s) >
w) is small. This intuition is formalized with the following
theorem.
Theorem 2: Let τ(w,s) be the waiting time for s successes

in a w-window. Let X(w,s) be the corresponding ending pat-
tern. Let p denote the success probability of each trial. Let
ε(w, s, p) := P(τ(w,s) > w). Suppose that 0 < p < 1 and
w < ∞. Then

E(τ(w,s) ) − E(τ(∞,s) )

E(τ(w,s) )
< ε(w, s, p) (25)

and ∑
x∈�(∞,s)

|P(X(w,s)=x) − P(X(∞,s)=x)| < 2ε(w, s, p).

(26)
We now look to evaluate ε(w, s, p). Looking back at the

identity (7) for the distribution of τ(∞,s), we have

P(τ(w,s) > w) = P(τ(∞,s) > w) (27)

=
∞∑

n=w+1

(
n− 1

s− 1

)
(1 − p)n−s ps. (28)

To evaluate the right-hand side of (25), it is convenient to
rewrite this as a finite sum, as provided by the following
lemma. The proof of this is given in Appendix C1.
Lemma 1: Let τ(w,s) be the waiting time for s successes in

a w-window, as defined in (4). Suppose that 0 < p < 1 and
w < ∞. Then

P(τ(w,s) > w) =
s−1∑
i=0

(
w

i

)
(1 − p)w−i pi. (29)

This sum is simple and efficient to evaluate for constant
s, and can then be used to find a range of w for which the
two expectations are close. For example, if one is interested
in evaluating E(τ(w,s) ), when in fact w is large enough such
that it may be reasonably approximated by E(τ(∞,s) ) = s/p,
it is possible avoid solving a large system of equations with
the following method. Demanding some desired error δ, one
may quickly compute

w∗ = min {w : ε(w, s, p) < δ} . (30)

Then, for all w ≥ w∗, one may approximate E(τ(w,s) ) with
E(τ(∞,s) ) = s/p with accuracy on the order of δ. The same
can be done with the ending pattern distribution: if one
is interested in the expectation of some fidelity quantity
F (X(w,s) ), one may also approximate E(F (X(w,s) )) with
E(F (X(∞,s) )) with the same accuracy.

D. ASYMPTOTIC BEHAVIOR OF THE EXPECTATION
From (9), an upper bound for E(τ(w,s) ) is given by E(τ(s,s) ),
which can be written in a simple analytical form. In the case
w = s, there is only one ending pattern x, which corresponds
to the case of s consecutive successes. From (23), we then
have

E(τ(s,s) ) = x ∗ x =
s∑
j=1

1

pj
= 1/ps − 1

1 − p
(31)

which for small p satisfies E(τ(s,s) ) ∼ 1/ps. In comparison,
from (8), the scaling of the expectation forw = ∞ is recipro-
cal in p. Further, from the form of A given in (24), all entries
of �v will be ratios of polynomials in 1/p. Looking at the first
component of �v, which is the waiting time expectation, this
tells us that there is some integer value αs(w) that dominates
the scaling for small p, so that

E(τ(w,s) ) ∼ c(w, s)

pαs(w)
(32)

where c(w, s) is a constant. Now, recalling from (9) that
E(τ(w,s) ) is a decreasing function of w, we therefore expect
the same of αs(w), which satisfies αs(s) = s and αs(∞) = 1.
Below we show that for w < ∞, αs(w) is always equal to s,
and also derive the scaling factor c(w, s).
Theorem 3: Let τ(w,s) be the waiting time for s successes

in a w-window, as defined in (4). Let X(w,s) be the corre-
sponding ending pattern. Let p be the success probability of
the process. Then, in the limit p → 0

E
(
τ(w,s)

) ∼ 1

|�(w, s)|ps (33)

and for all x ∈ �(w, s)

P(X(w,s) = x) → 1

|�(w, s)| (34)

where |�(w, s)| = (
w−1
s−1

)
is the number of possible ending

patterns.
A proof of Theorem 3 is given in Appendix C2. It is inter-

esting future work to quantify the speed of convergence of
(33) and (34).
As intuition for (34), note that for very small p, the prob-

ability of having w failures preceding the ending pattern is
high. In this case, the ending pattern distribution is equiva-
lent to the ending pattern distribution given we succeed in
w attempts, which in the limit of small p converges to the
uniform distribution.
The behavior captured by Theorems 2 and 3 may be

viewed as two limiting behaviors of the problem in the
regimes of small and large p, respectively. In particular, we
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FIGURE 3. How E(τ(w,4) ) varies with w. We see that E(τ(w,4) ) (red line)
converges to the lower bound E(τ(∞,4) ) = 4/p (blue line) as w becomes
large. The gray region is one standard deviation of τ(w,4) above and
below its expectation (for w < ∞). All quantities are evaluated with a
success probability p = 0.5.

expect that the formula provided by Theorem 1 becomes
useful in neither regime, i.e., when p is neither too small
nor too large to apply either approximation. Moreover, it is
important to keep in mind that such a regime will depend on
the choices of w and s.

IV. ILLUSTRATION AND APPLICATION
We expect the methods presented in the above sections to
be useful in choosing the optimal window size for a quantum
protocol. To this end, we firstly analyze in more detail the be-
havior of E(τ(w,s) ). We then demonstrate how these methods
may be used to optimize the performance of a BQC protocol.

A. ILLUSTRATION
We fix s = 4 as an example to showcase the characteristic
behaviors of the expected waiting time. From our investiga-
tions, the solutions for other values of s display the same
qualitative behavior. To produce each figure, we compute
E(τ(w,s) ) by numerically solving the linear system (23) for
the specific choices of w, s, and p. Recall that the size of
this linear system scales as O(ws−1). The value s = 4 is
small enough so that for the w values that we consider, the
complexity of the problem is not too large to be solved on a
laptop.
In Fig. 3, E(τ(w,4)) is plotted against w, with the success

probability set to p = 0.5. We notice the convergence to the
w = ∞ lower bound. The gray region is that given by one
standard deviation above and below the expectation. Note
that one also expects the standard deviation to converge to
that of τ(∞,4), which is given in a closed form by (11).
In Fig. 4, E(τ(w,4)) is again plotted against w, but this

time for three different values of the success probability. In
each case, the solution again approaches the corresponding
w = ∞ lower bound. Each line starts at E(τ(4,4)) = (1/ps −
1)/(1 − p), corresponding to w = s, and converges to the
w = ∞ limit. This convergence is an important feature, be-
cause at some point increasing w provides no significant

FIGURE 4. How E(τ(w,4) ) varies with w and p. We see that for larger p,
E(τ(w,4) ) (solid line) approaches the lower bound E(τ(∞,4) ) = 4/p
(dashed line) at a higher rate.

FIGURE 5. How E(τ(w,4) ) varies with p. We see that E(τ(w,4) ) (solid
lines) demonstrates the reciprocal scaling as p → 0, as encapsulated by
Theorem 3. There is convergence to E(τ(w,4) ) (dashed line). This plot was
made by discretizing p into 100 points, evenly spaced in the range (0, 1).

improvement for the protocol rate. As one would expect intu-
itively, the convergence occurs more quickly for a larger p, as
increasing the window size effectively saturates the problem
more easily. To quantify this, we can use the arguments of
Section III-C. For example, taking the desiredmargin of error
to be 2%, define

w∗ = min {w : ε(w, s, p) < 0.02} (35)

where ε(w, s, p) is given by (29). By Theorem 2 and
Lemma 1, the approximation E(τ(w,s) ) ≈ E(τ(∞,s) ) is then
valid to the same margin of error for all w > w∗. It is inter-
esting to see how this compares to the smallest window size
w∗
true for which the same approximation can be made, which

is defined formally as

w∗
true = min

{
w :

E(τ(w,s) ) − E(τ(∞,s) )

E(τ(w,s) )
< 0.02

}
. (36)

The value w∗ is then an upper bound for w∗
true. For example,

letting p = 0.5 and s = 4 yieldsw∗ = 15, and checking with
the exact solutions gives w∗

true = 12. These are plotted for
more values of p in Fig. 5. We see from the plot that as p
increases, the bound appears to become tighter. The value
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FIGURE 6. Comparison of thresholds on w for the infinite window
approximation. One may use w∗ (green line) as a threshold, which is
more easily computable than w∗

true (red cross). See (35) and (36) for the
definition of these quantities. Here, we assume a desired error of 2%.

w∗
true was plotted for only a few select values of p because its

calculation is computationally intensive.
In Fig. 6, E(τ(w,4)) is plotted against p for five different

values of the window size. One can see that the scaling of
E(τ(w,4)) occurs more slowly for a larger w. This indicates
the reciprocal behavior as given in (33), where E(τ(w,4)) ∼
1/|�(w, 4)|p4, and in the case of a larger w the constant
|�(w, 4)| suppresses the scaling. As p → 1, all plots simply
converge to s = 4, because in this case the process is deter-
ministic. Further, we see again the convergence of the expec-
tation to the infinite window limit. If p becomes large, we
expect the problem to “saturate” in the same sense as before,
so that E(τ(w,s) ) ≈ E(τ(∞,s) ). The speed of this convergence
can again be quantified using the results of Section III-C.
Demanding the same error of 2%, we take the p∗ that satisfies

p∗ = inf {p : ε(w, s, p) < 0.02} (37)

or equivalently, p∗ is the unique value of p such that
ε(w, s, p∗) = 0.02. The value p∗ is an upper bound for the
true threshold p∗

true

p∗
true := inf

{
p :

(
E(τ(w,s) ) − E(τ(∞,s) )

E(τ(w,s) )

) ∣∣∣∣
p
< 0.02

}
(38)

where we now include dependence of the expectations on
the success probability p. In Fig. 7, p∗ and p∗

true are plotted
againstw. The value p∗

true is computationally intensive to find
for large values of w, and has therefore only been plotted
for selected small values of w. The bound p∗, however, is
efficient to compute. We observe that the bound appears to
be tighter for smaller w.

B. APPLICATION TO A BQC PROTOCOL
In the following, we provide an example of how the results
from Section III may be used in the performance analysis
of a quantum network application. We consider a verifiable
BQC protocol [18]. This involves a client, who uses a more
powerful server device to carry out a bounded error quantum

FIGURE 7. Comparison of thresholds on p for the infinite window
approximation. One may use p∗ (green line) as a threshold, which is
more easily computable than p∗

true (red cross). See (37) and (38) for the
definition of these quantities. Here, we assume a desired error of 2%.

polynomial-time (BQP) computation [26], which is speci-
fied in the measurement-based formalism [27]. In this for-
malism, the computation is defined with respect to a graph
G = (V,E ), where V is the set of vertices and E is the set
of edges. The computation is performed by firstly creating a
graph state corresponding to G, and then applying a series of
measurements (“measurement flow”) to a subset of qubits.
The BQC protocol is designed such that the server remains
ignorant of the client’s desired computation (blindness). Fur-
ther, it ensures that the client can validate that the outcome
is correct, even in the presence of some amount of noise or
a malicious server (veriability). These properties are stated
precisely in terms of the composable security properties of
the protocol [28]. For the protocol in full detail, we refer
to [18]. Here, we provide a short outline of the BQC protocol,
and a simple model of how it is carried out.We then apply the
results of Section III to study the performance of the protocol.

1) PROTOCOL FEASIBILITY
The BQC protocol involves a series of rounds. In each round,
the client sends |V | qubits to the server, and also a description
of the measurement flow it should carry out. If the server
is honest, it will then create a graph state by applying en-
tangling gates corresponding to edges in E, carry out the
corresponding measurement flow, and send the measurement
outcomes back to the client.
The protocol involves interweaving two types of rounds:

computation and test rounds. The computation rounds are
used to carry out the client’s desired computation. In these
rounds, the computation measurement flow is encrypted in
order to maintain blindness. The function of the test rounds
is to check for deviations from the client’s specified opera-
tions. Deviations could be due to noise, or the server being
malicious. Each test round has the outcome of either pass
or fail, and the protocol is aborted if the ratio of failed test
rounds lies above a certain threshold.
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FIGURE 8. Scenario considered for the model of BQC. Generation of the
entangled link is attempted sequentially, with success probability p.
Upon success, the entangled link is immediately used to transmit qubits
from the client to the server. While in the server, qubits (numbered gray
circles) undergo decoherence (brown clock). Qubits are discarded from
the server after they have existed for w time steps.

Assuming the test round outcomes are i.i.d., the sufficient
condition for verifiability that we will consider is given by

pav <
2γ − 1

k(2γ − 2)
(39)

as shown in [29]. Here, pav is the average probability of
failure of a test round, and γ is the inherent error probability
of the BQP computation. The value k is an integer and is
corresponding to the k-coloring chosen by the client. This
is a partition of the set of vertices into k subsets, known as
colors, such that there is no edge between two vertices of the
same color. For the relevance of this to the BQC protocol, see
Appendix E1 for a description of test rounds. For determin-
istic computations (γ = 0), (39) simplifies to

pav <
1

2 k
. (40)

When the server is honest, the quantity pav is determined on
the amount by noise, which could for example arise from
imperfect local operations and measurements, or imperfect
memory in the server. Further, in a networked setting where
the client and server are distantly separated, the client may
send its qubits to the server by making use of entanglement
that has been established between the two parties. In this
way, the performance of the protocol is directly dependent on
properties of the quantum network architecture connecting
client and server. In such architectures, however, there is in
general a tradeoff between rate and quality. In the case of this
BQC protocol, demanding that the condition (39) is met then
effectively places an upper bound on the rate of the protocol.
In the following, we consider a simple model of the network
and device architectures, and provide a demonstration of how
the methods presented in Section III may be used to find ar-
chitecture parameters that maximize the protocol rate, given
the constraint (39).

2) MODEL OF NETWORK ARCHITECTURE
Our model of the quantum network architecture on which the
BQC protocol is carried out is summarized in the following.
A depiction is in Fig. 8.

1) The server is honest, meaning that it carries out all
tasks specified by the client. The BQC protocol pro-
tects against malicious server activity, as well as being
robust to noise. Here, we solely aim to quantify the
effect of noise on the protocol.

2) Entanglement generation between client and server
is performed with sequential attempts. Each attempt
succeeds with probability p.

3) Upon entanglement success, a qubit transmission pro-
cedure takes place. We assume that each qubit comes
into existence in the server memory at the end of the
corresponding time step.

4) Immediately after transmission, each qubit is estab-
lished with fidelity Fest(p), where Fest : [0, 1] → [0, 1]
is a decreasing function. In this way, we include a
tradeoff between rate and fidelity that is inherent to the
entanglement generation process occurring between
client and server. In the following, we choose this to
be Fest(p) = 1 − λp. Motivation for this choice of Fest
is given in Appendix D.

5) While they are stored in the server, qubits are subject
to depolarizing noise with a memory lifetime of T time
steps. For a d-dimensional density matrix ρ ∈ D(Hd ),
this has action

ρ → e−
t
T ρ +

(
1 − e−

t
T

)
Id

d
(41)

where Id is the d-dimensional identity matrix and t is
the number of time steps for which ρ has existed at the
server. For the case of a qubit, i.e., d = 2, the fidelity
then decays as

Fest →
(
Fest − 1

2

)
e−

t
T + 1

2
. (42)

6) To reduce decoherence, the server discards a qubit once
it has been in memory for w time steps.

7) All local operations and measurements by the client
and server devices are perfect and instantaneous. In
particular, once all qubits required for the round are
present in the server, it immediately and perfectly ap-
plies the measurement flow that has been specified by
the client.

8) Before each round, the client chooses an element of
V uniformly at random. The corresponding qubit is
the first one sent. The client then cycles through the
qubits from V in some predefined order. With this
added randomness, the resulting order of the qubit ages
will appear completely random. We continue with this
assumption because it simplifies the resulting calcula-
tion of pav, by removing any dependence of the qubit
ages on events that occurred beyond the last w time
steps. More details of protocol test rounds are given in
Appendix E.

In our model, then, the fidelity of a qubit in the server
depends only on the amount of time it has been stored there
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and the entanglement generation success probability p. No-
tice that our setup consists of the sequential attempted estab-
lishment of qubits at the server and the discarding of these
qubits after they have existed for a predefined number of time
steps. We then have a situation analogous to that considered
in Sections II–IV of this work, where the qubits function as
the corresponding quantum resources. The methods given in
Section III can then be applied to study this situation: the time
taken to complete a round is τ(w,s) time steps, where s = |V |
is the number of qubits required to produce a graph state, and
τ(w,s) is the waiting time as defined in Section II. Further-
more, the qubit fidelities at the time when the server applies
its entangling gates and measurements are determined by
the ending pattern X(w,s), which finishes the process. More
specifically, it is possible to calculate pav exactly using the
ending pattern distribution. We briefly describe this now.
Suppose that during a particular test round, at the time the

server will carry out its local operations and measurements,
the fidelities of the server qubits are �F = (F1,F2, . . .,F|V |).
Then, given the model described in the previous section, it is
possible to find a function that tells us the probability of error
of a test round, PG(�F ). This is a polynomial in the values Fi,
and has a form dependent on the graphG and the choice of k-
coloring. The details of how to obtain this function are given
in Appendix E. An expression for the average probability of
error of a test round is then

pav =
∑
�F

P

(
�F
)
PG
(
�F
)

(43)

where P(�F ) is the probability of obtaining the particular
fidelity vector �F . Note that in the model introduced in the
previous section, the qubit fidelities �F are determined by
the amount of time for which the qubits have been stored
in the server. Moreover, recall that the ages of the links are
contained exactly in the ending pattern X(w,s). Writing this
dependence as

�F = �F
(
X(w,s)

)
(44)

we then rewrite (43) to obtain an expression for the average
probability of test round failure

pav =
∑

x∈�(w,s)

P
(
X(w,s) = x

)
PG
(
�F (x)

)
. (45)

This is a quantity that we can now evaluate using the meth-
ods introduced in Section III. In this way, the tools from
Section III allow for the direct connection between the feasi-
bility of the BQC protocol, as determined by pav, to its rate.
Since the above formula for pav is dependent on the graph
structure and k-coloring, some parameter regimes may be
sufficient for some calculations but not others. For example,
for more complicated graphs that require a larger k, the con-
dition (39) is more strict. Further, if one chooses a different
graph or k-coloring for the calculation, the polynomial PG
may differ.

3) NUMERICAL EVALUATION
We now aim to find optimal values of the architecture pa-
rameters p and w for one round of the protocol. By opti-
mality, we mean that the expected time taken to carry out
a round is minimized, while ensuring that the protocol is still
feasible. Note that this does not necessarily mean optimality
for the full protocol, which is comprised of multiple rounds.
To optimize over the full protocol, one would do a further
optimization over more protocol parameters (for example,
the ratio of computation and test rounds), which we do not
consider in this work.
There is a combination of tradeoffs between rate and fi-

delity present in our scenario: first due to varying the success
probability, and second due to varying the window size. An
increase in p increases the rate at which successful links are
generated, but decreases the initial fidelity of qubits in the
server by an amount determined by Fest(p). We would there-
fore expect that a smaller value of w is required to minimize
decoherence at the server, to ensure that the condition (39)
is met. This in turn increases the expected time taken to gen-
erate all necessary entangled links within the time window.
More formally, given a fixed p, we may find the minimal
expected time for one round with the following procedure.

1) Find the maximum value of w such that the protocol is
still feasible for this value of p

wmax(p) := max

{
w : pav <

2γ − 1

k(2γ − 2)

}
. (46)

2) Compute E(τ(wmax(p),s) )
∣∣
p. This is the minimum

expected time for one round.

As an example of this method put into practice, we con-
sider the case where the client would like to perform a BQP
calculation on a square graph, so that |V | = 4. This requires
s = 4 entangled pairs to be producedwithin the timewindow.
For simplicity, we will consider deterministic computations,
so that the requirement on the probability of error is pav <
1/2 k. In this case, k can be chosen to be 2 (see Appendix E
for an example of a 2-coloring of a square graph), and the
sufficient condition becomes pav < 1/4.

In Fig. 9, the minimum expected time to carry out a round
is plotted against p for three different values of the memory
lifetime parameter T , and F0(p) = 1 − λp. The code used to
produce Figs. 9 and 10 is provided in [25]. We choose λ = 1

2
in order to best display the behavior of the solution, given
our computational resources. In particular, the range of p that
we plot is chosen to clearly show the region of the optimal
combination of the two tradeoffs. For small p, the expected
waiting time is high due to the small entanglement generation
probability. For large p, it is high due to the small window
size required due to the decrease in Fest. We therefore see
a region in the middle of the plot where the average waiting
time is minimal, or equivalently, the rate at which rounds can
be carried out is maximal. For larger T , the decoherence of
qubits in memory is reduced, and so it is possible to have a
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FIGURE 9. Minimum expected time for one round of a BQC calculation
versus success probability of entanglement generation. For a given value
of p, we find the maximum window size (46), and then use that to
compute the minimum expected waiting time. Here, p is discretized into
100 values of p that are evenly spaced in the range [0.04, 0.1]. We
assume calculations on a square graph, which requires four entangled
links to be produced within a time window.

FIGURE 10. Minimum expected time for one round of a BQC calculation
versus window size. For each window size 4 ≤ w ≤ 15, we find the
maximum success probability (47), and then use this to compute the
expected waiting time. We assume calculations on a square graph, which
requires four entangled links to be produced within a time window.

larger window size without disrupting the condition on pav.
We thus see that the expected time for one round decreases
with T . Further, there are sharp peaks in the plots for each
T , which are due to the discrete nature of w. This can be
explained as follows: in themiddle of two peaks, it is possible
to increase the value of p without disrupting the condition
(39). However, there will come a point where this condition is
in fact an equality, which is when the window cutoff must be
decreased in order to maintain the minimum quality of qubits
in the server. Since w is a discrete parameter, this causes a
jump to a higher expected time.
One can do something similar when varying the window

size. Given a fixed w, we find the minimum expected time
for one round with the following steps.

1) Find the maximum value of p such that the protocol is
still feasible

pmax(w) := sup

{
p : pav <

2γ − 1

k(2γ − 2)

}
. (47)

2) Compute E(τ(w,s) )
∣∣
pmax(w).

In Fig. 10, the minimum expected time to carry out a
round is plotted against the window size. This is again in
the case of a square graph, for the same three values of the
memory lifetime parameter T . We see a similar behavior as
when varying the success probability: a smaller w induces
a larger expected time. When s is larger, qubits are subject
to more decoherence, and in order to keep condition (39), it
is necessary to decrease the success probability. This is what
induces a larger waiting time for largerw. We therefore again
see an optimal region of w for which the expected time to
carry out one round of the protocol is minimized.
Finally, we note that in practice, in order to optimize the

full BQC protocol, one would need to consider how other
aspects of the setup, such as hardware, architecture, and pro-
tocol, affect the performance. The simple scenario chosen
in this work was to highlight the application of the results
of Section III. We see from Figs. 9 and 10 that for such
values of T and s, the methods from Section III enable one to
make a careful choice of (w, p) that can improve the rate of
rounds of the protocol by two or three times, in comparison
to other nonoptimal choices of (w, p) that are also sufficient
for protocol feasibility.

V. FURTHER DIRECTIONS
With the methods presented in this work, we focus on com-
puting both the first and second moments of τ(w,s), and the
full distribution of X(w,s). We have seen that for w finite
and s > 2, the formulae given here to compute E(τ(w,s) ) and
the distribution of X(w,s) are in the form of linear systems
that scale as |�(w, s)| + 1. If one would like to compute
the full ending pattern distribution, then this seems to be a
good scaling, since the outcome is comprised of |�(w, s)|
probabilities. However, if one is for example only interested
in E(τ(w,s) ) (e.g., for computing a protocol rate), then for
certain regimes of w and p it may be useful to consider a
continuous approximation, where the time between success-
ful resource generation attempt is exponentially distributed.
Such a case is often considered in the scan statistics literature
(for example, see [19]). However, how to study the ending
pattern distribution in the continuous case is not immediately
clear.
We also note that a useful tool of approximation would

be to further understand the asymptotic scaling highlighted
by Theorem 3. More specifically, it would be interesting to
know exactly how fast is the approach of (33) and (34), in
terms of s and w.
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In the setup of the problem, one could also consider a more
realistic model of a quantum network architecture. For ex-
ample, there may be parameter drift, when the success prob-
ability decreases over time due to increased noise. Further,
in the more general case where the sequential attempts are
not necessarily independent but Markovian, methods similar
to those used in this article may again be applied to the
problem—see [20], for example.

APPENDIX A
IDENTITIES FOR THE CASE OF TWO RESOURCE STATES
1) EVALUATION OF E(τ(w,2))
Evaluation of E(L): Recalling from (13) the distribution of
L, we have

E(L) =
w−1∑
n=1

n(1 − p)n−1p

1 − (1 − p)w−1

= p

1 − (1 − p)w−1

w−1∑
n=1

n(1 − p)n−1

= p

1 − (1 − p)w−1
· − d

dp

w−1∑
n=1

(1 − p)n

= p

1 − (1 − p)w−1
· − d

dp

1 − (1 − p)w

1 − p

= p

1 − (1 − p)w−1
· 1 − (1 − p)w − wp(1 − p)w−1

p2

= 1 − (1 − p)w − wp(1 − p)w−1

p(1 − (1 − p)w−1)

where to evaluate the sum we have used the identity for a
geometric series.
Proof that E(

∑M
j=1 Tj ) = E(M)E(T1): This is used to

evaluate the expectation E(τ(w,2)). The random variables M
and {Tj} are independent, and since the {Tj} are identically
distributed

E

⎛
⎝ M∑

j=1

Tj

⎞
⎠ =

∞∑
m=1

E

⎛
⎝ m∑

j=1

Tj

⎞
⎠P(M = m)

=
∞∑
m=1

E(T1) · mP(M = m)

= E(T1)E(M).

�

2) EVALUATION OF VAR(τ(w,2))
RecallM, Tj, and L, as given in Section III-B1. These are in-
dependent,M and T have distributionsM ∼ Geom(1 − (1 −
p)w−1), Tj ∼ Geom(p), and the distribution of L is given in

(13). From (15), we have

Var(τ(w,2)) = Var

⎛
⎝ M∑

j=1

Tj + (M − 1)(w − 1)

⎞
⎠+ Var(L)

(48)

sinceL is independent ofM and Tj. Now, lettingCov(X,Y ) =
E(XY ) − E(X )E(Y ) be the covariance, we have

Var

⎛
⎝ M∑

j=1

Tj + (M − 1)(w − 1)

⎞
⎠

= Var

⎛
⎝ M∑

j=1

Tj

⎞
⎠+ Var ((M − 1)(w − 1))

+ 2 · Cov
⎛
⎝ M∑

j=1

Tj, (M − 1)(w − 1)

⎞
⎠ (49)

where we have used the identity Var(X + Y ) = Var(X ) +
Var(Y ) + 2 · Cov(X,Y ). We now evaluate (49) term by term.
Firstly

E

⎛
⎜⎝
⎛
⎝ M∑

j=1

Tj

⎞
⎠

2
⎞
⎟⎠ =

∑
m

E

⎛
⎜⎝
⎛
⎝ m∑

j=1

Tj

⎞
⎠

2
⎞
⎟⎠P(M=m)

=
∑
m

E

⎛
⎝ m∑

j=1

T 2
j +

∑
i �= j

TiTj

⎞
⎠P(M=m)

=
∑
m

(
mE

(
T 2
1

)
+ m(m− 1)E (T1)

2
)
P(M=m)

= E(M)E
(
T 2
1

)
+
(
E

(
M2
)

− E(M)
)
E(T1)

2.

Subtracting E(
∑M

j=1 Tj )
2 = E(M)2E(T1)2 then yields

Var

⎛
⎝ M∑

j=1

Tj

⎞
⎠ = E(M)Var(T1) + Var(M)E(T1)

2. (50)

Secondly

Var ((M − 1)(w−1))= (w−1)2Var(M). (51)

Thirdly

Cov

⎛
⎝ M∑

j=1

Tj, (M−1)(w−1)

⎞
⎠ (52)

= (w−1)Cov

⎛
⎝ M∑

j=1

Tj,M

⎞
⎠ (53)

= (w − 1)

(∑
m

m2
E(T1)P(M = m) − E(M)2E(T1)

)

(54)
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= (w − 1)Var(M)E(T1). (55)

It now remains to evaluate Var(L). We firstly calculate

E

(
L2
)

=
w−1∑
n=1

n2(1 − p)n−1p

1 − (1 − p)w−1
(56)

=E(L)+ p

1 − (1 − p)w−1

w−1∑
n=1

n(n− 1)(1 − p)n−1.

(57)

Now
w−1∑
n=1

n(n− 1)(1 − p)n−1 = (1 − p)
d2

dp2

w−1∑
n=0

(1 − p)n

= (1 − p)
d2

dp2

(
1 − (1 − p)w

p

)
so

Var(L) = p(1 − p)

1 − (1 − p)w−1

d2

dp2

(
1 − (1 − p)w

p

)

+ E(L) − E(L)2. (58)

We are now equipped to compute the full variance of τ(w,2)

Var(τ(w,2)) = E(M)Var(T1) + Var(M)E(T1)
2

+ 2(w − 1)Var(M)E(T1) + (w − 1)2Var(M)

+ Var(L) (59)

where one may find a closed-form expression by inputting
the standard identities for a geometric random variable,
which are

E(T1) = 1

p
(60)

Var(T1) = 1 − p

p2
(61)

E(M) = 1

1 − (1 − p)w−1
(62)

Var(M) = (1 − p)w−1

(1 − (1 − p)w−1)2
. (63)

APPENDIX B
ENDING PATTERN DISTRIBUTION AND WAITING TIME
MOMENTS IN THE CASE OF A FINITE WINDOW SIZE
1) WAITING TIME IS WELL DEFINED
We show here that τx can be bounded above by a geo-
metrically distributed random variable. Using the notation
p1 = p, p0 = 1 − p for an ending pattern x ∈ �l (s), this
exact sequence will appear in any given l consecutive trials
Zi−l+1, . . .,Zi with probability γx := px1 . . .pxl . Defining a
new sequence of random variables (Yn)∞n=1

Yn =
{
1 if Zi = xi for all (n− 1)l < i ≤ nl

0, otherwise.
(64)

EachYn is then Bernoulli with parameter γx. It takes the value
1 if the nth segment of l trials exactly matches with x. There
is then an associated waiting time random variable τ̃x that is
geometric with parameter γx

τ̃x := min{n : Yn = 1}. (65)

Moreover, the waiting time to see x satisfies τx ≤ τ̃x · l.
Taking expectations yields

E(τ(w,s) ) ≤ E(τx) ≤ E(τ̃x · l) = l

γx
< ∞ (66)

which completes our proof. We note that the same method
can be used to show that all moments of τ(w,s) are finite.

2) EXPECTED WAITING TIME OF A SIMPLE PATTERN
Using the theory of martingales and a helpful gambling anal-
ogy to aid understanding, we now derive a way to numer-
ically compute the ending pattern distribution {P(x) : x ∈
�(w, s)}, and the first and second moments of the waiting
time τ(w,s), in the case of a finite window size. The result of
this is Theorem 1 in the main text. The method was intro-
duced in [30], where Li considered the more abstract case of
a general sequence of discrete i.i.d. random variables, and a
general set of ending patterns. Here, due to its relevance to
the subject of the main text, we continue with the case of i.i.d.
Bernoulli trials.
It will be useful to first of all consider the case where we

wait for an instance of a single pattern x = (x1, . . ., xl ) ∈
{0, 1}l , instead of waiting for any instance of the set�(w, s).
The former case is referred to as a simple pattern and the
latter as a compound pattern. In this section, we will find an
exact expression forE(τx). Here, τx refers to the waiting time
until seeing the pattern x, and is defined in (5).

To provide intuition, we introduce the following scenario
of gamblers in a casino. Suppose that just before the first trial
is realized, a gambler, hereinafter referred to as Gambler 1,
bets € 1 on the outcome {Z1 = x1}. We also suppose that the
odds are fair, so that if this is the case then she wins € 1

px1
.1

Moreover, if she wins, then she straight away bets all of these
winnings on the outcome {Z2 = x2}. If not, the casino keeps
her € 1 and she does not place any more bets. For a general
n, Gambler 1 then proceeds at the nth trial in a similar way:
if she has yet to lose, she bets all of her winnings on the
outcome {Zn = xn}, and if not, she does not place any bet.
Furthermore, at every trial we introduce a new gambler who
behaves in exactly the same way, so that Gambler 2 bets €
1 on the outcome {Z2 = x1}, and continues betting all of her
winnings on the subsequent rounds being equal to the next
entry of x, up until she loses a round. Gambler j bets € 1 on
the outcome {Zj = x1} and continues with exactly the same
strategy. The game stops when the sequence x first appears,
which by definition is at the τxth trial.

1i.e., the expected net gain of the gambler is zero. Calling this G,
we can verify explicitly by writing E(G) = (1/pλ1 − 1) · pλ1 + (−1) ·
(1 − pλ1 ) = 0.
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Our aim now is to write down an expression for the com-
bined net gain of the gamblers after the nth trial, for a general
n. In order to do this concisely, we recall the definition (21)
of the quantities δ(a,b). Given a realizationCn := (c1, . . ., cn)
of the first n trials, the winnings of Gambler j after the nth
round can then be written as

W ( j)(Cn) =
{
δ(x1,c j )δ(x2,c j+1). . .δ(xn− j+1,cn ) for n

−l + 1 ≤ j ≤ n; 0, otherwise. (67)

Here, we see that the functions δ(a,b) allow us to elegantly
write down a gambler’s winnings. With this in mind, the
combined winnings of the gamblers after the nth trial is

W (Cn) :=
n∑
j=1

W ( j)(Cn) =
n∑

j=n−l+1

W ( j)
n ≡ x ∗Cn (68)

where we have introduced the function ∗ that was defined in
(20), and that maps two binary strings to a scalar value. From
(67), we see that the net gain of the jth gambler after the nth
time step is simply

G( j)(Cn) :=W ( j)(Cn) − 1 (69)

and similarly, the total net gain of the gamblers after the nth
trial is

G(Cn) :=
n∑
j=1

G( j)(Cn) = x ∗Cn − n. (70)

We can now define a sequence of random variables (Gn)n≥0

Gn := G(Cn) (71)

which take the value of the total net gain of the gamblers
after each round. In particular, after the game ends, the total
net gain is

Gτx = x ∗ x− τx. (72)

Note that x ∗ x is a quantity that is only dependent on the
pattern x. Since the game is defined to be fair at every round,
the expected total net gain when the game finishes would
intuitively be equal to zero, i.e.,

E(Gτx ) = 0. (73)

A neat expression for the expected waiting time to see
the sequence B follows by making use of the linearity of
expectation:

E(τx) = x ∗ x. (74)

To prove (73), we make use of the fact that (Gn)n≥0 is a
martingale, for which the following properties must hold:

(i) E(|Gn|) < ∞;
(ii) E(Gn+1|Gn, . . .,G1) = Gn.

To show (i), we use the definition (72), and see that

E(|Gn|) ≤ x ∗Cn + E(τx) < ∞ (75)

since the waiting time τx is well defined, and x ∗Cn is
bounded. To show condition (ii), we use the fact that the

game is fair at each round. Suppose that we have the max-
imum amount of information about what has happened in
the first n trials, i.e., we know that they have taken the val-
ues (c1, . . ., cn). Then, the conditional expectation of Gn+1
satisfies

E(Gn+1|Z1 = c1, . . .,Zn = cn)

=
∑

cn+1∈{0,1}
G (Cn, cn+1)P(Zn+1 = cn+1)

=
n+1∑
j=1

∑
cn+1∈{0,1}

G( j) (Cn, cn+1) pcn+1

=
n+1∑
j=1

G( j)(Cn) = Gn

where to go to the final line, we have made use of the defini-
tion ofG( j). Since the realizations of (Z1, . . .,Zn) completely
determine the values of G1, . . .,Gn, this also shows (ii).
We now know that (Gn)n≥0 is a martingale. However, this

is not quite enough to show (73), which is what is required
to obtain the final simple form for E(τx). In particular, some
extra machinery is needed, in the form of Doob’s optional
stopping theorem, a proof of which can be found in [31]. A
version of this is stated below.
Theorem 4 (Optional Stopping): Let Gn be a martingale

and τ be a stopping time. Suppose that there exists a constant
K such that |Gn − Gn−1| < K for all n. Suppose also that τ
is a.s. finite. Then, E(Gτ ) = E(G1). �
All that remains to be done is to show that the martingale

defined in (72) satisfies the required properties to satisfy
Theorem 4. Firstly, we have

|Gn − Gn−1| < x ∗Cn + x ∗Cn−1 + 1 ≤ K (76)

where

K = 2 · maxC∈{0,1}l {x ∗C} + 1. (77)

Secondly, we see that since τx is bounded above by a geo-
metric random variable, it is a.s. finite. This gives us (73).

3) STARTING FROM ANOTHER PATTERN:
We now adapt the results above in order to find the expected
time to see x, given that we start already with some pattern
y. We extend the gambling analogy in order to illustrate this
concept, and suppose that we want to calculate the expected
time until seeing y only after some number of rounds, m,
say, have been realized. In particular, after themth round, we
know the first m realizations of the i.i.d. Bernoulli sequence,
and we call these y = (y1, . . ., ym). At this point, the net gain
of the gamblers is, thus, Gm = x ∗ y− m. We will evaluate
the net gain of the gamblers compared with this point after
each of the n trials, which for n ≥ m, we denote by G̃n. This
is simply given by

G̃n = Gn − Gm = (x ∗Cn − n) − (x ∗ y− m) (78)
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= x ∗Cn − x ∗ y− (n− m) (79)

whereCn is no longer completely general as its firstm entries
must correspond to y. Using the same reasoning as before,
one can show that (G̃n)n≥0 is a martingale. Then, defining
τxy as the waiting time to see x given that we have already
seen pattern y, it is again possible to use Theorem 4 to show
that

0 = E(G̃τxy ) = E(x ∗ x− x ∗ y− τyx)

and so by the linearity of expectations

E(τxy) = x ∗ x− x ∗ y. (80)

We may now use the results derived above to derive
a formula for E(τ(w,s) ) and the distribution of X(w,s).
Given x ∈ �(w, s), we write

E(τx)

= E(τ(w,s) ) + E(τx − τ(w,s) )

= E(τ(w,s) ) +
∑

y∈�(w,s)

P(X(w,s) = y)E(τx−τ(w,s)|X(w,s) = y)

= E(τ(w,s) ) +
∑

y∈�(w,s)

P(X(w,s) = y)(x ∗ x− x ∗ y)

where we have noticed that E(τx − τ(w,s)|X(w,s) = y) =
E(τxy). Applying Theorem 4 and enforcing the condition that
the ending pattern probabilities must sum to one, then, yields
the formula (23).

4) FORMULA FOR THE SECOND MOMENT OF THE WAITING
TIME
An extension to the gambling analogy given above can be
used to derive the formula for the second moment of the
waiting time, for which we refer to [20]. Here, we will only
state the formula. We first of all define a new operation †
that maps two elements x, y ∈ �(w, s) to a real number. If
x = (x1, . . ., xk ) and y = (y1, . . ., ym)

x † y :=
min(k,m)∑
j=1

(1 − j)
j∏

i=1

δ(xi,ym− j+i ). (81)

Letting � ≡ �(w, s), the second moment of τ(w,s) can be
found through solving the following systems.
Theorem 5: Let {u j}1≤ j≤|�| and {v j}1≤ j≤|�|. Solve the

linear systems

|�|∑
j=1

Wi ju j = 1, for 1 ≤ i ≤ |�| (82)

|�|∑
j=1

(Ni ju j +Wi jv j ) = 1, for 1 ≤ i ≤ |�| (83)

withWi j := x(i) ∗ x( j) and Ni j := x(i) † x( j). Then

E

(
τ 2(w,s)

)
=

1 +
(
1−∑ j v j−

∑
j u j/2

)
· E(τ(w,s) )∑

j u j/2
. (84)

�
Code that makes use of this formula to compute E(τ 2(w,s) )

is provided in [25].

APPENDIX C
APPROXIMATIONS
1) INFINITE WINDOW SIZE APPROXIMATION
Proof of Theorem 2: Letting ε ≡ ε(w, s, p) = P(τ(w,s) >

w), the expectation of τ(w,s) can be rewritten as

E(τ(w,s) ) = (1 − ε)E
(
τ(w,s)|τ(w,s) ≤ w

)
+ εE

(
τ(w,s)|τ(w,s) > w

)
. (85)

Now, note that for n ≤ w

P(τ(w,s) = n) = P(τ(∞,s) = n)

i.e., for this range of n, the distributions of τ(w,s) and τ(∞,s)
exactly match. We can thus rewrite (85) as

(1 − ε)E
(
τ(∞,s)|τ(∞,s) ≤ w

)+ εE
(
τ(w,s)|τ(w,s) > w

)
= E(τ(∞,s) ) − εE

(
τ(∞,s)|τ(∞,s) > w

)
+ εE

(
τ(w,s)|τ(w,s) > w

)
where to obtain the last equality we have expanded E(τ(∞,s) )
in the same way as (85). Now, if one considers starting the
whole process again after the first w time steps, we see that
E(τ(w,s)|τ(w,s) > w) ≤ w + E(τ(w,s) ). Combining this with
the fact that E(τ(∞,s)|τ(∞,s) > w) > w, we find that

E(τ(w,s) ) − E(τ(∞,s) ) ≤ ε · (w + E(τ(w,s) ) − w
)

(86)

from which (25) follows.
We further bound the distance between the ending pattern

distributions. Making use of

P(X(w,s) = x) = P(X(w,s) = x|τ(w,s) ≤ w)(1 − ε)

+ P(X(w,s) = x|τ(w,s) > w)ε

we have

P(X(w,s)=x) − P(X(∞,s)=x)

= (
P(X(w,s)=x|τ(w,s)>w)−P(X(∞,s)=x|τ(w,s)>w)

)
ε

and so, letting � ≡ �(∞, s)∑
x∈�

|P(X(w,s)=x) − P(X(∞,s)=x)|

<
∑
x∈�

(
P(X(w,s) = x|τ(w,s) > w)

+ P(X(∞,s) = x|τ(w,s) > w)
)
ε

= 2ε(w, s, p).
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�
Proof of Lemma 1: Here, we show the identity (29) for

ε(w, s, p). Letting q = 1 − p, we have

ε(w, s, p)

=
∞∑

n=w+1

(
n− 1

s− 1

)
qn−s ps

= ps

(s− 1)!

∞∑
n=w+1

(n− 1)!

(n− s)!
qn−s

= ps

(s− 1)!

∞∑
n=w+1

ds−1

dqs−1

(
qn−1

)

= ps

(s− 1)!

ds−1

dqs−1

( ∞∑
n=w+1

qn−1

)

= ps

(s− 1)!

ds−1

dqs−1

(
qw

1 − q

)

= ps

(s− 1)!

s−1∑
i=1

(
s− 1

i

)
di

dqi
(
qw
) ds−1−i

dqs−1−k
(
(1 − q)−1

)

= ps

(s− 1)!

s−1∑
i=1

(s− 1)!

i!(s− i− 1)!

w!

(w − i)!
qw−i (s− i− 1)!

(1 − q)s−i

=
s−1∑
i=1

(
w

i

)
qw−i pi.

�

2) ASYMPTOTIC BEHAVIOR OF THE EXPECTED WAITING
TIME AND ENDING PATTERN
Proof of Theorem 3: For conciseness, here we take � ≡

�(w, s). A formula for the inverse of A is given in terms of
its adjugate matrix adjA [32]

[adjA]i j := (−1)(i+ j) detMji (87)

whereMi j is the |�| × |�| matrix obtained by removing row
i and column j from A. Since A is invertible, the inverse is

A−1 = adjA

detA
. (88)

Now consider the system (23). If we consider solving for �v
by multiplying through by A−1, we see that its first element
is

E(τ(w,s) ) = detB

detA
(89)

where B is the |�| × |�| matrix obtained by removing the
first row and column from A, so that Bi j = xi ∗ x j. Since all
the entries of A are polynomials in 1/p and 1/q, so are detB
and detA.

To proceed with showing (33), we characterize the scaling
of detB and detA for small p. Since q = 1 − p is close to 1

for small p, it suffices to only consider the powers of 1/p for
the analysis of the asymptotic scaling as p → 0 [recalling the
definition of the star product (20)]. We first consider detB.
With the observation that the higher order terms in 1/p are
given by the star products on the diagonal, andmoreover, that
these each have leading order term given by 1/ps. The form
of detB, then, is a polynomial of maximum degree 1/ps|�|.
In fact, this is exactly the degree. One can compute this
contribution by considering the matrix B̃ of highest powers:
letting r ≡ 1/ps, we have detB ∼ det B̃, where

B̃ =

⎛
⎜⎜⎜⎝
r 0 . . . 0
0 r . . . 0
...

. . . 0
0 0 . . . r

⎞
⎟⎟⎟⎠ (90)

and hence, detB ∼ r|�| = 1/ps|�|. We then do the same with
A. In this case, detA ∼ det Ã, where

Ã =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 1 1
−1 r 0 . . . 0
−1 0 r . . . 0
...

...
. . . 0

−1 0 0 . . . r

⎞
⎟⎟⎟⎟⎟⎠ (91)

where the existence of a 0 in the top left-hand corner now
disrupts the evaluation of det Ã by multiplying along the
diagonal, as we did above. Our next step is to evaluate det Ã
by expanding along the top row

det Ã =
|�|∑
k=1

(−1)k det Ãk (92)

where Ãk is the |�| × |�| matrix formed by removing the
first row and the kth column from Ã

Ãk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 r 0 . . . 0
... 0

. . .
...

r 0
0 0
0 r

...
. . . 0

−1 0 . . . . . . 0 r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (93)

In Ãk, the r’s are placed above the diagonal in rows 1, . . ., k −
1, and on the diagonal in rows k + 1, . . ., |�|. The deter-
minant of Ã1 may be calculated by simply multiplying the
diagonal elements, to obtain

det Ã1 = −r|�|−1. (94)

We then notice that any Ãk can be transformed into Ã1 by
moving the kth row to the top row. This can be achieved by
performing k − 1 row operations, if it is moved by succes-
sively exchanging with the row above it k − 1 times. Then,
since each row operation incurs a factor of (−1)k

det Ãk = (−1)k−1 det Ã1 = (−1)kr|�|−1. (95)
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With (92), we then see that

det Ã = |�|r|�|−1 (96)

and so detA ∼ |�|/ps(|�|−1). Substituting into (89), we find

E
(
τ(w,s)

) ∼ ps(|�|−1)

|�|ps|�| = 1

|�|ps . (97)

To show (34), we employ a similar method. We have from
(88) that

P(X(w,s) = x(k) ) = (−1)1+k
detMk0

detA
(98)

∼ (−1)1+k
detCk
detX

(99)

where Ck is obtained by removing the first column and kth
row from A

Ck =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . 1

r 0 . . . . . . 0

0
. . .

...
... r 0 0

0 0 r
...

...
. . . 0

0 . . . . . . 0 r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(100)

where in Ck the x-entries are placed below the diagonal in
columns 1, . . ., k − 1, and on the diagonal in columns k +
1, . . ., |�|. We note that Ck is the transpose of Bk, with the
first column multiplied by a scaling factor of −1. Therefore,
detCk = − detBk = (−1)k+1r|�|−1, and making use again
of (96)

P

(
X(w,s) = x(k)

)
∼ r|�|−1

|�|r|�|−1
(101)

from which the result follows. �

APPENDIX D
TRADEOFF FUNCTION DUE TO ENTANGLEMENT
GENERATION SCHEME
In this Appendix, we motivate the linear tradeoff function

Fest = 1 − λp used in the BQC analysis, which describes the
fidelity of qubits in the server immediately after transmis-
sion.
Let σ denote the noisy two-qubit entangled state that is

produced between the client and server when there is a suc-
cessful attempt. When there is a success, the client and server
perform some qubit transmission procedure�σ , which could
for example be teleportation, or a remote state preparation
protocol. We assume that this protocol establishes all qubits
in the server with the same fidelity Fest. For example, this is
the case if the noisy entangled state is depolarized

σ = 4F0 − 1

3
|�+〉〈�+| + 1 − F0

3
I4 (102)

and the standard teleportation protocol from [33] is applied.
Here, F0 = 〈�+|σ |�+〉 is the fidelity of σ to the target state.
This involves performing a full measurement in the Bell basis
{|�i j〉} and applying the corresponding Pauli corrections. If
|ψ〉 is the qubit state to be teleported, its action is given by
�st

�st
σ (|ψ〉〈ψ |) :=

∑
i, j

X iZ j〈�i j|(|ψ〉〈ψ | ⊗ σ )|�i j〉Z jXi

(103)
where the Bell measurement acts on the registers containing
the qubit state |ψ〉 and the first qubit of σ . Suppose that the
entangled state and qubit transmission procedure are given
by (102) and (103), respectively. Then, after transmitting any
qubit |ψ〉, the resulting fidelity is [34]

Fest = 2F0 + 1

3
. (104)

Now, one can incorporate a general rate-fidelity tradeoff in-
herent to the entanglement generation protocol by specifying
that Fest is a decreasing function of p. In particular, we draw
here on an example from the single-photon scheme for en-
tanglement generation. When implementing a single-photon
scheme [6], the fidelity of generated states is

F0(psuc) = 1 − psuc
2pdet

(105)

where psuc is the success probability of a physical entan-
glement attempt, and pdet is the probability of detecting an
emitted photon. In the case of a very small psuc, one might
want to perform entanglement attempts in batches in order to
minimize overhead due to communication with higher layers
of the software stack (which must be notified when there
is, or is not, a success). This scheme has been implemented
with nitrogen-vacancy centers in diamond, where typically
psuc � 1 [35]. If this is the case, choosing one time step to
correspond to a batch of M � 1/(psuc)2 attempts, the prob-
ability of producing at least one entangled link in a time step
is

p = 1 − (1 − psuc)
M ≈ Mpsuc. (106)

Substituting this into (104) and (105), we obtain a tradeoff
function of

Fest(p) =
2
(
1 − p

2Mpdet

)
+ 1

3
= 1 − λp (107)

where λ := 1/(3Mpdet). Since M is a freely adjustable pa-
rameter, then so is λ. The simple relationship (107) is also
a general first-order behavior for a decreasing function in p
such thatFest(0) = 1, which justifies the choice as potentially
applicable to other hardware and entanglement generation
protocols.
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APPENDIX E
COMPUTING THE ERROR PROBABILITY OF A BQC TEST
ROUND
1) TEST ROUNDS
As mentioned previously, the protocol involves interweaving
test rounds at random with computation rounds. It is the
test rounds that provide verifiability of the protocol, because
they allow the client to check for deviations from the ideal
measurement outcomes. Recall that the goal of the client in
the BQC protocol is to perform a BQP computation, which is
defined in the measurement-based formalism with respect to
a graph G = (V,E ). In one round of the protocol, the client
transmits |V | qubits to the server, which (if it is honest) cre-
ates a graph state by applying CZ-gates to pairs of qubits as
given in the set of edges E. Before carrying out the protocol,
the client chooses some k-coloring {Vj : j = 1, . . ., k}, which
is a partition of the set of vertices V into different subsets,
known as colors, such that there is no edge between two
vertices of the same color. This k then corresponds to the k
in the feasibility condition (39).
Before each test round, the client chooses a color Vj uni-

formly at random to be the trap color. A qubit corresponding
to vertices from this set is then referred to as a trap qubit.
Any other qubit is referred to as a dummy qubit. Each trap
qubit v ∈ Vj will be |+θv 〉 := (|0〉 + eiθv |1〉)/√2, for some
angle θv that is chosen uniformly at random from� = { kπ4 :
k = 0, 1, . . ., 7}. Each dummy qubit v ∈ V \Vj will be |dv〉,
where dv ∈ {0, 1} is chosen uniformly at random. Then, the
effect of the server applying its entangling gates is to flip each
trap qubit to the orthogonal basis vector a number of times
that corresponds to the sum (modulo 2) of the neighboring
dummies. This is a quantity that the client can compute. After
constructing the graph state, the server measures its qubits
and sends the outcome to the client. The trap qubit measure-
ment basis that is specified by the client is {|±δv 〉}, for each
trap v ∈ Vj, where δv = θv + rvπ , and rv ∈ {0, 1} is chosen
uniformly at random. The client compares the outcomes of
the trap qubits to what is expected if all states and local
operations are perfect, declaring the test round to be a failure
if there is at least one trap measurement that is incorrect. A
depiction of a graph state, a choice of k-coloring, and a choice
of qubits for a test round are given in Fig. 11, for the case of
a square graph.

2) ERROR PROBABILITY FOR A GENERAL GRAPH
We suppose that the client would like to know the outcome
of a BQP calculation, which has corresponding graph G =
(V,E ), and that the client has chosen a k-coloring {Vj}kj=1.
Then, given that the vector of fidelities at the time the server
applies its operations is �F = (F1, . . .,F|V |), here we obtain
a general form for the probability of error of the test round,
PG(�F ). This is a generalization of what can be found in [29],
where BQC with two qubits is considered.
We first find the probability of error, given that the client

has chosen trap color Vj. Call this PVj . The client, chooses

FIGURE 11. Test rounds in the BQC protocol. Here, we choose an
example where the computation is performed on a square graph. The
client chooses a k-coloring: here k = 2, and the two sets are colored in
yellow and red. In this case, the red vertices correspond to trap qubits,
and the yellow vertices correspond to dummy qubits.

to send the trap qubits v ∈ Vj as states |+θv 〉. Then, at the
time when the test round is carried out, the trap qubits cor-
responding to vertices v ∈ Vj are each in a state ρv , where

ρv = Fv|+θv 〉〈+θv | + (1 − Fv )|−θv 〉〈−θv | + (o.d.1) (108)

where we use (o.d.1) to write the off-diagonal elements (with
respect to the basis {|+θv 〉, |−θv 〉}). We do not write them
out in full because these end up making no contribution to
PVj (�F ), as we will see later. Similarly, the dummy qubits v ∈
V \Vj will be in the state
ρv = Fv|dv〉〈dv )| + (1 − Fv )|dv ⊕ 1〉〈dv ⊕ 1| + (o.d.2)

(109)
where we use (o.d.2) to write the off-diagonal elements, this
time with respect to the computational basis. The state of the
server is then given by the tensor product of all of these states

ρserver =
⊗
v∈Vj

ρv

⊗
w∈Wj

ρw

⊗
u∈V\(Vj∪Wj )

ρu (110)

where we have definedWj ⊂ V \Vj to be the set of all ver-
tices that share an edge with a trap qubit. The server then
proceeds with the next step of the BQC protocol, and applies
CZ gates to all pairs of qubits corresponding to edges in E,
resulting in the state

ρ′
server = UρserverU

† (111)

where U := ∏
(w,v)∈E CZ(w,v). Recall that we are interested

in the probability PVj (�F ) that results in an error. In fact, is it

simpler to find a form for the success probability QVj (�F ) =
1 − PVj (�F ). An error occurs when at least one of the trap
qubit measurements does not match the result that would be
obtained if all states were perfect. In particular, if everything
were perfect, then the client would expect the measurement
outcome corresponding to the trap qubit v to be rv ⊕ Dv ,
where

Dv =
⊕

w∈Wj :(v,w)∈E
dw (112)

i.e., the sum (modulo 2) of all the dummy variables dv that
surround the trap qubit. The success probability is then given
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by

QVj (�F ) = TrV

⎛
⎝
⎛
⎝⊗

v∈Vj
|(−1)rv⊕Dv

δv
〉〈(−1)rv⊕Dv

δv
|
⎞
⎠ ρ′

server

⎞
⎠

(113)
where for convenience, we are using the notation |(+1)θ 〉
≡ |+θ 〉 and |(−1)θ 〉 ≡ |−θ 〉. Rewriting |(−1)rv+Dv

δv
〉 =

|(−1)Dv

θv
〉, and after examining (110) and (111), we see that

the qubit registers corresponding to vertices v ∈ V \ (Vj ∪
Wj ) will make no contribution to this quantity, so that

QVj (�F ) = TrVjTrWj

⎛
⎝
⎛
⎝⊗

v∈Vj
|(−1)Dv

θv
〉〈(−1)Dv

θv
|
⎞
⎠ σ ′

server

⎞
⎠

(114)
with

σ ′
server := ŨσserverŨ

† (115)

where we have defined σserver :=
⊗

v∈Vj ρv

⊗
w∈Wj

ρw and

Ũ := ∏
(w,v)∈Ej CZ(w,v), and Ej := {(v,w) ∈ E : v ∈ Vj} to

be the set of all edges between any element of Vj and any
other vertex. Recalling the states of our qubits as given in
(108) and (109), and defining F (0) := F , F (1) := 1 − F to
be used as a more concise way to write some of the terms,
we can then write

σserver =
⊗
v∈Vj

⎛
⎝ ∑
xv∈{0,1}

F (xv )
v |(−1)xvθv 〉〈(−1)xvθv |

⎞
⎠ ·

⊗
w∈Wj

⎛
⎝ ∑
yw∈{0,1}

F (yw )
w |dw + yw〉〈dw + yw|

⎞
⎠

=
⊗
v∈Vj

⎛
⎝ ∑
xv∈{0,1}

F (xv )
v |(−1)xvθv 〉〈(−1)xvθv |

⎞
⎠ ·

⊗⎛
⎜⎝ ∑

�y∈{0,1}|Wj |

∏
w∈Wj

F (yw )
w |�d + �y〉〈�d + �y|

⎞
⎟⎠
(116)

where in (116) we have rewritten the sum to be over
all length-|Wj| binary strings �y ≡ (yw )w∈Wj ∈ {0, 1}|Wj |. We

have also stored the dummy variables in a vector �d, so that
( �d + �y)w = dw + yw. Again, we are not writing out the off-
diagonal terms because these all disappear when we take
the trace, and therefore make no contribution to the final
expression. Applying the unitary operator Ũ yields

σ ′
server =

∑
�y∈{0,1}|Wj |

∏
w∈Wj

F (yw )
w |�d + �y〉〈�d + �y|·

⊗
v∈Vj

( ∑
xv∈{0,1}

F (xv )
v |(−1)xv+sv (�y)+Dv

θv
〉〈(−1)xv+sv (�y)+Dv

θv
|
)

where for a trap v ∈ Vj, we have defined

sv (�y) :=
∑

w∈Wj :(w,v)∈Ej
yw (117)

which is the sum of the binary variables yw over all vertices
neighboring v. We can now start to trace out registers in order
to find a final expression for QVj (�F ) in terms of the qubit

fidelities. Taking the inner product 〈(−1)Dv

δv
|. . .|(−1)Dv

δv
〉 for

all trap qubits v ∈ Vj and tracing out Wj yields our final
expression for the success probability, as introduced in (113)

QVj

(
�F
)

=
∑

�y∈{0,1}|Wj |

∏
w∈Wj

F (yw )
w

∏
v∈Vj

F (sv (�y))
v . (118)

This is a polynomial in the fidelities �F = (F1, . . .,F|V |), with
a form that is completely determined by the graph structure
and choice of trap colorVj. The same thus holds for the error
probability PVj (�F ). In our model as given in Section IV-B2, it
is further necessary to incorporate the fact that the first qubit
to be sent is chosen at random. The probability of error is then
effectively symmetrized over the |V | possible starting qubits
in the following way. Without loss of generality, letting the
order in which the qubits are sent to be lexicographical, the
probability of error is then

PVj

(
�F
)

→ P̃Vj

(
�F
)
:= 1

|V |
∑
j

PVj

(
σ j �F

)
(119)

where σ is the permutation that moves the vector elements
one place to the left, i.e., σ (F1, . . .,F|V |) = (F2, . . .,F|V |,F1).
To obtain the final probability of error, it remains to average
over the choice of trap color, recalling that this is chosen
uniformly at random. This gives us a final expression for
PG(�F )

PG
(
�F
)

= 1

k

k∑
j=1

P̃Vj

(
�F
)
. (120)

3) ERROR PROBABILITY FOR A SQUARE GRAPH
An example of such a polynomial for the case of a square
graph is as follows. Consider the k-coloring, as in Fig. 11,
with red as the choice of trap color. Suppose that when the
server applies its gates and measurements, the qubits have
fidelities �F = (F1,F2,F3,F4). Then, according to (118), the
success probability is given by

Qred

(
�F
)

= F1F2F3F4 + F1(1 − F2)(1 − F3)(1 − F4)

+ (1 − F1)(1 − F2)F3(1 − F4) + (1 − F1)F2(1 − F3)F4

and the error probability is then

Pred
(
�F
)

= 1 − Qred

(
�F
)
. (121)

By symmetry of the square graph, the error probability
Pyellow(�F ) is obtained by exchanging the indices 1 ↔ 2, 3 ↔
4 in (121). In the case of the square graph, the symmetrization
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maps Pred(�F ) → P̃red(�F ), where

P̃red(�F ) = 1

4
[Pred(F1,F2,F3,F4) + Pred(F2,F3,F4,F1)

+Pred(F3,F4,F1,F2) + Pred(F4,F1,F2,F3)] .

Note that the symmetries of the error functions Pred and
Pyellow reflect the symmetries of the graph, i.e., they are sym-
metric under the interchange of 1 ↔ 3 or 2 ↔ 4. Then

P̃red(�F ) = 1

2

(
Pred

(
�F
)

+ Pyellow
(
�F
))
. (122)

The other error function Pyellow maps to the same after the
symmetrization (119), i.e., P̃yellow(�F ) = P̃red(�F ). The proba-
bility of error, then, is given by

Psquare
(
�F
)

= 1

2

(
P̃yellow

(
�F
)

+ P̃red
(
�F
))

(123)

= 1

2

(
Pred

(
�F
)

+ Pyellow
(
�F
))
. (124)

This is the function that we use with (45) to calculate pav
for our model, and compute the results for an example of a
square graph in Section IV-B3.
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