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Preface 
In this thesis, I delve into the fascinating realm of river flow analysis through the lens of artificial 

intelligence (AI) models. With a keen interest in harnessing the power of convolutional neural 

networks (CNNs) and U-Net architectures, I embarked on a journey to explore their efficacy in 

reconstructing datasets with missing velocity data. This endeavour stemmed from a profound 

curiosity about the intersection of AI and hydrology, driven by a desire to contribute to the 

advancement of scientific understanding in this field. 

Throughout this research, I have encountered numerous challenges and triumphs, each contributing 

to my growth as a researcher and a scholar. From the meticulous analysis of datasets to the 

implementation of sophisticated AI algorithms, every step of the process has been a learning 

experience filled with valuable insights and discoveries. I hope that this thesis serves as a testament 

to the potential of AI in hydrological applications and inspires further exploration and innovation in 

this exciting field. May it spark curiosity, foster collaboration, and contribute to the collective pursuit 

of knowledge. 

Abstract 
This thesis investigates the efficacy of artificial intelligence (AI) models, particularly convolutional 

neural networks (CNNs) and U-Net architectures, in reconstructing datasets with missing velocity data 

in river flow analysis. Optical flow and Particle Image Velocimetry (PIV) techniques have emerged as 

valuable tools for analyzing river flow patterns. 

Through a comprehensive literature review, CNNs, and U-Net models are identified as promising tools 

for this task due to their ability to capture intricate patterns in datasets. The study compares the 

performance of the U-Net model against a statistics-based hydrological benchmark model, revealing 

the superior performance of the U-Net model.  

Furthermore, the analysis explores how the performance of AI models varies with differing quantities 

of missing data, by masking available data and comparing reconstructed values against the ground 

truth, highlighting the importance of data availability.  

Additionally, the study investigates the influence of spatial patterns in training data on model 

performance, including patchy versus random missing data in the field of view, simulating more 

datasets more likely available in reality. This clarifies the challenges encountered in predicting grid 

points under different training dataset conditions.  

Finally, the study identifies areas within the dataset that are particularly challenging to predict, 

shedding light on factors contributing to prediction errors. These findings underscore the potential of 

AI models in hydrological applications and provide valuable insights for future research in the field. 

Our findings show that U-net is capable of reconstructing velocity fields from a river flow better than 

an average benchmark, that uses the average values, with varying accuracy depending on input data. 

The average benchmark model had a relative error close to 0.2 in every instance, whereas the U-Net 

model showed relative errors ranging from 0.085 to 0.006. Errors from a patchy mask are ranging 

from 0.098 to 0.031. 

 

Keywords 
Artificial Intelligence (AI), Convolutional Neural Networks (CNNs), U-Net architectures, River flow 

analysis, Optical flow, Particle Image Velocimetry (PIV), Spatial patterns 
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1. Introduction 
River discharge stands as a paramount variable in hydrological analysis. Initially recorded to anticipate 

floods and address water scarcity, river discharge time series have evolved to become essential for 

the design of hydrologic projects. In the present context, monitoring river discharge serves not only in 

flood anticipation but also aids in detecting climatic and environmental changes. This is due to the 

fact that the discharge and quality of river water are intricately linked to numerous climatic, 

biological, geological, and topographic variables within the basin. The ongoing shift in climate is 

modifying the distribution pattern of atmospheric precipitation both temporally and spatially, 

alongside altering the occurrence of extreme climatic events. [1] 

Global advancements in river gauging networks are crucial to unveiling hydrological trends and 

changing atmospheric patterns. To have a greater understanding of the discharge patterns, it is crucial 

to determine the river flow as accurately as possible. Exploration of different measuring and 

predicting techniques is pivotal for our understanding of hydrological processes in a changing climate. 

[2][3] 

In the current landscape, there is an escalating demand for cost-effective methodologies that offer 

enhanced accuracy and reliability in river flow estimations, particularly with high spatial and temporal 

resolution. River discharge measurements during flood events are crucial for establishing reliable 

stage-discharge relationships. However, conventional measurement techniques pose numerous 

challenges, including unsafe field conditions and the potential for measurement inaccuracies, 

particularly in critical situations such as floods. During these events, obtaining precise measurements 

through traditional in situ methods becomes hazardous and challenging due to the rapidly changing 

conditions. Consequently, existing models, like hot wire anemometry and laser Doppler velocimetry,  

often struggle to provide accurate predictions during such times, emphasizing the urgency and 

importance of enhancing prediction accuracy.[4] 

In response to these needs, systems that don’t require personnel, such as unmanned aerial systems 

and fixed camera systems, emerge as essential systems for continuous observations.[5] Widely 

available and affordable image-based techniques are implemented to achieve these goals. 

Furthermore, image-based techniques typically require manual post-processing to extract velocity 

data from captured images, which can be time-consuming and labour-intensive. These limitations 

underscore the need for innovative approaches, such as Artificial Intelligence-driven methods, to 

overcome the challenges associated with image-based flow analysis and enhance the accuracy and 

efficiency of velocity field reconstructions. 

1.1 Background and Context 
Accurate and reliable predictions of river flow are essential for various applications, including flood 

forecasting, water resource management, and environmental planning. However, existing methods 

for acquiring river flow data face significant challenges. Firstly, the methodologies employed must be 

non-intrusive to mitigate risks to both personnel and equipment involved in the measurement 

process. 

Furthermore, camera-based measurements, while useful for estimations, suffer from quality 

limitations including image compression artefacts, diminished performance in low-light conditions, 

and potential issues stemming from corrupted imaging.[6] They are also limited by factors such as 

particle image size, magnification and optical aberrations.[7] Cloudy or nighttime conditions, in 

particular, lead to a notable decline in the accuracy of results. Moreover, the lack of information 
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regarding the riverbed's bottom profile poses a significant obstacle, necessitating techniques for 

depth estimation, possibly through the utilization of stereo-imagery.[8] 

Image-based detection methods, although effective in many instances, introduce complexities that 

can impede accurate measurement in certain scenarios. Additionally, the determination of surface 

flow is contingent on a prior understanding of the riverbed's geometry. Addressing these challenges 

may improve the accuracy and reliability of river flow predictions, ultimately contributing to more 

effective water resource management and flood preparedness.[9]  

PyOpenRiverCam, abbreviated as "pyorc," is a fully open-source program dedicated to conducting 

image-based river flow analysis. At its core, pyorc currently harnesses the capabilities of Large-scale 

Particle Image Velocimetry (LSPIV) for flow analysis, leveraging the robust OpenPIV library alongside 

reprojections and image pre-processing functionalities provided by OpenCV. [10] 

To improve the capabilities of pyorc, there is an initiative to incorporate Large-scale Particle Tracking 

Velocimetry (LSPTV) and Space-Time Image Velocimetry (STIV). These extensions aim to address 

scenarios wherein conditions are less favourable for LSPIV, thereby ensuring pyorc's versatility across 

a spectrum of hydraulic monitoring scenarios. [10] Combining the velocity fields with a user-provided 

cross-section results in a calculation of de river flow. Further explanation for this will be given in 3.1 

Case Study. Despite its advantages, PIV techniques have inherent limitations that can affect their 

effectiveness in flow analysis. One limitation is the spatial resolution of PIV measurements, which 

may not always be sufficient to capture fine-scale flow features or resolve small-scale turbulent 

structures. 

1.2 Objectives 
The primary objectives of this thesis are to develop models that are able to handle missing velocity 

data in areas with files unable to construct a complete velocity field due to varied conditions, such as 

little light, unclear lens due to droplets or videos taken at nighttime. The ultimate aim is to 

reconstruct datasets with precision, rendering them suitable for diverse applications, including the 

accurate calculation of discharge rates. 

Reconstructing missing data in datasets can be approached in various ways and the choice of method 

often depends on the nature of the data and the specific characteristics of the problem. One of the 

common methods is a mean/mode imputation where missing values in the dataset are replaced with 

the mean or mode of the observed values in the same variable. This approach can be quick, but it 

may not capture complex patterns in the datasets. Recognizing the limitations of this technique, this 

study delves into more advanced techniques from the field of machine learning.  One promising 

avenue involves leveraging convolutional neural networks (CNNs) due to their capability to capture 

complex spatial patterns and dependencies within data. CNNs are particularly well-suited for tasks 

involving image data, such as velocity fields in river flow analysis, as they excel at automatically 

learning hierarchical representations of features directly from the data. Their architecture includes 

convolutional layers that systematically extract features at different spatial scales, enabling them to 

effectively capture the intricate patterns present in the dataset. [11,12] 

Ultimately, the study aims to demonstrate the practical utility of the developed models by predicting 

flow Patterns and discharge accurately. By showcasing the models' ability to predict flow patterns and 

discharge rates with precision, the research seeks to contribute to advancements in hydrological 

modelling and water resource management practices. 
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1.3 Significance of the Study 
This research holds significant implications in the domain of river flow analysis, particularly 

concerning the application of artificial intelligence (AI) models in reconstructing datasets with missing 

velocity data. Unlike previous studies, which primarily focused on the importance of flow 

measurements, this investigation delves deeper into the efficacy of CNNs and U-Net architectures in 

this context. 

One of the novel aspects of this study lies in its thorough comparison of AI models, particularly the U-

Net model, against a statistics-based hydrological benchmark model. By rigorously evaluating the 

performance of these models, the research sheds light on the superiority of the U-Net model in 

reconstructing velocity fields from river flow data. This finding not only advances the understanding 

of AI's potential in hydrological applications but also highlights the practical advantages of employing 

sophisticated neural network architectures over traditional statistical approaches. The methodologies 

developed here could potentially be adapted and applied in contexts beyond river flow assessment, 

contributing to a broader spectrum of environmental monitoring and predictive modelling.[13] 

Furthermore, this study explores the influence of varying quantities of missing data on AI model 

performance. By systematically masking available data and comparing reconstructed values against 

ground truth, the research underscores the role of data availability in model accuracy. Additionally, 

the investigation delves into the impact of spatial patterns in training data on model performance, 

distinguishing between patchy and random missing data scenarios. Such insights are valuable for 

refining AI-based approaches to river flow analysis and improving predictive capabilities in real-world 

scenarios. 

The accurate detection of river surface flow bears direct implications for water resource 

management. Precise assessments and allocations of water resources are contingent on reliable data 

regarding river behaviour. Improving the accuracy of these measurements aids in optimizing resource 

allocation, which, in turn, impacts a wide range of stakeholders, from agricultural enterprises to 

urban water utilities. 

Finally, an additional application arises in the event of significant geomorphological changes following 

a flood. A trained model could facilitate the identification of such alterations, signalling the need for 

recalibrating the system. This adaptive capacity ensures the continued relevance and accuracy of the 

predictive model in dynamic environmental conditions. 
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1.4 Research questions 
In this section, we outline the primary research question and its corresponding sub-questions that 

guide our investigation into the application of artificial AI in river surface velocity reconstructions. 

The primary research question of this study is: 

Research question: How effectively can AI be employed to augment missing velocimetry data in 

river surface velocity reconstructions? 

This overarching question can be dissected into several sub-questions, each addressing specific facets 

of the research: 

Sub-question 1: What kind of AI model has the best potential for reconstruction of a dataset? 

Sub-question 2: Do AI models outperform a typical hydrology benchmark model?  

 

Sub-question 3: To what extent does the performance of the AI model vary with differing quantities 

of missing data on the river surface? 

Sub-question 4: What is the influence of spatially patchy versus random missing data on the 

performance of the model training? 

Sub-question 5: Which areas are hardest to predict in the case study? 

1.5 Thesis Organization 
This thesis is structured into several chapters, each dedicated to specific aspects of the research. The 

literature review forms the foundation, providing an overview of current methodologies in retrieving 

river flow measurements. It delves into traditional approaches and recent advancements while 

discussing neural network concepts relevant to the study. Following this, the methodology chapter 

outlines the research's procedural framework. It details data collection methods, preprocessing steps, 

and the development of benchmark models and neural network architectures. The subsequent 

results chapter presents the findings from the analysis. It includes quantitative results, visualizations, 

and comparisons between different approaches, offering insights into the research outcomes. In the 

discussion chapter, the results are interpreted in the context of the research objectives. Patterns, 

trends, and discrepancies observed in the data are analyzed, along with any limitations encountered 

during the study. Furthermore, potential avenues for future research are suggested. The conclusion 

chapter summarizes the key findings and reiterates the study's significance. It reflects on the research 

questions posed initially and provides recommendations based on the outcomes. Finally, the 

appendix contains supplementary material such as additional figures, tables, or data supporting the 

main text's findings. It offers readers further context related to the research without being essential 

for understanding the core arguments. 
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2. Literature Review 

2.1 Image-based Velocimetry Methods 
River flow, as a fundamental aspect of hydrology, holds paramount importance in surface hydrology 

studies, yet direct measurement remains challenging. Velocimetry analysis methods play a critical 

role in understanding fluid dynamics, particularly in river contexts, by capturing the velocity field on 

the river surface and providing insights into water flow patterns. To derive depth-averaged velocity 

from surface velocity measurements, various methods are employed, such as multiplication with 

empirical coefficients or hydraulic methods based on the entropy maximization principle. 

In the context of fluid dynamics and image analysis, the concept of image flow refers to the 

sequential transformation of images over time, reflecting changes in the underlying physical 

processes. This transformation can be described in terms of displacement fields, representing the 

movement of image elements or fluid particles between successive frames. The associated image-

flow velocity field captures the rate of change of these displacement fields, providing insights into the 

dynamics of the system.[14]  

2.1.1 Particle Tracking Velocimetry 

Particle Tracking Velocimetry (PTV) is a technique used to track individual particles within a fluid over 

time to understand their movement and velocities. By following the trajectory of each particle 

through successive frames of recorded data, PTV provides detailed insights into how particles move 

within the fluid flow. This method allows researchers to capture complex flow behaviours with 

precision, making it valuable for studying dynamic fluid systems.[15] 

In recent years, there has been a shift towards leveraging Large-Scale Particle Tracking Velocimetry 

(LSPTV) methods to enhance the spatiotemporal resolution of velocimetry datasets. LSPTV combines 

advanced imaging techniques with particle tracking algorithms to provide a comprehensive view of 

fluid motion. [16]  

Image velocimetry techniques, particularly those based on LSPTV, have emerged as valuable tools for 

monitoring river flows using remote sensing platforms. While LSPTV methods have demonstrated 

significant advancements in recent years, there remains a need for comprehensive evaluation and 

comparison of different image velocimetry algorithms. In response to this need, performance 

assessments have been conducted.[17][18]  

Developments in LSPTV have led to improved accuracy and coverage, due to the integration of 

algorithms for particle identification, tracking, and data post-processing. State-of-the-art LSPTV 

methods leverage advanced imaging technologies enabling the extraction of high-resolution velocity 

fields for detailed analysis of fluid dynamics.[19] 

2.1.2 Particle Image Velocimetry 

Particle Image Velocimetry (PIV), like PTV, has its roots in the basic observation of particle motion in 

fluid flows, a concept that can be traced back to ancient times. For instance, individuals observing the 

movement of debris on the surface of flowing water could intuitively grasp the notion of velocity. PIV 

represents a technique for precisely and quantitatively measuring fluid velocity vectors across 

numerous points simultaneously.[20] Notably, PIV has gained popularity due to its affordability and 

simplicity, allowing its application even from lightweight unmanned aerial vehicles.[21][22] 

The utilization of cameras for river flow monitoring, facilitated by image velocimetry techniques, has 

expanded significantly. Large-scale particle image velocimetry (LSPIV) applies principles from classic 

PIV to large-scale fluvial conditions.[23] This approach has been successfully employed in various 
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applications, including flash flood monitoring in the French Alps and hydraulic engineering 

assessments.[24] 

The methodology of image velocimetry typically involves four main stages: image acquisition, pre-

processing, analysis, and post-processing. During image acquisition, videos or image sequences of the 

river's surface are recorded, capturing surface features such as boils, ripples, or debris, which serve as 

natural seeding points. Artificial seeding materials like eco foam or wood chippings may also be 

introduced into the river channel to facilitate feature detection. These recorded images undergo pre-

processing, analysis, and post-processing stages to generate velocity estimates.[25][15] 

In the pre-processing phase of image velocimetry, several essential steps are undertaken to prepare 

the raw imagery for analysis. This includes tasks such as image orthorectification, which corrects for 

distortions caused by camera lens properties, perspective and terrain variations. [26] Additionally, 

lens distortions are removed to ensure an accurate representation of features in the image. Another 

critical aspect is image stabilization, which may be applied if relevant, to compensate for any motion 

or vibrations in the recording platform, ensuring consistent and stable imagery. [27] 

During the velocimetry analysis phase, the processed images are subjected to algorithms that extract 

velocity information from the captured data. This process involves identifying and tracking features or 

particles within the images to determine their displacement between successive frames, thereby 

quantifying the flow velocity at different points in the field of view. Various techniques, such as 

correlation-based methods or feature-tracking algorithms, are commonly employed for this purpose. 

Additionally, interpolation methods may be utilized to estimate velocities at points where data is 

sparse or missing, enhancing the overall accuracy of the velocity field reconstruction.[14,28] 

In the post-processing phase, the focus shifts to refining the calculated results. This stage aims to 

eliminate any spurious vectors or erroneous data points that may have been generated during the 

analysis. However, it's important to note that not all image velocimetry algorithms require extensive 

post-processing, as the quality of results may vary depending on the specific algorithm used and the 

characteristics of the input data.[21,29] 

While PTV offers a more detailed understanding of particle movement and flow dynamics, it typically 

requires more computational resources and data processing compared to PIV. However, PIV's ability 

to provide simultaneous velocity measurements at numerous points makes it suitable for capturing 

overall flow patterns efficiently. In this thesis, we are making use of the PIV technique to construct 

the velocity fields. 

2.2 Deep Learning and Neural Networks 
Deep learning has emerged as a powerful tool, demonstrating success in tasks ranging from image 

and speech recognition to genomics. Central to the effectiveness of deep learning are deep neural 

networks, characterized by their layered structure, which enables them to learn increasingly abstract 

representations of raw input data at each layer. By leveraging multiple layers, deep neural networks 

can discern intricate structures within high-dimensional datasets.  

For instance, when presented with an image represented as an array of pixel values, the initial layers 

of a deep neural network may specialize in identifying fundamental features such as edges in 

different orientations.[30] Subsequent layers then build upon these features, discerning more 

complex patterns and arrangements until a sophisticated hierarchy of features emerges, ultimately 

facilitating the recognition of complex objects like faces or road signs.[31]  
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While traditional deep learning approaches, including neural networks, have been instrumental in 

handling various types of data, including images, convolutional neural networks (CNNs) have 

emerged as a more efficient and effective solution for tasks involving image processing.[32]  

The main difficulty of training these networks is that due to exponential growth or decay the 

gradients may either vanish or explode, which is especially problematic with learning sequences with 

long-term dependencies. [33] [34] 

2.2.1 Convolutional Neural Networks (CNNs) 
While traditional deep learning approaches, including neural networks, have been instrumental in 

handling various types of data, including images, CNNs have emerged as a more efficient and 

effective solution for tasks involving image processing. CNNs are specifically designed to process and 

analyze visual data, exploiting the spatial correlation present in images by using learnable filters and 

convolutional layers.[35] In hydrology, the application of CNNs and U-Nets has shown promise in 

various tasks, ranging from rainfall estimation to flood mapping and river flow predictions. For 

example, one notable application involves the integration of CNNs with the Incompressible Smoothed 

Particle Hydrodynamics method for predicting fluid pressure, circumventing the need to directly solve 

the pressure Poisson’s equation. While prior attempts at employing CNNs for solutions within 

Eulerian formulations, known as the Eulerian CNN framework, have been limited in mesh-based 

methods, some approaches represent a significant advancement in the field.[36][37] 

Additionally, CNNs were employed to predict river flows, with their results compared against those 

derived from parametric models revealing that CNN-based models yielded more favourable 

outcomes, underscoring the efficacy of neural network approaches in hydrological prediction tasks. 

[38] 

The effectiveness of CNNs is rooted in their unique properties, including local connectivity and shared 

weights.[39] CNNs leverage local connectivity, meaning that neurons in each layer are only connected 

to a small subset of neurons in the preceding layer. This allows the network to focus on localized 

regions of the input data, facilitating the detection of patterns and features within those regions. [40]  

Moreover, CNNs employ weight sharing across the input domain, allowing them to detect features 

invariant to translation, regardless of their precise location within the input data.[41] This weight-

sharing scheme enables CNNs to efficiently recognize recurring patterns and features across the 

entire input domain, particularly beneficial in arrayed data like images or sequences. Rather than 

relying solely on specific grid locations for predictions, CNNs learn shared filters across the entire 

image, facilitating understanding of different features hierarchically. [42]This property is crucial when 

predicting velocities in a grid using CNNs, enhancing their effectiveness by capturing underlying 

relationships between neighbouring grid points.[43] Additionally, hierarchical learning of shared 

filters enables CNNs to discern velocity patterns and variations, contributing to accurate velocity 

predictions across diverse grid configurations.[44] Overall, weight sharing enhances the effectiveness 

of velocity prediction tasks by allowing CNNs to learn shared filters across entire images, which are 

then composed hierarchically to recognize very specific features.[45]  

In the context of remote sensing and geospatial data analysis, CNNs have been applied to tasks such 

as land cover classification, change detection, and environmental monitoring. The ability of CNNs to 

automatically extract features from complex spatial data has contributed to their effectiveness in 

various Earth observation applications. [38][46][47] 
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2.2.2 U-Net Architecture 
Originally proposed in 2015, U-Net is a specialized form of CNN tailored for semantic segmentation 

tasks, particularly in medical image analysis. The architecture of U-Net features a U-shaped structure, 

comprising an encoder-decoder pathway. The encoder spatial information through down-sampling 

operations, while the decoder reconstructs high-resolution feature maps through up-sampling.[40]  

Despite its initial development for medical imaging, U-Net's unique architecture has found 

widespread use in other domains, including remote sensing and hydrological modelling. In 

applications such as river flow predictions and velocity imputation, U-Net excels at capturing intricate 

spatial dependencies and providing detailed segmentation, making it a valuable tool for image 

analysis tasks beyond its original scope.[48] [49][50] [51][52] 

A standard CNN network comprises three fundamental types of layers: convolution layers, pooling 

layers, and fully connected layers. 

Convolution layers are components of CNNs tasked with extracting features from input images or 

feature maps derived from previous layers. These layers employ learnable filters, consisting of arrays 

of weights, to convolve over the input data. Through this process, feature maps are generated via a 

series of independent convolutions, followed by nonlinear transformations. In a grid representing a 

velocity field, with each point showing the speed and direction of the flow. Convolutional layers are 

like filters that slide over this grid, examining small patches at a time. They're looking for specific 

patterns in the flow, such as areas of high speed or regions where the flow changes direction. These 

filters learn to detect these patterns during training, helping the network understand the underlying 

dynamics of the flow. Figure 1 shows an example of a convolution operation.[53] 

Following convolutional layers, pooling layers, also known as subsampling layers, are often employed 

to reduce the dimensions of the feature maps. Common pooling operations include average pooling 

and max pooling, which apply local nonlinear functions to aggregate information within windows of 

the feature maps. This down-sampling process results in coarser feature maps, facilitating the 

extraction of high-level representations in subsequent convolutional layers and reducing the number 

of learnable parameters to optimize computation time and mitigate overfitting. Pooling layers help 

simplify the information gathered by the convolutional layers while maintaining the essential features 

of the velocity field, in a detailed grid showing the flow at every point. Pooling layers reduce the size 

of this grid by grouping nearby points together and summarizing their velocities. For example, max 

pooling might keep only the fastest velocity in each group, while average pooling calculates the 

average velocity. This down-sampling process retains the most critical aspects of the flow while 

making it easier for the network to process. 

Fully connected layers typically constitute the final layers of a CNN model, consolidating information 

from all hidden units in the preceding layer to make ultimate decisions. These layers synthesize the 

extracted features into comprehensive representations, aiding in the model's decision-making 

process.[54] After the pooling layers, the network has extracted the essential features from the 

velocity field. Fully connected layers analyze these features to reconstruct the complete picture. They 

consider how different patterns of flow relate to each other and use that information to fill in any 

missing or incomplete parts of the velocity field. For instance, if the network detects a vortex pattern 

in one area, it might infer the presence of similar patterns nearby and fill in the velocities accordingly. 
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Figure 1 An example of a  convolution operation [53] 

 

The U-Net architecture is particularly suited for the task of reconstructing missing resolved flows due 

to its effectiveness in handling image-to-image tasks. In the context of this thesis, the problem is 

framed as transforming input images, which represent grids with known and missing velocities, into 

output images with reconstructed velocities. Unlike traditional RGB images, these input and output 

images consist of two different types of channels representing velocity components in the y and x 

directions. U-Net's ability to capture spatial dependencies and hierarchical representations of 

features makes it well-suited for such tasks, facilitating accurate reconstruction of missing velocity 

data within the grid structure. It is done by enhancing the typical CNN architecture by introducing an 

encoder-decoder structure and skip-connections.  

The encoder-decoder structure is tailored for image-to-image tasks like velocimetry reconstruction. 

The encoder compresses the input flow field into a lower-dimensional representation, capturing the 

essential features of the flow. The decoder then expands this representation back to the original size 

while preserving the spatial relationships within the flow field. This architecture allows the network 

to learn both global and local features of the flow, facilitating accurate and detailed reconstruction. 

Skip connections in U-Nets are vital for maintaining spatial information during the encoding and 

decoding process. They enable the network to bypass certain layers and directly connect encoder 

features to corresponding decoder features. This allows the network to retain fine-grained details of 

the flow field, ensuring that critical information is not lost during the compression and reconstruction 

process. By incorporating skip connections, U-Nets enhance the flow field reconstruction accuracy 

and mitigate issues like gradient vanishing or exploding, commonly encountered in deep learning 

models. [55][56] 
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In the context of reconstructing flow patterns, the U-Net architecture, with its encoder-decoder 

structure and skip connections, works together to capture both the overall picture and the finer 

details of the flow. This allows the network to understand the flow from different angles and 

preserves important features. By doing so, it effectively deals with the challenge of maintaining 

accuracy when processing lower-resolution flow data. This approach combines different types of 

information to make precise predictions, making U-Net a powerful tool for flow reconstruction 

compared to traditional CNN methods. In section 3.7 U-Net Model Construction, the U-Net 

architecture used for this thesis is visualized (Figure 17 U-Net Architecture visualized with the input 

and the output  image for the velocity in the x directionFigure 17). 

2.2.3 Training and evaluating a U-Net model 
Training a U-Net model involves several key components, including selecting an appropriate 

optimizer, determining the learning rate, defining the loss function, and splitting the dataset into 

training and testing subsets.  As one layer feeds its output into the next layer, the extracted features 

undergo a hierarchical refinement, progressively becoming more complex. This iterative refinement 

process is called the training of neural networks[53], where the goal is to optimize parameters, such 

as kernel weights, to minimize the disparity between model predictions and ground truth labels. This 

optimization is achieved through iterative updates using optimization algorithms like backpropagation 

and gradient descent, among others. These algorithms adjust the model parameters in a direction 

that minimizes the discrepancy between predicted outputs and the actual ground truth targets, 

gradually improving the network's performance over successive iterations of training. 

The choice of optimizer is crucial as it determines how the model parameters are updated during the 

optimization process. For the task of reconstructing velocity fields, where the input data is sparse and 

the objective is to predict continuous values, such as velocity components, using a regression 

approach, we opt for the Adam optimizer combined with the Mean Squared Error (MSE) loss 

function. 

The Adam optimizer is an adaptive learning rate optimization algorithm that computes individual 

learning rates for each parameter based on estimates of the first and second moments of the 

gradients. Adam incorporates bias correction and momentum, enhancing its performance compared 

to other optimization algorithms like RMSprop and Adagrad. This bias correction suggests that Adam 

outperforms RMSprop, especially towards the end of the optimization process when gradients 

become sparser. Given these advantages and the complexity of the U-Net architecture, Adam 

emerges as a suitable choice for optimizing the model parameters.[57] [32] 

Furthermore, the MSE loss function is well-suited for regression tasks where the goal is to minimize 

the squared differences between predicted values and ground truth labels. In the context of 

reconstructing velocity fields, where the output consists of continuous velocity components, MSE 

provides a measure of how well the predicted velocities align with the actual velocities observed in 

the data.[58] Minimizing the MSE loss helps ensure that the model generates accurate predictions 

that closely match the true velocities, thereby facilitating the reconstruction of precise velocity fields. 

[59] 

The Adam optimizer, with its adaptive learning rate capabilities and momentum, along with the MSE 

loss function, which is tailored for regression tasks, offer a good framework for training the U-Net to 

accurately reconstruct velocity fields from input data. [36] 

The Rectified Linear Unit (ReLU) function is a commonly used activation function. It introduces non-

linearity by setting all negative values in the input tensor to zero while leaving positive values 
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unchanged. By allowing only positive values to pass through, ReLU helps the network learn complex 

patterns and relationships in the data. Essentially, ReLU decides which information is relevant to 

retain and which can be disregarded based on its positivity. [46][31] 

The term "3x3 kernel" refers to a small filter matrix applied to input data. During convolution, this 

kernel moves across the input data, computing dot products with overlapping regions. By using a 3x3 

kernel, the network can extract local features and patterns from the input data effectively. This is 

shown in Figure 1. 

Padding involves adding additional border pixels around the input image or feature map. In 

convolutional layers, padding ensures that the spatial dimensions of input and output volumes 

remain consistent. With a padding of 1, one layer of zeros is added around the input image or feature 

map on all sides. This maintains the spatial integrity of the data and prevents information loss at the 

image borders during convolution.[60][61] 

Max pooling is a down-sampling technique used to reduce the spatial dimensions of feature maps. It 

partitions the input feature map into non-overlapping regions and selects the maximum value from 

each region. Using a 2x2 kernel with a stride of 2 means that pooling is performed in 2x2 pixel 

regions, moving by 2 pixels at each step. Max pooling aids in achieving translation invariance and 

computational efficiency by reducing the spatial resolution of feature maps. Additionally, it helps in 

identifying dominant features and enhancing the network's robustness to variations in the input 

data.[32][62] 
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3. Materials and methods 
The methodology employed in this study integrates various techniques to address the research 

objectives effectively. The process begins with data collection, where datasets containing river flow 

velocity measurements are gathered from the designated sources. Subsequently, preprocessing steps 

are undertaken to clean and prepare the data for analysis, ensuring its quality and integrity. Following 

this, mean velocity and missing values are determined for each grouped water level, providing 

essential insights into the dataset's characteristics. The study also involves the creation of jack-knifed 

data to simulate missing data and analyze model performances. Moreover, benchmark and U-Net 

models are constructed to compare different approaches to missing data reconstruction. Finally, a 

comprehensive comparison between the benchmark and U-Net models is conducted to evaluate 

their performance and effectiveness in addressing the research objectives. 

3.1 Case Study 
The scope of this study is centred around a case study conducted on a small river situated in the 

southern region of Limburg – The Netherlands (Figure 2 and 3). The selection of this specific location 

was deliberate, driven by practical considerations that enhance the feasibility and depth of the 

research: there already was a camera set-up prior to the start of this thesis and there were already 

more than 6000 datasets, ranging from December 18th 2022 to April 26th 2023, available on which we 

could perform the analysis. The richness of the dataset spanning multiple months offered a diverse 

range of conditions and variations in river dynamics, contributing to a robust and comprehensive 

analysis. Additionally, there were many recordings with a variety in the illumination and optically 

resolved percentages of the dataset. 

It is important to note that while the study's geographical scope is limited to the specific river in 

Limburg, the findings and methodologies developed herein may have broader applicability to other 

river systems. The case study serves as an illustrative example, showcasing the practical implications 

and potential advancements in river flow predictions through the integration of AI techniques. 

 

  

  
 

 

 

 

 

 

 

 

Figure 2 Location of the case study in Google Maps Figure 3 Satellite image of the ricer from the Case study 
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From a pre-defined camera configuration the control points, the camera lens position and the area of 

interest are determined (Figure 4) and with some preprocessing of the videos, a velocity field can be 

created. Figure 5 shows such a velocity field projected on the geographical plane.   

 

Transects can be extracted from the velocimetry with user-provided cross-sections (Figure 6). From 

this transect, the river flow can be calculated (Error! Reference source not found.7). In the initial 

case, gaps in the transection are filled by either a logarithmic profile fit or with zeros. This thesis is 

looking to reduce the gaps in the transection by completely reconstructing the velocity fields.   

 

 

 

   

  

Figure 5 Velocity field in geographical plane 

Figure 6 Velocity field from a camera with a transect of velocity 

Figure 4 Area of interest with control points and camera 

Figure 7 River flow obtained from the transect 

Figure 7 
Figure 5 

Figure 6 
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3.2 Data Collection  
The primary dataset for this study consists of 6000+ recordings obtained from pyOpenRiverCam 

(pyorc). [10] These recordings were captured using one stationary camera, and processed with one 

single configuration providing velocimetry in the form of grids [29x58]. Each grid contains flow 

velocity information in both the x and y directions. The recordings were collected at a rate of 125 

frames per 5 seconds, resulting in a frame captured every 0.04 seconds. It is noteworthy that certain 

datasets exhibit missing data points on the grid, particularly in conditions of darkness or when the 

view is obscured. Figure 8 shows such a velocity field constructed on top of the image. It is clear that 

some part of the lens was obscured by a droplet which led to missing data in the velocimetry.   

 

Figure 8 Image captured by the camera with the velocity field visualized on top of the image. 

The velocimetry obtained from the video object provides raw velocities after orthorectification done 

by pyorc. This velocimetry information is structured and organized into an xarray dataset, a powerful 

data structure in Python designed for handling multi-dimensional labelled arrays. As illustrated in 

Figure 9, the projection represents a velocity field on a rectangular grid. These datasets are used 

throughout this thesis. 

 

Figure 9 A velocimetry from the camera projected on a rectangle with missing data (left: camera view, right: rectangular 
projection) 
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3.3 Preprocessing 
The preprocessing phase played a crucial role in refining the raw dataset before the development of 

the models. The initial step involved calculating the mean velocity at each grid point over the 5-

second recording period. This process aimed to capture the central tendency of flow velocities and 

reduce the impact of transient fluctuations in the data. Additionally, to ensure the integrity of the 

dataset, velocities that did not align with physical principles were filtered out. This included instances 

of backward flows or velocities deemed impossible in the given context. The filtering process 

contributed to the elimination of erroneous data points and enhanced the overall quality of the 

dataset. Finally, the datasets were grouped based on the measured water level NAP, operating under 

the assumption that flows at similar water levels exhibit comparable behaviours. This grouping 

facilitated an analysis, allowing the AI models to capture variations in flow patterns specific to distinct 

water level ranges. [63] Figure 10 shows the overall distinction in flow velocity with different water 

levels across all the datasets. 

Segmenting the velocimetry fields based on similar hydraulic conditions serves two primary purposes. 

Firstly, it ensures that comparisons between datasets are fair and meaningful by minimizing the 

influence of varying flow dynamics. By focusing on datasets with comparable hydraulic conditions, we 

can better isolate the effects of other factors on the analysis results, leading to more reliable 

conclusions. Secondly, segmentation helps streamline the training process by creating subsets of data 

with reduced complexity. By concentrating on specific ranges of water levels or flow conditions, we 

can simplify the training data, making it more manageable for model training. This approach 

enhances the efficiency of the training process and improves the overall performance of the models 

developed using the segmented datasets. Ultimately, segmentation based on hydraulic conditions 

enhances the quality and accuracy of analysis and predictions derived from velocimetry 

fields.[63][64] While segmenting the velocimetry fields based on hydraulic conditions enhances the 

quality and accuracy of analysis for the selected water level, caution must be exercised when applying 

these findings to different water level scenarios. In practice, the ultimate goal is to develop models 

capable of accurately predicting velocities across various water levels, necessitating further research 

and validation efforts beyond the confines of the current study. 

 

Figure 10 Flow velocities for different water levels in the dataset 
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3.4 Determination of mean velocity and missing values for each grouped water level 
Prior to constructing the benchmark model, it was crucial to establish the mean velocity values for 

each grouped water level. This process entailed calculating the mean velocity at every grid point 

within each specific water level group. By averaging the velocities across all samples within the same 

grouped water level, we obtained mean velocities that will be used for reconstructing velocity fields 

for the benchmark model.  

Furthermore, In our methodology, a key component was recognizing and examining missing values in 

the datasets. NaN (Not a Number) values occurring at each grid point indicate areas where data is 

either missing or undefined. These values commonly arise due to various during the data acquisition 

process. Locations with numerous NaN values present instances where the most improvement can be 

made, as these areas likely correspond to regions of high flow variability or measurement 

uncertainty. Conversely, grid points with low average NaN values likely contain valid velocity data 

across all datasets, suggesting regions with more stable flow conditions or reliable measurement 

outcomes. Therefore, understanding the distribution of NaN values across the velocity field is 

essential for identifying areas requiring further data refinement or interpolation techniques to 

enhance the overall quality and reliability of the velocimetry dataset. Figure 11 shows the average 

amount of missing values across all the datasets for water level 92.55m NAP. Appendix A: Average 

NaN values across all the datasets, gives a visualization across all the water levels. 

 

Figure 11 Visualization of the average NaN values in the datasets from water level 92.55m 

In training the model, a subset of velocimetry fields centred around a specific water level, 

approximately 92.55 meters, was chosen for several reasons. Firstly, this subset contained a sufficient 

number of datasets, ensuring robust training, validation, and testing procedures. Adequate sample 

size is critical for training machine learning models, as it allows for meaningful pattern recognition 

and generalization 

A specific subset of datasets was chosen where the optical velocimetry data provided information for 

at least 80% of the flow grid points. The reason for using only datasets with at least 80% of resolved 

data is to ensure a fair comparison between the reconstructed data and the ground truth. Even 

though the aim is to be able to predict velocimetry with very low input data, in the initial phase of 

training the model, it is important to have enough grid points where the ground truth is known so 



 

24 
 

that it can be compared to the predicted value of the model. With datasets containing low optical 

resolution, it would indeed be possible to reconstruct them. However, without sufficient known 

ground truth data points, it becomes impossible to evaluate the accuracy of the model's predictions. 

This raises questions about the trustworthiness of the model's prediction.[59]  Figure 12 visualizes 

the average amounts of missing data in the datasets with over 80% resolved data that will be used to 

train the U-Net model and evaluate the performance of both the benchmark and the U-Net model.  

 

Figure 12 Visualization of the average NaN values, but only for over 80% resolved datasets 

3.5 Masking the data 
Missing data are an inherent aspect of observational records, arising from diverse factors such as 

equipment malfunction, measurement errors, or other external influences.[65] 

During the data preparation for model training, it is necessary to adjust the input files to resemble 

the velocity fields intended for reconstruction. The model's performance will be evaluated by 

assessing its ability to predict the missing velocities within these fields accurately. To simulate real-

world conditions, masking techniques are employed to generate velocimetry datasets with some data 

intentionally missing, thereby challenging the models to reconstruct them. 

In this study, two distinct masking approaches are employed. The first method involves random 

masking, where data is systematically removed from the original velocimetry dataset in increments of 

10%. Figure 13 shows such an approach where from one original complete velocimetry, multiple 

velocimetries are created with different percentages of the data available. While this method serves 

as a foundational proof of concept, it's recognized that real-world velocimetry datasets typically 

exhibit more structured patterns of missing data. For instance, certain areas of the velocimetry may 

have data available while others are obscured, in the case of a lens droplet affecting only specific 

regions of the data. Similarly, factors such as consistent lighting on a particular area of the river may 

result in more data points being present in those sections of the velocimetry.  

A more advanced masking technique is employed to make the input velocimetry datasets more 

closely resemble real-world scenarios. In the second approach, instead of randomly removing data, 

patches were strategically chosen to mask based on their likelihood of containing missing values. By 
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focusing on patches with fewer missing values on average, situations where data is consistently 

present across all the datasets were simulated, mirroring the typical distribution of missing values in 

actual velocimetry datasets. Figure 14 visualizes the modified datasets where values are removed in 

order of the likelihood of being available in the original dataset. 

Masks were constructed using the gridpoints that still contained values, and these masks were 

utilized as inputs in both the benchmark model and the U-Net model. 
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Figure 13 Velocimetry with randomly removed data 
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Figure 14 Velocimetry with data removed in order of the missing values 
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3.6  Benchmark Model Construction 
The initial phase of model development involved the construction of a benchmark model. The 

purpose of this benchmark model was to establish a baseline for performance comparison with the 

subsequently developed AI model. The benchmark model was designed to utilize a simple yet 

effective method here referred to as the mean method. By comparing the results of the benchmark 

to the generated results by the AI model, we can analyze whether the implementation of the AI 

improves the model based on the existing limits. 

Constructing a benchmark baseline model before developing an AI model is because it allows for a 

comprehensive comparison of the AI model's performance against an established standard, providing 

insights into the effectiveness of the AI techniques employed. Furthermore, the benchmark model 

helps identify the limitations of existing approaches, guiding the development of more advanced AI 

models. 

The benchmark model employed the mean method for reconstructing missing values in the dataset. 

Specifically, for each grid point within a sample, missing values were replaced with the mean values 

calculated from the other exact grid points in the datasets with the same grouped water level. This 

approach leveraged the assumption that similar water levels exhibit the same flow patterns, allowing 

the mean method to provide a reasonable estimation of missing velocity values. 

For each mask generated in the preceding section (3.5 Masking the data), the remaining data points 

serve as input for the benchmark model. The target for this model comprises the original dataset, 

that is expected to be the ground truth. To fill in the missing data points in the target, which is absent 

in the input, mean values from all other datasets with the same water level are utilized. 

Subsequently, the differences between these reconstructed points and the original ground truth 

points are calculated. It is important to note that for a fair evaluation of the model, only the grid 

points that are reconstructed are taken into account for the calculation of the differences. Figure 15 

illustrates the sequential steps involved in constructing the benchmark model using a random mask 

containing 10% input data, whereas Figure 16 illustrates the same steps but with a patchy mask with 

10% of input data. 

 

Figure 15 Visualization depicting the sequential steps involved in constructing the benchmark model with a random mask of 
10% data 
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Figure 16 Visualization depicting the sequential steps involved in constructing the benchmark model with a patchy mask of 
10% data 

 

3.7 U-Net Model Construction 
Following the establishment of the benchmark model, the next phase involved the development of 

an advanced AI model utilizing the U-Net architecture described in section 2.2.2 U-Net Architecture. 

The U-Net model comprised an encoder-decoder structure, enabling the extraction and 

reconstruction of features with a focus on preserving spatial relationships. The encoder section 

downscaled the input, extracting high-level features, while the decoder section performed 

upsampling to recreate spatial details. Appendix B: Code for the U-Net Architecture, shows the code 

used for the U-Net Architecture. 

The input to the U-Net model consisted of the same modified datasets used in the benchmark model. 

The targets for the U-Net model were set as the original datasets, creating a supervised learning 

framework for the model to learn from ground truth information. Each input sample to the U-Net 

model comprised dual channels representing velocity in the x and y directions. This dual-channel 

configuration enabled the U-Net architecture to consider both components of the velocity field, 

enhancing its capacity to capture spatial dependencies effectively. The exact architecture for the 

velocity in the x direction of the model is visualized in Figure 17. The training objective was to 

minimize the difference between the predicted velocity values and the ground truth values. This was 

done by comparing the output of the model to the ground truth velocimetry as shown in Figure 18. 

The term "loss" refers to a measure of how well a model is performing on a given task. It represents 

the discrepancy between the predicted outputs of the model and the actual target values. The goal 

during training is to minimize this loss.  To guide the training process, the Mean Squared Error Loss 

was selected as the loss function. This function computed the mean squared difference between 

predicted and ground truth velocity values for each grid point.  
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The Adam optimizer with a learning rate of 0.001 was utilized for efficient parameter updates during 

training.  

It is crucial to divide the dataset of the model into training, validation and testing. In this case, a 

division of 80% training, 10% validation and 10% testing is used. The importance of this is to make 
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sure that the model is not getting overfitted with data it already has seen. During the training, 

weights and biases in the kernels are updated to get the predicted output as close to the target as 

possible. The validation tracks the performance of the training without updating these weights and 

biases. The frequency of the validation is after each training cycle, known as epoch. If the loss in the 

validation is not improving, a decision can be made to stop the training. In machine learning, patience 

is a hyperparameter used to control the training duration based on the model's performance on a 

validation set. It is very possible a model is performing worse after a training cycle but will improve 

afterwards. Patience is commonly used to stop the training early after the performance does not 

improve after several cycles. The idea behind patience and early stopping is to prevent the model 

from training for too long and potentially overfitting the training data. It helps to find a balance 

between training long enough to learn useful patterns and stopping early enough to avoid overfitting. 

After the training and validation, the model should be tested. During testing, a dataset not previously 

seen by the model is used. This way we can see the performance of the model for unseen data. This 

technique is used to avoid overfitting the model and it provides a final evaluation of the model's 

generalization ability. So, validation results during training are used to guide the training process, and 

test results after training are used to get a final assessment of the model's performance. 
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Figure 17 U-Net Architecture visualized with the input and the output  image for the velocity in the x direction 

 

 

Figure 18 Computing the loss by comparing the output and the target values for the filled-in grid points



 

32 
 

3.8 Evaluating the performance 
 

To quantify the performance of the benchmark model and the U-Net model, the root mean squared 

error (RMSE) and the relative error for each grid point and the entire velocimetry are computed. The 

relative error is the RMSE divided by the velocity on that grid point. To ensure a fair and unbiased 

comparison, identical datasets are utilized to test both the benchmark model and the AI model. The 

error for the benchmark model can be computed in a single go since it is the average of all other 

datasets. The errors of the U-Net model ideally are lowered with every training epoch.  

Appendix C: Training progress Results after 1,6, 11 and 20 epochs, shows the results of the training 

progress after multiple epochs. Figure 19 shows how the output of the model changes after training. 

When evaluating the performance of the U-net model, only the results of the fully trained model are 

considered. 
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Figure 19 Model output after 2 epochs on the left vs 16 epochs on the right 

For further analysis, only the fully trained models are used. To see the influence of the discharge. The 

input data (Figure 20), target data(Figure 21) and output data(Figure 22) are inserted in the datasets 

to retrieve the transect and subsequently the data.  
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Figure 20 Transect and discharge of the input data 

 

Figure 21 Transect and discharge of the target data 

 

Figure 22Transect and discharge of the output data 
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4. Results 
This chapter presents the findings obtained from the evaluation of the benchmark model and the U-

Net model across different masking scenarios, specifically focusing on 92.35 meter NAP with an 

optical resolution of 80%. The rationale behind this choice lies in the abundance of available samples 

within this subset, providing a robust foundation for initial comparisons. By narrowing the focus to a 

specific water level and maintaining an optimal optical resolution, the analysis aims to provide an 

understanding of the model's performance under controlled conditions. This strategic selection 

allows for an insightful exploration of the U-Net model's capabilities, particularly in comparison to the 

benchmark model. 

4.1 Performance of the benchmark model 
The benchmark model served as a fundamental reference point, constructed using a mean filling 

method. An analysis of the benchmark model's performance serves as a baseline for evaluating the 

effectiveness of the subsequent U-Net model. 

To assess the performance of the benchmark model, various percentages of input data are examined. 

The evaluation includes calculating the average RMSE across all considered grid points, along with 

determining the relative error in comparison to the ground truth. The results are given in Table 1. 

Table 1 Results benchmark model 

% input data Grid points considered Average RMSE [m/s] Relative Error [-] 

10 43399 0.1782 0.1998 

20 38423 0.1751 0.1997 

30 33476 0.1786 0.1998 

40 28902 0.1783 0.1996 

50 24039 0.1785 0.2000 

60 19184 0.1777 0.1997 

70 14447 0.1777 0.2002 

80 9552 0.1788 0.1994 

90 4750 0.1784 0.2017 

 

Immediate observations reveal minimal variance in error rates across different percentages of input 

data. The model does not seem to derive substantial benefits from increased input, suggesting that 

the error is primarily influenced by how well the target datasets approximate the overall mean 

datasets. 

Spatially in Appendix D: Relative Errors from the Benchmark Model, the relative RMSE for all different 

masks is visualized. An example of the spatial distribution is given in Figure 23. Here the masks for 

50% of the input data are used. The model demonstrates reasonable accuracy, as indicated by lower 
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average relative RMSE values. However, in the top-left edge of the river, higher average relative RMSE 

values are observed, suggesting poorer model performance in that specific region. 

 

 

Figure 23 Visualization of the benchmark model with the 50% input data samples 

4.2  Performance of U-Net with Random Masks 
To assess the U-Net model's performance with random masks, similar to the benchmark model, 

varying percentages of input data are considered. In Appendix E: Complete set of relative errors of U-

Net predicted data with 10% of data input, the relative errors for all samples with input data of 10% 

are displayed. The evaluation includes calculating the average RMSE across all considered grid points, 

along with determining the relative error in comparison to the ground truth. The results are given in 

Table 2. 

Table 2 Results of the U-Net model with random masks 

% input data Grid points considered Average RMSE [m/s] Relative Error [-] 

10 43399 0.0680 0.0850 

20 38423 0.0601 0.0740 

30 33476 0.0459 0.0583 

40 28902 0.0332 0.0409 

50 24039 0.0279 0.0344 

60 19184 0.0224 0.0276 

70 14447 0.0151 0.0183 

80 9552 0.0090 0.0108 

90 4750 0.0047 0.0057 
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The results show that the model can predict more accurately the more data is available. Spatially, as 

visualized in Figure 24 for 50% input data, the model shows the same difficulties as the benchmark 

model in predicting the upper edge of the river. It should be noted that the U-Net model 

outperformed the benchmark model in these areas. Appendix F: Relative Root Mean Squared Errors 

of the U-Net model with different percentages of random masks, shows the average relative RMSE for 

all the input data. 

 

Figure 24 Visualization of the U-Net model with the random 50% input data samples 

 

4.3 Performance with Patchy Masks 
Training and evaluation of the model trained with the patchy input mask was done in the same way 

as the random input mask, calculating the average RMSE across all considered grid points, along with 

determining the relative error in comparison to the ground truth. These results are shown in Table 3. 

Table 3 Results from the U-Net model with patchy masks 

% input data Grid points considered Average RMSE[m/s] Relative Error [-] 

10 42482 0.0767 0.0955 

20 36989 0.0773 0.0979 

30 31553 0.0779 0.0980 

40 26114 0.0709 0.0875 

50 20783 0.0731 0.0898 

60 15417 0.0707 0.0858 

70 10157 0.0658 0.0808 

80 4982 0.0540 0.0663 

90 486 0.0226 0.0310 
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What we can observe is that similarly to the random mask model, the U-Net model trained on the 

patchy masks improves when more data is available. This would suggest a positive correlation 

between data volume and model performance.  However, it's important to note that at very high 

percentages of input data, the model was not required to predict the upper-left corner, which 

spatially proved to be the most challenging area. Figure 25 provides a spatial visualization of the 

model's performance with the 50% input data. Appendix G: Result of Relative RMSE averaging over all 

33 datasets for patchy masks, shows the average relative RMSE for all input data. 

 

Figure 25 Visualization of the U-Net model with the patchy 50% input data samples 

4.4 Comparison between the models 
In this section, we compare the performance of the benchmark model with that of the U-Net model 

trained on random and patchy masks. The evaluation is based on the relative error which quantifies 

the difference between predicted and actual velocities for each input percentage of the data. By 

assessing how closely the predicted velocities match the ground truth values, we can determine the 

effectiveness of each model in reconstructing missing data. Figure 26 illustrates the performance of 

the benchmark model and the U-Net models trained on random and patchy masks with varying 

percentages of input data. In the case of the benchmark model, the line remains horizontal, 

indicating that its performance does not significantly improve with an increase in input data 

percentage. Conversely, for the U-Net models, there is a noticeable trend of improved performance 

with higher percentages of input data. This improvement is reflected in the decreasing trend of 

relative error as more input data is utilized. Overall, the U-Net models outperform the benchmark 

model, demonstrating their efficacy in reconstructing velocity fields. Additionally, the diminishing 

relative error suggests that the models achieve better accuracy as they are provided with more input 

data.  
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Figure 26 Comparison of the Benchmark model vs the U-Net model. 
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4.5 Discharge comparison 
In this section, the river flow for the patchy mask 10% was calculated, as described in section 3.8 

Evaluating the performance  based on the input data, target data, and output data. 

Subsequently, the river flow values were plotted in a graph for comparison. The graph presented in 

Figure 27 Visualization of the calculated river flow values for 10% input data illustrates the 

comparison of river flow values obtained from the input, target, and output data for the patchy mask 

10%. The analysis of the 10% mask was conducted to evaluate the model's performance in predicting 

river flow under conditions where a significant portion of the data was missing. By specifically 

examining the 10% mask, we aimed to assess the model's ability to reconstruct river flow values with 

limited input data, simulating scenarios where data availability is scarce 

 

Figure 27 Visualization of the calculated river flow values for 10% input data 

Upon analyzing the river flow values derived from the input, target, and output data, it was observed 

that the input river flow values were notably higher than the target values. This discrepancy indicated 

that the available velocities were potentially overvalued, leading to inflated river flow calculations. In 

contrast, the output river flow values were closer to the target values, suggesting an improvement in 

river flow calculations achieved by the model. 

It is noteworthy that a single outlier (sample 26) was identified within the dataset. Further 

investigation into this outlier could provide insights into the model's predictive capabilities. As 

depicted in Figure 28, the transect and river flow for this specific sample demonstrate challenges in 

predicting river flow when insufficient values are available in the dataset grid points. Figures 29 and 

30 illustrate the target (considered the ground truth) and the output of the model, respectively, 
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showcasing a closer resemblance between the model's output and the target. This particular case 

highlights the model's ability to improve predictions in challenging scenarios.  

 

 

Figure 28 Transect and river flow of the input data from the outlier sample 

 

Figure 29 Transect and river flow of the target data from the outlier sample 

 

 

Figure 30 Transect of the output data from the outlier sample 
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5. Discussion 
From the findings gathered in the literature review, the decision to implement a U-Net model for 

dataset reconstruction appears to be well-founded. The utilization of the U-Net architecture resulted 

in the generation of usable datasets even from inputs with limited information, closely resembling 

the target datasets.  

The benchmark model, while demonstrating satisfactory performance under certain conditions, 

exhibited limitations that hindered its effectiveness. Its performance was notably influenced by the 

similarity between the target dataset and the average data. Consequently, the model tended to 

perform poorly when presented with outlier datasets that deviated significantly from the average, 

whereas it performed relatively well with datasets closely resembling the average. This disparity in 

performance can be attributed to the inherent limitations of the model's simplistic approach, which 

lacked the flexibility to adapt to diverse datasets and handle outliers effectively. 

In contrast, the U-Net model demonstrated significant performance improvements, largely due to its 

ability to assign weights and biases to available grid points and its training under similar conditions. 

The U-Net architecture's design, characterized by an encoder-decoder structure, facilitates the 

extraction and reconstruction of features while preserving spatial relationships. During training, the 

model learns to adjust the weights and biases associated with each grid point through optimization 

algorithms like the Adam optimizer. This process enables the model to effectively capture complex 

patterns and variations in the input data, thereby enhancing its predictive capabilities. 

5.1 Limitations 
The decision to employ the U-Net architecture proved justified as it facilitated the generation of 

usable datasets even from inputs with limited information, closely resembling the target datasets. 

However, it's essential to acknowledge that while some preprocessing steps were applied to the data, 

uncertainties regarding its accuracy remained, as it was assumed to represent ground truth. The 

model is trained to match the target but has no capability of determining if the target is accurate 

itself. 

Furthermore, the effectiveness of the benchmark model was notably influenced by the degree of 

similarity between the target dataset and the average data. However, it's crucial to acknowledge that 

this reliance on similarity could pose significant limitations, especially in scenarios where substantial 

differences exist between the two datasets. In such cases, where the target dataset deviates 

significantly from the average data, the performance of the benchmark model may be compromised, 

leading to less reliable outcomes. 

Despite its notable performance gains, the U-Net model encountered challenges similar to the 

benchmark model in certain regions, particularly at the edges of the dataset. These challenges may 

stem from visibility issues in recording velocities, leading to measurement errors, or from the model's 

limited consideration of specific features such as embankments. Addressing these challenges could 

further enhance the model's performance in capturing fine-grained details and improving accuracy in 

regions prone to errors. 

Another notable limitation stems from the training of the model on a subset of the datasets resulting 

in the model being predominantly trained on homogeneous flow conditions. This lack of exposure to 

extreme conditions during the training phase could potentially restrict the model's ability to 

accurately predict outcomes in scenarios with significantly different flow dynamics. 
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In essence, the model's performance may be constrained by its limited exposure to diverse and 

extreme scenarios, leading to potential challenges in generalizing its predictions to real-world 

conditions characterized by greater variability and complexity. 

5.2 Recommendations for Future Research 
Moving forward, it is recommended to expand the diversity of the dataset utilized in the study. While 

the model has shown promising results, incorporating a broader range of datasets featuring different 

water levels could offer a more comprehensive assessment of its performance across various 

hydrological conditions. If the model is also trained on different areas with distinct flow patterns, it 

would enhance its adaptability and robustness in predicting velocities across diverse river systems. 

This expansion would provide valuable insights into how the model adapts to different scenarios and 

its generalizability to real-world applications. 

Moreover, there is a need to refine techniques both before and after model implementation to 

optimize performance. Further exploration and refinement of preprocessing methods for data input 

and post-processing techniques for improving model output could lead to enhanced accuracy and 

reliability in predicting river discharge. 

Another avenue for future research involves incorporating principles from the laws of physics into the 

model training process. By integrating physics-based constraints, such as the conservation of mass 

and momentum, researchers can enhance the model's ability to simulate realistic flow patterns and 

dynamics in river systems. This approach not only improves the model's predictive accuracy but also 

provides valuable insights into the underlying physical processes governing river behaviour. By 

refining the model with physics-based constraints, researchers can achieve a more comprehensive 

understanding of fluid dynamics and enhance the model's applicability to diverse hydrological 

scenarios. Future research could focus on simulating and testing the model under extreme 

hydrological patterns and scenarios. By assessing its performance in such conditions, researchers can 

evaluate the model's robustness and identify areas for further improvement, ensuring its reliability in 

real-world applications. 

Lastly, future research could be focused on the development of a more comprehensive framework for 

predicting river flow velocity instead of solely focusing on reconstruction. This entails integrating 

fundamental physical principles into the model training process to supplement existing data-driven 

approaches. The success of Physics-Informed Neural Networks in related fields [60][61], such as 

computational fluid dynamics [68] and blood flow analysis[69], which incorporate Partial Differential 

Equations into training losses, offer a promising avenue for enhancing model inference by considering 

initial and boundary conditions. However, a critical aspect to address will be selecting the most 

relevant physical laws, such as the Navier-Stokes equations or standard conservation laws, to guide 

the model development effectively. Embracing this physics-informed approach could lead to 

significant advancements in the understanding of river dynamics and improve the predictive 

capabilities of our models. 
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6.  Conclusion 
In this concluding chapter an analysis of the findings and insights gathered throughout this thesis are 

provided addressing the main research question and its associated sub-questions. 

Research question: How effectively can AI be employed to augment missing velocity data on the 

river surface? 

Sub-question 1: What kind of AI model has the best potential for reconstruction of a dataset? 

Based on the literature review, it is evident that convolutional neural networks (CNNs) and specifically 

U-net models emerge as a potent tool for reconstructing datasets with missing images. The inherent 

capabilities of CNNs in capturing complex patterns make them well-suited for this task. 

Sub-question 2: Do AI models outperform a typical hydrology benchmark model?  

The results demonstrate that AI and in particular the U-Net model indeed outperforms the typical 

hydrological benchmark model, such as the mean/mode model. The extent of improvement exhibited 

by the U-Net model depends on factors such as the availability of data and the duration of training. 

Sub-question 3: To what extent does the performance of the AI model vary with differing quantities 

of missing data on the river surface? 

The performance of the AI model shows variation with differing quantities of missing data on the 

river surface. As more data becomes available, the model's performance in filling in the missing parts 

improves, highlighting the importance of data availability in enhancing model accuracy. 

Sub-question 4: What is the influence on the performance of the model training on patchy data 

compared to random data? 

The influence of model training on patchy data versus random data is notable. While the model 

trained with random data may exhibit a lower loss score, it faces a relatively easier task compared to 

the model trained on patchy data. The latter encounters challenges in predicting grid points that are 

inherently more difficult to estimate. 

Sub-question 5: Which areas are hardest to predict in the case study? 

The analysis identifies certain areas within the case study that are particularly challenging to predict. 

These areas, typically located in the corners of the image, often exhibit significant prediction errors. 

Factors contributing to these errors may include inaccuracies in velocity estimations due to recording 

conditions or the absence of flow in certain instances. 

In summary, this research underscores the significant potential of AI models in hydrological 

applications, particularly in augmenting missing velocity data on the river surface. 
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Appendix A: Average NaN values across all the datasets 
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Appendix B: Code for the U-Net Architecture 
 

class DoubleConv(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(DoubleConv, self).__init__() 

        self.double_conv = nn.Sequential( 

            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), 

            nn.ReLU(inplace=True), 

            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), 

            nn.ReLU(inplace=True) 

        ) 

 

    def forward(self, x): 

        return self.double_conv(x) 

 

class Down(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(Down, self).__init__() 

        self.maxpool_conv = nn.Sequential( 

            nn.MaxPool2d(2), 

            DoubleConv(in_channels, out_channels) 

        ) 

 

    def forward(self, x): 

        return self.maxpool_conv(x) 

 

class Up(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(Up, self).__init__() 

        self.up = nn.Upsample(scale_factor=2, mode='bilinear', 

align_corners=True) 

        self.conv = DoubleConv(in_channels, out_channels) 

 

    def forward(self, x1, x2): 

        x1 = self.up(x1) 

        diffY = x2.size()[2] - x1.size()[2] 

        diffX = x2.size()[3] - x1.size()[3] 

        x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 

2, diffY - diffY // 2]) 

        x = torch.cat([x2, x1], dim=1) 

        return self.conv(x) 

 

class OutConv(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(OutConv, self).__init__() 

        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) 

 

    def forward(self, x): 
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        return self.conv(x) 

 

class UNet(nn.Module): 

    def __init__(self, in_channels, out_channels): 

        super(UNet, self).__init__() 

        self.inc = DoubleConv(in_channels, 64) 

        self.down1 = Down(64, 128) 

        self.down2 = Down(128, 256) 

        self.down3 = Down(256, 512) 

        self.down4 = Down(512, 512)   

        self.up1 = Up(1024, 256)   

        self.up2 = Up(512, 128) 

        self.up3 = Up(256, 64) 

        self.up4 = Up(128, 64) 

        self.outc = OutConv(64, out_channels) 

 

    def forward(self, x): 

        x1 = self.inc(x) 

        x2 = self.down1(x1) 

        x3 = self.down2(x2) 

        x4 = self.down3(x3) 

        x5 = self.down4(x4) 

        x = self.up1(x5, x4) 

        x = self.up2(x, x3) 

        x = self.up3(x, x2) 

        x = self.up4(x, x1) 

        logits = self.outc(x) 

        return logits 

 

# Instantiate the U-Net model 

model_unet = UNet(in_channels=2, out_channels=2) # 2 input channels (v_x, v_y) 

and 2 output channels 
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Appendix C: Training progress Results after 1,6, 11 and 20 epochs 
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Appendix D: Relative Errors from the Benchmark Model 
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Appendix E: Complete set of relative errors of U-Net predicted data 

with 10% of data input 
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Appendix F: Relative Root Mean Squared Errors of the U-Net model with different percentages of random 

masks 
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Appendix G: Result of Relative RMSE averaging over all 33 datasets for 

patchy masks 

 

 

 

 


