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Abstract 14 

The Vessel Maneuvering Prediction (VMP) model, which was developed in a previous work with the 15 

aim of predicting the interaction between vessels in ports and waterways, is optimized in this paper by 16 

considering the relative position and vessel size (length and beam). The calibration is carried out using 17 

AIS data of overtaking vessels in the port of Rotterdam. The sensitivity analysis of the optimal 18 

parameters shows the robustness of the calibrated VMP model. For the validation, the optimal 19 

parameters are used to simulate the whole path of overtaken vessels and vessels in head-on encounters. 20 

Compared to the AIS data, the validation results show that the different deviations in longitudinal 21 

direction range from 33 m to 112 m, which is less than 5% of the waterway stretch. Both the calibration 22 

and validation show that the VMP model has the potential to simulate vessel traffic in ports and 23 

waterways. 24 

 25 

  26 

Keywords: the VMP model, calibration, validation, overtaking encounter, head-on encounter  27 
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1. Introduction 28 

With the development of international transportation, maritime traffic flows have increased 29 

substantially in recent decades. As both vessel number and size increase sharply, more and more 30 

concern is raised about the safety and capacity of maritime traffic, especially in ports and waterways. In 31 

these restricted areas, the interactions between vessels are more frequent than open waters. Many models 32 

have been developed to investigate maritime traffic, most of which focus either on the risk of collisions 33 

and groundings (Goerlandt and Kujala, 2011; Montewka et al., 2010; Qu et al., 2011), or on vessel 34 

hydrodynamics and maneuverability (Sariöz and Narli, 2003; Sutulo et al., 2002). Although progress has 35 

been made on the investigation of vessel behavior, such as vessel speed, course and path (Aarsæther and 36 

Moan, 2009; Xiao, 2014), few models have considered vessel characteristics, vessel encounters and 37 

traffic state, such as waterway geometry and external conditions including wind, visibility and current. 38 

Thus, vessel speed and course in ports and waterways cannot be accurately predicted. 39 

To address this need, a new maritime traffic operational model was developed recently by applying 40 

differential game theory (Hoogendoorn et al., 2013). The approach of this model was adapted from an 41 

approach that was successfully applied to predict the behavior of pedestrians (Hoogendoorn and Bovy, 42 

2003; Hoogendoorn and Bovy, 2004) as there are many similarities between vessels and pedestrians: 43 

both vessels and pedestrians (1) have specific origin and destination; (2) are constrained by boundary 44 

(bank for vessels, and wall or other obstacles for pedestrians); (3) can influence each other; (4) are 45 

influenced by external conditions, such as weather conditions. In this model, vessel behavior is 46 

described at two levels: a tactical level and an operational level. The tactical level includes vessel route 47 

choice (the desired course) and desired speed, which serve as the reference (guide) at the operational 48 

level. The desired course and desired speed represent the optimal course and speed when the vessel is 49 

not influenced by extreme external conditions and other vessels. The operational level includes the 50 
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dynamics of the vessel sailing behavior, e.g. longitudinal acceleration and angular speed of the vessel. 51 

Although the route choice model is assumed to be very simple in the previous work (Hoogendoorn et al., 52 

2013), the framework for the model was created. Based on this framework, the route choice model at 53 

tactical level was further developed (Shu et al., 2015b). The results of this study serve as an input into 54 

the operational model, which is called Vessel Maneuvering Prediction (VMP) model in this paper. The 55 

VMP model was introduced by considering the influence range in different directions of the vessel to be 56 

homogeneous and the model was only calibrated for unhindered vessel behavior (Shu et al., 2015a), in 57 

which the influence between encountered vessels is not considered. 58 

The aim of this paper is to improve the VMP model by considering the relative position and vessel 59 

size (length and beam), and then calibrate and validate the improved VMP model using the AIS data of 60 

vessel encounters. To improve the model, we consider the distinct influence ranges of the vessel in 61 

longitudinal and lateral direction, which correspond to the findings of a recent study that the vessels 62 

keep larger distance in longitudinal direction than in lateral direction, and vessel speed is influenced for 63 

both overtaking and overtaken vessels (Shu et al., 2017). In the calibration, the VMP model is used to 64 

simulate overtaking vessel maneuvers for each path segment (60 seconds), and then to compare the final 65 

position of the overtaking vessel from the AIS data. For the validation, the VMP model is used to 66 

simulate the whole vessel path in the research area for overtaking, overtaken vessels and the vessels in 67 

head-on encounters, respectively. Then, these simulated paths are used to compare with the observed 68 

vessel path from the AIS data. 69 

This paper starts with an introduction of the improved VMP model in Section 2. Then, the 70 

calibration and validation approaches are presented in Section 3, followed by the results of the 71 

calibration and validation in Section 4. Finally, this paper ends with discussion and conclusions in 72 

Section 5. 73 
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2. The improved VMP model of vessel traffic 74 

In this section, the improved VMP model is introduced. As we know, the bridge team controls the 75 

vessel through the engine to accelerate or decelerate the ship and the rudder to change the vessel course. 76 

The longitudinal acceleration 𝑢1 and angular speed 𝑢2 are therefore considered as the controls on the 77 

ship by the bridge team in the VMP model of vessel traffic (Hoogendoorn et al., 2013). The vessel 78 

coordinate system and the control are defined in our previous research as follows (Shu et al., 2015a): 79 

 �̇� = 𝑣 cos  (
𝜋

2
− 𝜓) (1) 

 �̇� = 𝑣 sin (
𝜋

2
− 𝜓 ) (2) 

 �̇� = 𝑢1 (3) 

 �̇� = 𝑢2 (4) 

where the state of the vessel is defined as 𝜉 = (𝑥, 𝑦, 𝑣, 𝜓), in which x and y denote the position, and v 80 

and 𝜓 denote vessel speed and course, respectively. In this coordinate system, Eqs. (1-2) represent the 81 

vessel speed in x-y coordinates and Eqs. (3-4) show the longitudinal acceleration and angular speed. 82 

In the VMP model, it is assumed that the bridge team controls the vessel to maintain the desired 83 

speed and course as much as possible, to minimize the maneuvering effort and to keep sufficient 84 

distance to other vessels. In order to quantitively describe these control objectives and combine them 85 

into the VMP model, the concept “cost” is introduced. By minimizing the objective function (total cost), 86 

the controls could be optimized and an optimal vessel speed, course and path could be achieved. Thus, 87 

the control objectives could be turned into a cost minimization problem. The control objective function 88 

is defined as follows (Hoogendoorn et al., 2013): 89 
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 𝐽 = ∫ 𝐿(𝑠, 𝜉, �⃗⃗�)𝑑𝑠
𝑡+𝐻

𝑡

+ 𝛷(𝑡 + 𝐻, 𝜉(𝑡 + 𝐻)) (5) 

where H denotes the prediction horizon, which is assumed to be a time period in which the bridge team 90 

could predict the vessel behavior; L denotes the running cost (cost incurred in a small time interval 91 

[𝜏, 𝜏 + d𝜏)); �⃗⃗� = (𝑢1, 𝑢2) denotes the control, and 𝛷 denotes the terminal costs at terminal conditions, 92 

which is the cost that is incurred when the vessel ends up with the state 𝜉(𝑡 + 𝐻) at time instant 𝑡 + 𝐻. 93 

The terminal cost is assumed to be zero. 94 

Corresponding to the control objectives, i.e. maintaining the desired speed and course as much as 95 

possible, minimizing the maneuvering effort and keeping sufficient distance to other vessels, the running 96 

cost L also includes three parts: costs for straying from the desired speed and desired course 𝐿𝑠𝑡𝑟𝑎𝑦, 97 

propulsion and steering costs 𝐿𝑒𝑓𝑓𝑜𝑟𝑡 and the proximity costs 𝐿𝑝𝑟𝑜𝑥: 98 

 𝐿 = 𝐿𝑠𝑡𝑟𝑎𝑦 + 𝐿𝑒𝑓𝑓𝑜𝑟𝑡 + 𝐿𝑝𝑟𝑜𝑥 (6) 

The straying costs and the propulsion and steering costs are defined as in our previous study 99 

(Hoogendoorn et al., 2013). The straying costs are defined as follows: 100 

 𝐿𝑠𝑡𝑟𝑎𝑦 =
1

2
(𝑐2

𝑣(𝑣0(�⃗�) − 𝑣)2 + 𝑐2
𝜓(𝜓0(�⃗�) − 𝜓)2) (7) 

where 𝑐3
𝑣 and 𝑐3

𝜓
 are weight factors for straying from the desired speed and desired course, respectively. 101 

𝑣 and 𝜓 denote the current speed and course, 𝑣0(�⃗�) and 𝜓0(�⃗�) denote the desired speed and the desired 102 

course at the position �⃗�, which is the current position, respectively. 103 

The propulsion and steering costs are defined by: 104 

𝐿𝑒𝑓𝑓𝑜𝑟𝑡 =
1

2
(𝑐3

𝑣𝑢1
2 + 𝑐3

𝜓
𝑢2

2) (8) 
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where 𝑐3
𝑣 and 𝑐3

𝜓
 are weight factors of the effort of the bridge team to accelerate (decelerate) and turning 105 

the vessel. So, these two factors correspond to the control (the longitudinal acceleration and angular 106 

speed). 107 

The main improvement of the model focuses on the proximity costs, which are defined based on the 108 

relative position between the simulated vessel and the encountered vessel as follows: 109 

 𝐿𝑝𝑟𝑜𝑥 = {
𝑐1(𝑒−𝑑 𝑅⁄ − 𝑒−1), 𝑑 < 𝑅

0, 𝑑 ≥ 𝑅
 (9) 

where 𝑐1 is the weight factor for this proximity cost, 𝑑 denotes the distance between the simulated vessel 110 

and the encountered vessel, and 𝑅 is the scaling parameter, which indicates the range within which the 111 

simulated vessel is influenced by the other vessel and this parameter is determined by the relative 112 

position between the simulated vessel and the encountered vessel. As shown in Eq. (9), the proximity 113 

costs increase when the encountering vessels approach each other, and the proximity costs equal to zero 114 

when the distance is larger than the scaling parameter. In the data analysis of vessel encounters, it was 115 

found that the influence distance between encountering vessels in longitudinal direction is much larger 116 

than in lateral direction (Shu et al., 2017). This results in an elliptical influence area. As an example, the 117 

elliptical influence area of an overtaking vessel is shown in Fig. 1. 118 

As shown in Fig. 1, the elliptical influence area has a semi-major axis a and a semi-minor axis b. 119 

The scaling parameter R could be interpreted as the radius of the ellipse, which is a function of the 120 

parameters a, b and the angle 𝜃 (the angle between the course of the own vessel and the line connecting 121 

the locations of the two encountering vessels): 122 

 𝑅(𝜃) =
𝑎𝑏

√𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃
 (10) 
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In the VMP model, it is also assumed that a larger vessel size will lead to larger influence distances. 123 

Then, the major axes a and minor axes b depend on the vessel length and beam of the own vessel and 124 

the other vessel as follows: 125 

 𝑎 = 𝑝 ∗ (𝐿𝐴 + 𝐿𝐵) 2⁄  (11) 

 𝑏 = 𝑞 ∗ (𝐵𝐴 + 𝐵𝐵) 2⁄  (12) 

where 𝑝 and 𝑞 are scaling coefficients of the vessel length, 𝐿𝐴 and 𝐿𝐵 are the lengths of the two vessels 126 

in encounter, and 𝐵𝐴 and 𝐵𝐵 correspond to vessel beam. Thus, the VMP model is improved by 127 

considering the different influence range of the vessel in longitudinal and lateral direction and the 128 

proximity costs are improved with three parameters: the weight factor 𝑐1, and scaling coefficient 𝑝 and 129 

𝑞. 130 

3. Research approach 131 

In this section, the calibration and validation approaches are presented. The aim of the calibration is 132 

to find the model parameters that result in the best prediction of the model, and the purpose of the 133 

validation is to confirm that the model and its optimized parameters can generalize the calibration data. 134 

The data used in both approaches come from the Automatic Identification System (AIS) system, which 135 

is used to record vessel data between vessels and shore stations. In recent decades, it has been developed 136 

and implemented as a mandatory tool on all ships by 1 July 2008 (Eriksen et al., 2006). 137 

In this paper, the AIS data of 146 overtaking encounters and 162 head-on encounters are used. These 138 

data are provided by Maritime Research Institute Netherlands (MARIN) and analyzed using dedicated 139 

software called “ShowRoute”, which is developed by MARIN and used to investigate AIS data. These 140 

data were selected in the Botlek area in the port of Rotterdam and used to analyze the vessel behavior in 141 

previous studies (Shu et al., 2017). The waterway stretch is around 2.5 km and the sailing time in the 142 
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research area approximately equals 500 seconds, given the average vessel speed of 5 m/s (Shu et al., 143 

2013). 144 

In this paper, the VMP model is assumed to be generic for different types of encounters, which 145 

means that the parameters determined by calibrating for data from overtaking vessels are applicable for 146 

overtaken vessels and vessels in head-on encounters. As overtaken vessels and vessels in head-on 147 

encounters are in many cases in the equilibrium situation (without longitudinal acceleration and angular 148 

speed) (Shu et al., 2017), the overtaking vessels are more suitable for the calibration because they 149 

normally have a larger deviation from their desired speed and path. The vessels that are in equilibrium 150 

situation cannot be used for the calibration because the resulting model parameters would be equal to 151 

zero. 152 

In addition, it is assumed that the bridge team has enough experience to predict the speed and course 153 

of the other vessels, and they can use it in their decision-making procedure. Based on this assumption, 154 

the AIS data of the encountered vessel is considered as a known input in this research. This assumption 155 

is made in this first step to calibrate and validate the VMP model, with the aim to simultaneously 156 

simulate multiple vessels in future research. 157 

3.1 Calibration approach 158 

In this section, the calibration including calibration set-up, objective function and sensitivity analysis 159 

is presented. 160 

3.1.1 Calibration Set-Up 161 

The parameters of the VMP model, consisting of weight factors 𝑐1, 𝑐2
𝑣, 𝑐2

𝜓
, 𝑐3

𝑣 and 𝑐3
𝜓

, and the scaling 162 

coefficients 𝑝 and 𝑞 need to be calibrated. It should be noted that all weight factors cannot be uniquely 163 
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determined from the data, since only the relative importance of the weights can be determined. Without 164 

loss of generality, we set 𝑐1 = 1. Then, the parameters to be calibrated are 𝛽𝑇 = (𝑐2
𝑣, 𝑐2

𝜓
, 𝑐3

𝑣, 𝑐3
𝜓

, 𝑝, 𝑞). 165 

In this calibration, all paths of overtaking vessels have been broken down into multiple small 166 

segments, which have the same time period as the prediction horizon. The prediction horizon 𝐻 is taken 167 

as 60 seconds, which is a reasonable time period for the bridge team to maneuver the vessel. The 168 

calibration is performed for each path segment and the final position of the predicted vessel path is 169 

compared with the AIS data. 170 

To run the VMP model, the desired speed and desired course serve as inputs, while the vessel speed, 171 

course and path are the outputs. We assume that the desired course generated by the Route Choice 172 

model (Shu et al., 2015b) is applicable for all vessels in the research area, because it was found that 173 

vessel course is hardly influenced by vessel size and type (Shu et al., 2013). In terms of the desired 174 

speed, it was found that overtaking vessels increase their speed before the CPA (Closest Point of 175 

Approach) and decrease the speed after the CPA (Shu et al., 2017). Therefore, the desired speed is set as 176 

the maximum speed 𝑣𝑚𝑎𝑥 before the CPA and set as the end speed 𝑣𝑒𝑛𝑑 after CPA, as shown in Fig. 2. 177 

This way, the variability of the desired speed is considered, which is closer to reality than setting a 178 

constant desired speed. 179 

3.1.2 Objective function for calibration 180 

The calibration process aims at minimizing the difference between the vessel path predicted by the 181 

VMP model and the observed path from AIS data. As shown in Fig. 3, an overtaking vessel sails from 182 

left to right and the observed vessel position at the end of the prediction horizon is �⃗�𝑑𝑎𝑡𝑎. The VMP 183 

model predicts that the overtaking vessel is at position �⃗�𝑠𝑖𝑚 at the end of the prediction horizon. Then, 184 
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the parameters should be chosen such that the distance between the position �⃗�𝑑𝑎𝑡𝑎 and the position �⃗�𝑠𝑖𝑚 185 

is minimized. 186 

Let m denote the number of vessel paths and let 𝑛𝑖 denote the number of segments for vessel path i, 187 

then we have the objective function for the calibration as follows: 188 

 𝐸(𝛽) =
1

𝑚
∗

1

𝑛𝑖
∗ ∑ ∑(�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑗
− �⃗�𝑠𝑖𝑚

𝑖,𝑗
)

2
𝑛𝑖

𝑗=1

𝑚

𝑖=1

 (13) 

This way, the calibration problem becomes a multi-variable nonlinear optimization problem as 189 

follows: 190 

 𝛽∗ = arg min 𝐸(𝛽) (14) 

3.1.3 Sensitivity analysis 191 

Based on the calibration results, a sensitivity analysis is performed to get insight into the influence of 192 

each parameter on the error and the robustness of the calibration, as well as the reliability of the optimal 193 

parameter set. To this end, each model parameter is varied while keeping the other parameters constant 194 

at their estimated value. The relationships between model parameters and the error provide insight into 195 

the model’s parameter properties and the sensitivity. 196 

3.2 Validation approach 197 

The validation is performed to see if the calibrated parameters could be used to predict the vessel 198 

path for other datasets accurately (within the allowed error margin). Contrary to the path segments used 199 

in the calibration, the validation simulates the whole path using the optimized parameters. In the 200 

validation, the optimized parameters are applied for all three scenarios: overtaking vessels, overtaken 201 

vessels and head-on vessels. Among these scenarios, the overtaking and overtaken vessels are from the 202 

same dataset. Similar as in the calibration, the vessel is simulated while the encountered vessel path is 203 
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considered as a known input (described by the AIS data). Then, the calibrated parameters are used by 204 

the VMP model to predict each vessel path every 10 seconds. 205 

To evaluate the simulation quality, the comparison between the simulated path and the real path 206 

focuses on four aspects in both the longitudinal and lateral direction: the final position of the whole path, 207 

the maximum absolute deviation, the average absolute deviation and average percentage of good 208 

predictions (within the allowed error margin). To quantify how well the simulated path fits the vessel 209 

path from AIS data, 8 goodness of fit measures are defined. Considering the overtaking vessel as an 210 

example, Fig. 4 shows the simulated vessel path for the overtaking vessel and the real path from AIS 211 

data, as well as the parameters used to formulate the measures. It should be noted that the scheme to 212 

determine the port side or starboard overtaking is not included in this VMP model yet, so the simulated 213 

overtaking may happen on the other side than the real one, when the whole vessel path is simulated by 214 

the VMP model. The results for these overtaking and overtaken paths will not be included in the 215 

validation results and the choice of the overtaking side is left for further research. 216 

As shown in Fig. 4, the origin of the simulated overtaking vessel is �⃗�0
𝑖 , in which i denotes vessel path 217 

id. The maximum deviation happens when the overtaking and overtaken vessels are located at positions 218 

�⃗�𝑠𝑖𝑚
𝑖,𝑚𝑎𝑥

 and �⃗�𝑑𝑎𝑡𝑎
𝑖,𝑚𝑎𝑥

, while the simulated path and the real path end at �⃗�𝑠𝑖𝑚
𝑖,𝑒𝑛𝑑

 and �⃗�𝑑𝑎𝑡𝑎
𝑖,𝑒𝑛𝑑

, respectively. The 219 

deviations 𝐸𝑙𝑜
𝐹  and 𝐸𝑙𝑎

𝐹  are the average difference for the final position of simulated path and AIS path in 220 

the longitudinal and lateral direction, respectively: 221 

 𝐸𝑙𝑜
𝐹 =

1

𝑚
∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑒𝑛𝑑 − �⃗�𝑠𝑖𝑚
𝑖,𝑒𝑛𝑑| ∗ cos 𝛼𝑒𝑛𝑑

𝑖 )

𝑚

𝑖=1

 (15) 

 𝐸𝑙𝑎
𝐹 =

1

𝑚
∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑒𝑛𝑑 − �⃗�𝑠𝑖𝑚
𝑖,𝑒𝑛𝑑| ∗ sin 𝛼𝑒𝑛𝑑

𝑖 )

𝑚

𝑖=1

 (16) 
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where m denotes the number of vessel paths, 𝛼𝑒𝑛𝑑
𝑖  denotes the angle between the longitudinal direction 222 

for the last AIS data recorded and the line connecting the two end positions. This angle is used for the 223 

projection of the error in the longitudinal and lateral direction. 224 

The deviations 𝐸𝑙𝑜
𝑀  and 𝐸𝑙𝑎

𝑀  correspond to the maximum deviation between the simulated path 225 

and the AIS path in the longitudinal and lateral direction, respectively. These two are defined as: 226 

 𝐸𝑙𝑜
𝑀 =

1

𝑚
∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑚𝑎𝑥 − �⃗�𝑠𝑖𝑚
𝑖,𝑚𝑎𝑥| ∗ cos 𝛼𝑚𝑎𝑥

𝑖 )

𝑚

𝑖=1

 (17) 

  𝐸𝑙𝑎
𝑀 =

1

𝑚
∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑚𝑎𝑥 − �⃗�𝑠𝑖𝑚
𝑖,𝑚𝑎𝑥| ∗ sin 𝛼𝑚𝑎𝑥

𝑖 )

𝑚

𝑖=1

 (18) 

where 𝛼𝑚𝑎𝑥
𝑖  denotes the angle between the longitudinal direction at the position where the maximum 227 

deviation occurred and the line connecting the two compared positions. 228 

The deviations 𝐸𝑙𝑜
𝐴  and 𝐸𝑙𝑎

𝐴  denote the average deviation of the simulated path and AIS path in 229 

the longitudinal and lateral direction, respectively. They are defined by: 230 

  𝐸𝑙𝑜
𝐴 =

1

𝑚
∗

1

𝑛𝑖
∗ ∑ ∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑗
− �⃗�𝑠𝑖𝑚

𝑖,𝑗
| ∗ cos 𝛼𝑖,𝑗)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 (19) 

 𝐸𝑙𝑎
𝐴 =

1

𝑚
∗

1

𝑛𝑖
∗ ∑ ∑(|�⃗�𝑑𝑎𝑡𝑎

𝑖,𝑗
− �⃗�𝑠𝑖𝑚

𝑖,𝑗
| ∗ sin 𝛼𝑖,𝑗)

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 (20) 

where 𝑛𝑖 denotes the number of path segments of vessel path i, and j denotes the id of path segment. 231 

 The last two measures are defined to present the average percentage of good predictions, which 232 

are within the error margin. The error margin is taken as 5% of the relative error in the longitudinal 233 

direction, while 5% of the waterway width is used in lateral direction. The measures 𝑃𝑙𝑜 and 𝑃𝑙𝑎 are 234 

calculated as follows: 235 
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 𝑃𝑙𝑜 =
1

𝑚
∗ ∑ 𝑃𝑙𝑜

𝑖

𝑚

𝑖=1

 (21) 

 𝑃𝑙𝑎 =
1

𝑚
∗ ∑ 𝑃𝑙𝑎

𝑖

𝑚

𝑖=1

 (22) 

where 𝑃𝑙𝑜
𝑖  and 𝑃𝑙𝑎

𝑖  represent the percentage of good predictions (the prediction error less than the error 236 

margin) of the vessel path i at longitudinal direction and lateral direction, respectively. 237 

Among these measures of fit, the first six measures are formulated as the average of the deviation of 238 

the final position, the maximum deviation and the average deviation. The histogram of these deviations 239 

is also shown in the result section to provide more insight into the simulation quality. In addition, some 240 

example paths have been randomly chosen from each scenario and presented in the next section to 241 

compare with the actual path from AIS data and unhindered path (generated by the desired course), for 242 

more in-depth discussion. 243 

4. Results 244 

In this section, the calibration results including the optimal parameters and sensitivity analysis are 245 

presented, followed by the validation results and example simulated paths. 246 

4.1 Calibration results 247 

By applying the optimization approach, the best fit of the VMP model to the AIS data of overtaking 248 

vessels is determined. The optimal model parameters are shown in Table 1. The obtained error is 458 m
2
, 249 

which is the mean square of the distance of the final position between the simulated path and actual path 250 

from AIS data. This implies that the prediction error is around 21 meters while the prediction period is 251 

60 seconds. 252 

 253 
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Table 1. Calibration results for the VMP model for three different datasets. 254 

Parameters 𝒄𝟐
𝒗 𝒄𝟐

𝝍
 𝒄𝟑

𝒗 𝒄𝟑
𝝍

 𝒑 𝒒 

Unit [𝑠2 𝑚2⁄ ] [1 𝑟𝑎𝑑2⁄ ] [𝑠4 𝑚2⁄ ] [𝑠2 𝑟𝑎𝑑2⁄ ] - - 

Optimal 

value 
0.59 0.32 682 257 8 3.9 

 255 

It can be seen that all parameters have positive values, which is as expected because these 256 

parameters are weight factors and scaling parameters. Compared to 𝑐2
𝑣 and 𝑐2

𝜓
, 𝑐3

𝑣 and 𝑐3
𝜓

 are much 257 

larger. Compared to vessel speed and course, the values of longitudinal acceleration and angular speed 258 

are normally very small. This will result in large values of 𝑐3
𝑣 and 𝑐3

𝜓
. The scaling parameters 𝑝 and 𝑞 259 

equal to 8 and 3.9, which means that the influence range in longitudinal and lateral direction is around 8 260 

times the vessel length and 3.9 times the vessel width, respectively. They are consistent with our 261 

expectation that vessels have stronger influence in the longitudinal direction than in the lateral direction, 262 

considering the fact that vessel length is much larger than vessel beam. 263 

Based on the six optimal parameter values in Table 1, the relationships between each parameter and 264 

the error by varying each parameter while keeping the other parameters constant at their optimal value 265 

are shown in Fig. 5. 266 

It is clear that all curves for these parameters are smooth. For parameters 𝑐2
𝑣, 𝑐2

𝜓
, 𝑐3

𝑣, 𝑐3
𝜓

and q, the 267 

curves have a single and clear minimum, which means the optimal values are taken at the global 268 

minimum. Thus, it also means that the calibration method is robust and the optimal values for these 269 

parameters are reliable. Regarding the parameter p, the error decreases with the increase of the scaling 270 

parameter up to 8, after which the p value remains stable. It means that the model is not sensitive to the 271 

p value and the optimal p value is difficult to be determined when the p value is larger than 8. However, 272 
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it is not meaningful to investigate the situation for larger p value (p > 8), which leads to a unrealistically 273 

large influence range in longitudinal direction (exceeding the research area). 274 

In addition, the optimal values of these two scaling parameters indicate that the influence range in 275 

longitudinal direction is much larger than in the lateral direction, which is consistent with our 276 

expectation. In general, this sensitivity analysis indicates the robustness of the calibration and the 277 

reliability of the optimal parameter set. 278 

4.2 Validation results and examples 279 

By applying the validation approach, the goodness of fit measures is calculated for overtaking 280 

vessels, overtaken vessels and head-on vessels, as shown in Table 2. As mentioned in section 3.2, the 23 281 

vessel paths in which overtaking occurred on the other side of the overtaken ship than the actual side are 282 

removed from these validation results, and 10 vessel paths of simulated overtaken vessels are filtered in 283 

the same way. 284 

Table 2. The goodness of fit measures for the validation of different scenarios. 285 

 Overtaking vessels Overtaken vessels Head-on vessels 

𝐸𝑙𝑜
𝐹  102 m 79 m 58 m 

𝐸𝑙𝑎
𝐹  50 m 51 m 78 m 

𝐸𝑙𝑜
𝑀 112 m 85 m 68 m 

𝐸𝑙𝑎
𝑀 67 m 60 m 83 m 

𝐸𝑙𝑜
𝐴  62 m 44 m 33 m 

𝐸𝑙𝑎
𝐴  29 m 27 m 34 m 

𝑃𝑙𝑜 67 % 60 % 81 % 

𝑃𝑙𝑎 50 % 55 % 49 % 

  286 

The deviations in longitudinal direction range from 33 m to 112 m. Considering the waterway stretch 287 

of around 2.5 km, all measures representing the error in longitudinal direction are less than the 5% of the 288 

waterway stretch. In the lateral direction, the deviations vary from 27 m to 83 m, which is relatively 289 
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large given the waterway width of around 430 m. However, the deviation in lateral direction is also 290 

influenced by the deviation in longitudinal direction, as the vessel path is compared by time line. So it is 291 

difficult to judge the simulation quality based on the deviation in lateral direction here. 292 

The data clearly showed that the best prediction in longitudinal direction is for head-on encounters, 293 

as all the deviations in longitudinal direction for head-on encounters are smaller than other scenarios, 294 

and the percentage of good prediction is around 81%, which is better than for the other scenarios as well. 295 

This may be caused by the fact that the speed is hardly influenced by the head-on encounters. However, 296 

the prediction in lateral direction for head-on encounters is obviously worse than for the other scenarios. 297 

This could imply that the elliptical influence area does not work well for head-on vessel encounters. It 298 

suggests to improve the cost function for vessel influence in the VMP model in future research, 299 

specifically for head-on encounters. As mentioned in Section 3.2, the histograms of the deviations for 300 

the first six goodness of fit measures are shown in Fig. 6-8. 301 

In the remainder of this section, some example paths have been randomly chosen for each scenario 302 

and plotted in Fig. 9, and compared to the actual path from AIS data and unhindered path (generated by 303 

the desired course). The first example is to simulate overtaking vessel sailing from left to right. It can be 304 

seen that the predicted path in the middle part of the stretch is closer to the starboard bank, meaning that 305 

the influence between two vessels in the VMP model is not strong enough during that period. In the 306 

right part of the stretch, the simulated vessel deviates from the desired path and then the simulated path 307 

is consistent with the AIS overtaking path, which implies the influence between two vessels is 308 

reasonably predicted in this situation. In the remaining two examples, the predicted paths are nearer to 309 

the shore, compared to both the AIS path and desired path. This could mean that the influence between 310 

vessels, as calibrated for overtaking vessels, is too strong for overtaken and head-on vessels. These 311 
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findings based on example paths suggest that the further research should focus on the different influence 312 

range for different types of encounters. 313 

5. Discussion and conclusions 314 

In this paper, the VMP model is optimized by considering the relative position and vessel size 315 

(length and beam). Furthermore, the model is calibrated and validated using the AIS data of vessel 316 

encounters. The calibration results and the sensitivity analysis showed the robustness of the calibration 317 

and the reliability of the optimal parameters. In the validation of the three scenarios, it was found that 318 

the different goodness of fit measures in longitudinal direction are less than 5% of the waterway stretch. 319 

It should be noted that several factors influence the calibration results. Firstly, the calibration results 320 

are influenced by the desired speed and desired course, which are important inputs to the model. As we 321 

can see in Eq. (7), the costs for straying from the optimal path were based on the difference between the 322 

real speed and the desired speed, as well as the real course and the desired course. In this research, the 323 

desired speed is based on empirical data. A better solution would be a derivation of the desired speed 324 

based on waterway geometry and vessel characteristics. For the desired course, the results of the Route 325 

Choice model for one representative vessel category is used. Since the dataset used for calibration 326 

comprises several vessel categories, this contributes to the error in the calibration of the VMP model. 327 

Secondly, some differences between measured and simulated vessel paths can be attributed to non-328 

constant maneuvering style and different experience of the bridge team. The encounter pattern, such as 329 

port side or starboard overtaking, is not regulated by international or local rules. The maneuvering 330 

behavior of the bridge team is normally determined according to the traffic situation at that moment 331 

based on their experience, which is difficult to be integrated in the model. 332 
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As far as we know, this is the first study on vessel maneuvering prediction including speed, course 333 

and path in ports and waterways using a simulation model. Based on the calibration and validation, it 334 

can be concluded that the VMP model has potential to simulate the vessel traffic in ports and waterways. 335 

This paper also provides a fundamental basis for better optimizing and simulating vessel traffic in future. 336 

The approach to determine the port side or starboard overtaking for overtaking encounters is not 337 

included yet and this is an important improvement for the VMP model in future research. In the 338 

validation, the example paths suggest that different influence range for different encounters should be 339 

considered. In addition, single vessel is simulated in this paper and the future research will focus on 340 

simulating multiple vessels simultaneously. Another future research direction is to determine different 341 

calibration parameters for different vessel categories. 342 

Acknowledgement 343 

This work is part of the research program “Nautical traffic model based design and assessment of 344 

safe and efficient ports and waterways”, sponsored by the Netherlands Organization for Scientific 345 

Research (NWO). The authors would like to thank Erwin van Iperen and Yvonne Koldenhof in MARIN 346 

for their support in the AIS data collection. The fellowship of Yaqing Shu at Delft University of 347 

Technology is supported by the Chinese Scholarship Council (CSC). 348 

References 349 

Aarsæther, K.G., Moan, T., 2009. Estimating navigation patterns from AIS. Journal of Navigation 62 (04), 587-607. 350 
Eriksen, T., Høye, G., Narheim, B., Meland, B.J., 2006. Maritime traffic monitoring using a space-based AIS receiver. Acta 351 
Astronautica 58 (10), 537-549. 352 
Goerlandt, F., Kujala, P., 2011. Traffic simulation based ship collision probability modeling. Reliability Engineering & 353 
System Safety 96 (1), 91-107. 354 
Hoogendoorn, S., Daamen, W., Shu, Y., Ligteringen, H., 2013. Modeling human behavior in vessel maneuver simulation by 355 
optimal control and game theory. Transportation Research Record: Journal of the Transportation Research Board (2326), 45-356 
53. 357 
Hoogendoorn, S.P., Bovy, P.H., 2003. Simulation of pedestrian flows by optimal control and differential games. Optimal 358 
Control Applications and Methods 24 (3), 153-172. 359 
Hoogendoorn, S.P., Bovy, P.H., 2004. Pedestrian route-choice and activity scheduling theory and models. Transportation 360 
Research Part B: Methodological 38 (2), 169-190. 361 



20 

 

Montewka, J., Hinz, T., Kujala, P., Matusiak, J., 2010. Probability modelling of vessel collisions. Reliability Engineering & 362 
System Safety 95 (5), 573-589. 363 
Qu, X., Meng, Q., Suyi, L., 2011. Ship collision risk assessment for the Singapore Strait. Accident Analysis & Prevention 43 364 
(6), 2030-2036. 365 
Sariöz, K., Narli, E., 2003. Assessment of manoeuvring performance of large tankers in restricted waterways: a real-time 366 
simulation approach. Ocean Engineering 30 (12), 1535-1551. 367 
Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S., 2013. Vessel Speed, Course, and Path Analysis in the Botlek Area 368 
of the Port of Rotterdam, Netherlands. Transportation Research Record: Journal of the Transportation Research Board 369 
(2330), 63-72. 370 
Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S., 2015a. Operational model for vessel traffic using optimal control 371 
and calibration. Zeszyty Naukowe/Akademia Morska w Szczecinie. 372 
Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S., 2015b. Vessel route choice theory and modeling. Transportation 373 
Research Record: Journal of the Transportation Research Board (2479), 9-15. 374 
Shu, Y., Daamen, W., Ligteringen, H., Hoogendoorn, S.P., 2017. Influence of external conditions and vessel encounters on 375 
vessel behavior in ports and waterways using Automatic Identification System data. Ocean Engineering 131, 1-14. 376 
Sutulo, S., Moreira, L., Soares, C.G., 2002. Mathematical models for ship path prediction in manoeuvring simulation 377 
systems. Ocean Engineering 29 (1), 1-19. 378 
Xiao, F., 2014. Ships in an Artificial Force Field: A Multi-agent System for Nautical Traffic and Safety. TU Delft, Delft 379 
University of Technology. 380 

 381 

  382 



21 

 

Figure captions 383 

 384 

Fig. 1. Elliptical influence area of overtaking vessel and the definition of scaling parameter for the 385 

overtaking vessel. 386 

 387 

Fig. 2. Definition of desired speed 𝑣0 for an overtaking vessel. The curve indicates the speed track of 388 

overtaking vessel in overtaking encounters. Axis x and y represent the longitudinal distance and vessel 389 

speed, respectively. 390 

 391 

Fig. 3. Vessel path of overtaking and overtaken vessel from AIS data (solid line) and simulation path of 392 

overtaking vessel (dashed line) within the prediction horizon. 393 

 394 

Fig. 4. Simulated vessel path (solid line) of overtaking vessel and the observed path (dashed line) from 395 

AIS data. 396 

 397 

Fig. 5. The relationships between each parameter and the error by varying each parameter while keeping 398 

the other parameters constant at their optimal value. 399 

 400 

Fig. 6. Histograms of the deviations from the first six good of fit measures for overtaking vessels. 401 

 402 

Fig. 7. Histograms of the deviations from the first six good of fit measures for overtaken vessels. 403 

 404 

Fig. 8. Histograms of the deviations from the first six good of fit measures for head-on vessels. 405 
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 406 

Fig. 9. Example simulated vessel paths compared to the actual path from AIS data and unhindered path 407 

generated by the desired course. 408 


