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Abstract—In the case of unwritten languages, acoustic models cannot
be trained in the standard way, i.e., using speech and textual transcrip-
tions. Recently, several methods have been proposed to learn speech
representations using images, i.e., using visual grounding. Existing
studies have focused on scene images. Here, we investigate whether
fine-grained semantic information, reflecting the relationship between
attributes and objects, can be learned from spoken language. To this
end, a Fine-grained Semantic Embedding Network (FSEN) for learning
semantic representations of spoken language grounded by fine-grained
images is proposed. For training, we propose an efficient objective
function, which includes a matching constraint, an adversarial objective,
and a classification constraint. The learned speech representations are
evaluated using two tasks, i.e., speech-image cross-modal retrieval and
speech-to-image generation. On the retrieval task, FSEN outperforms
other state-of-the-art methods on both a scene image dataset and
two fine-grained datasets. The image generation task shows that the
learned speech representations can be used to generate high-quality
and semantic-consistent fine-grained images. Learning fine-grained
semantics from spoken language via visual grounding is thus possible.

Index Terms—Multimodal modelling, semantic retrieval, visual
grounding, image generation, speech representation learning.

I. INTRODUCTION

Standard automatic speech recognition (ASR) depends on large

amounts of transcribed speech data for training the acoustic models.

However, for around 98% of the world’s languages not enough training

material is available to train ASR systems [1]. Moreover, for unwritten

languages, i.e., languages without a common writing system, the

textual transcriptions are necessarily lacking.

Inspired by human infants’ ability to learn to understand speech

from exposure to spoken language and from watching objects and

gestures (e.g., pointing), recently, several methods have been proposed

to learn speech models using visual information for grounding [2]–[9].

In these works, various tasks were considered, such as cross-modal

retrieval [2]–[4] and speech unit discovery [5], [6].

These methods train speech models using scene images that contain

broad semantic classes, e.g., dog, beach, man. The combination of

different objects plays a key role in existing tasks. For instance, in the

scene “A boy is playing football”, the “boy” and “football” are key

factors for speech-image cross-modal retrieval and keyword discovery.

Here, we go one step further and investigate whether fine-grained

semantic information can be learned from speech, i.e., we explore

whether a visually grounded speech model can learn the differences

and relationships between attributes and objects rather than mainly

focus on objects.

Although scene images can contain attribute-object pairs, such as

“(a boy in a) black T-shirt”, they typically do not contain those to the

†Xinsheng Wang was supported by the China Scholarship Council (CSC).
*Corresponding author.

• “a ragged looking bird with black feathers, and a blond spot on 
top of head.”

• “this bird has a curved black bill, brown feet, and a yellow crown.”
• “this black bird has a yellow crown and white on it's shoulders.”

• “this is a black bird with white spots on its wing and a yellow 
head.”

• “this bird has a black body, yellow head, and gray wings.”
• “this particular bird has a belly that is black and a yellow head.”

Images Language descriptions

Fig. 1. Examples from CUB dataset [10]. These two birds are two different species.

The corresponding language descriptions for these two birds share most of the

semantic information (in blue), and only differs for the head descriptions (in red).

level that would allow us to investigate transfer to novel attribute-

object instances similar to what humans are able to do. For instance,

if we know “red apple” and “yellow banana”, we would be able to

understand “yellow apple”. In contrast, the combinations of attribute-

object pairs are the most important factor in recognizing fine-grained

images. For instance, Fig. 1 shows two similar birds, which share the

same attributes, i.e., black, yellow, and white, and the same objects,

i.e., head and wings. The relationship between different attributes

and objects is the key to differentiate between these two bird species.

Speech representations should also have the ability to capture the

relationships between attributes and objects.

To learn discriminative speech representations that can capture the

relationships between attributes and objects, we propose a Fine-grained

Semantic Embedding Network (FSEN). In FSEN, a pyramidal RNN

followed by a self-attention module is used for the speech embedding

branch to cope with the long sequence of audio signals and obtain

more discriminative speech representations. A similar structure is

also adopted in the image embedding branch to obtain discriminative

representations of the images.

To evaluate the proposed model, two fine-grained datasets, i.e.,

CUB [10], which contains photos of birds, and Oxford-102 [11],

containing photos of flowers, are adopted. During training, FSEN only

sees a subset of the bird species, i.e., classes (in case of CUB) or of

the flower species (in case of Oxford-102). During testing, the model

sees test classes disjoint from the training classes. Thus, it can be

regarded as a kind of zero-shot learning, and the cross-modal retrieval

performance on the test set then reflects the model’s ability to associate

attributes and objects learned from known instances and generalize

to new instances. A second challenging downstream task tests the

learned speech representations on speech-to-image generation, in

which the generated images give us a direct reflection of the semantic

information carried by the learned speech representations.
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II. APPROACH

A. Datasets

Two fine-grained image datasets, i.e., CUB [10] and Oxford-102

[11], are used both for the cross-modal retrieval and image generation

tasks. CUB is a bird dataset that contains 11,788 bird images from

200 classes, and Oxford-102 is a flower dataset that contains 8,189

flower images from 102 classes. Following [12], we split them into

class-disjoint training and test sets. Specifically, the CUB training set

consists of 150 classes, and the test set of 50 classes non-overlapping

with the training classes. Similarly, the Oxford-102 has 82 training

classes and 20 test classes. Each image from both datasets has 10

descriptions. For our research, these descriptions are synthesized

by a text-to-speech system1 with tacotron2 [13] to obtain spoken

descriptions according to the text descriptions collected by [12].

B. Model architecture

Dual encoders are popular in visually grounded speech learning

tasks [3], [4], and other cross-modal learning tasks [14]–[16]. Here,

we also take the dual-encoder structure for visually grounded speech

learning. As shown in Fig. 2, this dual-encoder structure contains

two encoders, i.e., a speech encoder and an image encoder. These

two encoders embed the input images and speech into a common

space, such that the image representations in this space can be used

as supervision information to train the speech encoder, and vice versa.

The overall structure of this model is similar to that in [3]; however,

we propose a new structure for both the speech encoder and the image

encoder. Specifically, we discard the 1-D convolutional layer and

replace the naive RNN with the pyramidal RNN [17] to deal with

the long sequences of the speech signals. Moreover, in addition to

the self-attention module in the speech encoder in [3], we propose an

attention module along with an RNN to get important local features

for the visual representations.

The speech encoder is modeled as a pyramidal Bidirectional Gated

Recurrent Unit [18] (pBGRU) followed by a self-attention module.

This pBGRU has three hidden layers, and the input of each layer is

the concatenation of two consecutive state vectors from the former

layer, which is similar to the pBLSTM in [17]. Thus, this three-layer

pBGRU module reduces the time resolution 8 times. The hidden state

vectors are 1024-d resulting from concatenating the bidirectional 512-

d representations. The final speech representations yi are calculated

by the self-attention layer via a weighted sum over all hidden state

vectors. The self-attention layer is similar to that in [3]. The speech

for the input of the speech encoder consists of log Mel filter bank

spectrograms, which are obtained using 40 Mel-spaced filter banks

with 25 ms Hamming window and 10 ms shift.

The image encoder is implemented as a one-layer pBGRU with

the same attention layer as that in the speech encoder. The input to

the pBGRU is created by scanning the last convolutional layer in a

raster-scan order, i.e., left-to-right, top-to-bottom. Specifically, we use

the ResNet-101 [19] trained on ImageNet [20] as the pre-encoder.

The last convolutional layer has 2048 channels, each has a size of

8×8, resulting in a 2048-d pseudo-temporal sequence with a sequence

length of 64. The subsequent self-attention module is the same as that

in the speech encoder, and is used to obtain the final representation

xi of an image.

C. Objective Function

As shown in Fig. 2, the loss function consists of three parts, i.e., a

matching loss, a discriminative loss, and an adversarial loss.

1https://github.com/NVIDIA/tacotron2
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Fig. 2. Framework of the proposed method.

The matching loss is used to make the speech and its corresponding

image closer in the embedding space. Similar to the DAMSMS loss in

[21], given a batch of speech-image representation pairs {(xi,yi)}ni ,

with batch size of n, the matching loss function is defined as

Lm = −
n∑

i=1

logP (xi|yi)−
n∑

i=1

logP (yi|xi) , (1)

where P (xi|yi) is the possibility of yi matching with xi:

P (xi|yi) =
exp (βS (yi,xi))∑n

j=1 Mi,j exp (βS (yi, Vj))
, (2)

where β is a smoothing factor, and set to 10 following [21]. S (yi,xi)
is the cosine similarity of yi and xi. We assume that only (xi,yi)
are matched pairs in a batch, and Mi,j ∈ R

n×n is used to deactivate

the effect of other pairs from the same class

Mij =

{
0, if yi matches xj & i �= j,
1, otherwise .

(3)

In the same way, we compute P (yi|xi), which is the possibility of

xi matching with yi .

The discriminative loss is used to learn class distinctive represen-

tations, i.e., representations that can distinguish different classes (e.g.,

bird species). Here, we take the classification objective function as the

discriminative loss. Specifically, with f(.) representing a perception

layer that transfers representations of images and speech from the

common embedding space to the label space, in which the vector of

an image or a stretch of speech represents the probability distribution

for each class label, the loss function is defined as

Ld = −1

2

n∑
i=1

(
log P̂ (ci|f(yi)) + log P̂ (ci|f(xi))

)
, (4)

where P̂ (ci|f(yi)) represents the softmax probability of f(yi)
belonging to its corresponding class ci.

The adversarial loss is used to reduce the modality gap, and

has shown to yield clear improvements in the text-image cross

modal retrieval task [22] by reducing the modality gap. Generative

Adversarial Networks (GANs) [23]–[25] are trained in a two-player

mini-max game between a discriminator and a generator. Here, a

modality classifier D works as the discriminator, which is trained

with the loss function:

LD = −
n∑

i=1

(
E

yi∼y
[logD (yi)] + E

xi∼x
[log (1−D (xi))]

)
. (5)

The encoders for speech and images work as the generator. They are

trained to fool the discriminator D, such that the classifier D cannot

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2021 at 07:34:34 UTC from IEEE Xplore.  Restrictions apply. 



distinguish the modality differences between the speech and image

representations. The loss function is given by

LG = −
n∑

i=1

(
E

xi∼x
[logD (xi)] + E

yi∼y
[log (1−D (yi))]

)
. (6)

The total loss for speech representation learning is given by

L = Lm + Ld + LG. (7)

This loss function is used to update the parameters in the dual encoder.

Note that LD is only used to train the modality discriminator. These

two training processes are performed in an alternate way. Adam [26]

is adopted and the initial learning rate is 0.0001 with a decay rate of

half every 50 epochs.

III. EXPERIMENTS

A. Cross-modal retrieval

The task of cross-modal retrieval is to retrieve the correct image

given a spoken description, and vice versa. In order to properly

evaluate our model, we first compare our model with the state-of-the-

art method [3] on speech-image cross-modal retrieval on the Flickr8k

[27] dataset, which is a commonly used scene image dataset in cross-

modal retrieval. The spoken descriptions of Flick8k are collected

via Amazon Mechanical Turk and are natural speech [28] . We

followed the training/test split in [3]. Note, Flickr8k does not have

class information, so each image is treated as a single class to perform

the discriminative loss.

Since this is the first work on fine-grained image based cross-

modal retrieval using spoken input, we compare our model with two

state-of-the-art cross-modal speech-based retrieval methods for scene

images [2], [3], and three state-of-the-art text-image cross-modal

retrieval methods [16], [22], [29] for datasets with class information.

To implement the methods originally designed for text-image cross-

modal retrieval tasks, the text encoder was replaced by our speech

encoder. For a fair comparison, the input speech for all methods was

represented by log Mel filter bank spectrograms as in our method.

In order to compare architectures and objective function rather than

training schemes, the training tricks used in [3], i.e., cyclic learning

rate and snapshot ensembling, which have been shown to be beneficial

were replaced with a learning rate with an initial value of 0.0001 with

a decay rate of half every 50 epochs.

The evaluation metrics for the cross-modal retrieval task are

R(ank)@K and mAP@50. R@K indicates the percentage of the

queries for which at least one ground-truth, i.e., images or speech

from the correct class, are retrieved among the top-K results. mAP@50

is the mean Average Precision (mAP), but only the top 50 retrieved

results are taken into consideration.

B. Speech-to-image generation

We test the semantic information carried by the learned speech

representations in a speech-to-image generation task. Since text-to-

image generation was made possible by Reed et al. [30], many efforts

have been carried out [21], [31], [32] to improve the performance of

text-to-image generation. Here, we use the structure of StackGAN-v2

[31], which showed outstanding performance on the text-to-image

generation task, to perform the spoken description-to-image generation

task. In our experiment, we replace the original text representations

with our learned spoken language representations, and compare the

performances of StackGAN-v2 with the original text representations

[31] and our spoken language representations.

The evaluation metrics for the image generation task follow those

in [31]. Specifically, we use inception score (IS) [33] and Fréchet

TABLE I

CROSS-MODAL RETRIEVAL PERFORMANCE ON CUB AND OXFORD DATASETS.

THE BEST RESULTS ARE SHOWN IN BOLD.

Dataset CUB (Bird) Oxford102 (Flower)

Method
Speech-to-image Image-to-speech Speech-to-image Image-to-speech

R@1 mAP@50 R@1 mAP@50 R@1 mAP@50 R@1 mAP@50

[2] 6.9 5.6 13.6 10.1 17.1 17.2 22.8 19.6

[3] 9.6 8.4 12.3 10.3 10.6 10.1 17.9 14.6

[16] 13.9 11.2 23.3 19.1 25.7 19.9 30.0 25.7

[29] 18.8 16.0 28.8 24.9 34.9 30.7 45.2 40.5

[22] 21.0 17.7 31.9 26.1 36.1 31.8 46.1 41.2

FSEN 33.5 27.9 50.2 41.0 48.1 42.5 63.2 53.5

inception distance (FID) [34] to evaluate the diversity and quality of

generated images, respectively. Higher IS means better diversity and

lower FID means a smaller distance between the real and generated

image distributions, indicating better performance on image generation.

Additionally, in order to evaluate the semantic consistency between the

generated images and the ground-truth images, we conduct a retrieval

task using ground-truth images to retrieve synthesized images. The

retrieval performance is evaluated with mean Average Precision (mAP).

Larger mAP means better semantic consistency between the generated

images and corresponding speech descriptions.

IV. RESULTS

A. Cross-modal retrieval

The comparison of our model’s results with those of [3] on Flickr8k

[27] showed that our method outperforms [3] on both speech-to-image

and image-to-speech cross-modal retrieval tasks. Specifically, on the

speech-to-image retrieval task, we achieve 10.1%, 28.8%, and 40.7%

accuracy for R@1, R@5, and R@10 respectively, outperforming

the corresponding accuracy 8.4%, 25.7%, and 37.6% achieved by

[3]. On the image-to-speech retrieval task, our model’s performances

are 13.7%, 36.1%, and 49.3%, while performances of [3] are 12.2%,

31.9%, and 45.2%. These results show the state-of-the-art performance

of our method on learning semantic representations of spoken language

grounded by visual information.

The Fine-grained image based cross-modal retrieval performance

is shown in Table I. As shown, on both CUB and Oxford datasets,

our method outperforms all the compared methods with a substantial

margin on all evaluation metrics. Specifically, on the CUB dataset,

our method achieves 12.5% and 18.3% improvements on R@1 over

the second-best method for the speech-to-image and image-to-speech

retrieval tasks, respectively. These results indicate that our method

is effective in matching previously unseen speech descriptions and

images by associating known attributes and objects.

B. Speech-to-image generation

Subjective results are shown in Fig. 3. As can be seen, conditioned

on our learned speech representations, the StackGAN-v2 is able

to synthesize high-quality photo-realistic images. The synthesized

images show good semantic consistency with the corresponding spoken

descriptions, which indicates that FSEN has the ability to learn speech

representations with fine-grained semantics.

Objective results are shown in Table II. As can be seen, conditioned

on our learned speech representations, StackGAN-v2 shows better

performance on the image generation task than when it is conditioned

on the original text embedding, indicating the good performance of our

method on learning semantic representations for spoken descriptions.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2021 at 07:34:34 UTC from IEEE Xplore.  Restrictions apply. 



“this bird has
wings that are
black and has an
orange belly.”

“this bird has a
yellow belly and
abdomen with a grey
breast and head.”

“this flower has
petals that are
pink with yellow
and black lines.”

“this flower has
thin yellow petals
surrounding
yellow stamen.”
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Fig. 3. Examples of generated images based on spoken descriptions from CUB

(birds) and Oxford102 (flowers).

TABLE II

PERFORMANCE ON THE IMAGE GENERATION TASK. THE BEST RESULTS ARE

SHOWN IN BOLD.

CUB (Bird) Oxford-102 (Flower)

Input mAP FID IS mAP FID IS

text [31] 7.01 20.94 4.02±0.03 9.88 50.38 3.35±0.07

speech 7.83 18.63 4.13±0.03 13.02 54.53 3.75±0.09

C. Component analysis

To investigate the effectiveness of the different components in

FSEN, we evaluated various variants of FSEN by removing each

component respectively. Table III shows the cross-modal retrieval

performance of those variant FSENs on the CUB and Oxford-

102 datasets. The removal of the attention modules was achieved

by replacing the attention modules with averaging. As can be

seen, removing any component of FSEN except for Ld brings

a significant decline in the performance of cross-modal retrieval.

Although removing Ld leads to a slight improvement on R@1 for

speech-to-image retrieval, it still gives an overall decrease. Moreover,

discarding any attention module in image encoder or speech encoder

brings obvious negative effects. These results show that each part of

the model contributes to the success of the model.

Ideally, a good speech-image dual encoder should cluster speech

representations and image representations from the same class together

and separate them from representations belonging to other classes. To

show the effect of each component on learning the representations in

an intuitive way, we visualized the speech and image representation

distributions produced by four FSEN variants using t-SNE [35], see

Fig. 4. For ease of inspection, the presented data are from 5 randomly

selected classes from the CUB test dataset, and only the first speech

description of each image is taken. Representations of speech and

TABLE III

COMPONENT ANALYSIS OF FSEN; W/O MEANS WITHOUT; ATT MEANS ALL

ATTENTION MODULES IN THE FSEN; ATT-I MEANS THE ATTENTION MODULE IN

THE IMAGE BRANCH AND ATT-S MEANS THE ATTENTION MODULE IN THE

SPEECH BRANCH. THE BEST RESULTS ARE SHOWN IN BOLD.

Dataset CUB (Bird) Oxford102 (Flower)

Method
Speech-to-image Image-to-speech Speech-to-image Image-to-speech

R@1 mAP@50 R@1 mAP@50 R@1 mAP@50 R@1 mAP@50

w/o Ld 33.9 27.8 49.5 40.4 48.7 42.0 57.3 51.0

w/o LG 33.1 27.4 48.2 39.8 47.2 40.9 60.2 50.5

w/o att 29.1 24.4 41.4 34.6 44.5 38.4 55.0 47.7

w/o att-I 32.6 27.4 45.1 38.6 46.8 41.1 58.8 51.1

w/o att-S 30.6 25.5 45.1 36.1 44.1 39.3 57.9 50.7

FSEN 33.5 27.9 50.2 41.0 48.1 42.5 63.2 53.5

images that are from the same class are plotted using the same

color. As shown, the removal of Ld leads to a trend that the speech

representations mix with one another, demonstrating the effectiveness

of Ld on learning speech representations that are discriminative

among different classes. Training the model without LG leads to

a separation of the speech representations from their corresponding

image representations, which indicates that LG plays an important role

in reducing the modality gap between speech and image. The attention

modules are the backbone in the dual encoder: when removed, both

separation of the representations from the two modalities and mixing

of the speech representations from different classes occur, even when

Ld and LG are used.

(a) FSEN (b) w/o Ld

(c) w/o LG (d) w/o att

Fig. 4. Distribution visualization of speech and image representations learned by

variants of FSEN. w/o means without. att means all attention modules.

V. DISCUSSION AND CONCLUSION

In this paper, a fine-grained semantic embedding network FSEN

was proposed to learn fine-grained semantic representations of

spoken descriptions. Evaluated on two fine-grained image datasets,

the proposed FSEN shows good performance both on a speech-

image cross-modal retrieval task and a speech-to-image generation

task, indicating that it is feasible to learn fine-grained semantic

representations of spoken languages which capture the relationship

between attributes and objects, via visual grounding. Moreover, the

component analysis demonstrated the effectiveness of each component

of the proposed method.

In the current work, the model was evaluated on synthesized speech

(but note its state-of-the-art performance on the Flickr8k dataset which

contains natural speech). In the future, we will investigate the model’s

ability to learn fine-grained semantic speech representations from

natural speech.
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