
Investigating deprecation misuse
a taxonomy, alternatives, controlled experiment,
and experiment platform

Dereck J Bridie

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

1

Investigating deprecation misuse:
a taxonomy, alternatives, controlled

experiment, and experiment platform

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

by

Dereck J Bridié
to be defended publicly on Wednesday, January 8, 2019 at 17:00.

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2020 Dereck J Bridié.

Cover picture:
Tom Blackwell - “Hand-Drawn Machine Schematics”. https://flic.kr/p/9C2Xct

https://flic.kr/p/9C2Xct

Investigating deprecation misuse:
a taxonomy, alternatives, controlled

experiment, and experiment platform

Author: Dereck J Bridié
Student id: 4280830
Email: d.j.bridie@student.tudelft.nl

Abstract

Deprecation in Java is a language feature that allows API producers to mark program elements as
obsolete. However, previous work has identified that this mechanism is co-opted to indicate another
concept entirely: a misuse of deprecation. This leaves room for improvement because deprecation
warning mechanisms do not fully describe the true reasoning with which API producers choose to
misuse the deprecation mechanism. In this thesis, we create a taxonomy of five reasons why API
producers misuse the deprecation functionality found in open-source software by analyzing 763
methods. Using this taxonomy, we create alternatives meant to help API producers avoid deprecation
misuse by introducing five new annotations meant to be specific in API abnormalities. To test this
proposed alternative, we conduct a user study. However, as no current experimental settings fit our
needs, we create an experimental platform, RESPIRED, publishing it to improve the state-of-the-art
in software engineering experiments. Finally, we test our alternatives using this platform, finding that
changing only the warning text does not have a significant impact on developers.

Thesis Committee:

Chair, Supervisor: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Bach Poulsen, Faculty EEMCS, TU Delft
Committee Member: Dr. A. A. Sawant, UC Davis

d.j.bridie@student.tudelft.nl

Preface

Submitting and defending this thesis marks the end of the most formative period in my life. Since coming
to Delft, I have been lucky to be able to surround myself with great friends with whom I’m proud to have
spent my academic years with. We’ve laughed, cheered and cried, creating moments together I’ll never
be able to forget.

One particular moment is engraved in my soul for eternity. It was a night in June of 2016; a LAN
gaming night in the Sporthal in TU Delft. An email had come, notifying me that grades had been
published– the results for the final exam of Linear Algebra, a course I had struggled with, were available.
I had barely failed the exam a multitude of times, and this was a deciding factor in my graduation. A
small group huddled around my screen, and I didn’t dare to look at the result– but an eruption of cheering
and clapping propagated from this group across the hundreds seated compelled me to see the passing
result. I’d like to thank Paul van der Knaap for the repeated study sessions, driving us to work hard to
pass this course no matter how bleak it seemed. Not only for LA, but for Probability, Complex, and the
final thesis endeavor. Paul, in the end, we made it– just like you always said we would.

It may seem strange to thank an entire section of a building, but the fourth floor of the new Computer
Science building was filled with colleagues I’ve been lucky to meet and have many dinner sessions with.
Thank you for the great food, support, and camaraderie during trying thesis times, and thank you for
giving my dear (stuffed) animals a new loving home.

I’d also like to thank Anand for being my not only my supervisor, but also an encouraging friend,
pushing me beyond the familiar and comfortable and guiding me with my work. Thank you, Alberto
Bachelli, for your critical eye and constructive guidance during the beginning stages of the thesis. Thank
you Arie van Deursen, for the confidence and guidance I needed to graduate. Thank you, Andy Zaidman
and Casper Bach Poulsen, for agreeing to be on my thesis committee, grading my work, and being present
at the defense.

Unfortunately, turning in this document is the last piece of work I will do for the TU Delft. Everything
I have learned to love about The Netherlands and Delft I will have to leave behind to return to California,
where a new adventure awaits. However, everything I’ve learned, I will bring with me. Thank you, Delft.
I have been taught me an important lesson: family is the people who you surround yourself with, and not
what you’re born into.

Dereck J Bridié

3

Contents

Contents 5

List of Figures 7

1 Introduction 9

2 Related Work 13
2.1 Software reuse as an API . 13
2.2 Deprecation as a Concept . 13
2.3 Deprecation as a Language Feature . 14
2.4 Deprecation Enhancements and Improvements . 14
2.5 Deprecation’s Relation to API Consumers . 15
2.6 Deprecation’s Relation to API Producers . 16

3 Deprecation Misuse Cases 17
3.1 Dataset Creation . 17
3.2 Usage Classification . 18
3.3 Results . 19

4 Deprecation Misuse Alternatives 21
4.1 Available Alternatives . 21
4.2 Implementation of Misuse Alternative . 22
4.3 JDK Augmentation . 22
4.4 IDE Plugin . 24

5 RESPIRED 27
5.1 Current State of Controlled Experiments in Software Engineering 27
5.2 Requirements . 28
5.3 RESPIRED . 29
5.4 Implementation . 29
5.5 Features . 30
5.6 Tool Distribution . 34
5.7 Tool Evaluation . 34
5.8 Requirements Revisited . 35

6 Evaluation of Deprecation Alternative via a User Study 37
6.1 User Study Design . 37

5

6.2 Results . 46

7 Evaluation of RESPIRED 55
7.1 Value for Participants . 55
7.2 Value for Researchers . 55
7.3 Future Improvements . 56

8 Discussion 57
8.1 Research Questions Revisited . 57
8.2 Impact and Implications . 59
8.3 Threats to Validity . 59

9 Conclusions and Future Work 63
9.1 Contributions . 63
9.2 Future Work . 64
9.3 Conclusions . 65

Bibliography 67

A Code fragments 73

6

List of Figures

1.1 Default deprecation warning output (OpenJDK 11.0.3) . 9
1.2 Deprecation warning output with extra linting flag (OpenJDK 11.0.3) 10
1.3 Deprecation warning in IntelliJ IDEA 2019.1.3 . 10

3.1 Method we use to create a corpus of deprecation introductions. 18

4.1 Visual display of the warning on usages of elements annotated with the original @Deprecated
annotation versus an alternative annotation. 25

5.1 The participant’s view of the environment. 29
5.2 Systems overview of RESPIRED. 30
5.3 SurveyJS’s supplied components for survey creation. 32
5.4 An example of creating a violin plot using Jupyter Notebook. 33

6.1 An example of the manner in which IntelliJ IDEA signals the introduced warnings by default. 45
6.2 Post-experiment choice tree for discovering participant sentiment. 46
6.3 Deprecation experiment overview . 46
6.4 Diagrams of participant demographics . 48
6.5 Task 1 deprecation flow diagram . 49
6.6 Task 2 maintenance issues results . 49
6.7 Distributions of time spent on each section of the experiment. 50
6.8 Participant groups avoiding the annotation in task 1 and task 2. 50
6.9 Post-survey questionnaire flow diagram . 51
6.10 Flow diagram showing participant groups, definition click-though, and dissuasion 53

8.1 Taxonomy of deprecation misuse reasons. 57

7

Chapter 1

Introduction

Deprecation is a language feature that allows developers to mark certain functionalities as obsolete. Many
valid reasons why to do so exist, including insufficient efficacy or indicating a feature that will be dropped
in a future release. Oracle, the current owner of the official implementation of the Java platform, describes
the following reasons for deprecating APIs in the Java Development Kit [44]:

1. The API is dangerous (for example, the Thread.stop method).

2. There is a simple rename (for example, AWT Component.show/hide replaced by setVisible).

3. A newer, better API can be used instead.

4. The deprecated API is going to be removed.

Deprecation is important because it gives library maintainers a method to notify library consumers
about important changes in the API they supply. This information is also valuable to API consumers
because it gives them time to create a migration strategy [44].

Various languages directly support the utility of the concept of deprecation, leading to the introduc-
tion of language features aimed at allowing developers to be able to able to mark code fragments as
deprecated. For example, PHP has a special category of warnings meant for deprecation that can be
emitted: E DEPRECATED and E USER DEPRECATED [21]. These warnings shown at runtime and can be
logged to help developers discover that they are using deprecated features [59].

In Java, deprecation is supported by the language as an optional annotation upon classes, methods,
or member declarations using the @Deprecated fragment, or by using a @deprecated Javadoc com-
ment [45]. The Java Language Specification [43] establishes rules that Java compilers must adhere
to: in general, a compiler must produce a warning when a deprecated program element is overridden,
invoked, or referenced by name. This often comes in the form of a text message, though the manner in
which it is shown differs throughout platforms, Java compiler versions, and Java compiler command
arguments. See Figure 1.1 and Figure 1.2 for an example of warning output under OpenJDK, an open
source implementation of the Java Platform.

Figure 1.1 and Figure 1.2 show warning outputs when using javac, the command-line utility for
compiling Java programs provided by the JDK. However, developers increasingly make use of an
Integrated Development Environment (IDE), which assists developers in programming by offering syntax

1 $ javac MyProgram.java
2 Note: MyProgram.java uses or overrides a deprecated API.
3 Note: Recompile with -Xlint:deprecation for details.

Figure 1.1: Default deprecation warning output (OpenJDK 11.0.3)

9

1 $ javac -Xlint:deprecation MyProgram.java
2 MyProgram.java:10: warning: [deprecation] outdatedMethod() in MyProgram has

been deprecated
3 new MyProgram().outdatedMethod();
4 ˆ
5 1 warning

Figure 1.2: Deprecation warning output with extra linting flag (OpenJDK 11.0.3)

Figure 1.3: Deprecation warning in IntelliJ IDEA 2019.1.3

highlighting, content completion proposals, and indications of possible bugs [30]. Java IDEs also can
show such a deprecation warning while the developer programs, amplifying the effectiveness of such a
warning by displaying it along with the code that being warned upon [30]. Popular IDEs for Java can
highlight usages of deprecated elements [22, 2]. For example, in IntelliJ IDEA, the declaration of a
deprecated fragment is highlighted in yellow, and usages are drawn with a line through the text, as shown
in Figure 1.3.

In open-source software, we find that the feature of deprecation is used for different purposes
other than deprecation: a misuse of the language feature. Previous work by Sawant et al. [60] uses
repository mining and issue tracker mining to find usages of deprecation, identifying legitimate usages
and “misuages”: an unorthodox usage of deprecation for reasons the deprecation guidelines do not
stipulate.

Sawant et al. [60] argue that inflexible communication methods between API producers and API
consumer might lead to unmet communication needs, and propose future research be conducted in this
area. In a follow-up work, Sawant et al. [59] elaborate on the direction such communication methods
could take: introducing high-level warning mechanisms for the Java programming language.

This disseration seeks to answer the following questions of interest. These questions guide our
approach in this study.

Research Question 1: What motivations are there behind developers misusing Java’s deprecation
mechanism?

To able to understand how developer’s needs can be met, we first need to understand what these needs are.
Using this information, alternatives can be derived that strive to meet these needs.

Research Question 2: What are the possible ways in which misuse of the deprecation mechanism can
be avoided or eliminated?

Once we have these reasons, we devise a mechanism which could replace the misuse of deprecation,
giving API producers an option that more accurately captures their communication needs.

10

Research Question 3: How effective is the new mechanism we offer compared to the existing depreca-
tion mechanism?

In the last part of this dissertation, we examine the properties of this new mechanism. In particular, we
are interested in a comparison between the misuse of deprecation and our newly offered mechanism. The
mechanism we propose should have a positive effect on API consumers, meaning that the intent of the
communication was understood better than in the original case.

We start with an exact definition of misuse, a term that will guide the core of this thesis. We review
the recommendations for the usage of the deprecation feature as given by Oracle [45]: In this thesis, we
use the following definition of misuse, derived from the above guidelines:

A misuse of the deprecation feature is when an element is marked as deprecated when the element
is NOT a transitional element, i.e. the element does not help an API consumer migrate from an
existing API A to a new API B in the correct way.

This thesis explores this concept of deprecation misuse using our three research questions to guide
our approach and research. RQ1 is backed by an emperical analysis of deprecation usage in open-source
projects, where we discover reasons why the deprecation mechanism is misused in actual projects.

Then, RQ2 uses a study of existing mechanisms API producers have to communicate with API
consumers to choose a new alternative to deprecation misuse. We implement this alternative and include
IDE support in IntelliJ IDEA, allowing developers using our setup to see our newly devised warnings just
as they would interact with any other type of warning.

Finally, we create and administer a user study to tackle RQ3. As we find that current solutions to
conducting a user studies are dissatisfactory for our needs, and thus elect to create a new experimental
platform that allows us to have complete control over the environment that a participant interacts with,
creating a realistic setting for participants to develop in. We conduct a controlled experiment using this
tool, requesting participants to complete various tasks related to various APIs.

Thus, the contributions of this dissertation include the following:

• A publication of a dataset of deprecation usages across 12,324 versions of open-source projects,
resulting in 306,529 occurrences of deprecation method declarations (chapter 3);

• A categorization and taxonomy of misusages of the deprecation mechanism found in these open-
source projects (chapter 3);

• An implementation of new annotations meant for replacing these misusages of the deprecation
mechanism, which can be used in a Java Enhancement Proposal (chapter 4);

• An experiment platform, accessible over the internet for reproducible controlled experiments aimed
at improving the state-of-the-art in software engineering quantitative studies (chapter 5);

• An evaluation as to the effectiveness of these new annotations, comparing their efficacy in dissuad-
ing users from its use (chapter 6).

We present the structure of this thesis, starting with chapter 2, which includes background information
and related work, found by going through existing literature about deprecation and its relation to all
parties involved. Then, chapter 3, we show the reasons that were found why API producers misuse
the deprecation feature, along with presenting an alternative we offer and implement. In chapter 4, we
describe the implementation of an alternative to deprecation misuse. Then, chapter 5 describes the online
experiment platform that the user study runs on. Afterward, chapter 6 describes the user study design
using the misuse alternative and the experimental platform and shows the results of this deprecation
misuse user study. Then, we argue the value the experiment platform had for this study in chapter 7.
In chapter 8 we take a critical view of the work that this thesis provides, discussing threats to validity.
Finally, chapter 9 concludes this dissertation and provides a basis for future work.

11

Chapter 2

Related Work

To understand the nature of deprecation, we start with the foundations of software reuse and software
evolution, laying the groundwork to understand the origins of deprecation. We examine deprecation
support by programming languages, in particular, in Java, then continue to advances in improving
and enhancing this support. Finally, we examine common practices between API consumers and API
producers in relation to deprecation.

2.1 Software reuse as an API

Software reuse is a practice widely used in software development, allowing developers to make use
of existing software components instead of recreating them each time. This reuse has many benefits,
including less time spent on development, finding bugs, and a shorter time to market [13, 33, 29]. These
benefits of software reuse have been recognized since the 1990s and remain a core tenet of software
engineering today: entire software development communities revolve around the concept of software
reuse [4, 63].

Software maintenance is an on-going effort to keep software up-to-date in face of an ever-changing
environment [32]. One facet of these changes are related to the interactions between the boundaries of
software systems. For this reason, APIs (Application Programming Interface) often maintain backwards
compatibility by avoiding changes in external client-facing interfaces reduces software debt in API clients.

2.2 Deprecation as a Concept

However, backwards compatibility cannot be maintained at all times. Software evolution involves adding
new features, changing existing features, or removing features. In particular, removing features is difficult
for API users: removing a feature that a developer depends upon means that the consumer must change
existing code to cope with these changes.

Deprecation To soften the immediate impact on these consumers, API producers tend to follow
a deprecate-replace-remove cycle [51], releasing a version of the library in which these features are
indicated to be deprecated. The concept is that a client using this version will become aware of this
deprecation, and knows that this feature is slated to be removed in the future. This has multiple advantages:
a client becomes aware of the future removal and has ample time to prepare for and consider the migration.
If possible, messaging will suggest ways the client can approach the migration, offering alternative
features or other migration paths. Finally, a version will be released in which the feature is removed.

13

2.3 Deprecation as a Language Feature

We investigate the history of Java’s deprecation feature in order to understand the evolution of Java’s
importance in deprecation, and examine past decision-making and considerations when it comes to its
implementations. Furthermore, we look at other languages to understand differences in the mechanism
which can be taken into consideration when creating an alternative.

Javadoc Since the initial version of the Java Development Kit (JDK), Javadoc (at the time, capitalized
as JavaDoc) has been shipped with the Java tool set [8]. Javadoc comments are a special type of comment
that contain Javadoc tags. These tags are keywords that the Javadoc tool can process in order to generate
human-readable documentation. In JDK version 1.1, the @deprecated tag was added to the Javadoc tool.
Additional information may follow this tag, which is recommended to be information about a replacement
API or a migration path [45].

JEP-175 Sun Microsystems, Inc. proposed a general-purpose metadata facility in JSR-175 [19],
introducing the concept of annotations to the language. These annotations can be attached to definitions,
giving the compiler user-defined information, and for processing at compile-time, deployment-time, and
runtime processing. This feature was released in JavaSE 5.0, allowing developers to create annotations and
annotate code using them. Among other annotations, the @Deprecated annotation was added alongside
this mechanism, accompanied with compiler checks to warn on usage of deprecated fragments.

JEP-277 Since JEP-175, JEP-277 [9] has been accepted and integrated into the Java language, adding
functionality to the existing @Deprecated annotation. In particular, users of the @Deprecated annotation
are able to specify whether or not the fragment is marked for removal in the future. The version that the
deprecation was introduced in can also be specified. The proposal of JEP-277 was motivated as follows:

Very few deprecated APIs were actually removed, leading some people to believe that nothing
would ever be removed. On the other hand, other people believed that everything that was
deprecated might eventually be removed, which was never the intent either. (Although it
wasn’t stated explicitly in the specifications, various documents mentioned that deprecated
APIs would be removed at some point.) This resulted in an unclear message being delivered
to developers about the meaning of @Deprecated, and what, if anything, developers should
do when they encountered usage of a deprecated API. Everybody was confused about what
deprecation actually meant, and nobody took it seriously. This in turn has made it difficult
ever to remove anything from the Java SE API.

These continual improvements in the Java Language with respect to Java show that the feature is
valuable and that considerable time and development effort is being spent in improving deprecation in
Java.

Deprecation in other languages Other languages also support deprecation via a language feature.
C# uses a similar concept called [ObsoletedAttribute], which can be attached to program fragments
in a similar manner as Java’s annotations. However, in contrast to Java, developers are able to specify a
message that is shown when the error is encountered. Furthermore, the fragment use can also be marked
as an error, causing a build to fail when the fragment is used. This approach is more strict: where Java
has mechanisms to disable warning output of deprecation use via @SuppressWarnings, C# offers the
option to break builds. Rust also supplies such an annotation, [#[deprecated]], allowing developers to
specify a custom note and date of introduction.

2.4 Deprecation Enhancements and Improvements

As we are interested in making changes to the ecosystem of deprecation, we look at related work into
improving deprecation and incorporating suggestions found in previous research.

14

Proposed Enhancements Sawant et al. [59] suggest three enhancements to the current deprecation
mechanism, aiming to improve the communication between API producer and consumer. The first is to
keep consumers aware of the future of a deprecated feature by informing them of the planned timeline.
Additionally, producers should be able to specify the severity of the deprecation, such that consumers are
aware of how imperative it is that action is undertaken. Finally, a generic warning mechanism is proposed
that should allow other types of warnings to be raised, thereby minimizing misuse of the deprecation
annotation.

JDK-6447051 The concept of adding an alternative annotation to the JDK is not entirely novel: JDK-
6447051 [1] is an issue on the OpenJDK bug system, created in 2006. The enhancement request suggests
that a new @UnsupportedOperation annotation could be created to replace cases where @Deprecated
is used. The example given is Collection.add() and related operations. As the root Collection
contains mutable operations such as adding elements and clearing the collection, immutable collections
often implement these collections by throwing an exception and marking these mutable operations with
@Deprecated. The issue explains that IDEs could highlight these methods to allow for safer coding at
compile time. However, no action was taken on this issue: a lack of interest to investigate and work on
this matter lead to the issue being closed in 2019.

2.5 Deprecation’s Relation to API Consumers

Deprecation has a large effect on consumers. We examine previous studies on deprecation and its effect
on consumers to understand the effects of deprecation in relation to API consumers.

Foundations of deprecation impact Robbes et al. [53] investigated the effects caused by deprecation
by analyzing a SmallTalk ecosystem. This work was foundational in deprecation research: case studies
in API change impact in an actual ecosystem had not yet been conducted. The findings relevant to
this dissertation are that many consumers were impacted by API deprecation, and that the extent of the
consumers often went unnoticed by API developers. Furthermore, reactions to API changes remained
undiscovered long after the introduction of the deprecation. Finally, it was found that consumers are not
supplied with enough information concerning deprecation: in 40% of the cases, instructions were either
absent, unclear, or the given advice was not heeded. In the case of this study, actual usage of deprecation
is still fraught for consumers.

Deprecation impact in Java Sawant et al. [58] conducted a non-exact replication study of the
aforementioned study, investigating reactions of more than 25,000 API consumers that made use of
five different libraries in the Java ecosystem. It was found that deletion of a deprecated entity was
the most common reaction to encountering deprecation, when any action was taken at all, despite API
documentation intending to offer replacements for deprecated APIs. However, a vast majority do not
react to deprecation, proposing two possible explanations for this phenomenon: developers do not see the
importance of removing deprecated artifacts or that the benefit does not justify the effort of change. Few
API clients update the API version that they use, silently increasing their technical debt by accumulating
future API changes in a more current version.

Deprecation usage in the Java Standard Library Qiu et al. [50] examine 5000 open-source projects
to understand how APIs supplied by the Java standard library are being used. They found that 49.5%
of these projects use at least one deprecated API element from the Java standard library. Furthermore,
the distribution of the Java version these methods were deprecated in is analyzed: surprisingly, methods
deprecated in an old version of Java still have high usage rates.

Difficulties Linares-Vásquez et al. [34] conducted an analysis on 213,836 questions tagged with the
“android” keyword in the popular questions and answers website StackOverflow [10]. They found that
leaving old versions of methods in Android APIs lead to questions asked, causing doubts in developers
such as in question 4904660 [5]. As Android leverages the Java ecosystem, this research shows that
consideration is necessary as to the confusion any proposed alternative would bring to developers.

15

2.6 Deprecation’s Relation to API Producers

When examining alternatives to deprecation misuse, we should understand current practices in deprecation
usage by API producers. Both correct usages of deprecation and misuses of deprecation should be
considered, so that the current communication methods can be examined in detail.

Deprecation usage in practice Raemaekers et al. [51] examine deprecation best practices compared
to usage in open-source libraries distributed through Maven Central. Out of 22,205 artifacts examined,
only 5.4% contained a single usage of @Deprecated at all. As an indicator of breaking changes,
@Deprecated is not often used: they find that 33% percent of sampled public methods are deleted
without a deprecated tag.

Deprecation cycle In the interest of backward compatibility, API producers can choose to follow
a deprecate-replace-remove cycle [20], giving consumers ample time before the feature is removed.
However, a study by Zhou and Walker [65] shows that this cycle is not often followed: in practice, many
different routines were observed, including resurrection of removed features and features being removed
without prior deprecation warning. Raemaekers et al. [51] recommend a new cycle: deprecate-replace-
hide-remove, adding a new step where the methods are removed from the developer’s point of view before
being completely removed. This is used in the Android framework code base successfully [51].

Impact of breaking changes Xavier et al. [64] investigate breaking changes, excluding changes that
are made with prior @Deprecated notification. They found that 62.46% of sampled libraries contain at
least one breaking change. The impact on the clients, however, is relatively low: only 2.54% of clients
are impacted on the median. This is conjectured to be caused by developers paying attention to usage
before breaking contracts.

Facilitating adaptation Consumers that use a deprecated API are encouraged to find an alternative.
However, Brito et al. [15] show that finding such an alternative is not often eased by the API producer:
within 661 Java systems, 64% API elements are deprecated with replacement messages per system,
leaving the remainder of elements without replacement usage documentation. They also find that no
major effort to improve these messages is made over time.

Reasons for deprecation Sawant et al. [60] give a solid foundation to this work, investigating reasons
behind feature deprecation. They categorized 12 high-level reasons for introducing deprecation, of which
10 are “orthodox”, i.e. in line with the common understanding of deprecation, and 2 are not. These
two mark an incomplete implementation of an interface and to mark a temporary feature which could
be removed in the future. We use this work as a foundation for this dissertation, expanding upon these
reasons for introducing deprecation in the context of misuse.

16

Chapter 3

Deprecation Misuse Cases

This chapter seeks to answer the first research question: what reasons do API producers have for misusing
the deprecation mechanism in Java? First, we start by elaborating on the dataset we use to find usages
of deprecation in APIs. Then, we describe the manner in which the reasons are found and categorized.
Finally, we present the results of this categorisation, listing the reasons that we found why API producers
misuse the deprecation mechanism.

3.1 Dataset Creation

In order to find the reasons why the deprecation mechanism is misused in Java, we need a dataset of
deprecation usage. We look at open-source projects to create a corpus of Java source code, finding
deprecation usages within this corpus. Finally, we narrow down this dataset to find usages of the
deprecation mechanism. This happens in the following manner:

1. We use a dataset for API usage by Sawant and Bacchelli [57] as our dataset of projects to analyze.
This dataset contains Java projects located on GitHub that use Maven as their build automation tool,
using dependency information of ca. 42,000 projects to build a list of most popular APIs based on
how many GitHub projects depend on them. This gives us a view of which APIs are likely to be
consumed in software projects.

2. We use this dataset to derive a list of projects of which we will find usages of the deprecation
feature. We select an arbitrary number of projects from this dataset: APIs which see at least 2000
dependant projects, resulting in 231 API producers.

3. From these API producers, we retrieve all available source code archives of each project from
Maven Central. When such a version is not provided by Maven Central, it is excluded from our
considerations. We end with 12,324 versions of projects.

4. We use SPOON [46], a library that facilitates processing Java source code and parsing it into an
Abstract Syntax Tree. We analyse this tree to find usages of the deprecation feature. We include
methods that are annotated with @Deprecated, java.lang.Deprecated, use the @deprecated
Javadoc tag, or mention the text deprecated in its comments.

5. For each method that we find, we record contextual information about this method, including the
declaration, implementation body, and documentation attached to the element. Table 3.1 shows an
example of the data that is recorded for each deprecation usage. This dataset has been uploaded as
an artifact [14], providing a starting point for other research in the field of deprecation.

6. We consider only the first occurrence of each fully qualified name, in chronological order by artifact
publication date. A method marked as deprecated may remain for multiple versions. Our intuition
says that the reason for deprecation does not change after introduction of the deprecated element.

17

Artifact mysql:mysql-connector-java
Version 5.1.33
FQN com.mysql.jdbc.ReplicationConnection.getServerCharacterEncoding
Declaration return getServerCharset();
Javadoc @deprecated replaced by <code>getServerCharset()</code>
Annotations @java.lang.Deprecated

Artifact com.google.android:android
Version 4.1.1.4
FQN android.telephony.gsm.SmsMessage.getEmailFrom
Declaration throw new java.lang.RuntimeException("Stub!");
Javadoc None
Annotations @java.lang.Deprecated

Table 3.1: Example rows in deprecation dataset.

Dataset for API usage
42,000 projects

APIs with >2000
dependent projects
231 API producers

Download available versions
from Maven Central

Source code of all versions
12,324 versions

Exclude APIs
with low usage

Deprecated methods
throughout all versions

306,529 methods

Find chronological first
introduction of deprecation

First deprecation introduction
and context

13,137 methods

Find usages of
deprecation feature

Figure 3.1: Method we use to create a corpus of deprecation introductions.

3.2 Usage Classification

Now that a dataset for deprecated methods has been made, we create a manual classification of reasons
why API producers deprecate features. In this classification, we examine both correct usages and
misusages, following the formal definition of deprecation as given in chapter 1. We use an exploratory
approach to identify cases of misuse, then use work by Sawant et al. [60] to validate the reasons we found.

Categorizing the reason why deprecation was introduced for each of the 13,137 deprecated methods
in the dataset is a considerable amount of work, so we use a sampling strategy to reduce the categorization
work. We understand and are critical of the bias introduced by sampling: these considerations are explored
in subsection 8.3.1. We sampled the projects in the following manner:

1. We group APIs under the management of the Spring Framework1 together, assuming that this
coding community will abide by the same deprecation guidelines.

1https://spring.io/

18

https://spring.io/

2. From the top 20 projects with the most usages, we take five to analyze, categorizing 100 deprecation
usages each. These five are randomly chosen with equal probability. From the remainder, we
categorize 2 methods each (if there are less than two methods, we use all of the methods).

3. These methods are selected using a stratified random sampling method, whereby the strata are
formed based on project version, that is, we attempt to diversify the versions per project we
examine.

This manner of sampling leads to a total of 7632 methods for consideration for manual analysis.
Finally, we conduct the manual analysis. From the sampled deprecation usage dataset, we examine

each method call sequentially. We consider all data that was record for this method, and attempt to
judge the reason why deprecation was introduced based on the method’s declaration, documentation, and
implementation. The author of this thesis conducted this analysis, being conservative in coding a misuse:
for cases in which not enough information was available to make a judgement or reasonable doubt existed,
intended use of deprecation was assumed. This resulted in six categories, five of which representing
misuse of the deprecation mechanism. When this was completed, the found misuse categories were
discussed with the supervisors of this dissertation, in which each method declaration within a misuse
category was critically observed.

3.3 Results

We present the results of the manual classification of the reasons why API producers use the deprecation
mechanism in Java. From the sampled subset, we identify six categories of deprecation usages, listed in
Table 3.2.

Category Description of Misuse Occurrences
IU Intended Usage of the deprecation annotation. 743
BETA This element is subject to possible changes. 8
UNSUPP This method will always throw an UnsupportedOperation-

Exception.
8

DONTCALL This element should never be called under any circumstances. 2
TEMP This element was not intended for long-term use. 1
INTERNAL This element should never be used by an API consumer. 1

Table 3.2: Identified reasons for deprecation usage.

We elaborate upon observed cases below:

• IU: In this case, an existing feature is planned to be removed in the future for a reason that is
congruent with deprecation guidelines.

• BETA: Misuse of deprecation to indicate a method in beta stages. The specifics of the method
are not completely finalized, and are subject to changes when the API leaves its beta state. This
category does not supercede an existing API.

2Attentive readers may notice that no odd numbers were mentioned, making it difficult to end up with an odd number using
a sum of even numbers. However, projects may have only a single deprecated declaration, leading to only a single selectable
method from a given stratum.

19

• UNSUPP: We observe this misuse in classes that choose to implement an interface partially. A
classical example is related to immutable collections, as in the case of ImmutableList3, where
modifying such a collection will cause an exception at runtime4.

• DONTCALL: A method annotated in this category is meant to never be called under any circum-
stances. An example of such a definition can be found in Listing 3.1.

• TEMP: These elements are misuses of deprecation when the element does not supercede an
existing API or help consumers migrate between APIs. Such a method was added to the API in the
understanding that it was not intended for long-term use.

• INTERNAL: Misusage of deprecation feature to indicate that a method should only be used within
the API producer internally, as opposed to being available for use by the API consumer.

Listing 3.1: DONTCALL example in org.hamcrest:hamcrest5.
1 /**
2 * This method simply acts a friendly reminder not to implement Matcher

directly and
3 * instead extend BaseMatcher. It’s easy to ignore JavaDoc , but a bit harder

to ignore
4 * compile errors.
5 *
6 * @see Matcher for reasons why.
7 * @see BaseMatcher
8 * @deprecated to make
9 */
10 @Deprecated
11 void _dont_implement_Matcher___instead_extend_BaseMatcher_();

3https://github.com/google/guava/blob/ad529ca5425cb17bd9e26a7f7fc06e80bef0d692/guava/src/com/go
ogle/common/collect/ImmutableList.java#L521

4In Java, the top-level interface for Collection has mutable methods, therefore all list implementations must provide
mutable methods as mandated by the contract of Collection.

5https://github.com/hamcrest/JavaHamcrest/blob/0da90880b3aa7364afba05b7f1a853a25c190a44/hamcre
st/src/main/java/org/hamcrest/Matcher.java

20

https://github.com/google/guava/blob/ad529ca5425cb17bd9e26a7f7fc06e80bef0d692/guava/src/com/google/common/collect/ImmutableList.java#L521
https://github.com/google/guava/blob/ad529ca5425cb17bd9e26a7f7fc06e80bef0d692/guava/src/com/google/common/collect/ImmutableList.java#L521
https://github.com/hamcrest/JavaHamcrest/blob/0da90880b3aa7364afba05b7f1a853a25c190a44/hamcrest/src/main/java/org/hamcrest/Matcher.java
https://github.com/hamcrest/JavaHamcrest/blob/0da90880b3aa7364afba05b7f1a853a25c190a44/hamcrest/src/main/java/org/hamcrest/Matcher.java

Chapter 4

Deprecation Misuse Alternatives

Now that the reasons for misuse of the deprecation mechanism in Java have been identified, we continue
work on the second research question: in what ways can we help producers avoid or eliminate misuse
of the deprecation mechanism? We start with a study of existing mechanisms used by API producers
to communicate to clients in source code. Then, by examining advantages and disadvantages of each
method, we select one that we will use in this dissertation. We give an implementation of this method,
ensuring that it can be used by Java developers such that it can be evaluated against deprecation misuse.

4.1 Available Alternatives

Now that the misuse categories have been found, we devise alternative solutions that support API
producers in communicating their needs concerning their APIs, where deprecation was used instead. In
these cases, we identify that the intent with which these @Deprecated annotations were placed, taking
as goal that any new alternative to the @Deprecated annotation should communicate an API producer’s
needs more clearly.

We examine existing solutions for messaging API consumers, weighing the advantages and disadvan-
tages of each:

Add alternative annotations to JDK We take inspiration from the JDK and introduce new annota-
tions to the JDK alongside the original @Deprecated annotation. This method will allow developers to
use the new annotations as they are used to using @Deprecated, easing the migration towards the new
annotations. Java developers would only need to update their Java version to receive these alternative
annotations, a process that should be done when support is dropped for their current version regardless.
However, an annotation has no functionality without a mechanism to read this added information: the
compiler must be adjusted to warn for these new annotations appropriately.

Also, this approach would require submitting a JDK Enhancement Proposal (JEP) [11], a process
that allows non-trivial changes to be introduced into the JDK. Getting a JEP approved is a multi-step
involved process, requiring many layers of review before a change can reach normal developers. However,
developers do not often update to the newest JDK version according to a survey conducted in October
2018 with more than 10,200 respondants: 79% continued to use version 8, even though 9 had been
available for over a year [4]. Java 8 is a Long Term Support version, which could explain developers’
complacence to remain on this version.

Create library with annotations We examine a library that solely provides annotations: JetBrains’
java-annotations1, which provides @Nullable and @NotNull, among others. These annotations
allow an IDE to warn for potential developer error by adding constraints on parameters and fields: in this
case, that the value may be null or never null, respectively. A similar approach can be taken in this

1https://github.com/JetBrains/java-annotations

21

https://github.com/JetBrains/java-annotations

study by creating a library and IDE support for this library: however, API producers will need to include
this library in their dependencies, and API consumers must use IDEs for which this support is created.
Furthermore, such a plugin must then be made for each IDE in use, including support and maintenance.

Introduce Javadoc tag Our final proposed approach is to add a new Javadoc tag to the Javadoc
specification. This new tag could be more specific in its messaging, able to inform users about the
situation with a developer-provided message. This gives the API producer some freedom to motivate
why the tag was placed or give the consumer a timeframe in which changes to this element will be made.
However, this freedom is not currently used often in practice, in the case of the @deprecated Javadoc
tag [15]. Additionally, Java binary files meant for distribution do not contain Javadoc information, as this
information is removed during compilation, whereas annotation information remains.

4.2 Implementation of Misuse Alternative

In this dissertation, we limit our scope to choosing a single deprecation misuse alternative. We choose to
take an ambitious approach and extend the Java Standard Library in the JDK with new annotations. We
choose this because this allows API producers to annotate their APIs with a method that is idiomatic:
annotations are an existing method of conveying information used by Java developers. Furthermore,
inclusion in the JDK allows this work to be adapted and proposed as a Java Enhancement Proposal with
minimal effort, allowing these annotations to be introduced into the language and become available to
API producers. Should the work be rejected by the Java Language developers, it can still be adapted into
an external library with hardly any effort.

4.3 JDK Augmentation

To add our annotations into the standard library, we need to extend a JDK that consumers use to build
their libraries. We use OpenJDK as the basis for our implementation. OpenJDK is a free and open-source
implementation of the JDK, allowing contributors to change the source code of the compiler and standard
library, and is the most commonly used open source implementation available [4].

Creating an annotation is done with the @interface keyword, and is defined similarly to a Java
interface. This means that an annotation can specify interface members, along with a default value.
Listing 4.1 shows an example of how a new annotation can be created named @ClassPreamble. This
also demonstrates optional and required interface members, signified by the default keyword.

Listing 4.1: Defining an annotation according to Oracle documentation2.
1 @interface ClassPreamble {
2 String author();
3 String date();
4 int currentRevision() default 1;
5 String lastModified() default "N/A";
6 String lastModifiedBy() default "N/A";
7 // Note use of array
8 String[] reviewers();
9 }

We consider two methods of alternative communication: one generic annotation that uses a required
interface member that justifies the use of the annotation, and a group of annotations each targeted for
specific use for the misuse reasons found in section 3.3. We consider work by Sawant et al. [59] in which

2https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html

22

https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html

two Java language contributors were interviewed, referred to as J1 and J2. J1 and J2 did not voice support
for a generic warning mechanism, where J1 considered such a change to be too “extreme”. J2 felt that
“[by attempting] to eliminate every type of misuse, were only going to open the opportunity for more
types of misuse, and were going to make it harder for people who are going to use it in a sensible way or
in an imaginative way” [59]. J2, however, did voice support for more specific warnings.

Guided by these Java Language contributors, we choose to create a new annotation for each of the
misuse reasons found in section 3.3. First, we create an annotation for each of the misuse cases, resulting
in five annotations as shown in Table 4.1.

Category Annotation

BETA @Beta
UNSUPP @AlwaysThrowsException
DONTCALL @NeverUse
TEMP @Temporary
INTERNAL @Internal

Table 4.1: Identified deprecation misuses against the proposed new annotation.

Then, we add these annotations to the standard library, using @Deprecated as the basis for the
implementation. We adjust naming and documentation as to reflect the meaning of these annotations,
but otherwise add no new functionality. Listing 4.2 shows an example of the adaptation, displaying the
source code of the newly-created @Beta annotation.

Finally, we build the JDK, resulting in binaries that can be used to compile Java code files that make
use of these new annotations. Any user of this newly-built JDK can use the alternative annotations as
easily as they would use @Deprecated as a drop-in replacement.

Listing 4.2: The implementation of @Beta we add to the JDK.
1 package java.lang;
2
3 import java.lang.annotation.Documented;
4 import java.lang.annotation.Retention;
5 import java.lang.annotation.RetentionPolicy;
6 import java.lang.annotation.Target;
7
8 import static java.lang.annotation.ElementType.*;
9
10 /**
11 * A program element annotated {@code @Beta} is one that programmers are

discouraged from using. This element is marked to be in beta , meaning
that the method may be changed in future API versions.

12 */
13 @Documented
14 @Retention(RetentionPolicy.RUNTIME)
15 @Target(value={CONSTRUCTOR , FIELD , LOCAL_VARIABLE , METHOD , PACKAGE , MODULE ,

PARAMETER , TYPE})
16 public @interface Beta {}

23

4.4 IDE Plugin

Creating an annotation on its own has little use: this added information is easy to miss by an API
consumer as the annotation has no functionality. No warnings will be shown when using this annotation,
and can only be seen if a developer browses the definition of an element that is annotated. In the case of
the @Deprecated annotation, signals in the IDE for deprecation are wholly implemented by the IDE.

However, IDEs have no unified platform for such behavior: for example, Eclipse uses a different
platform than IntelliJ IDEA. Considering IDE usage statistics and a cursory exploration of the development
effort involved, we choose to base our implementation on IntelliJ IDEA’s platform. Although we are
convinced that the choice of platform should not have a significant impact on the effectiveness of the
alternative, we are aware that developers may be used to a different IDE than IntelliJ IDEA.

In IntelliJ IDEA, functionality added to the base platform is created in plugins. We create an IntelliJ
IDEA plugin that has similar behavior to the existing functionality for signaling usages of fragments
annotated with @Deprecated. However, this plugin shows a different message when signaling a usage
of an alternative annotation. Table 4.2 lists the messages that we show for each annotation, where
@Deprecated is the default message provided in the default settings of IntelliJ IDEA.

Annotation IntelliJ IDEA reported message

@Deprecated “0” is deprecated
@Beta This method is not yet stable, and should be avoided where possible.
@AlwaysThrowsException This method will always throw an exception.
@NeverUse This method should never be used.
@Temporary This method will be removed in the future.
@Internal This method should not be called by API consumers.

Table 4.2: Annotations and message shown upon use

To create a plugin, we make use of the IntelliJ IDEA SDK. Our plugin analyzes Java files, creating
an Abstract Syntax Tree representation of the code under analysis. We resolve every method usage
under analysis, finding the declaration that this usage refers to. Then, we inspect all annotations that this
declaration is annotated with: should one of our alternative annotations be found, then the inspection
will show a warning on this usage. Figure 4.1a shows the signal shown by IntelliJ IDEA when hovering
upon a usage of a fragment annotated with @Deprecated. Figure 4.1b shows an example of message a
developer would see when encountering a usage of a custom annotation.

Though the SDK offers a multitude of problem highlight types (ERROR, WARNING, INFORMATION,
etc.), we choose to mark this inspection with LIKE DEPRECATED. This is to lower the number of variables
in our evaluation: an ERROR problem highlight type using a red underline might motivate participants to
avoid problematic fragments more effectively then when compared to a normal strikethrough. For this
reason, we keep the situations the same, varying only the text that is shown upon such a usage.

Our hypothesis then, is that this implementation with a more targeted warning description is more
effective at dissuading users from using this annotated element than a misuse of the deprecation feature.
For example, a warning text informing a user that calling this method will always throw an exception
could be more effective than a generic deprecation warning.

24

(a) The signal shown by IntelliJ upon usage of a method annotated with the original annotation
@Deprecated.

(b) The signal shown by IntelliJ upon usage of a method annotated with the alternative annotation
@Temporary.

Figure 4.1: Visual display of the warning on usages of elements annotated with the original @Deprecated
annotation versus an alternative annotation.

25

Chapter 5

RESPIRED

To answer RQ3, aimed at evaluating the effectiveness between our deprecation misuse and our proposed
alternative, we need a user study to evaluate differences in behaviors in each of the two groups. However,
we find that current support for creating and conducting experiments like these with the requirements we
have is inadequate. For this reason, we create a new experiment platform that suits our needs, and make it
available for the software engineering research community as a whole.

This chapter details RESPIRED, a platform developed during this thesis to improve the state of the
art in software engineering experiments. We start with a literature study in current methods in controlled
experiments in software engineering, observing disadvantages in the approaches used in current practices
and remarking what can still be improved. Afterward, we list our requirements. Then, we introduce the
platform, detailing its features and showing how the platform improves current practices. Finally, we
detail a security evaluation, user evaluation, and finish with how the platform can be used in other studies
by other researchers.

5.1 Current State of Controlled Experiments in Software Engineering

In this section, we explain the motivation for the creation of the platform by examining recent literature
into developer studies.

“Glacier: Transitive class immutability for Java” [17] uses a user study to test the effectiveness of a
type annotation system for Java. Coblenz et al. use a controlled experiment as an evaluation strategy,
soliciting participants and inviting them for the experiment in a physical location. In this way, they could
offer the participant an environment already fitted with video recording software, the tasks to be done, and
the development environment in which to work in. However, this leads to some room for improvement:
as only a single computer was configured with the software, only one subject could be tested at a time.
Furthermore, the participant must have also been able to physically be present for the experiment, making
the pool of possible candidates smaller.

Similarly, a study by Uesbeck et al. [61] set up a room in which many computers were prepared
for participants to work on. These computers were outfitted with virtualization software and a virtual
machine containing the experimental setup. For participants who could not physically be present, this
virtual machine image was transferred to the participant. Such images can be quite sizable; the most
recent distribution of Ubuntu packaged by OSBoxes is 1.6GB1. On top of this, the experiment must still
be included in this size. Furthermore, the burden of installing virtualization software and getting the
environment working correctly is put on the participant, complicating the process of taking part in the
experiment.

1https://www.osboxes.org/ubuntu/#ubuntu-19-04-vmware

27

https://www.osboxes.org/ubuntu/#ubuntu-19-04-vmware

Yet another example is “A Metric for Software Readability [16]”. Buse and Weimer [16] use an online
survey tool to test the readability of software snippets. Although this allows participants to participate
in the experiment at their own leisure, this does not model a real-world scenario: programmers often
use IDEs when writing code, offering a wide suite of tools to aid program comprehension such as
code highlighting and variable reference matching. Buse and Weimer [16] note this in their discussion:

”integrated development environments (IDEs) and specialized static analysis tools designed to aid in
software inspections may constitute a better approach to the goal of enhancing program understanding.”

5.2 Requirements

In chapter 4, we chose to create a custom JDK along with an IntelliJ IDEA plugin. This means that our
experiment’s participants will, at the minimum, need to work with an installation of our JDK, IntelliJ
IDEA, and our custom plugin. The length of an experiment is correlated with participant drop-out
rate [25], so a lengthy setup time is detrimental to an experiment’s success. Though experiments often
provide virtual machine images [61], these also require an installation process.

Furthermore, we also need to be able to observe how our participant interacts with the environment.
At the minimum, we should be able to record participants’ answers to our programming tasks. However,
it is also of interest to know what other features of the IDE are being used with respect to the warnings we
display, e.g. is the warning being displayed at all. For these reasons, it is important that we can observe
the participants’ actions, most preferably with a screen recording.

We are also interested in participant demographics and their sentiments, so we also need to be able to
ask questions and receive answers in various ways. This means that we also need a survey mechanism
that can ask participants questions and allow them to input their answers.

Finally, we identify common drawbacks in the setup of recent experiments in the literature, and
attempt to create a experimental platform that aims to improve upon these flaws. In an ideal platform for
creating empirical software development experiments, we look for the following qualities:

• [REPRO]: Replication studies are important to show the validity of an original study. In order
to facilitate the replication of any study conducted with this tool, we aim to make it easy for a
researcher to publish their experimental setup such that it can be run again.

• [REUSE]: In order to be able to offer this platform to the software engineering research community,
we should make the platform generic enough such that other types of experiments can be conducted,
e.g. supporting other languages or IDEs.

• [FAM]: We aim to make components within the environment familiar to the participant, to help
mitigate threats of validity which are related to the experiment being conducted in a foreign
environment.

• [POWER]: The environment should offer more than a current online survey platform does, adding
the power of an IDE together with an online survey platform.

• [REMOTE]: Participants should be able to access the environment from across the world, using
hardware that is familiar to them.

• [DATA]: The tool should facilitate the processing of experimental data, allowing researchers to
easily handle their obtained results.

• [SUPPORT]: The tool should be aware of common user study patterns and offer support for studies
using these patterns.

28

Figure 5.1: The participant’s view of the environment. Left: fully-featured IntelliJ IDEA environment.
Right: Information and survey pane.

5.3 RESPIRED

During the course of this dissertation, we develop a web-based remote experimental environment. We
aim to make this tool reuseable and extensible so that researchers will be able to make use of work in
this thesis in future experimental studies. This tool is named RESPIRED, a Remote Extensible Survey
Platform using IDEs in Research for Empirical Development.

We take an ambitious approach to this platform, developing it not only for the purposes of this
experiment, but with with future work in mind. Though it has been used in this Java deprecation
experiment, the components can be swapped out in order to create an environment for any arbitrary
Linux-compatible controlled experiment [REUSE].

Participants are given an URL which gives them remote access to the experimental environment. The
participant is then able to interact with the windows within the environment as if they were programs
running on their own machine through their web browser [REMOTE]. Figure 5.1 shows an example of
what a participant might see in their browser.

5.4 Implementation

The platform leverages Docker to create isolated reproducible system images. The main component is the
orchestrator, responsible for booting, monitoring, and ending experimental instances. This component
is also the user-facing system, showing the user the experiment information, asking for experimental
informed consent, conducting the entry survey, and hosting the remote desktop interface.

See Figure 5.2 for a systems overview of RESPIRED. The tool uses Docker to create system containers.
The containers provided by the tool have many utilities geared towards user studies, including screen
recording, periodic snapshots of project file contents, an IDE, and the survey. Multiple images can be run
at the same time, allowing multiple participants to undergo the same experiment at once.

The default experimental image provided by RESPIRED builds upon ubuntu:18.042, a minimal

2https://hub.docker.com/_/ubuntu/

29

https://hub.docker.com/_/ubuntu/

Participant browser

Remote Desktop
Client

Experiment
results

RESPIRED experiment environment

IntelliJ IDEA
Development Window Survey

RESPIRED
plugin

Experiment landing page
- Experiment information

- Informed consent

Participant
eligible

Presurvey
- Check eligibility

- Gather demographics

Participant
consents

Participant ineligible Is shown to the participant

Creates an instance

Figure 5.2: Systems overview of RESPIRED.

installation of the Ubuntu operating system in Docker. The modifications made to this image are as
follows:

• i3wm3, a tiling window manager allows windows to be placed next to each other without borders
and window controls. This ensures the IDE and browser window are placed side-by-side and
cannot be modified;

• chromium-browser4, an open-source web browser that runs the survey interface. In particular,
this browser supports a “kiosk” mode, removing administrative features such as the ability to open
new windows and navigate away from the current page;

• we install IntelliJ IDEA Community Edition, acting as the IDE in which participants will work. We
bundle an installation of the RESPIRED IntelliJ IDEA plugin, which disables features related to
restarting the IDE and changing the current project. Furthermore, the plugin sets up a web service
capable of answering queries about browser state and executing IDE commands;

• and finally, Virtual Network Computing (VNC) software, sharing an instance’s desktop view.

5.5 Features

This section is dedicated to elaborating upon the features RESPIRED provides, to show the value the
tool provides. Any prospective researcher planning to make use of RESPIRED should be aware of the
features the tool provides and also its limitations.

5.5.1 Setup

A researcher starts by creating an operating system image that describes the experimental environment. A
skeleton is provided by the project, which is to be used as basis for the environment’s functionality. From
this point, the researcher must configure the environment by creating the interactive survey, by changing
the project that will be loaded in the IDE, and by writing any guidance meant for the participant. If the
researcher is planning to conduct an experiment in a Java project, then many of the default components

3https://i3wm.org/
4https://www.chromium.org/

30

https://i3wm.org/
https://www.chromium.org/

can remain unchanged. However, since the platform makes use of functionality shared between JetBrains
IDE products, it is possible for the platform to run using another product such as CLion, though no work
has been done to attempt it [FAM].

5.5.2 Experimental groups

The platform can assign each participant to an experimental group, allowing the environment to change
based on which group a participant has been assigned to. Consider a controlled experiment in which
participants are grouped into the control group or the experimental group. All components are aware
of the group the active participant is in, allowing for experimental variables to change. For example, a
researcher can choose to show different code files for the experimental group compared to the control
group, or change questions asked in the survey panel [SUPPORT].

5.5.3 Interactive task programming

The survey panel allows researchers to place components that interact with the IDE. This is exposed by
the RESPIRED plugin running in the IDE, and allows the survey window to query information within the
IDE and change the IDE state. This allows two-way interaction between the IDE and the survey panel.
For instance, a researcher might want to allow a participant to continue to the next part of the survey only
when they have changed at least ten characters in a certain file. Alternatively, a researcher could place a
button in the survey that runs a unit test and saves the outcome to a participant’s results [POWER].

5.5.4 Survey creation

Creating custom survey components is made possible by a visual editor. Internally, the survey panel uses
SurveyJS5, which provides a visual survey creation tool. This allows researchers to create a survey in an
intuitive manner, as in shown in Figure 5.3. We stressed the importance of accessibility in being able to
create a survey, to ease the process of setting up an experiment. This library provides many common
survey components such as multiple-choice selections, free-form text input with optional validation,
and drop-downs. Furthermore, if the researcher has a need for a more complicated component, custom
widgets can be created6 to suit their needs.

These surveys can be placed within the environment, allowing participants to answer questions while
they are interacting with the IDE. However, they can also be placed before the environment is displayed,
allowing researchers to ask participants to self-report demographics, perform a warm-up task [52], or
filter participants based on previous knowledge [SUPPORT].

5.5.5 Experimental results

RESPIRED, by default, records the screen of each participant throughout the duration of the participant’s
session, ensuring that all participant activity can be reviewed after the session is completed. Furthermore,
the participant’s work-in-progress task files are periodically archived, giving a continuous view of a
participant’s progress.

The platform also offers components for recording survey results. Each answer to a survey question
is saved into the participant’s results along with the time of completion. These results can be aggregated
by the tool, showing a basic distribution of answers given.

Though the tool gives a researcher a good foundation with which to start, all results are saved as
JSON files, which can be read and processed as necessary.

5https://surveyjs.io/
6https://surveyjs.io/Examples/Survey-Creator/?id=customwidgets

31

https://surveyjs.io/
https://surveyjs.io/Examples/Survey-Creator/?id=customwidgets

(a) Overview of the visual survey creator.

(b) An example of configuration options that can be used for a single line input field.

Figure 5.3: SurveyJS’s supplied components for survey creation.

32

Figure 5.4: An example of creating a violin plot using Jupyter Notebook.

We support one specific manner of processing this data by including an installation of Jupyter
Notebook [31], a web application that assists researchers in scientific computing and data science
programming [DATA]. We provide scripts that are able to process output created by the platform,
enabling researchers to start analyzing the data as it comes in. Jupyter supports Python 3, Julia, and R as
programming languages, making it suitable for use by scientists familiar with these languages. Figure 5.4
shows an example of how a violin plot can be created using seaborn [62] and pandas [40] in Python 3.

5.5.6 Extensibility

In its default configuration, RESPIRED contains an IntelliJ IDEA IDE component. However, all JetBrains
products that make use of the IntelliJ Platform SDK [3] are compatible with RESPIRED. This means
that a researcher interested in Code Review could use JetBrains’ UpSource, or a researcher interested in
replicating a study in Python could use PyCharm. If these IDEs are not suitable for the researcher’s needs,
they could replace it with another component that implements RESPIRED’s HTTP API [REUSE].

The survey panel is highly programmable, allowing for a large scala of different experiments to be
conducted in the environment. This is because the Platform SDK is exposed through the RESPIRED
plugin, meaning that the development environment can be inspected and controlled through the interface
that is exposed.

In short, the provided components are a good baseline for creating experiment environments: compo-
nents have been written against a loosely coupled web interface that can be replaced to fit a researcher’s
needs.

5.5.7 Security

Security is an important topic for any service exposed to the internet. We assume the following threat
model: the service has been distributed on the internet, and can be accessed by anybody. This is a difficult
model: there is no filter on actors with malicious intentions. We list possible attack vectors and the
mitigations that have been used to combat them.

Denial of Service attacks These attacks target the availability of the service. Since the platform
can run arbitrary code, it is important to mitigate the damage that can be done in such a container. For
example, all available CPU could be consumed in an experimental environment. For this reason, we
limit the amount of instances that can be run and limit the amount of CPU cores that can be occupied
by an instance. This ensures that processing power remains available for critical host operating system
infrastructure. The same is done for RAM, preventing one instance from monopolizing all working

33

memory. Furthermore, we attempt to limit disk read and disk write speeds, limiting the maximum usage
one instance can use.

Exploitation of computational resources A malicious actor can make use of the resources available
in an instance for purposes that are not related to the experiment. We run these containers in an
isolated network that cannot access the public internet, preventing external communication. This makes
exploitation of resources more difficult: no software libraries that are not provided by the environment can
be used. Furthermore, the environment cannot be used to participate in DDoS attacks or cryptocurrency
mining efforts.

Container escape However, it cannot be said that the platform is completely secure. The platform
uses Docker [7] for process isolation. Common Vulnerabilities and Exposures [6] lists vulnerabilities in
Docker, showing that attacks such as privilege escalation and sandbox escape exploits have already been
discovered [18]. Future vulnerabilities in Docker can lead to a compromise in the system hosting the tool.

Combe et al. [18] list common flaws in Docker configurations and mitigations that can be used by
end-users to prevent known errors. Finally, Martin et al. [36] state that containers such as those provided
by Docker are part of a complex ecosystem: this leads to a wide surface area for attack.

Though a lot of work has been done in order to prevent misuse of the platform, we do not guarantee a
complete secure software package; future work should involve cybersecurity specialists and penetration
testing for the sake of platform stability.

5.6 Tool Distribution

The platform has been released as an artifact in the interest of furthering advancements in the Software
Engineering Research community. The platform is open-source, released on GitHub under an organisa-
tion7. In this way, any researcher interested in the platform can create their own experiment, adjusting the
foundation given on that repository [REUSE]. Furthermore, these new experiments can be released as a
replication package, helping researchers to create reproducible studies [REPRO].

5.7 Tool Evaluation

A Rapid Iterative Testing and Evaluation study (RITE) [41] was conducted in order to ensure that the
prototype of the tool is sufficiently usable. The RITE method is a usability test in which changes to the
interface are made as soon as a problem is found by a participant. Then, this iteration of the interface is
used with the next participant. The RITE method allows engineers to find a high percentage of usability
issues with a small amount of participants.

For the evaluation, a sample experiment was created, in which participants were instructed to remove
the text throw new UnsupportedOperationException(); from a file. Then, they were instructed to
make a test pass by trivially adding the line return true; to the same file. Afterwards, the demo was
completed, and the participant was thanked for their participation.

We solicited seven students from the TU Delft to attempt to walk through a prototype of the tool. For
each student, we noted their operating system and browser of choice. The participants were instructed to
think aloud and comment on anything that seemed off with their experience with the tool. Participants
were given the link and allowed to read and interact with the tool at their own leisure.

The first three participants remarked upon usability issues relating to visual styling. In particular,
participants found that the survey interface seemed crude, and that the buttons were not discoverable
enough. This was fixed immediately after.

7https://github.com/respired/respired

34

https://github.com/respired/respired

Furthermore, the third found that a button on an Apple operating system did not work as expected.
After these three participants, we had four trials in which no issues to be fixed were discovered, and could
conclude that the demo experiment passed our criteria for the RITE evaluation.

5.8 Requirements Revisited

We return to the requirements posed in section 5.2 and detail how each requirement is met by the features
we provide in the platform.

• [REPRO]: Experiments created with RESPIRED are simply Docker containers. These container
images can be distributed and executed with ease, allowing researchers to inspect and replicate a
study conducted with the tool.

• [REUSE]: Though the platform has been especially tailored for IntelliJ IDEA, we allow other
components to be used in the platform by using a web API to communicate between the survey
component and the IDE. Furthermore, survey behavior within the environment is programmable,
allowing experiments to be configured in various ways.

• [FAM]: IntelliJ IDEA is included in platform by default, offering a familiar and realistic envi-
ronment for participants. Compared to existing solutions, this is advantageous because it allows
participants to express themselves similarly to an actual development scenario.

• [POWER]: We offer a powerful two-way communication mechanism between the IDE and the
survey environment, allowing for dynamic experiments based on IDE state.

• [REMOTE]: Participants do not have to be physically present in order to participate in the
experiment, as the experiment is disseminated via the web. Furthermore, no installation is needed,
as the participant only needs a web browser.

• [DATA]: We include Juypter Notebook and provide utilities that can read participant results,
allowing researchers to process their data with ease.

• [SUPPORT]: The platform has built-in support for participant groups, filtering participants based
on demographics, and a large set of survey components.

35

Chapter 6

Evaluation of Deprecation Alternative via
a User Study

Now that the alternative to deprecation misuse has been created in chapter 4, and a experimental platform
has been created in chapter 5, we can conduct our developer user study. In this chapter, we detail our user
study, describing the setup for the controlled experiment aimed at evaluating the difference between users
who encounter a deprecation misuse and our offered alternative. Finally, we show the results that our
participants provided in two programming tasks, and a post-survey.

6.1 User Study Design

The goal of this chapter is to access to what extent our alternative annotations are effective. We define
effectiveness as an improvement in inspiring API consumers to take action on this piece of code. We
hypothesize that a new message that encodes the API producer’s intent more clearly will result in API
consumers avoiding usage of the annotated code fragment.

To evaluate the effectiveness of the solution we offer, we run a controlled experiment. The goal of the
experiment is to evaluate the difference in behavior of users in the control group compared to users in
the experimental group. We test how effective these new annotations are compared to the @Deprecated
annotation in the following way:

1. We recruit participants, informing them about the experiment and asking for informed consent.

2. We ask for participant demographics in a short questionnaire.

3. We ensure that they are skilled enough to complete the tasks using a short skills test.

4. We place them in the experimental environment, splitting the participants into a control group and
an experimental group.

5. We collect results from all participants and evaluate the difference in behaviors between the control
group and the experimental group.

The following sections list the considerations we made and detail each part of the experiment.

6.1.1 Recruitment

We asked graduate students at the TU Delft to participate in the experiment. Furthermore, the survey was
disseminated within the Software Engineering Research Group at the TU Delft, and participants were
requested to ask Java developers in their social circles to participate as well.

37

6.1.2 Experiment and consent information

When a participant decides to participate, they are given brief information concerning the experiment.
We explain our affiliation and describe that the participants will be working with deprecation program
elements using IntelliJ IDEA. Furthermore, we explain how the data that they provide will be processed,
and what data will be collected. Only after receiving a participant’s consent can they continue to the next
part of the experiment.

6.1.3 Pre-experimental questionnaire

By means of a pre-experimental questionnaire, we ask the participant to self-disclose information relevant
to their programming experience. We ask the following questions in this pre-experimental questionnaire:

1. Q: Do you consider yourself a Java developer?
A: Yes / No
We exclude non-Java developers from the experiment. Developers who are not familiar with Java
are not a part of the target audience as they are less likely to understand signals triggered by
annotations.

2. Q: How many years of experience do you have with the Java language?
A: Free input (must be numeric)
We are interested to learn whether length of familiarity with Java is correlated with the likelihood
of being dissuaded by alternative annotations.

3. Q: In which setting do you use Java?
A: Industry, Open Source, Other (specify) (multiple selections possible)
We are interested to learn whether a difference exists between developers in industry and open
source. We allow the “Other” option, allowing participants to report other setting such as academic
or hobby work.

4. Q: How often do you make use of libraries which are not the Java Standard Library when
developing for Java? (Examples are Guava, ...)
A: Never, Almost Never, Sometimes, Almost always
We would like to know if a correlation exists between (lack of) library use and likelihood to respond
to deprecation misuse alternatives.

5. Q: What is your IDE of choice when developing Java applications?
A: IntelliJ IDEA or related product, Eclipse, Other (specify)
Since the alternative method of signal is integrated in IntelliJ IDEA, we are interested to know
whether users of other IDEs are as affected by the signal as IntelliJ IDEA users.

If a participant does not self-report to be a Java developer or if they have zero years of experience
with Java, they are exempted from the survey. Then, a cookie is set in the participant’s browser, which
serves as a prevention mechanism against retrying the survey. This is not a flawless solution however: a
participant clearing their cookies could retry the experiment.

6.1.4 Skills test

We create a test of skill to ensure that a participant has at least a baseline of skill in Java. This task also
functions as a warm-up task, lowering participant drop-out [52]. We request that the participant answer
the following questions:

38

1 ArrayList <Integer > arr = new ArrayList <>();
2
3 for (int i = 0; i < 10; i ++){
4 arr.add(i);
5 }
6 System.out.println(arr.get(3));

Q: What is the result of running the code above?
A: 1, 2, 3, 4, 5 (in randomized order)

1 public String comboString(String a, String b) {
2 String result = "";
3 if (a.length() < b.length())
4 result = a + b + a;
5 else
6 result = b + a + b;
7 return result;
8 }

Q: What is the output of this function if we call it using comboString("Hello", "hi")?
A: ”HellohiHello”, ”HellohiHellohi”, ”hiHellohi”, ”null” (in randomized order)

We use these questions to assert that the participant has knowledge of lists, control structures, and
basic operations. If a participant does not answer these questions correctly, they are exempted from
the survey. Then, a cookie is set in the participant’s browser, which serves as a prevention mechanism
against retrying the survey. If they do answer these questions correctly, they are allowed to continue to
the development environment.

6.1.5 Group creation

To be able to evaluate the difference between the existing misuse of the deprecation mechanism and our
offered alternative, we use a controlled experiment. In the control group, the participant will interact with
the misuse of deprecation, and in the experimental group, we present the participant with our alternative.

To distribute participants among these groups, we use a sequential round-robin assignment. In this
assignment, participants are sequentially distributed amongst these groups, meaning that participant 1
belongs to group 1, participant 2 to group 2, participant 3 to group 3, and so on, wrapping back around to
the first group when there are no more groups availble.

In an ideal experiment, we would test each of the five misuse categories, evaluating the effect each
annotation has on a participant. However, this master dissertation has a limited scope of participants that
are available to us. Spreading a low number of participants across two groups for each participant (10
groups total) means that a low number of people would be in each group. In order to be able to draw
statistically interesting results from data, we should aim to have many participants in each group.

To ensure statistical relevance, we lower the number of groups under test. In this experiment, we
discard @Internal, @Temporary, and @NeverUse, leaving @Beta and @AlwaysThrowsException. We
choose these annotations because of their prevalence within the deprecation dataset. We create participant
groupings using these annotations as shown in Table 6.1.

For each annotation, we create both a control group and an experimental group. The control group
will encounter deprecation, and the experimental group will have this deprecation replaced with our
alternative annotation. In this way, these groups can be compared against each other.

39

Group number Annotation Group name

1 @Beta BETA EXP
2 @Deprecated BETA CONTR
3 @AlwaysThrowsException ATE EXP
4 @Deprecated ATE CONTR

Table 6.1: Participant group ordering. CONTR: control group. EXP: experimental group.

Listing 6.1: Definition of FileUtils.writeStringToFile(File, String) in Apache Commons IO.1

1 /**
2 * Writes a String to a file creating the file if it does not exist using

the default encoding for the VM.
3 *
4 * @param file the file to write
5 * @param data the content to write to the file
6 * @throws IOException in case of an I/O error
7 * @deprecated 2.5 use {@link #writeStringToFile(File , String , Charset)}

instead (and specify the appropriate encoding)
8 */
9 @Deprecated
10 public static void writeStringToFile(final File file , final String data)

throws IOException {
11 writeStringToFile(file , data , Charset.defaultCharset(), false);
12 }

6.1.6 Library under test

Our research question deals with the effectiveness of the message we display to the end-developer,
meaning that the participant plays the role of an API consumer. Therefore, we should provide an API
that can be used by these consumers. In the control groups, we leave these libraries as is, and in the
experimental group, we modify these libraries to use our alternative annotation in cases where this makes
sense.

For the @Beta groups, we choose the library commons-io:commons-io:jar:2.7. Commons IO is a
library by the Apache Foundation, aimed to assist with the development of IO functionality such as reading
and writing to files and other file system events. This library is suitable for our experiment because it makes
for a plausible experiment scenario that could use a deprecated API: FileUtils.writeStringToFile
and related methods. A selection of these methods do not specify a Charset that should be used when
writing the String to a file. These methods are marked @Deprecated, as API consumers should specify
a Charset. Listing 6.1 shows the definition of one such method. We adjust all methods in this group,
replacing mentions of @Deprecated with @Beta for the experimental group and updating documentation
where necessary.

For the @AlwaysThrowsException groups, we need a library that uses this misuse of deprecation
in a plausible manner. We choose Google’s Guava, com.google.guava:guava:jar:28.0-jre. This
library provides an implementation of ImmutableList, a read-only implementation of Java’s List.
Since this class implements List, it must confirm to List’s interface contract2, which specifies that all
implementations of List must specify an implementation for add, clear, remove, and others. However,

1https://github.com/apache/commons-io/blob/58d9d82879b1f/src/main/java/org/apache/commons/io/F
ileUtils.java#L3068

2https://docs.oracle.com/javase/8/docs/api/java/util/List.html

40

https://github.com/apache/commons-io/blob/58d9d82879b1f/src/main/java/org/apache/commons/io/FileUtils.java#L3068
https://github.com/apache/commons-io/blob/58d9d82879b1f/src/main/java/org/apache/commons/io/FileUtils.java#L3068
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Listing 6.2: UNSUPP example in ImmutableMap (com.google.guava:guava)3

1 /**
2 * Guaranteed to throw an exception and leave the map unmodified.
3 *
4 * @throws UnsupportedOperationException always
5 * @deprecated Unsupported operation.
6 */
7 @Deprecated
8 @Override
9 public final void clear() {
10 throw new UnsupportedOperationException();
11 }

these operations are meant to mutate the List on which it is called, which clashes with the immutability
of the list. This is a violation of the Liskov Substitution Principle [37], as the ImmutableList does not
obey the same contract as for List.

To work around this, Guava implements these methods as shown in Listing 6.2, marking these
mutational implementations as @Deprecated. When these mutation methods are called, a Unsupported-
OperationException is thrown. These methods are also marked @Deprecated to warn users that these
methods should not be called. We modify this library for the control group, annotating these @Deprecated
methods with @AlwaysThrowsException and updating the documentation where necessary.

We end with two versions for each of the two libraries. To summarize, Table 6.2 shows the groups
and the libraries that participants in these groups must use.

Group name Library

BETA EXP Commons IO (Deprecation replaced with @Beta)
BETA CONTR Commons IO (unmodified)
ATE EXP Guava (Deprecation modified with @AlwaysThrowsException)
ATE CONTR Guava (unmodified)

Table 6.2: Participant group ordering. CONTR: control group. EXP: experimental group.

6.1.7 Implementation Task

When interacting with an unknown API, consumers can make use of IDE features such as auto-completion
and fragment suggestions [12] to discover API features, or can query external (web) resources [54] to
help form decision-making. When writing a code fragment, an API consumer has direct feedback from
the IDE on the code they are writing [30]. In this instance, the feedback should be that the use of the
experimental API is either deprecated or should be avoided for another reason. When confronted with
this information, how will the participant react?

In short, in the implementation task, we are interested in discovering whether or not a participant is
more likely to avoid a method annotated with an alternative annotation compared to the control group.

We show the participant the file listed in Listing 6.3 if they are in the BETA groups, and show the
participant the file in Listing 6.4 if they are in the ATE group.

For participants in BETA, we expect participants to use FileUtils.writeStringToFile(File
file, String data) to write a String to a File. However, when doing so, the IDE will warn the

3https://github.com/google/guava/blob/6e9069225a46bb152fb7b3fc20324c1600b397df/guava/src/com/go
ogle/common/collect/ImmutableMap.java#L665

41

https://github.com/google/guava/blob/6e9069225a46bb152fb7b3fc20324c1600b397df/guava/src/com/google/common/collect/ImmutableMap.java#L665
https://github.com/google/guava/blob/6e9069225a46bb152fb7b3fc20324c1600b397df/guava/src/com/google/common/collect/ImmutableMap.java#L665

Listing 6.3: Implementation task file for the BETA version
1 import org.apache.commons.io.FileUtils;
2 import java.io.File;
3 import java.io.IOException;
4
5 class Task {
6 /**
7 * Please complete this method.
8 * The method should write the string in ‘toWrite ‘ to ‘writeDestination

‘.
9 * Please use FileUtils in your solution.
10 */
11 public void writeString(File writeDestination , String toWrite) throws

IOException {
12 // TODO complete this method.
13 }
14 }

Listing 6.4: Implementation task file for the ATE version
1 import com.google.common.collect.ImmutableList;
2
3 class Task {
4 ImmutableList <String > myList;
5 public Task(ImmutableList <String > input) {
6 this.myList = input;
7 }
8
9 /**
10 * Please complete this method.
11 * The method should add the String ‘toAdd ‘ to the list contained in

the field ‘myList ‘.
12 */
13 public void addItem(String toAdd) {
14 // TODO complete this method.
15 }
16 }

42

participant that this method is annotated, and suggest usage of FileUtils.writeStringToFile(File
file, String data, Charset charset) instead. This replacement fragment is preferred because
the character encoding should be specified explicitly.

For participants in ATE, the trivial solution is to add myList.add(toAdd). However, myList is
of type ImmutableList<String>, so it is illegal to modify this collection. The IDE will warn about
this if the participant does so. Instead, the participant is to add the item to the collection by using the
ImmutableList.Builder to create a new list and replacing the reference.

Participants in both versions are only allowed to continue when ten characters have been changed in
the source file, excluding comments. Furthermore, we check that the solution can be compiled. For the
BETA groups, additionally, the participant must use the string FileUtils in their solution to ensure that
the API is being used instead of an alternative solution.

6.1.8 Maintenance task

The maintenance task examines another side of a development task: given an existing code fragment, do
API consumers feel motivated to refactor a usage of deprecation (or an alternative thereof)? In the review
task, we present the participant with a file that has multiple reported warnings. We ask participants to
maintain the file, that is, to fix maintainability issues at their own discretion.

We show the participant the following text:

In this task , you will be asked to review a code file.
Please open the code file using the button below.
<Open code file >

Upon clicking the button, the participant is shown the file listed in Listing A.1. We continue with the
following text:

In this scenario , you are a programmer working on this grade administration
system.

Your colleague has made some changes to this file. It is your job to
maintain these changes.

Please take a some time to read over the code to your left. Then , answer
the following question:

Do you think changes should be made to this file to make it more
maintainable?

o Yes
o No

If the participant answers No, we direct them to the next component. Otherwise, we show them the
following text:

Please adjust the file to make the code more maintainable.
When you are done , press the Next button to continue.

The file contains an example codebase we created, a simple component called GradeAdministration.
This code file is meant to represent a component that administers student grades. It exposes methods
for calculating student averages, writing the administration to a file, and adding new grades to the
administration.

We manually added maintainability issues, using IntelliJ IDEAs list of inspections for Java [2] as
inspiration for maintenance issues that can be warned upon by the editor. We introduce only maintain-
ability issues that are enabled by default in the editor, choosing plausible issues based on intuition. This
results in the following list:

43

L
ine

C
ode

Inspection
text

Possible
resolution

5
import

java.util.LinkedList;
U

nused
im

port
java.util.LinkedList

R
em

ove
this

line

9
class

GradeItem
implements

Serializable
‘G

radeItem
’does

notdefine
a

serialV
ersionU

ID
field

A
dd

a
serialV

ersionU
ID

field

56
List<GradeItem>

grades;
A

ccess
can

be
private

A
dd

access
m

odifier‘private’.
76

sum
+=

(double)
item.getMark();

C
asting

‘item
.getM

ark()’to
‘double’is

redundant
R

em
ove

casting
operator

141
while

(iterator.hasNext())
{

‘w
hile

loop’replaceable
w

ith
‘foreach’.

R
efactorw

hile
loop

forforeach

145*
FileUtils.writeString-
ToFile(file,
builder.toString());

M
essage

dependanton
participantannotation

R
eplace

elem
entw

ith
alternative

146
System.out.println(e);

T
hrow

able
argum

ent‘e’to
‘System

.out.println()’call
C

hange
to

e.printStackTrace();
148

catch
(RuntimeException

e)
{

‘catch’branch
identicalto

‘IO
E

xception’branch
M

erge
exception

handling
branches

158†
grades.add(item);

161
};

U
nnecessary

sem
icolon

‘;’
R

em
ove

sem
icolon

167
foundGradeFor

=
true;;

U
nnecessary

sem
icolon

‘;’
R

em
ove

sem
icolon

170
return

foundGradeFor
==

true;
‘foundG

radeFor==
true’can

be
sim

plified
to

‘foundG
radeFor’

Sim
plify

expression

Table
6.3:M

aintainability
issues

introduced
into

the
G

radeA
dm

inistration
code

file.*:B
E

TA
group

only.†:A
T

E
group

only.

44

In the maintenance task, we present the participant with a file that has multiple reported warnings.
We ask participants to maintain the file, that is, to fix maintainability issues at their own discretion.
Twelve reported warnings have been introduced, of which a single warning is relevant to the research
question. We measure how many times participants change the warning relevant to either the deprecation
or deprecation alternative, and find out if the alternative message and annotation lead to more maintenance
fixes.

The goal of this maintenance task is to discover the discoverability of the reported warnings. It is
important to note that the warnings introduced into this code file are highlighted in a different manner
than both deprecated elements or elements marked with an alternative annotation. Figure 6.1 shows an
example of the visuals of such a warning. The highlighted element receives a yellow background, visually
differentiating the element from other elements, compared to the strikethrough for deprecation or an
alternative, shown in a previous chapter in Figure 4.1.

Figure 6.1: An example of the manner in which IntelliJ IDEA signals the introduced warnings by default.

6.1.9 Post-experiment Survey

When the participant is done with the review task, they are presented with a final survey. The goal of
this survey is to discover a participant’s reasoning for acting on or not choosing to act on alternatives to
deprecation misuse.

We use a dynamic survey to discover these reasons, the choice tree of which is shown in Figure 6.2.
We begin by covering the base case: the participant is asked to self-report whether or not the deprecation
or deprecation alternative was noticed. If so, they are asked whether or not the reported warning was
ignored, and finally asked to elaborate upon their reasoning. Otherwise, we ask whether or not the
warning is not a maintenance issue.

Open-ended questions are important in qualitative research, capable of revealing important issues [23]
and allowing for spontaneous responses [49]. We use an open-ended question to discover what motivates
a participant’s reaction or non-reaction to the annotated API, and manually code participant responses.

6.1.10 Experiment ending page

When the participant has completed the final survey, the participant is instructed to finish the experiment.
A final page is presented to the user, thanking them for their participation and stating that the experiment
can be closed. This concludes the participant’s experience with the participant.

6.1.11 Summary

We create a user study aimed at developers designed to evaluate a difference between the misuse of
deprecation and our proposed alternative. Our experiment asks for participant demographics before
conducting a small skills test. After this, the first task asks participants to implement a function that drives
them to interact with an annotated API. In the second task, participants are asked to maintain a file with
many maintenance issues, of which one is a maintenance issue related to the annotated API. Figure 6.3
shows an overview of the experimental setup in a high-level overview.

45

1 . Did you notice any annotations on
external APIs in the code files that you

have seen in the experiment?

2 . Did you think these
warnings were not

maintainance issues?

2 . Did you choose to ignore
warnings that came from these

annotations?

Yes

Yes

3. Please explain what
motivated you to react to these

warnings.

3 . Please explain what
motivated you to do nothing

about these warnings.

No

No

Figure 6.2: Post-experiment choice tree for discovering participant sentiment.

Experiment and
consent information Skills testPresurvey

Does not consent Does not self-identify
as Java Developer Fails entry skills test

Deprecation survey
environment

Drops out of environment

Experiment
results

Disengagement

Engagement

Figure 6.3: Deprecation experiment overview

6.2 Results

In this section, we describe the results of the user study described in the previous section. To evaluate the
effectiveness of the alternative annotations, we take a critical look into the data that has been gathered. In
this section, we evaluate the properties of the participant groups, and show the data that these participants
have displayed.

6.2.1 Data filtering

In the first stage, we examine our participant’s experimental recordings. As the experiment was distributed
via an online link without any need for authentication or other cost, there is a possibility that some results
were an outcome of a non-serious attempt. For this reason, we manually inspect each screen recording:
for results which we deem were not a serious attempt at the experiment, we remove this result from the
dataset. We removed two of such results. Furthermore, we only consider participants that have completed
the entirety of the experiment. Since the experiment is conducted inside a participant’s browser, it
is possible for a participant to abort the experiment at any time by closing the window in which the
experiment takes place. Though it is possible to use these partial results, for brevity and clarity these
results are not taken into account in this dissertation.

After this filtering, we are left with 25 results.

46

6.2.2 Pre-survey: Demographics

We start with demographical data into our participants. As described in section 6.1, we start by asking
our participants to self-report their demographics.

Figure 6.4a shows the distribution of the years of experience our participants reported to have.
Figure 6.4b shows the settings in which these participants use Java. We see that industry practitioners are
represented within the group of participants, along with open-source developers. We examine the “other”
category, to see self-reported answers to this question. The answers we see in this category are related
to work during a degree, with answers similar to “University” and “Study projects”. Figure 6.4c shows
the combinations of settings that participants chose. Figure 6.4d shows the IDE participants prefer to
use. A concern was that participants would not be used to the IDE used, leading to a signal being missed.
However, we see that a large majority of the participants prefer to use IntelliJ IDEA, meaning that these
participants are likely to be familiar with the way warnings are shown in this IDE. Figure 6.4e shows how
often participants indicated to use libraries when developing in Java.

Additionally, we observe the groups the participants have been placed in. Figure 6.4f shows the
group distribution within the participants. We observe a skew in the number of participants in the group
BETA CONTRRECATED. Due to a bug in the manner in which participants were distributed, this group has
twice as many participants as the other groups.

6.2.3 Implementation Task

We start with evaluating the implementation task. In this task, the participant was asked to make use of a
deprecated (or otherwise annotated) API to implement a function.

We use the participant’s video screen recording and annotate the recording with additional metadata.
We record whether or not the participant has hovered over the annotated term for long enough for the
warning text to be displayed, since there is no visual distinction between the alternative annotation and
@Deprecated otherwise. The intuition is that seeing the targeted message will motivate a developer
to handle the API consumption differently. Then, we judge if the annotated element was used in the
participant’s final solution.

To visualize the results, we plot a Sankey diagram [35], a type of visualisation that shows flow. On
the left, we plot the participant’s group. These groups then flow to whether or not the participant saw
the warning text. Finally, this flow continues to whether or not the task was solved without using the
annotated element. This is shown in Figure 6.5. We see four different paths a participant can take:

1. Participant sees the warning text, and avoids the annotated method (9 participants). In this case,
we can observe the difference between participants in the control groups and the experimental
groups: the control group sees the generic @Deprecated warning text, where the experimental
group receives the elaborated text. This participant also avoids using the annotated method.

2. Participant sees the warning text, and uses the annotated method despite this (6 participants). In
this case, the participant are also subjected to the difference between the groups. However, the
participant uses the annotation despite seeing warning text.

3. Participant does not see warning text, and avoids the annotated method (4 participants). This can
be explained by previous participant knowledge, i.e. the participant knows to add a Charset when
using write without needing information from a warning to dissuade the improper method use.

4. Participant does not see warning text, then does not avoid the annotated method (7 participants). In
this case, the participant does not interact with the difference between the experimental group and
the control group.

47

(a) Years of experience (b) Setting in which Java is used

(c) Venn diagram with settings combinations (d) IDE usage

(e) Library usage (f) Participant group distribution

Figure 6.4: Diagrams of participant demographics

6.2.4 Maintenance task

For the second task, we showed participants a code file to which we added several maintenance issues.
First, we look at a general overview of the maintenance issues that were solved by participants. To show
which issues were most often tackled by participants, we present Figure 6.6a. This shows which issues
were most often solved by participants, demonstrating that the most issues were reasonable to expect
participants to resolve. We use number of maintenance issues solved as a proxy for participant effort. By
plotting number of maintenance issues solved by participants in each group, shown in Figure 6.6b, we
can lend more credibility to the results in each group.

48

1

1

1

1

2

2

2

2

2
2

2

2
2

3

3

3

3 3

6
7

BETA EXP

BETA CONTR

ATE CONTR

ATE EXP

used annotation

avoided annotation

did not see warning text

saw warning text

Figure 6.5: Task 1 deprecation flow diagram

(a) Maintenance issues as solved by participants (b) Maintenance issues solved per group

Figure 6.6: Task 2 maintenance issues results

We find that three groups are similar in number of maintenance issues solved, with the ATE CONTR
group having a significantly lower amount of issues resolved. We examine possible reasons for this,
checking the distributions of time spent on each part of the experiment, found in Figure 6.7. In Figure 6.7a,
we see that this group spent a far lower amount of time on task 1. In Figure 6.7b, we see no large disparity
between this group and other groups. To elaborate on where these participants spent their time if it was
not on maintenance issues, we inspect these participants’ recordings. We find that these participants spent
their time on this task on documenting code and rewriting parts of the implementation that were not
issues that we sought after. From this, we suspect that the task was not clear enough, and that this way of
measuring does not accurately represent avoidance of annotated usages.

49

(a) Time spent on the implementation task. (b) Time spent on the review task.

Figure 6.7: Distributions of time spent on each section of the experiment.

1

1

1

1

1

1

1

1

2

2
3

3

4

4

4

5

7

8

task2-avoid-annotation

task1-avoid-annotation

BETA CONTR

ATE EXP

ATE CONTR

BETA EXP

task1-used-annotation

task2-used-annotation

Figure 6.8: Participant groups avoiding the annotation in task 1 and task 2.

6.2.5 Relation between Implementation Task and Review task

We also investigate the relation between this task and the first task. In particular, we examine participants
who used the annotated element in the implementation assignment. These participants were able to
observe at least some form of dissuation: every used method is decorated with strikethrough to indicate
that this method should not be used. However, these participants elected to use this method despite these
warnings. We suspect that these participants will not resolve the same method call in task 1, and plot this
in Figure 6.8. This figure shows that this is correct for 20 out of 25 participants, where the remaining 5
are inconsistent in their behavior.

50

6.2.6 Post-survey results

For the final survey, we evaluate our participants’ answers. Figure 6.9 shows a flow diagram of the
answers the participant groups gave to the post-survey described in subsection 6.1.9. This diagram shows
all combinations of answers a participant could give to the closed questions, and how many participants
choose which options.

1

1

11

1

1

2

2

2

2

2

3

3

3
4

4
4

6
7

ATE CONTR

ignored irregularity

an issue

not an issue

BETA CONTR

did not notice API irregularity

BETA EXP

did not ignore irregularity

ATE EXP

noticed API irregularity

Figure 6.9: Post-survey questionnaire flow diagram

We also give an impression of the answers given to the open-answer questions, by distilling participant
answers into codes. Table 6.4 shows the categorisation of participants’ motivation to react to the API
warnings we provide. Table 6.5 shows the categorisation of participants’ motivation not to react to the
API warnings.

Table 6.4: Resulting coding of post-survey answers to “Please explain what motivated you to react to
these warnings.”

Group Coding of motivation to react

P0 BETA EXP avoid-deprecation
P1 BETA EXP avoid-deprecation, declaration-documentation
P2 BETA CONTR avoid-deprecation
P3 BETA CONTR avoid-deprecation
P4 BETA CONTR avoid-deprecation
P5 BETA CONTR intellij-signal
P6 BETA CONTR avoid-deprecation
P7 BETA CONTR avoid-deprecation, accessible-alternative
P8 ATE EXP avoid-dep-alternative
P9 ATE CONTR refactor-maintainability
P10 ATE CONTR intellij-signal
P11 ATE CONTR avoid-deprecation
P12 ATE CONTR avoid-deprecation, intellij-signal

We give the following definitions to the tags:

51

Table 6.5: Resulting coding of post-survey answers to “Please explain what motivated you to do nothing
about these warnings.”

Group Coding of reason to do nothing

P13 BETA EXP experimental-setting
P14 BETA EXP other-warnings
P15 BETA CONTR warnings-have-no-effect
P16 ATE EXP no-warnings
P17 ATE EXP uncertainty-of-change-effects, experimental-setting

• avoid-deprecation: Participants mention that deprecated elements should be avoided.

• declaration-documentation: Participants mention being assisted by declaration documenta-
tion.

• intellij-signal: Participants mention the way in which IntelliJ highlights the annotated use
(strikethrough).

• accessible-alternative: Participants respond that the alternative to the annotated element was
easy to find and use.

• refactor-maintainability: Participants point out that the current solution is not maintainable
with no details.

• avoid-dep-alternative: Participants report a message related to the warning alternative annota-
tion’s warning text.

• experimental-setting: Participants indicate that their behavior was different because this is an
experimental setting.

• other-warnings: Participants talk about other warnings, but not any deprecated or otherwise
annotated warnings.

• warnings-have-no-effect: Participants report that warnings have no effect on program behav-
ior.

• uncertainty-of-change-effects: Participants indicate that they are unsure of the effects of
changing the annotated element.

6.2.7 Relation between definition observation and dissuasion

In this section, we observe the relation between a participant observing the definition of the annotated
element and avoiding use of the annotated element. Figure 6.10 shows the various groups, whether or not
the participant saw the definition of the annotation element, and finally, whether the element was used or
not in either the implementation task or the maintenance task.

52

1

1

1

1

11

2

3

3

3

4

4

4

45

5

7

ATE CONTR

BETA EXP

saw definition

ATE EXP

did not see definition

used annotation

BETA CONTR

avoided annotation

Figure 6.10: Flow diagram showing participant groups, definition click-though, and dissuasion

53

Chapter 7

Evaluation of RESPIRED

This deprecation study is the first usage of RESPIRED. In this chapter, we explore the utility the platform
offered in this user study compared to other methods, demonstrating the value of the tool. We take
multiple viewpoints on this work, examining the importance of this work for experiment participants and
for the researchers conducting the experiment. Finally, we describe where the tool can still be improved,
giving more avenues for future developments.

7.1 Value for Participants

One way the platform benefits our participants is in setup time for the experiment. As this user study
required a modified JDK to function properly, without the platform, we would have to provide installation
instructions and methods for many kinds of devices. In order to mirror the same feature set as RESPIRED,
we would also have to request that participants install and activate screen recording software, and
save and send results. Alternatively, we could offer participants a virtual machine, but installing the
emulation software is fraught. This setup time is immensely more involved and longer than this web-based
solution, and we believe that participants would be far less willing to participate if the setup had been so
complicated. They were able to use hardware that they were used to, making for a more comfortable
working environment.

Additionally, the participant could choose to work on the experiment when it was convenient for
them, benefiting results by allowing participants to cooperate when their mental state was at its best.

Furthermore, this environment more accurately represents the manner in which an actual developer
would work. Compared to using a simple survey form, participants are able to discover an API by making
use of auto-completion suggestions. We see our participants make use of these possibilities, which played
a important role in our user study. We also observe participants using “Go to declaration”, a feature that
switches the current code view to the declaration of the selected element, allowing participants to view
documentation and declaration details for external classes. Finally, we saw participants use features like
checking refactoring suggestions, using these refactoring suggestions, and the potential bugs list. We
believe that the platform allows developers to express themselves more naturally, leading to results that
are more closely correlated to the reality of developer behavior and thus more accurate developer studies.

7.2 Value for Researchers

Ensuring that the environment is equal for each participant requires careful attention, as an incorrect reset
can defeat the validity of a measurement and cause an otherwise eligible participant to become unsuitable
for the experiment. Use of the platform ensures that the environment we create behaves in the same
manner for each participant.

55

The installation of Jupyter Notebook [31] is useful as a starting point for data analysis. The scripts
that are included allow us to manually classify participant results and start visualizing data using
matplotlib [27], a popular plotting library for the Python programming language. This spares us
cumbersome work in marshalling and aggregating data.

Finally, it was useful that the experiment could be conducted in parallel, and without having to loan
out a computer. For this dissertation, it would not have been feasible to find different timeslots, reserve
rooms, prepare a computer, and request the participant be physically present.

7.3 Future Improvements

Though the platform showed a promising perspective into what remote survey developer environments
could be, there are still some points of improvement that should be worked on so that both researchers
and participants can get the most out the platform.

• We observe participants moving their cursor out of the experiment window, and no interactions
taking place for a small period of time. We speculate that participants use a different browser
window to consult the internet [42], using online resources to learn. This is inconvenient because
researchers cannot inspect what a participant is looking for and seeing as it occurs outside of the
experiment. A possible approach for this could be to offer the participant a way to consult the
internet within the experimental environment, allowing for it to be recorded just as the rest of the
interactions are.

• We observe some erratic user behavior in screen recordings. It seems that in some user setups,
a participant was unable to input Alt + Enter, a hotkey in IntelliJ IDEA that raises possible
intention actions and quick-fixes at the current text cursor location. Instead, we observed just a
press of Enter, the participant undoing the operation, another press of Enter, then another undo,
then the participant raising the same window using a mouse command instead of the keyboard
command. This leads us to believe that some setups remain in which modifier keys such as Control,
Alt, and, on Apple-based computers, Command, work incorrectly. These cases should be identified
and a update should be made to the platform that resolves these issues.

• The process of creating an experimental environment from start to finish is not simple. A researcher
needs knowledge of Docker [7] to test, run, and deploy environments. In order to unburden
researchers from needing the prior knowledge of the intricacies of Docker, work should be done
into creating extensive documentation that does not assume this knowledge.

• In this experiment, we use time spent in each task to compare similarity between participant groups.
However, this is not the same amount of time spent on the task, as participants can temporarily
pause the experiment by switching to a different window. This could lower the credibility of
time spent on a task as a metric. Future improvements could detect the active window on the
participant’s system, though this still does not account for physically leaving the computer.

56

Chapter 8

Discussion

This chapter focusses on answering the research questions, giving our interpretation of the data found in
previous chapters, and presenting the threats to validity that are related to our study.

8.1 Research Questions Revisited

In this section, we repeat the research questions posed in chapter 1. We give an answer to each of the
research questions based on our interpretation of the results found in previous chapters.

8.1.1 Deprecation Misuse Taxonomy

Research Question 1: What motivations are there behind developers misusing Java’s deprecation
mechanism?

In chapter 3, we found five different reasons API producers have for misusing the @Deprecated func-
tionality. These were categorized as UNSUPP, TEMP, BETA, INTERNAL, and DONTCALL. We
propose a grouping for these reasons, (1) relating to versioning aspects, and (2) relating to deficiencies in
the Java Programming Language. Figure 8.1 shows the proposed hierarchy for the taxonomy.

API versioning has to do with programming elements with an uncertain future: these could be removed
or changed in the future. An example of a language that groups these reasons together is Kotlin, which
provides its developers with @Experimental and @UseExperimental [28]. This allows a producer to

Deprecation misuse

API Versioning Language deficiency

UNSUPP INTERNALDONTCALLBETATEMP

Figure 8.1: Taxonomy of deprecation misuse reasons.

57

mark an API or parts of one as experimental. Using one of these APIs without @UseExperimental
causes a compiler warning to be dispatched upon a build.

Language deficiency refers to deprecation reasons used to work around an unmet need in the program-
ming language. In the case of UNSUPP, we see that API producers want the benefits of ImmutableList
being a sub-class of List, but without the requirement of having to specify mutable operations. Scala
provides scala.collection.AbstractSeq 1, which does not have these mutable operations, creating
a hierarchy in which these needs can be modelled. For DONTCALL, we observe API producers needing
a more direct way to communicate with API consumers. Finally, INTERNAL refers to a deficiency in
which current visibility modifiers do not suit developers’ needs. An example of a language providing a
new modifier is Kotlin, which provides the internal keyword2, which gives visibility within the same
module, but hides the element outside of the module.

We conclude that this taxonomy shows areas in which the Java ecosystem can yet improve. Java
Language designers should add new mechanisms allowing API producers to communicate peculiarities
concerning their API versioning. Furthermore, there are deficiencies in the language and standard library
that cause API producers to mark parts of their APIs as deprecated, as it is a convenient method to
message consumers of their APIs directly.

8.1.2 Deprecation Misuse Alternative

Research Question 2: What are the possible ways in which misuse of the deprecation mechanism can
be avoided or eliminated?

We describe various alternatives in chapter 4, elaborating upon the advantages in disadvantages of
each. We choose to create new annotations for each of the misuse reasons found in RQ1 and implement
them into our own build of a OpenJDK. This has multiple advantages above other methods: developers
can make use of our annotations in an idiomatic way, as annotations are already in use in software projects,
and integration in the JDK provides a stepping stone towards submitting a Java Enhancement Proposal. If
accepted, the work done in this dissertation could be shipped to Java developers and be used in software
projects as a drop-in replacement to current deprecation misuse. This helps API producers avoid misuse
of the deprecation mechanism by providing them with an alternative that more clearly communicates
certain messages to API consumers.

8.1.3 Deprecation Misuse Alternative Effectiveness

Research Question 3: How effective is the mechanism we offer compared to the existing deprecation
mechanism?

We conduct a controlled experiment with Java programmers, where the control group sees existing cases
of deprecation misuse in libraries currently in use by many developers, and the experimental group
encounters our proposed alternatives in its place.

With 25 participants in diverse settings, we test @Beta and @AlwaysThrowsException in an imple-
mentation task and maintenance task. Using these participants, we find no significant difference between
the control group and the experimental group when it comes to dissuading API consumers from its usage.
We suspect that the current manner of signalling in IntelliJ may not be effective enough compared to other
warning types, as other warnings were more often resolved. We also hypothesize that the strikethrough
manner of signalling is too intertwined with the concept of deprecation, as participants name deprecation

1https://www.scala-lang.org/api/2.12.2/scala/collection/AbstractSeq.html
2https://kotlinlang.org/docs/reference/visibility-modifiers.html

58

https://www.scala-lang.org/api/2.12.2/scala/collection/AbstractSeq.html
https://kotlinlang.org/docs/reference/visibility-modifiers.html

despite our alternative being used. Furthermore, we find that participants who observe the definition of an
annotated element are likely to also refactor this element, assisted by documentation located near the
definition.

8.2 Impact and Implications

This work is novel in exploring the reasons why the deprecation mechanism is misused in Java in detail.
For researchers, the taxonomy we give in this research furthers the understanding we have of such an
essential functionality in the Java programming language. We provide a valuable dataset for deprecation
usage across many open-source projects [14], giving researchers a corpus in which more research can
be done into deprecation. For industry practitioners, the knowledge in this body of work is important in
understanding the concept of IDE signalling, and the effectiveness of warning text. We hope that this
work push efforts towards improving the Java programming language and can reach both API producers
and API consumers, eliminating bugs and reducing costs of software maintenance.

Furthermore, we believe that the experimental environment presented in this dissertation will be
of enormous value to the field of software engineering. The ease in which very realistic experimental
settings can be offered is invaluable for developer user studies. We provide the work in this these for the
research community, anticipating an enthusiastic response from researchers.

8.3 Threats to Validity

We examine the factors within this body of work that reduce the generalizability of these results. In the
interest of future similar work, we give recommendations for research expanding on this work.

8.3.1 Misuse Categorization Construct Validity

In this section, we take a critical look at the method used to find and categorize deprecation misuse cases
in order to recognize where our study may be short-reaching and to list factors future work should be
recognizant of when using this thesis as a basis.

Dataset construction The selection method used does not accurately represent the entirety of the
Java ecosystem. The main limitation of using Sawant and Bacchelli [57]’s dataset for this purpose is that
it does not accurately represent code hosted on other platforms, using build tools other than Maven, or
private code used in industry. Furthermore, we bias our results by only taking the most depended on APIs,
skewing representation towards popular APIs. The results were reduced once more by including only
libraries that included source code archives.

Sample size Of the 306.529 total deprecated methods across all versions we use as a dataset, only
the introduction of the deprecation property was considered. The intuition is that a method would only
become deprecated with a reason of misuse, as opposed to being deprecated as the intended use, then
evolving towards a misuse. However, this intuition was not confirmed formally.

Sample bias Though we attempt to diversify the samples we take from the dataset, categorizing
763 out of 13,137 methods (5.8%) is by far not a total view of the actual data. Therefore, we make no
assertion that the categories of deprecation misuse we find are all possible reasons that exist. However, we
find no new misuses in Sawant et al. [60]’s work on deprecation reasons among 374 deprecated features
over 1,1100 documents.

External information Our approach uses only information provided in the source code archives
of these libraries. However, alternative methods of communication are often used in software projects,
in which more detailed reasoning could have been provided for deprecation that was not provided in
documentation surrounding the method. A more involved approach could investigate these communication
channels for more reasons.

59

Categorization validity The categories of deprecation misuse were created ad-hoc during analysis
of the methods and related documentation. This was done by a single person as opposed to a collaborative
approach, meaning that categories may be different in a replication study. In the future, a collaborative
approach should be used, using an exploratory method to create categories and a card sorting method to
ensure fair categorization of misuse cases.

8.3.2 User Study Validity

A user study can have many hidden pitfalls. As such, it is imperative to be critical of any limitations and
biases we may have introduced. In this section, we examine threats to validity in this experimental design.
As our experiment has a large human factor, we look at the discipline of psychology and human-computer
interaction to understand the limitations of our user study.

Environmental differences This experiment is conducted in a specific environment, using IntelliJ
IDEA as the IDE. It could be that a participant misses our alternative annotations because they are not
used to the way IntelliJ shows warnings. We attempt to control for this by asking a participant’s preferred
IDE, as a check to find out if a disparity exists between users familiar with IntelliJ or not. Though a large
majority of participants reported to prefer IntelliJ IDEA, it could be that the participants more familiar
with other IDEs skewed results.

Previous Knowledge of Participants In particular, we examine the task containing ImmutableList.
We ask participants to add items to this list, assuming previous knowledge related to the immutability
of this list. However, we see that a high number of participants still choose to call a mutating function
on this list. This could be due to missing previous knowledge by these participants: the concept of an
immutable list could be unclear, causing participants to believe that calling add on this list would work
as it would with any other list. In a follow-up study, we recommend using an API that participants find
easier to use, ensuring that results are not affected by this difference in knowledge.

Novelty effect The novelty effect [47, 48] is a cognitive bias describing the relation between the
novelty of a subject under test and a participant’s behavior. In a control study, this effect can cause
participants to have a stronger response in an experimental group, as the interest or unfamiliarity for the
novel entices the participants to act differently in the experimental setting. As novelty effects wear off
after repeated usage, a larger-scale user study should expose participants to the new annotations for a
longer time.

Generalizability of sampled population The population of participants is not representative of the
entirety of Java programmers. In particular, we find that a high number of participants were students.
Though studies show that the performance of students and industry professionals is comparable [56, 26],
we recognize that these results still might not be an accurate representation. As such, the results we find
in this study may not be true in general. Future research should repeat this experiment with a larger
audience, allowing for more certainty in the generalizability of the results.

Social desirability This bias has to do with participants giving socially desirable responses instead
of what would occur in a real environment [24]. This results in over-reporting responses that are desirable
and under-reporting responses that are less desirable. Grimm [24] suggest that survey methods that allow
a researcher to identify an individual are most susceptible to social desirability bias. As such, we attempt
to lower the need to perform desirably by taking the experiment anonymously.

Hawthorne effect Related to the social desirability bias, the Hawthorne effect [38, 39] refers to a
modification in behavior due to being aware of being observed. In this study, this could cause participants
to be more attentive for deprecation warnings than they otherwise would be in a realistic setting. We
attempt to lower this effect by removing a human factor: the participant conducts this experiment with
just their computer instead of the experiment being conducted under the supervision of a researcher.

Coding errors We use response coding to find reasons for a participant’s motivation to react or not
to react to the warnings they were shown. Codifying responses is an error-prone task [55], influenced
by a coder’s interpretations and internal biases. This coding was conducted by the author without a

60

cross-verification via a coding by a different researcher. We recognize this as a flaw to the given encoding,
and in a more optimal study, we advise the use of multiple coders to lower biases and differences in
possible codings.

61

Chapter 9

Conclusions and Future Work

This final chapter lists this dissertation’s contributions and gives possible avenues for future work.

9.1 Contributions

This thesis brings multiple contributions to the field of software engineering. In this section, we describe
the takeaways of each contribution and elaborate on the value of the findings.

9.1.1 Taxonomy of Deprecation Misuse

In this dissertation, we create a dataset of usages of deprecation and publish it as an artifact in the interest
of future deprecation research. Using this dataset, we present a taxonomy of deprecation misuse found
in open-source projects. We analyze a sample of 763 methods, discovering reasons why API producers
misuse deprecation features in open-source projects. From this analysis, we discovered the following five
deprecation misuse categories:

• UNSUPP: deprecation used to signal that this method will always throw an Unsupported-
OperationException, sometimes used when an implementation of an interface is incomplete;

• TEMP: deprecation used to indicate that this element is temporary; introduced with the intention
of being removed in the future as opposed to having value that is reduced over time;

• BETA: deprecation used to indicate that the details of a feature are not completely finalized and
are subject to change in the future;

• INTERNAL: deprecation used to warn API consumers that this feature should not be used because
it is meant to be exclusively for use by the API producer only;

• DONTCALL: deprecation used to warn consumers that this method should be never be called for
reasons other than always throwing an exception.

Using these reasons, we create two main categories of reasons why developers misuse the deprecation
functionality: to communicate peculiarities concerning API versioning and to work around programming
language deficiencies.

We believe that this taxonomy will guide future proposals in deprecation research, providing a
foundation for future research on this topic and giving Java language developers an insight into how the
deprecation feature is being used in real-world projects.

63

9.1.2 Deprecation Misuse Alternative Proposals

We present multiple options to provide API producers with meaningful ways to communicate aside from
using the @Deprecated augmented with documentation, and evaluate each method’s advantages and
disadvantages. We propose three ways of introducing an alternative: augmenting the JDK with additional
annotations, creating an external library with additional annotations, and introducing a Javadoc tag.

We chose to augment the JDK, keeping eventual introduction into the JDK in mind. Should the utility
be shown in the results of this dissertation, then this way allows easier integration into the JDK, as the
implementation of these annotations can be used without much modification. For each of the deprecation
misuse reasons we found, a new annotation was created that aims to communicate this misuse reason
more clearly.

Furthermore, a plugin was made in IntelliJ IDEA to support these annotations. This plugin analyzes
Java code that is open in the editor and warns the user when a code fragment makes use of a fragment
annotated with one of these annotations. A warning message is provided in the same way that is done for
deprecation, giving the user a clear understanding of what can be expected when using this code.

This work provides the foundations in introducing these annotations to developers in the JDK as well
as creating an IntelliJ IDEA plugin aimed to assist developers when encountering these annotations in
APIs they use.

9.1.3 Deprecation Misuse Alternative User Study

We present an experimental design for testing our implementation. As the annotation is meant to provide
developers with information, it is imperative to conduct a user study to evaluate the usefulness of the
new annotations compared to deprecation misuse. We create a controlled experiment which attempts to
measure any difference between user dissuasion in the control group, i.e. participants using fragments
with deprecation misuse.

Our results show that our participants displayed no significant difference in behavior between
encountering a misuse of deprecation versus an alternative that we propose. We hypothesize that current
methods of signaling deprecation are not visually indicative enough of the problem severity, especially
for method usages that will always throw an exception.

9.1.4 RESPIRED: Distributed Experiment Platform

We present a distributed experiment platform, meant for researchers planning to create a (control)
experiment in the field of software technology. We strongly feel that the field of software engineering will
benefit from this contribution, saving researchers from reinventing the wheel and providing them with a
powerful environment that can mirror a real-world development scenario. The platform makes use of
modern technology to allow participants to cooperate in a user study remotely using their own hardware,
removing hassle in organizing spaces and devices. Furthermore, this platform is outfitted with utilities
such as screen recording and data analysis libraries, making the prospect of conducting a controlled
experiment less daunting.

9.2 Future Work

This thesis is another brick in the construction of our understanding of deprecation and its intricate impact
on both API consumers and API producers. Though this work examines yet another facet of deprecation,
namely that of misuse, the topic could benefit from following works and future research. In this section,
we give possible suggestions for approaches to be used in future work.

Verification and replication In this study, we have only a limited pool of participants and open-
source projects that we could use for categorisation and for observation. As with many user-studies, the

64

experiment should be repeated on industry practitioners to verify similar patterns in different contexts.
Furthermore, we should consider the possibility that industry software projects display other types of
misuse undiscovered by this study. Furthermore, we use a sampling strategy to analyze deprecated
methods. It could be possible that

Misuse alternative alternatives In section 4.1, we describe alternative implementations that we
could offer consumers. Future research could investigate the effects of these other suggestions or propose
new alternatives, testing these according to a similar method. In particular, a generic warning mechanism
could be promising, allowing an API producer to specify their own reason why the warning is being
placed instead of having to pick from a preselect group of reasons.

JCP Should the results of this dissertation prove convincing enough for the JCP Executive Committee,
work should be done to introduce these annotations into the Java Programming language. Though this is
an involved process, API producers would be able to replace their current and future misuse cases with
the officially supported mechanism.

9.3 Conclusions

In this dissertation, we explore the concept of API deprecation misuse, categorizing the reasons why API
producers introduce this in their libraries. We find five different reasons why this is done and group them
under API versioning peculiarities and overcoming Java language deficiencies. Furthermore, we create
an alternative for this deprecation misuse in the form of five annotations introduced into the JDK. We
introduce IDE support in IntelliJ IDEA, creating a warning mechanism similar to the current deprecation
mechanism, but with a different warning message. We create an experiment platform, aimed to improve
the state-of-the-art of software engineering experiments, and use it to test our proposed alternative
against existing misusages of deprecation. We find no significant difference between the implementation
behaviors or maintenance behaviors between the two groups, and hypothesize that developers do not
respond strongly to current deprecation signalling in IntelliJ IDEA.

65

Bibliography

[1] (ann) Add @Unsupported annotation. URL https://bugs.openjdk.java.net/browse/JDK
-6447051.

[2] List of Java Inspections - Help — IntelliJ IDEA, . URL https://www.jetbrains.com/help/i
dea/list-of-java-inspections.html. Last visited 2019-10-28.

[3] IntelliJ Platform SDK, . URL http://www.jetbrains.org/intellij/sdk/docs/.

[4] JVM Ecosystem Report 2018. URL https://res.cloudinary.com/snyk/image/upload/v
1539774333/blog/jvm-ecosystem-report-2018.pdf.

[5] StackOverflow: Android BitmapDrawable Constructor Undefined. URL https://stackoverflo
w.com/questions/4904660/android-bitmapdrawable-constructor-undefined.

[6] CVE - Common Vulnerabilities and Exploits. URL https://cve.mitre.org/.

[7] Enterprise Container Platform — Docker. URL https://www.docker.com/.

[8] Web Archive: JDK 1.0.2 api documentation. URL http://web.archive.org/web/
19990202194011/http://java.sun.com/products/jdk/1.0.2/api/.

[9] JEP 277: Enhanced Deprecation. URL http://openjdk.java.net/jeps/277.

[10] StackOverflow. URL https://stackoverflow.com/.

[11] JEP 1: JDK Enhancement-Proposal & Roadmap Process, 2019. URL https://openjdk.java.n
et/jeps/1.

[12] Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane McIntosh. Do software
engineers use autocompletion features differently than other developers? In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), pages 86–89. IEEE, 2018.

[13] Victor R Basili, Lionel C Briand, and Walcélio L Melo. How reuse influences productivity in
object-oriented systems. Communications of the ACM, 39(10):104–116, 1996.

[14] Dereck J Bridie, Anand Sawant, and Alberto Bacchelli. A sample of all usages of Java’s Deprecation
functionality found in open-source Maven Central projects with at least 2000 dependents. 2019. doi:
10.4121/uuid:ea6b1511-da36-4d16-868e-401b461eafb4. URL http://doi.org/10.4121/uuid:
ea6b1511-da36-4d16-868e-401b461eafb4.

67

https://bugs.openjdk.java.net/browse/JDK-6447051
https://bugs.openjdk.java.net/browse/JDK-6447051
https://www.jetbrains.com/help/idea/list-of-java-inspections.html
https://www.jetbrains.com/help/idea/list-of-java-inspections.html
http://www.jetbrains.org/intellij/sdk/docs/
https://res.cloudinary.com/snyk/image/upload/v1539774333/blog/jvm-ecosystem-report-2018.pdf
https://res.cloudinary.com/snyk/image/upload/v1539774333/blog/jvm-ecosystem-report-2018.pdf
https://stackoverflow.com/questions/4904660/android-bitmapdrawable-constructor-undefined
https://stackoverflow.com/questions/4904660/android-bitmapdrawable-constructor-undefined
https://cve.mitre.org/
https://www.docker.com/
http://web.archive.org/web/19990202194011/http://java.sun.com/products/jdk/1.0.2/api/
http://web.archive.org/web/19990202194011/http://java.sun.com/products/jdk/1.0.2/api/
http://openjdk.java.net/jeps/277
https://stackoverflow.com/
https://openjdk.java.net/jeps/1
https://openjdk.java.net/jeps/1
http://doi.org/10.4121/uuid:ea6b1511-da36-4d16-868e-401b461eafb4
http://doi.org/10.4121/uuid:ea6b1511-da36-4d16-868e-401b461eafb4

[15] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do developers deprecate
APIs with replacement messages? A large-scale analysis on Java systems. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 360–369. IEEE, 2016.

[16] Raymond PL Buse and Westley R Weimer. A metric for software readability. In Proceedings of the
2008 international symposium on Software testing and analysis, pages 121–130. ACM, 2008.

[17] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. Glacier:
Transitive class immutability for Java. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 496–506. IEEE, 2017.

[18] Theo Combe, Antony Martin, and Roberto Di Pietro. To Docker or Not to Docker: A Security
Perspective. IEEE Cloud Computing, 3(5):54–62, 2016.

[19] Danny Coward. JSR 175: A Metadata Facility for the JavaTM Programming Language. Java
Community Process. https://www. jcp. org/en/jsr/detail, pages 3–23, 2004.

[20] Danny Dig and Ralph Johnson. The role of refactorings in API evolution. In 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages 389–398. IEEE, 2005.

[21] PHP Documentation. Error Handling Predefined Constants. URL https://www.php.net/manual
/en/errorfunc.constants.php.

[22] Eclipse Foundation. Java Compile Errors/Warnings Preferences. URL https://help.eclipse.o
rg/2019-09/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fprefer
ences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm&cp=1_4_4_0_3_1.

[23] John G Geer. Do open-ended questions measure salient issues? Public Opinion Quarterly, 55(3):
360–370, 1991.

[24] Pamela Grimm. Social desirability bias. Wiley international encyclopedia of marketing, 2010.

[25] Michael Hoerger. Participant dropout as a function of survey length in internet-mediated univer-
sity studies: Implications for study design and voluntary participation in psychological research.
Cyberpsychology, behavior, and social networking, 13(6):697–700, 2010.

[26] Martin Höst, Björn Regnell, and Claes Wohlin. Using students as subjectsa comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engineering, 5(3):
201–214, 2000.

[27] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):
90, 2007.

[28] JetBrains s.r.o. Kotlin experimental api markers. URL https://kotlinlang.org/docs/refere
nce/experimental.html.

[29] Ralph E Johnson and Brian Foote. Designing reusable classes. Journal of object-oriented program-
ming, 1(2):22–35, 1988.

[30] Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for declarative
specification of languages and IDEs. ACM sigplan notices, 45(10):444–463, 2010.

68

https://www.php.net/manual/en/errorfunc.constants.php
https://www.php.net/manual/en/errorfunc.constants.php
https://help.eclipse.org/2019-09/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm&cp=1_4_4_0_3_1
https://help.eclipse.org/2019-09/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm&cp=1_4_4_0_3_1
https://help.eclipse.org/2019-09/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fcompiler%2Fref-preferences-errors-warnings.htm&cp=1_4_4_0_3_1
https://kotlinlang.org/docs/reference/experimental.html
https://kotlinlang.org/docs/reference/experimental.html

[31] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational workflows. In ELPUB, pages 87–90,
2016.

[32] Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
68(9):1060–1076, 1980.

[33] Mark A Lemley and David W O’Brien. Encouraging software reuse. Stanford Law Review, pages
255–304, 1997.

[34] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Denys
Poshyvanyk. How do api changes trigger stack overflow discussions? a study on the android sdk. In
proceedings of the 22nd International Conference on Program Comprehension, pages 83–94. ACM,
2014.

[35] Richard C Lupton and Julian M Allwood. Hybrid Sankey diagrams: Visual analysis of multidimen-
sional data for understanding resource use. Resources, Conservation and Recycling, 124:141–151,
2017.

[36] Antony Martin, Simone Raponi, Théo Combe, and Roberto Di Pietro. Docker ecosystem–
vulnerability analysis. Computer Communications, 122:30–43, 2018.

[37] Robert C Martin. Agile software development: principles, patterns, and practices. Prentice Hall,
2002.

[38] Elton Mayo. The human problems of an industrial civilization. Routledge, 2004.

[39] Rob McCarney, James Warner, Steve Iliffe, Robbert Van Haselen, Mark Griffin, and Peter Fisher.
The Hawthorne Effect: a randomised, controlled trial. BMC medical research methodology, 7(1):30,
2007.

[40] Wes McKinney. Data structures for statistical computing in python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56, 2010.

[41] Michael C Medlock, Dennis Wixon, Mark Terrano, Ramon Romero, and Bill Fulton. Using the RITE
method to improve products: A definition and a case study. Usability Professionals Association, 51,
2002.

[42] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What makes a good code
example?: A study of programming Q&A in StackOverflow. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 25–34. IEEE, 2012.

[43] Oracle. Java Language Specification 9.6.4.6. Deprecated, . URL https://docs.oracle.com/ja
vase/specs/jls/se13/html/jls-9.html#jls-9.6.4.6.

[44] Oracle. Enhanced Deprecation, . URL https://docs.oracle.com/en/java/javase/13/core
/enhanced-deprecation1.html.

[45] Oracle. How and When To Deprecate APIs, . URL https://docs.oracle.com/javase/7/docs
/technotes/guides/javadoc/deprecation/deprecation.html.

[46] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier.
Spoon: A library for implementing analyses and transformations of java source code. Software:
Practice and Experience, 46:1155–1179, 2015. doi: 10.1002/spe.2346. URL https://hal.arch
ives-ouvertes.fr/hal-01078532/document.

69

https://docs.oracle.com/javase/specs/jls/se13/html/jls-9.html#jls-9.6.4.6
https://docs.oracle.com/javase/specs/jls/se13/html/jls-9.html#jls-9.6.4.6
https://docs.oracle.com/en/java/javase/13/core/enhanced-deprecation1.html
https://docs.oracle.com/en/java/javase/13/core/enhanced-deprecation1.html
https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document

[47] John Pisapia, Jeanne Schlesinger, and Amanda Parks. Learning technologies in the classroom:
Review of the literature. 1993.

[48] Jordan Poppenk, Stefan Köhler, and Morris Moscovitch. Revisiting the novelty effect: When
familiarity, not novelty, enhances memory. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36(5):1321, 2010.

[49] Roel Popping. Analyzing open-ended questions by means of text analysis procedures. Bulletin of
Sociological Methodology/Bulletin de Méthodologie Sociologique, 128(1):23–39, 2015.

[50] Dong Qiu, Bixin Li, and Hareton Leung. Understanding the API usage in Java. Information and
software technology, 73:81–100, 2016.

[51] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Semantic versioning versus breaking
changes: A study of the maven repository. In 2014 IEEE 14th International Working Conference on
Source Code Analysis and Manipulation, pages 215–224. IEEE, 2014.

[52] Ulf-Dietrich Reips. Internet experiments: Methods, guidelines, metadata. In Human Vision and
Electronic Imaging XIV, volume 7240, page 724008. International Society for Optics and Photonics,
2009.

[53] Romain Robbes, Mircea Lungu, and David Röthlisberger. How Do Developers React to API
Deprecation?: The Case of a Smalltalk Ecosystem. In FSE’12, 2012. ISBN 978-1-4503-1614-9.
doi: 10.1145/2393596.2393662.

[54] Martin P Robillard and Robert Deline. A field study of API learning obstacles. Empirical Software
Engineering, 16(6):703–732, 2011.

[55] Julius A Roth. Coding responses to open-ended questions. Sociological Methodology, 3:60–78,
1971.

[56] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students representatives of professionals
in software engineering experiments? In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 666–676. IEEE, 2015.

[57] Anand Ashok Sawant and Alberto Bacchelli. A dataset for API usage. In Proceedings of the 12th
Working Conference on Mining Software Repositories, pages 506–509. IEEE Press, 2015.

[58] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to deprecation of
25,357 clients of 4+1 popular Java APIs. In Proceedings - 2016 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2016, 2017. ISBN 9781509038060. doi: 10.1109/IC
SME.2016.64.

[59] Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto Bacchelli. Understanding
developers’ needs on deprecation as a language feature. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 561–571. IEEE, 2018.

[60] Anand Ashok Sawant, Guangzhe Huang, Gabriel Vilen, Stefan Stojkovski, and Alberto Bacchelli.
Why are features deprecated? An investigation into the motivation behind deprecation. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 13–24.
IEEE, 2018.

[61] Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and Patrick Daleiden. An
empirical study on the impact of C++ lambdas and programmer experience. In Proceedings of the
38th International Conference on Software Engineering, pages 760–771. ACM, 2016.

70

[62] Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius Lukauskas, David C
Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven, Julian
de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric
Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair Miles, Yoav Ram, Tal Yarkoni,
Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, Chris Fonnesbeck, Antony Lee,
and Adel Qalieh. mwaskom/seaborn: v0.8.1 (september 2017), September 2017. URL https:
//doi.org/10.5281/zenodo.883859.

[63] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics of the JavaScript
package ecosystem. In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pages 351–361. IEEE, 2016.

[64] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Historical and impact analysis
of API breaking changes: A large-scale study. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 138–147. IEEE, 2017.

[65] Jing Zhou and Robert J Walker. API deprecation: a retrospective analysis and detection method
for code examples on the web. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 266–277. ACM, 2016.

71

https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859

Appendix A

Code fragments

Listing A.1: File to be maintained by the user
1 import org.apache.commons.io.FileUtils;
2
3 import java.io.*;
4 import java.util.ArrayList;
5 import java.util.LinkedList;
6 import java.util.Iterator;
7 import java.util.List;
8
9 class GradeItem implements Serializable {
10 private String courseCode;
11 private double mark;
12 private int studentID;
13
14 public GradeItem(String courseCode , double mark , int studentID) {
15 this.courseCode = courseCode;
16 this.mark = mark;
17 this.studentID = studentID;
18 }
19
20 public String getCourseCode() {
21 return courseCode;
22 }
23
24 public void setCourseCode(String courseCode) {
25 this.courseCode = courseCode;
26 }
27
28 public double getMark() {
29 return mark;
30 }
31
32 public void setMark(double mark) {
33 this.mark = mark;
34 }
35
36 public int getStudentID() {
37 return studentID;
38 }
39

73

40 public void setStudentID(int studentID) {
41 this.studentID = studentID;
42 }
43
44 @Override
45 public String toString() {
46 return "GradeItem{" +
47 "courseCode=’" + courseCode + ’\’’ +
48 ", mark=" + mark +
49 ", studentID=" + studentID +
50 ’}’;
51 }
52 }
53
54
55 public class GradeAdministration {
56 List <GradeItem > grades;
57 public GradeAdministration(List <GradeItem > grades) {
58 this.grades = grades;
59 }
60
61 /**
62 * Calculates a grade average for a student identified by an ID.
63 * This method should return null if there is no student by this ID.
64 */
65 public Double calculateAverageGradeForStudent(int studentId) {
66 List <GradeItem > studentItems = new ArrayList <>();
67 for (GradeItem item : grades) {
68 if (item.getStudentID() == studentId) {
69 studentItems.add(item);
70 }
71 }
72 if (studentItems.size() == 0) { return null; }
73 else {
74 double sum = 0.0;
75 for (GradeItem item : studentItems) {
76 sum += (double) item.getMark();
77 }
78 return sum / ((double) studentItems.size());
79 }
80 }
81
82 /**
83 * Calculates a grade average for a course identified by a course code.
84 * The method should return null if there is no course code by this ID.
85 */
86 public Double calculateAverageGradeForCourse(String courseCode) {
87 List <GradeItem > courseItems = new ArrayList <>();
88 for (GradeItem item : grades) {
89 if (item.getCourseCode().equals(courseCode)) {
90 courseItems.add(item);
91 }
92 }
93
94 if (courseItems.size() == 0) { return null; }
95

74

96 double sum = 0.0;
97 for (GradeItem item : courseItems) {
98 sum += item.getMark();
99 }

100 return sum / ((double) courseItems.size());
101 }
102
103 public int getUniqueCoursesTotal() {
104 List <String > foundCourseCodes = new ArrayList <>();
105 for (GradeItem item : grades) {
106 if (!foundCourseCodes.contains(item.getCourseCode())) {
107 foundCourseCodes.add(item.getCourseCode());
108 }
109 }
110 return foundCourseCodes.size();
111 }
112
113 public List <Integer > getAllStudentsInCourse(String courseCode) {
114 List <GradeItem > courseItems = new ArrayList <>();
115 for (GradeItem item : grades) {
116 if (item.getCourseCode().equals(courseCode)) {
117 courseItems.add(item);
118 }
119 }
120
121 if (courseItems.size() == 0) return null;
122
123 List <Integer > students = new ArrayList <>();
124 for (GradeItem item : courseItems) {
125 if (!students.contains(item.getStudentID())) {
126 students.add(item.getStudentID());
127 }
128 }
129
130 return students;
131 }
132
133 /**
134 * Writes all grades in this administration to a file.
135 */
136 public void writeToFile(File file) {
137 try {
138 StringBuilder builder = new StringBuilder();
139 builder.append("courseCode\tmark\tstudentID\n");
140 Iterator <GradeItem > iterator = grades.iterator();
141 while (iterator.hasNext()) {
142 GradeItem item = iterator.next();
143 builder.append(item.getCourseCode() + "\t" + item.getMark()

+ "\t" + item.getStudentID() + "\n");
144 }
145 FileUtils.writeStringToFile(file , builder.toString());
146 } catch (IOException e) {
147 System.out.println(e);
148 } catch (RuntimeException e) {
149 System.out.println(e);
150 }

75

151 }
152
153 /**
154 * Adds an item to this grade administration.
155 * This method should make sure that this item does not have a null

course code.
156 */
157 public void addGrade(GradeItem item) {
158 if (item.getCourseCode() != null) {
159 grades.add(item);
160 }
161 };
162
163 public boolean hasGradeFor(String courseCode , int studentID) {
164 boolean foundGradeFor = false;
165 for (GradeItem grade : grades) {
166 if (grade.getCourseCode().equals(courseCode) && studentID ==

grade.getStudentID()) {
167 foundGradeFor = true;;
168 }
169 }
170 return foundGradeFor == true;
171 }
172 }

76

