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“Floods are an act of God
but flood damages are acts of Man”

— Gilbert White, 1945





A B S T R A C T

Humans have always populated in the vicinity of river systems, where the
supply of water, nourishment and transportation is obtained from the river.
However, inundation is a re-occurring problem and impact of floods are ex-
pected to increase due to climate change. Accurate flood forecasting and
early warning is critical for disaster risk management. Tackling the problem
of forecasting, in data scarce environments, has become increasingly impor-
tant due to the changing climate. Remotely sensed river monitoring can be
an effective, systematic and time-efficient technique to monitor and forecast
extreme floods. Conventional flood forecasting systems require extensive
data inputs and software to model floods. Moreover, most models rely on
discharge data, which is not always available and is less accurate in a over-
bank flow situations. There is a need for an alternative method which de-
tects riverine inundation, using open-source data and software. This thesis
aims to research the use of passive microwave radiometry for the detection,
classification and forecasting of inundation.

Brightness temperatures are extracted from the passive microwave radiom-
etry and are converted in a discharge estimator: the C/M-ratio. Surface
water has a low emission, thus let the C/M-ratio increase as the surface
water percentage in the pixel increases. Sharp increases are observed for
over-bank flow conditions. The research combines the identification of in-
undation with a probability analysis via a quantile regressional fit. Flood
forecasts can be obtained from an upstream catchment area. In the most
ideal situation with a delay of 2,5 hours. This allows for probabilistic early
warning decision making, with a lead time up to 14 days. (location specific)
Strong Spearmans correlation coefficients between the discharge and C/M-
ratio are found (> 0.883). Allowing the model to forecast floods as gauged
discharge records do. The model used has a comparable skill to the local
GloFas forecast. This research investigated the impact the remote sensed
technology could have on the flood forecast, response and warning system.
An added model to an Early Action Protocol has the ability to lower uncer-
tainty within decision making and enlarges the intervention window. The
advice is to use such a model in combination with other forecasting models
such as GloFas.

The challenge using this technology is the integration of hydrological com-
plexity. The method allows for automated, global-covered creation of grid
based flood forecasts, independent to cloud coverage. Creating low spatial
resolution flood forecasts combined with a probability bound in hours after
satellite detection. The method has a high potential for data scarce flood-
prone river basins around the world. The future for this technology lies in
the global daily availability of the data. With satellite sensors improving,
spatial resolution is expected to increase. Allowing for even better flood
forecasting ability.
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1 I N T R O D U C T I O N

Within the Southern Africa Development Community, Zambia is one of the
countries most severely impacted by extreme weather conditions. In fact,
it is estimated that 75% of all disasters in Zambia are induced by weather
conditions (United Nations, 2016). Floods are the natural hazards with the
biggest impact world wide in terms of frequency, geo-spatial distribution
and economic impact (United Nations, ISDR, 2017). While both developed
and undeveloped countries suffer from the higher frequency of natural dis-
asters (mostly flooding); The low income and undeveloped countries, like
Zambia, are hit harder due to the ”protection gap” that occurs (UNFCCC).
The flood risk of a country is determined by a combination of hazard, expo-
sure and vulnerability. The risk is expected to increase worldwide because
of the increase in flood hazard due to climate change. Exposure effects can
increase due to the demographic growth. Vulnerability of a specific country
can decrease the flood risk, even if the hazard and exposure are increasing.
Vulnerability levels are generally high in low-income countries. Therefor is
of utmost importance to lower the vulnerability of low income and develop-
ing countries with the effect of a lower flood risk.

1.1 flood risk in zambia

The wet season in Zambia is an annual occurring phenomena. Due to the wet
season, an annual frequency in flash and riverine flooding occurs. Effects of
the flooding are mostly seen in the displacement and fatalities of the pop-
ulation, loss of agriculture and destruction of infrastructure. Floods in the
2008-2009 season led to one of the most severe impacts, that displaced over
102,000 households, with 31 related deaths. Damaging livelihoods and caus-
ing significant threats of waterborne disease in the Western, North – Western
provinces (ZRCS, 2019). Floods have a big impact on the agricultural output
of the country. In January 2020, United Nations Office for Coordination of
Humanitarian Affairs (OCHA) estimated that the Gwembe District recorded a
98% reduction in the maize production, compared to 2018 and the five-year
average (OCHA, 2020). The Zambezi is the biggest river in Zambia, cover-
ing over 1,390,000 km2 in Zambia. The Zambezi is one of the largest rivers
is Africa. Flood indicative data is scarce due to the limited capacity of data
and modelling capacity in developing countries (Schumann et al., 2013).

1
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1.2 disaster risk management

Disaster Risk Management (DRM) is a program set up to increase the coping
capacity of the ones affected by a disaster. It entails the process of imple-
menting the disaster management policy to reduce the risk of a flood. To
anticipate to a flood, a well working Early Warning System (EWS) should be
in place. An EWS has the goal to give individuals and communities at risk
more time to act and reduces the possibility of personal injury, loss of life
and damage to property and environment (Teule, 2019). A complete and
effective early action system consists of four main pillars: Risk knowledge,
Monitoring and warning service, Dissemination and communication and
Response capability (Gaillard and Mercer, 2013). There are multiple compo-
nents in an EWS. First of all, the data collection & monitoring. Continuing,
forecasting with the use of hydrological models or local knowledge. Fore-
casting can be done on different spatial scales and with different lead times.
Lastly, there is the decision making, early warning and response. The EWS is
best integrated if it enables a multiple-actor and bottom-up approach to the
system. Complete and effective early warning systems entail a great inter-
connectivity between the four pillars (United Nations, ISDR, 2017). EWS’s
can be implemented on several levels. Global products like Global Flood
Awareness System (GloFas) can be used to understand and anticipate on a
global scale to disasters. On national scale, products like a linked gauging
network or weather linked flood warning systems can be used to obtain
more detailed information about a disaster and prevailing flood. A bottom-
up example approach is community based disaster risk reduction, support-
ing and implementing the participation of vulnerable communities in Early
Warning. Community based early warning empowers communities with lo-
cally developed measures and warning systems to increase coping capacity.
The difference between the levels of early warning is large. The attempt of
integration of several levels of early warning systems strategies have not re-
sulted in useful products (Šakić Trogrlić et al., 2019). An EWS should lead to
a predefined set of early actions. The main problem with the dissemination
of early actions is the complex decision making process and the lack of fund-
ing for the appropriate action (Šakić Trogrlić and van den Homberg, 2018).
Forecast Based Financing (FBF) is a method developed by the International
Federation of Red Cross (IFRC) to introduce and place humanitarian fund-
ing in the preparation phase to a disaster. The FBF program allows for risk
reduction, enhance preparedness and effective DRM and disaster response.

1.3 satellite imagery for flood protection

Satellite imagery is a widely used tool in our society. Daily imagery with a
full world coverage is available in all different kind of forms and uses. From
the assesssment of multi-annual changes of ice coverage on Antarctica to
the mapping of deforestation rates in the Amazon, satellite imagery has an
enormous power. Remote sensed data is also used in the hydrological sector,
for example in the effective measurements of the surface water quantity or
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water quality analysis via color spectral insights.

General uses of riverine flood prediction are based on the numerical model
type and input data. Basic models run on a numerical ’bucket’ model with
few input parameters, mostly based on periodically obtained rainfall data
and a soil moisture-relation model, like the GloFas model used in Zambia
(Alaoui, 2017). Models differ in their complexity. There is a trade-off be-
tween the increased spatio-temporal information and the predictive power
that is generated. Flood prediction requires quantitative knowledge about
infiltration, run-off dynamics and precipitation levels, which are commonly
collected at a local or point scale. Scaling this information to a catchment
scale comes with a loss of complexity that occurs at catchment scale (Alaoui,
2017).

Current flood warning products used in Zambia are solely based on me-
teorological data, thus precipitation data, combined with a hydrological and
hydraulic model. The latter is used in a global flood model: GloFas. The
accuracy of meteorological forecasts varies with lead time, spatial scale of
the region of interest and the type of weather being forecasted. Rainfall
forecasts can be used to extend the lead time for flood forecasts. However,
because forecasts of rainfall for specific locations and timing are not fully
accurate, flood forecasts based on rainfall forecasts are often subject to sig-
nificant uncertainty. Forecast systems such as GloFas are able to give a good
indication of extreme discharge peaks in time (ZRCS, 2019). However, their
predictive value differs in location, depending on the fit of the hydrological
model and the local setting. Insights in, for example, Malawi have shown
that the predictive behaviour of GloFas is not sufficient to obtain flood fore-
casts (Šakić Trogrlić and van den Homberg, 2018).

The question arises, what if this satellite imagery could be used to obtain
daily imagery from each catchment worldwide? Optical remote sensing is
limited by the effects of cloud cover. As the wavelengths in the optical spec-
trum are reflected in haze and cloud cover, the predictive capacity of optical
imagery is limited.

1.4 passive microwave remote sensing for inun-
dation detection

Passive Microwave Remote Sensing (PMRS) is focused on the passive mi-
crowave spectrum, which has the advantage of not being blocked by cloud
cover. Detecting inundation by means of PMRS has been researched in multi-
ple projects (Brakenridge et al., 2007), (De Groeve and Riva) and (de Groeve,
2010). In the work of Brakenridge et al. the use of the C/M ratio is intro-
duced. The method uses Ka-band radiometry (36,5 GHz, AMSR-E, Horizon-
tally polarized) to obtain the brightness temperature at a given location. The
Brightness temperature is converted to the C/M ratio using a correlated cal-
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ibration cell to account for diurnal and seasonal fluctuations.

The first result of this research indicates the contrast in brightness temper-
atures of neighbouring cells (within and outside a floodplain respectively).
The results show the ability to obtain inundation in specific areas. Current
limitations are seen in the lack of accuracy / resolution, timing and location
dependency. The C/M ratio can be related to actual discharge peaks. How-
ever, one should keep in mind that the C/M ratio is not able to distinguish
between inundation and actual discharge levels. The C/M ratio has not been
considered as a predictive flood forecast method yet.

1.5 research objective

The ambition of this thesis is to show the opportunities of satellite imagery
in flood forecasting on catchment scale. This is done by applying the latter
to a use-case as compared to the local possibilities to currently used flood
forecasting products: GloFas.

The main objective is to establish and benchmark a forecasting method
solely based on upstream PMRS observations for a target area of interest for
the Zambian Red Cross Society (ZRCS). By benchmarking it against the cur-
rent used product, the performance is tested. It can be decided if PMRS could
provide additional probabilistic information about flood forecasts next to the
current product GloFas. PMRS has been used to monitor floods, but will be
used to forecast floods in a probabilistic manner in this thesis. The end-
product will consist of a two-fold. On one side, the possibility for integra-
tion into a new flood forecasting model is assesssed. On the other side, the
research is set into perspective by investigating the lead time winning capac-
ity this technology can provide. There are a number of nitpicking research
questions that have to be solved in order to find out if this objective can be
reached or not.

Main Research Questions:

” Can Satellite Passive Microwave Remote Sensing be used as a trigger for
inundation Early Warning System in the Zambezi River, Zambia?”

• subquestion 1: Can Passive Microwave Remote Sensing be used to
identify inundations?

Although proven in previous research that there is identification ca-
pacity, the physical workings of a PMRS model should be tested lo-
cally. The correct local areas of interest should be identified and well
understood before proceeding to the actual forecasting model.

• subquestion 2: To what extent can multi-annual trends in PMRS be
related to discharge records?

Multi-annual trends are of importance to test the model and obtain the
extreme value analysis of the C/M ratio. The long time-series can be
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used to obtain a good understanding of threshold setting using this
new method of assesssing flooding.

• subquestion 3: Could the timing of a flood event be obtained from
PMRS?

In flood forecasting, timing is the most important factor when forecast-
ing inundation levels, hence the PMRS model should be creating valid
and correct timing outputs. For this, the model is checked to local
timing/impact data that verifies how the performance is.

• subquestion 4: How does a PMRS based model perform in compari-
son with GloFas and what skill can a forecast combination with PMRS
offer?

The method is tested in comparison to the currently used product. Its
performance capacities compared to GloFas are of importance to rate
the actual value of the product with the current usage.

• ”Follow the Forecast”
subquestion 1: How can the lead time of (a combination of) forecasting
systems be optimized to enable a maximum implementation time for
the actions in an EAP?

In order to set the technology assessment into perspective to the cur-
rent intervention window of the Early Action Protocol (EAP), an anal-
ysis of the timing components in the EAP is executed. The goal is to
enlarge the intervention window by either increasing the forecasted
lead time with a given uncertainty or optimize the efficiency of the
steps within the EAP. Insights into the decision making process are to
be obtained.

1.6 partners

This thesis entails the finalization of the master Water Management with a
specialization on Hydrology at the Delft University of Technology. The the-
sis is written during the graduation internship at 510, an initiative of the
Netherlands Red Cross. The research project is part of the integration of the
Forecast-based Financing plan for the ZRCS. The project falls within the FBF,
Response Preparedness Phase 2 (RP2), Prinses Margriet Fonds (PMF) project,
where the aim is to implement an effective EAP for the ZRCS. Within this
project, a consortium of partners is working together to realise this EAP, nam-
ing a few key partners: Government of Republic of Zambia (GRZ), Water Re-
sources Management Authority (WARMA), Disaster Management Mitigation
Unit (DMMU), ZRCS. The project builds on the project ZAMSECUR, in which
new methods to monitor and model the Zambezi river are investigated.
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1.7 reader guide

For the reader whom is interested or less acquainted with (passive microwave)
remote sensing, flood hydrology or disaster management in particular, Chap-
ter 2 provides the technical background supporting this work. In Chapter 3,
information about Zambia, the Zambezi river system and the Barotse flood-
plain are collected. The area of interest is displayed and the reader is in-
formed about the important environmental and hydrological characteristics
of the area. Continuing in Chapter 4, where the approach of the research
is explained in the Methodology. Chapter 5 contains the main outcomes of
the research, backed up by several Appendices to support in visual repre-
sentation. The results are evaluated and reflected on in Chapter 6. Finally,
the conclusion and recommendations for future research are addressed in
Chapter 7.



2 T H E O R E T I C A L B A C KG R O U N D

This section defines the theoretical background of this thesis. It touches
upon the different theoretical backgrounds used. First, introducing some ba-
sic concepts of the Disaster Risk Management Cycle. Secondly, introducing
the basics of Remote Sensing, the backbone of the C/M ratio (Brakenridge
et al., 2007). Furthermore, it provides an insight into early action systems
for flood forecasting.

2.1 disaster risk management cycle

The DRM cycle consists of four main stages. Reduction, Readiness, Response
and Recovery. The phases can be split into two time frames. The Reduction
and Readiness are in the pre-disaster stage. Response and recovery both
fit in the post-disaster stage. The pre-disaster stage is focused on activities
and measures that ensure an effective coping capacity and response. The
post-disaster phase is include rescue, first aid and evacuation practices, but
also look at the recovery in the aftermath of a natural disaster (ADPC, 2005).
Remote Sensing (RS) data is a viable source of information to decision mak-
ers, as it can help to understand the spatial phenomena of the disaster (Joyce
et al., 2009). Some concrete examples of the implementation of the DRM cycle
focused on floods are:

Reduction phase: Construction of flood control reservoirs or the building of
dikes to protect the vulnerable communities.
Readiness: Construction of a meteorological system that can give accurate
meteorological data. Creation of an Early Action System in which includes
all different aspects of Readiness.
Response: Rescue, first aid and construction of temporal shelters.
Recovery: rehabilitation planning, disaster resistant reconstruction. Fund-
ing and resource support for rehabilitation and reconstruction activities (ADPC,
2005).

A disaster management strategy that is commonly adapted is a Flood
Forecasting, Warning and Response Systems (FFWRS). A FFWRS enables the
user to act in advance of a disaster and create lead time to mitigate the risk
(Verkade and Werner, 2011). An FFWRS is used to create time for residents &
NGO’s or authorities to act (Parker and Fordham, 1996). A FFWRS consists of
three main subsystems. The three subsystems are forecasting subsystem, de-
cision subsystem and the warning response subsystem. The subsystems can

7
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be found in Figure 2.1. The forecasting subsystem generates a probabilistic
or deterministic forecast from several input parameters. The (hydrological)
parameters can be of different types, both deterministic and probabilistic.
The second subsystem is the decision subsystem. This subsystem contains
the warning protocol and mitigation actions to reduce the losses of floods.
Finally there is the warning response subsystem in which the actual imple-
mentation of the actions is executed (Parker and Fordham, 1996) & (Verkade
and Werner, 2011).

Figure 2.1: FFWRS scheme of a monitoring system in flood forecasting (Verkade and
Werner, 2011)

2.1.1 Early Warning Systems

Flood protection measures are in place prevent flooding of people and their
assets. If resources for protection are not available the risk can be managed
through preparedness, coping capacity and response time. The use of an EAP

can improve the preparedness and lower the response time, thus lowering
the vulnerability to flood risk. Four main pillars are defined that should be
obtained in an effective EAP:

1. Risk Knowledge

2. Monitoring & Warning Service

3. Dissemination and Communication

4. Response Capability (United Nations, ISDR, 2017)

Next to the main pillars, a risk assessment of the vulnerable area should
be conducted. Identifying the actual coping capacity of the people in place
allows to direct the EAP in the direction of those most in need of help. An
EAP should be build up at several levels, from local to district to national.
The EWS is based on monitoring and warning from a reliable forecasting
source. The need for continuous monitoring to generate accurate warnings
is stressed by (United Nations, ISDR, 2017). There are two aspects of this
monitoring and warning cycle that have shown to be sensitive to uncertainty
namely; 1. the level of uncertainty of a forecast is not represented. 2. The
communication of these uncertainty levels with end-users in a simple man-
ner is a challenge.
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2.1.2 Forecast-based Financing

Humanitarian organisation aim to respond in the early phase of the DRM. In
order to accommodate to this early response the EWEA approach is used.
IFRC defines EWEA as ”routinely taking action before a disaster or health emer-
gency happens, making full use of the scientific information on all timescales” (Rut)
Current uses of scientific knowledge, technology and data result in a in-
crease in the quality of the disaster preparedness and anticipation to natural
disasters (IFRC, 2008). In 2008, launched the FBF-pilot to create this new
methodology to addres the DRM. FBF is explained by the IFRC as ”FbF is an
approach which enables access to humanitarian funding for early action, that can be
taken based on meteorological forecast information, combined with risk analysis, to
prepare for extreme weather events. The goal of FbF is to anticipate disasters, pre-
vent their impact, if possible, and reduce human suffering and losses” (IFRC, 2008).
The new methodology is seen as the new approach to prepare, deliver and
respond to natural disasters. The FBF approach is in line with the global
goals set by the United Nations, also referred to as the Sustainable Develop-
ment Goals, as there is a prioritization on investment in water, agriculture
and climate change. It is seen merely seen as a preparedness and reaction
strategy but next to the latter also functions as a framework to decrease cli-
mate change.

FBF is set up in two main phases. The first phase consists of determin-
ing and agreeing on the pre-set activities and roles that play a role when a
trigger reaches a threshold. The responsibilities, actions undertaken and reg-
ulations set are agreed on and documented in a EAP or Standard Operating
Procedure. In setting up these protocols, the IFRC works closely together
with national and international parts of the Red Cross and with the local
government. The second phase of the FBF consists of ensuring that the re-
sources named are supplied within the correct time-frame. In here the IFRC

works as the financial mechanism to fund the activities include in the EAP.
The key element of this section is the guaranteed allocation of funds for early
action, once the IFRC and the National Society (NS)’s has an approved and
validated EAP. Financial allocations are automatically transferred according
to a pre-agreed forecast trigger, that indicates the potential for severe nega-
tive impacts on the most vulnerable population. The scheme of actions that
comprise the FBF methodology are visualised in Figure 2.2

Figure 2.2: Flow of the FBF process. source: media.ifrc.org
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2.2 prediction models

Creating a well working FFWRS enables the user to act in advance of the
flood disaster. A FFWRS consists of three main subsystems. In order to assess
the hydrological skill of a new product, one should assess several aspects of
such a system. The following section entails a description of the most impor-
tant aspects of prediction models and aspects of hydrological modeling.

2.2.1 Probabilistic vs Deterministic Forecasts

The different information source that is used has an effect on the type of
forecast that is created. By using information that has an either probabilistic
or deterministic nature, the nature of the decision system is determined. De-
terministic models rely on thresholds which automatically initiate warning
responses. The decision is then dependent on the threshold and system that
is designed in the forecast subsystem (Verkade and Werner, 2011). A proba-
bility designed system can also be related to a specific threshold. Although
this threshold is reached, an aditional set of information is provided, namely
the probability or probality of exceedance. This extra piece of information
allows the user to introduce an optimal probability threshold to initiate a
response (Parker and Fordham, 1996). With the extra level of information
comes more decision making challenges. Which probabilistic information
range is ”right”? Or what is the best probability to start early action? (Dale
et al., 2014).

2.2.2 Lead time & Intervention Window

The lead time is defined by the Red Cross as: ”The length of time between
the issuance of a forecast and the occurrence of the disaster is forecasted to
happen.” (GRC, 2017). The lead time is thus initiated by the moment the
forecast is gathered. The lead time can also be linked to a probability of
occurrence to inform with more detail about the probability that a specific
disaster occurred. Enlarging the lead time is important in early action. A
lead times is the time for aid workers time to prepare, disseminate more
information and take appropriate action / respond on the emergency. The
intervention window is the window of time in which aid workers can make
this intervention, given a certain uncertainty. The intervention window is
bounded by the time that specific actions take. For example, the decision to
evacuate people or livestock can only be made if the time it takes to execute
the evacuation is still available. Thus the intervention window is limited.

2.2.3 Decisions in Flood Forecasting

Decisions in flood forecasting are based on the output of the forecasting
model. Such a forecasting model could be both probabilistic and determin-
istic. Decisions can be made based on probability levels, acquired lead time,
additional ground truth data or the ability to deploy actions. In most cases a
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pre-set manual will make sure the appropriate decision is made for a specific
threshold level. There is an important trade-off that occurs in flood forecast-
ing decision making. The trade-off is induced by the increase of certainty
when a forecast is given with a lower lead time. The trade-off between a
quick response, and dealing with a higher uncertainty. Or waiting for more
certainty but having the chance not to be able to introduce the appropriate
action (Carsell et al., 2004). Next to the time trade-off, one can also trade-off
between cost & benefit for each action.

2.2.4 Cost-Benefit of Flood Forecasting & Warning

Verkade et al. calculated the benefits of flood forecasting from a financial
point of view. The goals is to optimize the cost vs. benefit of specific actions
that are taken. Four situations where taken into account. A perfect forecast,
a deterministic forecast, a probabilistic forecast or no forecast. The result of
the forecasted situations gave insight in the optimal way of forecasting from
a cost/loss or benefit ratio. There occurs a trade of between the benefits
and losses of the reduction of risk. For all different tested situations the
probabilistic forecast resulted in a better flood risk index, and a lower cost
to loss ratio (Verkade and Werner, 2011).

2.3 remote sensing

The process of remote sensing is the gathering and processing of information
via devices that are remotely located. This thesis is specified on satellite re-
mote sensing (European Space Agency (ESA), 2015). In satellite remote sens-
ing the electromagnetic radiation is captured by a sensor. Electromagnetic
radiation sensors capture signals in a broad range of wavelengths. Depend-
ing on the resolution of the electromagnetic radiation sensor. There are three
main resolutions that play an important role in remote sensing, namely: spa-
tial resolution, spectral resolution, temporal resolution (Neisingh, W., 2018),
(CIMSS, 2015) . This thesis is focused on the microwave spectrum (wave-
lengths: 106 nm - 1 m or a frequency: 1010 Hz - 106 Hz).

Spatial Resolution

Spatial resolution refers to the size of a single cell in an image. The smallest
resolution length of a cell is expressed in m or km depending on the size. A
cell resolution of 500 m refers to a cell with the area of 500mx500m. Spatial
resolution is of importance as it defines the resolution of a single cell, or
input. For Microwave Remote sensing this resolution should be minimized
in order to distinguish best between two cells (CIMSS, 2015).

Spectral Resolution

Spectral resolution determines the range and range size of wavelengths mea-
sured by the satellite sensor. Wavelengths occur in a huge range, from
1m− 10, 000m for optical wavelengths and up to 30km for micro-wavelengths.
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The spectral resolution defines the range in which wavelengths are absorbed
/ measured by the sensor. Most remote sensing satellites record the energy
over multiple wavelengths with varying spectral resolutions. (multi-spectral
sensors). Highly advanced new sensors (hyper-spectral sensors) detect hun-
dreds of narrow spectral bands trough the electromagnetic spectrum. In-
troducing a new level of discrimination between target bands with their
corresponding spectral response. (CIMSS, 2015)

Temporal Resolution

Temporal resolution defines the timing at which images are captured. The
timing between images (frequency of an overpass) defines the timing of
which an output of an image can be created. In flood prediction, the tem-
poral resolution of a satellite product defines the timing in which floods can
be detected. The time-frame of an overpass is seen as the δT0 when timing
of a product is defined. Ideally, diurnal or semi-diurnal temporal resolution
is needed for flood prediction. Temporal resolution differs per satellite and
location on earth (CIMSS, 2015).

2.3.1 Remote Sensing for Rivers and Surface water

Applications of RS in rivers or surface waters are mostly based on determin-
ing color or temperature of water. Color differences in the optical spectrum
are used to allocate water in a specific location. RS are of increasingly impor-
tant in understanding the spatio-termporal dynamics of water quantity and
quality. Applications of RS are used in simulating water management and
hydrology scenarios. There are several implementations of the technique
which are shortly touched upon, to give an insight in the size and usage of
RS (Kawsar, 2015).

One emerging problem in the context of surface water quantity, is the lack
of temporal and spatial ground data. RS allows the user to look at a multi-
temporal timescale to a problem. An example of this is the NDWI (Nor-
malized Difference Water Index), which allows one to visualize, locate and
quantify surface water bodies from satellite data (Kawsar, 2015). RS is also
used to extract river widths. As discussed in Chapter 4, the software RivWid-
hthCloud, can extract river width changes from RS data (Yang et al., 2019).

2.4 microwave remote sensing

Microwave RS comprises two types of remote sensing, namely: passive and
active remote sensing. Due to the longer wavelength the microwave radia-
tion can penetrate through clouds, haze, dust and rainfall. The wavelengths
are less susceptible to atmospheric scattering than the shorter wavelengths.
This entails the big advantage over optical remote sensing, its ability to col-
lect data under all environmental conditions. Passive microwave sensors
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detect naturally emitted microwave radiation. Compared to an active sys-
tem, where the radiation is actively created and the reflection is received (eg.
synthetic active radar). The level of natural emitted radiation is related to
the temperature and moisture level of the emitant. The emitant in this case is
the soil or surface water seen by satellites. Microwave RS has been integrated
in the first Landsat missions and on-wards. Therefore a data-set of close to
40 years of daily data is gathered. Passive RS is preferred over active RS due
to its more consistent sensor characteristic.

2.4.1 Brightness Temperature

The brightness temperature is the observed parameter measured by the ra-
diometers. It is merely a observational quantity than a physical quantity
(Neisingh, W., 2018). The brightness temperature is expressed in units of
temperature of an equivalent black body. The brightness temperature of
microwave wavelengths is approximated with the Rayleigh-Jeans approxi-
mation. (Accurate for radiance much greater than the peak of the black
body radiation formula). The Rayleigh-Jeans approximation is given by the
following formula:

Tk =
λ4

2kc
∗ Lλ (2.1)

k = Plancks constant, c is speed of light, ε is the emissivity, Tk is the kinetic
temperature, λ is the wavelength. L is the Luminosity.

The equation is related to the kinetic temperature through the emisivity
of the material. I.e. its ability to emit radiation. Passive microwave bright-
ness temperature can be used to monitor temperature changes related to the
emissivity property of the soil or water.

Tb = ε ∗ Tk (2.2)

The emissivity (ε) can be defined as the relative brightness of an object
compared to its actual brightness following this formula:

ε =
Me

M◦e
(2.3)

With Me being the radiant flux of the surface and M◦e the radiant flux
of a black body with the same temperature as that surface. Materials do
not behave like a black body but the property of emissivity does differ per
material. This allows the identification between soil or surface water.

Tb,v =
λ

κ
∗ Bv (2.4)
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Figure 2.3: Thermo-electric black body radiation from the Sun and the Earth. Fig-
ure showing the wavelength bands at which the passive radiation is
emitted (source: (Macdonald, 2019))

2.4.2 Di-electric Constant

Microwaves are electromagnetic waves, traveling through a space. Satellites
gather electromagnetic waves that have traveled through space, the atmo-
sphere and earth’s crust. The properties a specific soil has describes how
the wave will propagate and interact. In PMRS the important factor to take
into account is the electric permittivity or dielectric property of a soil in the
earth’s crust. Describing the ability of a molecular structure to store or re-
lease energy in an electric field.

Solid non-conducting (di-electric) materials found on earth can be ex-
plained by their relative permittivity. Surface water has a higher relative
permittivity compared to solids, due to its conductive behaviour. The free
rotation of a water molecules allows it to align the dipole of the molecule
in the electromagnetic field. When a current is applied to water the conduc-
tive behaviour allows it to conduct energy. This high di-electric property of
water allows it to influence a soil it comes in contact with. When water inte-
grates with a soil the effective di-electric property of the soil enlarges. The
di-electric property of a soil or water is an important part of the emission
and scattering properties of the soil (De Groeve and Riva, 2009b). showed
that passive microwaves are greatly affected by the di-electric properties of
a soil. The effect has an impact on the so named: penetration depth of a
microwave signal.

Penetration Depth

The penetration depth refers to the ability of a microwave to penetrate the
soil to a specific depth. Waves with larger wavelengths penetrate deeper
than the shorter wavelengths (Owe and Van de Griend, 1998). The larger
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wavelengths have low frequencies while the short wavelengths have a large
frequency. In the case of riverine flooding, the aim is not to assess the depth
of a inundation. As the inundation might be very shallow. So low penetra-
tion depths are required.

2.4.3 C/M Ratio

The C/M-ratio is a measurement quantity of passive microwaves as defined
in research of multiple researchers. (Brakenridge et al., 2007), (De Groeve
and Riva, 2009b), (De Groeve, 2010). The C/M ratio as defined is the back-
bone of the thesis, as it is the main tool to use PMRS to observe inundation.

The C/M-ratio is a measurement quantity of passive microwaves as de-
fined in research (Brakenridge et al., 2007). Brakenridge defines the flood
prediction method using the Calibration Cell ’C’ and Measurement Cell ’M’.
These cells are used to estimate the discharge estimator ’HR’ (Brakenridge
et al., 2007) & (De Groeve and Riva, 2009b).

TB,measurement cell = (1−W) ∗ TB,land + W ∗ TB,water (2.5)

W resembles the portion of water within the pixel. The T components are
defined in [K]. If the physical temperature is constant, changes in bright-
ness temperature are linked to the surface water extent within the pixel.
Direct relation between brightness temperature and surface water area can-
not be drawn indisputable. Arguments for this relation and its indisputable
relation are discussed by (Neisingh, W., 2018). Brightness temperature mea-
surements are influenced by factors like physical temperature, emissivity
differences and atmospheric moisture. Their relative contribution cannot be
accounted but these factors are assumed to be constant over a large distances.
the hypothesis underlying the C/M ratio method is that these influencing
factors co-vary enough in the limited space encompassing the ”C” and ”M”
area, that they cancel out when combined. So to cancel this relative contri-
bution of the factors, a division between a ’wet’ and ’dry’ cell is made.

TB,measurement cell = TB,measurement ∗ ((1− w)εland + Wεwater) (2.6)

TB,calibration = TB,land = TB,calibration ∗ εland (2.7)

The assumption is made that nearby pixels have the same emisivity rate for
land (εland), so follows from (de Groeve, 2010):

εland,measurement = εland,calibration ≈ εland,

TB,measurement cell ≈ TB,calibration cell
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By comparing to the calibration cell, (Brakenridge et al., 2007), (de Groeve,
2010) integrated a correction for the diurnal and seasonal changes in bright-
ness temperature in a given area. The measurement cell ’M’ is defined as a
cell that is clearly affected by fluvial change during a period of flood. The
measurement cell shows a clear change in brightness temperature when in-
undated. Also before referred to as the ’wet’ cell. The calibration cell ’C’
is defined as the cell that is not affected by fluvial change, attributable to
surface water changes, thus no expected change in brightness temperature
is observed. Referred to as the ’dry’ cell. A comparison is also generated by
using a pre selected ’C’ Cell. This gave no better output.

HRC/M =
TB,calibration cell

TB,measurement cell
=

M
C

(2.8)

(de Groeve, 2010) defined the magnitude of flooding by comparing the
number of standard deviations and mean (average) of the time-series. in eq.
2.9.

Figure 2.4: Example of the time series of Brightness Temperature at the
’M’easurement location (M) and at the ’C’alibration location (C), com-
bined with the C/M-ratio as defined by (Brakenridge et al., 2007). Data
from test location Senanga for the year 2009. Peak of C/M ratio corre-
spond to the true flood disaster in 2009. Location: Senanga (Point of
Interest as described in Figure 4.3(own work)

(Brakenridge et al., 2007) & (de Groeve, 2010) & (Neisingh, W., 2018) de-
fined an optimum frequency for the C/M ratio as 36,5-GHz. The incidence
angle at which the C/M ratio is determined is 54,8°. The AMSR-E data is
used as the profound source of data to do the first test with. AMSR-E data
gives a global data set, freely available through the MEaSUREs program.
This allows the work to be extended to other locations. The H(orizontal)
polarization and D(ecending) (night) orbit with a spatial resolution of 25 km
and a temporal resolution of 1 day (above the 30°latitude) were chosen to be
the most optimal conditions. The night overpass occurs at 12:30 - 1:30 AM).
The night overpasses have more constant land surface temperature, hence
show better differentiation between emissivity differences. In Appendix A,
polarisation differences are explained.

(Brakenridge et al., 2007), defined four main indicators for choosing the
calibration- and measurement cell.
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1. C must be located near M, within the correlation length scale of the
physical temperature. This allows the T to be cancelled in the paired
ratio.

2. C and M are close there is no time difference in the moments acquired
by the satellite sensor.

3. C is an area that is least affected by fluvial change. M is within the
range of the specified river. C is unaffected by river width change.

4. M is located in a area that shows a clear change when fluvial change
is observed.

(De Groeve and Riva, 2009a) applied an automatic selection of the ’C’alibration
cell based on the brightness temperature as the hottest value in neighbour-
ing cells. As the cell with the highest brightness temperature nearby is by
definition the ’driest cell, this is the best method for automatic selection of
the calibration cell. In the model used in this thesis the highest surrounding
brightness temperature is found by finding the surrounding cell with the
lowest correlation coefficient. By applying this method item 1, 2 and 3 of
the summation above are met. The ’M’easurement cell is handpicked and
selected within the permanent river stream to meet requirement 4.

To obtain flood extent information, a ’Wet’ input cell can be introduced
(Neisingh, W., 2018). In theory this allows the user to interpret the water
body by integrating the Digital Elevation Map and the full bank capacity.
This is not taken into account since the correctness of using the ’wet’ cell
only holds for an constant existing water body that is located close to the
area of interest. For locations that are too remote from the area of interest,
there is a too big difference in physical temperature, emissivity differences
and atmospheric moisture to be able to compare to the ’Wet’ cell location.
For this research location it is found that no ’wet’ cell can be obtained in a
close enough perimeter to obtain the same physical properties as the area
of interest. Therefore the CMC ratio defined by (Neisingh, W., 2018) is not
taken into account. Furthermore, the research in this thesis does not need
clarification on flood extent as it is foccussed on predictions based on up-
stream observations.

2.5 current forecasting models

2.5.1 GloFas

Most flood warning or forecasting systems are based on a short term model
that can use little amount of inputs to predict discharge levels. GloFas is
the current flood forecasting tool used by the Zambian Red Cross to detect
floods in Zambia. GloFas is a worldwide flood prediction model. It couples
weather forecasts (precipitation data) with a hydrological model on which
it provides a hydrograph of all rivers worldwide. GloFas uses the forecast
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data from the European Centre for Medium-Range Weather Forecasts. The
workings of the system are visualized in Figure 2.5. The input parameters
are shown in yellow. Combining the meteorological precipitation data with
inital conditions and soil/DEM/topography. The model runs a forecast, hy-
drological model and post-processing tool (in blue) in order to produce the
web interface visualization. GloFas is able to produce 30 day forecasts of
flooding, with associated probability of exceedances. The probability of ex-
ceedances are calculated by comparing the 30 day forecast with the realtime
forecast. The maximum product lead time that is offered is 30 days. But daily
forecast data is provided up to 15 days in advance, given a certain probabil-
ity. GloFas its performance differs per country, as the hydrological model
is not country specific. Its function in Zambia is tested upon ground-truth
discharge data. The GloFas model is tested with the so called Continuous
Ranked Probability Skill Score. This score is calculated against persistence
or climatology to give an skill evaluation per lead time (ECMWF, 2019).

Figure 2.5: GloFas system: input = yellow, model = blue, output = grey
source: https://www.globalfloods.eu/

The EAP in Zambia is based on GloFas. The triggers for this EAP are de-
fined using a multi-annual extreme value analysis. Providing the 60, 70,
80 percentile of the discharge levels. The percentiles are determined from
the 10 year returning flood maximum. The linked threshold levels can be
used as triggers in the EAP. Medium-time ranged forecasted could reduce
flood related losses as they provide a larger intervention window for the
decision making processes, compared to shorter, more accurate, forecasts
(Thiemig et al., 2015). A high leadtime is connected to a high uncertainty
level. To overcome this problem an Ensemble Stream-work Prediction (ESP)
can be created. An ESP uses numerical weather productions and a hydrolog-
ical model to obtain a forecast of the future state of the weather. GloFas is
such a system that integrates numerical weather predictions in its model to
obtain a forecast. It can be used as the input for the Disaster Support Sys-
tem (DSS) of the Early Action Protocol to determine whether actions, triggers

https://www.globalfloods.eu/
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or funding needs to be applied. The value of an ESP over a single forecast
is its ability to generate a probability of occurrence of an extreme weather
event. This probabilistic values can be used to identify severeness or inter-
pret thresholds. The performance of GloFas is used as a test benchmark in
the hydrological skill assessment, as it is the current product used in Zambia
for flood forecasting.

2.6 disaster management analysis

Several approaches exist in the analysis of disaster management systems.
Focusing on different aspects of the disaster management chain, or more
focusing on a process or topic. There are three main subsystems of informa-
tion flow that play a role in the Zambian EAP. The different subsystems as
refered to in Figure 2.1, can be analysed by using different techniques.

The forecasting subsystem is entails the whole monitoring and forecast-
ing part of an EAP. There is a rise of online accessible technologies com-
bined with the numerous ways of (pre)-proceessing functions and the online
available geo-spatial data. Solutions to geo-spatial problems require several
geo-processing functions and resources, some of which cannot be provided
by a single computing system (Ohuru R., 2019). A geo-intelligence work-
flow is used to create a framework in which the complex geo-processing
functions and data sources are combined. The visual representation of the
geo-intelligence workflow helped the creation, sharing, understanding and
integration of the software processing of geodata (Lemmens et al., 2018). The
geo-intelligence workflow allows for organisations to standardize the work-
flow of a humanitarian process. Evaluating the moment the data comes into
the server to the actual release of a trigger.

The decision and response subsystems as displayed in Figure 2.1 contain
a timing component that has to be taken into account when analysing the
disaster management.

For the FFWRS decision subsystem it is of importance to map the tree of de-
cisions in a system. The so called, forecast information flow diagram which
visualizes the flow of information when a trigger is communicated and dis-
seminated. The overview allows the user to identify the decision making
tree, flow of information and the target points of improvement of efficiency.
In large humanitarian structures it is of importance to visualize the flow of
forecast information to create understanding of the system (I.N. Streefkerk,
2020). By assesing the decision framework the nature of the decisions can
be evaluated. In disaster decision making there consists a trade-off between
uncertainty levels and intervention time (Verkade and Werner, 2011). In this
work it is assumed that decisions are solely made based on the forecasted
information, policy and procedures in place.

Humanitarian Value Stream (HVS) is a technique to map the chain of a
humanitarian stream and quantify its value. It can be implemented in a
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range of different humanitarian aid subjects, as to protocols. HVS allows for
efficient gathering of operational data and highlights the weaknesses and
opportunities of the studied system (Salvadó et al., 2015). HVS entails a field-
oriented approach to map the timing and value of each specific segment in
the process. The field oriented approach can be organised over Skype as
long as the main stakeholders of the humanitarian stream are involved in
the interviews. The goal is to improve the organisational structure of the
EAP by looking at the four lean principles: Value, Value stream, Flow and
Pull. As the value of a step is hard to implement and investigate remotely,
an adjusted HVS technique will be implemented in the Methodology.

For improvement in long-term strategies and robustness of the EAP, the
following theory is described. Figure 2.6 displays the criteria for a signal
monitoring system to support adaptive planning. The three main criteria
are: Salience, Credibility and Legitimacy. Within the main criteria there are
a few sub criteria. Salience: Measureability, Timeliness, Reliability. Credibil-
ity: Convincibility and Institutional Connectivity (Haasnoot et al., 2018). By
assessing a monitoring system on the later named criteria the robustness of
the system as a whole can be tested.

Salience refers to the actual needs of the end user. With the measureability
of the product. The time component that indicates the intervention window
that is created. The reliability of the product concerns the probability that
the product gives wrong or incorrect signals. The credibility refers to the
technical believeablility of a product. The signal monitoring system should
be convinceable in a technical and scientific manner. The user will ’trust’
the system more if the Convincibility of the system is high. Institutional
connectivity is reached if the system is advocated by the different institu-
tions involved, thus being accepted by a political, social, technological and
decision context (Haasnoot et al., 2018).

Figure 2.6: Overview of the criteria for signal monitoring within a system. (Haas-
noot et al., 2018)

The three theories of analysing the disaster management policy of the EAP

can be shortly formulated in Table 2.1:



2.6 disaster management analysis 21

Geo-intelligence workflow
Covering the ’geo’-intelligence workflow that should be followed
to combine the separate data sources and techniques to come to
a trigger evaluation.

Forecast Information Flow diagram
Visualizing the flow of information when a trigger is
communicated and disseminated

Humanitarian (Value) Stream Mapping
Visualizing the flows of information and goods when
a specific action is undertaken.

Table 2.1: Disaster Management Analysis steps





3 Z A M B I A & Z A M B E Z I R I V E R B A S I N

This section entails the general information about Zambia and the Zambezi
river Basin. Especially focus is set on the inundation of the flood prone
area’s of the Zambezi river basin. Further insights in Zambian statistics are
displayed in Appendix B

3.1 general information

Zambia is a landlocked country in the south-central part of Africa. The offi-
cial name of the country is the Republic of Zambia. Zambia is surrounded
by eight countries namely; Angola, Namibia, Botswana, Zimbabwe, Mozam-
bique, Malawi, Tanzania and the Democratic Republic of the Congo. The
country stretches over an area of 752,618 km2.

3.1.1 Climate

The climate of Zambia is classified as predominantly Cwa (Temperate, dry
winter, hot summer) following the Köppen-Geiger climate classification. Other
classifications do emerge in parts of the country, being; Aw (Tropical Savan-
nah), BSh (Arid, Steppe, Hot) and Cwb (Temperate, dry winter, warm sum-
mer) Two dominant seasons regulate the climate pattern. From November
to April the rain season occurs, which corresponds to the summer. During
the winter, the dry season occurs. Which occurs from May to October. The
average annual temperature in the Capital, Lusaka, is 20.3 °C. The average
rainfall is 831 mm. Extensive figures about climatology in the Zambezi river
system are given in Appendix B.

3.1.2 Population

Zambia has a population of 17,8 million people. The life expectancy is 55,3
years old. The fertility rate is 5,3 births/woman. High levels of inequality
occur in Zambia. The inequality is mostly seen in the health care, education
and administrative deficiencies. The Barotse floodplain is an area charac-
terized by widespread poverty. The Western provinces is among the most
poor of Zambia. The poverty is mostly due to the remoteness, difficult cli-
mate and low coping capacity. The diversity of the Zambian population is
visualised in the population pyramid in Figure 3.1 (United Nations, 2015).

23
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Figure 3.1: Demographic population pyramid of Zambia source: CIA

3.1.3 Economy

The economy of Zambia is based on its mineral and agricultural wealth. In
the northern part of Zambia copper, cobalt, uranium ores are mined. Fur-
thermore there is a sub-economy running on gold, diamond and manganese.
The GDP per capita of Zambia is 1,491 $. The economic strengths of Zambia
are its export products from agriculture and mining, furthermore is there
significant hydroelectric potential in the area. Which is not exploited fully
at the moment. Being a landlocked country makes Zambia reliant on the ex-
port routes of neighbouring countries. Electricity generation is insufficient
and unreliable, putting pressure on the economy. Due to the strong mining
sector is a growth of the economy observed and expected to continue in 2020

(Coface, 2020).

3.2 hydrology of the zambezi river basin

The Zambezi river basin originates Northern Zambia, from which it flows
through Angola, trans-boundary and eventually back to Zambia. It enters
the Indian Ocean at the East coast of Mozambique. The Zambezi connects to
three tributaries namely; Dongwe, Kabompo and Lungwebungu. The Zam-
bezi has a total length of over 1,390,000 km2. It is classified as the fourth
largest river in the African continent, after the Congo, Nile and Niger river
basin.

The Zambezi in the Western province is characterised by the Barotse Flood-
plain. The Barotse Floodplain, also called the Bulozi floodplain or Zam-
bezi floodplain, is one of the biggest wetlands in Africa. As seen in Figure
3.6d, the Barotse floodplain originates when the Lungwebungu river joins
the Zambezi. The end of the floodplain is seen near the city of Senanga. The
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Barotse floodplain has a low water area of 537 km2 and a flooded area of
10,752 km2.

Zambia is dealing with 2 main flood types namely, flash floods and river-
ine floods. Flash floods occur when excess rainfall does not infiltrate and
continues as runoff in a stream or channel. Due to the dry climate of Zam-
bia, soil is not able to take up large quantities of precipitation and overland
flow occurs. Flash floods occur in a short period of time and mostly have a
surprising effect. Therefore flash floods often cause greater loss of life than
River floods. Riverine flooding occurs in the larger river systems. Mostly
in the more wet parts of the country (Zambezi). Excess rainfall collects over
a long period of time in the rivers and slow water-level rise occurs over a
longer river stretch. When inundated, river flooding can cause great damage
as the severe quantity of water is larger compared to flash floods. Riverine
floods occur over a longer time period.

3.2.1 Environmental Characteristics of the Barotse Floodplain

The barotse floodplain is located in the Western and North-Western province
in Zambia. The Floodplain stretches over an area of approximately 230 km
downstream. Within the 30-50 km wide wetland the Upper Zambezi river
flows. The Zambezi enters the wetland at Lukulu (where the Kabompo and
the Lungwebungu rivers meet) and exists the wetland at Senanga. The main
body of the wetland has an area of 5500 km2. When flooded the total area
of land covered with water is over 10,000 km2, taking into account the trib-
utaries. Peak in flooding is mostly seen in 2 to 3 months after the peak in
the rainy season. (April - May). The wetland is made up of many smaller
lagoons, even in periods of dry season. The floodplain is mainly comprised
of grasslands. Although trees are largely absent from seasonally flooded
areas, there are a number of small wooded areas on higher ground. The
western side of the Barotse flood plain is flanked by the plateau of Kalahari
sand covered with wood- and grassland (Timberlake, 2000). Species of an-
imals range from various types of fish to large grazers such as wildebeest
and zebra’s. The Barotse floodplain is the home of the Lozi, a migrating hu-
man tribe consisting of over 250,000 people. The Lozi migrate over the plain
and move when floods arrive. Their main source of food is supplied by the
hunting of fish and land animals (Timberlake, 2000). As the Lozi people are
completely dependent on the floodplain climate system, understanding its
flooding patterns can be of great importance.

Figure 3.2 illustrates to what extent the Barotse floodplain is filled with
water during the wet season. The character of the floodplain shows the
high spatial distribution of water in the event of inundation. The water will
cover the whole floodplain on a yearly basis. The optical satellite imagery
proofs the inundation of water over a large area, which is one of the main
characteristics that a basin should have when interpreting it using the C/M
ratio technique.
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Figure 3.2: MODIS Terra optical imagery showing the inundation process of the
Barotse Floodplain. Corrected reflectance filter shows water to appear
in black. Clear distinction of the floodplain when inundation occurs
(source: EOSDIS Worldview)

3.2.2 Natural Hazards

Zambia is prone to a large range of natural hazards like floods, dry spells,
storms, earthquakes and more. Floods and droughts are a annually occur-
ring problem, as in the rest of Sub-Saharan Africa (Šakić Trogrlić and van den
Homberg, 2018). The FBF scoping study identified floods as one of the major
hazards affecting the country. The annual flooding affected a large amount
of people in the livelihoods of the high risk area’s. The review of historical
hazards can be found in Figure 3.3. The most severe flood occurred in 2008-
2009, with a displacement of 102,000 households and 31 related deaths. The
disaster caused the bloom of waterborne diseases and due to the displace-
ment over 34,000 households were identified in need of aid (ZRCS, 2019).
Most floods are caused by the bursting of riverbanks mainly in the Zambezi
River and by heavy rainfall. Due to rainfall there occurs a massive environ-
mental degradation and settlement along the banks. (ZRCS, 2019) Figure 3.3
displays the different types of disasters that occurred in Zambia with their
corresponding date. Reviewing this historical data revealed that floods are
the hazard type that affected the most people in Zambia. Independent analy-
sis is done by the International Disaster database showed that the floods are
the most frequent disasters in Zambia (over 80%), but also were the disasters
that have the highest mortality rate and economic loss (UNDRR).



3.3 area of interest 27

Figure 3.3: Different types of disasters occurring in Zambia within the time period
[1983-2019], current information on the Covid-19 disaster count is not
yet available. source: (ZRCS, 2019)

3.3 area of interest

Before the analysis is done, an area of interest had to be determined. The
area of interest was determined by combining different perspectives of the
research. The first perspective was from a humanitarian aid point of view.
For this the risk score analysis - and flood risk assessment of the region were
used. This assessment was created by the 510, ZRCS and WARMA in prepara-
tion of the current EAP. The Risk Score map 3.4 that was created indicates the
high risk score of the Western Province in Zambia. The risk score analysis
combined the vulnerability, the exposure rate to floods and the capacity to
anticipate, cope and recover from the impact of floods. Some general socio-
economic, political and physical factors were taken into account. The final
product showed a ’high’ Risk level of the whole Western province. This
province is the location of the upper Zambezi river system.

WARMA has created a flood risk map of Zambia for flood forecasting and
flood monitoring. Figure 3.5. Three levels of flood risk are identified by

The risk areas as displayed in Figure 3.5 are defined by 510 in consultation
with DMMU. The analysis contains information from from four vulnerability
indicators: poverty index, literacy level, asset ownership and access to mar-
ket.

Next to the humanitarian aid perspective, the effectiveness of the technol-
ogy was taken into account. The technology works best with large flood-
plains that inundate over a large area when a riverine flood occurs. The
products’ spatial resolution of 25 km2 allows only for wide wetlands to give
an effective result. The Barotse floodplain was chosen for its wide wetland.
The wetland works as an aquifer. When inundation occurs a widespread
area of surface water is detected. This layer of surface water is the key for
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Figure 3.4: Vulnerabilty analysis map Zambia, Red Cross (EAP)

Figure 3.5: Flood Risk map, WARMA source: (EAP)

identification of inundation by the C/M ratio. As explained in Chapter 2.

Lukulu

Lukulu is situated at the Northern part of the Western province. The loca-
tion is chosen for its high flood risk, high risk index and its geographical
location near the floodplain. As seen in Figure 4.3 a large part of the upper
Zambezi catchment area surpasses Lukulu. Lukulu has therefore an dan-
gerous position in terms of flood risk. Furthermore is the location remotely
located, making the coping and intervention capacity lower.
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Senanga

Senanga is a city located in the Southern part of the Barotse floodplain. As
Lukulu, Senanaga is classified by the RC as a high risk index region of
Zambia. Its flood risk assesment is a lower, but laying in the end of the
Barotse Floodplain, Senanga experienced several severe floods. Its remote
location makes it a good area of interest, as the coping and recovery capacity
of the city is low. See Figure 4.3

3.4 early actions

In Section 2 the technical use of the EWS in Zambia was described. The
triggers following from the EWS lead to a set of pre-described actions. The
actions described in the EAP categorized into four main subjects:

1. Shelter provision - Floods typically destroyed a large number of houses.
The provision of shelter contributes to the direct first aid needs of the
ones most affected. It is the first priority when determining what ac-
tions are to be taken. The main objective is to insure that communities
are safe and guarded for the imminent effects of floods.

2. Water Sanitation Hygiene (WaSH) - The first need of the ones most
affected is the access to clean water and hygiene. Water points are
contaminated and the chance of diseases such as Cholera spreading
are large. The main objective is to lower the water borne related dis-
ease outbreak. From the impact analysis it became clear that these
outbreaks where an important death cause during flood season (ZRCS,
2019).

3. Food Security - Due to flooding there is an increase in food insecu-
rity. The main cause is the loss of crops, the poor storage of food and
the death or sickness of cattle. By equipping the communities with
new sources of food they manage to bridge a period where no food is
available.

4. Disease Burden - Malaria outbreak is a burden under the ones most
vulnerable. (Children under five, pregnant women and elderly.) Due
to the rising water levels the malaria mosquito blooms and the number
of infections increase. By reducing the mortality rates due to malaria,
the death toll due to preventable diseases goes down.

The four main categories are listed in order of importance. All have a
set of actions that are there to be taken by the different institutions. The
EAP contains an annex with the Logframe to test the effectivity of each mea-
sure. By assigning indicators and defining means of verification, the result
of the actions can be mapped. As all actions are yet to be deployed during
a disaster, the effectivity has not been properly tested yet (ZRCS, 2019). The
decision which action to use is made by the Technical Working Group (TWG).
In Section 5, the different variables per action, and the decision to execute a
specific action is backed.
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3.5 zambezi river schematisation

The following figures display the research area. The schematization of the
african continent is displayed, combined with the important attributes in the
Zambezi river system. Combined, the four figures entail the mailn overview
of the river system.
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(a) Zambia (b) Catchment area

(c) River network of the Upper-Zambezi

(d) Barotse Floodplain

Figure 3.6: Schematisation of the African continent and the geographical location of
Zambia, the Zambezi catchment area, the Zambezi river within Zambia
and the the Northern part of the Zambezi river in the Barotse Floodplain.
(own work)





4 M E T H O D O LO GY

The methodology entails the working process to create the results. This
Chapter displays an overview of the different data, methods and tools used
in the thesis. The methodology consists of three parts: the research in-
put, the technology assessment part and the so named ”Follow the Forecast”
-assessment .

4.1 research input

Three main inputs are used to derive the results given in Chapter 5. These
are the satellite imagery, fieldwork data and databases. All will be shortly
touched upon in the following section. The stigmatization of the workflow
can be found in Figure 4.1.

“Follow the Forecast”Technology Assessment

Research Question

Satellite Imagery 
(PMRS) 

Literature

Discharge data Online Fieldwork

Multi-annual 
analysis

Benchmark to 
GloFas

GloFas Data

Can Satellite Passive Microwave Remote Sensing be used as a trigger for inundation Early 
Warning System in the Zambezi River, Zambia?

Data 

Methods

Outputs

Timing Analysis

Quantile Regression Benchmark Analysis

Probability Analysis

Skill AnalysisExtreme Value 
Analysis

Geo-intelligence 
workflow

Humanitarian Value 
stream mapping

Identification Performance
FFWRS  Analysis

Shift Optimization

Figure 4.1: Flowchart of the research (source: own work)

4.1.1 Satellite Imagery

As described in Chapter 2, passive microwave remote sensing is the back-
bone of this thesis. Within this type of satellite imagery, brightness temper-
ature measured by the microwave radiometers is the main parameter used.
The data set that was used to obtain the results is gathered by the Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sen-
sor on NASA’s Aqua satellite. The NASA National Snow and Ice Data
Center Distributed Active Archive Center (NSIDC DAAC) archives and dis-
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tributes daily, weekly, and monthly satellite data products from the AMSR-E
sensor. It was launched in May 2002 and finished the operation in December
2011. The data coming from this sensor is in the report referred to as ASMR-
E data. In NASA’s MEaSUREs program, earth system data from different
missions is stored. Enabling researches to combine multiple data sources
over different time-spans. The datatypes and different satellite types used
are found in Table 4.1. A second satellite data set from MEaSUREs was used
to obtain a longer data set. This was the data from the SSM-I sensor based
on the Defence Meteorological Satellite Program from the United States Air
Force. The mission covers data from 1988 until 2017. The instrument mea-
sures surface microwave brightness temperature at 19.35, 22.235, 37.0 and
85.5 GHz, All horizontally and vertically polarized. Missions for the DMSP
program are named F01-F16. The F15 mission is the current mission provid-
ing available data. The current F16 contains newer, more optimized sensors,
but their data is not openly available. Table 4.1 illustrates the current avail-
able data sets. The technology in regard to flood monitoring are developed
by de Groeve et al. (de Groeve, 2010). The data that is used in this report
from this second satellite set is referred to as DSMP data. Table 4.1 shows
that Nimbus data was acquired. Due to the limited temporal resolution this
data source is not taken into account.

Satellite Spatial Resolution Sensor Freq. Temporal Resolution Availability Source

Nimbus - 7 3.125 - 25 km SMMR 37 GHz 1-2 days 1978-1988 NSIDC
DMSP F# 3.125 - 25 km SSM/I 37 GHz 1-2 days 1987-2017 NSIDC
Aqua 3.125 - 25 km AMSR-R 37/89 GHz 1-2 days 2002-2011 NSIDC
Landsat 30 m OLI optical bands 99 minutes 2002-present RivWidthCloud

Table 4.1: Satellite types used in the research

Data that was gathered by the satellites is interpreted using software
scripts in Python. The brightness temperature data has a flashy character
because it is dependent on several physical quantities and environmental
conditions. The data is filtered to overcome problems that occurred because
of noise in the signal. The method used as a pre-proccessing filter is the
Savitsky Golay filter. The Savitsky Golay is a least-square polynomial filter
(Kinoshita and Hogue, 2011). The window width and polynomial fit are
determined by assessing the different results based on their coefficient of de-
termination. The best outcomes were gathered with a first-order polynomial
and a window length of 21 days. This filtering method was used because it
preserves important features of the C/M Ratio data, including peak height
and width. It also does not need future data points to apply the filter, which
makes it usable for real-time forecasting. This can be compared to filters like
a moving average filter which tends to remove these features. The Savitsky
Golay filter makes it able to use for forecasting, as you forecast with up-
stream real- time data. In order to fill the missing values that are obtained in
the PMRS data set, a backward fill method is used. The gaps in information
occur from slight differences in the overpass that the satellite makes. In the
geo-information workflow part of the research an in-depth analysis of the
lead time (including overpass time) is given.
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Optical imagery was used to verify the location and its inundating flood-
plain. The condition used for the identification of inundation is that the
floodplain clearly inundates when flooded. This is obtained from the four
principles of using the C/M ratio as defined by Brakenridge et al (Braken-
ridge et al., 2007). The type of optical satellite imagery used to identify this
inundation are both the MODIS Aqua & Terra missions from NASA. The
MODIS imagery allows for liquid water to be detected in the Corrected Re-
flectance bands (bands 7-2-1). Liquid water on the ground appears dark
since it absorbs red color and SWIR. Clear distinction from dry ground can
be made as the green color will standout against the darker black water body.
Verification that showed large inundation in the floodplain can be found in
Figure 3.2.

4.1.2 Fieldwork data - Online

The main objective of the interviews was to set the technology assessment
into retrospective and to answer the ”Follow the forecast” research question.
The online interviews consisted of interviewing national experts that con-
tributed to the EAP. The interviews will be used to fill in the questions that
arise when analysing the disaster management system. Mostly focusing on
the time frame and decision making network in the system. The interviews
are done online via Skype, as the Covid-19 response does not allow for travel
to Zambia. The aim was to identify the time components and decision mak-
ing structure of the EAP.

4.1.3 Databases

Several data sources are used to compare, to validate or set in context the
findings. First of all, discharge data supplied by 510 and WARMA was used to
validate the lead time forecast gathered by the C/M-ratio. The impact data
that was used to assessthe impact level in the GloFas analysis was used to
allocate the area of interest and its impact level. Demographic data was used
to set model performance into context in terms of exposure. In the light of
climate change and population growth, the importance of the technique is
analysed. This is done using UN demographic data.

The sources of information that are used for Senanga are located in close
proximity to each other as visualized in Figure 4.2. The three data input lo-
cations are visualized. To be able to correctly compare the three data sources
it is of importance for them to be in close proximity.
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Points	of	Interest	Senanga

Discharge	Station

GloFas	Virtual	Station

Main	Zambezi

OpenStreetMap

Legend: Senanga

Figure 4.2: Locality of the Discharge, Virtual GloFas and POI Stations at Senanga.

4.2 research questions - technology assessment

The goal of this technology assessment is to answer the technical aspects of
the model. The four questions together create the Technology Assessment
Framework — which assesses the use of the PMSR in flood forecasting.

4.2.1 Identification

In research question 1, it is tested if the C/M-ratio provided a reasonable
response over several possible points of interest in the floodplain. An up-
stream point of interest is compared with a downstream point of interest.
Their relation can be used to forecast floods downstream. The optical satel-
lite imagery is used to identify the acutal inundation. Furthermore the iden-
tification is executed by comparing the C/M-ratio’s to the discharge values.
The timing and onset is an important identification factor. To find the rela-
tion between the up- and downstream point the reaction to the C/M-ratio is
used.

As described in Table 4.2, several aspects of the floodplain are taken into
account when determining the best location for applying the PMRS forecast.
The points of interest are assessed by their maximum width, relative up-
stream area to Senanga, satellite response (maximum C/M ratio). To find
the best point of interest, an upstream point has to be selected at Senanga
and Lukulu. These points of interest form the input location for the fore-
cast model that is created. The locations are chosen on their response to
the C/M ratio, the location in the catchment and the guidelines as defined
by Brakenridge et al. (Brakenridge et al., 2007). First of all, the locations
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should be located in the catchment so the points entail a representative part
of the upstream catchment area. Furthermore, the point should give a good
response to the C/M ratio (by using the criteria of (Brakenridge et al., 2007))
and should show enough lead time to the downstream area of interest. In
Figure 4.3, all the points are displayed that are assessed for this research.
The average width is determined by measuring the width of the floodplain
on Google maps. The average width for all point is found. Secondly, the
upstream catchment area is measured relative to one another. This is done
by looking at the total catchment area and upstream river network. Taken
this all into account the location is with the best and worst representative
catchment area is ranked. Finally the maximal response to the C/M-ratio is
determined by looking at the maximum C/M-ratio that is obtained from the
data in a specific high flood year.

Point of Interest
Number of Points
used

Average width
floodplain [km]

Covered
upstream area
[3-1]

Max. C/M Response [-]

Senanga (in Barotse Floodplain) . . .
North of Lukulu . . .
Kalabo . . .

Table 4.2: Points of interest that are asssessed for identifying the flood forecasting
capability of PMRS data. To be filled in the Results. (covered upstream
area is measured relative to one another, with 3 = largest upstream area,
1 = smallest upstream area.)

Figure 4.3: All points of interest that are investigated, all the POI’s are located in
and around the Barotse floodplain, numbers at the points refer to the id
number in QGIS
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4.2.2 Multi-Annual Analysis

For research question 2, the trends or progression in the multi-annual anal-
ysis are found. These form the basis of testing the new PMRS forecasting
model. The analysis is done in several steps as discussed below.

Identify Multi-Annual trends

In order to obtain information about the exact occurrence of a flooding and
the C/M-ratio threshold level, a multi-annual extreme value analysis is exe-
cuted. Extreme value analysis is used to analyse C/M-ratio 30 year records.
Furthermore, it is done to estimate future occurrence probabilities. The data
used in the analysis must be evaluated in terms of the objectives, length
of records available and completeness of records. By comparing the C/M-
extreme value analysis with the extreme value analysis of the discharge sta-
tions, a relation is found between the threshold values of the C/M ratio and
the discharge. Using this relation, a threshold of the C/M ratio can be in-
troduced. Two methods are used to identify the multi-annual trend and the
relation with the C/M ratio. First of all, a Spearmans rank correlation is
executed. Spearmans rank used a Pearsons correlation function on a ranked
data set. This rank correlation allowed for correlation of large data sets
which are not normally distributed. It helps to mitigate the effect of outliers.
A condition to be set for Spearmans rank is that the variables in the data
should be in a monotonic relationship with each other. A monotonic rela-
tion indicates that the variables should positively or negatively follow each
others trend (not necessarily in a linear fashion.) The equation for Spear-
mans rank can be found in Equation (4.1). To compare, a second correlation
function is used to see the effect of the Spearmans rank. This correlation
function is the Kendall Tau correlation. While the Spearmans rank is based
on errors in deviation, the Kendall Tau correlation is based on calculations
on concordant and discordant pairs. It is insensitive to error. The equation
for the Kendal Tau correlation can be found in Equation (4.2). Kendall Tau
mostly has a better statistical correlation, but, it is widely used on small data
sets. It is interesting how the two compare when the extreme value analysis
is done.

rs = ρrvX ,rvY =
cov(rvX, rvY)

σrvX σrvY

(4.1)

ρ denotes the Pearson correlation coefficient, applied to the variable of the
C/M ratio. rv implies the ranked variable of the different axis. cov(rvX, rvY)

and cov(rvX, rvY) displays the co-variance of a the ranked variable and
σrvX σrvX and σrvY σrvY are the standard deviations of the rank variables. This
formula must be used as the simplified Spearmans rank correlation is ap-
plied to an integer input, which the C/M ratio nor the Discharge records
are.

τ =
(number of concordant pairs)

(number of discordant pairs)

(
n
2

)
(4.2)
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Where the
(

n
2

)
=

n(n− 1)

2
is a binomial coefficient.

Secondly, a non-linear polynomial fit is done to find the r2 value or the
coefficient of determination. The polynomial has a degree of 2. This r2 value
is the correlation coefficient of the data and it allows to find the level of cor-
relation between the data sets. Values of the r2 value range between minus
infinity to 1. The equation for the coefficient of determination can be found
in Equation (4.3). Both are combined to find the threshold levels of the C/M
ratio that correspond to the discharge thresholds as set in the EAP.

R2 ≡ 1− SSres

SStot
(4.3)

Where the SSres indicates the residual sum of squares and the SStot the
total sum of squares (the variance of the data).

In hydrological modeling one uses the term return period. The return pe-
riod, or also called the return interval, is defined by the average estimated
time between floods. The return period of the C/M ratio and discharge
records for 2, 5 and 10 year return periods was calculated. The model is
assessed by different return periods and for different probabilities of ex-
ceedance. In research question 4, this output is compared to the performance
of GloFas. The return period is calculated using Python. The relationship be-
tween flood return period (denoted as T) and the probability of occurrence
(p) is given as follows:

p =
1
T

(4.4)

Floods with a 10-year return period have a probability of 0.1 or 10% of
returning each year. The probability of non-occurrence (q) is calculated by
p + q = 1. The return period can be calculated by taking the annual maxima
of each year of the data set. Sorting and ranking them, and calculating the
probability by:

p =
(n− i + 1)

(n + 1)
(4.5)

Where pi entails the probability of a specified ranked flood. i determines
the rank and N the number of annual maxima observations.

4.2.3 Timing

For research question 3 the model is evaluated and tested on timing. For this,
the inputs of the model are gathered. The probability of exceedanceis gener-
ated by calculating the Quantile Regression function between the discharge
and C/M ratio. (Weerts et al., 2011) defined the use of Quantile Regression
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of inundation levels to forecast floods. A probabilistic relation can be simu-
lated between the actual discharge and the related C/M ratio. The data is
used to optimize the time shift from the upstream to downstream. Finally,
the model is analysed by its performance score in a contingency table.

Normal Quantile Transform

A pre-processing step was used to indicate if the data could be fitted better in
the Quantile Regression relation. The Normal Quantile Transform is a form
of pre-processing that transforms the C/M ratio values using their quantile
position (Weerts et al., 2011). It is checked whether such a pre-processing
step could make the relationship better by reducing the impact of outliers.

Quantile Regression

The quantile regresssion is used to estimate the relationship between the
probability distribution of the upstream and downstream C/M Ratio. It is
used to estimate the conditional quantiles (Weerts et al., 2011). The degrees
of freedom in this quantile regression is kept to a minimum by applying a
linear regression for each quantile. The quantiles of interest are deducted
from the same probability levels used for GloFas. The quantile regression of
the data allows for the points to be distributed within their allocated quan-
tile. This quantile regression plot allowed the user to obtain the probability
of a point. The assumption that must hold is that the amount of points must
be large enough to assign a probability distribution. Furthermore, the data
set should cover the whole spectrum of expected values. This is obtained by
also using the DMSP data set, which contained over 30 years of data, with
over 10000 samples. Weerts et al. concluded that the use of Quantile Regres-
sion provides a simple, efficient and robust way of estimating forecasted
water levels with a estimation of the predictive uncertainty. The quantile
regression plot is obtained using the QuantReg function in Python, located
in the statsmodels package. The regression model is built for each quantile.
The response can be describe by Formula (4.6).

Qτ(yi) = β0(τ) + β1(τ)xi,1 + βp(τ)xi,p (4.6)

Where i = 1,.....n and βτ are found by solving the minimization as given in
(4.7).

min
β0(τ),...,βp(τ)xi,p

n

∑
i=1

ρτ

(
yi − β0(τ)−

p

∑
j=1

xi,j ∗ β j(τ)

)
(4.7)

Where each quantile level level is described by τ. Each quantile regression
solution to the minimization problem has a distinct set of linear regression
coefficients that are plotted (Rodriguez and Yao, 2017).



4.2 research questions - technology assessment 41

Shift Optimization

The optimal time water takes to go from the upstream point to the down-
stream point is calculated by the shift optimization. The shift optimzation
looked for the ”best-fit” quantile regression relationship. The best fit is de-
termined by the optimum of the coefficient of determination in the 50% per-
centile in the quantile regression. By looping the quantile regression cal-
culation over all time shifts, the best scenario is found. The relationship
optimization can be visualised by plotting the different time shifts against
their corresponding coefficient of determination.

Probability of Exceedance

The forecasts provided by GloFas have a specific probability. A probabilistic
value is assigned to the PMRS forecast via the quantile regression percentile
relationships, equivalent to the GloFas probability. The different percentiles
correspond to the probabilities of exceedance of the C/M ratio time series.
By applying them to the time series, a time series of each specific probability
can be obtained and visualized.

Model Set-up

The model compares the upstream ”prediction” with the downstream ”ob-
servation”, both are C/M ratios. The prediction is equipped with the dif-
ferent probabilities as obtained from the quantile regression. The different
prediction probabilities are compared to the observation at Senanga. First, a
selection in the dataframe is made between the first moment a threshold is
reached in the observation. This allowed the model to determine the exact
first moment a flood is seen in the observation at Senanga. This is of great
importance, as we aim to forecast a flood. Correctly forecasting a thresh-
old is done by looking at the exact first moment a threshold is exceeded in
the season, which is equivalent to the actual moment a flood wave would
cause flooding. Thus the moment when early action is most needed. The
ability to forecast ’on-time’ for the first flood moment will show to be more
important in the Chapter 5. The model investigated what happened when
a set threshold in the observation was exceeded. If the threshold in the ob-
servation was exceeded, the model would see if the prediction would also
exceed this specific threshold, given a set time window. This time window is
very important because it allows the model to look if the prediction would
exceed the threshold within a specific time bound. This time bound is used
to determine the lead time that is acquired. To evaluate the performance,
the different contingency table characteristics are calculated (Hit, Miss, False
Alarm, Correct Negative). This is explained extensively in the next section.

Two important time aspects play a role from the upstream point in the
floodplain to the downstream point of interest at Senanga. First of all, the
prediction upstream is ”shifted” downstream by the shift optimization. This
is the initial maximal lead time that is defined. To explain, this is the opti-
mized time it takes from a C/M ratio wave to reach the downstream point in
Senanga. Secondly, there is the time window in which the model is allowed
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to look for the exceedance of the prediction. This time window has to be de-
ducted from the shift time to obtain the lead time. Another important time
consuming source to take into account is the time it takes for the satellite
to actually acquire the data. This is further discussed in the methodology
about the geo-intelligence workflow. The time windows are visualized in
Figure 4.4.

Figure 4.4: Time window of the system explained. Containing the two main time
components. (source: own work)

4.2.4 Skill analysis

In research question 4, the skill of the model is assessed and benchmarked
against the skill of GloFas. First, the skill of the PMRS product itself is as-
sessed. Then it is benchmarked against the current GloFas product.

In first instance, the performance of the model is tested upon warning
thresholds and time windows based on the ROC graphs. The skill is of im-
portance as it describes the predictive value the model has. The model is
validated based on different return periods that are obtained from the multi-
annual extreme value analysis. The performance of the model is visually
assessed based on the ROC curves and contingency table output.

The predictive value of the PMRS model is tested by creating a contin-
gency table. The contingency table includes the hits, misses, false alarms
and correct negatives of a model performance. A hit is defined as the num-
ber of peaks above a set threshold. The time-frame of analysing the hits is set
on one day as the satellite data has a daily availability. The false alarms are
defined as the number of peaks above the threshold while the actual data
does not reach the threshold value. Misses are the number of flood event
days that are not qualified as reaching the threshold while the ground truth
data is reaching the threshold. A correct negative is defined as the number
of correct negative responses to the threshold, while the observed data ob-
serves the same quantification to the threshold value. All these parameters
are calculated by a Python script that changes the observed and predicted
data to [0] for not reaching a threshold and to [1] when the threshold is
reached. The values can be used to compute a contingency table. Displayed
in Table 4.3 (Martina et al., 2006).

The output of the contingency table can be used to verify the metrics of
the forecast. There are four metrics used to assess the predictive value of
the modeled forecast. The metrics that are defined compared to the metrics
used by 510 to assess the performance of GloFas. By assessing both models on
the same comparisons, the outcomes can be compared when the benchmark



4.2 research questions - technology assessment 43

Contingency Table OBSERVATION

[1] - YES [0] - NO

PREDICTION [1] - YES Hits False Alarms

[0] - NO Misses Correct Negatives

Table 4.3: Example Contingency table source: (Martina et al., 2006)

analysis is performed. The metrics used are: Probability of Detection (POD)
or named Hit Rate (HR), Probability of False Detection (POFD), False Alarm
Ratio (FAR) and Critical Success Rate (CSI). The metrics are calculated using
the following formulas:

HR or POD =
Hits

(Hits) + (Misses)
(4.8)

POFD =
False Alarms

(False Alarms) + (Correct Negatives)
(4.9)

FAR =
False Alarms

(Hits + False Alarms
(4.10)

CSI =
Hits

(Hits) + (Misses) + (False Alarms)
(4.11)

The metrics can be used to assess the predictive value of the PMRS model.
A plot between HR and FAR or POFD for different thresholds shows the
predictive value. As all the values of the contingency table contain integers,
the metrics are scores between 0 and 1. By varying the input threshold
(threshold of C/M ratio at which corresponds to a discharge threshold) the
predictive value is changed. The plots below show the increased skill that is
reached when the curve moves to the left upper corner in the graph. When
the plots occur in the grey area, the model has no skill and the performance
is bad. If the plots are made for the different probability of exceedances,
the expectation is that the high probability of exceedances plot near the (1,1)
point. Vice-versa the low probability of exceedance points will plot on the
left side of the plot. As (I.N. Streefkerk, 2020) has shown in the Figure 4.5,
there are two locations where the model never or always forecasts an event.
As the orange line moves further from the diagonal the skill is increased.
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Figure 4.5: Verficition analysis as described by (Martina et al., 2006) and visualised
by I.N. Streefkerk (2020)

GloFas benchmark

The GloFas product can be benchmarked to the outcomes from the skill anal-
ysis from research question 4. The skill GloFas in Zambia is tested for dif-
ferent locations. At every location, the 10 year return period flood with
associated probabilities is tested. The skill of GloFas is tested in a slightly
different way, GloFAs! (GloFAs!) is assessed with a different time window
methodology. The peaks of the GloFas prediction and the discharge records
in the flood season are matched. The peak is evaluated based on the 10

year return period threshold. Therefore, GloFas is tested with the ability to
forecast a flood threshold in each wet season. The GloFas model does take
into account a time window of three days when determining the skill for
the prediction. However, because the peaks are matched, the first moment a
flood hits is not taken into account. This is different from the PMRS model
as it does not discriminate between the first moment a flood occurs in the
season. This difference is key to comparing as the positive outcomes of the
contingency table (hits and correct negatives) become more dominant. Their
weights overpower the negative outcomes and contingency scores rise. For
the comparison to GloFas, we can take this measurement method into ac-
count. In this way, the lead time comparison can be taken into account.

For each GloFas virtual gauging station a cut-off is made in the contin-
gency table. A station is classified to have predictive skill as long as the
POD exceeds 0.7 and the FAR remains below 0.3. This classification can be
used to compare the two contingency tables.

4.3 research question - ”follow the forecast”

4.3.1 ”Follow the Forecast” Analysis

For research question 5, the research is focused on three main subsystems:
the forecasting subsystem, the decision making subsystem and the response
subsystem. These subsystems are the basis of the FFWRS and are described
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in Chapter 2. In this section all subsystems are analysed to answer research
question 5. The three subsystems are separately analysed using different
techniques, appropriate to the different subsystems. The main objective of
this section is to optimize the trade-off between confidence of the forecast
and the intervention window. For this, the analysis is focused on the ”tim-
ing” and ”decision making” of each subsystem. By combining the informa-
tion on the analysis of ”timing” and ”decision making” in all subsystems, a
conclusive advice can be drawn on the earlier named trade-off.

The first subsystem, the forecasting subsystem, is analysed using a tech-
nique called geo-intelligence workflow. This technique allows the user to
map all steps taken in the technical assessment of the forecasting method.
The second subsystem, the decision making subsystem, is analysed using a
forecast flow diagram this allows the user to map the chain of decision mak-
ing within the different entities included. Lastly, the response subsystem is
analysed using a technique called humanitarian value stream mapping. The
HVS measures and maps the stream of actions and its time components. To
clarify the structure of the methodology for the ”follow the forecast” part of
the research, Figure 4.6 provides an overview of the named methods.

Figure 4.6: Disaster Management Workflow. Based on the FFWRS workflow.
(source: own work)

The methodology and result section do not display an investigation in the
possibility of integrating an adaptive signal monitoring system. However, in
the discussion there is a suggestion for improvement of the EAP based on
this theory.

Geo-Intelligence Workflow Mapping

The geo-intelligence workflow is mapped using graphical modelling. In a
graphical model the user is allowed to create inputs, tasks and outputs.
By streamlining the tasks and the settings needed to obtain the full geo-
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intelligence cycle, the overview is generated. By obtaining the mapped
workflow, the creation, sharing and understanding of software processing
of geo-data is visually represented and made easier (Lemmens et al., 2018).
Although a visualization is created, the model should be converted to QGIS
or python to create an automated API for the actual implementation. This
is not in the scope of this research. What is also mapped are the time in-
tervals that occur in each step. By understanding the time window of the
geo-intelligence system, the new technology can be set into perspective. The
automated API should be able to do at least the following:

• Extract the daily satellite imagery.

• Run an IDE (Integrated Development Environment) such as python to
process the data and run model as described in Appendix E.

• Combine trigger information of multiple sources to come up with a
single trigger threshold.

• Run behind the FBF-dashboard to display the triggers.

Forecast flow mapping

The forecast flow is mapped using the inputs from the EAP combined with
the interview outputs. A clear organogram is created using the information
provided. The visualization leads to clear understanding of the efficiency
and decision making process within the protocol. Two main flows of infor-
mation are mapped: the dissemination of trigger information and the execu-
tion of tasks. The set-up and output of this section is intensively discussed
during the interviews.

Humanitarian Stream Analysis

The Humanitarian (value) stream entails a field-oriented approach to map
the timing of each specific segment in the process. There are three steps
that are undertaken to come to the conclusion (Salvadó et al., 2015). First
of all, data is collected in order to map the humanitarian stream. Prior to
taking interviews, a deep investigation into the ”open or available” data
was conducted to gather the maximum amount of raw data. It continued
by taking interviews of practitioners of the EAP. Humanitarian stream map-
ping is conducted to effectively gather the information and map the stream.
Each interview collected a small part of the humanitarian stream from each
practitioners point of view. Combined, these form the basis to map the hu-
manitarian stream. The data is collected using online interviews such as
Skype. It is desired to interview multiple stakeholders of the EAP. Due to
the limited interview capacity the ’value’ is not mapped. The humanitarian
stream is mapped and the interviewees gave interesting insights in decision
making and timing components of the EAP.
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Figure 4.7: Methodology for mapping the Humanitarian value stream (Salvadó
et al., 2015)





5 R E S U LT S

In this section the main results of the research are described. The result
section is structured so it follows the research questions. Additional figures
and results are found and can be consulted in the Appendices.

5.1 identification

The identification section of the results aim to answer research question 1:
Can Passive Microwave Remote Sensing be used to identify inundation? To
start off, the passive microwave data is downloaded. The signal of the bright-
ness temperature can be found in Figure 5.1. The figure visualized the chang-
ing brightness temperatures over a spatial distribution over the floodplain
on a given day. The black lines represent the Zambian border. The red dots
represent the points of interest that are located within a floodplain. All the
points are located in a different brightness temperature cell and thus give
a different input to the brightness temperature. This was also seen in the
Figure 4.3.

Figure 5.1: Figure showing the different brightness temperatures at 01-08-2007. The
red dots represent the four points of interest that have been assigned.
The grey/black lines show the outline of the countries surrounding
Zambia. (own work)
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The different point of interests that are investigated are displayed in Fig-
ure 4.3. By extracting the brightness temperatures of the ’C’alibration and
’M’easurement cell, the C/M-ratio is extracted, as described in Section 2.4.3
. As stated in Table 5.1, the points of interest are assessed based on different
aspects. The final points of interest that are selected are shown in Figure 5.2
and Figure 5.3.

Point of Interest
Number of Points
used

Average width
floodplain [km]

Covered
upstream area
[3-1]

Max. C/M Response [-]

Senanga (in Barotse Floodplain) 4 30 3 1.15

North of Lukulu 5 16 1 1.06

Kalabo 5 10 2 1.07

Table 5.1: Points of interest that are asssessed for identifying the flood forecasting
capability of PMRS data. (covered upstream area is measured relative to
one another, with 3 = largest upstream area, 1 = smallest upstream area.)

First of all, the points are selected for their response to the C/M-ratio. The
up- and downstream point show similarities in the width, peak and size of
the C/M-ratio signal (Figures 5.2 & 5.3). This is of importance as this di-
rect signal will be the main input for the forecast. Secondly, the maximum
C/M-ratio values of the up- and downstream point are comparable. When
forecasting a flood with a specific return period it is of importance to be
able to model the peak moments. Thus, having a comparable signal in the
peaks is key to being able to forecast in a good manner. Thirdly, there is
a clear lagtime between the up- and downstream point. This lag time, or
later referred to as shift, is the first insight into maximum lead time between
two points. This is the basis of the forecasting tool. Furthermore, the points
are also selected for their contribution to the upstream catchment area. To
forecast the flow at Senanga or Lukulu, it is important to model with a point
that entails the biggest contributing upstream catchment area. The contribut-
ing upstream catchment determines how much of the effective precipitation
fallen in the catchment area will actually end up in Senanga or Lukulu. Fi-
nally, the contributing width of the upstream and downstream point are
comparable in both cases. The contributing width of the floodplain deter-
mines how much water can be detected in the tile. The contributing width
of the upstream and downstream point should be similar in order to com-
pare C/M-ratio of the the upstream point to the downstream point.

Next to the selected area, all points of interest have been investigated. The
outcomes are displayed in Appendix D.i. The selection was based on the
previously described selection procedures. The other points of interest that
where investigated under-performed to the selected points at Senanga and
for Lukulu.

Eventually the detection is verified when the points classify all the criteria
of Table 5.1. Next to the criteria the points are checked for the inundation
pattern using optical satellite imagery. The inundation pattern in the Barotse
Floodplain is checked over a series of identified flood years. To answer the
research question, can the C/M-ratio be used to identify flooding, one has to
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integrate all aspects as described in the latter. It is possible to identify flood-
ing. The optical satellite imagery identifies the flooding, the readout of the
C/M-ratio shows to have the same temporal pattern. The identification and
comparison with discharge data in the next research question also confirms
the possibility of identification.

Figure 5.2: Selected points for the model: Upstream POI’s North of Senanga
(source: own work)
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Figure 5.3: Selected points for the model: Upstream POI’s North of Lukulu (source:
own work)

Figure 5.4: Points of interest in the Upper Zambezi River. The points at Lukulu and
Senanga are displayed. The points upstream of both areas are identified
as points to take the forecast measurement from. (own work)
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5.2 multi-annual analysis

The multi-annual analysis section of the results aim to answer research ques-
tion 2: To what extent can multi-annual trends in PMRS be related to dis-
charge records? The identification of C/M ratio outputs can only be val-
idated if they are linked to corresponding discharge measurements. First,
the discharge records are compared, an extreme value analysis is conducted
and finally the return period floods are calculated. The relation between
discharge and C/M-ratio is only evaluated for the POI at Senanga. As the
Lukulu station did not have sufficient discharge records to compare against
the C/M-ratio.

To start off, the C/M-ratio and the discharge at Senanga show similar out-
puts. An important moment in flood forecasting is the onset of a flood. The
actual moment when a threshold level is exceeded for the first time. This is
of importance because it is the moment in time when a flood actually occurs.
This is the moment one wants to forecast as precise as is required by the mit-
igation action. Figure 5.5 shows that the C/M-ratio and discharge overlap
quite well in the ascending (onset) part of the season. This allows for the
C/M-ratio to work as a proxy for flooding. Other years of these time series
are visualized in appendix C.

Figure 5.5: Discharge VS C/M ratio plot. Year: 2007 Location: Senanga (source:
own work)

The correlation between the discharge and the C/M-ratio is evaluated by
fitting a polynomial fit through the scattered data set. This is executed on
the hindcast of daily data for 30 years. In Figure 5.1, the polynomial fit is
displayed. A clear (close to linear) relation is found between the discharge
and the C/M-ratio records. The second order polynomial fit is characterised
by Equation (5.1).

f (x) = 9.9 ∗ 10−09 ∗ x2 + 9.3 ∗ 10−06 ∗ x + 1.0 (5.1)
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Figure 5.6: Discharge VS C/M ratio scattered. R-Squared value indicates a strong
correlation. (source: own work)

The classification of the correlation is done using three different analytical
methods. The methods are in depth explained in Chapter 4. The coefficient
of determination is 0.855. This indicates a strong correlation between the
two data sets. Furthermore, the data is evaluated using the Spearmans rank
and Kendall Tau correlation coefficients. Both are displayed in Table 5.2. For
the Spearmans Rank, the correlation is classified as strong. For the Kendall
Tau, the correlation is classified as medium to strong. Those three meth-
ods combined result in the identification of a strong correlation between the
discharge and C/M-ratio.

Correlation Coefficient p (to reject H0) Classification

Spearmans Rank 0,833 0,000 Strong
Kendall Tau 0,654 0,000 Medium - Strong

Table 5.2: Spearmans Rank and Kendall Tau correlation factors. Both show a strong
correlation between the discharge values and the C/M-ratio values at
Senangna (source: own work)

The two data sets are used to obtain flood return periods. The flood re-
turn period will allocate the specific C/M-ratio or discharge level that is
allocated to specific flood return period levels. In figures 5.7b & 5.7a, the
two return period floods are shown. In Table 5.3 the different return periods
are displayed. The discharge return period is calculated and changed into a
C/M-ratio by making use of the polynomial found in Figure 5.6. An inter-
esting result that is observed is the difference in return periods for both data
sets. Especially the 2 year return period flood differs quite a lot in the two
different data sets.
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Return periods Corresponding C/M-Ratio

Discharge - 2 year Return Period 1.062

Discharge - 5 year Return Period 1.088

Discharge - 10 year Return Period 1.093

C/M Ratio - 2 year Return Period 1.074

C/M Ratio - 5 year Return Period 1.090

C/M Ratio - 10 year Return Period 1.108

Table 5.3: Return periods based on C/M-ratio and discharge records at Senanga
(source: own work)

(a) Flood return period records based on the extreme value analysis. Based on discharge
records - DSMP dataset (source: own work)

(b) Flood return period records based on the extreme value analysis. Based on C/M ratio
records - DSMP dataset (source: own work)

Figure 5.7: Flood return periods from the extreme value analysis.
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5.3 timing

The timing section of the results aim to answer research question 3: Could
timing of a flood event be obtained from PMRS? To forecast floods, a rela-
tional model between upstream observed C/M ratios and downstream C/M
ratios at a later time epoch has been established. As relational method, a
Quantile Regression model has been chosen (see Ch. 4). The following pro-
cessing steps were tried out to reach a best results:

• Quantile regression with and without Normal Quantile Transform

• varying the response time between upstream observations and down-
stream observations

• Shift optimization & probability extraction

Below, the results of these variants is further described.

The Normal Quantile Transform (NQT) pre-processing step transformed
each feature (C/M ratio) following a normal or Gaussian distribution. This
tends to spread out the most frequent values (Weerts et al., 2011). With the
effect of reducing the effect of outliers. The result of the pre-processing step
was not ideal. The coefficient of determination showed that the fit without
the NQT pre-processed data performed better. The pre-processing step has
not been taken into account in the further proceeding of the model.

Figure 5.8: Normal Quantile transform. Left: The scattered C/M ratio points.
Right: the allocated points to their Gaussian distribution.

Figure 5.9 and 5.10 show the two data sets that are used for Senanga. (the
AMSR-E and DSMP data set). For the analysis of the model the DSMP data
set is used because of the length of historical data. The DSMP entails a data
set of more than 30 years. The 30 year record also provided a more trust-
worthy extreme value analysis. What can be seen is that output of the C/M
ratio changes throughout the year. The width and height peak of the C/M
ratio in each flood season differ. However, when comparing the shape of
each individual year, one can note that the up- and downstream point show
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similarities in width, height and shape. This similarity is of importance be-
cause it allows for the upstream location to forecast the C/M-ratio at the
downstream location, given a certain probability.

Figure 5.9: C/M ratio at Senanga. AMSR-E data set. Lead time optimized to 14

days. (own work)

Lead time optimization is the time shift in time between upstream point
and downstream (forecast) location. This time component is visualized in
grey timescale in Figure 4.4 in the methodology.

Figure 5.10: C/M ratio at Senanga. DSMP data set. Lead time optimized to 14 days.
(own work)

The C/M-ratio data series of the upstream and downstream points are
used to find the quantile regression relationship between a point upstream
and a point at the area of interest (at Senanga). The relational quantiles are
fitted with a linear function to obtain the fits of each quantile. The time-shift
between the upstream and downstream point determines the amount of lead
time that can be provided by the model. This time shift is optimized using
the coefficient of determination in this quantile regression plot. The Figures
5.11 & 5.12 display the quantile regression plot. The quantile regression fit of
the up- and downstream points show a clear relation. By obtaining the fits,
a probability distribution between the up- and downstream point is estab-
lished. The 90% quantile corresponds to a probability of exceedance of 10%,
as explained in the Chapter 4. The latter is used to implement a probability
factor in the forecasting model. For both data sets (ASMR-E and DSMP) the
quantile regression is found and optimized.
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Figure 5.11: Quantile Regression plot between the upstream and downstream point
of interest at Senanga. AMSR-E data set. Lead time optimized to 14

days. (own work)

Figure 5.12: Quantile Regression plot between the upstream and downstream point
of interest at Senanga. DSMP data set. Lead time optimized to 14 days.
(own work)
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As stated before, the shift is optimized using the coefficient of determi-
nation or the r2-value. The optimal shift is found to occur at a shift of 14

days. In other words, the best fit of the up- and downstream C/M-ratio is
found after a delay of 14 days. This was expected as the correlation analysis
(section 5.2) also showed this time shift as the most optimal. In brief, this
means that a rise in flood levels upstream is followed by a rise in flood lev-
els downstream about 14 days later. These 14 days indicate the maximum
lead-time that can be generated if the upstream point is used for detection.
This lead time is sufficient for response and early action (section 3.4) and is
also more than what currently is offered by GloFas (section 2.5).

In the figures 5.13 the shift optimization is displayed. The Senanga lead
optimizations show to have a good correlation between up and downstream
values. Their correlation allows for the use of the upstream point as a proxy
for flood forecasting in the downstream point at Senanga. The relation found
in the Lukulu points are not performing. The r2-value at Lukulu for the
AMSR-E data set is quite low (0.30). For the DSMP data set it is so low
(<0.1) that it can be questioned if a relation between up- and downstream
points can be drawn. Due to the difference in topographical, geological loca-
tion of the points at Lukulu, a difference in the output occurs. An important
difference is the type of floodplain in Lukulu. For Senanga a clear, wide and
annual returning wet floodplain is present. For the Lukulu station, it is less
certain that the upstream point shows to inundate when flooding occur at
Lukulu. This is also due to the fact that the upstream point at Lukulu con-
tains less of the upstream area of all the water that surpasses Lukulu. Thus
flooding at Lukulu is not directly linked to the inundation of the floodplain
in the upper Zambezi. Different branches, like the Kabompo river, also play
an important role in the flooding of Lukulu. Finally, the floodplain it self is
less suitable. It is less wide and the yearly inundation of the wetland is not
always occurring. The Lukulu data set is not evaluated in the model as it
will only produce effects from noise.
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Senanga AMSR-E data set Senanga DMSP data set

Lukulu AMSR-E data set Lukulu DMSP data set

Figure 5.13: shift optimization for the diffent points of interest and the different
satellite types. (source: own work)

From the quantile regression plots, the fits for the quantile relationship
are obtained. The probability of exceedance plots are obtained by using
the quantile fits and plotting them in the time series. The probability of
exceedance graph shows the different exceedance probabilities at each point
in the data set. The probability fits between between the upstream C/M
ratio series and downstream 14-day shifted C/M ratio are the main input to
the model. They are used as the upstream predictor.

Figure 5.14: Probability of exceedance of certain threshold. Values used to produce
contingency table of the model. AMSR-E data set. Lead time opti-
mized to 14 days. (own work)
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Figure 5.15: Probability of exceedance of certain threshold. Values used to produce
contingency table of the model. DSMP data set. Lead time optimized
to 14 days. (own work)

The upstream predictions of the C/M-ratio values are used as the main
input for the model. The downstream observation are used to construct the
relationship with the upstream prediction and are used to verify the skill
of the model. The model workings are explained in the Methodology. The
model compares all the different years separately. It is validated by compar-
ing if the actual moment of threshold exceedance is predicted within a given
time window. The model is created to compare this moment in time with
the prediction, given a certain time window. If the prediction reaches the
same threshold within the given amount of days, a hit or correct negative is
detected. Otherwise if the prediction and observation do not show the same
threshold, given the time window, a false alarm or miss is detected. The skill
of the model is tested using these parameters. The skill is tested in the con-
tingency table. The contingency table is interpreted using a ROC diagram.
Figure 5.16 displays the performance of the model. On the y-axis the HR is
displayed. On the x-axis the FAR (left) or POFD (right) are displayed. As long
as the lines stay left of the grey diagonal, the model shows to have skill. The
right graph, displaying the HR against the POFD, aims to answer the follow-
ing question: What is the ability of the forecast to discriminate between the
events and non-events? The left graph, displaying the HR against the FAR,
aims to answer the question: what is the ability of the forecast to discrimi-
nate between hits and false alarms? Both should be taken into account when
assessing the skill of a model, as they both interpet the output in a different
way. The coloured lines in the ROC curve represent he corresponding prob-
ability of exceedance levels. These show that the model performs differently
for the different probability of exceedances.

For the higher range of thresholds (C/M-ratio > 1.07) it is not possible to
create valid ROC diagrams. There occurs a class imbalance when working
with the higher thresholds. The imbalance occurs because one of the classes
or thresholds constitutes a small minority of the data. ROC graphs cannot
measure well for imbalanced data set (Dataman, 2018). Therefore the output
of the ROC curves and contingency table can only be assessed for the lower



62 results

thresholds.

For the humanitarian actor it is of importance to have a model that rather
detects an exceedance of a threshold too early, rather than no detection.
Therefore, warning with a threshold of a 10 year return period is on the
high side. It would be better to use such systems to allocate the yearly oc-
curring floods. Which correspond to C/M-ratio thresholds in the range of
1.05-1.07. There does however occur a trade-off between (financial) warning
capacity and response frequency of a humanitarian organisation.

Figure 5.16: Leadtime = 0 days. ROC graph at Senanga for the DSMP data set, dt
= 14. The threshold has a changing timewindow in which the ROC
contingency table is created. (source: own work)

5.4 skill analysis

In this section the aim is to answer research question 4: How does a PMRS
based model perform in comparison with GloFas and what skill can a fore-
cast combination with PMRS offer? In the ROC plots given in figures 5.17

to 5.19 the output of the model is tested. The model is tested for 3 different
time windows (7, 4 and 0 days lead time).

For clarification, the dt-value is the model time window, the lead time is
calculated by subtracting the dt-value from the maximum shift as referred
to in E.1. So a model time window of dt = 7 days refers to an lead time of:
14− 7 = 7 days.

The time windows upon which the model is assessed are related to the
time windows used in the GloFas forecast. The corresponding time window
is chosen to be able to compare the result to GloFas. It also indicates the
ability of combining two systems, as they both show skill for the given lead
times. The skill is analysed for all probability of exceedances. This allows
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for the discrimination between a given probability and its skill.

In Figure 5.17 the time window of 7 days is implemented. This corre-
sponds to a lead time of 7 days. The 7 day lead time forecast shows skill
for most thresholds and probability of exceedances. For the high thresholds
(1.06, 1.07) and the lowest probability of exceedance (0% - 20%) the model
does not show to have skill. This is also due to the fact that there is an im-
balance in the data set for those larger thresholds. Thus a clear conclusion
that these probabilities show no skill cannot be drawn. What is noticed is
the skill that is seen for all the other plotted points. With a 7 day lead time
the model is able to provide skill, thus could be used in combination with
GloFas to increase performance.

Figure 5.17: Leadtime = 7 days. ROC graph at Senanga for the DSMP data set,
dt = 7. The threshold has a changing timewindow in which the ROC
contingency table is created.(source: own work)

In Figure 5.18 the performance for the 10 day time window is assessed.
This time window corresponds to a 4 day lead time. This is due to the max-
imal shift of 14 days, thus maximal lead time of 14 days. When subtracting
the time window of the model, a lead time of 4 days is created. The 4 day
lead time is also chosen as it is one of the lead times used by GloFas. The
skill increased when compared to the 7 day forecast. The plot moved up to
the left corner. The increased skill is observed. The increase in skill is also
expected as the model has more degrees of freedom in its time window.
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Figure 5.18: Leadtime = 4 days. ROC graph at Senanga for the DSMP data set, dt
= 10. The threshold has a changing time window in which the ROC
contingency table is created. (source: own work)

Finally, in Figure 5.19 the 0 day lead time is predicted. These graphs indi-
cate that the model has a lower uncertainty when the time window increases.
This is also expected as the model is allowed to find a prediction threshold
in a bigger time-bound.

Figure 5.19: Leadtime = 0 days. ROC graph at Senanga for the DSMP data set, dt
= 14. The threshold has a changing timewindow in which the ROC
contingency table is created. (source: own work)

The results are also generated for the different thresholds that are obtained
from the return periods. Because of the limit of the ROC plots, floods with
a return period of 2 years can only be displayed. In Figure 5.20 the flood re-
turn period of 2 years is displayed based on the discharge records. In Figure
5.21 the flood return period of 2 years is displayed based on the C/M-ratio
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records.

Figure 5.20: Senanga DMSP data set with threshold = 1.062. ROC graphs at
Senanga for the DSMP data set. The threshold is set at one spe-
cific level and the ROC curve is changed over different time windows
(dt).(source: own work)

Figure 5.21: Senanga DMSP data set with threshold = 1.07. ROC graphs at Senanga
for the DSMP data set. The threshold is set at one specific level and
the ROC curve is changed over different time windows (dt). (source:
own work)

What can be noted is that most of the probabilities and time window
show predictive value. The difference outcomes for the return period of
the discharge and C/M ratio are expected because the threshold set by the
discharge 2 year return period flood is much lower. For the C/M ratio 2

year return period it is noted that the ROC are just not able to accommodate
for the interpretation of the outcome. The dt=7 time line shows strange be-
haviour due to the imbalance in the result set. The results of the ROC curves
based on the 5 and 10 year return periods can be found in appendix C. The
skill that is shown by the PMRS model indicates its effectivity in forecasting
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a flood. It is interesting to compare the products with each other and see
how they both can contribute in lowering the uncertainty bound or pushing
the lead time.

5.4.1 Comparison with GloFas

The model output will be compared to the ground truth data and the GloFas
data. This is done by assessing the work with a contingency table that is cre-
ated for the Senanga station. The GloFas contingency table is computed in a
different way. GloFas is equipped with a 4 or 10 day lead time. The predic-
tion and observation are compared based on their annual exceedance of the
10 year return period flood threshold. It is not taken into account at what
moment the observation indicates a flood. In other words, a time window is
not taken into account. This is because there is no exact impact data set that
can relate one moment in time to a flood. Thus only the extreme value anal-
ysis is included (10 yr return period) and the actual moment of flooding is
excluded. For this the PMRS model needs to be slightly adjusted. The time
window is enlarged in such manner that one full wet season is taken into
account. The results can be found in Figure 5.22. The Figure shows that for
all thresholds and for all quantiles (probability of exceedances) the models
shows to have good skill. The skill that was acquired by the EAP for a GloFas
virtual station to be classified as trustworthy is: HR > 0.70 & FAR < 0.30. For
all the different probability of exceedances this is the case. Thus the model
would be classified as trustworthy for forecasting by the regulations of the
EAP. It must be noted that this is the performance of the PMRS model based
on the normal to high flows. This does not include extremes that have a re-
turn period of 5 or 10 years. However, the ROC cannot model those outputs
because of the imbalance in the data set. This is later discussed upon in the
Discussion.

Figure 5.22: Senanga DMSP data set that compares to the GloFas data set. Effects
of the time window not included.(source: own work)
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5.5 ”follow the forecast” analysis

In this section the aim is to display the results that are found for research
question 5: What is the intervention window created by the Early action
Protocol for flood protection in Zambia? This section entails a three fold of
different techniques used to assess the different parts of the FFWRS.

5.5.1 Geo-Intelligence workflow

In this section the lead time that is acquired by the model is set into perspec-
tive to the geo-intelligence workflow that has to be done to acquire those
results. By assessing the time it takes to go from measurement to forecast,
one can find the final intervention window used for taking action.

The results of the PMSR model are obtained using ASMR-E and DSMP
satellite data sets. This data is historical, as it entails a large 30-year data
set. Both data sets have global a 99% global coverage with a day- and night-
overpass. The full geo-intelligence workflow can be found in Figure 5.23.
Insights into the geo-intelligene workflow inside the model can be found
in appendix E. The geointelligence workflow shows that the process is split
up into different time steps (de Groeve, 2010). The time steps are given for
downloading the AMSR-E data from the JAXA satellite mission. For real
application of this method, a currently running satellite mission should be
selected. This is just an indication of the timescale for the ASMR-E data set.
The timescale is divided into 5 different steps. Starting from the actual mea-
surement of the instrument to the moment the trigger is sent out.
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Figure 5.23: Geo-intelligence workflow for the ASMR-E data set (source: own
work)

The largest amount of time is found in the satellite overpass that has a full
coverage. As de Groeve et al. identified,” the average time between a flood
event and flood alert is between 2.5 and 24 hours” (de Groeve, 2010). This
is due to the overpass that occurs twice a day. With an average of 12 hours.
The 2.5 hours that is defined largely by the time it takes for the data to be
published (2 hrs) and then processed to find a trigger (0.5 hrs). The process-
ing time of a signal differs for the amount of locations extracted, computing
power and model optimization. The results indicate that the minimal time
it takes from flood alerts to come in is 2,5 hours. If the satellite has a full
coverage of the Zambezi plain, it surpasses twice a day, with the descend-
ing node (night overpass) being the most favorable overpass for brightness
temperature extraction. As the satellite has 99% global coverage, there could
be instances that satellite data is acquired with a T1 of 24 hours. This is
due to the first overpass to miss the area, thus having to wait another day
for the descending overpass. The minimal and maximal lead time and the
intervention windows are displayed in Table 5.4.
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T1 T5 Intervention Window Time

Minimal 0 h 2,5 h (PMRS model lead time) + 2.5h
Average 12 h 14,5 h (PMRS model lead time) + 14.5h
Maximal 24 h 26,5 h (PMRS model lead time) + 26.5h

Table 5.4: Intervention window calculation, T-values refer to Figure 5.23

The model workflow (Appendix E) displays the steps that are taken to go
from an input NetCDF data file to the actual trigger. The colored green parts
show the possibility for integration or combination with a GloFas trigger By
combining the GloFas trigger with the PMRS trigger the decision making
structure is based on two input sources. This can lower the uncertainty
when making Early Action Response decisions, thus leading to quicker de-
cision making. The speed at which the decision making process is executed
has an influence on the intervention window.

5.5.2 Flow of the Forecast

The flow of the forecast is obtained from the analysis of the EAP, see Figure
5.24. The current decision making process is not set in concrete as the EAP
is still under construction. The decision structure is let by the TWG. This
working group is allowed to structure and decide on the applied disaster
response. The tasks are executed and disseminated to the allocated branches
at regional, district and community level. In general, the actions are executed
by the ZRCS in cooperation with the DMMU. Decision making is based on the
input from trigger, the Zambian Meteorological Department (ZMD), WARMA

and the DMMU. In the HVS section a more in-depth insight into the decision
making process is provided.
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Figure 5.24: Organogram of the flow of forecast information for the EAP in Zambia
(source: own work)
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5.5.3 Humanitarian Stream Map

The Humanitarian (Value) Stream is mapped using the outputs from the
EAP and the outputs of the interviews with the people from the ZRCS. The
decision making flow of the EAP is visualized in Figure 5.25. There are a few
important outcomes of the interviews that are described in the following
paragraphs.

Pre-disaster actions

From the interviews held with the members of the ZRCS, specific actions
have been identified as important in the pre-disaster phase. These actions
are described in the EAP but have not all been put into action in Zambia. The
implementation of the EAP is not yet fully put into action in Zambia. Not all
pre-disaster preparation actions have been executed. Thus, they are noted
here to stress the importance of the preparation phase. The green blocks in
Figure 5.25 are the pre-disaster steps.

In the interviews with the ZRCS it became known that the actions described
in the EAP are also largely dependent on the preposition strategy and status.
As agreed upon, with the financial abilities that are supplied through the FBF

strategy, the ZRCS is able to fully preposition goods in the different branches.
The propositioning of goods, such as tentages and chlorine tablets, have an
enormous effect in the ability of the ZRCS to act on forecasted floods. They
allow regional branches of the organisation to quickly act without having to
wait for further supplies. Setting up the preposition in a correct way was
noted to be the most important element for ensuring a well working disaster
response.

Furthermore, it was noted by an interviewed ZRCS member that it is of
importance to fully inform the people in the vulnerable regions of all the
effects of natural disasters. Sensitization in general is an important topic, in
the humanitarian stream it is split out into multiple subjects. The sensiti-
zation has to happen in the fields of WAter Sanitation and Hygiene (WaSH),
shelter provision, disease burden and food security. By making sure the pub-
lic is aware of the risks, their vulnerability can lower because the people will
have an increased coping capacity. With the right knowledge locals can also
be trained on what to do in case of a disaster.

Lastly, it was noted that an identification of the most vulnerable would
benefit the ability to react quickly to a disaster. By identifying the ones in
need, the disaster response teams can target their time more wisely. This
can, partly, be done in the preparation phase of the event.

Intervention time

The intervention time is between the moment the trigger is sent out and the
actual flood happens. This intervention time is visualized in Figure 5.25 by
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the blue and yellow blocks. The yellow blocks show the latter discussed op-
portunities, the blue blocks are the actual taken actions in disaster response.
(as defined in the EAP)

First of all, it was noted by the interviewees that it is actually possible to ex-
ecute all the actions that are stated in the EAP and in Figure 5.25 in the seven
days of intervention time. This can only be ensured if the pre-positioning
process in the pre-disaster phase is executed. But if this is secured, the 7 day
intervention as supplied by Glofas and the PMRS model is enough to act on
the forecasted floods.

The interviewees were also asked what possibilities additional lead time
would give them. Additional lead time would have the benefit of people
from the ZRCS branches to go into the affected site are and identify the dam-
age by sight, identify the ones most in need, and specify their actual current
needs. They stated that it can be hard to visit the damaged site in time to
make a first damage assessment. This is due to the bad road conditions,
mostly influenced by heavy rain. This pre-assessment can be of importance
to better target the actions taken. Also reducing the risk of not being well
prepared when taking appropriate actions. The yellow blocks identify these
identification processess that could be better executed with extra lead time.
The PMRS model could be pushed to supply even more lead time, giving
the disaster response teams extra time to execute this pre-assessment. This
could be done by increasing the resolution, optimizing up- and downstream
relations and combining multiple forecasts in one forecast to create more
certainty.

Decision Making

The question arises, what can a decision maker, or in this instance the ZRCS

do with such a system? The PMRS model is a extremely lightweight daily
forecasting model that runs on a probabilty distribution. The model is now
fitted for Senanga. But flood indication at Senanga is also valuable for flood
warnings downstream. The TWG could use such a model to create more
certainty in their flood warning. Now, the model has an effect on district /
region level. But potentially this research could be extended to other areas
that confirm the requirements. In the discussion section some suggestions
are given to push the lead time even further by using a combined model.
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Figure 5.25: Overview of steps. Nomenclature on next page for easy reading
(source: own work)
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For easy reading the nomenclature of the Humanitarian Value stream map
supplied:

Nomenclature:

• GloFas - Global Forecasting Awareness System

• TWG - Trigger Working Group

• ZRCS - Zambia Red Cross Society

• WARMA - Water Resources Management Authority

• ZMD - Zambia Meteorological Department

• DMMU - Disaster Management Mitigation Unit

• IFRC- International Federation of the Red Cross and Red Crescent Societies

• RDRT - Regional Disaster Response Team

• DDMC - District Disaster Management Committee

• SDMC - Satellite Disaster Management Commitee

• DDCC - District Development Management Coordinator



6 D I S C U S S I O N

In this chapter the outcomes of the research will be discussed and are set into
perspective. The chapter is subdivided into six main parts, all touching upon
a different part of the research. First the hydrological complexities of the
system will be touched upon. Following a discussion about the model and
its performance. The discussion is continued with insights about the satellite
uncertainty. Finally the decision making and implementation strategy are
discussed. The limitations are displayed at the end of the chapter.

6.1 hydrological complexities

Care should be taken with defining the sites that are monitored. There are
a variety of explanations for a C/M-ratio to show insufficient predictive
power. Generally speaking, when the discharge variations lead to water
level changes without the inundation over the river banks, the PMRS data is
mostly based on noise and flood magnitudes are useless. A solution for this
problem would be to allocated river segments as input, rather than one cell.
This would eliminate some of the random noise variations. A river segment
could be extracted if the a combination of higher resolution pixels are used.
Additional satellite products can be used to obtain higher resolution in the
pixel. This could allow the user to extract river segments and combine mul-
tiple inputs in a multi-quantile regression approach.

River systems are fluid and ever changing systems. Their geography
changes over time. The C/M-ratio measurement cell must always be taken
in the middle of the river, to overcome problems of non-detection of inunda-
tion. The system could be improved by automatically finding an ideal loca-
tion within the floodplain. This could be done by extracting river locations
using optical data. It must be stated that the Zambezi river with its Barotse
floodplain is the most ideal location for using PMRS data. The width, river
type and clear annual inundation and the slow hydrological response, make
sure the PMRS model is allowed to forecast with a specific lead time. Scal-
ability of the product is extremely dependent on the geographical location
and topography of the area.

The C/M-ratio is a measure of the comparison of two brightness temper-
atures. It does not entail actual discharge but rather recognizes a flooded
area in-pixel. It is used to mimic the floods by looking at the percentage of
the pixel that is filled with water. Therefore, a specific type of river width is
required. To use such technology in different catchments, a classification of
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the river-bank and -width must be made in advance.

The relative size of the contributing basin at the upstream point is a point
of discussion. At Senanga, the POI’s covered a very large portion of the
basin that lies upstream of Senanga. In other POI’s, such as upstream at
Lukulu, that is not the case. A PMRS-model could be extended with a multi-
quantile regression of several points or other probability methods using mul-
tiple points in several branches upstream.

A source of random noise is the effect of local heavy rain. This does not
fully influence flooding but can cause local pools of water. They do not
contribute to the inundation or flooding of a river, but do appear to be pre-
sent/visual in the brightness temperature. In Figure 5.9 and 5.10, it can be
noted that every wet season starts with a flashy signal, showing lots of noise.
This noise can partly be explained because of this latter described effect of
heavy rain or pools. These heavy rains can locally affect the brightness tem-
perature and will shortly create peaks in the brightness temperature. This
might change very quickly as the pools also quickly disappear due to the
evaporation and infiltration.

Another point of discussion is the amount of the wetland being covered
in the pixel. If the river system is not confined in a large part of the pixel
and inundation patterns are not covered by the pixel, the C/M ratio signal
may not be commensurate with the river flows. As stated before, combining
river lengths or multiple pixels could be a way of overcoming this under-
performance.

Combining the hydrological settings of a specific river system, it can be
noted that there occur a wide variety of sizes, flow rates, climate conditions
which influence the performance of the PMRS. As every river system dif-
fers, it is important to check the performance of each system based on the
hydrological conditions that are present.

6.2 model

For this model the Savitsky Golay filter is used with a polynomial degree
of 1 and a window of 15 days. This SG filter allows for pre-processing of
the data, without disturbing the actual output. It must be noted that the
optimization of the polynomial and window is now only assessed on the
best outcomes of the ROC figures. Extensive optimization of the SG filter
parameters has not been performed in this study.

New satellites missions with different sensors should be tested to compare
its difference to the DSMP data set. Differences were noticed in the compar-
ison between the AMSR-E and DSMP data set. The inter-platform relations
and differences are to be studied before using different satellite products.
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The ROC curve measures the ability of the PMRS forecast model to dis-
criminate between a flood or not a flood. Thus, it measures the resolution
or classificatin performance in some way. It solely interprets the results of
model. The ROC does not include any bias in the forecast, however the bias
is canceled by using a regression model. The ROC does not say anything
about the reliability of the PMRS model in terms of durability or stability.
The ROC curve should rather be used to consider the potential usefulness of
the product. To test the stability, it is advised to include a stability analysis
of the system.

The model evaluates every flood year independently and then conclusions
are drawn from the output of all those years combined. The latter assumes
that each flood event is part of a set of independent time series. However, the
characteristics of the floodplain are not taken into account. Characteristics
like soil moisture or precipitation rates, can influence a system over a longer
period of time. Previous high magnitudes in floods are not correlated with
each other in time, while this information could be useful to estimate floods
better.

The model is trained to find the C/M-ratio at a specific location. This is
done by comparing the brightness temperature of the Measurement and the
Calibration cell. To find the Calibration cell, the model finds the surround-
ing point with the highest correlation in terms of brightness temperature.
However, it is not said that this cell contains no water. It just does best com-
pared to the other surrounding 8 cells.

The imbalance in the data, at the high thresholds, resulted in uninter-
pretable ROC graphs. In order to overcome this problem, a solution for this
imbalance should be found in a longer data set. This could be done by creat-
ing a long series of synthetic discharges (e.g. simulated with a hydrological
model). From this simulated discharges, a C/M-ratio can be extracted. This
simulated C/M-ratio should have the same statistical characteristics as the
observe C/M-ratios, shorter in time span. The level of noise and the sta-
tistical characteristics can be obtained from a simulated discharge that is
produced by a hydrological model specified to the area.

The GloFas contingency table is computed differently than the PMRS
model. In the PMRS model, an extra time component is included. This time
component entails the first moment a threshold is exceeded and allows the
model to find a prediction given a predefined time interval. The integration
of this time component is done because of its importance to forecasting. By
not including the time window between the prediction and the observation,
the actual forecast skill is not assessed in a way that follows the manner in
which the forecast is used for decision making. With the consequence that
the GloFas model is tested on the ability to locate a flood, rather than fore-
cast the timing.

However, the choice for not integrating this in the GloFas forecast is also
logical. As there is no exact (to date) impact data available, it is hard to
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combine the threshold exceedance to a date. GloFas is equiped with a given
lead time. This is not acquired from an upstream point in the floodplain.
This difference between the PMRS and GloFas model can also be used as
an advantage. When the time window of the PMRS model is set to 7 days
lead time, there is also a possibility that a flood is detected before the actual
7 days. Thus the detection of a flood can also occur for example in 3 days.
Giving the Senanga prediction 11 days lead time. (14 day shift - 3 day time
window) This allows for a earlier trigger, giving additional information to the
forecast system when combined.

6.3 satellite data uncertainty

This research did not include a uncertainty analysis, however it provides
probabilistic predictions, that are based on the uncertainty between the re-
lationship of upstream and downstream observations. In that manner, the
uncertainty is taken into account empirically. However, some of the follow-
ing aspects play a role in assessing the uncertainty. For example, the sensor
at the satellite has a specific sensitivity. This is stated to be 1 K. This must be
taken into account when comparing with regions where the actual difference
with the ’C’ and ’M’ cell are less visible. Some other sources of uncertainty
that occur are implicitly and empirically taken into account by using fits
through quantiles rather than some mean.

This research is based on the pre-set grid in the MEAsURes database
where both the ASMR-E and DSMP data are given. The points of inter-
est were selected in specific grid cells that are located within a floodplain.
Depending on the locations of the grid cells, it is questionable if this re-
search can be applied to other locations. Furthermore, the grid cells in the
MEAsURes database are processed and re-gridded before uploaded to the
database. It is not known what the effect is of the regridding and processing
algorithms on the actual data.

6.4 decision making

The GloFas product is an automated, operational product, which makes it
a reliable product for humanitarian organisations. It allows to forecast and
detect floods in regions where in-situ measurements are limited. However,
GloFas also comes with its limitations, much experience is still to be gained
(Revilla-Romero et al., 2015). It is of importance that the end user is aware
of its skill and its limitations. By utilizing multiple forecast sources, it is
possible to mitigate the risk and lower the uncertainty of the forecast.

Another important point to take into account when deciding which (com-
bination of) system to use is the fact that systems are also dependent on
their continuity. Flood forecasting systems rely on specific remote sensing
products, satellite missions or specific funding. It is important to diversify
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the inputs as there might not be a guarantee that all services will continue
on the long run.

In the theoretical background, the theory of adaptive signal monitoring
systems is touched upon. For an EAP conform to the adaptive planning
strategies, one needs to research the implementation of such signal moni-
toring systems in the EAP. These strategies built on the described pillars in
section 2.6. The robustness and future adaptive behaviour of the EAP can be
improved by assessing such a monitoring system.

The EAP actually structures the decision making process in the pre-disaster
stage quite well. By implementing this Technical Working Group (TWG), a
lot of governance is regulated. The actions that are taken given a certain trig-
ger are described well. There is not a lot of discrepancy between the trigger
and the actual action to be taken. It is also quite clear who is responsible for
what action. If well prepared, the response to a flooding is performed in an
orderly manner. Two factors do play an important role for the future and
are not included in the current EAP:

• Population growth in vulnerable areas: As discussed in Chapter 3

there is an expected population growth found in Zambia. By the in-
crease of people living in vulnerable areas, the effect of a flood will
increase. A problem to be tackled is the urbanisation of these vulnera-
ble areas in the Barotse Floodplain. The government of Zambia should
actively take action to overcome this problem of urbanisation. This can
increase the coping capacity of the area.

• Climate Change: Climate change is currently stressing the coping ca-
pacity of the Zambian people. Currently, they are dealing with both
extreme flooding and extreme droughts in the country. The increase
in extremes has a negative influence on the effects of riverine flooding.
The more intense wet seasons will stress the system even more. How-
ever, on the other side, the droughts will also negatively influence the
floodplain characteristics. The ability of the soil to take up water will
lower with an effect that a sudden riverine flooding will cause more
harm. A well structured FFWRS can make sure the effects of climate
change are taken into consideration.

6.5 implementation

An important question to ask is, what would be needed in order to imple-
ment this method in the current flood forecasting system in Zambia. The
PMRS model provides a flood forecast that is comparable to the GloFas
product. Both models are equiped with a certain probability range. They
are capable of providing a 4 and 7 day forecast on a daily basis. In other
words, the systems are equivalent in the information they provide (i.e. simi-
lar lead times, both using probabilistic forecasts, both using threshold based
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triggers.). The manner of forecasting is in fact very different. One uses a hy-
drological/hydraulic model fed with precipitation forecasts, the other uses
solely upstream Earth Observation (EO). It requires super little infrastructure
to run, a serious benefit for low resource environments. A server as light as a
Raspberry Pi connected to a moderate internet connection. Creating a super
light weight system.

Both models can provide a 4 and 7 day forecast on a daily basis. As found
in the HVS results, the lead times are enough to apply all the actions in the
different vulnerable areas in Zambia. The models are suited to work in co-
operation to enlarge the certainty bound of a forecast system. By integrating
both triggers in one final trigger, the uncertainty can be lowered. The PMRS
model could be integrated by the geo-intelligence workflow as supplied in
the results. This geo-intelligence workflow could run on a (light!) server and
would be integrated behind the FBF dashboard. Thus, the end user will still
be notified in the same manner.

6.6 limitations

There are a few limitations that are stated to take into account when passive
microwave radiometry is applied for flood forecasting. First of all, this re-
search worked with the MEAsURes data set of NASA. This data set includes
a hindcast of the data that is acquired by multiple satellite missions. The in-
tegration with a real-time data source is not tested as they are not openly
available. Currently running AMSR-E or DSMP datasets are not publicly
available. It can be questioned that those products can be provided by a
company without charging costs. As the current EAP is run on a product
which is freely available, this might become a problem when combining the
GloFas product with the real-time PMRS data set.

This model has now been tested for the Barotse floodplain, which is per-
fect for this method in terms of topographical location and hydrological
characteristics. It is still questionable if smaller floodplains also react in the
same manner to this signal. Also, it is questionable if a smaller size flood
can be identified by the system.

The pre-selection of the flood prone are validated using optical imagery.
However, the inundation extent could be mapped in order to validate and
verify the output of the PMRS model. For example, by collecting impact
data through an inundation extent survey. This would be a new source of in-
formation to actually link the impact data to the output of the PMRS model.
There are also possibilities for extracting flood extents from optical satellite
imagery. There is a trade-ff between accuracy of local input and data ac-
cessibility in satellite created products. Furthermore, manual calibration on
the processing parameters (eg. SG - filters) is performed by the modeler
and is based on the experience of the modeler. Additional automatic calibra-
tion and parameter estimation could increase the performance of the model
(Zhang et al., 2013).
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Flood forecasting is an important aspect in the disaster risk management
cycle. Flood forecasting in data-scarce areas can be challenging due to the
complexity in data collection and software sustenance. This research com-
bined a method to identify floodings (Passive Microwave Radiometry) with
a use-case in flood forecasting. The main research question to be answered
is: ”Can Satellite Passive Microwave Remote Sensing be used as a trigger for
inundation Early Warning System in the Zambezi River, Zambia?” The cur-
rent chapter concludes on the findings and answer on the research question.

Identification
Can Passive Microwave Remote Sensing be used to identify inundations?
The first part of this research explored the possibility of identifying and
forecasting floods. Detection of inundation is found using the DSMP and
AMSR-E passive microwave radiometry data sets. The brightness temper-
atures were acquired using a 37 GHz, horizontal polarization on the de-
scending node. By obtaining 25 km grid cells, the brightness temperatures
are converted into the C/M-ratio to identify inundation in the floodplain.
Points of interest were successfully identified by taking into account vari-
ous technical and geographical characteristics of the PMRS system. Clear
up- and downstream signals are extracted to create the input for the PMRS
model. In conclusion, the passive microwave radiometry is able to identify
and forecast a flood in the Barotse floodplain.

Multi Annual Analysis
To what extent can multi-annual trends in PMRS be related to discharge records?
The multi-annual analyses of the C/M-ratio and discharge records were con-
ducted. By combining both data sets, a polynomial relationship between
the discharge and C/M-ratio is found. The strong correlation, as classified
by Kendall Tau & Spearmans Rank, shows the ability to describe river flow
dynamics with C/M ratio. Flood return periods are obtained for both the
discharge as the C/M-ratio data sets. The return period analysis allows for
the estimation of the maximum annual return periods (1,2,5 or 10 years).
The high return periods that are found in the analysis, for example for the
2009 flood, correspond to a 30 year return period flood. As the return peri-
ods for the C/M-ratio and discharge records do not fully correspond, it is
questionable if a relatively short data set is able to say something about high
extremes beyond the length of the observation series.

Timing
Could the timing of a flood event be obtained from PMRS?
Within this sub-question, the goal was to create a model that could provide

81



82 conclusion & recommendations

a flood forecast, given a certain lead time and a probability distribution,
based on upstream observations. Both are requirements for comparability
and compatibility with current flood forecasting products. The quantile re-
gression analysis and probability analysis led to the outcome of a flood fore-
casting model. Through the integration of a time window, the model was
trained to only assess the first moment a flood occurred. An important re-
sult of this research, is the ability of the PMRS model to forecast a flood,
given a lead time and probability index. It should be noticed that good
flood forecasting results are obtained using low C/M-ratio threshold. This
shows that a model with relatively little input data is able to forecast a flood
downstream from a signal upstream. Although good results are obtained, it
should be stressed that the model is not tested against actual impact data.
For that, the temporal resolution of the impact data was a too coarse .

Skill Analysis
How does a PMRS based model perform in comparison with GloFas and what skill
can a forecast combination with PMRS offer?
In the skill analysis, the outcomes of the model where tested for the return
periods. It turned out that using the ROC graphs at high thresholds, an im-
balance in the data set occurred. Nonetheless, the results results for predict-
ing exceedances of the 1 to 2-year return period flood show to have skill. The
PMRS model is benchmarked against GloFas. The product showed to meet
the regulations for GloFas to be qualified as a ’trustworthy’ measurement
station. These qualification are POD > 0.70 & FAR < 0.30 in all probability
ranges (ZRCS, 2019). Combined with the fact that the PMRS model provides
equivalent information to GloFAS, there is potential to combine two systems
to create more lead time and lower uncertainty levels.

Follow the Forecast
How can the lead time of (a combination of) forecasting systems be optimized to
enable a maximum implementation time for the actions in an EAP?
The ’follow the forecast’ part of this research focused on the timing and de-
cision making in the FFWRS. Following from the geo-intelligence workflow,
an implementation set-up of this system is provided. The system is able to
run behind the FBF dashboard, thus little extra knowledge is required for the
end-user. The lowering of uncertainty could speed up the decision making
process. It is stated that extra lead time will not result in extra actions. How-
ever, the accuracy and effectivity of the actions can be improved by extra
lead time. With this extra lead time the ZRCS and DMMU are able to better
identify magnitude of the flood, identify the most vulnerable and allow for
the right allocation of humanitarian goods.

To conclude on this research, the technology assessment and ”follow the
forecast” questions are combined to draw a final conclusion. The question
to answer is whether it is possible to use passive microwave radiometry as a
means for flood forecasting in the Zambezi river system in Zambia. The pas-
sive microwave radiometry provides an easy and, most important, available
means of flood forecasting in data scarce environments. The satellite data
can be combined with relatively simple flood forecasting models to supply
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a probabilistic flood forecast. Especially in the Barotse Floodplain, this re-
search has shown that the methods is capable of predicting a flood, given a
specific lead time and probability level. The system has shown to lower the
uncertainty of a forecast. This is important in the decision making process
of the EAP. Although no extra early actions would be implemented with a
larger intervention window, the ZRCS and the TWG can surely benefit from
an increase in certainty. It can increase the decision making process and
therefore enlarge the intervention window to act. In Chapter 6, multiple lim-
itations and uncertainties are set-out. The most important limitation is the
implementation strategy for this product, further investigation is needed to
fully integrate such a model into the EAP. In the light of climate change and
population growth, it is favourable to increase the intervention window and
lower the uncertainty of a flood forecast. Especially in the Zambezi flood-
plain at Senanga, the passive microwave radiometry has shown to provide
extra skill to a combined forecast with GloFas.

Summing up, the PMRS allows for automated, global-covered creation of
grid-based flood forecasts which are independent to cloud coverage. This
thesis showed that the PMRS model can create low spatial resolution flood
forecasts combined with a probability bound in just hours after satellite de-
tection. The PMRS model has a high global potential for data scarce flood-
prone river basins with similar topography and river characteristics as seen
in this research.

7.1 recommendation for further research

This section includes the recommendations for future search. It is based on
the noted limitations and points of discussion that are found during this re-
search. By integrating this work in future research, the technology that is
used for PMRS flood forecasting can be raised to a higher level.

First of all, it is advised to further extent on the functioning and robustness
of the PMRS model. By integrating bootstrapping techniques that statisticaly
produce a probabilistic data set, the robustness of the model’s skill can be
better tested, even though time series are short. The integration of the model
with a current flood forecasting product such as GloFas is not tested exten-
sively. Further research can investigate the possibilities of the different forms
of cooperation that can be set up between the two models.

Secondly, it is advised to investigate the relationship between accuracy
of flood detection and river characteristics. The river characteristics such as
width, size or contributing catchment area only an important role in the fore-
casting capacity of the PMRS model. This could be investigated by finding
the relation between the accuracy of the identification and forecasting and
comparing this with the preciously described river characteristics. Typical
widths and upstream catchment areas used in this research can be found in
Table 5.1. River characteristics can be obtained in multiple ways, of which
optical satellite imagery is a good starting point.
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In addition, to better inform the selection of the forecast threshold, it
would be interesting to further set this research into perspective using accu-
rate impact data. By acquiring a flood extent survey and interviewing local
river deputies, a more in-depth impact analysis can be collected. Additional
discharge data could also lead to better insights in the relation between the
CM-ratio and the discharge. By further integrating river authorities in the re-
search, such records might be obtained. This can help to better fit the model
to the actual needs of the end-user. Extra data types allow for an in-depth
sensitivity and uncertainty analysis of the product.

As satellite products constantly improve, it will be interesting to see how
the resolution and quality of the passive microwave radiometry will change
over the years. For example, enlarging the scanning capacity of the sensor
would lower the time to get a full covered PMRS profile over the earth. This
can impact the intervention window time. Changes in the quality of the data
can also have an impact on the spatial scalability of the product.

Finally, future research could explore the potential of using PMRS data to
model hydrological processes that can also be extended to other environmen-
tal domains, such as droughts. Would it be possible to use this observational
approach to complement on drought indicators? PMRS could be used in ar-
eas where river runoff and rainfall statistics largely influence the drought
indicators of an area. Additional PMRS data could be beneficial to such
systems.
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L. L. Salvadó, M. Lauras, and T. Comes. Humanitarian Value Stream Map-
ping: Application to the EBOLA outbreak. ISCRAM 2015 Conference Pro-
ceedings - 12th International Conference on Information Systems for Crisis Re-
sponse and Management, 2015-Janua, 2015.

G. J. Schumann, J. C. Neal, N. Voisin, K. M. Andreadis, F. Pappenberger,
N. Phanthuwongpakdee, A. C. Hall, and P. D. Bates. A first large-scale
flood inundation forecasting model. Water Resources Research, 49(10):6248–
6257, 2013. ISSN 00431397. doi: 10.1002/wrcr.20521.

T. Teule. Assesing Two Methods to Potentially Improve the Flood Early
Warning System in Malawi. Technical report, 2019. URL 510.global/

research.

https://www.humanitarianresponse.info/en/disaster/fl-2020-000007-zmb
https://www.humanitarianresponse.info/en/disaster/fl-2020-000007-zmb
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98WR01469
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98WR01469
http://www.mdpi.com/2072-4292/7/11/15702
510.global/research
510.global/research


88 bibliography

V. Thiemig, B. Bisselink, F. Pappenberger, and J. Thielen. A pan-african
medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci, 19

(8):3365–3385, 2015.

J. Timberlake. Biodiversity of the Zambezi basin. Biodiversity Foundation for
Africa Bulawayo, Zimbabwe, 2000.

UNDRR. Zambia: Risk-sensitive Budget Review. Technical report.

UNFCCC. Economic Losses, Poverty and Disasters. Technical report.

United Nations. United Nations Dataset. http://data.un.org/CountryProfile.

aspx/ Images/CountryProfile.aspx?crName=Zambia, 2015. [Online; ac-
cessed 10-March-2020].

United Nations. National Report Zambia, 2016. URL https:

//sustainabledevelopment.un.org/content/documents/dsd/dsd aofw ni/

ni pdfs/NationalReports/zambia/Drought.pdf .

United Nations, ISDR. Developing Early Warning Systems: A Check-
list. Technical report, 2017. URL https://www.unisdr.org/2006/ppew/

info-resources/ewc3/checklist/English.pdf .

J. Verkade and M. Werner. Estimating the benefits of single value and prob-
ability forecasting for flood warning. Hydrology & Earth System Sciences
Discussions, 8(4), 2011.

A. Weerts, H. Winsemius, and J. Verkade. Estimation of predictive hydro-
logical uncertainty using quantile regression: examples from the national
flood forecasting system (england and wales). Hydrology and Earth System
Sciences, 15(1):255, 2011.

X. Yang, T. M. Pavelsky, G. H. Allen, and G. Donchyts. Rivwidthcloud: An
automated google earth engine algorithm for river width extraction from
remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 2019.

Y. Zhang, Y. Hong, X. Wang, J. Gourley, J. Gao, H. Vergara, and B. Yong.
Assimilation of passive microwave streamflow signals for improving flood
forecasting: A first study in cubango river basin, africa. Selected Topics in
Applied Earth Observations and Remote Sensing, IEEE Journal of, 6:2375–2390,
12 2013. doi: 10.1109/JSTARS.2013.2251321.

ZRCS. Early Action Protecol, Flood Hazard. Technical report, 510.global,
IFRC, Zambia, 2019.

http://data.un.org/CountryProfile.aspx/_Images/CountryProfile.aspx?crName=Zambia
http://data.un.org/CountryProfile.aspx/_Images/CountryProfile.aspx?crName=Zambia
https://sustainabledevelopment.un.org/content/documents/dsd/dsd_aofw_ni/ni_pdfs/NationalReports/zambia/Drought.pdf
https://sustainabledevelopment.un.org/content/documents/dsd/dsd_aofw_ni/ni_pdfs/NationalReports/zambia/Drought.pdf
https://sustainabledevelopment.un.org/content/documents/dsd/dsd_aofw_ni/ni_pdfs/NationalReports/zambia/Drought.pdf
https://www.unisdr.org/2006/ppew/info-resources/ewc3/checklist/English.pdf
https://www.unisdr.org/2006/ppew/info-resources/ewc3/checklist/English.pdf


A P P E N D I X A

A P O L A R I S AT I O N C O M PA R I S O N

Brakenridge et al. (2007) defined the H(orizontal) polarization to be the most
optimum for its sensitivity to surface water (water fraction) and the soil
moisture percentage. Described in the Figure A.1.

Figure A.1: Brightness temperature change for a silt-loam soil type. Comparison to
see how the TB changes with water fraction and soil moisture percent-
age. The HR polarisation shows to be the most preferable (Brakenridge
et al., 2007)
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90 zambezi river information

A P P E N D I X B

B Z A M B E Z I R I V E R I N F O R M AT I O N

This Appendix includes some visualizations of Barotse floodplain located in
the Zambezi river catchment in Zambia. It entails different figures that show
the flood extent and average precipitation.

Figure B.1: Zambezi catchment area (source: Denconsult)

Figure B.2: Zambezi catchment area, flood extent (source: Denconsult)



Figure B.3: Zambezi catchment area, precipitation rates (source: Denconsult)

A P P E N D I X C

C D I S C H A R G E V S C / M - R AT I O
R E L AT I O N S H I P

The discharge levels at Senanga are compared to the CM ratio values at the
same geographical location. Few interesting things seen in the graphs. First
of all, the onset of the peaks occurs at the same time. This indicates that the
CM ratio and the Discharge both show the same flood occurring at the same
moment in time. The CM ratio showed a different behaviour in the end of
the rain season. At the end of the season it is seen that the CM ratio keeps
higher values, although the ground-truth discharge data lowers. This is due
to the fact that the CM ratio measured the surface water levels. In wetlands
it is more common for water to stay on the land in smaller pools. This effect
of wetlands was clearly seen in the CM ratio.
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92 discharge vs c/m-ratio relationship

Figure C.1: Discharge - CM ratio relationship at Senanga in 2001 - DSMP dataset
(source: own work)

Figure C.2: Discharge - CM ratio relationship at Senanga in 2002 - DSMP dataset
(source: own work)

Figure C.3: Discharge - CM ratio relationship at Senanga in 2003 (source: own
work)
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Figure C.4: Discharge - CM ratio relationship at Senanga in 2004 - DSMP
dataset(source: own work)

Figure C.5: Discharge - CM ratio relationship at Senanga in 2005 - DSMP
dataset(source: own work)

Figure C.6: Discharge - CM ratio relationship at Senanga in 2006 - DSMP
dataset(source: own work)



94 discharge vs c/m-ratio relationship

Figure C.7: Discharge - CM ratio relationship at Senanga in 2007 - DSMP
dataset(source: own work)

Figure C.8: Discharge - CM ratio relationship at Senanga in 2008 - DSMP
dataset(source: own work)

Figure C.9: Discharge - CM ratio relationship at Senanga in 2009 - DSMP
dataset(source: own work)
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Figure C.10: Discharge - CM ratio relationship at Senanga in 2010 - DSMP dataset
(source: own work)

Figure C.11: Discharge - CM ratio relationship at Senanga in 2011 - DSMP dataset
(source: own work)

Figure C.12: Discharge - CM ratio relationship at Senanga in 2012 - DSMP dataset
(source: own work)



A P P E N D I X D

Di I D E N T I F I C AT I O N O F U P- A N D
D O W N S T R E A M A R E A S

This Appendix entails the work done for the identificationi of the different
Points of Interest and provides more ROC graphs. The work is part of the
Chapter 5.

Figure D.i.1: Upstream POI’s at Senanga in the Barotse floodplain (source: own
work)
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Figure D.i.2: Upstream POI’s North/West of Lukulu (source: own work)

Figure D.i.3: Upstream POI’s West of Kalobo (source: own work)



Dii R O C G R A P H S - S K I L L A N A LY S I S

ROC plots for the thresholds that correspond to the 10 and 5 year return
period. The ROC figures are not valid as there occurs an imbalance in the
dataset. Explanation for the used ROC figures can be found in Chapter 5.

Figure D.ii .1: Senanga DMSP dataset with threshold = 1.07. ROC graphs at
Senanga for the DSMP dataset. The threshold is set at one specific
level and the ROC curve is changed over different time windows
(dt).(source: own work)

Figure D.ii .2: Senanga DMSP dataset with threshold = 1.09. ROC graphs at
Senanga for the DSMP dataset. The threshold is set at one specific
level and the ROC curve is changed over different time windows
(dt).(source: own work)
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Figure D.ii .3: Senanga DMSP dataset with threshold = 1.09. ROC graphs at
Senanga for the DSMP dataset. The threshold is set at one specific
level and the ROC curve is changed over different time windows
(dt).(source: own work)

Figure D.ii .4: Senanga DMSP dataset with threshold = 1.11. ROC graphs at
Senanga for the DSMP dataset. The threshold is set at one specific
level and the ROC curve is changed over different time windows (dt)
No output can be generated at this threshold. (source: own work)



100 geo-intelligence model structure

A P P E N D I X E

E G E O - I N T E L L I G E N C E M O D E L
S T R U C T U R E

In this Appendix the geo-intelligence workflow of the model is visualized.
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