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Abstract

Variable-stiffness panels have previously shown enhanced buckling performance compared to
constant-stiffness panels, due to the beneficial load and stiffness redistribution. Two semi-
analytical models based on the Galerkin method and the Ritz method have been developed in
order to solve the buckling problem of variable-stiffness composite panels (plates and shallow
cylindrical shells).

The laminates considered are assumed to be symmetric, which results in zero extension-
bending couplings. However, the bending-twisting couplings, D16 and D26, are retained in
the model due to their dramatic influence on the convergence of the predicted buckling loads.

In the first model the governing equations for composite plates and shallow cylindrical shells
with variable stiffness are derived and then solved using the Galerkin method. The variable
stiffness in this model is approximated using two-dimensional Fourier series, which, however,
appears to be less accurate and less efficient as compared to the Ritz method.

The Ritz method avoids using Fourier series to approximate the stiffness. Instead, the stiffness
is exactly expressed in the integral of the energy functional. The detailed derivations of the
energy functional which were rarely shown in literature have been presented. The buckling
analysis of this model comprises two main steps. First, the in-plane loads are calculated
by applying the principle of minimum complementary energy in pre-buckling state. Second,
the critical buckling loads are determined from the stability equations which are obtained
from the total energy functional through applying either adjacent equilibrium criterion or the
principle of minimum potential energy. The total energy functional for stability analysis in
this model is expressed in terms of out-of-plane displacement and the Airy stress function,
which appears to be a combination of negative membrane complementary energy, bending
strain energy and external work.

In order to ensure fast convergence, several shape functions used in Ritz method were inves-
tigated. The in-plane loads were approximated either using the beam characteristic function
or polynomial function that were orthogonalized by the Gram-Schmidt process. In addi-
tion, the predictions of in-plane loads using sine and cosine function that do not satisfy the
boundary conditions of in-plane loads were significantly improved by using Lagrange multi-
plier method. The out-of-plane displacement was approximated using either sine function or
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orthogonalized polynomials. The influence of the shape functions on the convergence of the
predicted buckling load was analysed and discussed for different examples. These examples
included plates and shells with either constant-stiffness or variable stiffness, within which D16
and D26 were either zero or non-zero. The boundary conditions considered for these exam-
ples were four-edge simply-supported in current thesis. However, the developed model can be
easily extended to consider other boundary conditions.

The model can solve the buckling problem of variable-stiffness panels under prescribed in-
plane loads (N̄x, N̄y, N̄xy) or prescribed in-plane displacements (ū, v̄). In the current thesis,
only the prescribed loads N̄x, N̄xy and the prescribed end-shortenings ū have been investigated
and compared to Abaqus model; all the results satisfactorily match the results of Abaqus
models.

In addition, the model have been proved to be able to predict the buckling loads of shallow
cylindrical shells with variable curvatures.
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Chapter 1

Introduction

1.1 Background and Motivation

Nowadays, composite material has been widely applied in aerospace industry due to its high
strength-to-mass and stiffness-to-mass ratio. Especially the composite wing has drawn more
and more research interests in the recently years. Since a composite wing box is comprised of
thin-walled panels (plates and shallow cylindrical shells), buckling is considered to be one of
the main failure constraints. Therefore, buckling is one of the most significant design criteria
during wing box optimization and tailoring, which is the main research interest of the current
thesis.

The research into buckling of plates and shells can date back to a hundred year ago [1]. Var-
ious buckling (or stability) theories have been introduced throughout these years. However,
closed form analytical solutions to the buckling of composite plates and shells are limited
to those with specially orthotropic layups exhibiting no membrane-bending and bending-
twisting couplings [2–4]. However, most laminated panels encountered in practice do not
fulfil the conditions. Therefore, closed form solutions are not available for most general mid-
plane symmetric composite panels (to the best knowledge of the author).

Furthermore, composite panels with spatially varying stiffness have been a recently innovative
topic. The variable stiffness is achieved by the steering of the fiber direction or tapering of
the laminate thickness, resulting in beneficial load and stiffness distribution that improves
the buckling resistance of laminated panels. For such kind of laminated panels, closed form
analytical solutions to the buckling problems were barely introduced by previous researchers.

Therefore, the aim of the work reported in this thesis is to develop a semi-analytical method
to predict the buckling load of variable-stiffness composite panels with general midplane sym-
metric layups. The model developed will provide engineers an efficient tool for the preliminary
design of composite wing box. However, only a limited amount of research on the buckling of
variable-stiffness composite plates (even less research on buckling of various-stiffness compos-
ite shells) which exhibit bending-twisting couplings using semi-analytical methods was done
in the past. It is just this reason why this project is so promising and challenging.
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2 Introduction

1.2 Research Question and Objective

The key research questions addressed in this topic are:

• Is any closed form solution available? If not, what is the difference between the work
in this thesis and the work done by previous researchers?

• If no closed from analytical solution is available, what semi-analytical methods can be
used to predict the buckling load of this kind of panels?

• What is the accuracy of the developed semi-analytical method compared to the numer-
ical solutions (for example, Abaqus)

To answer the research questions, the following steps were proposed.

• A literature review about the theory of buckling and the previous works.

• Derive and solve the governing equations for composite panels with variable stiffness

• Find a semi-analytical method and derive the corresponding equations

• Compare the accuracy of results from the semi-analytical solution with the results from
numerical solution.

1.3 Thesis Outline

There are seven chapters in this thesis. A brief literature review is presented in Chapter
2, where the basic stability theory is reviewed as well as the previous works done by other
researchers. The main part of the thesis starts from Chapter 3 to Chapter 6. In chapter 3, the
basic assumptions are made and governing equations are derived. Then the Galerkin method
is applied to solve the governing equations, which, however, appears to be not efficient. Then
in Chapter 4, Ritz method is introduced. The total energy functionals are derived, and the
equations equivalent to the governing equations in Chapter 3 are obtained using Ritz method.
In chapter 5, the in-plane loads distributions in the prebuckling state are predicted using the
equations derived in Chapter 4 and compared to the predictions of Abaqus. In Chapter 6,
the buckling loads are predicted using the stability equations derived in Chapter 4 and in-
plane loads obtained in prebuckling state (Chapter 5), and then compared to the prediction
of Abaqus. Finally, conclusions and recommendations for future work are given in Chapter
7.
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Chapter 2

Literature Review

This review covers fundamental buckling theories of isotropic and laminated composite plates
and shells, and their corresponding differences and similarities. Recently published papers
dealing with buckling problems of variable-stiffness panels and panels under various boundary
conditions or various load conditions are also reviewed.

2.1 Basic Stability Theory

As indicated by Jones [5], buckling load is the load at which the current equilibrium state
of a system suddenly changes from stable to unstable. The equilibrium state of a system is
called stable if any ’small’ disturbance of the system results only in a ’small’ response and
after which the system always returns to its original equilibrium state. While, the equilibrium
state is called unstable if any ’small’ disturbance results in a sudden change in deformation
mode or displacement value after which the system cannot return to its original equilibrium
state. From energy point of view [1, 5], the system is called stable at its equilibrium state
when its potential energy is relatively minimum; it is called unstable (or neutral) when its
potential energy ceases to be relatively minimum. The transition from stable to unstable (or
neutral) is the main interest of the study of stability.

Jones [5] investigated buckling of isotropic, multiple fiber-reinforced layered plates and shells
using the approach of variation of the potential energy. Starting from the total potential
energy, the equilibrium equations, the stability equations and their corresponding boundary
conditions can be derived using calculus of variations.

The total potential energy can be varied, or expanded in a Taylor’s series, about an equilibrium
state, as stated in Jones’s book [5]:

V + ∆V = V + δV + 1
2!δ

2V + 1
3!δ

3V + ... (2.1)

where, V is the total potential energy.
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4 Literature Review

The equilibrium state is derived from the first variation of the potential energy, which is also
known as the principle of stationary potential energy [5]:

δV = 0 (2.2)

The stability of the equilibrium state is derived from the variation of the equilibrium state
(or second variation of the total potential energy at the equilibrium state), also known as the
principle of minimum potential energy [5]:

δ̄2V = δ2V
∣∣∣
δV=0

> 0 (2.3)

Since the potential energy is relatively minimum when the system is stable, every ’small’
disturbance to the system will result in increasing the potential energy. Thus, if δ̄2V is
positive (δV = 0), the system is always stable. (However, when δ̄2V = 0, the stability should
be determined by the rest terms. The reader is referred to the literature for more details [1,5].)

An alternative buckling criterion is based on the Trefftz buckling criterion, which is to make
δ̄2V stationary [1, 5, 6],

δ(δ̄2V ) = 0 (2.4)

The Trefftz buckling criterion is derived from the principle of minimum potential energy as
follows. According to the principle of minimum potential energy, when the applied load, for
example P , is smaller than the critical buckling load Pcritical, the potential energy is relative
minimum because the system is stable. So all possible disturbances to the system will result
in increase of the total potential energy, thus δ̄2V > 0 for all possible disturbances. When
P > Pcritical, the system is unstable. There exists at least one disturbance which results in
decrease of the total potential energy, thus δ̄2V < 0 for that disturbance. As P increasing
from zero to Pcritical, only at P = Pcritical is it the first time there existing at least one
disturbance which makes δ̄2V = 0. While, all other disturbances at P = Pcritical still make
δ̄2V > 0. And all loads lower than Pcritical make δ̄2V > 0. So δ̄2V = 0 is a relative minimum
for all disturbances at P = Pcritical and for all loads lower than or equal to Pcritical. Therefore,
δ(δ̄2V ) = 0 at P = Pcritical.

Brush and Almroth [1] applied the adjacent-equilibrium approach to obtain the stability
equations from the equilibrium equations. The equilibrium equations governing the equilib-
rium path are perturbed by small arbitrary and tentative increments of displacements. Let
u1,v1,w1 be the increments of displacements and u0,v0,w0 the displacements in the primary
equilibrium path, then the displacements in the equilibrium equations will be replaced by:

u0 → u0 + u1

v0 → v0 + v1

w0 → w0 + w1

(2.5)

where, u0 + u1, v0 + v1 and w0 + w1 represent the possible adjacent equilibrium path (or
secondary equilibrium path).

Substituting above displacements into the equilibrium equations and ignoring the higher order
terms and subtracting the equilibrium equations written in u0,v0,w0, the buckling differential
equations are obtained.
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2.2 Buckling of Plates 5

According to Ashton and Whitney [2], usually the second variation of total potential energy
has not been explicitly considered when determining the buckling load. Instead, the onset of
instability is determined by the existence of an equilibrium state with non-zero out-of-plate
displacement. In other word, the stability is determined from the equilibrium equations by
assuming a non-zero function for the displacement. This criterion has simplified the solutions
to buckling problems. Jones [5] used variational principle to derive the stability differential
equations from the second variation of total potential energy, which usually leads to lengthy
derivations. With Ashton and Whitney’s theory [2], the buckling load can be determined
simply from the equilibrium equations by assuming proper buckling shapes function for the
displacements. This approach was used in some literature when dealing with the buckling
problems of plates and beams [2,3,7]. Moreover, this method makes the Ritz method, which
determines the equilibrium state from minimizing total potential energy with respect to the
undetermined parameters of the out-of-plane displacement, a practical and simplified way to
solve the buckling problem for a complicated structure [2–4, 8–11]. However, this criterion
has only been applied to linear system, such as beams and plates, in the literature [2, 3, 7].

2.2 Buckling of Plates

2.2.1 Isotropic Plates

According to Jones [5], the equilibrium equations of plates are derived from the first variation
of the potential energy; the stability equations are derived from the second variation of the
potential energy. Thus, the equilibrium and stability equations have fundamental differences.
However, the equilibrium equations and stability equations of plates are similar to each other.
For example, the out-of-plane equilibrium and stability differential equations are shown below,
respectively.

D∇4(w)−Nxw,xx −Nyw,yy − 2Nxyw,xy = 0 (2.6)
D∇4(δw)− N̄xδw,xx − N̄yδw,yy − 2N̄xyδw,xy = 0 (2.7)

where, δw is the variation of w; D is the bending stiffness for isotropic plates; ∇ is the
Laplace operator in Cartesian coordinate; Nx, Ny, Nxy are the in-plane loads; N̄x, N̄y, N̄xy are
the in-plane loads applied on the edges of plates.

Jones [5] indicated that many authors are so overwhelmed by the similarity of these two
equations that they overlook the essential differences of form and origin of the various terms,
and state that they obtained the buckling equation from the equilibrium equation. Moreover,
buckling is an eigenvalue problem and equilibrium is a boundary-value problem, which are
the essential difference of the equilibrium and buckling equations. However, Ashton and
Whitney [2] introduced a simplified theory where the onset of instability (or buckling) is
determined by the existence of an equilibrium state with non-zero out-of-plate displacement,
as mentioned in section 2.1.

The second interesting observation in Jones [5] refers to the potential energy. The second
variation of the strain energy for a plate with a flat prebuckling shape is:

δ̄2V = δ̄2Um1 + δ̄2Um2 + δ̄2Ub (2.8)
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in which

δ̄2Um1 = A

∫∫
[δux2 + δvy

2 + 2 υδux δvy + 1
2 (1− υ) (δuy + δvx)2] dx dy (2.9)

δ̄2Um2 = −
∫∫

[N̄xδw
2
x + N̄yδw

2
y + 2N̄xyδwxδwy]dxdy (2.10)

δ̄2Ub = D

∫∫
δw2

xx + δw2
yy + 2(1− υ)δw2

xy]dxdy (2.11)

where, A is the membrane stiffness; Um1 and Um2 are the membrane strain energies; υ is the
Poisson’s ratio for isotropic material; δu, δv and δw are the variations of u, v and w.

Because δu and δv are independent of δw , the equation 2.8 can be decoupled into two
equations:

δ̄2Um1 = 0 (2.12)

δ̄2Um2 + δ̄2Ub = 0 (2.13)

These two decoupled equation are of significant importance since they indicate that the in-
plane equation and the out-of-plane equation are essentially independent for plates (before
buckling) .

Another interesting statement by Jones is that the equation 2.9 is clearly derived from the
strain energy and not from the potential energy of external forces as so many authors erro-
neously state [5]. Indeed, the equation 2.9 has the same expression as the potential energy of
external work in other references [2, 7]. The reason for the similarity is that Jones [5] used
the moderately large-deflection theory to derive the strain energy. For instance, the strain in
x direction is expressed as :

εx = u,x + 1
2w

2
,x (2.14)

where, εx is the strain in x direction.

The nonlinear term (1
2w

2
,x) in above equation led to the equation 2.9 in Jones’ book. However,

in other references [2, 7] the nonlinear term is not included in the strain, but considered in
the derivation of the energy done by the external work. Therefore, Jones considered it as
the second membrane energy due to the nonlinear term of moderately large-deflection; while,
other researchers considered it as the external work done by the applied loads during buckling
due to the same nonlinear term.

2.2.2 Composite Plate

Two kinds of laminated composite plates are of the main interests in this review, namely the
specially orthotropic laminated plate and the general mid-plane symmetric laminated plate.
The difference is that the bending-twisting couplings D16 and D26 are zero in the specially
orthotropic laminated plates. The stability of specially orthotropic laminated plates under
simply-support boundary condition has been analytically solved in closed form [2, 3, 5, 7].
However, closed form solution has not been presented in most literature for laminated plates
with bending-twisting couplings.
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2.2 Buckling of Plates 7

One of the reasons are the natural boundary conditions for a four-edge simply-supported plate
cannot been satisfied by any assumed function. As indicated in reference [3,5] , the essential
(geometry) and natural (moment) boundary conditions are

w = 0,Mx = −D11w,xx −D12w,yy − 2D16w,xy = 0 (on x=0,a) (2.15)
w = 0,My = −D12w,xx −D22w,yy − 2D26w,xy = 0 (on y=0,b) (2.16)

Normally, for simply-supported plates with specially orthotropic lamination, the out-of-plane
displacement can be assumed as

w =
M∑
m

N∑
n

sin(mπx
a

) cos(nπy
b

) (2.17)

Obviously, this shape function does not satisfy the moment boundary conditions in equation
2.15 and 2.16.

The direct solution to this problem is to find an alternative set of series which can exactly
satisfy the moment boundary condition. However, no such series are known. Ashton and
Whitney [2] introduced additional terms to correct the unsatisfied natural boundary con-
ditions in the solution of Galerkin method, in conjunction with a series which satisfies the
essential boundary conditions. This series can take the form of equation 2.17, and the addi-
tional terms take the form of:

−
∫ a

0
2D26[( ∂

2w

∂x∂y
)y=b−( ∂

2w

∂x∂y
)y=0)] lπ

b
sin kπx

a
dx−

∫ b

0
2D16[( ∂

2w

∂x∂y
)x=a−( ∂

2w

∂x∂y
)x=0]kπ

a
sin lπy

b
dy

(2.18)
The improvement of this additional term is clearly shown in this figure, where the lower solid
curve corresponds to this result and the black dots correspond to the test results. So after
adding the additional term, the prediction is quite closed to the test results. The additional
terms were also applied by Zhang and Matthews [12–14], where the buckling of composite
shell has been investigated, which indicates it as an acceptable solution to both plates and
shells. However, this approach is valid for the Galerkin method, which is a semi-analytical
method instead of closed form analytical solution.

Figure 2.1: Buckling loads of Simply-Supported Plates (picture from literature [2])
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2.3 Buckling of Shells

2.3.1 Isotropic Shells

The difference between plates and shells is that shells have initial curvatures in the unloaded
state. Thus, the linear kinematics relation of the middle plane of a cylindrical shell will be

εy = ∂v

∂y
− w

R
(2.19)

Clearly, the term w
R will be zero for plates since the curvature of plates is zero.

Due to the initial curvatures of shells, some nice properties of plates discussed in previous
section no longer exist that makes the buckling problems of shells more complicated. The
first one is that the similarity of the governing equations for equilibrium state and buckling
state disappeared. According to Chai [6], the equilibrium equations have the following form:

Nx,x +Nxy,y = 0 (2.20)
Nxy,x +Ny,y = 0 (2.21)

D(w,xxxx + 2w,xxyy + w,yyyy)−
Ny

R
− [Nxw,xx + 2Nxyw,xy +Nyw,yy] = 0 (2.22)

However, the stability equations take the form of

Nx1,x +Nxy1,y = 0 (2.23)
Nxy1,x +Ny1,y = 0 (2.24)

D(w1,xxxx + 2w1,xxyy + w1,yyyy)−
Ny1
R
− [Nxw1,xx + 2Nxyw1,xy +Nyw1,yy] = 0 (2.25)

where, Nx, Ny, Nxy are the in-plane loads; Nx1, Ny1, Nxy1 are the variations (or increments)
of the in-plane loads; w is the out-of-plane displacement in the equilibrium state, while w1 is
the variation of w when buckling occurs.

The same equations are also shown in other literature [1,5]. Clear the additional term Ny1
R has

been added to the out-of-plane stability differential equation (equation 2.25). Moreover, the
in-plane equilibrium differential equations are expressed in terms of Nx, Ny, Nxy, while the
in-plane stability differential equations are expressed in terms of variations of Nx1, Ny1, Nxy1.
Thus, the buckling load cannot be simply solved from the equilibrium equations. What is
worse, the out-of-plane buckling differential equation is coupled with the in-plane buckling
differential equation through the additional term Ny1

R , which makes the solution to the stability
of shells more complicated than plates.

A lot of attempts have been done to decouple the stability equations. Jones mentioned
Donnell’s method [5] , which results in

r∇4δu = −v∂
3δw

∂x3 + ∂3δw

∂x∂y2 (2.26)

r∇4δv = −(2 + ν) ∂
3δw

∂x2∂y
− ∂3δw

∂y3 (2.27)
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2.3 Buckling of Shells 9

D∇8δw + Et

r2
∂4δw

∂x4 −∇
4(Nxδwxx+ 2Nxyδwxy +Nyδwyy) = 0 (2.28)

where, these equations are expressed in terms of the variations of the displacements.

Then Batdorf modified equation 2.28 as

D∇4δw + Et

r2 ∇
−4∂

4δw

∂x4 − (Nxδwxx+ 2Nxyδwxy +Nyδwyy) = 0 (2.29)

which is known as Batdorf’s modified Donnell Equation.

Bazant and Cedolin [15] introduced another method similar to Donnell’s method where they
used Airy stress function and its perturbation to decouple and simplify the stability differential
equations. They firstly introduced Airy stress function to the in-plane loads as

Nxx = F,yy, Nyy = F,xx, Nxy = −F,xy (2.30)

These equations can be substituted into the equilibrium equations (equation 2.20 2.21 2.22)
and compatibility equation. The in-plane equilibrium equations (equation 2.20 2.21) are
automatically satisfied by the Airy stress function, then only the out-of-plane equilibrium
equation and compatibility equation are left, which are shown as follows:

D∇4w = p+ F,yyw,xx − 2F,xyw,xy + F,xxw,yy −
1
R
F,xx (2.31)

1
Eh
∇4F = w2

,xy − w,xxw,yy + 1
R
w,xx (2.32)

The stability equations are obtained by using adjacent-equilibrium criterion where F and w
are replaced by

w → w0 + w1 (2.33)
F → F 0 + F1 (2.34)

where, wo,F o present the initial states; w1, F1 present the small increments (or variations).

Then they can be substituted into the equilibrium equation 2.31 and compatibility equation
2.32. The initial equilibrium equation and comparability equation written in woandF o can
be subtracted. After ignoring all higher order terms and assuming the initial state of shells
is membrane, the remaining equations become:

D∇4w1 = F o,yyw1,xx − 2F o,xyw1,xy + F o,xxw1,yy −
1
R
F1,xx (2.35)

1
Eh
∇4F1 = 1

R
w1,xx (2.36)

Then substituting the compatibility equation(equation 2.36) into equation 2.35 and applying
the operator ∇4:

D∇8w1 −∇4(No
xxw1,xx + 2No

xyw1,xy +No
yyw1,yy + Eh

R2 w1,xxxx = 0 (2.37)

Notice that the in-plane buckling equations 2.23 and 2.24 are automatically satisfied by the
perturbed Airy stress function (F1), so only one buckling equation 2.37 left, instead of three
coupled stability differential equations (2.23, 2.24, 2.25).
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Zhang, Matthews [12] and Geier, Zimmermann [16] also used the Airy stress function to
decoupled the stability equations. But they directly started from the stability equations,
instead of the equilibrium differential equations and applying the adjacent-equilibrium method
to them. Moreover, the Airy stress function was introduced to the variations of in-plane
loads, instead of the in-plane loads. Thus the in-plane stability differential equations are
automatically satisfied by the Airy stress functions. Only the out-of-plane stability differential
equation was left.
Zhang and Matthews [12–14] also introduced the characteristic beam function with approx-
imate orthogonality property into the shape function of Airy stress function, which exactly
satisfies the boundary conditions of in-plane stresses. The Airy stress function was expressed
as:

F =
∞∑
m=1

∞∑
n=1

FmnXm(ξ)Yn(η) (2.38)

in which
Xi(ξ) = coshαiξ − cosαiξ − γi(sinhαiξ − sinαiξ) (2.39)
Yi(η) = coshαiη − cosαiη − γi(sinhαiη − sinαiη) (2.40)

The αi and γi are constants which ensure the following boundary conditions are satisfied.

Xi(0) = Xi(1) = dXi

dξ

∣∣∣∣
ξ=0

= dXi

dξ

∣∣∣∣
ξ=1

= 0 (2.41)

Yi(0) = Yi(1) = dYi
dη

∣∣∣∣
η=0

= dYi
dη

∣∣∣∣
η=1

= 0 (2.42)

The values of αi and γi are shown in Figure 2.2. The values on the left were from Chia and
Prabhakara [17], where the same characteristic beam function was applied. Zhang indicated
[12] that six significant figures are not enough to get the approximate orthogonality of the
functions so that more significant figures were needed. Although Zhang did not explicitly
indicate, the exactly analytical expression for αi can be solved from the boundary conditions
(equation 2.41 2.42), as

αi = 2i+ 1
2 π (2.43)

The analytical expression for γi can also be solved from the boundary conditions (equation
2.41, 2.42), like αi. Reddy [3] studied the solutions to these constants (γi and αi) under
different boundary conditions and also showed the examples of solutions.

2.3.2 Composite Shells

Besides the couplings of the in-plane stability equations and the out-of-plane stability equa-
tion, another difficulty of composite shells is again the bending-twisting couplingD16 andD26.
These coupling terms make the closed form solution to shell buckling impossible. However,
for specially orthotropic laminated shells, where D16 = 0 and D26 = 0, approximated closed
form solutions still exists. For example, Geier and Zimmermann [16] presented a closed form
solution for a simply-supported cylindrical shell as:

Ni = 1
β2D11β

4 + 2(D12 + 2D33)β2η2 +D22η4 + [e21β
4 + (e11 + e22 − 2e33)β2η2 + e12η

4 + β2/R]2

a22β4 + (2a12 + a33)β2η2+a11η4

(2.44)
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Figure 2.2: Values of αi and γi in Zhang’s Paper [12]

This closed form solution was obtained by assuming the displacement w and Airy stress
function F as

w = C1 sin βx cos ηy (2.45)

F = C2 sin βx cos ηy (2.46)

Obviously, the shape function for Airy stress function might not satisfy the boundary con-
dition of in-plane loads as shown in equation 2.41 and 2.42, since the shear load is not zero
at the edge x = 0. Therefore, although a closed form solution has been obtained from this
solution, it might sacrifice the accuracy of the predicted buckling load.

Vescovini and Bisagni [18] studied the buckling of stiffened composite flat and curved panels
using Ritz method. The total energy functional was expressed as the sum of the total po-
tential energy of each element of the stiffened panel plus a penalty term which described the
compatibility conditions between the adjacent plates. The potential energy of each element
was considered as the sum of the membrane energy, bending energy and work done by the
external loads. It is noted that the membrane energy was expressed by Airy stress function
which was directly solved from the compatibility equation after assuming a Fourier series for
out-of-plane displacement. The advantage of their method is that additional series for Airy
stress function are not required. Thus the total potential energy was only expressed by the
series of displacement which would increase the efficiency of Ritz method.

Zhang and Matthews [12–14] studied the buckling of curved panels using Galerkin method,
where they started from the stability differential equations of shells. Similarly the Airy
stress function, instead of the in-plane loads, were used in the compatibility equation and
stability equations. However, the Airy stress function and out-of-plane displacement were
approximated by two different series each satisfying the own boundary conditions, where
the Airy stress function used beam characteristic function while displacement used Fourier
series. However, the Airy stress function shows its advantages in simplifying the analytical
derivations and enhancing the computational efficiency.

Master of Science Thesis Jinghua Tang



12 Literature Review

2.4 Various Boundary conditions and loads

As indicated in by Reddy [3], the beam characteristic function can also be used for panels
under clamped or free boundary condition . Actually Ashton and Waddoups [19] introduced
the beam characteristic function earlier to the panels with simply-supported, clamped, or
one-edge-free boundary conditions. A combination of different beam characteristic functions
can easily describe various boundary conditions of panels. They also indicated that these
functions are very nearly (or exactly) the natural model shapes for isotropic and orthotropic
plates, and thus are reasonably accurate shapes for weakly anisotropic plates [19].

Closed form solutions to buckling of laminated orthotropic plates under general in-plane
loading were investigated by Qiao [20]. Two cases of composite plates under combined linearly
varying axial and in-plane shear loading, with two opposite edges simply supported while the
other two edges either both rotationally restrained or one rotationally restrained and the
other free, were considered. The out-of-plane displacement w was described by only one term
of the shape function in the Ritz method thus an explicit closed form solution was obtained
by minimization the total energy. However, the shape function had to be properly selected
to approximate the buckling mode shape as exactly as possible. This solution also can only
be applied to long plates. For more complicated problems, this closed form solution will not
have enough accuracy.

2.5 Panels with Spatially Varying Stiffness

Spatially varying stiffness laminated panel has been a recently innovative topic. The variable
stiffness is achieved by the steering of the fibre direction or tapering of the laminate thickness,
resulting in beneficial load and stiffness distribution that improves the buckling resistance
of laminated panels. IJsselmuiden, Abdalla and Gürdal [21, 22] investigated the buckling of
variable-stiffness plates and shells using finite element method. Gürdal and Olmedo [11,23,24]
studied the in-plane response of laminates with spatially varying fiber orientations. The fibre
orientation was assumed to vary in one direction, where the varying fibre orientation can be
formulated by a simple function of the in-plane coordinates, thus the stiffness is also a function
of the in-plane coordinates. The displacement fields were solved from the two coupled elliptic
partial differential equations (similar to the in-plane equilibrium differential equation 2.20
2.21) using the numerical solver ELLPACK [25]. The exact closed form solutions were only
presented for the simplified cases. Then the buckling behaviour of panels with varying fibre
orientations were studied in their papers [11,26] using the Ritz method.

Wu, Raju and Weaver [27] investigated the buckling of variable angle tow plates using Ritz
method in two steps. In the first step, they obtained the in-plane loads by minimizing the
total complementary energy of the membrane behaviour. In the second step, the stability
of the panel under these in-plane loads was determined by minimization the total potential
energy considering the bending behaviour of the panel. The Legendre polynomial functions
were applied to approximate the Airy stress function and out-of-plane displacement in the
Ritz method. Both the prediction of in-plane loads and buckling loads were well captured
by the Legendre polynomial functions. Similar works can be found in other papers [28–31],
where they extended the Ritz method to consider blade stiffened panels.
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2.6 Conclusions

Basic stability theories and equations governing the equilibrium and stability of plates and
cylindrical shells are reviewed in this chapter, which paves the fundamental to this thesis.
Following conclusions are summarized for this review.

Closed form solution to the problems considered in current thesis has not been obtained by
any researcher (to the best knowledge of the author). However, Galerkin method and Ritz
method have advantages in predicting either the in-plane loads or the buckling loads of variable
stiffness panels. These methods can be applied to problems under any boundary conditions
and any in-plane loads, as long as the assumed shape function satisfies the corresponding
boundary conditions.

The introduction of Airy stress function also simplifies the solution. As Vescovini, Bisagni [18]
and Zhang [12] did in their papers, the Airy stress function was used to describe the non-
uniform distribution of membrane stresses, which simplified the formulation of compatibility
equation and equilibrium equations. Moreover, Airy stress function provided a way to easily
decouple the stability equations of shells, as shown by Bazant and Cedolin [15].
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Chapter 3

Governing Equations and Galerkin
Method

3.1 Introduction

In this chapter the governing equations for composite plates and shallow cylindrical shells
with variable stiffness are derived. Due to complexity of these governing equations, the
exact closed form solutions introduced in literature [3, 7] cannot been applied to solve these
equations. Therefore, Galerkin method has been used in order to solve the governing equations
approximately.

In this section, a brief description of the plates and shells considered in the thesis is given,
follows by the basic assumptions and equations in classic laminate theory. In Section 3.2
and 3.3, the governing differential equations (compatibility equations and stability equations)
for composite plates and shallow cylindrical shells with variable stiffness are derived, respec-
tively. In Section 3.4, the Galerkin method is introduced to solve these governing differential
equations approximately.

3.1.1 Plate

Rectangular plates are considered in the thesis. The cartesian coordinate system is defined
for plates, as shown in Figure 3.1. The z axis is defined as the out-of-plane direction. The
length of the plate along x axis is defined as a; the width of the plate along y axis is defined
as b. If not explicitly indicated, the coordinate system used for plates in the thesis is always
the same as shown in Figure 3.1.

3.1.2 Shallow Cylindrical Shell

The difference between plates and shells is that shells are initially curved in the unloaded state
while plates are flat. This difference makes the equations for shells much more complicated
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16 Governing Equations and Galerkin Method

Figure 3.1: Coordinate and dimensions of rectangular plate

than plates. However, simplified equations introduced by Donnell are available when the
shells are shallow or quasi-shallow. As defined by Bazant and Cedolin [15], a shallow shell is
a shell whose rise with respect to any chord is small, as shown in Figure 3.2; a quasi-shallow
shell is a shell which buckles in such a manner that each buckle alone represents a shallow
shell, for instance, a complete cylindrical shell. This means the half wavelengths of the buckles
of these shells are short compared to the radius. In this thesis shallow cylindrical shells are
considered, so Donnell’s simplified equations for shells are used which will be shown later in
this chapter.

Normally cylindrical coordinate is used for cylindrical shells, however, for convenience the
coordinate system is defined as a pointwise orthogonal rectangular coordinate system, as
shown in Figure 3.2. The origin of the coordinate system is in the mid-plane of the shell. The
x axis is parallel to the axis of the cylinder, the y axis is tangent to the circular arc, and the
z axis is normal to the mid-plane of the shell directed toward the center of curvature.

Figure 3.2: Cylindrical shell displacements and forces (picture form Yoo and Lee [6])

3.1.3 Assumptions

The following assumption have been mode for thin panels (plates and shallow shells),

• The panel is thin, the thickness is much smaller than other dimensions.

• No body forces and surface pressures are applied to the panels.

• Imperfections of the panels are ignored.
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Since the panel has been assumed to be thin, the Kirchhoff hypothesis have to be hold [1,3],

• Straight lines perpendicular to the mid-surface before deformation remain straight after
deformation.

• The transverse normal is inextensible.

• The transverse normal to the mid-plane is assumed to remain normal during deforma-
tion.

• The transverse normal stress σz is assumed to be small compared to other normal
stresses.

The Kirchhoff hypothesis also implies the transverse normal and shearing strains are zero [1,3].

εz = γxz = γyz = 0 (3.1)

In addition, two important assumptions are made for the stability analysis of plates and
shallow cylindrical shells which will be frequently used in the following chapters.

Assumption 1: The prebuckling deformation of a panel is membrane, if only in-plane loads
or displacements have been applied to the edges. In other words, the slopes and curvatures of
a panel in the prebuckling state are zero. So the derivatives of the out-of-plane displacement
(w) with respect to x and y are zero.

Assumption 2: The out-of-plane displacement w is zero in the prebuckling equilibrium state.

For plates, it is easy to understand that the out-of-plane deflection is zero in the prebuckling
state when only in-plane loads are applied. For cylindrical shells, this assumption is valid for
shallow cylindrical shell panels, especially for these under the boundary conditions that the
out-of-plane displacement is zero at the boundary (for instance, simply-support or clamping).
However, for complete cylindrical shells (quasi-shallow shells) under axial compression load, it
is noted that the shells will expand in the normal direction. So the out-of-plane displacement
of complete cylindrical shells is uniform but non-zero thus assumption 2 is invalid.

Based on these two assumptions, the out-of-plane displacement w, rotations and curvatures
of plates and shallow cylindrical shells in the prebuckling equilibrium state are all zero.

3.1.4 Classical Laminate Theory

The force resultants of plates are defined by integrating the stresses through the thickness of
a laminate as [5, 7]

Nx =
∫ h

2

−h
2

σxdz (3.2)

Ny =
∫ h

2

−h
2

σydz (3.3)

Nxy =
∫ h

2

−h
2

γxydz (3.4)
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18 Governing Equations and Galerkin Method

where, σx, σy, γxy are the in-plane normal and shear stress; h is the thickness.

Similarly, the moment resultants of plates are defined as

Mx =
∫ h

2

−h
2

σxzdz (3.5)

My =
∫ h

2

−h
2

σyzdz (3.6)

Mxy =
∫ h

2

−h
2

γxyzdz (3.7)

In shell theory, force resultants and moment resultants of cylindrical shells are defined as [1,6]

Nx =
∫ h

2

−h
2

σx(1 + z

R
)dz (3.8)

Ny =
∫ h

2

−h
2

σy(1 + z

R
)dz (3.9)

Nxy =
∫ h

2

−h
2

γxy(1 + z

R
)dz (3.10)

Mx =
∫ h

2

−h
2

σx(1 + z

R
)zdz (3.11)

My =
∫ h

2

−h
2

σy(1 + z

R
)zdz (3.12)

Mxy =
∫ h

2

−h
2

γxy(1 + z

R
)zdz (3.13)

(3.14)

where, R is the radius of cylindrical shell.

However, according to Donnell’s shallow shell theory these accurate equations for shells can
be approximated by the equations for plates (equation 3.2 - 3.7) since z

R might be neglected
for sufficiently thin shells [1, 5]. The positive directions of the force resultants and moment
resultants are defined in Figure 3.2.

Furthermore, the force and moment resultants are related to the mid-plane strains for lami-
nated panels (plates and shells) through the constitutive relations as [7]

Nx

Ny

Nxy

Mx

My

Mxy


=



A11(x, y) A12(x, y) A16(x, y) B11(x, y) B12(x, y) B16(x, y)
A12(x, y) A22(x, y) A26(x, y) B12(x, y) B22(x, y) B26(x, y)
A16(x, y) A26(x, y) A66(x, y) B16(x, y) B26(x, y) B66(x, y)
B11(x, y) B12(x, y) B16(x, y) D11(x, y) D12(x, y) D16(x, y)
B12(x, y) B22(x, y) B26(x, y) D12(x, y) D22(x, y) D26(x, y)
B16(x, y) B26(x, y) B66(x, y) D16(x, y) D26(x, y) D66(x, y)





εxo
εyo
γxyo
κx
κy
κxy


(3.15)

where, Aij , Bij , Dij (i, j = 1, 2, 6) are functions of x and y due to the variable stiffness;
εxo, εyo, γxyo are mid-plane strains and κx, κy, κxy are curvatures.
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For convenience, these equations can be written in matrix form as(
n
m

)
=
[
A B
B D

](
ε
κ

)
(3.16)

where,
n =

(
Nx Ny Nxy

)T
(3.17)

m =
(
Mx My Mxy

)T
(3.18)

A =

A11(x, y) A12(x, y) A16(x, y)
A12(x, y) A22(x, y) A26(x, y)
A16(x, y) A26(x, y) A66(x, y)

 (3.19)

B =

B11(x, y) B12(x, y) B16(x, y)
B12(x, y) B22(x, y) B26(x, y)
B16(x, y) B26(x, y) B66(x, y)

 (3.20)

D =

D11(x, y) D12(x, y) D16(x, y)
D12(x, y) D22(x, y) D26(x, y)
D16(x, y) D26(x, y) D66(x, y)

 (3.21)

ε =
(
εxo εyo γxyo

)T
(3.22)

κ =
(
κx κy κxy

)T
(3.23)

For symmetric laminates, the membrane-bending couplings are zero [3, 7],

Bij = 0 (i, j = 1, 2, 6) (3.24)

Then the constitutive relations reduce to(
n
m

)
=
[
A O
O D

](
ε
κ

)
(3.25)

where, O is a zero matrix.

Then the mid-plane strains can be expressed in terms of the force resultants from above
constitutive relations as εxo

εyo
γxyo

 =

a11(x, y) a12(x, y) a16(x, y)
a12(x, y) a22(x, y) a26(x, y)
a16(x, y) a26(x, y) a66(x, y)


Nx

Ny

Nxy

 (3.26)

where, aij (i, j = 1, 2, 6) are the compliance of the A matrix.a11(x, y) a12(x, y) a16(x, y)
a12(x, y) a22(x, y) a26(x, y)
a16(x, y) a26(x, y) a66(x, y)

 =

A11(x, y) A12(x, y) A16(x, y)
A12(x, y) A22(x, y) A26(x, y)
A16(x, y) A26(x, y) A66(x, y)


−1

(3.27)
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20 Governing Equations and Galerkin Method

In addition, the moment resultants can be solved from the constitutive relation (equation
3.25) as

Mx = D11(x, y)κx +D12(x, y)κy +D16(x, y)κxy (3.28)
My = D12(x, y)κx +D22(x, y)κy +D26(x, y)κxy (3.29)
Mxy = D16(x, y)κx +D26(x, y)κy +D66(x, y)κxy (3.30)

where, the curvature-displacement relations are given as

κx = −w,xx (3.31)
κy = −w,yy (3.32)

κxy = −2w,xy (3.33)

3.2 Governing Equations for Plate

In this section, the linear compatibility equation is derived for prebuckling analysis, then the
non-linear compatibility equation and stability equations are derived for stability analysis. In
the end of this section, these governing equations are compared to the the governing equations
in literature.

3.2.1 Equations for Prebuckling Analysis

For small deflections and rotations, the equations relating mid-plane strains to displacements
are [7]

εxo = u,x (3.34)
εyo = v,y (3.35)
γxyo = u,y + v,x (3.36)

where, u, v, w are the displacements along along x, y, z axis; a subscript x, y, z preceded by a
comma indicates a partial derivative (with respect to coordinate x, y, z, respectively).

The linear compatibility equation for mid-plane strains can be derived from above relations
as

εxo,yy + εyo,xx = γxyo,xy (3.37)

Substituting equation 3.26 into above equation, the compatibility equation (equation 3.37)
can be written in terms of in-plane loads as

∂2

∂y2 [a11(x, y)Nx + a12(x, y)Ny + a16(x, y)Nxy]

+ ∂2

∂x2 [a12(x, y)Nx + a22(x, y)Ny + a26(x, y)Nxy]

= ∂2

∂xy
[a16(x, y)Nx + a26(x, y)Ny + a66(x, y)Nxy]

(3.38)
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3.2 Governing Equations for Plate 21

Note that aij (i, j = 1, 2, 6) are functions of x and y, so the derivatives of them are not zero.

The linear equilibrium differential equations of plates are given in literature [1, 5, 7] as

Nx,x +Nxy,y = 0 (3.39)
Nxy,x +Ny,y = 0 (3.40)

Mx,xx + 2Mxy,xy +My,yy = 0 (3.41)

The moment resultants can be solved from the constitutive relation and are given in equation
3.28, 3.29 and 3.30. According to assumption 1, the curvatures are zero before buckling
occurs. So the out-of-plane equilibrium equation (equation 3.41) is satisfied by itself.

The in-plane equilibrium equations (equation 3.39, 3.40) can be automatically satisfied by
introducing the Airy stress function to the in-plane loads as

Nx = F,yy, Ny = F,xx, Nxy = −F,xy (3.42)

where, F is the Airy stress function.

Then the compatibility equation 3.38 can be rewritten in terms of Airy stress function as

∂2

∂y2 [a11(x, y)F,yy + a12(x, y)F,xx − a16(x, y)F,xy]

+ ∂2

∂x2 [a12(x, y)F,yy + a22(x, y)F,xx − a26(x, y)F,xy]

= ∂2

∂xy
[a16(x, y)F,yy + a26(x, y)F,xx − a66(x, y)F,xy]

(3.43)

The compatibility equation (equation 3.38 or 3.43) in the prebuckling state describes the
membrane behavior of plates (relation of in-plane loads), hence it can be used to solve the
in-plane loads distribution.

3.2.2 Equations for Stability Analysis

For moderate rotations, von Kármán’s moderately large-deflection theory has to be applied.
The equations relating mid-plane strains to displacements are [7]

εxo = u,x + 1
2w

2
,x (3.44)

εyo = v,y + 1
2w

2
,y (3.45)

γxyo = u,y + v,x + w,xw,y (3.46)

Then the non-linear compatibility equation for mid-plane strains is derived from above equa-
tions as

εxo,yy + εyo,xx − γxyo,xy = w2
,xy − w,xxw,yy (3.47)
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The non-linear equilibrium differential equations of plates for moderate rotations are given in
literature [1, 7] as

Nx,x +Nxy,y = 0 (3.48)
Nxy,x +Ny,y = 0 (3.49)

Mx,xx + 2Mxy,xy +My,yy +Nxw,xx + 2Nxyw,xy +Nyw,yy = 0 (3.50)

The moments can be written in terms of curvatures (equation 3.28 3.29 3.30) and the curva-
tures can be written in terms of displacement (equation 3.31 3.32 3.33). So the out-of-plane
equilibrium equation (equation 3.50) can be written in terms of w as

∂2

∂x2 [D11(x, y)w,xx +D12(x, y)w,yy + 2D16(x, y)w,xy]

+ 2 ∂2

∂xy
[D16(x, y)w,xx +D26(x, y)w,yy + 2D66(x, y)w,xy]

+ ∂2

∂y2 [D12(x, y)w,xx +D22(x, y)w,yy + 2D26(x, y)w,xy]

= Nxw,xx + 2Nxyw,xy +Nyw,yy

(3.51)

The in-plane equilibrium equations (equation 3.48 3.49) can still be automatically satisfied
by introducing the Airy stress function (equation 3.42) to the in-plane loads.
Although the out-of-plane equilibrium differential equation (equation 3.50) was used in some
literature [2–4, 7] to solve the buckling load, it is not theoretically correct as indicated by
Jones [5] since the equilibrium equation is essentially different from the stability equation. So
for stability analysis, the stability differential equations should be derived.
The stability differential equations can be derived applying either adjacent-equilibrium crite-
rion to the equilibrium differential equations or minimum potential energy criterion. A brief
example is shown for the adjacent-equilibrium criterion. However, the reader is referred to
the literature [1, 5] for the details regarding this criteria.
In adjacent-equilibrium criterion, small perturbations are applied to the system. Normally,
these perturbations result in infinitesimal increments of the displacements u, v, w, as follows

u→ u+ u1 (3.52)
v → v + v1 (3.53)

w → w + w1 (3.54)

where, the arrows are read ’be replaced by’. u, v, w represent the displacements on the primary
equilibrium path; u1, v1, w1 represent the infinitesimal increments of u, v, w. So u+u1, v+v1,
w+w1 represent the possible adjacent equilibrium path (or secondary equilibrium path). Since
the increments are small, the second order and any higher order terms in u1,v1,w1 can be
neglected. Moreover, according to assumption 1 and 2, the out-of-plane displacement w and
its derivatives are zero.
The increments in u, v, w cause a corresponding change in the mid-plane strains as

εxo → εxo + ∆εxo (3.55)
εyo → εyo + ∆εyo (3.56)

γxyo → γxyo + ∆γxyo (3.57)
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where,

∆εxo = u1,x + w1,xw,x + 1
2w

2
1,x (3.58)

∆εyo = v1,y + w1,yw,y + 1
2w

2
1,y (3.59)

∆γxyo = u1,y + v1,x + 2w,xw1,y + w1,xw1,y (3.60)

After ignoring the higher order terms in u1,v1,w1, the parts of ∆εxo,∆εyo,∆γxyo which are
linear in u1,v1,w1 become

εxo1 = u1,x + w1,xw,x (3.61)
εyo1 = v1,y + w1,yw,y (3.62)
γxyo1 = u1,y + v1,x + 2w,xw1,y (3.63)

According to the assumption 1 and 2, the out-of-plane displacement w and its derivatives are
zero. So

εxo1 = u1,x (3.64)
εyo1 = v1,y (3.65)
γxyo1 = u1,y + v1,x (3.66)

Therefore, εxo, εyo, γxyo can be replaced as

εxo → εxo + εxo1 (3.67)
εyo → εyo + εyo1 (3.68)

γxyo → γxyo + γxyo1 (3.69)

Similarly, the in-plane loads and moments are replaced by (after ignoring the higher order
terms in u1,v1,w1 and applying assumption 1 and 2)

Nx → Nx +Nx1 (3.70)
Ny → Ny +Ny1 (3.71)

Nxy → Nxy +Nxy1 (3.72)

and

Mx →Mx +Mx1 (3.73)
My →My +My1 (3.74)

Mxy →Mxy +Mxy1 (3.75)

where, Nx1,Ny1,Nxy1 are the parts of the increments of Nx, Ny, Nxy which are linear in
u1,v1,w1, Nx1

Ny1
Nxy1

 =

A11(x, y) A12(x, y) A16(x, y)
A12(x, y) A22(x, y) A26(x, y)
A16(x, y) A26(x, y) A66(x, y)


 εxo1
εyo1
γxyo1

 (3.76)
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andMx1,My1,Mxy1 are the parts of the increments ofMx,My,Mxy which are linear in u1,v1,w1,

Mx1 = −D11(x, y)w1,xx −D12(x, y)w1,yy − 2D16(x, y)w1,xy (3.77)
My1 = −D12(x, y)w1,xx −D22(x, y)w1,yy − 2D26(x, y)w1,xy (3.78)
Mxy1 = −D16(x, y)w1,xx −D26(x, y)w1,yy − 2D66(x, y)w1,xy (3.79)

Then replacing the in-plane loads, moments and out-of-plane displacement in the equilibrium
equations (equation 3.48, 3.49, 3.50) (then truncating the original equilibrium equations,
neglecting the higher order terms and applying assumption 1 and 2), the stability differential
equations become:

Nx1,x +Nxy1,y = 0 (3.80)
Nxy1,x +Ny1,y = 0 (3.81)

Mx1,xx + 2Mxy1,xy +My1,yy +Nxw1,xx + 2Nxyw1,xy +Nyw1,yy = 0 (3.82)

Clearly, these equations are similar to the non-linear equilibrium equations (equation 3.48,
3.49 and 3.50). This is why the equilibrium equations were used by some researchers [2–4,7]
to solve the buckling loads. However, as indicated by Jones [5], the stability equations are
essentially different from the equilibrium equations, because buckling is an eigenvalue problem
while equilibrium is a boundary-value problem.

The out-of-plane stability equation can be written in terms of w1 as

∂2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

= Nxw1,xx + 2Nxyw1,xy +Nyw1,yy

(3.83)

Since εxo1, εyo1, γxyo1 are linear in u1,v1,w1 as shown in equations 3.64, 3.65 and 3.66, a
compatibility equation can be obtained as

εxo1,yy + εyo1,xx − γxyo1,xy = 0 (3.84)

which is called the compatibility equation for stability analysis in this thesis and is different
from the compatibility equation (equation 3.37) for the prebuckling analysis. This equation
describes the non-uniform membrane behavior during buckling.

This compatibility equation can be rewritten in terms of Nx1,Ny1,Nxy1 through equation 3.76
as

∂2

∂y2 [a11(x, y)Nx1 + a12(x, y)Ny1 + a16(x, y)Nxy1]

+ ∂2

∂x2 [a12(x, y)Nx1 + a22(x, y)Ny1 + a26(x, y)Nxy1]

= ∂2

∂xy
[a16(x, y)Nx1 + a26(x, y)Ny1 + a66(x, y)Nxy1]

(3.85)
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3.2 Governing Equations for Plate 25

Introduce the increment of Airy stress function to Nx1,Ny1,Nxy1 as

Nx1 = F1,yy, Ny1 = F1,xx, Nxy1 = −F1,xy (3.86)

where, F1 is the increment of F .

Clearly, these equations automatically satisfy the in-plane stability differential equations
(equation 3.80 and 3.81) as the Airy stress function (equation 3.42) automatically satisfy
the in-plane equilibrium differential equations.

Then the out-of-plane stability differential equation (equation 3.83) can be written in terms
of Airy stress function as

∂2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

= F,xxw1,xx − 2F,xyw1,xy + F,yyw1,yy

(3.87)

The compatibility equation (equation 3.85) for stability analysis can be written in terms of
the increment of Airy stress function as

∂2

∂y2 [a11(x, y)F1,yy + a12(x, y)F1,xx − a16(x, y)F1,xy]

+ ∂2

∂x2 [a12(x, y)F1,yy + a22(x, y)F1,xx − a26(x, y)F1,xy]

= ∂2

∂xy
[a16(x, y)F1,yy + a26(x, y)F1,xx − a66(x, y)F1,xy]

(3.88)

Clearly, the compatibility equation for stability analysis derived here is independent of the
out-of-plane stability equation 3.87. So the buckling load of plates can be solved from the
out-of-plane stability equation alone. Later in Section 3.3, similar compatibility equation and
out-of-plane stability equations will be derived for shells where the two equations are coupled
and have to be solved together. This is one of the differences between plates ad cylindrical
shells.

3.2.3 Comparison with previous work

If the stiffness of the plate is constant, Aij and Dij are no longer functions of x and y. Then
the out-of-plane equilibrium equation (equation 3.50) will reduce to

D11
∂4w

∂x4 + 2(D12 + 2D66) ∂4w

∂x2y2 +D22
∂4w

∂y4 − 4D16
∂4w

∂x3y
− 4D26

∂4w

∂xy3

=Nx
∂2w

∂x2 +Ny
∂2w

∂y2 + 2Nxy
∂2w

∂xy

(3.89)
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and the out-of-plane stability equation (equation 3.83) will reduce to

D11
∂4w1
∂x4 + 2(D12 + 2D66) ∂

4w1
∂x2y2 +D22

∂4w1
∂y4 − 4D16

∂4w1
∂x3y

− 4D26
∂4w1
∂xy3

=Nx
∂2w1
∂x2 +Ny

∂2w1
∂y2 + 2Nxy

∂2w1
∂xy

(3.90)

which are exactly the same equations derived in literature [3, 4] for composite plates with
constant stiffness.
If the bending-twisting couplings (D16, D26) are zero, the above two equations can further
reduce into

D11
∂4w

∂x4 + 2(D12 + 2D66) ∂4w

∂x2y2 +D22
∂4w

∂y4 = Nx
∂2w

∂x2 +Ny
∂2w

∂y2 + 2Nxy
∂2w

∂xy
(3.91)

and

D11
∂4w1
∂x4 + 2(D12 + 2D66) ∂

4w1
∂x2y2 +D22

∂4w1
∂y4 = Nx

∂2w1
∂x2 +Ny

∂2w1
∂y2 + 2Nxy

∂2w1
∂xy

(3.92)

If the loads applied on the panel are only Nx and Ny, the exact closed form solution, for
instance Navier solution, to the buckling load of simply-supported plate can be obtained, as
shown in many literature [2–5, 7]. If shear load is applied to the plate, Navier solution does
not exist [3]. Approximated closed form solution only exists in some special cases [3, 7, 32],
for instance long plate.
If the bending-twisting couplings are not zero and no shear load applied, the exact closed
form solution (for instance, Navier solution) is still not available (to the best knowledge of
the author). Then the approximation solutions, such as Galerkin method, Ritz method and
Finite element method, are used to solve the buckling loads [3, 7].
In current thesis, Aij and Dij are functions of x and y, the bending-twisting couplings are
retained and shear load might be applied, the equilibrium equation and stability equation are
thus more complicated than these in literature. No closed form solutions have been obtained
(to the best knowledge of the author). So the approximation solution, such as Galerkin
method, is a more practical method to solve these equations.

3.3 Governing Equations for Shallow Cylindrical Shell

Similar to the previous section, the linear compatibility equation for shells is derived for
prebuckling analysis, then the non-linear compatibility equation and stability equations for
shells are derived for stability analysis in this section .

3.3.1 Equations for Prebuckling Analysis

For cylindrical shells, the strain-displacement relations are given as [5]

εxo = u,x (3.93)

εyo = v,y −
w

R
(3.94)

γxyo = u,y + v,x (3.95)
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3.3 Governing Equations for Shallow Cylindrical Shell 27

where, the a new term w
R is added to εyo due to the initial curvature of cylindrical shells.

Consequently the linear compatibility equation of shell derived from above relations contains
one more term which related to the curvature as [5, 12]:

εxo,yy + εyo,xx − γxyo,xy = − 1
R
w,xx (3.96)

Similarly to plates, the compatibility equation can be written in terms of in-plane loads as

∂2

∂y2 [a11(x, y)Nx + a12(x, y)Ny + a16(x, y)Nxy]

+ ∂2

∂x2 [a12(x, y)Nx + a22(x, y)Ny + a26(x, y)Nxy]

− ∂2

∂xy
[a16(x, y)Nx + a26(x, y)Ny + a66(x, y)Nxy]

= − 1
R
w,xx

(3.97)

According to the assumption 1, the derivatives of w before buckling occurs are zero. Thus,
above equation reduces into

∂2

∂y2 [a11(x, y)Nx + a12(x, y)Ny + a16(x, y)Nxy]

+ ∂2

∂x2 [a12(x, y)Nx + a22(x, y)Ny + a26(x, y)Nxy]

− ∂2

∂xy
[a16(x, y)Nx + a26(x, y)Ny + a66(x, y)Nxy]

= 0

(3.98)

which is exactly the same as the compatibility equation (equation 3.38) for plates.

The in-plane loads distribution can be solved from the compatibility equation (equation 3.98)
derived here. It implies the in-plane loads distribution of shallow cylindrical shell panels is
the same as plates with the same stiffness and under the same in-plane loads.

3.3.2 Equations for Stability Analysis

For moderate rotations, the equations relating mid-plane strains to displacements for cylin-
drical shells are [1, 5]

εxo = u,x + 1
2w

2
,x (3.99)

εyo = v,y −
w

R
+ 1

2w
2
,y (3.100)

γxyo = u,y + v,x + w,xw,y (3.101)

Then the non-linear compatibility equation for mid-plane strains is derived from above equa-
tions as

εxo,yy + εyo,xx − γxyo,xy = w2
,xy − w,xxw,yy −

1
R
w,xx (3.102)
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28 Governing Equations and Galerkin Method

The non-linear equilibrium differential equations of shells for moderate rotations are given in
literature as [1, 5]

Nx,x +Nxy,y = 0 (3.103)
Nxy,x +Ny,y = 0 (3.104)

Mx,xx + 2Mxy,xy +My,yy +Nxw,xx + 2Nxyw,xy +Nyw,yy + Ny

R
= 0 (3.105)

The out-of-plane equilibrium equation (equation 3.105) can be written in terms of w as

∂2

∂x2 [D11(x, y)w,xx +D12(x, y)w,yy + 2D16(x, y)w,xy]

+ 2 ∂2

∂xy
[D16(x, y)w,xx +D26(x, y)w,yy + 2D66(x, y)w,xy]

+ ∂2

∂y2 [D12(x, y)w,xx +D22(x, y)w,yy + 2D26(x, y)w,xy]

= Nxw,xx + 2Nxyw,xy +Nyw,yy + Ny

R

(3.106)

The in-plane equilibrium equations (equation 3.103 3.104) can still be automatically satisfied
by introducing the Airy stress function (equation 3.42) to the in-plane loads.

Similarly to plates, the stability differential equations can be derived by either applying
adjacent-equilibrium criterion to the equilibrium differential equations or using minimum
potential energy criterion. The reader is referred to the literature [1,5] for the details of these
criteria.

By applying the adjacent-equilibrium criterion to obtain the stability equations and compat-
ibility equation (like the compatibility equation 3.84 for plates), similar derivations will be
obtained as those for plates in section 3.2.2. Hence the derivations are not repeated again in
this section. However, due to the additional term w

R added to εyo, the derivations are slightly
different. The corresponding stability and compatibility equation will have one more term
resulting from the additional term w

R .

The stability equations are then obtained as

Nx1,x +Nxy1,y = 0 (3.107)
Nxy1,x +Ny1,y = 0 (3.108)

Mx1,xx + 2Mxy1,xy +My1,yy +Nxw1, xx+ 2Nxyw1,xy +Nyw1,yy + Ny1
R

= 0 (3.109)

Clearly, for shells the out-of-plane stability equation is different from the out-of-plane equi-
librium equation (equation 3.105), because not only the equation is written in terms of the
increments of moments and out-of-plane displacement but also the term related to curvature
is written in term of the increment of in-plane load (Ny1) which was written in term of the
in-plane load (Ny) in the equilibrium equation. This curvature term makes the buckling load
of shell can only be solved from the stability equation. However, the buckling for plates can
be solved form the equilibrium equation as what did by some researchers [2, 4] (while, it is
not theoretically correct as indicated by Jones [5]).
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3.3 Governing Equations for Shallow Cylindrical Shell 29

The out-of-plane stability equation can be written in terms of w1 as
∂2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

= Nxw1,xx + 2Nxyw1,xy +Nyw1,yy + Ny1
R

(3.110)

The compatibility equation for stability analysis (corresponds to the equation 3.84 for plates)
is obtained as

εxo1,yy + εyo1,xx − γxyo1,xy = − 1
R
w1,xx (3.111)

It can be rewritten in terms of Nx1, Ny1, Nxy1 as
∂2

∂y2 [a11(x, y)Nx1 + a12(x, y)Ny1 + a16(x, y)Nxy1]

+ ∂2

∂x2 [a12(x, y)Nx1 + a22(x, y)Ny1 + a26(x, y)Nxy1]

− ∂2

∂xy
[a16(x, y)Nx1 + a26(x, y)Ny1 + a66(x, y)Nxy1]

= − 1
R
w1,xx

(3.112)

If introducing the increments of Airy stress function (equation 3.86) to Nx1, Ny1, Nxy1, the
in-plane stability differential equations (equation 3.107 and 3.108) are automatically satisfied.
Then the out-of-plane stability differential equation (equation 3.110) can be written in terms
of Airy stress function and its increment as

∂2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

= F,yyw1,xx − 2F,xyw1,xy + F,xxw1,yy + F1,xx
R

(3.113)

The compatibility equation (equation 3.112) for stability analysis can be written in terms of
the increment of Airy stress function as

∂2

∂y2 [a11(x, y)F1,yy + a12(x, y)F1,xx − a16(x, y)F1,xy]

+ ∂2

∂x2 [a12(x, y)F1,yy + a22(x, y)F1,xx − a26(x, y)F1,xy]

− ∂2

∂xy
[a16(x, y)F1,yy + a26(x, y)F1,xx − a66(x, y)F1,xy]

= − 1
R
w1,xx

(3.114)
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30 Governing Equations and Galerkin Method

The compatibility equation (equation 3.112 or 3.114) for stability analysis is of significant
importance for shells, since it shows the increment of in-plane loads (or Airy stress function)
is related to the increment of displacement. So this equation have to be solved together
with the out-of-plane stability equation to obtain the buckling load. However, for plates
the increment of in-plane loads (or Airy stress function) is not related to the increment of
displacement since the terms with curvature vanish as shown in equation 3.85 and 3.88.
If the radius of shells is infinite large ( 1

R = 0), all the equations derived for shells will reduce
to the equations derived for plates.
As mentioned in section 3.2.3, closed form solutions are barely developed to solve these
governing differential equations. Therefore, the Galerkin method is introduced to solve these
equations approximately.

3.4 Galerkin method

In mathematics, the Galerkin method is one of the weighted-residual methods which are used
to solve a differential equation by converting it into a set of discrete equations [3]. Consider
a differential equation as

L[w(x)] = f (3.115)
where, L is the differential operator, w(x) is the unknown function which needs to be deter-
mined.
The w is approximated by a set of linear independent functions as

w ≈WN =
N∑
i=1

ciϕi + ϕ0 (3.116)

where, WN is the approximation of w, ci is the undetermined parameter, ϕi and ϕ0 are the
shape functions, N is the number of terms used for approximating the exact solution w.
The approximation is only exact when N is infinite. Since the solution WN is an approxima-
tion to the exact solution w, a certain residual of the approximation exists after substituting
the approximation back to the differential equation.

RN = L

[
N∑
i=1

ciϕi + ϕ0

]
− f (3.117)

where, RN is the residual when N terms are used.
The residual is required to be orthogonal to each of the shape functions ϕi,∫

RNϕidx = 0 (i = 1, 2, ..., N) (3.118)

The undetermined parameter ci can be solved from above N equations. Since the shape
functions are known beforehand, the approximated solution WN is obtained. As the number
of terms increases, the approximation will be increasingly closer to the exact solution. When
N is infinite, the approximation is exact and the differential equation is solved exactly. The
mathematical explanation and demonstration will not be shown here, however, they can be
found in literature [3, 15].
In Galerkin method, the assumed shape functions should have the following properties [3]:
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3.4 Galerkin method 31

1 ϕ0 should satisfy the specified essential and natural boundary conditions; it plays the
role of particular solution to the differential equation.

2 ϕi plays the role of homogeneous solution to the differential equation:

– It satisfies the homogeneous form of essential and natural boundary conditions
– The set of ϕi should be linearly independent and complete.

The completeness property is defined mathematically in literature [3] as follows. Given a
function w and a real number ε > 0, the set of ϕi is complete if there exists an integer N
(which depends on ε) and scalar parameters ci such that

‖ w −
N∑
1
ciϕi ‖< ε (3.119)

where, ‖ · ‖ denotes a norm.

3.4.1 Prebuckling Analysis

In this section, the Galerkin method is applied to solve the in-plane loads distribution from
the compatibility equation (equation 3.43 and 3.98). Since the compatibility equations for
plates and shells are the same, either of them can be applied here.
Considering a panel with variable stiffness under a constant applied load N̄x, the Airy stress
function can be assumed as

F (x, y) = 1
2N̄xy

2 +
K∑
k=1

L∑
l=1

FklXk(x)Yl(y) (3.120)

Fkl is the undetermined parameter. Xk and Yl are the shape functions used in x and y
direction, respectively. K and L are the numbers of shape functions used in x and y direction,
respectively. For simplicity, above equation is written as

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

FklXk(x)Yl(y) (3.121)

In the following chapters, similar simplifications are used.
Clearly, the first term 1

2N̄xy
2 plays the role of ϕ0 as the particular solution in equation 3.116

and Xk (and Yl) plays the role of ϕi as the homogeneous solution.
Applying the Galerkin method to the compatibility equation (equation 3.43 or 3.98), a set of
equations are obtained as follows.∫ a

0

∫ b

0
{ ∂

2

∂y2 [a11(x, y)F,yy + a12(x, y)F,xx − a16(x, y)F,xy]

+ ∂2

∂x2 [a12(x, y)F,yy + a22(x, y)F,xx − a26(x, y)F,xy]

− ∂2

∂xy
[a16(x, y)F,yy + a26(x, y)F,xx − a66(x, y)F,xy]}Xk(x)Yl(y)dxdy = 0

(k = 1, 2, ...,K and l = 1, 2, ..., L)

(3.122)
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32 Governing Equations and Galerkin Method

If the applied load (N̄x) and shape functions (Xk and Yl) are assigned to the Airy stress
function (F ), above equations form K × L linear equations in K × L unknown parameters
(Fkl). Then the K × L unknown parameters can be directly solved from the K × L linear
equations. Then the approximated solution of Airy stress function will be obtained.

3.4.2 Stability Analysis

To determine buckling initiation, it is convenient to introduce the buckling factor to the Airy
stress function as

F (x, y) = λ

[
1
2N̄xy

2 +
KL∑
kl

FklXk(x)Yl(y)
]

(3.123)

where, λ is the buckling factor.

The critical buckling factor determines the stability of panels under a certain applied load
N̄x. In other words, the buckling load of the panel is λN̄x.

The increment of the out-of-plane displacement is approximated as

w1 =
PQ∑
pq

W 1
pqXp(x)Yq(y) (3.124)

W 1
pq is the undetermined parameter. Xp and Yq are the shape functions used in x and y

direction, respectively. P and Q are the numbers of shape functions used in x and y direction,
respectively.

Clearly, the ϕ0 in equation 3.116 as the particular solution does not exist in above equation
and Xk (and Yl) plays the role of ϕi as the homogeneous solution. The reason is the initial
out-of-plane deflection is zero.

For plates, Applying Galerkin method to the out-of-plane stability equation (equation 3.87)
and introducing the buckling factor to the Airy stress function (as shown in equation 3.123),
a set of linear equations are obtained as∫ a

0

∫ b

0
{ ∂

2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

− λ[F,xxw1,xx − 2F,xyw1,xy + F,yyw1,yy]}Xp(x)Yq(y)dxdy = 0
(p = 1, 2, ..., P and q = 1, 2, ..., Q)

(3.125)

where, the Airy stress function F is solved from the compatibility equation (equation 3.122)
in prebuckling analysis.

If the shape functions (Xp and Yq) are assigned to the increment of displacement (w1), above
equations form P×Q homogeneous equations which have P×Q unknown parametersW 1

pq and
the unknown buckling factor λ. These equations can be written in the form of matrix, where
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a set of W 1
pq play the role of eigenvector and λ plays the role of eigenvalue. Then λ is solved

from the matrix as a set of eigenvalues, where the lowest one determines the most critical
buckling load. While, the eigenvectors determine the buckling mode shape corresponding to
each buckling factor.

For shells, if applying the Galerkin method to the stability equation (equation 3.113) and
introducing the buckling factor to Airy stress function (as shown in equation 3.123), a set of
linear equations are obtained as∫ a

0

∫ b

0
{ ∂

2

∂x2 [D11(x, y)w1,xx +D12(x, y)w1,yy + 2D16(x, y)w1,xy]

+ 2 ∂2

∂xy
[D16(x, y)w1,xx +D26(x, y)w1,yy + 2D66(x, y)w1,xy]

+ ∂2

∂y2 [D12(x, y)w1,xx +D22(x, y)w1,yy + 2D26(x, y)w1,xy]

− λ[F,yyw1,xx − 2F,xyw1,xy + F,xxw1,yy]−
F1,xx
R
}Xp(x)Yq(y)dxdy = 0

(p = 1, 2, ..., P and q = 1, 2, ..., Q)

(3.126)

where, the Airy stress function F is solved from the compatibility equation (equation 3.122)
in the prebuckling analysis.

However, due to the presence of the F1,xx

R term an additional compatibility equation for the
Airy stress function F1 has to be solved along with the out-of-plane stability equation. As
mentioned in the end of section 3.3.2, the increment of Airy stress function (F1) of shells
is connected to the increment of out-of-plane displacement (w1) through the compatibility
equation for stability analysis (equation 3.114). So to get rid of the additional term (F1,xx

R ) in
above equation, the compatibility equation for stability analysis (equation 3.114) should be
utilized.

Similarly to Airy stress function (F ), the increment of Airy stress function (F1) is approxi-
mated as

F1(x, y) =
K1L1∑
kl

F 1
klXk(x)Yl(y) (3.127)

F 1
kl is the undetermined parameter. K1 and L1 are the numbers of shape functions used in x

and y direction, respectively.

Applying Galerkin method to the compatibility equation for stability analysis (equation
3.114), a set of equations are obtained as∫ a

0

∫ b

0
{ ∂

2

∂y2 [a11(x, y)F1,yy + a12(x, y)F1,xx − a16(x, y)F1,xy]

+ ∂2

∂x2 [a12(x, y)F1,yy + a22(x, y)F1,xx − a26(x, y)F1,xy]

− ∂2

∂xy
[a16(x, y)F1,yy + a26(x, y)F1,xx − a66(x, y)F1,xy]

+ 1
R
w1,xx}Xk(x)Yl(y)dxdy = 0

(k = 1, 2, ...,K1 and l = 1, 2, ..., L1)

(3.128)
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Above equations form K1×L1 linear equations, which have K1×L1 unknown parameters F 1
kl

and P ×Q unknown parameters W 1
pq. The unknown parameters F 1

kl can be solved in terms of
W 1
pq from above equations. Then substituting them back to the stability equations (equation

3.126), the stability equations completely get rid of the increment of Airy stress function (F1)
in the additional term (F1,xx

R ). Therefore, the buckling factor can be solved as the eigenvalue
of the matrix form of the stability equations.

3.4.3 Approximation of Stiffness

The task was to analyze panels with variable stiffness, however the stiffness can assume
arbitrary value across the plate (continuously varying through steering the fiber orientation
or piece-wise constant, etc.). However, the variation of stiffness in this thesis is simplified to
a few sections each having their own constant stiffness defined by fiber direction. Examples
are shown in Figure 3.3, where the panel is divided into 4 and 16 sections, respectively. The
reason for the simplicity is that the steering of fiber orientation is not easy to be assigned to
the model in Abaqus, especially to the models of shells. Due to the limitation of time, this
simplification has been adopted.

(a) 4 Section (b) 16 Section

Figure 3.3: Variable Stiffness: sections

Therefore, the stiffness is a piecewise function instead of a continuous function. The governing
equations require the derivatives of the stiffness across the panel. In the case of a piece-wise
constant stiffness panels, the derivatives are zero inside of each section but infinity at the
boundaries of neighboring sections which cause many numerical problems when evaluating
the Galerkin integrals. To solve this problem, a set of series can be applied to approximate
the stiffness. One example is the Fourier series, where the membrane and bending stiffness
are approximated by double Fourier series as

āij(x, y) =
M∑
m

N∑
n

āij(m,n) sin mπx
a

sin nπy
b

(3.129)

D̄ij(x, y) =
M∑
m

N∑
n

D̄ij(m,n) sin mπx
a

sin nπy
b

(3.130)
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where, the index i, j = 1, 2, 6, āij and D̄ij are the approximations of aij and Dij , M,N are
the number of Fourier series used in x and y direction, and āij(m,n), D̄ij(m,n) are expressed
as

āij(m,n) = 4
ab

∫ a

0

∫ b

0
aij(x, y) sin mπx

a
sin nπy

b
dxdy (3.131)

D̄ij(m,n) = 4
ab

∫ a

0

∫ b

0
Dij(x, y) sin mπx

a
sin nπy

b
dxdy (3.132)

Besides the sine functions, cosine functions can also be applied in Fourier series. An example
of the approximation using sine function is given in Figure 3.4 when M = N = 50 terms of
series are used to approximate the bending stiffness D11 of a plate with four section. Clearly,
the approximation is very close to the exact stiffness.

(a) Approximation (b) Exact

Figure 3.4: Approximation of D11 of plate with 4 sections

Since the stiffness is approximately expressed by Fourier series, the derivatives of the stiffness
will never be vanish. Substituting the Fourier series back to the compatibility and stability
equations, the in-plane loads and buckling factors can be solved.

However, a large number of terms in Fourier series are required to better approximate the
stiffness, the efficiency of Galerkin method is reduced. Even a large number of series are used,
the approximation of stiffness is still not exact which reduces the accuracy of the in-plane
loads and buckling factor.

However, if the stiffness is continuous and can be described exactly by a continuous function,
the approximation using series is not necessary.

3.4.4 Boundary Integral

One of the requirements of the Galerkin method is that the shape functions should satisfy
both essential and natural boundary conditions. However, it is not always easy to find a
shape function which can satisfy the natural boundary conditions of composite panels.
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For example, for simply-supported panels the natural boundary condition is that the moments
are zero at the boundaries, namely

Mx = −D11w,xx −D12w,yy − 2D16w,xy = 0 (on x = 0, a) (3.133)
My = −D12w,xx −D22w,yy − 2D26w,xy = 0 (on y = 0, b) (3.134)

When D16 = 0 and D26 = 0, the displacement w can be assumed as

w =
PQ∑
pq

Wpqsin
pπx

a
sin

qπy

b
(3.135)

which can exactly satisfy the natural boundary condition.
However, when D16 6= 0 and D26 6= 0, it is difficulty to find a shape function which satisfies the
natural boundary condition. Hence the accuracy of the buckling load prediction is decreased.
The solution to this problem is to add an additional boundary integral, which includes the
natural boundary conditions, into the stability equation [2, 12] as∫ b

0
[Mx

∂Xp(x)
∂x

Yq(y)]x=a − [Mx
∂Xp(x)
∂x

Yq(y)]x=0dy

+
∫ a

0
[MyXp(x)∂Yq(y)

∂y
]y=b − [MyXp(x)∂Yq(y)

∂y
]y=0dx

(3.136)

This boundary integral is the result of integration by parts in the derivation of the govern-
ing differential equations using the energy approach (virtual work principle or variational
principle) [2, 13,33].
A brief example is given by Zhang and Matthews [13] for the derivation of equilibrium equation
using the virtual displacement principle,∫ a

0

∫ b

0
[Mx,xx +My,yy + 2Mxy,xy + Ny

R
+Nxw,xx +Nyw,yy + 2Nxyw,xy]δwdxdy

+
∫ b

0
[Mxδwx]x=a − [Mxδwx]x=0dy +

∫ a

0
[Myδwy]y=b − [Myδwy]y=0dx = 0

(3.137)

Since the virtual displacement δw (which is called the variation of w in variational principle)
and the virtual slopes (δwx, δwy) are arbitrary, to satisfy above equation the expressions in
the brackets have to be zero individually. In other words,

Mx,xx +My,yy + 2Mxy,xy + Ny

R
+Nxw,xx +Nyw,yy + 2Nxyw,xy = 0 (3.138)

Mx(x = a) = Mx(x = 0) = My(y = b) = My(y = 0) = 0 (3.139)

The first equation obtained is exactly the out-of-plane equilibrium equation of shells ( the
same as equation 3.105). The rest equations are exactly the natural boundary conditions.
When applying the Galerkin method to solve the above equilibrium equation, the natural
boundary conditions are satisfied by the assumed shape function of displacement (w). So
the boundary integral does not have to be included in the equation. However, when the
natural boundary conditions cannot be satisfied by the assumed shape function, the complete
equation (equation 3.137) which includes the boundary integral must be used in order to
satisfy the natural boundary conditions.
For stability analysis, similar derivations will be shown and the boundary integral (3.136) has
to be added into the stability equation to satisfy the natural boundary conditions.
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3.5 Summary

In this chapter, the governing differential equations for plates and shallow cylindrical shells
have been derived based on the assumptions made in section 3.1.3. Due to the difficulty
in solving these governing differential equations analytically, Galrkin method is introduced
to achieve the approximated solutions. In principle, Galerkin method is a suitable choice.
However, due to the discontinuity in the stiffness of the panels considered, the discontinuous
stiffness has to be approximated by continuous functions, such as Fourier series. Since a
lot of terms of series are required to approximate the stiffness, the efficiency of the model
will be reduced while the stiffness is still not exact unless infinite number of series are used.
Therefore, a similar approximation method, Ritz method, is introduced in the next chapter
where the stiffness are expressed exactly as they are. The assumptions made in this chapter
and the basic equations are still valid in the following chapters.
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Chapter 4

Ritz Method

4.1 Introduction

Ritz method bypasses the derivation of the governing differential equations, and goes directly
from the variational statements of the problem, such as the principle of minimum potential
energy, which are equivalent to the governing differential equations and the corresponding
natural boundary conditions [3].

Similar to Galerkin method, in Ritz method the unknown variable (for example, the dis-
placement w) is approximated by a finite linear combination of the shape functions with
undetermined parameters [3]

w ≈WN =
N∑
j=1

cjϕj + ϕ0 (4.1)

where, cj denotes the undetermined parameters, ϕj and ϕ0 are the selected shape functions.

The selected shape functions have to meet the following requirements [3]

• ϕ0 should satisfy the specified essential (or geometric) boundary conditions, which plays
the role of particular solution.

• ϕj should satisfy the homogeneous form of the essential boundary conditions. In addi-
tion,

– ϕj should be linearly independent.
– ϕj should form a complete system of functions.

Compared to Galerkin method, Ritz method has several advantages

• Only the essential boundary condition should be satisfied by the shape function in Ritz
method [3]. The natural boundary condition is not required to be satisfied by the shape
function in Ritz method [19].
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• It avoids using Fourier series to approximate the stiffness variation, thus increasing the
efficiency and accuracy.

• The extra boundary integral (equation 3.136) is automatically included in the variational
statements suing the Ritz method.

Although the selected shape functions in Ritz method do not have to satisfy the natural
boundary conditions, however, if they do the approximations are better, usually substantially
better [15]. Moreover, the shape functions are not required to be orthogonal to each other in
Ritz method. But for computational accuracy and convenience, it is advantageous to choose
orthogonal shape functions [15].

Before applying Ritz method, the first step is to derive the total complementary energy of
the panels in the pebuckling state, from which the in-plane loads will be solved, and the total
energy functional for buckling analysis, from which the buckling are determined. The termi-
nology ’total energy functional’ has been used here because it is a mixture of complementary
energy and strain energy. The detailed derivation of the total energy functional will be shown
in this chapter.

As indicated in the literature review (section 2.2.1), there is an argument indicated by Jones
[5], that whether the energy done by the in-plane loads during buckling should be regarded
as the work done by the external loads or part of the membrane strain energy. Jones clearly
indicated that this energy was derived from the membrane strain and was a part of the
membrane strain energy. However, in other literature this energy term was still regraded as
the work done by the external loads [2, 4, 7, 11, 28]. In this chapter, this energy term will be
derived and proved to be a part of the membrane energy, not the external work.

In the section of Galerkin method, the panels are considered as only under the prescribed
loads. However, the constant loads applied on the edges of the panels with variable stiffness,
will result in variable deformations on the edges. In experiments, the edges of the panels are
normally restrained as straight and rather the prescribed displacements are applied since the
constant prescribed loads are very difficult to be applied to the panels. Therefore, in this
chapter, buckling of panels under prescribed displacements (end-shortening) on the edges
is also considered. The corresponding energy functional (for both prebuckling analysis and
stability analysis) will be derived considering these two load cases in section 4.3 and 4.4 of
this chapter.

Ritz method will be applied to the derived energy functionals for plates and shells in section
4.5 and 4.6, respectively. The equations equivalent to the governing differential equations
in previous chapter will be derived, among which the stability equations are obtained by
applying the adjacent-equilibrium criterion or the principle of minimum potential energy
(second variation of total energy functional or Treffz buckling criterion).

4.2 Strain Energy in Bending and Stretching of Laminated Panels

The strain energy of an elastic body is given as [2, 4]

U = 1
2

∫ ∫ ∫
(σxεx + σyεy + σzεz + τxzγxz + τyzγyz + τxyγxy)dxdydz (4.2)
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4.3 Total Energy Functional for Prebuckling Analysis 41

The strain energy for thin panels can be simplified according to the Kirchhoff assumptions
(section 3.1.3) since εz, γxz and γyz are zero.

U = 1
2

∫ ∫ ∫
(σxεx + σyεy + τxyγxy)dxdydz (4.3)

For symmetric laminated plates, where the stretching-bending couplings are zero (B = O),
the strain energy becomes [7]

U =1
2

∫ ∫
[A11(εxo)2 + 2A12(εxo)(εyo) + 2A16(εxo)(γxyo) +A22(εyo)2

+ 2A26(εyo)(γxyo) +A66(γxyo)2]dxdy

+ 1
2

∫ ∫
[D11κ

2
x + 2D12κxκy + 4D16κxκxy +D22κ

2
y + 4D26κyκxy + 4D66κ

2
xy]dxdy

(4.4)

where, the first term is the membrane strain energy

Um =1
2

∫ ∫
[A11(εxo)2 + 2A12(εxo)(εyo) + 2A16(εxo)(γxyo) +A22(εyo)2

+ 2A26(εyo)(γxyo) +A66(γxyo)2]dxdy
(4.5)

and the second term is the bending strain energy

Ub = 1
2

∫ ∫
[D11κ

2
x + 2D12κxκy + 4D16κxκxy +D22κ

2
y + 4D26κyκxy + 4D66κ

2
xy]dxdy (4.6)

The reader is referred to the literature [2, 4, 7] for detailed derivation of these equations.

4.3 Total Energy Functional for Prebuckling Analysis

In this section, the total complementary energy of a panel in prebuckling state is derived. In
Section 4.3.1, the panel is considered under a general load case where both external loads and
displacements are prescribed. Then in Section 4.3.2 and 4.3.3, the panel is considered only
under prescribed loads and displacements, respectively.
Based on the assumption 2 in Chapter 3, the out-of-plane displacements w of both plates
and shallow cylindrical shell are zero in the prebuckling state. So the strain-displacement
relations of cylindrical shells (equation 3.93, 3.94 and 3.95) reduce

εxo = u,x, εyo = v,y, γxyo = v,x + u,y (4.7)

which are the same as those of plates.
Therefore, the membrane behaviors of plates and shells are the sames in the prebuckling state.
The total energy functional derived in this section is suitable for both plates and shells.
Moreover, a panel only deforms in stretching in the pre-buckling state. The strain energy
comprises the membrane strain energy (equation 4.5) which can be expressed in terms of
displacements (u, v, w) through the strain-displacement relations as

Um = 1
2

∫ ∫
[A11u

2
,x + 2A12u,xv,y + 2A16u,x(v,x + u,y) +A22v

2
,y

+ 2A26v,y(v,x + u,y) +A66(v,x + u,y)2]dxdy
(4.8)
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4.3.1 Prescribed Loads and Displacements

In this section, a general load case, where a panel is under both the prescribed external loads
and prescribed displacements on the boundaries, has been considered. The boundary of the
panel can be divided into two parts from the viewpoint of the boundary conditions. The part
over which boundary conditions are prescribed in terms of external loads is defined as S1; the
part over which boundary conditions are prescribed in terms of displacements is defined as
S2. The sum of them, S = S1 + S2, is the total boundary of the panels, as shown in Figure
4.1. For a rectangular plate, the total boundary is comprised of the four straight edges. The
equations derived for this general load case can be reduced to the equations for the case of
only prescribed loads or displacements, respectively, in the following two sections.

Figure 4.1: Boundary of of a free body

Consider a panel under prescribed loads N̄x, N̄y, N̄xy on the boundary S1 and prescribed
displacements ū, v̄ on the boundary S2.

The mechanical boundary conditions are

Nx = N̄x, Ny = N̄y, Nxy = N̄xy (on S1) (4.9)

The geometrical boundary conditions are

u = ū, v = v̄ (on S2) (4.10)

The total potential energy of the panel in stretching is given as [33]

Πpre = Um + VS1 (4.11)

where, Πpre is the total potential energy in prebuckling state, VS1 is the work done by the
prescribed loads on boundary S1 in stretching.

Note that the work done by the prescribed displacements on boundary S2 is a complementary
work, so it does not contribute to the total potential energy.

The membrane strain energy Um is given as (equation 4.8)

Um = 1
2

∫ ∫
[(A11(u,x)2 + 2A12(u,x)(v,y) + 2A16(u,x)(v,x + u,y)

+A22(v,y)2 + 2A26(v,y)(v,x + u,y) +A66(v,x + u,y)2]dxdy
(4.12)
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and the external work done on the boundary S1 is given in literature [5] as

VS1 = +
∮
Cy

(N̄yv + N̄xyu)dx−
∮
Cx

(N̄xu+ N̄xyv)dy (4.13)

For rectangular plates or cylindrical shells (as shown in Figure 3.1 and 3.2), the external work
can be written as

VS1 = −
∫
S1

[(N̄yv+N̄xyu)y=b−(N̄yv+N̄xyu)y=0]dx−
∫
S1

[(N̄xu+N̄xyv)x=a−(N̄xu+N̄xyv)x=0]dy
(4.14)

Instead of total potential energy, the total complementary energy of the panel can be intro-
duced, which is given as [28,29,33]

Πc
pre = U cm + VS2 (4.15)

where, Πc
pre is the total complementary energy, U cm is the membrane complementary energy

and VS2 is the complementary work done by the prescribed displacements on boundary S2.

Note that the work done by the prescribed loads on boundary S1 is a potential work, which
does not contribute to the total complementary energy.

The membrane complementary energy U cm is given as [7, 28]

U cm = 1
2

∫ ∫
a11N

2
x + 2a12NxNy + 2a16NxNy + a22N

2
y + 2a26NyNxy + a66N

2
xydxdy (4.16)

The complementary work done on boundary S2 is [28, 33]

VS2 = −
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx−
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(4.17)

Moreover, it is noted that the total potential energy Πpre (equation 4.11) can be transformed
into

Πpre = −U cm − VS2 = −Πc
pre (4.18)

The detail of the derivations is shown in Appendix A.

Above equation indicates that even if the total potential energy was utilized in the beginning,
it can be transformed into the negative of total complementary energy where the in-plane
loads are the variables instead of displacements or strains. As just mentioned that the work
VS2 done by the prescribed displacements is complementary work, so it only appears in the
expression for total complementary energy, as shown in equation 4.15 and 4.18. Similarly,
the external work VS1 done by the prescribed loads is only shown in the total potential
energy (equation 4.11) and is disappeared when the total potential energy transforms into
the negative of total complementary energy (equation 4.18).

If making these two energy functionals, Πpre (equation 4.18) and Πc
pre (equation 4.15), sta-

tionary with respect to the unknown variables (in this case they are Nx, Ny and Nxy), the
total complementary energy Πc

pre will be minimized with respect to the unknown variables,
however, the total potential energy Πpre will be maximized since it is the negative of Πc

pre.
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However, both of Πpre and Πc
pre can be used to solve the in-plane loads distribution in Ritz

method, as long as they are stationary with respect to the unknowns loads.
To reduce the number of unknowns ( Nx, Ny and Nxy) and satisfy the in-plane equilibrium
equations (equation 3.39 3.40 or equation A.21 A.22), the Airy stress function (equation 3.42)
is introduced as

Nx = F,yy, Ny = F,xx, Nxy = −F,xy (4.19)

Then the total complementary energy (equation 4.15) can be rewritten as (in the form of
matrix)

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy

−
∫
S2

(F,xxv̄ − F,xyū)y=b − (F,xxv̄ − F,xyū)y=0dx

−
∫
S2

(F,yyū− F,xyv̄)x=a − (F,yyū− F,xyv̄)x=0dy

(4.20)

where,
f =

(
F,yy F,xx −F,xy

)T
(4.21)

Equation 4.15 and 4.20 are the generalized total complementary energies where both the
external loads and geometry displacements conditions have been prescribed to the panels. In
the following two sections, the specific expressions of total complementary energy for panels
only under prescribed loads or displacements will be derived based on these equations.

4.3.2 Prescribed Loads

For the panel under only prescribed loads, the total potential energy is still the same as
equation 4.11.
However, the total complementary energy (equation 4.15) reduces into

Πc
pre = U cm = 1

2

∫ ∫
a11N

2
x + 2a12NxNy + 2a16NxNy + a22N

2
y + 2a26NyNxy + a66N

2
xydxdy

(4.22)
Since no displacements are prescribed on the panel, the complementary energy term VS2 is
not involved in above equation.
After introducing the Airy stress function, above equation becomes

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy (4.23)

4.3.3 Prescribed Displacements

For the panel under only prescribed displacements, the total potential energy (equation 4.11)
reduces to

Πpre = Um = 1
2

∫ ∫
[(A11(u,x)2 + 2A12(u,x)(v,y) + 2A16(u,x)(v,x + u,y)

+A22(v,y)2 + 2A26(v,y)(v,x + u,y) +A66(v,x + u,y)2]dxdy
(4.24)
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Since no loads are prescribed on the panel, the external work VS1 is not involved in above
equation.
However, the total complementary energy (equation 4.15) is still the same.

Πc
pre = U cm + VS2 (4.25)

After introducing the Airy stress function, the total complementary energy become

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy

−
∫
S2

(F,xxv̄ − F,xyū)y=b − (F,xxv̄ − F,xyū)y=0dx

−
∫
S2

(F,yyū− F,xyv̄)x=a − (F,yyū− F,xyv̄)x=0dy

(4.26)

which is the same as equation 4.20.

4.4 Total Energy Functional for Stability Analysis

In this section, the total energy functional of a panel for stability analysis is derived. In
Section 4.4.1, the panel is considered under a general load case where both external loads and
displacements are prescribed. Then in Section 4.4.2 and 4.4.3, the panel is considered only
under prescribed loads and displacements, respectively.
Once buckling occurs, the panel will have bending deformation, thus the bending strain
energy needs to be added into the total potential energy. Moreover, the assumption of small
deflection will not be hold, von Kármán’s moderately large-deflection theory has to be applied
for stability (and post-buckling) analysis. Then the strain-displacement relations are replace
by [5, 7]

εxo = u,x + 1
2w

2
,x (4.27)

εyo = v,y + 1
2w

2
,y (4.28)

γxyo = v,x + u,y + w,xw,y (4.29)

for plates;

εxo = u,x + 1
2w

2
,x (4.30)

εyo = v,y −
w

R
+ 1

2w
2
,y (4.31)

γxyo = v,x + u,y + w,xw,y (4.32)

for cylindrical shells.
For simplicity, the strain vector has been introduced as

e = el + en =

 εxo
εyo
γxyo

 (4.33)
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where, the first part (el) of e relates to the in-plane displacements as

el =

 u,x
v,y

u,y + v,x

 (4.34)

and second part (en) of e relates to the out-of-plane displacement as

en =


1
2w

2
,x

1
2w

2
,y

w,xw,y

 (4.35)

for plates,

en =


1
2w

2
,x

−w
R + 1

2w
2
,y

w,xw,y

 (4.36)

for cylindrical shells.

4.4.1 Prescribed Loads and Displacements

Similar to the prebuckling analysis, first the total energy functional for a general load case
will be derived, where the external loads N̄x, N̄y, N̄xy are prescribed on boundary S1 and
geometry displacement conditions are prescribed on boundary S2.

So the mechanical boundary conditions are

Nx = N̄x, Ny = N̄y, Nxy = N̄xy on S1 (4.37)

The geometrical boundary conditions are

u = ū, v = v̄ on S2 (4.38)

For symmetric composite panels, the total strain energy (equation 4.4) is given as [7]

U = Um + Ub (4.39)

where, the membrane strain energy is the same as equation 4.5 which can be written in form
of matrix as

Um = 1
2

∫ ∫
eTAedxdy (4.40)

and the bending strain energy is the same as equation 4.6 which can be written in form of
matrix as

Ub = 1
2

∫ ∫
κTDκdxdy (4.41)

where, the vector κ contains the curvatures

κ =

 −w,xx−w,yy
−2w,xy

 (4.42)
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After applying the prescribed loads on the boundary S1, the panel is slightly deformed (pre-
buckling). The potential work done by the prescried loads on S1 is given as [5]

VS1 = +
∮
Cy

(N̄yv + N̄xyu)dx−
∮
Cx

(N̄xu+ N̄xyv)dy (4.43)

For rectangular plates or cylindrical shells where the edges are parallel to the x and y coor-
dinates (as shown in Figure 3.1 and 3.2), the external work can be written as

VS1 = −
∫
S1

[(N̄yv+N̄xyu)y=b−(N̄yv+N̄xyu)y=0]dx−
∫
S1

[(N̄xu+N̄xyv)x=a−(N̄xu+N̄xyv)x=0]dy
(4.44)

Therefore, the total potential energy is given as

Π =U + VS1 = 1
2

∫ ∫
eTAedxdy + 1

2

∫ ∫
κTDκdxdy

−
∫
S1

[(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0]dx−
∫
S1

[(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0]dy

(4.45)

Note that the work done by the prescribed displacements on boundary S2 is a complementary
energy, so it does not contribute to the total potential energy.

For cylindrical shells, the total potential energy (equation 4.45) can be rewritten in terms of
displacements as

Π =1
2

∫ ∫  u,x + 1
2w

2
,x

v,y − w
R + 1

2w
2
,y

u,y + v,x + w,xw,y


T

A

 u,x + 1
2w

2
,x

v,y − w
R + 1

2w
2
,y

u,y + v,x + w,xw,y

 dxdy

+ 1
2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
−
∫
S1

[(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0]dx

−
∫
S1

[(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0]dy

(4.46)

For plates, the term w
R will disappear from above equation since the curvature of plates is

zero ( 1
R = 0). For convenience, the derivations in this section will only be given for shells.

The derivations can be simply reduced to these for plates by making 1
R = 0.

To get the equilibrium equations, normally the total potential energy can be minimized with
respect to the displacements u, v, w. Alternately, the total potential energy can be minimized
with respect to e and w since the total potential energy can be a functional of e and w
(equation 4.45, if the curvatures are written in terms of w). However, during the minimization
with respect to e, the strain-displacement relations (equation 4.30, 4.31 and 4.32) must be
hold. These strain-displacement relations can be treated as the subsidiary conditions during
the minimization process. Therefore, the Lagrange multipliers are used in order to enforce
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the strain-displacement relations. Then the total potential energy can be rewritten as

Π = U + VS1 −
∫
λT

e−
 u,x + 1

2w
2
,x

v,y − w
R + 1

2w
2
,y

u,y + v,x + w,xw,y


 dxdy

= 1
2

∫ ∫
eTAedxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
−
∫
λT

e−
 u,x + 1

2w
2
,x

v,y − w
R + 1

2w
2
,y

u,y + v,x + w,xw,y


 dxdy + VS1

(4.47)

where, the Lagrange multipliers are

λT =
(
Λx Λy Λxy

)
(4.48)

If minimizing the total potential energy with respect to e,

∂Π
∂e

=
∫ ∫

(Ae− λ)dxdy = 0 (4.49)

which implies
λ = Ae (4.50)

Moreover, notice that the membrane stress resultants are given as

n =

Nx

Ny

Nxy

 =

A11εxo +A12εyo +A16γxyo
A12εxo +A22εyo +A26γxyo
A16εxo +A26εyo +A66γxyo

 = Ae (4.51)

where, n is the vector of in-plane loads.

Thus
n = Ae = λ (4.52)

so the physical meanings of Lagrange multipliers applied above are actually the membrane
force resultants. Thus,

e = A−1λ = A−1n (4.53)

Then, substituting the equation 4.52 4.53 back to the total potential energy (equation 4.47),
following equation is obtained

Π =− 1
2

∫ ∫
(nTA−1n)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
+
∫ ∫

nT

 u,x + 1
2w

2
,x

v,y − w
R + 1

2w
2
,y

u,y + v,x + w,xw,y

 dxdy + VS1

=− 1
2

∫ ∫
(nTA−1n)dxdy + 1

2

∫ ∫
(κTDκ)dxdy +

∫ ∫
nT (el + en)dxdy + VS1

(4.54)
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Furthermore, the third term on the right of above equation is∫ ∫
(nTel)dxdy =

∫ ∫
[Nxu,x +Nyv,y +Nxy(v,x + u,y)] dxdy (4.55)

After integration by parts,∫ ∫
(nTel)dxdy =

∮
Cx

(Nxu+Nxyv)dy −
∮
Cy

(Nxyu+Nyv)dx

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy
(4.56)

For rectangular plates or cylindrical shells,∫ ∫
(nTel)dxdy =

∫
S

(Nyv +Nxyu)y=b − (Nyv +Nxyu)y=0dx

+
∫
S

(Nxu+Nxyv)x=a − (Nxu+Nxyv)x=0dy

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy

(4.57)

Note that, on the boundary S1,

Nx = N̄x, Ny = N̄y, Nxy = N̄xy (4.58)

on boundary S2,
u = ū, v = v̄ (4.59)

So ∫ ∫
(nTel)dxdy =

∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx

+
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy

(4.60)

In addition, according to the in-plane equilibrium equations (equation 3.103, 3.104),

Nx,x +Nxy,y = 0 (4.61)
Nxy,x +Ny,y = 0 (4.62)

Therefore, ∫ ∫
(nTel)dxdy =

∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx

+
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(4.63)
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It is noted that the first two terms on the right of the above equation are canceled with VS1
(equation 4.44),∫ ∫

(nTel)dxdy + VS1 =
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy
(4.64)

Hence, the total potential energy will become

Π =− 1
2

∫ ∫
(nTA−1n)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

nTendxdy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(4.65)

It is noted that the first part of the total energy functional is the membrane complementary
energy, while the second part is the bending strain energy. So the total energy functional is
a mixture of complementary energy and strain energy. This is why it is mentioned in the
introduction to this chapter that the final energy functional cannot be called total potential
energy. Moreover, it is interesting to observed that the membrane complementary energy has
a minus sign in front of it, while the bending strain energy does not. This formulation has
also been shown in other literature [9, 10, 33, 34]. Since both the membrane complementary
energy (if ignore the minus sign) and bending strain energy are quadratic forms, when making
them stationary with respect to their own variables (for membrane energy the variables are
in-plane loads; for bending energy the variables are out-of-plane displacement w) they will
be minimized. However, if considering the minus sign in front of the membrane complemen-
tary energy, the negative of the membrane complementary energy will be maximized. So if
making the total energy functional stationary with respect to the in-plane loads, the total
energy functional will be maximized due to the negative of the membrane complementary
energy ( the bending energy is independent of the in-plane loads). While, if making the total
energy functional stationary with respect to the out-of-plane displacement w, the total energy
functional will be minimized since the membrane complementary energy is independent of w.

Last but not least, the third part of the total energy functional can be written in detail as∫ ∫
nTendxdy = 1

2

∫ ∫
(Nxw

2
,x +Nyw

2
,y + 2Nxyw,xw,y)dxdy −

∫ ∫
Ny

w

R
dxdy (4.66)

For plates, it reduces into∫ ∫
nTendxdy = 1

2

∫ ∫
(Nxw

2
,x +Nyw

2
,y + 2Nxyw,xw,y)dxdy (4.67)

which is what was called as ’work done by in-plane loads’ or ’external work’ by many re-
searchers [2, 4, 7]. However, clearly this energy term is derived from the membrane strain
energy through the introduction of the Lagrange multipliers, while the external work done by
the applied loads is actually VS1.
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In addition, since the in-plane equilibrium equations (equation 4.61 and 4.62) were introduced
during the derivation, they must be the subsidiary conditions for the equation 4.65. In other
words, only when the in-plane equilibrium equations are hold, the total potential energy
(equation 4.45) can be derived as the total energy functional (equation 4.65). These in-plane
equilibrium equations can simply be fulfilled by introducing the Airy stress function into the
in-plane loads as

Nx = F,yy, Ny = F,xx, Nxy = −F,xy (4.68)

Then the total energy functional can be written as

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

fTendxdy

+
∫
S2

(F,xxv̄ − F,xyū)y=b − (F,xxv̄ − F,xyū)y=0dx

+
∫
S2

(F,yyū− F,xyv̄)x=a − (F,yyū− F,xyv̄)x=0dy

(4.69)

where,

f =

 F,yy
F,xx
−F,xy

 (4.70)

4.4.2 Prescribed Loads

In this case, only the external loads Nx, Ny, Nxy are prescribed on the boundary S1. The
mechanical boundary conditions on S1 are

Nx = N̄x, Ny = N̄y, Nxy = N̄xy on S1 (4.71)

Since no displacements prescribed in S2, the total energy functional ( equation 4.65) reduces
to

Π =− 1
2

∫ ∫
(nTA−1n)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

nTendxdy

(4.72)

which if written in terms of Airy stress function is

Π = −1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

fTendxdy

(4.73)
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4.4.3 Prescribed Displacements

Only the displacements ū,v̄ are prescribed on the boundary S2. The geometrical boundary
conditions are

u = ū, v = v̄ on S2 (4.74)

Then the total energy functional is still the same as equation 4.65

Π =− 1
2

∫ ∫
(nTA−1n)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

nTendxdy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(4.75)

which if written in terms of Airy stress function is (the same as equation 4.69)

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

fTendxdy

+
∫
S2

(F,xxv̄ − F,xyū)y=b − (F,xxv̄ − F,xyū)y=0dx

+
∫
S2

(F,yyū− F,xyv̄)x=a − (F,yyū− F,xyv̄)x=0dy

(4.76)

4.5 Plates

The Ritz method will be applied to the derived energy functionals Πc
pre and Π of plates to

obtain the equations for solving the in-plane loads in prebuckling analysis and the stability
equations for predicting the buckling loads. The two load cases, namely, prescribed loads and
prescribed displacements, will be discussed separately.

4.5.1 Prescribed Loads

For simplicity, only the compression load N̄x is prescribed on the edges x = 0, a. The same
derivations showing below can be easily extended to these considering the prescribed loads
N̄y and N̄xy.

Prebuckling Analysis

The first step is to calculate the in-plane loads redistribution after prescribed external load
N̄x on the edges x = 0, a. Due to the variation of stiffness the in-plane loads are not uniform
over the plates. The distribution of the in-plane loads will affect the buckling resistance of
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the plates. So the in-plane loads should be obtained before determining the stability of the
plates.

The total complementary energy (equation 4.23) for prebuckling analysis can be applied here,
which is shown below for convenience.

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy (4.77)

Since only the external load N̄x is prescribed, the boundary conditions of the in-plane loads
are

Nx = N̄x, Nxy = 0 on x = 0, a (4.78)
Ny = 0, Nxy = 0 on y = 0, b (4.79)

So the Airy stress function can be assumed as

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

FklXk(x)Y ′′l (y) (4.80)

Fkl is the undetermined parameter. Xk and Yl are the shape functions used in x and y
direction, respectively. K and L are the numbers of shape functions used in x and y direction,
respectively.

Clearly, the first term 1
2N̄xy

2 plays the role of ϕ0 as the particular solution in equation 4.1
and Xk (and Yl) of the second term plays the role of ϕi as the homogeneous solution. So the
fist term 1

2N̄xy
2 ensures that the in-plane load Nx on the edge x = 0, a is exactly the same

as the prescribed load N̄x.

Correspondingly, the second term should satisfy the stress-free condition which is the homo-
geneous form of solution. However, the detail of this condition will be discussed in the next
chapter.

Substituting the Airy stress function into the total complementary energy,

Πc
pre = 1

2

∫ ∫
[a11N̄

2
x + 2N̄x

KL∑
kl

Fkl

a11
a12
a16


T  XkY

′′
l

X ′′kYl
−X ′kY ′l



+
KLKL∑
klk2l2

FklFkl2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T

A−1

 Xk2Y
′′
l2

X ′′k2
Yl2

−X ′k2
Y ′l2

]dxdy

(4.81)

X ′k and X ′′k indicate the first and second derivative of Xk with respect to x; Y ′l and Y ′′l
indicate the first and second derivative of Yl with respect to y. And k2, l2, Fkl2 , Xk2 , Yl2 are
the counterparts of k, l, Fkl, Xk, Yl in the quadruple summation.

By making the total complementary energy stationary with respect to the undetermined
parameters Fkl, a set of linear equations will be obtained, from which the unknown parameters
can be determined.

∂Πpre

∂Fkl
= 0 (k = 1...K, l = 1...L) (4.82)
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These linear equations can be written in matrix form as

N̄xckl +Cafkl = 0 (4.83)

where, fkl is the vector of Fkl of length K × L,

fkl =
(
F11, F12, · · · , F1L, F21, · · · , Fkl, · · · , FKL

)T
(4.84)

ckl is a vector of length K × L, each element of which is

∫ ∫ a11
a12
a16


T  XkY

′′
l

X ′′kYl
−X ′kY ′l

 dxdy (k = 1...K, l = 1...L) (4.85)

Ca is a K × L by K × L matrix, each element of which is

∫ ∫  XkY
′′
l

X ′′kYl
−X ′kY ′l


T

A−1

 Xk2Y
′′
l2

X ′′k2
Yl2

−X ′k2
Y ′l2

 dxdy (k = 1...K, l = 1...L) (4.86)

The equations written in matrix form in equation 4.83 are equivalent to the linear compati-
bility equations 3.122 used in Galerkin method.

The undetermined parameter vector fkl can be solved as

fkl = −N̄xCa
−1ckl (4.87)

Then the in-plane loads distribution can be easily obtained from the Airy stress function.
Clearly, the in-plane loads are linearly related to the prescribed load N̄x, as implied by above
equation. So buckling initiation can be determined by introducing the buckling factor λ to
the prescribed load as

N̄ critical
x = λN̄x (4.88)

If λ is larger than 1, the prescribed load N̄x is lower than the most critical buckling load. If
the prescribed load N̄x = 1, the buckling factor is exactly the buckling load. So in the next
section, the stability equations will be derived to solve the buckling factor λ based on the
in-plane loads (Airy stress function) solved in current section.

Stability Analysis

For plates under prescribed load N̄x, the total energy functional is given in equation 4.73,
which is shown below for convenience.

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
+ 1

2

∫ ∫
(F,yyw2

,x + F,xxw
2
,y − 2F,xyw,xw,y)dxdy

(4.89)
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In to Ritz method, the out-of-plane displacement is approximated using a finite set of linear
independent series, as

w =
PQ∑
pq

WpqXp(x)Yq(y) (4.90)

Wpq is the undetermined parameter. Xp and Yq are the shape functions used for w in x and
y direction, respectively, which are in general different from the shape functions Xk and Yl
used for Airy stress function F .

Clearly, the ϕ0 in equation 4.1 as the particular solution does not exist in above equation and
Xk (and Yl) plays the role of ϕi as the homogeneous solution. The reason is that the initial
out-of-plane deflection, which represents the particular solution, is zero.

To determined initiation of buckling , the buckling factor is introduced as

F (x, y) = λ[12N̄xy
2 +

KL∑
kl

FklXk(x)Yl(y)] (4.91)

where, the parameter Fkl is solved from equation 4.87 in the prebuckling analysis.

After substituting above two equations back to equation 4.89 , the total energy functional
becomes

Π =− 1
2λ

2
∫ ∫

[a11N̄
2
x + 2N̄x

KL∑
kl

Fkl

a11
a12
a16


T  XkY

′′
l

X ′′kYl
−X ′kY ′l



+
KLKL∑
klk2l2

FklFkl2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T

A−1

 Xk2Y
′′
l2

X ′′k2
Yl2

−X ′k2
Y ′l2

]dxdy

+
PQPQ∑
pqp2q2

WpqWpq2

∫ ∫ 1
2

X ′′pYq
XpY

′′
q

2X ′pY ′q


T

D

 X ′′p2Yq2

Xp2Y
′′
q2

2X ′p2Y
′
q2

 dxdy
+ λN̄x

PQ∑
pq

WpqWpq2

∫ ∫ 1
2X
′
pYqX

′
p2Yq2dxdy

+ λ
KLPQPQ∑
klpqp2q2

WpqWpq2Fkl

∫ ∫ 1
2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T  X ′pX

′
p2YqYq2

XpXp2Y
′
qY
′
q2

X ′pYqXp2Y
′
q2 +XpY

′
qX
′
p2Yq2

 dxdy
(4.92)

Making total energy functional stationary with respect to the unknown parameter Wpq, as

∂Π
∂Wpq

= 0 (p = 1...P , q = 1...Q) (4.93)

a set of linear equations will be obtained, which can be expressed in matrix form as

[CD + λ (CN +CF )]wpq = 0 (4.94)
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where, wpq is the vector of Wpq of length P ×Q,

wpq =
(
W11,W12, · · · ,W1Q,W21, · · · ,Wpq, · · · ,WPQ

)T
(4.95)

CD is a P ×Q by P ×Q matrix, each element of which is

∫ ∫ X ′′pYq
XpY

′′
q

2X ′pY ′q


T

D

 X ′′p2Yq2

Xp2Y
′′
q2

2X ′p2Y
′
q2

 dxdy (4.96)

CN is a P ×Q by P ×Q matrix, each element of which is

N̄x

∫ ∫
X ′pYqX

′
p2Yq2dxdy (4.97)

CF is a P ×Q by P ×Q matrix, each element of which is

KL∑
kl

Fkl

∫ ∫  XkY
′′
l

X ′′kYl
−X ′kY ′l


T  X ′pX

′
p2YqYq2

XpXp2Y
′
qY
′
q2

X ′pYqXp2Y
′
q2 +XpY

′
qX
′
p2Yq2

 dxdy (4.98)

The equation 4.94 is obtained from making the total energy functional stationary, so in prin-
ciple it is an equilibrium equation. For stability analysis, the stability equation should be
obtained from the second variation of the total energy functional, or from the equilibrium
equation by applying adjacent-equilibrium criterion. However, since the equilibrium equation
is similar to the stability equation for plates, many researchers directly used the equilib-
rium equation to predict the buckling initiation [2, 7, 11, 19, 28]. But strictly speaking, the
equilibrium equation is essentially different from the stability equation even though they are
so similar to each other for the case of plates. Later in the section for shells, the stability
equation will be derived, in which case it is no longer similar to the equilibrium equation.
However, from equation 4.94, the value of λ can still be solved as the generalized eigenvalue
of the matrix CD and [CN + CF ], if the vector wpq of displacement w is not zero. So the
stability equation for plates will not be derived in current section. The detail derivation for
the stability equation of shells will be shown in next section. The same derivations can be
applied here to derive the stability equation of plates by just assuming the curvature is zero.

4.5.2 Prescribed Displacements

For simplicity, only the end-shortening ∆u is prescribed on the edges of x = 0, a. The same
derivations showing below can be easily extended into that considered prescribed displacement
v̄ on the edges of y = 0, b.

If the end-shortenings prescribed on the two edge are ∆u1 and ∆u2, respectively, the geomet-
rical boundary conditions are

u = ū = ∆u1 on x = 0 (4.99)
u = ū = −∆u2 on x = a (4.100)
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Since the plate is free to move in y direction, there is no load acting on the edges of y = 0, b
and no shear load acting on the four edges. The mechanical boundary conditions will be

Nx 6= 0, Nxy = 0 on x = 0, a (4.101)
Ny = 0, Nxy = 0 on y = 0, b (4.102)

Moreover, the in-plane load Nx is not constant on the edge x = 0, a, instead it is a variable
due to the stiffness variation on edges, and in general Nx on the two edges are not necessarily
the same. Therefore, the Airy stress function is assumed as

F (x, y) =
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yl(y) (4.103)

where, Ye is the shape function to describe the stress variation on the edges (x = 0, a),
Fe is the undetermined parameter for shape function Ye, E is the number of terms. The
second derivative of the first term with respect to y is exactly Ye which represents part of
the compression loads acting on the edges since the second derivative of F with respect to y
represents the load Nx.

The first term expresses the stress variation in y direction on the edge under the prescribed
displacements, which is constant through the plate in x direction. The second term expresses
the stress variation inside of the plate due to the variation of the stiffness. Compared to
the case of prescribed loads, the first term is actually similarly to the prescribed load N̄x in
equation 4.80.

Then the in-plane loads are

Nx = F,yy =
E∑
e

FeYe +
KL∑
kl

FklXkY
′′
l (4.104)

Ny = F,xx =
KL∑
kl

FklX
′′
kYl (4.105)

Nxy = −F,xy = −
KL∑
kl

FklX
′
kY
′
l (4.106)

The shape functions selected for Ye, Xk and Yl will be discussed in next chapter.

Prebuckling Analysis

The first step is to calculate the in-plane loads redistribution after prescribed end-shortening
∆u1 and ∆u2 on the edges x = 0, a of the rectangular plate. The total energy functional
(equation 4.26) for prebuckling analysis can be applied here, which is reduced to the following
equation considering only the prescribed end-shortening ∆u1 and ∆u2.

Πc
pre = = 1

2

∫ ∫
(fTA−1f)dxdy −

∫
S2
F,yy(−∆u2)x=a − F,yy(∆u1)x=0dy (4.107)

After substituting the expression for Airy stress function (equation 4.103) into the total
complementary energy and making it stationary with respect to the undetermined parameters
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Fe and Fkl, respectively, two sets of linear equations can be obtained, which are expressed in
matrix form as [

Ca E1
E1

T E3

](
fkl
fe

)
= ∆u1

(
ikl1
ie1

)
+ ∆u2

(
ikl2
ie2

)
(4.108)

where, fe is the vector of Fe of dimension E,

fe =
(
F1 F2 · · · Fe · · · FE

)T
(4.109)

E1 is a K × L by E matrix, E3 is a E by E matrix, ikl1 and ikl2 are vectors of dimension
K × L, ie1 and ie1 are vectors of dimension E. Ca is given in equation 4.86.

The unknown parameter vectors fe and fkl can be solved from the above matrix equation.
Clearly, these parameter vectors are linearly related to the prescribed end-shortening ∆u1
and ∆u2. So to determine buckling initiation, buckling factor can be introduced as

∆ucritical1 = λ∆u1 (4.110)
∆ucritical2 = λ∆u2 (4.111)

Then the Airy stress function at the critical point can be assumed as

F (x, y) = λ

[
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yly
]

(4.112)

Stability Analysis

If only the end-shortening ∆u1 and ∆u2 are prescribed on the edges (x = 0, a), the total
energy functional (equation 4.76) reduces into

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

fTendxdy

+
∫
S2
F,yy(−∆u2)x=a − F,yy(∆u1)x=0dy

(4.113)

After introducing the buckling factor, the Airy stress function becomes,

F (x, y) = λ

[
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yly
]

(4.114)

where the parameters (Fe and Fkl) are solved in equation 4.108 in the prebuckling analysis,
except the buckling factor λ which will be solved in this section.

The out-of-plane displacement is approximated using a finite set of linear independent series
(the same as equation 4.90), as

w =
PQ∑
pq

WpqXp(x)Yq(y) (4.115)
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Substituting above two equations back to equation 4.113, and making it stationary with
respect to the undetermined parameters Wpq, a set of liner equations can be obtained, which
are expressed in matrix form as

[CD + λ (Ce +CF )]wpq = 0 (4.116)

Ce is a P ×Q by P ×Q matrix, each element of which is

E∑
e

Fe

∫ ∫
X ′pYqX

′
p2Yq2Yedxdy (4.117)

Similar to the case of prescribing loads, this matrix equation is still the equilibrium equation,
which, however, is similar to the stability equation for plates. From equation 4.116, the value
of λ can still be solved as the generalized eigenvalue of the matrix CD and [Ce +CF ], if the
vector wpq of displacement w is not zero.

The stability equation for plates will not be derived in current section. The detail derivation
for the stability equation of shells will be shown in next section. The same derivations of
plates can be applied here to derive the stability equation by just assuming the curvature is
zero.

4.6 Shallow Cylindrical Shells

Similar to plates, the buckling of shells under prescribed loads and prescribed displacements
will be discussed separately. The stability equations are derived by using adjacent-equilibrium
criterion and minimum potential energy approach (second variational of the total energy
functional and Trefftz criterion), respectively.

4.6.1 Prescribed Loads

In this section a shell under prescribed load N̄x on edges x = 0, a will be discussed. The
derivations can be easily extended to these considered prescribed load N̄y and N̄xy.

Prebuckling Analysis

Based on the assumption 2 in Chapter 3, the out-of-plane displacement of shallow cylindrical
shell panel is zero in the prebuckling state. So the strain-displacement relations for plates
and shells should be the same, as shown in equation 4.7. Then, the prebuckling analysis for
plates and shells should be the same. For convenience, the same equations as these for plates
are shown as follows.

The total complementary energy (equation 4.23) for prebuckling analysis,

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy (4.118)
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The Airy stress function is,

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

FklXk(x)Yl(y) (4.119)

The same equilibrium equations as plates (equation 4.83) are obtained as

N̄xckl +Cafkl = 0 (4.120)

The undetermined parameters Fkl can be solved from the above equation, from which the
in-plane loads will be obtained.

Stability Analysis

The total energy functional of shells is given in equation 4.73, which is shown as follows.

Π = −1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy +
∫ ∫

fTendxdy

(4.121)

However, the strain en for shells is not the same as plates, which is

en =


1
2w

2
,x

−w
R + 1

2w
2
,y

w,xw,y

 (4.122)

So the total energy functional can be rewritten as

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
+ 1

2

∫ ∫
(F,yyw2

,x + F,xxw
2
,y − 2F,xyw,xw,y)dxdy

−
∫ ∫

F,xx
w

R
dxdy

(4.123)

Compared to plates, the last energy term with w
R is added to the total energy functional of

shells.

The displacement w is approximated using the same series as plates (equation 4.90).

w =
PQ∑
pq

WpqXp(x)Yq(y) (4.124)

The buckling factor is introduced to the Airy stress function as the same as for plates,

F (x, y) = λ[12N̄xy
2 +

KL∑
kl

FklXk(x)Yl(y)] (4.125)
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Substituting the expressions for displacement w and Airy stress function F in to the equation
of the total energy functional, following equation is obtained.

Π =− 1
2λ

2
∫ ∫

[a11N̄
2
x + 2N̄x

KL∑
kl

Fkl

a11
a12
a16


T  XkY

′′
l

X ′′kYl
−X ′kY ′l



+
KLKL∑
klk2l2

FklFkl2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T

A−1

 Xk2Y
′′
l2

X ′′k2
Yl2

−X ′k2
Y ′l2

]dxdy

+
PQPQ∑
pqp2q2

WpqWpq2

∫ ∫ 1
2

X ′′pYq
XpY

′′
q

2X ′pY ′q


T

D

 X ′′p2Yq2

Xp2Y
′′
q2

2X ′p2Y
′
q2

 dxdy
+ λN̄x

PQ∑
pq

WpqWpq2

∫ ∫ 1
2X
′
pYqX

′
p2Yq2dxdy

+ λ
KLPQPQ∑
klpqp2q2

WpqWpq2Fkl

∫ ∫ 1
2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T  X ′pX

′
p2YqYq2

XpXp2Y
′
qY
′
q2

X ′pYqXp2Y
′
q2 +XpY

′
qX
′
p2Yq2

 dxdy
− λ

KLPQ∑
klpq

FklWpq

∫ ∫ 1
R
X ′′kYlXpYqdxdy

(4.126)

First, making the total energy functional stationary with respect to Wpq,

∂Π
∂Wpq

= 0 (p = 1...P , q = 1...Q) (4.127)

a set of linear equations is obtained, which can be expressed in the matrix form as

[CD + λ (CN +CF )]wpq + λCRfkl = 0 (4.128)

where, CR is a P ×Q by K × L matrix, each element of which is

−
∫ ∫ 1

R
X ′′kYlXpYqdxdy (4.129)

Notice that the difference between equation 4.116 for plates and above equation for shells is
the extra term with CR. This new term is coupled with the parameter fkl, which means the
buckling factor λ cannot be solved from the above equation by solving the eigenvalues. It is
reasonable because these equations are actually the equilibrium equations, which in principle
cannot be used for determining buckling initiation. Thus the stability equations should be
derived.

Second, making the total energy functional stationary with respect to Fkl,

∂Π
∂Fkl

= 0 (k = 1...K, l = 1...L) (4.130)
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a set of linear equations is obtained, which can be expressed in matrix form as

− λ(N̄xckl +Cafkl) +CWwpqwpq +CRTwpq = 0 (4.131)

Where, CW is a K × L by P ×Q by P ×Q three dimensional matrix (tensor), each element
of which is ∫ ∫ 1

2

 XkY
′′
l

X ′′kYl
−X ′kY ′l


T  X ′pX

′
p2YqYq2

XpXp2Y
′
qY
′
q2

X ′pYqXp2Y
′
q2 +XpY

′
qX
′
p2Yq2

 dxdy (4.132)

This matrix equation is actually the counterpart of equation 4.120 for prebuckling analysis
from which the prebuckling in-plane loads distribution are obtained. If the assumption 1
and 2 are applied here, the above equation will be reduced to equation 4.120. However, the
assumptions cannot be applied to stability analysis. So the equation here actually describes
the in-plane loads distribution in the buckling and post-buckling state, which is equivalent to
the non-linear compatibility equation of shells in previous chapter. However, this equation is
coupled with the first equilibrium equation 4.128. Therefore, for post-buckling analysis, these
two equations should be solved together.

Stability Analysis: Adjacent-Equilibrium Criterion

As already mentioned, the equations derived from making the total energy functional station-
ary are the equilibrium equations. So in this section, the stability equations for shells will
be derived from the equilibrium equations by applying the adjacent-equilibrium criterion [1].
Then the stability equation for shells can easily reduce to the stability equation for plates by
assuming the curvatures are zero.
Since the only unknowns are the parameters Fkl and Wpq, infinitesimal increments are added
to them as the perturbation to the system,

Fkl → Fkl + F 1
kl (4.133)

Wpq →Wpq +W 1
pq (4.134)

where, F 1
kl and W 1

pq are the increments of Fkl and Wpq.
They are equivalent to the following process

F (x, y) = λ[12N̄xy
2 +

KL∑
kl

(Fkl + F 1
kl)Xk(x)Yl(y)] (4.135)

w(x, y) =
PQ∑
pq

(Wpq +W 1
pq)Xp(x)Yq(y) (4.136)

However, the number of terms K and L used for the increments F 1
kl can be different than the

number of terms K and L used for F , which will be discussed later in the section of Trefftz
buckling criterion.
Substituting the expressions (4.133,4.134) into equations 4.128 and 4.131, the following equa-
tions are obtained.

− λ[N̄xckl +Ca(fkl + f1
kl)] +CW (wpq +w1

pq)(wpq +w1
pq) +CRT (wpq +w1

pq) = 0 (4.137)
[CD + λ (CN +CF )] (wpq +w1

pq) + λCR(fkl + f1
kl) = 0 (4.138)
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where, f1
kl and w1

pq are vector of F 1
kl and W 1

pq, respectively.

After truncating the original equations (equation 4.128 and 4.131) from above equations, the
above equations become

− λCaf1
kl +CW (2w1

pqwpq +w1
pqw

1
pq) +CRTw1

pq = 0 (4.139)
[CD + λ (CN +CF )]w1

pq + λCRf
1
kl = 0 (4.140)

Ignoring the higher order terms, they become

− λCaf1
kl +CW (2w1

pqwpq) +CRTw1
pq = 0 (4.141)

[CD + λ (CN +CF )]w1
pq + λCRf

1
kl = 0 (4.142)

Since wpq are a vector of the parameters of w in the prebuckling state, it can be assumed to
be zero according to the assumption 1 and 2. So

− λCaf1
kl +CRTw1

pq = 0 (4.143)
[CD + λ (CN +CF )]w1

pq + λCRf
1
kl = 0 (4.144)

Therefore, the stability equations for shells are derived . They can be further simplified in
following process.

f1
kl = 1

λ
Ca
−1CR

Tw1
pq (4.145)

[CD + λ (CN +CF )]w1
pq + λCR

1
λ
Ca
−1CR

Tw1
pq = 0 (4.146)

Thus, substituting the first one into the second one, only one equation is left[
CD +CRCa−1CR

T + λ (CN +CF )
]
w1
pq = 0 (4.147)

With this equation, the buckling factor can be solved by solving the generalized eigenvalues
of matrix [CD +CRCa−1CR

T ] and [CN +CF ].

If the curvature 1
R is zero, the matrix CR will be zero, as shown in the expression 4.129. The

stability equation 4.147 will reduce to

[CD + λ (CN +CF )]w1
pq = 0 (4.148)

Since a shell with zero curvature is exactly a plate, so the above equation is exactly the
stability equation for a plate. As mentioned before, the equilibrium equation for plates is
similar to the stability equation. For plates, the equilibrium equation 4.116 is shown below
for convenience.

[CD + λ (CN +CF )]wpq = 0 (4.149)

Obviously, the only difference of above two equations is the parameter vectors, w1
pq and wpq.

Solving the buckling load of plates from equilibrium equations is not theoretically correct [5],
because the parameter vector wpq = 0 according the assumption 2 in Chapter 3. However,
still many researchers [2, 3, 7, 11, 19, 26] adopted the equilibrium equation (however, not the
same as equation 4.149) to solve the buckling load because the eigenvalues solved from the
equilibrium equation is exactly the same as these solved from the stability equation, since they
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are solved from the same matrices. Nevertheless, solving the buckling load from equilibrium
equation is not theoretically correct, which can only be regarded as a simplified method for
plates (and any other linear structure, such as beams).

However, for shells, obviously the buckling load can only be solved from the stability equation
(equation 4.147) not from the equilibrium equation (equation 4.128).

Stability Analysis: Second variation of total energy functional

The same stability equations for shells and plates can be derived using the principle of mini-
mum potential energy (or as in the current case it is the total energy functional).

The total energy functional can be varied, or expanded in a Taylor’s series, about an equilib-
rium state [5]:

Π + ∆Π = Π + δΠ + 1
2!δ

2Π + 1
3!δ

3Π + ... (4.150)

The equilibrium state is derived from the first variation of the energy functional, which is also
known as the principle of stationary potential energy [5]:

δΠ = 0 (4.151)

The stability of the equilibrium state is determined from the second variation of the total
energy functional at the equilibrium state according to the principle of minimum potential
energy [5]:

δ̄2Π = δ2Π
∣∣∣
δΠ=0

> 0 (4.152)

The total energy functional is firstly discretized through discretizing the Airy stress function F
and displacement w using the series expressed in equations 4.91 and 4.90. The final expression
for the total energy functional is shown in equation 4.126.

Therefore, if directly taking the second variation of the total energy functional (equation
4.126) with respect to the unknown parameters Fkl andWpq, the following equation in matrix
form will be obtained,

δ2Π =
(
δfkl
δwpq

)T [
−λ2Ca λCWwpq − λCRT

λ(CWwpq)T − λCR CD + λCN + λCF

](
δfkl
δwpq

)
(4.153)

which is a quadratic form in δfkl and δwpq, where δfkl and δwpq are the variations of fkl and
wpq.

However, the total energy functional can also be discretized after taking the second variation.
The same equations will be obtained as these shown above.

At equilibrium state, the out-of-plane displacement is zero according to the assumption 1 and
2. Thus the parameters wpq in equilibrium sate is zero. The above equation will reduce to

δ̄2Π = δ2Π |Wpq=0=
(
δfkl
δwpq

)T [
−λ2Ca −λCRT
−λCR CD + λCN + λCF

](
δfkl
δwpq

)
(4.154)

For stability, above quadratic form should be always larger than zero, in other words, positive
definite [1] for all possible variations of fkl and wpq. Otherwise, the system is unstable. So
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buckling occurs once δ̄2Π ceases to be positive definite as increasing the value of the buckling
factor. According to the algebraic theory of quadratic form, the limit of positive-definiteness
of a quadratic form is the determinate of the following coefficient matrix is zero [1].∣∣∣∣∣−λ2Ca −λCRT

−λCR CD + λCN + λCF

∣∣∣∣∣ = 0 (4.155)

Therefore, the buckling factor can be solved from above equation, which is equivalent to solve
the generalized eigenvalue of the matrix in equation 4.147, as shown below.[

CD +CRCa−1CR
T + λ (CN +CF )

]
w1
pq = 0 (4.156)

Stability Analysis: Trefftz Buckling Criterion

Another buckling criterion is based on the Trefftz buckling criterion, which is to make the
second variation of the total energy functional, δ̄2Π, stationary [1, 5].

δ(δ̄2Π) = 0 (4.157)

A short description of the Trefftz buckling criterion is given in the section 2.1 in the literature
review. The reader is referred to the literature for more details [1, 5].

The total energy functional (equation 4.123) is rewritten as follows,

Π =− 1
2

∫ ∫  F,yy
F,xx
−F,xy


T

A−1

 F,yy
F,xx
−F,xy

 dxdy + 1
2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
+ 1

2

∫ ∫
(F,yyw2

,x + F,xxw
2
,y − 2F,xyw,xw,y)dxdy

−
∫ ∫

F,xx
w

R
dxdy

(4.158)

The second variation of the above total energy functional is

δ2Π =−
∫ ∫  δF,yy

δF,xx
−δF,xy


T

A−1

 δF,yy
δF,xx
−δF,xy

 dxdy +
∫ ∫  −δw,xx−δw,yy

−2δw,xy


T

D

 −δw,xx−δw,yy
−2δw,xy

 dxdy
+
∫ ∫

(F,yyδw2
,x + F,xxδw

2
,y − 2F,xyδw,xδw,y)dxdy

+
∫ ∫

[δF,yyδw,xw,x + δF,xxδw,yw,y − 2δF,xy(δw,xw,y + w,xδw,y)]dxdy

−
∫ ∫

δF,xx
δw

R
dxdy

(4.159)

According to assumption 1 and 2, in the equilibrium state (prebuckling)

w = w,x = w,y = 0 (4.160)
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So the second variation of the total energy functional in equilibrium state is
δ̄2Π =δ2Π |w,x=w,y=0

=−
∫ ∫  δF,yy

δF,xx
−δF,xy


T

A−1

 δF,yy
δF,xx
−δF,xy

 dxdy +
∫ ∫  −δw,xx−δw,yy

−2δw,xy


T

D

 −δw,xx−δw,yy
−2δw,xy

 dxdy
+
∫ ∫

(F,yyδw2
,x + F,xxδw

2
,y − 2F,xyδw,xδw,y)dxdy

−
∫ ∫

δF,xx
δw

R
dxdy

(4.161)
According to Trefftz buckling criterion, buckling initiation is determined through

δ(δ̄2Π) = 0 (4.162)
The variation of δ̄2Π can be implemented through Ritz method since Ritz method always
tries to make a functional stationary with respect to the unknown parameters.
In this case, δF and δw can be approximated using following series,

δF =
K2L2∑
kl

F 1
klXk(x)Yl(y) (4.163)

δw =
PQ∑
pq

W 1
pqXp(x)Yq(y) (4.164)

where, K2 and L2 are numbers of terms used for δF , which does not necessarily equal to K
and L used for F .
Making δ̄2Π stationary with respect to the undetermined parameters F 1

kl and W 1
pq, respec-

tively,
∂δ̄2Π
∂F 1

kl

= 0 (4.165)

∂δ̄2Π
∂W 1

pq

= 0 (4.166)

then the same equations as what derived from the adjacent-equilibrium approach (equation
4.143 and 4.144) are obtained,

− λCaf1
kl +CRTw1

pq = 0 (4.167)
[CD + λ (CN +CF )]w1

pq + λCRf
1
kl = 0 (4.168)

They can reduce to one equation (the same as equation 4.147),[
CD +CRCa−1CR

T + λ (CN +CF )
]
w1
pq = 0 (4.169)

The last issue is related to number of terms used for discretizing Airy stress function F and
its variation δF . Clearly, in this section the number of terms used for δF are K2 and L2,
rather than K and L which are used for F . According to the definition, the variation δF is a
arbitrary infinitesimal value, which is independent from F . So not only the number of terms
of δF can be different from F , but also can the shape functions of δF be different from F as
long as the shape function of δF satisfy the homogeneous form of the boundary conditions.
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4.6.2 Prescribed Displacement

Shells under prescribed end-shortening ∆u1 and ∆u2 on edges x = 0, a are discussed. The
same derivations can be easily extended to these accounting for the prescribed displacements
on the edges y = 0, b.

Prebuckling Analysis

Based on the assumption 2 in Chapter 3, the out-of-plane displacement of shallow cylindrical
shell panel is zero in the prebuckling state. So the strain-displacement relations for plates
and shells should be the same, as shown in equation 4.7. Then, the prebuckling analysis for
plates and shells should be the same. For convenience, the same equations as these for plates
are shown as follows.

The Airy stress function is assumed the same as ,

F (x, y) =
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yl(y) (4.170)

The equilibrium equations for solving in-plane loads distribution is .[
Ca E1
E1

T E3

](
fkl
fe

)
= ∆u1

(
ikl1
ie1

)
+ ∆u2

(
ikl2
ie2

)
(4.171)

Buckling Analysis

If only the end-shortening ∆u1 and ∆u2 are prescribed on the edges (x = 0, a), the total
energy functional (equation 4.76) reduces into

Π =− 1
2

∫ ∫
(fTA−1f)dxdy + 1

2

∫ ∫  −w,xx−w,yy
−2w,xy


T

D

 −w,xx−w,yy
−2w,xy

 dxdy
+ 1

2

∫ ∫
(F,yyw2

,x + F,xxw
2
,y − 2F,xyw,xw,y)dxdy

−
∫ ∫

F,xx
w

R
dxdy

+
∫
S2
F,yy(−∆u2)x=a − F,yy(∆u1)x=0dy

(4.172)

Again it is noted that the extra energy term with w
R is added to the total energy functional

for shells.

The out-of-plane displacement is approximated using the same series as plates, as

w =
PQ∑
pq

WpqXp(x)Yq(y) (4.173)
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and the buckling factor is introduced to the Airy stress function as (equation 4.112),

F (x, y) = λ

[
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yly
]

(4.174)

The equilibrium equations are derived by making the total energy functional stationary with
respect to the undetermined parameters Wpq, Fkl and Fe, respectively.

∂Π
∂Fkl

= 0 (k = 1...K, l = 1...L) (4.175)

∂Π
∂Fe

= 0 (e = 1...E) (4.176)

∂Π
∂Wpq

= 0 (p = 1...P , q = 1...Q) (4.177)

Then applying the adjacent-equilibrium criterion, small increments are added to the param-
eters, as

Fkl → Fkl + F 1
kl (4.178)

Wpq →Wpq +W 1
pq (4.179)

Fe → Fe + F 1
e (4.180)

After replacing the parameters in the equilibrium equations by above expressions, truncating
the equilibrium equations, ignoring the higher order term and assuming the out-of-plane
displacement in prebuckling state is zero (assumption 2 in Chapter 3 ), the following stability
equations are obtained.

− λ(Caf1
kl +E1 ~F

1
e ) +CRTw1

pq = 0 (4.181)
−E1

Tf1
kl −E3 ~F

1
e = 0 (4.182)

[CD + λ(CF +Ce)]w1
pq + λCRf

1
kl = 0 (4.183)

f1
kl can be solved from the first two equations, then the third equation is rewritten as

[CD +CR(Ca −E1E3
−1E1

T )−1CR
T + λ(CF +Ce)]w1

pq = 0 (4.184)

The buckling factor λ can be solved from the above equation by solving the generalized
eigenvalues of matrix [CD +CR(Ca −E1E3

−1E1
T )−1CR

T ] and [CF +Ce]

For plates, the matrix CR is zero, thus the above equation reduces into

[CD + λ(CF +Ce)]w1
pq = 0 (4.185)

The stability equations can also be derived by applying the method of second variation of
total energy functional or Trefftz buckling criterion as introduced in section 4.6.1.

4.7 Summary

In this chapter, the energy functionals for prebuckling analysis and stability analysis have
been derived for both plates and shallow cylindrical shell panels. Then Ritz method has
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been applied to the energy functional for prebuckling analysis in order to obtain the linear
compatibility equation, from which the in-plane loads distribution is solved. The stability
equations are obtained from the total energy functional for stability analysis using adjacent-
equilibrium criterion or minimum potential energy approach (second variation of the total
energy functional and Trefftz buckling criterion), from which the buckling factor is solved.
However, the specific shape functions used for Airy stress function (F ) and its variation (or
increment, δF ), out-of-plane displacement (w) and its variation (or increment, δw) have not
been shown in this chapter, which will be discussed in the next two chapters as well as the
predictions of the in-plane loads and buckling loads (or factors).
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Chapter 5

Prebuckling Analysis: in-plane loads
distribution

5.1 Introduction

In this chapter, the in-plane loads distribution of a panel in the prebuckling state is inves-
tigated. Firstly, the panel has been considered only under a constant load N̄x on the edges
x = 0, a. Then, constant shear N̄xy is applied to the panel. In the last section, the panel has
been considered under constant end-shortenings on the edges of x = 0, a.

According to the assumption 2, the out-of-plane displacement of shallow cylindrical shell panel
is zero in the prebucklking state. Therefore, the in-plane loads distribution is the same for
plates and shallow cylindrical shell panels in the prebuckkling state. So the in-plane loads
distribution will be directly given without specifically indicating it is for plates or shells.

5.1.1 Material Property

The material property used in this chapter is shown in Table 5.1

Table 5.1: Material Property of AS4/3501-6 graphite epoxy laminate obtained from literature [35]

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23 tply
(Gpa) (Gpa) (Gpa) (Gpa) (mm)

141.4 11.5 6 3.4 0.28 0.43 0.1397

where, E11 is the ply Young’s modulus along the fiber orientation, E22 and E33 are the ply
Young’s modulus transverse to the fiber orientation; G12, G13 and G23 are the ply shear
modulus; ν12, ν13 and ν23 are the ply Poisson’s ratios; tply is the thickness of each ply.
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5.1.2 Model

As shown in Figure 3.3, the variation of stiffness in this thesis is simplified to a few sections
each having their own constant stiffness defined by fiber direction. In practice, the stiffness of
a variable stiffness panel is normally continuous, instead of a piecewise function based on the
sections. The reason for the simplicity is that the variation of fiber orientation is not easy to
be assigned to the model in Abaqus, especially to the models of shells. Due to the limitation
of time, this simplification has been adopted.

The layup of each section is considered to be symmetric, but the stretching-shearing couplings
(A16 and A26) and the bend-twist couplings (D16 and D26) are not necessarily to be zero.

Moreover, the dimension of the panel is chosen as

a = b = 100 mm (5.1)

5.1.3 Verification

The in-plane loads distributions of variable stiffness panels are predicted using Ritz method,
and the results are compared to the results obtained from commercial Finite element analysis
(FEA) package, Abaqus 6.11.

The material properties used in Abaqus is the same as what used in Ritz method, as shown
in Table 5.1. The S4 element, which is a 4-node quadrilateral conventional shell element with
full integration, was chosen for discretizing the panels in Abaqus. According to a convergence
study, the mesh density of 25×25 was chosen for each section to achieve the required accuracy.
The examples of the mesh density are shown in Figure 5.1. The convergence studies for the
mesh density are shown in Figure 6.4 and 6.9 in next chapter, where the convergences of
buckling loads are investigated.

(a) 4 Section (corresponds to Fig-
ure 3.3a)

(b) 16 Section (corresponds to
Figure 3.3b)

Figure 5.1: Mesh Density (25× 25 per section)
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5.2 Prescribed Compression (N̄x)

In this section, the prediction of in-plane loads of a panel under prescribed compression load is
investigated. First, the boundary conditions of Airy stress function are discussed. Then sine
function, beam characteristic function, polynomial function, sine and cosine function with
Lagrange multiplier method are applied as the shape function in approximating the Airy
stress function, respectively, and the predictions using these functions are compared to the
predictions of FEM.

5.2.1 Boundary Condition

For a panel under the prescribed load N̄x, the Airy stress function is approximated by equation
4.80 in previous chapter, which is shown below for convenience.

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

FklXk(x)Yl(y) (5.2)

So the in-plane loads are

Nx = N̄x +
KL∑
kl

FklXk(x)Y ′′l (y) (5.3)

Ny =
KL∑
kl

FklX
′′
k (x)Yl(y) (5.4)

Nxy = −
KL∑
kl

FklX
′
k(x)Y ′l (y) (5.5)

Since only the load N̄x is prescribed on the panel, the mechanical boundary conditions are:

Nx = N̄x, Nxy = 0 on x=0, a (5.6)
Ny = 0, Nxy = 0 on y=0, b (5.7)

To satisfy the above boundary conditions, there are two options for the shape functions:

Option 1: The shape functions Xk and Yl must held the following conditions term by term.

Xk(x) = X ′k(x) = 0 on x=0, a (k = 1 · · ·K) (5.8)
Yl(y) = Y ′l (y) = 0 on y=0, b (l = 1 · · ·L) (5.9)

Option 2: The sum of a set of shape functions with the corresponding parameters must
held the following conditions.

K∑
k

FklXk(x) =
K∑
k

FklX
′
k(x) = 0 on x=0, a (l = 1 · · ·L) (5.10)

L∑
l

FklYl(y) =
L∑
l

FklY
′
l (y) = 0 on y=0, b (k = 1 · · ·K) (5.11)
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In the second option, the boundary conditions are satisfied by the sum of a set of functions ,
instead by the shape function term by term. This will be accomplished by manipulating the
values of their parameters Fkl. A possible approach was introduced by Budiansky and Hu [36]
where they introduced the Lagrange Multiplier method to held these conditions during the
minimization of total complementary energy. The detail of this approach will be discussed
later in section 5.2.5 and 5.2.6.

In the section 5.2.2 5.2.3 and 5.2.4, sine function, beam characteristic function and polynomial
function will be discussed corresponding to the option 1. Both the beam characteristic func-
tion and polynomial function shows satisfactory predictions of the in-plane loads, compared
to Abaqus. However, the sine function that cannot exactly satisfy all the boundary condi-
tions in the option 1, gives unsatisfactory predictions, which is reported in section 5.2.2 as an
example to show the importance of satisfying all boundary conditions. Then the Lagrange
multiplier is introduced to ’force’ the sine function to satisfy the conditions of the option 2
in section 5.2.5, which shows significant improvements in the prediction of in-plane loads.
However, the sine function still overly constrains in-plane loads at the boundaries, which is
solved by the cosine function as shown in section 5.2.6.

5.2.2 Sine Function

Shape Function

In this section, the sine function has been adopted for both Xk and Yl as

Xk(x) = sin(kπx
a

) (5.12)

Yl(y) = sin( lπy
b

) (5.13)

Then the Airy stress function can be written as

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

Fkl sin(kπx
a

) sin( lπy
b

) (5.14)

However, the derivatives of the shape functions are not zero at the boundaries, as the following
shows

X ′k(x) = kπ

a
cos(kπx

a
) 6= 0 on x=0, a (5.15)

Y ′l (y) = lπ

b
cos( lπy

b
) 6= 0 on y=0, b (5.16)

Thus, the shear load is not zero at the four edges,

Nxy = −
KL∑
kl

FklX
′
k(x)Y ′l (y) 6= 0 on x=0, a; y=0, b (5.17)

Although the boundary conditions of Nx and Ny can be exactly satisfied, the sine function
is not expected to predict the in-plane loads correctly. A variable stiffness panel shown in
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Figure 5.2 has been used as an example, where the four sections are labeled for convenience
and the corresponding fiber directions in each section are given.

Figure 5.2: Layup 1

Layup 1 (A16 = A26 = D16 = D26 = 0)

• Section 1: [90 0 0 90]

• Section 2: [0 0 0 0]

• Section 3: [0 90 90 0]

• Section 4: [90 90 90 90]

Verification

The prediction in Ritz method is carried out by using K = 10 and L = 10 terms in x and
y direction. The prescribed load N̄x is 1N/mm in both Ritz method and Finite element
method (FEM). In the following section, if not specifically indicated, the prescribed load is
always set to be N̄x = 1N/mm. Figure 5.3 shows the prediction of in-plane stresses compared
to FEM. The force resultants Nx, Ny, Nxy are averaged on the thickness corresponding to
the results of Abaqus, so the stresses are given in the figure, where t is the thickness of the
panel. Moreover, the results of FEM are given at the integration points to show the exact
values of stresses.

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (Sine) (e) Ny/t (Sine) (f) Nxy/t (Sine)

Figure 5.3: In-plane stress of Layup 1 (Mpa, K=L=10, N̄x = 1 N/mm)
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Since the maximum and minimum stresses obtained from FEM are higher and lower than the
maximum and minimum stresses obtained from Ritz method, the values in FEM are scaled
according to the values in Ritz method. In the pictures for FEM, the areas with gray color
are where the stresses higher than the maximum stress obtained from Ritz method; the areas
with dark color are where the stresses lower than the minimum stress obtained from Ritz
method. In the following sections, whenever the stress distributions in FEM are compared
to these obtained from Ritz method, the maximum and minimum value displayed in FEM
are limited by the maximum and minimum value in Ritz method, for the purpose of better
comparison of the stresses distributions.
Clearly, the prediction of in-plane stresses distribution is substantially far away from the
results obtained in FEM. The reason is the that the boundary condition of Nxy has not been
satisfied by the sine function.
The sine function in this section has been shown as an example of the importance of exactly
satisfying all the boundary condition of the in-plane loads. However, it does not declare that
the sine function is of no usefulness in predicting the in-plane loads. Later, in the section
5.2.5 the Lagrange multiplier method will be introduced to improve the predictions of sine
function.

5.2.3 Beam Characteristic Function

Shape Function

Instead of the sine function, another shape function that is a linear combination of sine,
cosine, sine hyperbolic and cosine hyperbolic functions is introduced [3], which is known as
the beam characteristic function.
The general form of the beam characteristic function is given as

X(x) = c1 sinµx+ c2 cosµx+ c3 sinhµx+ c4coshµx (5.18)

where, ci (i = 1 · · · 4) are the undetermined parameters which can be solved from the boundary
conditions.
This equation is actually the general solution of the fourth order governing differential equa-
tion for beams under natural vibration. For the detail of this equation, please refer to the
chapter 4.2.4 of Reddy’s book [3].The specific form of the beam characteristic function will
be derived to satisfy the boundary conditions expressed in option 1 term by term.
The boundary conditions for the general form of the beam characteristic function correspond-
ing to the conditions in option 1 are

X(x) = X ′(x) = 0 on x=0, a (5.19)

The beam characteristic function is subjected to the above boundary conditions, and then
the following equations are obtained.

X(0) = c2 + c4 = 0 (5.20)
X(a) = c1 sinµa+ c2 cosµa+ c3 sinhµa+ c4 coshµa = 0 (5.21)
X ′(0) = µ(c1 + c3) = 0 (5.22)
X ′(a) = µ[c1 cosµa− c2 sinµa+ c3 coshµa+ c4 sinhµa] = 0 (5.23)
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Since c4 = −c2 and c1 = −c3, they can further reduce to

c1(sinµa− sinhµa) + c2(cosµa− coshµa) = 0 (5.24)
c1(cosµa− coshµa)− c2(sinµa+ sinhµa) = 0 (5.25)

which written in matrix form is[
sinµa− sinhµa cosµa− coshµa
cosµa− coshµa − sinµa− sinhµa

](
c1
c2

)
=
(

0
0

)
(5.26)

To get the non-zero solution of c1 and c2, the determinate of the coefficient matrix must be
zero. ∣∣∣∣∣sinµa− sinhµa cosµa− coshµa

cosµa− coshµa − sinµa− sinhµa

∣∣∣∣∣ = 2 cosµa coshµa− 2 = 0 (5.27)

So µ can be solved from above equation as

µ =
k + 1

2
a

π (5.28)

where, k is a positive integer.

Then − c1
c2

can be solved from equation 5.26 as

− c1
c2

= sinµa+ sinhµa
coshµa− cosµa = cosµa− coshµa

sinµa− sinhµa (5.29)

where, the above two expressions for − c1
c2

are equivalent to each other.

The equation 5.18 can then be written as

X(x) = −c2[coshµx− cosµx− r(sinhµx− sinµx)] (5.30)

where, r is given as
r = −c1

c2
= sinµa+ sinhµa

coshµa− cosµa (5.31)

or
r = −c1

c2
= cosµa− coshµa

sinµa− sinhµa (5.32)

Therefore, there is only one unknown parameter c2 left in the beam characteristic function.

Since the boundary conditions of Xk, the shape function of Airy stress function in x direction,
are the same as the boundary conditions of X as shown in equation 5.19, the shape function
for Xk can be assumed as

Xk(x) = coshµkx− cosµkx− rx(sinhµkx− sinµkx) (5.33)

where,
rk = cosµka− coshµka

sinµka− sinhµka
(5.34)

and
µk =

k + 1
2

a
π (5.35)
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The unknown parameter c2 in equation 5.30 is not shown in the equation for Xk. The reason
is that c2 can be regarded as the undetermined parameter (Fkl) of the shape function as
shown in equation 5.2, which will be solved using Ritz method.

Similarly, the shape function for Yl, which is the shape function of Airy stress function in y
direction, can be assumed as

Yl(y) = coshµly − cosµly − rl(sinhµlx− sinµly) (5.36)

where,
rl = cosµlb− coshµlb

sinµlb− sinhµlb
(5.37)

and
µl =

l + 1
2

b
π (5.38)

These shape functions for Xk and Yl are directly derived from the boundary conditions 5.8
and 5.9, so they satisfy these conditions term by term. Moreover, if the boundary conditions
change into

Xk(x) = X ′′k (x) = 0 on x=0, a (5.39)
Yl(y) = Y ′′l (y) = 0 on y=0, b (5.40)

the beam characteristic function subjected to above boundary conditions is actually the sine
function because the parameters of cosine, sine hyperbolic and cosine hyperbolic functions
are zero. So the sine function is a special case of the beam characteristic function.

Verification

The panel with the layup 1 shown in Figure 5.2 is studied by applying the beam characteristic
function (equation 5.33 5.36), and compared to the results obtained from FEM and sine func-
tion in Figure 5.4. The prediction in Ritz method is carried out by using K = 10 and L = 10
terms in x and y direction, respectively. Clearly, the prediction has been improved signifi-
cantly, because the boundary condition of Nxy has been satisfied in the beam characteristic
functions.

However, the peak stresses (the minimum or the maximum stresses) in FEM are extremely
lower or higher than the minimum and maximum stresses obtained in Ritz method by using
the beam characteristic function. This is due to the discontinuity of stiffness at the bound-
aries of the neighboring sections since the panel has been divided into sections with different
stiffness. Due to the discontinuity of stiffness, the stresses in FEM are discontinuous and the
peak stresses only appear at the boundaries, as seen in Figure 5.4a. Moreover, the results in
FEM are given at the integration points, so FEM can only exactly show the stresses by points
which are discontinuous. While, in Ritz method, the in-plane stresses are approximated by
finite number of continuous shape functions. Since the shape functions are continuous, the
in-plane stresses obtained from Ritz method are continuous over the panel. So the extreme
discontinuity of stresses in FEM cannot be predicted by Ritz method using finite number
of continuous shape functions unless infinite number of shape functions are used. This can
also explain why the locations of the peak stresses in Ritz method are slight away from the
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (sine) (e) Ny/t (sine) (f) Nxy/t (sine)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.4: In-plane Stress of Layup 1 (Mpa, K=L=10, N̄x = 1 N/mm)

boundaries of the neighboring sections, while the peak stresses in FEM are located closely at
the boundaries, as shown in 5.4a.

Although the stresses in Ritz method are always continuous, the discontinuity of the stresses
can be approximated through increasing the number of terms used in Ritz method. As shown
in Figure 5.5, the stresses in Ritz method are obtained at K = L = 18 and compared to FEM;
in Figure 5.6, the stresses in Ritz method are obtained at K = L = 50 and compared to FEM.
It is clearly shown in these figures that as increasing the number of terms, the predictions of
in-plane loads distribution in the Ritz method become increasingly closer to these in FEM,
as well as the peak stresses and their locations.
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (beam) (e) Ny/t (beam) (f) Nxy/t (beam)

Figure 5.5: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄x = 1 N/mm)

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (beam) (e) Ny/t (beam) (f) Nxy/t (beam)

Figure 5.6: In-plane Stress of Layup 1 (Mpa, K=L=50, N̄x = 1 N/mm)

The stretching-shearing couplings (A16 and A26) of Layup 1 shown in Figure 5.2 are both
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zero, since the layup is balanced. The second layup is shown in Figure 5.7, where A16 and
A26 are non-zero, to verify that Ritz method can also predict the in-plane stresses of this
kind of panels. The stresses distributions are shown in Figure 5.8, where K = L = 18 in
Ritz method. Clearly, the stress distributions have been satisfactorily predicted by the Ritz
method using beam characteristic functions. However, the peak stresses in FEM still cannot
be exactly predicted which are shown in gray and black colors in the pictures. Again these
peak stresses only appear at the boundaries of the neighboring sections since they are caused
by the stiffness discontinuity.

Figure 5.7: Layup 2

Layup 2 (A16, A26, D16, D26 6= 0)

• Section 1: [45 45 45 45]

• Section 2: [0 -45 -45 0]

• Section 3: [-45 -45 -45 -45]

• Section 4: [90 45 45 90]

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (beam) (e) Ny/t (beam) (f) Nxy/t (beam)

Figure 5.8: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄x = 1 N/mm)

Since the peaks stresses of layup 1 and 2 shown in FEM are caused by the stiffness discon-
tinuity, another example is used to show the prediction of in-plane stress distributions and
the peak stresses will be improved if reducing the discontinuity of stiffness. The layup of this
example is shown in Figure 5.9, where both A16 and A26 are non-zero in section 2 and 3. The
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stiffness is still discontinuous in layup 3, however, the transition of discontinuous stiffness in
neighboring sections is smoother than layup 1 and 2 since the difference of fiber orientations
is only 5 degree. The stress distributions are shown in Figure 5.10, where K = L = 18 in
Ritz method. Clearly, the prediction of in-plane loads and the peak stresses obtained in Ritz
method become closer to these in FEM. Therefore, one can expect that if a panel whose
stiffness is variable but continuous has been considered here, the prediction of in-plane loads
will be even better than what are shown in Figure 5.5, 5.8 and 5.10.

Figure 5.9: Layup 3

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (beam) (e) Ny/t (beam) (f) Nxy/t (beam)

Figure 5.10: In-plane Stress of Layup 3 (Mpa, K=L=18, N̄x = 1 N/mm)

Numerical Issue

During the implementation in numerical software (such as Matlab, Maple), the numerical
problems were observed using the beam characteristic function. Similar numerical issues
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were also reported by Zhang and Matthews [12] that the values of rk (equation 5.34) and
rl (equation 5.37) must have as many significant figures as possible. They noticed that six
significant figures are not enough to get good orthogonality of the shape functions and some
error (6.4% ) in prediction of buckling load may be expected. They compared the values of rk
obtained using more than six significant figures with these obtained using only six significant
figures, which are shown in Figure 2.2, where ri in the figure is the rk here. Clearly, after
three terms, the value of rk (or ri) is exactly 1 if only six significant figures are used. However,
it is rk equals to 1 that leads to the numerical problem, which can be explained using the
following equation.

Xk = 1− rk
2 eµkx + 1 + rk

2 e−µkx − cosµx+ rk sinµkx (5.41)

Above equation is equivalent to the beam characteristic equation (equation 5.33) since the
hyperbolic functions can be written in terms of exponential functions. rk equals 1 implies
that the first term on the right-hand side of the equation disappears. While, eµkx may be very
large which cannot be ignored. So rk cannot be exactly 1. Thus, enough significant figures
should be used for rk, and as well as rl.
Their observation is correct, the exact value of rk has important influence on the orthogonality
of the shape function and thus on the accuracy of the prediction. However, even though the
most significant figures are used for rk, rk still equals to 1 when k > 11 as shown in Table
5.2. In the third column of Table 5.2, rk − 1 is exactly 0 after k = 11, which implies rk is
exactly 1 in numerical software (Maple or Matlab).

Table 5.2: The value of rk and rk − 1

k rk rk − 1 rk − 1 (rewrite)

1 0,982507682528266 -0,017492317 -0,017492317
2 1,000777311438030 0,000777311 0,000777311
3 0,999966450125447 -3,35E-05 -3,35E-05
4 1,000001449897660 1,45E-06 1,45E-06
5 0,999999937344383 -6,27E-08 -6,27E-08
6 1,000000002707600 2,71E-09 2,71E-09
7 0,999999999882994 -1,17E-10 -1,17E-10
8 1,000000000005060 5,06E-12 5,06E-12
9 0,999999999999782 -2,18E-13 -2,19E-13
10 1,000000000000010 9,55E-15 9,44E-15
11 1,000000000000000 -4,44E-16 -4,08E-16
12 1,000000000000000 0 1,76E-17
13 1,000000000000000 0 -7,62E-19
14 1,000000000000000 0 3,29E-20
15 1,000000000000000 0 -1,42E-21

The reason for this problem is that both the denominator and numerator of rk will be infinite
large when k > 11 due to the hyperbolic functions in the denominator and numerator. Then
the quotient of these two infinite large values is exactly 1 in numerical software. In addition,
the values of sine and cosine function will be truncated when added to cosine and sine hyper-
bolic functions since they are too small. If plot the shape function Xk(x) from x

a = 0 to x
a = 1
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as increasing the value of k, the numerical error is clearly shown in Figure 5.11. Especially
when k = 15, the half-waves near x

a = 1 are truncated due to the numerical error.

(a) k=10 (b) k=11

(c) k=12 (d) k=15

Figure 5.11: Plot of Xk with Numerical Error as Incresing k (x
a = 0 · · · 1)

Therefore the solution proposed by Zhang and Matthews [12] is not valid when k > 11.
However, the problem has been solved through rewriting the expressions of rk and the beam
characteristic function.
Since the numerical error is originally from rk, to solve the problem it can be rewritten as

rk − 1 = cosµka− coshµka
sinµka− sinhµka

− 1 = cosµka− sinµka− e−µka

sinµka− sinhµka
(5.42)

As increasing k , the absolute value of the denominator will be extremely large due to the
sine hyperbolic function, while the numerator is always relatively small. Consequently, the
value of rk−1 is extremely close to 0, but never be 0, as shown in the fourth column of Table
5.2. The reason is the numerical software can always store it with enough digits. Although
the sine function in the denominator will be truncated since the sine hyperbolic function is
extremely large, but the error of the truncation is relatively small. To keep this beneficial
property of rk − 1, it is replaced by rk1 as

rk1 = rk − 1 = cosµka− sinµka− e−µka

sinµka− sinhµka
(5.43)
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Correspondingly, the equation 5.33 of Xk can be rewritten as

Xk(x) = e−µkx + sinµkx− cosµkx+ rk1 sinµkx− rk1 sinhµkx (5.44)

or a more computational efficient way,

Xk(x) = e−µkx + sinµkx− cosµkx+ rk1 sinµkx− rk1
eµkx − eµkx

2 (5.45)

Similarly, Yl can be rewritten as

Yl(y) = e−µly + sinµly − cosµly + rl1 sinµly − rl1
eµly − eµly

2 (5.46)

where,

rl1 = rl − 1 = cosµlb− sinµlb− e−µlb

sinµlb− sinhµlb
(5.47)

Then, the correct plots of Xk are shown in Figure 5.12, which are substantially improved
compared to Figure 5.11. In Figure 5.13, the in-plane stress distribution with numerical
errors are compared to these without numerical error obtained using the modified version of
shape functions. Furthermore, all the in-plane stresses distributions in this section (section
5.2.3) were obtained with the modified version of shape functions.

(a) k=10 (b) k=11

(c) k=12 (d) k=15

Figure 5.12: Plot of Xk as Incresing k (x
a = 0...1)
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86 Prebuckling Analysis: in-plane loads distribution

(a) Nx/t (error) (b) Ny/t (error) (c) Nxy/t (error)

(d) Nx/t (correct) (e) Ny/t (correct) (f) Nxy/t (correct)

Figure 5.13: Numerical Error of In-plane Stress of Beam Characteristic Function (Mpa, K=L=18)

5.2.4 Polynomial Function

Shape Function

Besides the beam characteristic function, the algebraic polynomial function can exactly satisfy
the boundary conditions of the option 1 term by term.
The boundary conditions Xk has to satisfy term by term is shown as follows (equation 5.8)

Xk(x) = X ′k(x) = 0 on x=0, a (k = 1 · · ·K) (5.48)

If an algebraic polynomial is to be selected, one may begin with the five-term complete
polynomial, as

X(x) = k0 + k1x+ k2x
2 + k3x

3 + k4x
4 (5.49)

where, k0 to k4 are undetermined parameters.
The fourth order polynomial is chosen to correspond to the four conditions in the boundary
condition of Xk. Similarly, the boundary conditions of X(x) is

X(x) = X ′(x) = 0 on x=0, a (5.50)

With four boundary conditions for X in above equation, the four of five undetermined pa-
rameters can be solved. The rest parameter is arbitrary, thus it may be set as unity. Then,
the shape function of X(x) has been solved as

X(x) = (x
a

)2(x
a
− 1)2 (5.51)
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The kth function of X(x) can be assumed as

Xk(x) = (x
a

)k+1(x
a
− 1)2 (5.52)

Similarly, the shape function Yl can be assumed as

Yl(y) = (y
b

)l+1(y
b
− 1)2 (5.53)

However, these functions are not orthogonal , which means they do not satisfy the following
conditions. ∫ a

0
Xi(x)Xj(x)dx = 0 i 6= j (5.54)∫ b

0
Yi(y)Yj(y)dy = 0 i 6= j (5.55)

To avoid possible numerical problem (for examples, some matrices may not be positive defi-
nite) and achieve numerical accuracy and convenience, it is advantages to orthogonalize the
shape functions [15]. The orthogonalization of the polynomial functions (equation 5.52 5.53)
are implemented through the Gram-Schmidt process. Furthermore, to avoid the numerical
unstable problem after Gram-Schmidt process, the shape functions are transformed to the
nondimensional form spanning the interval [−1, 1].

Xk(ξ) = (ξ − 1)k+1(ξ + 1)2 (ξ ∈ [−1, 1]) (5.56)
Yl(η) = (η − 1)l+1(η + 1)2 (η ∈ [−1, 1]) (5.57)

where, ξ = 2x−a
a and η = 2y−b

b .
After the Gram-Schmidt process, the orthogonalized polynomial function Xk can be written
as

X1(ξ) =3
√

35
16 (ξ2 − 1)2 (5.58)

X2(ξ) =3
√

385
16 ξ(ξ2 − 1)2 (5.59)

X3(ξ) =3
√

91
32 (ξ2 − 1)2(11ξ2 − 1) (5.60)

X4(ξ) =3
√

385
32 ξ(ξ2 − 1)2(13ξ2 − 3) (5.61)

... (5.62)
Similarly, the orthogonalized Yl is given as

Y1(η) =3
√

35
16 (η2 − 1)2 (5.63)

Y2(η) =3
√

385
16 η(η2 − 1)2 (5.64)

Y3(η) =3
√

91
32 (η2 − 1)2(η2 − 1) (5.65)

Y4(η) =3
√

385
32 η(η2 − 1)2(η2 − 3) (5.66)

... (5.67)
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Correspondingly, the total complementary energy functional (equation 4.81) has to be rewrit-
ten as

Πc
pre =1

2
ab

4

∫ 1

−1

∫ 1

−1
[a11N̄

2
x + 2N̄x

KL∑
kl

Fkl

a11
a12
a16


T  (2

b )
2XkY

′′
l

( 2
a)2X ′′kYl
−( 4

ab)X
′
kY
′
l



+
KLKL∑
klk2l2

FklFkl2

 (2
b )

2XkY
′′
l

( 2
a)2X ′′kYl
−( 4

ab)X
′
kY
′
l


T

A−1

 (2
b )

2Xk2Y
′′
l2

( 2
a)2X ′′k2

Yl2
−( 4

ab)X
′
k2
Y ′l2

]dξdη

(5.68)

Verification

The prediction in Ritz method is carried out by using K = 18 and L = 18 terms in x and y
direction. Figure 5.14, 5.15 and 5.16 show the prediction of in-plane stresses of Layup 1, Layup
2 and Layup 3, respectively. The maximum and minimum limits in FEM are constrained
by the maximum and minimum values of the predictions using polynomial functions. The
predictions using beam characteristic functions are also shown there for comparison.

It is noted that the predictions using these two shape functions are more or less the same
which proves that both shape functions are sufficient to predict the in-planes loads.
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.14: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄x = 1 N/mm)
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.15: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄x = 1 N/mm)
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.16: In-plane Stress of Layup 3 (Mpa, K=L=18, N̄x = 1 N/mm)

5.2.5 Sine Function with Lagrange Multiplier

Shape Function

As indicated in the conditions of option 2 , the boundary conditions are satisfied by the shape
function in a set , instead of term by term. This will be accomplished by introducing the
Lagrange Multiplier to the total complementary energy.
Taking the sine function for example, the problem of the sine function is that it cannot satisfy
the boundary condition of shear stress term by term, as indicated in equation 5.15 5.16 5.17.
However, the method of Lagrange multiplier will make the sum of a set of sine functions with
parameters to be zero at the boundaries by manipulating the values of the parameters.
Since the sine function does not satisfy the boundary conditions ofNxy term by term, following
conditions must be applied to the sine function such that it can satisfy the boundary conditions
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in a set, as what required by the option 2.

K∑
k

FklX
′
k(x) = 0 on x=0, a (l = 1 · · ·L) (5.69)

L∑
l

FklY
′
l (y) = 0 on y=0, b (k = 1 · · ·K) (5.70)

If the above conditions are satisfied, the boundary conditions of shear loads will be exactly
satisfied, as shown below.

Nxy = −
L∑
l

[
K∑
k

FklX
′
k(x)

]
Y ′l (y) = 0 on x=0, a (5.71)

Nxy = −
K∑
k

[
L∑
l

FklY
′
l (y)

]
X ′k(x) = 0 on y=0, b (5.72)

The conditions in equation 5.69 and 5.70 are implemented in Ritz method by introducing the
Lagrange multipliers into the total complementary energy (equation 4.23), as

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy +

J1∑
j1

Λj1

[
K∑
k

FklX
′
k(0)

]
+

J2∑
j2

Λj2

[
K∑
k

FklX
′
k(a)

]

+
I1∑
i1

Λi1

[
L∑
l

FklY
′
l (0)

]
+

I1∑
i2

Λi2

[
L∑
l

FklY
′
l (b)

] (5.73)

where, Λj1 , Λj2 , Λi1 and Λi2 are Lagrange multipliers; I1, I2, J1, J2 are numbers of Lagrange
multipliers and I1 ≤ K, I2 ≤ K, J1 ≤ L, J2 ≤ L.

By making the total energy functional Πc
pre stationary with respect to Λj1 , Λj2 , Λi1 and Λi2 ,

respectively,

∂Πc
pre

∂Λj1
= 0 (j1 = 1...J1) (5.74)

∂Πc
pre

∂Λj2
= 0 (j2 = 1...J2) (5.75)

∂Πc
pre

∂Λi1
= 0 (i1 = 1...I1) (5.76)

∂Πc
pre

∂Λi1
= 0 (i1 = 1...I1) (5.77)

the same conditions as in equation 5.69 and 5.70 will be obtained.

Then making the total energy functional Πc
pre stationary with respect to Fkl,

∂Πc
pre

∂Fkl
= 0 (k = 1...K, l = 1..L) (5.78)

a set of equations, expressed in matrix form, will be obtained as following,
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N̄xckl +Cafkl +H1λij = 0 (5.79)

where, λij is a vector of dimension (I1 + I2 + J1 + J2) that contains all Lagrange multipliers,
H1 is a K × L by (I1 + I2 + J1 + J2) matrix.

These conditions in equation 5.69 and 5.70 can be written in matrix form as

H1
Tfkl = 0 (5.80)

The two matrix equations can be written together as(
Ca H1
H1

T O

)(
fkl
λij

)
= −N̄x

(
ckl
0

)
(5.81)

By solving the parameter vector fkl from above equation, the conditions in equation 5.69 and
5.70 will be automatically satisfied.

Verification

The verification is done for layup 1 and layup 2, where K = 18 and L = 18 terms are used
in x and y direction, respectively, in Ritz method. Figure 5.17 and 5.18 show the comparison
of the predictions obtained from sine function, sine function (with Lagrange multiplier) and
beam characteristic function. Clearly, the predictions obtained using sine function (with
Lagrange multiplier) is significantly better than those obtained using only sine function, since
the boundary conditions of the shear stresses are exactly satisfied.

However, by comparison with the beam characteristic function, the sine function with La-
grange multiplier overly constrains the stress Nx on the edges of y = 0, b and Ny on the edges
of x = 0, a. Because, as shown in the equations of Nx and Ny below, Nx is exactly N̄x at
y = 0, b and Ny is exactly zero at x = 0, a.

Nx = F,yy = N̄x −
KL∑
kl

Fkl(
lπ

b
)2 sin kπx

a
sin lπy

b
= N̄x (y=0, b) (5.82)

Ny = F,xx = −
KL∑
kl

Fkl(
kπ

a
)2 sin kπx

a
sin lπy

b
= 0 (x=0, a) (5.83)

However, Nx (or Ny) does not have to be N̄x at y = 0, b (or be zero at x = 0, a), as shown in
the predictions of the beam characteristic function or FEM. The additional constraints from
the sine function are due to that the second derivative of sine function is actually zero at the
boundaries, as shown in the equations below.

X ′′k (x) = −(kπx
a

)2 sin kπx
a

= 0 on x=0, a (5.84)

Y ′′l (y) == −( lπy
b

)2 sin lπy
b

= 0 on y=0, b (5.85)

which are not the conditions of option 1 shown in equation 5.8.
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Therefore, the predictions of Nx and Ny obtained using the sine function (with Lagrange
multiplier) are not as accurate as the beam characteristic function (and also the polynomial
functions) at the edges, due to the overly constrained boundary conditions of Nx and Ny

inherently existing in sine function. However the predictions have been improved significantly
by introducing the Lagrange multiplier to sine function compared to the pure sine function.

(a) Nx/t (sine) (b) Ny/t (sine) (c) Nxy/t (sine)

(d) Nx/t (sine with LM) (e) Ny/t (sine with LM) (f) Nxy/t (sine with LM)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.17: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄x = 1 N/mm)
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(a) Nx/t (sine) (b) Ny/t (sine) (c) Nxy/t (sine)

(d) Nx/t (sine with LM) (e) Ny/t (sine with LM) (f) Nxy/t (sine with LM)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.18: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄x = 1 N/mm)

5.2.6 Cosine Function with Lagrange Multiplier

Shape Function

The cosine function can be introduced to solve the problem of sine function described in
previous section, since the second derivative of cosine function is not zero at the bound-
ary. Moreover, the cosine function can satisfy the boundary condition of Nxy term by term.
However, the cosine function itself is not zero at the boundaries, so it does not satisfy the
boundary condition of Nx and Ny term by term. This problem can be solved by introducing
the Lagrange multiplier, which is similar to what did for the sine function.

Since the cosine function does not satisfy the boundary conditions of Nx and Ny term by
term, the following conditions must be applied to the cosine function to ensure the boundary
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conditions of Nx and Ny are satisfied in a set, as required in the option 2.
K∑
k

FklXk(x) = 0 on x=0, a (l = 1 · · ·L) (5.86)

L∑
l

FklYl(y) = 0 on y=0, b (k = 1 · · ·K) (5.87)

If the above conditions are satisfied, the boundary conditions of Nx and Ny will be exactly
satisfied, as shown below.

Nx = N̄x +
L∑
l

[
K∑
k

FklXk(x)
]
Yl(y) = N̄x on x=0, a (5.88)

Ny =
K∑
k

[
L∑
l

FklYl(y)
]
Xk(x) = 0 on y=0, b (5.89)

The conditions in equation 5.86 and 5.87 are implemented in Ritz method by introducing the
Lagrange multipliers into the total complementary energy (equation 4.23), as

Πc
pre =1

2

∫ ∫
(fTA−1f)dxdy +

J1∑
j1

Λcj1

[
K∑
k

FklXk(0)
]

+
J2∑
j2

Λcj2

[
K∑
k

FklXk(a)
]

+
I1∑
i1

Λci1

[
L∑
l

FklYl(0)
]

+
I1∑
i2

Λci2

[
L∑
l

FklYl(b)
] (5.90)

where, Λcj1 , Λcj2 , Λci1 and Λci2 are Lagrange multipliers; I1, I2, J1, J2 are numbers of Lagrange
multipliers and I1 ≤ K, I2 ≤ K, J1 ≤ L, J2 ≤ L.
However, it is noted that a complete set of cosine functions is given as

1, cos πx
a
, cos 2πx

a
, cos 3πx

a
, cos 4πx

a
· · · (5.91)

So the shape functions assumed for Xk and Yl should start from k = l = 0 as shown below,

Xk = cos kπx
a

(k = 0 · · ·K) (5.92)

Yl = cos lπy
b

(l = 0 · · ·L) (5.93)

Thus the Airy stress function is

F (x, y) = 1
2N̄xy

2 +
KL∑

k=0,l=0
Fkl cos kπx

a
cos lπy

b
(5.94)

If making the total energy functional stationary with respect to Λcj1 , Λcj2 , Λci1 , Λci2 and Fkl,
respectively, two sets of equations will be obtained which are expressed in matrix form as
below. (

Ca H2
H2

T O

)(
fkl
λcij

)
= −N̄x

(
ckl
0

)
(5.95)

where, λcij is a vector of dimension I1 + I2 + J1 + J2 that contains all Lagrange multipliers, ,
H2 is a K × L by I1 + I2 + J1 + J2 matrix.
By solving the parameter vector fkl from above equation, the conditions in equation 5.86 and
5.87 will be automatically satisfied.

Jinghua Tang Master of Science Thesis



5.2 Prescribed Compression (N̄x) 97

Verification

The verification is done for layup 1, layup 2 and layup 3, where K = 18 and L = 18 terms are
used in x and y direction, respectively, in Ritz method. Figure 5.19, 5.20 and 5.21 show the
comparisons of the predictions obtained using cosine function (with Lagrange multiplier), sine
function (with Lagrange multiplier) and beam characteristic function. Clearly, the predictions
using cosine function (with Lagrange multiplier) are slightly better compared to the predic-
tions using sine function (with Lagrange multiplier), since the stresses on the boundaries are
not overly constrained.

(a) Nx/t (cosine with LM) (b) Ny/t (cosine with LM) (c) Nxy/t (cosine with LM)

(d) Nx/t (sine with LM) (e) Ny/t (sine with LM) (f) Nxy/t (sine with LM)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.19: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄x = 1 N/mm)
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(a) Nx/t (cosine with LM) (b) Ny/t (cosine with LM) (c) Nxy/t (cosine with LM)

(d) Nx/t (sine with LM) (e) Ny/t (sine with LM) (f) Nxy/t (sine with LM)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.20: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄x = 1 N/mm)
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(a) Nx/t (cosine with LM) (b) Ny/t (cosine with LM) (c) Nxy/t (cosine with LM)

(d) Nx/t (sine with LM) (e) Ny/t (sine with LM) (f) Nxy/t (sine with LM)

(g) Nx/t (beam) (h) Ny/t (beam) (i) Nxy/t (beam)

Figure 5.21: In-plane Stress of Layup 3 (Mpa, K=L=18, N̄x = 1 N/mm)

Budiansky and Hu [36] introduced the Lagrange multiplier method to find the upper and
lower limits to the critical buckling loads of clamped plates in 1946. The boundary conditions
of clamping requires that the deflection and the slope (first derivative of deflection) are zero
at the boundaries, which are similar to the boundary conditions of the shape functions used
for Airy stress function where Nxy corresponds to the slope and Nx and Ny correspond to the
deflection. Budiansky and Hu indicated that the Lagrange multiplier method is preferably
used to satisfy the zero-deflection condition rather than the zero-slope condition to obtain
more rapid convergence, since the slope is the derivative of deflection and in general the
differentiation of a Fourier series makes it more slowly convergent [36]. So the cosine function
was preferably used to satisfy the condition of slop in their case, while the conditions of
deflection was satisfied by Lagrange multiplier method. Similarly, in the prediction of in-
plane loads, the cosine function is preferably used since it satisfied the condition of Nxy and
thus having more rapid convergence compared to the sine function. This can be observed in
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Figure 5.19 and 5.20, where the predictions of cosine function (with Lagrange multiplier) is
slightly better than the sine function (with Lagrange multiplier) when using the same number
of terms (K = L = 18) in Ritz method.

5.3 Prescribed Shear (N̄xy)

The prediction of the in-plane stresses of a panel under prescribed shear is investigated in
this section by using the polynomial functions. However, other shape functions discussed in
previous section can also be applied here. The prescribed shear is set to be N̄xy = 1 N/mm,
which is applied to all edges.

5.3.1 Pure Shear

The stretching-shearing couplings, A16 and A26, of the layups dramatically influence the in-
plane loads distribution for panels under pure shear. If A16 and A26 are zero, the panels’
shear deformation is not coupled with the stretches. So applying shear load to the panel will
not lead to stretches in x and y direction. Thus, the in-plane loads Nx and Ny will be zero
when the panel is under pure shear. Moreover, the in-plane shear load Nxy will be constant
even though the stiffness is variable. Figure 5.22 shows the prediction of in-plane loads of
layup 1 whose A16 and A26 are zero. Both Nx and Ny obtained from FEM and Ritz method
are zero, and Nxy is constant.

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (beam) (f) Nxy/t (poly)

Figure 5.22: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄xy = 1 N/mm)

On the contrary, if A16 and A26 are not zero, the panels’ shear deformation is coupled with
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stretches. So applying shear load to the panel will lead to stretches in x and y direction.
Thus the in-plane loads Nx and Ny will not not zero and Nxy will not be constant neither,
as shown in Figure 5.23 and 5.24 where the layup 2 and layup 3 are used whose A16 and A26
are not zero.

However, the stresses in FEM are discontinuous at the boundaries of the neighboring sections
which cannot be predicted in Ritz method using finite number of continuous shape functions.
Moreover, the peak stresses cannot be predicted correctly. These are similar to what observed
when compression is applied in previous section. But besides these, the predictions of the
in-plane stress distributions are satisfactory.

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.23: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄xy = 1 N/mm)

5.3.2 Shear and Compression

Besides pure shear, it is more practical to consider a panel under combined loads, for instance
a combination of N̄x and N̄xy. The predictions of in-plane stresses of layup 1 and 2 are shown
in Figure 5.25 and 5.26, where N̄x = N̄xy = 1 N/mm. Clearly the predictions are as good as
the prediction of panels under pure shear or compression. The discontinuity of peaks of the
stresses are still cannot be predicted exactly neither.

It is interesting to noted that the in-plane loads of a panel under combined loads are just a
linear combination of the in-plane loads of the panel under pure shear and pure compression
separately. An example is clearly shown in Figure 5.25, which is the combination of Figure
5.14 and 5.22.
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.24: In-plane Stress of Layup 3 (Mpa, K=L=18, N̄xy = 1 N/mm)

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.25: In-plane Stress of Layup 1 (Mpa, K=L=18, N̄x = N̄xy = 1 N/mm)
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.26: In-plane Stress of Layup 2 (Mpa, K=L=18, N̄x = N̄xy = 1 N/mm)

5.4 Prescribed Displacement

In this section, the in-plane loads of panels under prescribed displacement are investigated
using Ritz method and verified with Abaqus.

5.4.1 Boundary Condition

The panel is simply-supported at all the edges and subjected to uniform end-shortenings on
both sides (x = 0, a). The boundary conditions have been split into the geometrical boundary
condition (prescribed displacement) and the mechanical boundary condition.

As the geometry constraints are only the prescribed end-shortenings on the edges of x = 0, a,
the edges of y = 0, b are free to move. It is convenient to assume that the end-shortenings
prescribed on the edges of x = 0 and x = a are ∆u1 and ∆u2, respectively. Then the
geometrical boundary conditions become

u = ∆u1 on x = 0 (5.96)
u = −∆u2 on x = a (5.97)
v = free on y = 0, b (5.98)

Since the plate is free to move in y direction and no extra loads prescribed on all the edges,
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104 Prebuckling Analysis: in-plane loads distribution

the mechanical boundary conditions are

Nx 6= 0, Nxy = 0 on x = 0, a (5.99)
Ny = 0, Nxy = 0 on y = 0, b (5.100)

5.4.2 Shape function

The stress resultant Nx is not constant on the edges of x = 0, a due to the stiffness variation
along the edges. Therefore, the Airy stress function is assumed to have two components (also
shown in equation 4.103)

F (x, y) =
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yl(y) (5.101)

Then the in-plane loads can be derived from the Airy stress function as

Nx = F,yy =
E∑
e

FeYe +
KL∑
kl

FklXkY
′′
l (5.102)

Ny = F,xx =
KL∑
kl

FklX
′′
kYl (5.103)

Nxy = −F,xy = −
KL∑
kl

FklX
′
kY
′
l (5.104)

The first term in equation 5.101 describes the stress variation in y direction on the edge of
x = 0, a, so it is only a function of y. The second term describes the stress variation inside
of the panel. Compared to the case of prescribing loads in previous sections, the first term is
similar to the prescribed load N̄x (equation 5.2) on the edges. The only difference is that in
previous sections the prescribed load is constant but here it is a function of y. However, the
second term used here is slightly different from that used in previous sections. In previous
sections, Xk is required to be zero at x = 0, a, because the stresses on the edges are exactly
the applied load N̄x which are not determined by Xk. But here Xk cannot be zero, because
the stresses on the edges of x = 0, a are determined by both the first term and the second
term of equation 5.101. So compared to the case of prescribed loads, different shape functions
have to be selected for Xk in this case.

Therefore, the conditions that each shape function should satisfy are

Ye(y) = free (on y = 0...b) (5.105)
Xk(x) 6= 0, X ′k(x) = 0 (on x = 0, a) (5.106)
Yl(y) = 0, Y ′l (y) = 0 (on y = 0, b) (5.107)

The shape functions selected for Ye, Xk and Yl are all polynomial functions. The advantage
of the polynomial functions is that they can be easily manipulated to satisfy most of the
required boundary conditions through simply changing their coefficients. However, other
shape functions can also be applied here.
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For Ye(y), a set of polynomial functions can be selected as

Ye(y) = 1, y
b
, (y
b

)2, (y
b

)3, · · · (e = 1, 2, 3, 4, · · · ) (5.108)

For Xk(x),
Xk(x) =

∫
(x
a

)k(x
a
− 1)dx (x = 1 · · ·K) (5.109)

For Yl(y),
Yl(y) = (y

b
)l+1(y

b
− 1)2 (5.110)

where, Yl(y) is still the same as that in the case of prescribed loads.

Similar to what did in the case of prescribed loads, these polynomials functions are trans-
formed to the nondimensional form spanning the interval [-1, 1], and orthogonalized through
Gram-Schmidt process.

The final expressions for Ye(y) are

Y1(η) =
√

2
2 (5.111)

Y2(η) =
√

6
2 η (5.112)

Y3(η) =3
√

10
4 η2 −

√
10
4 (5.113)

... (5.114)

The final expressions for Xk(x) are

X1(ξ) =
√

1190
68 ξ3 − 3

√
1190
68 ξ (5.115)

X2(ξ) =3
√

7490
214 (ξ4 − 2ξ2) (5.116)

X3(ξ) =9
√

17017
208 (ξ5 − 290

153ξ
3 − 35

51ξ) (5.117)
... (5.118)

The final expressions for Yl(y) are the same as equation 5.63.

It is noted the shape functions of Ye(η), which is obtained from Ye(y) through Gram-Schmidt
process, are similar to the Legendre polynomials. Because both of them are obtained from
the same set of polynomials (equation 5.108) through Gram-Schmidt process. However, they
are normalized in a different way, because for Legendre polynomials,∫ 1

−1
Pe(η)Pe(η)dη = 2

2e+ 1 (5.119)

but for Ye(η), ∫ 1

−1
Ye(η)Ye(η)dη = 1 (5.120)
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where, Pe(η) are Legendre polynomials.

The total complementary energy functional (equation 4.107) has to be transformed in the
nondimensional form spanning the interval [−1, 1], similar to what did in equation 5.68. After
making it stationary with respect to the undetermined parameters Fe and Fkl, respectively, a
set of linear equations can be obtained, as shown below for convenience (the same as equation
4.108). (

Ca E1
E1

T E3

)(
fkl
fe

)
= ∆u1

(
ikl1
ie1

)
+ ∆u2

(
ikl2
ie2

)
(5.121)

5.4.3 Verification

The prescribed displacements on edges of x = 0 and x = a are set as

∆u1 = 0.001mm (5.122)
∆u2 = 0.001mm (5.123)

The layup 1, 2 and 3 are used to compared the predictions of Ritz method with these of FEM.
The number of terms used in Ritz method are K = L = E = 18. The predictions of layup 1,
2 and 3 are shown in Figure 5.27 5.28 and 5.29, respectively.

Clearly, only the discontinuity and peaks of the stresses in FEM are not exactly predicted
by Ritz method using polynomial functions, as shown in Figure 5.27 and 5.28. However, the
predictions are improved through reducing the stiffness discontinuity, as shown in Figure 5.29.

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.27: In-plane Stress of Layup 1 (Mpa, K=L=18, ∆u1 = 0.001mm,∆u2 = 0.001mm )
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(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.28: In-plane Stress of Layup 2 (Mpa, K=L=18, ∆u1 = 0.001mm,∆u2 = 0.001mm )

(a) Nx/t (FEM) (b) Ny/t (FEM) (c) Nxy/t (FEM)

(d) Nx/t (poly) (e) Ny/t (poly) (f) Nxy/t (poly)

Figure 5.29: In-plane Stress of Layup 3 (Mpa, K=L=18, ∆u1 = 0.001mm,∆u2 = 0.001mm )
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108 Prebuckling Analysis: in-plane loads distribution

5.5 Summary

In this chapter, the in-plane loads distributions of panels under either prescribed loads (com-
pression and shear) or prescribed end-shortenings are investgated using Ritz methid. Different
shape functions (beam characteristic function, polynomial function, sine and cosine functions)
are applied to approximate the Airy stress function, the accuracy of the predictions using these
functions are investigated. Although the extreme stresses in FEM cannot be predicted using
Ritz method as accurate as FEM due to the stiffness discontinuity in the examples of the
layups (layup 1, 2 and 3), the predictions of the peak stresses are improved by reducing the
stiffness discontinuity as shown in the predictions for layup 3. Since the stiffness discontinuity
in these layups are extreme examples which are unlikely to be encountered in practice, one
can expect that if the same method would be applied to a panel with continuous stiffness the
prediction would be much better. The examples shown in this chapter have demonstrated
that the Ritz method is an suitable approach to predicting the in-plane loads distributions of
variable-stiffness panels.
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Chapter 6

Stability Analysis

6.1 Introduction

In this chapter, the stability of plates and shallow cylindrical shells under prescribed loads
(compression and shear) and prescribed end-shortenings is investigated. For stability analysis,
the out-of-plane deflection is no longer zero when buckling occurs. Therefore, the stability
behavior of plates and shells is different, and has to be discussed separately.

In this section, the boundary conditions of the out-of-plane displacement of panels under
in-plane load cases (prescribed loads and prescribed displacements) are discussed. Then
the curvature of shallow cylindrical shell considered in the thesis is discussed based on the
curvature of the airfoil of NACA 0012. The buckling loads of panels under compression are
investigated using Ritz method in Section 6.2 where the shape functions of the out-of-plane
displacement are selected as sine functions and polynomial functions. In Section 6.3 and 6.4,
the panels under shear and end-shortenings are investigated using Ritz method, respectively,
where the polynomial functions are selected as the shape functions.

6.1.1 Boundary Condition

For panels with simply-support boundary conditions, the essential boundary conditions are
the out-of-plane deflections are zero at the edges of the panel,

w = 0 (on x = 0, a and y = 0, b) (6.1)

and the natural boundary conditions are the moments at the edges are zero.

Mx = −D11w,xx −D12w,yy − 2D16w,xy = 0 (on x = 0, a) (6.2)
My = −D12w,xx −D22w,yy − 2D26w,xy = 0 (on y = 0, b) (6.3)

where, Dij (i, j = 1, 2, 6) are variables.
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As discussed in Chapter 4, the out-of-plane displacement w is approximated by a combination
of series of the form

w =
PQ∑
pq

WpqXp(x)Yq(y) (6.4)

If the shape functions satisfy the following conditions term by term, the essential boundary
conditions are satisfied exactly.

Xp(x) = 0 (on x = 0, a) (6.5)
Yq(y) = 0 (on y = 0, b) (6.6)

However, the shape functions can also satisfy the essential boundary conditions in a set,
similar to what discussed in the condition of option 2 for Airy stress function in Chapter 5.

Since Dij (i, j = 1, 2, 6) are variables, to satisfy the natural boundary conditions the only
choice for the shape functions is to satisfy following conditions term by term

Xp(x) = 0 (on x = 0, a) (6.7)
Yq(y) = 0 (on y = 0, b) (6.8)
X ′p(x) = 0 (on x = 0, a) (6.9)
Y ′q (y) = 0 (on y = 0, b) (6.10)
X ′′p (x) = 0 (on x = 0, a) (6.11)
Y ′′q (y) = 0 (on y = 0, b) (6.12)

Among above conditions, that the first derivatives of Xp and Yq are zero implies the slopes
are zero at the boundaries

w,x =
PQ∑
pq

WpqX
′
p(x)Yq(y) = 0 (on x = 0, a) (6.13)

w,y =
PQ∑
pq

WpqXp(x)Y ′q (y) = 0 (on y = 0, b) (6.14)

However, for simply-support conditions the slopes should not be zero at boundaries. Because
both deflections and slopes are zero implies that the panel is clamped at the boundaries.
Therefore, the essential boundary conditions and the natural boundary conditions cannot be
satisfied by the shape functions term by term in the same time. However, if the bending-
twisting couplings D16 and D26 are both zero, the natural boundary conditions reduce to

Mx = −D11w,xx −D12w,yy = 0 (on x = 0, a) (6.15)
My = −D12w,xx −D22w,yy = 0 (on y = 0, b) (6.16)

Then the shape functions only have to satisfy following conditions term by term

Xp(x) = 0 (on x = 0, a) (6.17)
Yq(y) = 0 (on y = 0, b) (6.18)
X ′′p (x) = 0 (on x = 0, a) (6.19)
Y ′′q (y) = 0 (on y = 0, b) (6.20)
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where, the conditions of the first derivatives of Xp and Yq do not exist.

Therefore, the slopes at the boundaries are not constrained by the above conditions. In this
case, it is possible to find a shape function which satisfies the essential boundary condition
and natural boundary in the same time. However, only the specially orthotropic laminates’
bending-twisting couplings are exactly zero; most laminates’ bending-twisting couplings are
non-zero. So in the following sections, the discussion will focus on these two kinds of laminates.

6.1.2 Curvature

Since the skins of aircraft wings are normally shallow shell panels, it is of great interests to
predict the buckling loads of this kind of panels. However, the curvatures of the skins are
variables which are the curvatures of airfoils. For example, the NACA 0012 airfoil’s radius is
plotted along the chord direction as shown in Figure 6.2a. Clearly the radius is not constant.
In the current thesis, the Ritz method has been applied to predict the buckling load of shallow
shells with variable curvatures. An good example is the panels with the curvature of NACA
0012 airfoil.

The equation of the NACA 0012 is given as [37]

yt
c

=0.594689181(0.298222773
√
x

c
− 0.127125232x

c

− 0.357907906(x
c

)2 + 0.291984971(x
c

)3 − 0.105174606(x
c

)4
(6.21)

where, yt is the half thickness of the airfoil, c is the chord length and x is the position along
the chord from 0 to c.

The NACA 0012 airfoil is plotted in Figure 6.1. The nondenominational radius (Rc ) of the
airfoil along the chord direction is calculated and plotted in Figure 6.2a, where R is the radius.

Figure 6.1: NACA 0012

A wing box is located in the section approximately between x = 0.3c and x = 0.6c. The
smallest radius (largest curvature) in this section is 2.2245c at x = 0.3c. Assuming that the
shells used in current thesis is located exactly in the section between x = 0.3c and x = 0.6c,
the length of the shells will be b ≈ 0.3c. So the ratio of the radius (R) to the length of the
section (b ≈ 0.3c) can be plotted along the chord direction as shown in Figure 6.2b. The
smallest radius of the panel is 7.3883b and the largest radius is 20.2368b. Since the dimension
of the panel considered in this chapter is still a = b = 100 mm, so the smallest and largest
radius of the shells is 738.83 mm and 2023.68 mm, respectively.

However, in this chapter the panels with constant radius will be discussed first. The panel
with variable radius will be discussed later. Moreover, the arc angle of a cylindrical shell with
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(a) Radius of NACA 0012 (b) Radius of NACA 0012 w.r.t b (b ≈
0.3c)

Figure 6.2: Non-dimensional radius of NACA 0012

constant radius is selected as 10 degrees resulting in a radius of 572.9578 mm, so

R = 572.9578 mm (6.22)

which is even smaller than required.

Since a shell with larger radius is closer to a plate and vice versa, a shell with smaller radius
can be a better example of shells. Another reason is that it is more convenient to build the
FEM model of a shell with an arc angle of 10° than other angles with non-integer value in
Abaqus.

6.2 Stability Analysis: prescribed compression

In this section, the compression loads are applied on the edges of x = 0, a. The buckling
behaviors of panels are discussed based on two kinds of laminates where the bending-twisting
couplings (D16 andD26) are zero and non-zero, receptively. The sine functions and polynomial
functions are used as the shape functions of out-of-plane displacement, the convergences of the
buckling loads obtained using these functions is investigated in section 6.2.1 and 6.2.2. In the
section 6.2.3, the buckling of shallow cylindrical shells with variable curvatures is investigated.

The prediction of buckling load of variable stiffness panels is comprised of two steps: prebuck-
ling analysis and stability analysis, as discussed in Chapter 4. In the first step, the in-plane
loads distributions of the panel in prebuckling state are predicted, as shown in Chapter 5.

The Airy stress function has been approximated as

F (x, y) = 1
2N̄xy

2 +
KL∑
kl

FklXk(x)Yl(y) (6.23)

However, it is noted that in the prediction of buckling loads some negligible parameters of
Airy stress function (Fkl) can be truncated and the error due to the truncation is less than
1%. The detail of the truncation will be shown in the end of section 6.2.1.
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The out-of-plane displacement w in the first step has been approximated as

w =
PQ∑
pq

WpqXp(x)Yq(y) (6.24)

However, according to the in Chapter 3 it is zero before buckling occurring. So

w =
PQ∑
pq

WpqXp(x)Yq(y) = 0 (6.25)

Once the in-plane loads are predicted in the first step, they can be used to determine the
buckling initiation in the second step. In the second step, as shown in the section 4.6.1
of Chapter 4 the variations of Airy stress function and out-of-plane deflection have been
approximated as

δF =
K2L2∑
kl

F 1
klXk(x)Yl(y) (6.26)

δw =
PQ∑
pq

W 1
pqXp(x)Yq(y) (6.27)

where, K2 and L2 are numbers of terms used for δF .

As indicated in section 4.6.1 of Chapter 4, the number of terms used for δF are K2 and L2,
rather than K and L that are used for F . In calculus of variation, the variation of Airy stress
function (δF ) is an arbitrary infinitesimal value, which is independent of F . So not only the
numbers of terms used for δF can be different from the number of terms used for F , but also
can the shape functions of δF be different from the shape functions of F as long as the shape
functions of δF satisfy the homogeneous form of boundary conditions. So a more general
form of δF can be written as

δF =
K2L2∑
kl

F 1
klX

1
k(x)Y 1

l (y) (6.28)

where, X1
k and Y 1

l are the shape functions of δF .

However, for simplicity the shape functions of δF and F are assumed to be the same in this
chapter. So the equation 6.26 has been used instead of equation 6.28, but the K2 and L2
are still different from K and L. Similarly, the shape functions of δw can be different from
these of w as well, since δw is just the variation of w. However, for convenience, the shape
functions of δw are assumed as the same as w, as shown in equation 6.27.

Since the out-of-plane displacement w is zero before buckling occurs according to the in
Chapter 3, its variation (δw) is the actual displacement during buckling. So the out-of-plane
displacement during buckling is

w + δw = δw =
PQ∑
pq

W 1
pqXp(x)Yq(y) (6.29)
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Then the equations 4.167 and 4.168 in section 4.6.1 of Trefftz method of Chapter 4 can be
directly used, which are shown below.

− λCaf1
kl +CRTw1

pq = ~0 (6.30)
[CD + λ (CN +CF )]w1

pq + λCRf
1
kl = 0 (6.31)

They can reduce to one equation (the same as equation 4.147),[
CD +CRCa−1CR

T + λ (CN +CF )
]
w1
pq = 0 (6.32)

For plates the equation can further reduce to

[CD + λ (CN +CF )]w1
pq = 0 (6.33)

6.2.1 Buckling of Specially Orthotropic Laminate (D16 = D26 = 0)

For specially orthotropic lamonates, the bending-twisting couplings are zero

D16 = D26 = 0 (6.34)

The natural boundary conditions in equation 6.2 and 6.3 reduce to

Mx = −D11w,xx −D12w,yy = 0 (on x = 0, a) (6.35)
My = −D12w,xx −D22w,yy = 0 (on y = 0, b) (6.36)

Shape Function

Though Ritz method only requires that the essential boundary conditions to be satisfied by
the shape functions, if the natural boundary conditions can be satisfied as well the prediction
will be substantial better [15]. So to satisfy both boundary conditions, the sine function has
been selected as

Xp(x) = sin pπx
a

(p= 1, 2, · · · , P) (6.37)

Yq(y) = sin qπy
b

(q= 1, 2, · · · , Q) (6.38)

Then the out-of-plane displacement δw becomes

δw =
PQ∑
pq

W 1
pqXp(x)Yq(y) =

PQ∑
pq

W 1
pq sin pπx

a

qπy

b
(6.39)

which exactly satisfies both essential and natural boundary conditions term by term.
Since the selected shape functions do not have to satisfy the natural boundary condition,
polynomial functions can be selected as the shape function which, though, only satisfy the
essential boundary conditions.

Xp(x) = (x
a

)p(x
a
− 1) (p= 1, 2, · · · , P) (6.40)

Yq(y) = (y
b

)q(y
b
− 1) (q= 1, 2, · · · , Q) (6.41)
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Similar to what did in previous chapter, these polynomials should be transformed into in the
nondimensional form as

Xp(ξ) = (ξ − 1)p(ξ + 1) (p= 1, 2, · · · , P) (6.42)
Yq(η) = (η − 1)q(η + 1) (q= 1, 2, · · · , Q) (6.43)

where, ξ = 2x−a
a and η = 2y−b

b .
Applying the Gram-Schmidt process, the shape function Xp(ξ) and Yq(η) become

X1(ξ) =
√

15
4 (ξ2 − 1) (6.44)

X2(ξ) =
√

105
4 ξ(ξ2 − 1) (6.45)

X3(ξ) =
√

45
8 (7ξ2 − 1)(ξ2 − 1) (6.46)

... (6.47)

Y1(ξ) =
√

15
4 (η2 − 1) (6.48)

X2(ξ) =
√

105
4 η(η2 − 1) (6.49)

Y3(ξ) =
√

45
8 (η2 − 1)(η2 − 1) (6.50)

... (6.51)

Verification

Two sets shape functions are used in Ritz method for in-plane loads prediction and stability
analysis. The first set is a combination of beam characteristic function (equation 5.33, 5.36)
and sine function (equation 6.37, 6.38), which are used as the shape functions of Airy stress
function (F , and its variation δF ) and the out-of-plane deflection (δw), respectively. The
second set is a combination of polynomial functions (equation 5.52 5.53 and equation 6.40
6.41) which are used for the Airy stress function (F , and its variation δF ) and out-of-plane
deflection (δw). The results of Ritz method using these two sets of shape functions will be
compared with FEM.
Panels with two kinds of layups are considered in the verification. The first kind of layups
are the ones with constant stiffness. The second kind of layups are the ones with variable
stiffness. The panels with the second kind of layups are assumed to have four or sixteen
sections, as shown in Figure 3.3. The reason for considering the panels with constant stiffness
is to prove Ritz method and the selected shape functions can exactly predict the buckling
loads of panels with constant stiffness.

Constant Stiffness

For panels with constant stiffness, the in-plane loads are uniform and equal to the applied
loads. Then the prebuckling analysis is not necessary, so the approximation of Airy stress
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function using a set of series is not necessary. Thus the number of terms used for Airy stress
function F is zero,

K = L = 0 (6.52)

However, the variation δF is independent of F , which still has to be approximated by a set
of series as shown in equation 6.26.

The layups with constant stiffness considered in this section are shown as follows

• Layup 4: [90 90 90 90]

• Layup 5: [0 0 0 0]

• Layup 6: [90 0 0 90]

Table 6.1, 6.2 and 6.3 show the predicted buckling loads compared to FEM, respectively, as
increasing the number of terms used for the approximation of δw in x and y direction. The
variation of Airy stress function (δF ) is approximated by 18 terms in both x and y direction
to achieve convergent predictions. The predictions of FEM are placed in the tables as columns
with constant values since they are independent of K and L. The buckling modes of the plate
and shell with layup 4 predicted by FEM and Ritz methods are compared in Figure 6.3.

Table 6.1: Buckling load of Layup 4

Plate Shell

P=Q∗ Ritz1
? Ritz2

† FEM error1‡ error2> Ritz1 Ritz2 FEM error1 error2
(K=L=0)∗
(K1=L1=18)∗(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 1.612 2.044 1.610 0.162 26.984 5.063 5.296 4.696 7.821 12.774
4 1.612 1.617 1.610 0.162 0.439 4.922 4.745 4.696 4.805 1.049
6 1.612 1.612 1.610 0.162 0.163 4.810 4.736 4.696 2.429 0.845
8 1.612 1.612 1.610 0.162 0.162 4.764 4.684 4.696 1.442 -0.258
10 1.612 1.612 1.610 0.162 0.162 4.748 4.680 4.696 1.103 -0.346
12 1.612 1.612 1.610 0.162 0.162 4.742 4.680 4.696 0.981 -0.346
∗ Number of terms used for δw, F and δF , respectively
? The prediction of beam characteristic function (F , δF ) and sine function (δw)
† The prediction of polynomial functions (F , δF and δw)
‡ Difference between Ritz1 and FEM (Ritz1−FEM

FEM × 100%)
> Difference between Ritz2 and FEM (Ritz2−FEM

FEM × 100%)
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Table 6.2: Buckling load of Layup 5

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=0)
(K1=L1=18) (N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.646 3.128 2.643 0.126 18.384 5.064 5.169 4.913 3.060 5.202
4 2.646 2.647 2.643 0.126 0.173 4.994 4.936 4.913 1.635 0.464
6 2.646 2.646 2.643 0.126 0.126 4.990 4.915 4.913 1.555 0.039
8 2.646 2.646 2.643 0.126 0.126 4.989 4.915 4.913 1.544 0.039
10 2.646 2.646 2.643 0.126 0.126 4.989 4.915 4.913 1.541 0.039
12 2.646 2.646 2.643 0.126 0.126 4.989 4.915 4.913 1.541 0.039

Table 6.3: Buckling load of Layup 6

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=0)
(K1=L1=18) (N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.492 3.128 2.490 0.091 25.654 7.166 7.018 6.180 15.958 13.566
4 2.492 2.503 2.490 0.091 0.546 6.462 6.532 6.180 4.559 5.705
6 2.492 2.492 2.490 0.091 0.093 6.289 6.216 6.180 1.759 0.586
8 2.492 2.492 2.490 0.091 0.091 6.255 6.181 6.180 1.214 0.021
10 2.492 2.492 2.490 0.091 0.091 6.246 6.181 6.180 1.076 0.021
12 2.492 2.492 2.490 0.091 0.091 6.244 6.181 6.180 1.032 0.021

Master of Science Thesis Jinghua Tang



118 Stability Analysis

(a)
Plate(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d)
Shell(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.3: First Buckling Mode of Layup 4

The verification in FEM was implemented by using 25 × 25 elements in each section, as
mentioned in section 5.1.3 of previous chapter. A convergence study was carried out for
layup 4, as shown in Figure 6.4. As shown in the figures, the results obtained by using 40×40
elements in each section are only improved by 0.3% (plate) and 0.8% (shell) as compared
to the results obtained using 25 × 25 elements in each section. The convergence criterion in
FEM is set to be that the difference of the last loads are less than 1%. So the mesh density
of 25× 25 elements in each section is enough.
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(a) Buckling load of plate (b) Buckling load of shell

(c) Difference of two consecutive loads (d) Difference of two consecutive loads

Figure 6.4: Convergene study of Layup 4 in FEM

Clearly, the predictions of plates and shells with all the layups obtained from Ritz method are
converged within a few terms. For plats, the predictions obtained by using sine functions have
been converged within two terms, while the predictions obtained by using the polynomials
only have been converged in six terms for these layups. It is reasonable because the sine
functions represent the exact eigenmodes of plates with constant stiffness. So the predictions
converge to the exact value once the number of terms used in sine functions reach the exact
number of half waves of a buckled plate. While polynomial functions do not exactly represent
the eigenmodes of plates with constant stiffness, so they need more terms than sine functions
to converge to the exact buckling mode. However, once both of them have been converged,
the first buckling modes predicted by them will match well with FEM, as shown in Figure
6.3.

For shells, it is noticed that the predictions for layup 4 have converged to be lower than
FEM. For plates, it is impossible because the predictions of Ritz method always converge
from a higher value down to the exact value. In other words, the predictions are always
larger or equal to the exact value, which provide upper-bound approximation [2–4,15]. If the
predictions of FEM have been converged, the prediction of Ritz method for plates will never
be lower than FEM. For shells, as increasing number of terms used for out-of-plane deflection
δw, the predictions also converge from a higher value down to a lower value similar to plates.
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However, for layup 4 the predictions converge to be lower than FEM. This is due to the
variation of Airy stress function (δF ) which is coupled with the out-of-plane deflection (δw)
for shells, as shown in equation 6.30. The coupling leads to that additional number of terms
( K1 and L1) are needed to approximate δF . By contrast to δw, as increasing K1 and L1,
the predictions converge from a lower value up to the exact value. It can be explained by the
plots shown in Figure 6.5. In Table 6.1, 6.2 and 6.3, K1 and L1 are set to be 18, however, in
Figure 6.5 K1 and L1 are increasing. Clearly, as increasing K1 and L1 the buckling load will
increase and converge to a higher value, which is opposite to what is observed in increasing
P and Q. Besides the plots, this can also be explained analytically. In the section of the
Trefftz buckling criterion (section 4.6.1), the second variation of the total energy functional
(equation 4.161) is stationary with respect to the unknowns, δF and δw, respectively. When
making it stationary with respect to δF , the first term, which is the negative of the second
variation of the membrane complementary energy, is maximized since it is the negative of a
quadratic form. However, when making it stationary with respect to δw, the second term,
which is the second variation of the bending strain energy, is minimized since a quadratic
form is normally minimized. The maximization makes the predictions converge from below
up to the exact value; the minimization makes the predictions converge from upper down
to the exact value. Ideally, if P and Q are infinite (the approximation of δw is exact), the
predictions for shells using finite K1 and L1 are always smaller or equal to the exact value,
which are the lower-bound. Only when P , Q, K1 and L1 are all infinite, the prediction will
be the exact value. Therefore, as K1 and L1 increasing to certain values, the predictions for
shells with layup 4 will become larger than FEM (if FEM is converged).

Figure 6.5: Buckling Load as incresing K1 and L1
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Variable Stiffness

For the panels with variable stiffness, the in-plane loads are not uniform, which have to be
predicted before starting the stability analysis. The details are shown in Chapter 5, so in
this section only the influence of in-plane loads on the prediction of buckling loads will be
investigated. In stability analysis of shells, the coupling of δw and δF will affect the buckling
loads as discussed in section 6.2 and previous section. Therefore, all the number of terms (
P , Q, K, L, K1 and L1) have influence on the convergence of predictions of buckling loads.

The layups with variable stiffness considered in this section are layup 1 (Figure 5.2) and layup
7 as shown in Figure 6.6.

Figure 6.6: Layup 7

Layup 7 (A16 = A26 = D16 = D26 = 0)

• Section 1: [90 0 0 90]

• Section 2: [90 90 90 90]

• Section 3: [0 90 90 0]

• Section 4: [0 0 0 0]

Table 6.4 and 6.5 show the predicted buckling loads compared to FEM, respectively, as
increasing the number of terms used for the approximation of δw in x and y direction. The
Airy stress function F and its variation (δF ) are both approximated by using 18 terms in
both x and y direction to achieve convergent predictions. The corresponding first buckling
modes predicted by FEM and Ritz methods are compared in Figure 6.7 and 6.8.

Table 6.4: Buckling Load of Layup 1

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.566 3.059 2.166 18.444 41.208 5.703 5.900 5.128 11.214 15.056
4 2.484 2.554 2.166 14.643 17.888 5.447 5.428 5.128 6.232 5.860
6 2.428 2.509 2.166 12.095 15.835 5.358 5.342 5.128 4.496 4.183
8 2.387 2.467 2.166 10.182 13.903 5.306 5.292 5.128 3.472 3.203
10 2.357 2.432 2.166 8.804 12.244 5.279 5.258 5.128 2.950 2.536
12 2.335 2.402 2.166 7.785 10.899 5.257 5.231 5.128 2.532 2.021
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Table 6.5: Buckling Load of Layup 7

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.298 2.695 2.088 10.056 29.086 5.396 5.499 4.896 10.223 12.316
4 2.225 2.297 2.088 6.564 10.022 5.100 5.118 4.896 4.167 4.550
6 2.188 2.241 2.088 4.807 7.333 5.028 4.990 4.896 2.705 1.933
8 2.168 2.206 2.088 3.852 5.673 4.993 4.943 4.896 1.992 0.968
10 2.156 2.184 2.088 3.265 4.633 4.976 4.917 4.896 1.633 0.430
12 2.148 2.170 2.088 2.877 3.940 4.964 4.899 4.896 1.406 0.067

(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.7: First Buckling Mode of Layup 1
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(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.8: First Buckling Mode of Layup 7

The verification in FEM was implemented by using 25× 25 elements in each section as well.
Since the layup 1 and 7 have four sections, there are 50× 50 elements in the whole panel, as
shown in Figure 5.1a. A convergence study was carried out for layup 1, as shown in Figure
6.9. As shown in the figures, the results obtained by using 40×40 elements in each section are
only improved by 0.11% (plate) and 0.24% (shell) as compared to the results obtained using
25× 25 elements in each section. So the mesh density of 25× 25 in each section is enough.
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(a) Buckling load of plate (b) Buckling load of shell

(c) Difference of two consecutive loads (d) Difference of two consecutive loads

Figure 6.9: Convergene study of Layup 4 in FEM

Clearly, the buckling modes are correctly predicted by both shape functions. However, the
predicted buckling loads of the plate with layup 1 obtained using both shape functions are
not good . After 12 terms, the differences compared to FEM are still 7.785% and 10.899%,
respectively. There are two possible reasons for it. Firstly, the number of terms (in both x and
y direction) used to approximate the in-plane loads are not enough to capture a converged
prediction. Secondly, the number of terms used for δw are not enough. However, the number
of terms used for δF has no effect on the buckling of plates since δw is not coupled with δF for
plates. So in Figure 6.10a, the predicted buckling load using the first set of shape functions
(beam character function and sine function) are compared to FEM as increasing numbers of
terms used for both δF and δw. Clearly, the effect of in-plane loads on the predictions of
buckling load is very small and 18 terms used for F is nearly enough. As increasing number
of terms used for δw to P = Q = 16, the predictions are increasingly better. However, the
error is still above 6%. Therefore, these are not the main reasons why the predictions are not
so good.
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(a) Buckling load as incresing K and L (plate with Layup 1)

(b) Buckling Load as incresing K1 and L1 (shell with Layup 1, K = L = 18)

Figure 6.10: convergence of the buckling load (Layup 1)

Master of Science Thesis Jinghua Tang



126 Stability Analysis

Another reason might be the discontinuity of stiffness of the panels used in this section. Since
for both layup 1 and layup 7 the panels have four section each having their own stiffness,
the stiffness is discontinuous at the boundaries of the neighboring sections. However, the
moments on boundaries are continuous due to the moment equilibrium, as shown in Figure
6.11. Since the moments are continuous and stiffness is discontinuous, the curvatures have
to be discontinuous over the boundary. However, the curvatures are the second derivative of
out-of-plane displacement,

κx = −w,xx (6.53)

Figure 6.11: Bending moment equilibrium on the boundary of sections

Since the out-of-plane displacement is approximated by a set of continuous shape functions,
such as the sine functions or polynomial functions, the curvatures calculated from the second
derivative of the continuous shape functions are still continuous. Thus the shape functions
used for δw are impossible to exactly capture the discontinuous curvatures, unless infinite
number of terms are used. To approximately capture the discontinuous curvatures, a large
number of terms are needed. So the prediction of buckling load will be better as increasing
the number of terms used for dw, as shown in Figure 6.10a.

Since the layup 1 and 7 are extreme cases with stiffness discontinuity, if the stiffness discon-
tinuity is reduced the predictions can be improved within small number of terms. This will
be discussed and shown in the section 6.2.2 where layup 3 and 11 are used ( the results are
shown in Table 6.14 and 6.15).

For shells, it seems that the predictions using both shape functions are much better than the
predictions for plates. However, similar to what discussed in previous section, as increasing
the number of terms used for δF , the prediction will converge to higher values which means
the errors compared FEM will be larger. This is also shown in the plots in Figure 6.10b. So
it is meaningless to compare the predictions for plates and shells.

Truncation of Negligible Parameters

It is interesting to notice that only a few biggest parameters (Fkl) of the Airy stress function
(F ) are needed to predict the buckling load. While, the other negligible parameters can be
truncated and the error due to the truncation is less than 1%. The benefit of the truncation
is that the efficiency can be significantly improved since less number of terms of Airy stress
functions are used in the prediction of buckling loads.

As shown in previous chapter, a large number of terms are needed to exactly predict the
in-plane loads. Moreover, with more number of terms used for Airy stress function, the
prediction of buckling load becomes closer to FEM, as shown in Figure 6.10a. However,
even though lots of terms are required, only a few parameters (Fkl) are needed to predict

Jinghua Tang Master of Science Thesis



6.2 Stability Analysis: prescribed compression 127

the buckling load. Taking the layup 1 for example, the parameters (Fkl) obtained in the
prebuckling analysis when 10 terms are used in both x any direction (K = L = 10) are
plotted in Figure 6.12a. The largest parameter occurs when k × l = 2, which is -15.56. After
k × l = 30, most parameters are extremely close to 0. Since they are close to 0, they might
have negligible influence on the prediction of buckling load (which will be shown in Table
6.6 and 6.7). Thus in the prediction, these negligible parameters might be truncated. To
truncate these parameters quantificationally, following formula can be used.

f =
KL∑
kclc

F 2
kclc >

KL∑
kl

F 2
kl × 99.8% (6.54)

where, Fkclc are the larger parameters still retained after truncating the smaller parameters,
and the percentage of 99.8 % is used to select the largest parameters which can be changed
to other values.

(a) Original (b) Truncated

Figure 6.12: Plot of Fkl (Layup 1)

After applying this formula, only the largest the parameters whose sum of the square of
themselves is over 99.8% have been retained. The other parameters are truncated. For
example, after truncating the smallest parameters of layup 1, only 28 parameters left (when
the percentage is 99.8%), which are plotted in Figure 6.12b.

The buckling loads of layup 1 are re-predicted using this idea and compared to the original
predictions, as shown in Table 6.6. The original predictions are obtained by setting K =
L = 18, thus in total there are 324 parameters. By setting the percentage in equation 6.54
as 99.8%, only 33 parameters left. So nearly 90% of the parameters are truncated form the
prediction. However, as shown in Table 6.6, the errors due to the truncation are nearly zero.
Similar observation has been found for layup 7, as shown in Table 6.7. Clearly, the errors
of the predictions due to the truncation are negligible for these two layups. Similarly, the
prediction of in-plane loads of layup 1, after truncation nearly 90% percent of parameters,
are still closed to the original prediction (however, not as closed as the prediction of buckling
load), as shown in Figure 6.13.

Since nearly 10% percent of the parameters are used in the prediction of buckling load,
the efficiency of the predictions is improved nearly 900%. However, the formula and the
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percentage used for truncating the small parameters still have to be investigated in the future.
Here they are only examples to show how negligible these small parameters are.

Table 6.6: Buckling load of Layup 1 after truncating the negligible parameters

Plate Shell

P=QRitz1 Ritz1
t error1c Ritz2 Ritz2

t error2c Ritz1 Ritz1
t error1c Ritz2 Ritz2

t error2c

(N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 2.566 2.566 0.011 3.059 3.059 -0.002 5.703 5.703 0.014 5.900 5.900 0.001
4 2.484 2.484 0.011 2.554 2.554 0.003 5.447 5.448 0.015 5.428 5.428 0.002
6 2.428 2.429 0.011 2.509 2.509 0.006 5.358 5.359 0.013 5.342 5.342 0.006
8 2.387 2.387 0.011 2.467 2.468 0.004 5.306 5.306 0.008 5.292 5.292 -0.003
10 2.357 2.357 0.011 2.432 2.432 0.000 5.279 5.279 0.008 5.258 5.257 -0.009
12 2.335 2.335 0.012 2.402 2.402 -0.003 5.257 5.258 0.013 5.231 5.231 -0.007
t prediction after truncating the negligible parameters
c error of the prediction due to the truncation Ritzt

1−Ritz1
Ritz1

× 100%

(a) Nx/t (truncation) (b) Ny/t (truncation) (c) Nxy/t (truncation)

(d) Nx/t (original) (e) Ny/t (original) (f) Nxy/t (original)

Figure 6.13: Comparesion of in-plane stresses of layup 1 before and after truncation (Mpa,
K=L=18, N̄x = 1 N/mm)

Jinghua Tang Master of Science Thesis



6.2 Stability Analysis: prescribed compression 129

Table 6.7: Buckling load of Layup 7 after truncating the negligible parameters

Plate Shell

P=QRitz1 Ritz1
t error1c Ritz2 Ritz2

t error2c Ritz1 Ritz1
t error1c Ritz2 Ritz2

t error2c

(N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 2.298 2.298 0.008 2.697 2.695 -0.071 5.396 5.397 0.021 5.499 5.498 -0.004
4 2.225 2.225 0.007 2.299 2.297 -0.077 5.100 5.101 0.023 5.118 5.118 -0.002
6 2.188 2.188 0.006 2.242 2.241 -0.064 5.028 5.029 0.012 4.990 4.990 0.002
8 2.168 2.168 0.002 2.207 2.206 -0.041 4.993 4.993 -0.003 4.943 4.942 -0.011
10 2.156 2.156 0.001 2.185 2.184 -0.033 4.976 4.975 -0.005 4.917 4.916 -0.018
12 2.148 2.148 0.005 2.171 2.170 -0.047 4.964 4.965 0.004 4.899 4.898 -0.017
t prediction after truncating the negligible parameters
c error of the prediction due to the truncation Ritzt

1−Ritz1
Ritz1

× 100%

6.2.2 Buckling of General Symmetric Laminate (D16, D26 6= 0)

Since the bending-twisting couplings are not zero, the natural boundary conditions are the
same as equation 6.2 and 6.3.

Mx = −D11w,xx −D12w,yy − 2D16w,xy = 0 (on x = 0, a) (6.55)
My = −D12w,xx −D22w,yy − 2D26w,xy = 0 (on y = 0, b) (6.56)

Shape Function

Due to the existence of the bending-twisting couplings, the natural boundary conditions
cannot been exactly satisfied by the sine functions and polynomial functions term by term.
Moreover, as indicated in section 6.1.1, the shape function which can satisfy the natural
boundary conditions term by term will force the slope fixed at boundaries. Therefore, there
is no such a shape function which satisfies both essential and natural boundary conditions
term by term (to the best knowledge of the author). However, in Ritz method the natural
boundary condition does not need to be satisfied, the sine function and polynomial function
are sufficient to predict the buckling load if enough terms are used in the approximations.
The effect of not satisfying the natural boundary conditions on the predictions of buckling
loads will be discussed in this section.

Verification

Similarly, panels with two kinds of layups are considered in the verification. The first kind
of layups are the ones with constant stiffness. The second kind of layups are the ones with
variable stiffness, which are assumed to have four or sixteen sections. The reason for con-
sidering the layups with constant stiffness is to investigate whether the Ritz method and the
selected shape functions can exactly predict the buckling load of panels when bending-twisting
couplings exist ignoring the influence of variable stiffness.

Master of Science Thesis Jinghua Tang



130 Stability Analysis

Constant Stiffness

For the panel with constant stiffness, the in-plane loads are uniform and equal to the ap-
plied loads. Then the prebuckling analysis is not necessary. However, the variation δF is
independent of F , which is still approximated by a set of series as shown in equation 6.26.

The layups with constant stiffness considered in this section are shown as follows

• Layup 8: [45 45 45 45]

• Layup 9: [15 15 15 15]

Table 6.8 and 6.9 show the predicted Buckling Load compared to FEM, respectively, as
increasing the number of terms used for the approximation of δw in x and y direction. The
variation of Airy stress function (δF ) is approximated by 18 terms in both x and y direction
to achieve convergent predictions. The buckling modes of the plate and shell with layup 8
predicted by FEM and Ritz methods are compared in Figure 6.14.

Table 6.8: Buckling load of Layup 8

Plate Shell

P=Q∗ Ritz1
? Ritz2

† FEM error1‡ error2> Ritz1 Ritz2 FEM error1 error2
(K=L=0)∗
(K1=L1=18)∗(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 3.605 3.868 2.459 46.594 57.302 6.352 6.094 4.958 5.190 22.922
4 2.990 2.651 2.459 21.608 7.795 5.870 5.473 4.958 8.013 10.385
6 2.867 2.564 2.459 16.593 4.286 5.622 5.083 4.958 10.884 2.522
8 2.802 2.539 2.459 13.942 3.258 5.500 5.041 4.958 9.265 1.675
10 2.759 2.525 2.459 12.200 2.691 5.428 5.024 4.958 8.150 1.330
12 2.728 2.516 2.459 10.941 2.340 5.379 5.014 4.958 7.369 1.124
∗ Number of terms used for δw, F and δF , respectively
? The prediction of beam characteristic function (F , δF ) and sine function (δw)
† The prediction of polynomial functions (F , δF and δw)
‡ Difference between Ritz1 and FEM (Ritz1−FEM

FEM × 100%)
> Difference between Ritz2 and FEM (Ritz2−FEM

FEM × 100%)
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Table 6.9: Buckling load of Layup 9

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=0)
(K1=L1=18)(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.790 3.251 2.581 8.082 25.950 5.228 5.292 4.914 -1.318 7.692
4 2.689 2.610 2.581 4.179 1.101 5.105 4.955 4.914 3.047 0.834
6 2.657 2.596 2.581 2.940 0.552 5.070 4.922 4.914 3.013 0.145
8 2.642 2.593 2.581 2.330 0.450 5.051 4.918 4.914 2.704 0.083
10 2.632 2.592 2.581 1.961 0.404 5.040 4.917 4.914 2.504 0.056
12 2.626 2.591 2.581 1.710 0.380 5.033 4.916 4.914 2.364 0.042

(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.14: First Buckling Mode of Layup 8

It is noted that the predictions of layup 8 are substantial worse than the predictions of layup 9
for both shape functions. The reason is the layup 8 has bigger bending-twisting couplings than
layup 9. In previous section, when the bending-twisting couplings are zero, the predictions
are converged very fast, as shown Table 6.1, 6.2 and 6.3. So one can expect that when
the bending-twisting couplings are smaller, the convergence will be faster for most layups.
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Among all the layups with constant stiffness, the layup 8 is the one with largest bending-
twisting couplings since the fiber orientations are all 45 degree. Therefore, the predictions
converge slowest. The discussion will focus on this layup.

It is also noted that the predictions using polynomial functions are significant better than
these using sine function, which is contrary to what observed in layup 4, 5 and 6 whose
bending-twisting couplings are zero in section 6.2.1. In section 6.2.1, the natural boundary
condition is satisfied by the sine function, so the predictions using since function are better
than polynomial function. However, in this section the sine functions cannot satisfy the
natural boundary conditions, either. So in principle, these two shape functions should have
more or less the same predictions. However, here the polynomial functions have shown to be
better than the sine functions. As indicated by Wu, Raju and Weaver [32], the polynomial
functions which are nonperiodic can better capture the localized features, such as strong
gradients in the buckling mode shape, than the periodic sine functions. This can explain why
polynomial functions are better in predictions of buckling loads. But polynomial functions
still cannot capture the exact buckling load. Except the natural boundary condition not being
satisfied, another reason is the differentiation on the approximated out-of-plane displacement
will lead to further errors in the evaluation of moments and slopes [32].

The Legendre polynomials were used as the shape functions of the out-of-plane displacement
by Wu, Raju and Weaver [32], where the buckling load of a square laminated plate with
completely 45 degree plies was investigated. Since the Legendre polynomial functions can
satisfy neither the essential nor the natural boundary condition, the Lagrange multiplier was
introduced to force the Legendre polynomials to satisfy the essential boundary condition set
by set. It is similar to what did in Chapter 5, where the sine and cosine functions were forced
to satisfy the boundary conditions of stresses set by set, instead of term by term. The error of
the buckling loads predicted using Legendre polynomials reduced to 2.4% when only 13 by 13
terms are used. In this thesis, the polynomial shape functions can exactly satisfy the essential
boundary term by term. For a laminated square plate with all 45 degree plies (layup 8), the
error reduces to 2.34% when 12 by 12 terms are used, as shown in Table 6.8 . Although the
dimensions and the material properties used for these two square plates are different, it is
still reasonable to say the polynomial functions used in the thesis are proper choices.

For shells, similar to what observed in section 6.2.1 the buckling loads predicted by both
shape functions seem to be better than these for plates. However, as increasing the number
of terms used for δF , the predictions will converge to higher value thus leading to bigger
errors. So unless δF of shells converges to the exact value it is meaningless to compare the
predictions between plates and shells.

Variable Stiffness

For the panels with variable stiffness, the in-plane loads are not uniform , which have to be
predicted before predicting the buckling loads. The details are shown in Chapter 4 and 5,
so in this section only the influence of in-plane loads on the predictions of buckling loads are
investigated. In stability analysis of shells, the coupling of deflection δw and δF will affect
the buckling loads as discussed in section 6.2. Therefore, all the number of terms ( P , Q, K,
L, K1 and L1) have influence on the predictions of buckling loads.
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The layups with variable stiffness considered in this section are layup 2 (Figure 5.7) and layup
10 as shown in Figure 6.15.

Figure 6.15: Layup 10

Layup 10 (D16, D26 6= 0)

• Section 1: [60 45 -45 90 -60 0 0 -60 90 -45 45 60]

• Section 2: [45 30 -45 -45 -30 90 90 -30 -45 -45 30 45]

• Section 3: [90 45 75 90 0 -75 -75 0 90 75 45 90]

• Section 4: [0 15 45 -45 -15 90 90 -15 -45 45 15 0]

Table 6.10 and 6.11 show the predicted buckling loads compared to FEM, respectively, as
increasing the number of terms used for the approximation of δw in x and y direction. The
Airy stress function F and its variation (δF ) are both approximated by 18 terms in both x
and y direction to achieve convergent predictions. The corresponding first buckling modes
predicted by FEM and Ritz methods are compared in Figure 6.16 and 6.17.

Table 6.10: Buckling Load of Layup 2

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18)(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 4.934 5.633 4.012 22.987 40.398 9.022 8.793 6.530 38.160 34.653
4 4.569 4.508 4.012 13.896 12.355 7.718 7.919 6.530 18.193 21.264
6 4.367 4.258 4.012 8.863 6.136 7.354 7.021 6.530 12.620 7.522
8 4.332 4.173 4.012 7.987 4.007 7.255 6.879 6.530 11.102 5.350
10 4.271 4.140 4.012 6.463 3.203 7.170 6.846 6.530 9.792 4.831
12 4.255 4.122 4.012 6.050 2.752 7.127 6.830 6.530 9.147 4.598

Table 6.11: Buckling Load of Layup 10

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18)(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 90.739 100.267 79.176 14.604 26.638 110.115 116.501 99.981 10.136 16.523
4 88.066 87.437 79.176 11.228 10.434 106.901 105.546 99.981 6.922 5.566
6 87.470 86.472 79.176 10.475 9.214 106.330 104.312 99.981 6.350 4.332
8 87.043 86.199 79.176 9.936 8.870 105.871 104.168 99.981 5.891 4.188
10 86.851 86.062 79.176 9.694 8.697 105.675 104.078 99.981 5.696 4.098
12 86.673 85.977 79.176 9.469 8.590 105.491 104.019 99.981 5.511 4.038

Similar to what was observed in section 6.2.2, the predictions obtained from the polynomial
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(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.16: First Buckling Mode of Layup 2

functions are better than these obtained from the sine function for plates and shells with both
layups. The reason is the same that the nonperiodic polynomial function can better capture
the localized features, such as strong gradients in the buckling mode shape [32].

It is noted that the predictions for plate with layup 10 are worse than these for plate with layup
2 whatever shape functions are used. Especially for polynomial functions, the predictions
obtained for plate with layup 10 are substantially worse than these obtained for plate with
layup 2. The reason is that the difference of stiffness in the neighboring sections of layup 10
are more evident than that of layup 2. For layup 2, the difference of the stiffness is small
because the layup is primary made up of 45-degree plies. While for layup 10, the layup is
randomly made up of various plies so the differences of the stiffness in the sections are not
small. The differences of stiffness in the sections, which, in other words, are the discontinuity
of stiffness, will lead to discontinuous curvatures, as discussed in section 6.2.1. A large number
of terms is needed to approximate the discontinuity of curvatures. The larger the differences
of stiffness are, the more terms are needed to approximate the curvatures. Therefore, the
prediction of plate with layup 10 converge to FEM slower since more terms are needed than
layup 2. The same ideal of truncating small parameters from Airy stress function are applied
to the two layups, the errors of the truncation are found to be negligible, as shown in Table
6.12 and 6.13. However, for shell with layup 2, the errors are over 1%, which are dramatically
bigger than others. Therefore, this ideal needs to be further investigated, and as well as the
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(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.17: First Buckling Mode of Layup 10

formula and percentage used for truncation.

Table 6.12: Buckling load of Layup 2 after truncating the negligible parameters

Plate Shell

P=QRitz1 Ritz1
t error1c Ritz2 Ritz2

t error2c Ritz1 Ritz1
t error1c Ritz2 Ritz2

t error2c

(N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 4.934 4.941 0.144 5.621 5.635 0.241 9.022 9.032 0.111 8.772 8.797 0.284
4 4.569 4.578 0.181 4.471 4.510 0.877 7.718 7.727 0.114 7.913 7.919 0.076
6 4.367 4.377 0.210 4.243 4.260 0.412 7.354 7.359 0.068 7.103 7.028 -1.064
8 4.332 4.341 0.210 4.167 4.176 0.228 7.255 7.261 0.086 6.983 6.894 -1.283
10 4.271 4.280 0.216 4.136 4.145 0.210 7.170 7.177 0.106 6.953 6.862 -1.307
12 4.255 4.264 0.213 4.117 4.127 0.224 7.127 7.135 0.107 6.939 6.848 -1.308
t prediction after truncating the negligible parameters
c error of the prediction due to the truncation
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Table 6.13: Buckling load of Layup 10 after truncating the negligible parameters

Plate Shell

P=QRitz1 Ritz1 error1 Ritz2 Ritz2 error2 Ritz1 Ritz1 error1 Ritz2 Ritz2 error2
(N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 90.739 90.730 -0.010 100.267 100.262 -0.005 110.115 110.105 -0.010 116.501 116.495 -0.005
4 88.066 88.060 -0.006 87.437 87.428 -0.010 106.901 106.895 -0.006 105.546 105.535 -0.010
6 87.470 87.462 -0.010 86.472 86.462 -0.011 106.330 106.321 -0.008 104.312 104.299 -0.012
8 87.043 87.033 -0.011 86.199 86.190 -0.011 105.871 105.861 -0.009 104.168 104.155 -0.013
10 86.851 86.842 -0.011 86.062 86.053 -0.011 105.675 105.666 -0.009 104.078 104.065 -0.012
12 86.673 86.663 -0.012 85.977 85.967 -0.011 105.491 105.481 -0.009 104.019 104.005 -0.013

Due to the stiffness discontinuity, the prediction of buckling loads of panels with layup 2 and 10
are converged slower than these with constant stiffness (layup 8 and 9). Similar observations
had been discussed in section 6.2.1, where the panels’ bending-twisting coupling s are zero.
Since the problems are from the stiffness discontinuity, it is of great interests to show that
the problems will be solved if the stiffness is continuous. An example of continuous stiffness
is the panels with constant stiffness, where the predictions are converged very fast. Another
examples can be the panels with variable stiffness where the fibers are curved. However, due
to the difficulty in modeling the panels (especially for shells) with variable stiffness in Abaqus,
these examples are reduced to which have more sections but less difference of stiffness in the
neighboring sections.

Therefore another two layups have been investigated, which are layup 3 (Figure 5.9) and
layup 11 (Figure 6.18). As shown in Figure 5.10 in previous chapter, the prediction of in-
plane loads have been improved by reducing the stiffness discontinuity for the same reason.
The predictions of the buckling loads are also improved for these two layups compared to other
layups (layup 1, 2, 7 10), as shown in Table 6.14 and 6.15 . The predictions converge to FEM
substantially faster than layups 2 and 10 (and also layup 1 and 7). For polynomial functions,
the errors reduce to be less than 1 % after a few terms. However, for sine functions the
errors are slightly bigger than polynomial function since the polynomial functions are better
in prediction when bending-twistinging couplings are not zero. The first buckling modes of
these two layups are also compared to FEM in Figure 6.19 and 6.20, all of which coincide
with FEM very well. Therefore, one can expect if the stiffness of the panels are continuous
the prediction obtained from Ritz method will converge to the FEM much faster than these
examples.

Figure 6.18: Layup 11

Layup 11

• Section 1: [0]4

• Section 2: [5]4

• Section 3: [10]4

• Section 4: [15]4

• Section 5: [20]4

• Section 6: [25]4

• Section 7: [30]4
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Table 6.14: Buckling Load of Layup 3

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18)(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.874 3.399 2.821 1.893 20.488 5.354 5.477 5.088 5.227 7.635
4 2.850 2.855 2.821 1.015 1.216 5.243 5.205 5.088 3.033 2.297
6 2.840 2.843 2.821 0.666 0.786 5.230 5.159 5.088 2.786 1.388
8 2.838 2.836 2.821 0.610 0.548 5.228 5.150 5.088 2.751 1.219
10 2.838 2.834 2.821 0.592 0.474 5.228 5.148 5.088 2.743 1.176
12 2.836 2.834 2.821 0.546 0.447 5.227 5.147 5.088 2.717 1.163

Table 6.15: Buckling Load of Layup 11

Plate Shell

P=Q Ritz1 Ritz2 FEM error1 error2 Ritz1 Ritz2 FEM error1 error2
(K=L=18)
(K1=L1=18)(N/mm)(N/mm)(N/mm)(%) (%) (N/mm)(N/mm)(N/mm)(%) (%)

2 2.780 3.216 2.522 10.237 27.517 5.187 5.238 4.854 6.847 7.909
4 2.657 2.566 2.522 5.342 1.741 5.055 4.893 4.854 4.139 0.797
6 2.617 2.547 2.522 3.777 1.014 5.011 4.855 4.854 3.222 0.010
8 2.597 2.545 2.522 2.988 0.902 4.987 4.851 4.854 2.739 -0.069
10 2.587 2.543 2.522 2.570 0.827 4.975 4.849 4.854 2.485 -0.114
12 2.579 2.541 2.522 2.260 0.760 4.966 4.847 4.854 2.304 -0.156

(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.19: First Buckling Mode of Layup 3
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(a) Plate
(FEM)

(b) Plate (Ritz1) (c) Plate (Ritz2)

(d) Shell
(FEM)

(e) Shell (Ritz1) (f) Shell (Ritz2)

Figure 6.20: First Buckling Mode of Layup 11

6.2.3 Buckling of Shallow Cylindrical Shells with Variable Curvature

In the previous sections, the curvature of the shells were set as a constant. In this section,
the shells with variable curvature are investigated. Ideally, the buckling load of shells with
any variable curvature can be predicted by the Ritz method. So the shell with the same
curvature as NACA00112 is of most interests in current thesis. However, due to the difficulty
in building the FEM model with variable curvature and variable stiffness in Abaqus, the
variable curvature is modeled as a combination of two different curvatures, as shown in Figure
6.21.

Figure 6.21: Shell with two different radii

The radius R = 738.83mm is obtained from the smallest radius of NACA 0012 at x/c = 0.3,
as shown in Figure 6.2b; the radius R = 2023.68mm is obtained from the biggest radius of
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NACA 0012 at x/c = 0.6. This is an extreme example to show the Ritz method can predict
the buckling load of shells with variable curvatures similar to NACA 0012.

For simplicity, the beam characteristic function and the sine function have been applied here
to approximate the in-plane loads and the out-of-plane displacement, respectively. The shells
with constant stiffness (layup 4) and variable stiffness (layup 1, 3) are investigated in this
section as examples. The polynomial functions can also be applied here. But they only have
advantages when the bending-twisting couplings are not zero, so it is not necessary to repeat
the same works.

It is seen from Table 6.16 that the predictions for all three layups are good enough. For layup
4 where the stiffness is constant, the predictions converge to FEM fastest. While the predic-
tions for layup 1 with four sections converge to FEM slowest due to the biggest differences
of stiffness existing in neighboring sections. Once the differences of stiffness are reduced,
such as layup 3, the predictions converge to FEM much faster. The first buckling modes of
all three layups are compared to FEM in Figure 6.22, all of which coincide with FEM very well.

Table 6.16: Buckling load of shells with variable curvatures

Layup 1∗ 3† 4‡

P=Q Ritz1 FEM error1 Ritz1 FEM error1 Ritz1 FEM error1
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 3.564 3.234 10.211 3.552 3.487 1.874 2.775 2.738 1.371
4 3.486 3.234 7.783 3.520 3.487 0.961 2.738 2.738 0.034
6 3.433 3.234 6.148 3.510 3.487 0.678 2.728 2.738 -0.334
8 3.390 3.234 4.806 3.509 3.487 0.635 2.725 2.738 -0.443
10 3.361 3.234 3.923 3.508 3.487 0.622 2.724 2.738 -0.480
12 3.339 3.234 3.239 3.507 3.487 0.584 2.724 2.738 -0.495
∗ 4 sections with variable stiffness
† 16 sections with variable stiffness
‡ 1 section with constant stiffness
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(a) Layup 1
(FEM)

(b) Layup 3
(FEM)

(c) Layup 4
(FEM)

(d) Layup 1 (Ritz1) (e) Layup 3 (Ritz1) (f) Layup 4 (Ritz1)

Figure 6.22: First buckling mode of shells with variable curvature

6.3 Stability Analysis: prescribed shear

In the previous sections, the panel under constant compression load N̄x were investigated. In
this section the panels under shear load are discussed.

The layup investigated are layup 1 (Figure 5.2) , 2 (Figure 5.7) and 3 (Figure 5.9). The shape
functions used for both Airy stress function and out-of-plane displacement are polynomial
functions.

First, a pure shear is applied to the four edges of panels under simply-support boundary
conditions. Then, a combined load with shear and compression, where the compression is
only applied on the edges of x = 0, a, is applied to panels under the same boundary condition.
The prediction of the in-plane loads under the two load cases are already shown in section
5.3 of previous chapter.

6.3.1 Pure Shear

In this section, only shear load is applied to the panel. The predicted buckling loads for these
three layups are shown in Table 6.17 and 6.18. The convergence behavior of the predictions
for the panels with first two layups is similar to what observed in panels with the same layup
under compression. The convergences are not fast because the stiffness discontinuity of these
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two layups is very large where the stiffness of their four sections are different from each other.
The predictions for last layup are much better due to the reduced stiffness discontinuity
where the stiffness of its sixteen sections increase slowly. The corresponding buckling modes
are shown in Figure 6.23 and 6.24, all of which coincide with the buckling modes obtained
from FEM.

Table 6.17: Buckling load of plates under shear

Layup 1∗ 2† 3‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 10.088 5.363 88.085 12.431 5.733 116.838 10.415 5.555 87.488
4 6.365 5.363 18.677 7.398 5.733 29.054 6.243 5.555 12.375
6 5.933 5.363 10.622 6.632 5.733 15.693 5.619 5.555 1.143
8 5.856 5.363 9.185 6.207 5.733 8.266 5.599 5.555 0.782
10 5.791 5.363 7.978 6.058 5.733 5.667 5.587 5.555 0.583
12 5.741 5.363 7.045 5.994 5.733 4.564 5.582 5.555 0.488

Table 6.18: Buckling load of shells under shear

Layup 1∗ 2† 3‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 14.544 8.037 80.962 16.131 7.987 101.956 13.520 6.184 118.617
4 9.397 8.037 16.919 10.497 7.987 31.417 6.990 6.184 13.030
6 8.603 8.037 7.039 9.320 7.987 16.682 6.250 6.184 1.055
8 8.510 8.037 5.877 8.650 7.987 8.298 6.225 6.184 0.650
10 8.433 8.037 4.917 8.399 7.987 5.150 6.212 6.184 0.450
12 8.377 8.037 4.224 8.287 7.987 3.754 6.206 6.184 0.356
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(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 1 (Ritz1) (e) Layup 2 (Ritz1) (f) Layup 3 (Ritz1)

Figure 6.23: First buckling mode of plates under shear

6.3.2 Shear and Compression

In this section, the stability of panels under combined compression and shear is discussed.
The examples with the same layups as previous section are shown. The ratio of compression
load and shear is set to be

N̄x

N̄xy
= −1 (6.57)

The ratio affects the buckling load and has been selected to be 1 in this case. Because the
purpose of this section is just to prove the effectiveness of the Ritz method and selected shape
functions, not to study the topic of shear buckling in deep.

The predicted in-plane loads are shown in Table 6.19 and 6.20 for plates and shells, respec-
tively. For predictions of both plate and shell with layup 3 are converged fastest due to the
reduced stiffness discontinuity of layup 3. The corresponding buckling modes are shown in
Figure 6.25 and 6.26.

Clearly, the predictions are still good. Especially when the stiffness discontinuity is reduced
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(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 1 (Ritz1) (e) Layup 2 (Ritz1) (f) Layup 3 (Ritz1)

Figure 6.24: First buckling mode of shells under shear

the predictions converge in a few terms.

Table 6.19: Buckling load of plates under shear and compression

Layup 1∗ 2† 3‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 2.768 1.892 46.313 4.687 2.820 66.216 3.038 2.400 26.583
4 2.193 1.892 15.940 3.329 2.820 18.056 2.437 2.400 1.546
6 2.127 1.892 12.449 3.085 2.820 9.417 2.420 2.400 0.861
8 2.093 1.892 10.634 2.980 2.820 5.665 2.414 2.400 0.575
10 2.064 1.892 9.093 2.939 2.820 4.231 2.412 2.400 0.495
12 2.041 1.892 7.870 2.919 2.820 3.532 2.411 2.400 0.464
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Table 6.20: Buckling load of shells under shear and compression

Layup 1∗ 2† 3‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%) (N/mm)(N/mm)(%)

2 4.928 4.089 20.517 6.501 4.502 44.387 4.590 3.810 20.475
4 4.292 4.089 4.973 5.271 4.502 17.082 3.955 3.810 3.812
6 4.228 4.089 3.392 4.971 4.502 10.412 3.868 3.810 1.525
8 4.198 4.089 2.667 4.828 4.502 7.247 3.860 3.810 1.305
10 4.173 4.089 2.050 4.777 4.502 6.110 3.856 3.810 1.205
12 4.154 4.089 1.587 4.756 4.502 5.628 3.854 3.810 1.160

(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 1 (Ritz1) (e) Layup 2 (Ritz1) (f) Layup 3 (Ritz1)

Figure 6.25: First buckling mode of plates under shear and compression
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(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 1 (Ritz1) (e) Layup 2 (Ritz1) (f) Layup 3 (Ritz1)

Figure 6.26: First buckling mode of shells under shear and compression

6.4 Stability Analysis: prescribed displacement

In this section, the stability of plates and shallow cylindrical shells under prescribed displace-
ment are investigated using Ritz method and verified with Abaqus. The polynomial functions
are used for the approximations of Airy stress function (F ) and its variation (δF ) and the
out-of-plane displacement (δw).
The panel is assumed to be subjected to uniform end-shortenings (∆u1 and ∆u2) on both
sides (x = 0, a). The boundary condition is simply-supported at all the edges. The essential
boundary condition can be satisfied by the shape function of out-of-plane displacement (δw).
However, natural boundary conditions cannot be satisfied since the polynomial functions are
used.
To determine buckling initiation, buckling factor λ can be introduced as

∆ucritical1 = λ∆u1 (6.58)
∆ucritical2 = λ∆u2 (6.59)

Then the Airy stress function at the critical point can be assumed as (same as equation 4.112)

F (x, y) = λ

[
E∑
e

Fe

∫ ∫
Ye(y)dydy +

KL∑
kl

FklXk(x)Yly
]

(6.60)

So in this section the buckling factor is used instead of buckling load, as a factor of determining
the buckling initiation.
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6.4.1 Verification

Panels with two kinds of layups are considered in the verification. The first kind of layups are
the ones with constant stiffness. The second kind of layups are the ones with variable stiffness.
The panels with the second kind of layups are assumed to have four or sixteen sections, as
shown in Figure 3.3. The reason for considering the panels with constant stiffness layups is
to show Ritz method and the selected shape functions can exactly predict the buckling load
of panels with constant stiffness. In both kinds of layups, the bending-twisting couplings can
be either zero or non-zero.

Constant Stiffness

The layups considered in this section are layup 4, 8 and 9. Since the in-plane loads distri-
butions are uniform, the prebuckling analysis is not necessary. The variation of Airy stress
function (δF ) is approximated by 18 terms in both x and y direction to achieve convergent
predictions. Table 6.21 and 6.22 show the predicted buckling load compared to FEM, re-
spectively, as increasing the number of terms used for the approximation of δw in x and
y direction. The predictions obtained from FEM are placed in the tables as columns with
constant values since they are independent of P and Q.

Table 6.21: Buckling factors of plates with constant stiffness (prescribed displacement)

Layup 4∗ 8† 9‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K1=L1=18) (%) (%) (%)

2 15.905 12.492 27.323 22.213 14.009 58.565 4.863 3.850 26.308
4 12.580 12.492 0.706 15.222 14.009 8.661 3.903 3.850 1.389
6 12.546 12.492 0.430 14.727 14.009 5.123 3.882 3.850 0.838
8 12.546 12.492 0.429 14.581 14.009 4.087 3.878 3.850 0.736
10 12.546 12.492 0.429 14.501 14.009 3.515 3.877 3.850 0.690
12 12.546 12.492 0.429 14.452 14.009 3.162 3.876 3.850 0.666

Table 6.22: Buckling factors of shells with constant stiffness (prescribed displacement)

Layup 4∗ 8† 9‡

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K1=L1=18) (%) (%) (%)

2 43.215 40.809 5.896 41.599 32.672 27.324 8.318 7.781 6.896
4 42.286 40.809 3.620 38.225 32.672 16.996 7.851 7.781 0.900
6 40.988 40.809 0.438 33.353 32.672 2.085 7.789 7.781 0.102
8 40.567 40.809 -0.594 33.081 32.672 1.253 7.785 7.781 0.043
10 40.564 40.809 -0.599 32.991 32.672 0.975 7.783 7.781 0.017
12 40.564 40.809 -0.600 32.937 32.672 0.811 7.782 7.781 0.004
∗ Layup 4: [90 90 90 90]
† Layup 8: [45 45 45 45 ]
‡ Layup 9: [15 15 15 15]
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(a) Layup 4
(FEM)

(b) Layup 8
(FEM)

(c) Layup 9
(FEM)

(d) Layup 4 (Ritz2) (e) Layup 8 (Ritz2) (f) Layup 9 (Ritz2)

Figure 6.27: First buckling mode of plates with constant stiffness (prescribed displcacment)

(a) Layup 4
(FEM)

(b) Layup 8
(FEM)

(c) Layup 9
(FEM)

(d) Layup 4 (Ritz2) (e) Layup 8 (Ritz2) (f) Layup 9 (Ritz2)

Figure 6.28: First buckling mode of shells with constant stiffness (prescribed displcacment)

It is seen from Table 6.21 and 6.22 that the predictions for all three layups are good enough.
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As reducing the bending-twisting couplings (in the order of layup 8, layup 9 and layup 4),
the predictions for both plates and shells are increasingly better. However, it is noted that
the predictions for the shell with layup 4 converge to be lower than FEM, similar to what
observed in Table 6.1. The reason is the same that the δF , which is coupled with δw, makes
the predictions converge to the exact value from a lower value. The first buckling modes of all
three layups are compared to FEM in Figure 6.27 and 6.28, all of which coincide with FEM
very well.

Variable stiffness

In this section, the stability of panels with variable stiffness is considered. The layups con-
sidered here are layup 1 (Figure 5.2), layup 2 (Figure 5.7), layup 3 (Figure 5.9) and layup
11 (Figure 6.18). Among these layups only the the bending-twisting couplings of layup 1 are
zero.

Since the stiffness is variable for these layups, the in-plane loads have to be predicted before
the stability analysis, which are shown in section 5.4.3, where the Airy stress function (F ) is
approximated by 18 terms in both x and y direction. In stability analysis, the variation of
Airy stress function (δF ) is also approximated by 18 terms in both x and y direction to achieve
convergent predictions. Table 6.23 and 6.24 show the predicted buckling load of plates and
shells with these layups compared to FEM, respectively, as increasing the number of terms
used for the approximation of δw in x and y direction. The first buckling modes of the plate
and shell predicted by FEM and Ritz methods are compared in Figure 6.29 and 6.30.

The tables show that for panels with small stiffness discontinuity, the predictions are close
to FEM, such as the panels with layup 3 and 11. When the stiffness discontinuity increases,
the prediction of plate with layup 1 has 13.49 % difference compared to FEM even 12 terms
are used in both x and y direction. It is similar to what observed in Table 6.4 for the same
plate under prescribed compression, where the difference is 10.899% when the same number
of terms were used. However, the buckling modes predicted by Ritz method are similar FEM.
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As long as enough terms are used, the predictions will converge to the exact values.

Table 6.23: Buckling factors of plates with variable stiffness (prescribed displacement)

Layup 1 2 3 11

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (%) (%) (%) (%)

2 4.361 3.028 43.998 20.352 14.014 45.228 2.229 1.844 20.859 4.605 3.645 26.351
4 3.631 3.028 19.909 16.269 14.014 16.092 1.870 1.844 1.402 3.718 3.645 1.997
6 3.569 3.028 17.858 15.115 14.014 7.857 1.862 1.844 0.994 3.696 3.645 1.391
8 3.515 3.028 16.088 14.792 14.014 5.553 1.858 1.844 0.762 3.691 3.645 1.270
10 3.472 3.028 14.642 14.688 14.014 4.812 1.857 1.844 0.688 3.688 3.645 1.190
12 3.437 3.028 13.490 14.631 14.014 4.401 1.856 1.844 0.659 3.686 3.645 1.124

Table 6.24: Buckling factors of shells with variable stiffness (prescribed displacement)

Layup 1 2 3 11

P=Q Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2 Ritz2 FEM error2
(K=L=18)
(K1=L1=18) (%) (%) (%) (%)

2 9.249 7.591 21.848 36.182 25.977 39.286 3.687 3.452 6.800 7.780 7.176 8.418
4 8.115 7.591 6.912 30.785 25.977 18.507 3.512 3.452 1.744 7.275 7.176 1.382
6 7.956 7.591 4.808 26.153 25.977 0.678 3.482 3.452 0.863 7.188 7.176 0.169
8 7.899 7.591 4.054 25.434 25.977 -2.089 3.476 3.452 0.700 7.180 7.176 0.049
10 7.873 7.591 3.711 25.235 25.977 -2.857 3.475 3.452 0.656 7.176 7.176 -0.007
12 7.857 7.591 3.508 25.146 25.977 -3.198 3.474 3.452 0.641 7.173 7.176 -0.048
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(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 11
(FEM)

(e) Layup 1
(Ritz2)

(f) Layup 2
(Ritz2)

(g) Layup 3
(Ritz2)

(h) Layup 11
(Ritz2)

Figure 6.29: First buckling mode of plates with variable stiffness (prescribed displcacment)

6.5 Summary

In this chapter, the buckling loads of panels under prescribed loads (compression and shear)
and under prescribed end-shortenings are investigated using Ritz method.

In general, the convergences of predictions become faster when the stiffness discontinuity of
the panel is reduced. For plates with constant stiffness and zero bending-twisting couplings
(layup 4, 5, 6) , the predictions, using sine function as the shape function of out-of-plane
displacement, converge to the exact buckling load when the number of terms used in x and
y direction reach the exact number of half waves of the buckling mode in x and y direction.
Because for such plates the buckling modes can be analytically described by half waves of
sine function in x and y direction. (For simply-support shallow cylindrical shell panel , the
buckling modes cannot which is different from a complete cylindrical shell.) For panels with
variable stiffness but reduced stiffness discontinuity (layup 3, 11), the prediction converged to
exact value slightly slower. Because the buckling mode of these layups cannot be analytically
described by a single shape function (such as sine function) in x and y direction. So more
number of terms of shape functions are required to achieve a converged prediction. For panels
with large stiffness discontinuity (layup 2, 7, 10), a large number of terms of shape functions
are needed. So the convergence of the predictions of these layups are slowest. However, these
layups are used as extreme examples, which are unlikely to be encountered in practice.

When the bending-twisting couplings are not zero, it is found that the exact buckling load
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(a) Layup 1
(FEM)

(b) Layup 2
(FEM)

(c) Layup 3
(FEM)

(d) Layup 11
(FEM)

(e) Layup 1
(Ritz2)

(f) Layup 2
(Ritz2)

(g) Layup 3
(Ritz2)

(h) Layup 11
(Ritz2)

Figure 6.30: First buckling mode of shells with variable stiffness (prescribed displcacment)

cannot be obtained in finite number of terms even when the stiffness is constant. The reason
is that the natural boundary conditions cannot be exactly satisfied. However, by comparison,
the polynomial functions have greater advantages than sine functions in the convergence of
prediction due to their better capability to capture the localized features, such as strong
gradients in the buckling mode shape [32].

Shallow cylindrical shells with variable curvature are also discussed. The prediction shows
the Ritz method can be applied to predict the buckling load of such panels.
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Chapter 7

Conclusion and Recommendation

7.1 Thesis Review and Conclusion

The main goal of the thesis was to build a semi-analytical model for solving the buckling
problem of variable stiffness composite panels (plates and shallow cylindrical shells). A lit-
erature review was conducted in the beginning of the thesis and summarized in Chapter 2.
Then two semi-analytical models were built for solving the problem.

The first model based on solving the governing differential equations using Galerkin method
was presented in Chapter 3. The differential equations governing the membrane and buckling
behaviours of variable stiffness composite panels were derived and compared to the available
equations in existing literature. Due to the complexity of these equations, the closed form
solution is not possible. Thus, the Galerkin method was applied to obtain an approximate
solution. In principle, this is a suitable solution to the panels with continuous stiffness that
can be exactly described by a continuous function. However, for simplicity, the stiffness
variation considered in the thesis was reduced to sections of constant stiffness. Consequently,
a continuous approximation of stiffness variation across the panel using a series expansion
had to be employed in the Galerkin method, which reduced its efficiency and accuracy with
respect to the Ritz method.

The second model, based on the Ritz method and the variational statement of total energy
functionals that are equivalent to the governing differential equations derived in Chapter 3,
was presented in Chapter 4. The advantage of this approach in comparison to the Galerkin
method is that no series approximation to the stiffness variation is required which proved to
be more efficient and more accurate than the Galerkin method. The detailed derivations of
the energy functional which had been rarely shown in literature were presented as well.

The accuracy of the model based on the Ritz method was investigated in Chapter 5 and 6.
In-plane loads distributions resulting from either prescribed loads or prescribed displacements
in the prebuckling state were solved and compared to FEM in Chapter 4. Moreover the effect
of the selected shape function on the quality of the solution was examined. In general, the
predictions of in-plane loads are satisfactory, compared to the prediction of FEM. However,
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the stiffness discontinuity existing in the example layups led to the peak stresses and stress
discontinuities over the boundaries of neighbouring sections which can only be captured using
large number of terms in Ritz method. However, if the stiffness is continuous or at least the
discontinuity is reduced, the predictions are significantly improved. Similar observations were
noticed in the buckling loads prediction in Chapter 6. As the stiffness discontinuity was
reduced, the convergence of the predicted buckling loads was significantly increased.

Furthermore the effect of the bending-twisting couplings of the composite layups on the
buckling load prediction was also investigated. It was found out that compared to the sine
function the polynomial function proved to be more efficient in predicting the buckling loads
of the panels with large bending-twisting couplings. This was attributed to their capability
to better capture the localized features, such as strong gradients in the buckling mode shape.

Various load cases were applied to the panels which can be divided into the case of pre-
scribed loads, including compression and shear, and the case of prescribed displacements
(end-shortenings). The model based on the Ritz method proved to be capable of predicting
both in-plane loads and buckling loads of the panels (plates and shallow cylindrical shells)
under either of the two load cases. Moreover, the shallow cylindrical shell with variable cur-
vatures were also investigated, where the Ritz method again proved to be able to predict the
buckling loads very well as long as the pertinent assumptions concerning the shallow shells
are obeyed.

Based on the work presented in the thesis, the research questions proposed in Chapter 1 are
answered as follows:

• Closed form solution is neither available in literature nor obtained in the thesis due
to two main reasons. The first one is the existence of bending-twisting couplings; the
second one is the variation of stiffness.

• Two semi-analytical models have been developed based on Galerkin method and Ritz
method. Both methods are able to solve the buckling problems of variable-stiffness
composite panels. However, the Ritz method is more efficient and accurate in solving
the buckling problems of the panels with discontinuous stiffness considered in this thesis.

7.2 Recommendation

Considering the problems encountered in the thesis, the following recommendations and im-
provements are proposed:

• Avoiding the stiffness discontinuity. In practice, the variable stiffness of the composite
panel is achieved by steering the fibre directions. This way, the stiffness is a function
of the fiber orientations which is continues over the panel. The predictions of in-plane
loads and buckling loads are expected to be significantly improved compared to these
investigated in the thesis.

• Using sine function with the Lagrange multiplier method as the shape function of the
Airy stress function (and its variation) proved to be most efficient in predicting both
the in-plane loads and buckling loads among all the shape functions investigated in the
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thesis. The predictions of the buckling loads using sine function with the Lagrange
multiplier method appear to be more conservative than FEM, which, however, needs
further investigation in future and thus was not shown in current thesis. The cosine
function, which is better than sine function in predicting the in-plane loads, is also
expected to better predict the buckling loads. This is also suggested to do in further.
The reason to consider these two shape functions is the possibility to dramatically
increase the efficiency of the semi-analytical model.

• The criterion used to truncate the negligible parameters of Airy stress function should
be further studied since the formula used in the thesis is just an example. In addition, it
was noted that the in-plane loads distribution might have little effect on the prediction
of buckling load for some layups (layup 3 and 11), which, however, was not presented
in the thesis. It seems that in these cases the buckling load primarily depends on the
bending stiffness distribution. If so, the prediction of in-plane loads in the prebuckling
state can be skipped and therewith significantly improving the efficiency of the model,
while causing only a negligible error in the buckling load prediction. However, for post-
buckling analysis the in-plane loads redistribution is always important and must be
considered. It is noteworthy that the equations derived in this thesis can also be used
for the future post-buckling analysis.

• Due to the bending-twisting couplings, the natural boundary conditions of simply-
supported composite panels cannot be satisfied, in the past a mixed variational princi-
ples, Hellinger-Reissner variational principle, were proposed in order to overcome this
problem. In this variational principles, the bending complementary energy expressed
in terms of bending moments is used, instead of bending strain energy. Then bending
moments can then be approximated by series, which are similar to the out-of-plane
deflection. The natural (moment) boundary conditions can be satisfied through the se-
lected shape functions for the moments. Consequently the convergence of buckling load
is improved since both natural and essential boundary conditions are exactly satisfied.
Therefore, it is of great interest to investigate this approach in the model.

• Buckling of stiffened panels hasn’t been considered yet. Extending the existing model
to stiffened variable stiffness panels would be of great interest in future.

• Previous research revealed that imperfections dramatically affect the buckling resistance
of shells. Hence it would be of interest to add the imperfection analysis (for instance,
analysis of geometrical imperfection) to the model.

• Introducing the Bessel function, which presents the exact eigenmode of beams with
linearly varying stiffness, to the shape function of the out-of-plane displacement. In
principle, if the buckling mode can be exactly presented by the shape functions the
convergence is the fastest. For example, for plates with constant stiffness where bending-
twisting couplings are zero, the exact buckling mode is described by a trigonometric
function. The prediction converge to the exact value when the number of terms reach
the number of half waves of the buckling mode. When the bending-twisting couplings
are not zero, both polynomial and sine functions can not represent the exact buckling
modes. However, the convergence of predictions using polynomial function is faster
since the polynomial function can better capture the localized features (such as strong
gradients in buckling mode shape). In the case of beams with linearly varying stiffness,
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the Bessel function presents the exact eigenmode (for example buckling mode). For
variable-stiffness panels, the Bessel function might also present the exact eigenmode. If
not, it still might better capture the localized features than the polynomial functions
used in this thesis.
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Appendix A

Total Potential Energy for Prebuckling
Analysis

In this section, the panel (plate and shallow cylindrical shell) is assumed prescribed by loads on
boundary S1 and displacements on boundary S2. The detailed descriptions of the boundary
conditions are given in section 4.3.1. In this section, the total potential energy of a panel
before buckling occurring will be proved to be the negative of the total complementary energy
of the panel under the same boundary conditions.

As shown in section 4.3.1, the total potential energy of both plates and shells (using assump-
tion 2) for prebuckling analysis is given as [33]

Πpre = Um + VS1 (A.1)

where, Πpre is the total potential energy for prebuckling analysis, VS1 is the work done by the
prescribed loads on boundary S1 in stretching.

The membrane strain energy Um is given as (equation 4.8)

Um = 1
2

∫ ∫
[(A11(u,x)2 + 2A12(u,x)(v,y) + 2A16(u,x)(v,x + u,y)

+A22(v,y)2 + 2A26(v,y)(v,x + u,y) +A66(v,x + u,y)2]dxdy
(A.2)

and the external work done on the boundary S1 is given as (equation 4.14)

VS1 = −
∫
S1

(N̄yv+N̄xyu)y=b−(N̄yv+N̄xyu)y=0dx−
∫
S1

(N̄xu+N̄xyv)x=a−(N̄xu+N̄xyv)x=0dy

(A.3)

For small displacements, the displacements u, v are related to the mid-plane strains through

εxo = u,x, εyo = v,y, γxyo = v,x + u,y (A.4)
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So the membrane strain energy (equation A.2) can be written in terms of the mid-plane
strains, instead of displacements, as

Um = 1
2

∫ ∫
[(A11(εxo)2 + 2A12(εxo)(εyo) + 2A16(εxo)(γxyo) +A22(εyo)2

+ 2A26(εyo)(γxyo) +A66(γxyo)2]dxdy
(A.5)

Then the total potential energy will be

Πpre =1
2

∫ ∫
[(A11(εxo)2 + 2A12(εxo)(εyo) + 2A16(εxo)(γxyo) +A22(εyo)2

+ 2A26(εyo)(γxyo) +A66(γxyo)2]dxdy

−
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx−
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

(A.6)

By the introduction of mid-plane strains, the total potential energy (equation A.6) becomes
a functional of mid-plane strains, instead of the displacements. However, during variation
(or minimization) of the total potential energy with respect to the mid-plane strains, the
strain-displacement relations defined by equation A.4 must always be hold [33]. Therefore,
the Lagrange multipliers are used in order to enforce the strain-displacement relations as

Πpre =1
2

∫ ∫
[(A11(εxo)2 + 2A12(εxo)(εyo) + 2A16(εxo)(γxyo) +A22(εyo)2

+ 2A26(εyo)(γxyo) +A66(γxyo)2]
− [(εxo − u,x)Λx + (εyo − v,y)Λy + (γxyo − v,x − u,y)Λxy]dxdy

−
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx−
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

(A.7)

where, Λx, Λy and Λxy are the Lagrange multipliers.
It is noted that the second term of above equation which is related to the Lagrange multipliers
is zero if the strain-displacement relations hold. So as long as the strain-displacement relations
hold, the total potential energy will not change.
For convenience, the above equation can be written in matrix form as

Πpre =
∫ ∫ 1

2ε
TAε− λT

ε−
 u,x

v,y
v,x + u,y


 dxdy

−
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx−
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

(A.8)

where, the strain vector is defined as

ε =
(
εxo εyo γxyo

)T
(A.9)

and the Lagrange multiplier vector λ is defined as

λ =
(
Λx Λy Λxy

)T
(A.10)
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If making the energy Πpre stationary with respect to the strains, εxo, εyo and γxyo, respectively,
the following conditions expressed in matrix form will be obtained,

∂Πpre

∂ε
=
∫ ∫

(Aε− λ)dxdy = 0 (A.11)

which implies,
λ = Aε (A.12)

Moreover, notice that the in-plane force resultants are given as

n =

Nx

Ny

Nxy

 =

A11εxo +A12εyo +A16γxyo
A12εxo +A22εyo +A26γxyo
A16εxo +A26εyo +A66γxyo

 = Aε (A.13)

where, n is a vector contains the in-plane force resultants as shown in above equation.
Thus

n = Aε = λ (A.14)

So the physical meanings of Lagrange multipliers applied above are actually the in-plane force
resultants. Hence,

ε = A−1λ = A−1n (A.15)
Substituting the above two equations back to the total potential energy (equation A.8), the
following energy functional will be obtained.

Πpre =− 1
2

∫ ∫
nTA−1ndxdy +

∫ ∫
nT

 u,x
v,y

v,x + u,y

 dxdy
−
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx−
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

(A.16)
Furthermore,∫ ∫

nT

 u,x
v,y

v,x + u,y

 dxdy =
∫ ∫

[Nxu,x +Nyv,y +Nxy(v,x + u,y)] dxdy (A.17)

After integration by parts,∫ ∫
[nT

 u,x
v,y

v,x + u,y

]dxdy =
∮
Cx

(Nxu+Nxyv)dy −
∮
Cy

(Nxyu+Nyv)dx

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy

(A.18)

For rectangular plates or cylindrical shells,∫ ∫
nT

 u,x
v,y

v,x + u,y

 dxdy =
∫
S

(Nyv +Nxyu)y=b − (Nyv +Nxyu)y=0dx

+
∫
S

(Nxu+Nxyv)x=a − (Nxu+Nxyv)x=0dy

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy

(A.19)
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Note that, on the boundary S1, Nx = N̄x, Ny = N̄y, Nxy = N̄xy; on boundary S2, u = ū,
v = v̄. So

∫ ∫
nT

 u,x
v,y

v,x + u,y

]dxdy =
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx

+
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

−
∫ ∫

[(Nx,x +Nxy,y)u+ (Nxy,x +Ny,y)v]dxdy

(A.20)

In addition, according to the in-plane equilibrium equations,

Nx,x +Nxy,y = 0 (A.21)
Nxy,x +Ny,y = 0 (A.22)

Equation A.20 can further reduce into

∫ ∫
nT

 u,x
v,y

v,x + u,y

]dxdy =
∫
S1

(N̄yv + N̄xyu)y=b − (N̄yv + N̄xyu)y=0dx

+
∫
S1

(N̄xu+ N̄xyv)x=a − (N̄xu+ N̄xyv)x=0dy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(A.23)

It is noted that the first two terms on the right of above equation is canceled with VS1
(equation A.3)

∫ ∫
[nT

 u,x
v,y

v,x + u,y

]dxdy + VS1 =
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(A.24)

Then, the total potential energy (equation A.16) becomes

Πpre =− 1
2

∫ ∫
(nTA−1n)dxdy

+
∫
S2

(Nyv̄ +Nxyū)y=b − (Nyv̄ +Nxyū)y=0dx

+
∫
S2

(Nxū+Nxyv̄)x=a − (Nxū+Nxyv̄)x=0dy

(A.25)
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which is the negative of the total complementary energy (equation 4.15).

So far the total potential energy (equation A.1) has been transformed into the negative of the
total complementary energy step by step.

In addition, since the in-plane equilibrium equations (equation A.21, A.22) were introduced
during the derivation, they must be the subsidiary conditions for the equation A.25. In other
words, only when the in-plane equilibrium equations are hold, the total potential energy is
the negative of the total complementary energy. These in-plane equilibrium equations can be
simply hold by introducing the Airy stress function into the in-plane loads as

Nx = F,yy, Ny = F,xx, Nxy = −F,xy (A.26)

Then the total complementary energy or potential energy can be written in terms of Airy
stress function.
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Glossary

List of Acronyms

FEM Finite element method

FEA Finite element analysis
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168 Glossary

Latin Symbols

a, b Length and width of the panel along x and y direction, respectively[mm]
aij (i, j = 1, 2, 6) Compliance of A
Aij(i, j = 1, 2, 6) Laminate membrane stiffness[N/mm]
A Matrix of laminate membrane stiffness
B Matrix of laminate membrane-bending coupling stiffness
ckl Vector of length K × L
Ckl Element of vector ckl
Cklk2l2 Element of matrix Ca
Ca K × L by K × L matrix
CD Matrix of dimension P ×Q by P ×Q
CF Matrix of dimension P ×Q by P ×Q
CN Matrix of dimension P ×Q by P ×Q
CR Matrix of dimension P ×Q by K × L
Dij(i, j = 1, 2, 6) Laminate bending stiffness[N]
D Matrix of laminate bending stiffness
e Vector of mid-plane strains for large deflection
el First part of e relates to the in-plane displacements
en Second part of e relates to the out-of-plane displacement
E Number of terms used to describe the stress variation on edge x = 0, a

when displacements are prescribed
f Vector of Airy stress function f =

(
F,yy F,xx −F,xy

)T
fkl Vector of length K × L
F Airy stress function
Fe Undetermined parameters of Airy stress function to describe the stress variation

on edge x = 0, a when displacements are prescribed
Fkl Undetermined parameters of Airy stress function
F 1
kl Undetermined parameters of the increment of Airy stress function
H1 Matrix of dimension K × L by (I1 + I2 + J1 + J2)
H2 Matrix of dimension K × L by (I1 + I2 + J1 + J2)
I1, I2, J1, J2 Number of Lagrange multiplier Λj1 , Λj2 , Λi1 , Λi2 , respectively
K, L Number of terms used for the shape functions of Airy stress function (F )

in x and y direction, respectively
K1, L1 Number of terms used for the shape functions of the increment of Airy stress

function (F1) in x and y direction, respectively
m Vector of moment resultants per unit width [N] m =

(
Mx My Mxy

)T
Mx,My,Mxy Moment resultants per unit width [N]
n Vector of force resultants per unit width [N/mm] n =

(
Nx Ny Nxy

)T
Nx, Ny, Nxy In-plane loads: force resultants per unit width [N/mm]
N̄x, N̄y, N̄xy Prescribed in-plane loads: force resultants per unit width [N/mm]
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P , Q Number of terms used for the shape functions of out-of-plane displacement (w)
and its increment (or variation) (w1 or δw) in x and y direction, respectively

R Radius of cylindrical shells
t Thickness of panels
u, v, w Displacement along x, y, z direction [mm]
ū, v̄ Prescribed displacement along x, y direction [mm]
δu, δv, δw Variation of u, v, w
Um Membrane energy
U cm Membrane complementary energy
Ub Bending energy
VS1 External work done by the prescribed external loads
VS2 External complementary work done by the prescribed displacements
wpq Vector of length P ×Q
Wpq Undetermined parameters of the shape functions of w
W 1
pq Undetermined parameters of the shape functions of w1

Xk, Yl Shape functions used for Airy stress function (F ) and its increment (or variation)
(F1 or δF )in x and y direction, respectively

Xp, Yq Shape functions used for out-of-plane displacement (w) and its increment
(or variation) (w1 or δw) in x and y direction, respectively

Ye Shape functions used for Airy stress function to describe the stress variation
on edge x = 0, a when displacements are prescribed

Greek Symbols

εx, εy, γxy Strain along x, y, z direction
εxo, εyo, γxyo Mid-plane strain along x, y, z direction
ε Vector of mid-plane strains ε =

(
εxo εyo γxyo

)T
κx, κy, κxy curvatures
σx, σy, γxy In-plane stresses [MPa]
υ Poisson’s ratio for isotropic material
Πpre Total potential energy for prebuckling analysis
Πc
pre Total complementary energy for prebuckling analysis

Λx,Λy,Λxy Lagrange multipliers
λ Vector of Lagrange multipliers λ =

(
Λx Λy Λxy

)T
Λj1 , Λj2 , Λi1 , Λi2 Lagrange multipliers
λij Vector of Lagrange multipliers (λij = (Λj1 ,Λj2 ,Λi1 ,Λi2)T )
λ Buckling factor
κ Vector of curvatures κ =

(
−w,xx −w,yy −2w,xy

)T
∇ Laplace operator in two dimensions
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170 Glossary

Superscripts

′ prime indicates derivative with respect to length coordinate (e.g. x, y)
1 incremental quantity denotes the increment of a variable

(used in adjacent buckling criterion)

Subscripts

,i (i = x, y, z) a subscript (e.g. x, y, z) preceded by a comma indicates a partial derivative
(with respect to coordinate x, y, z)

1 incremental quantity denotes the increment of a variable
(used in adjacent buckling criterion)
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