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ABSTRACT

This paper addresses the scheduling of aircraft maintenance tasks that must be carried out in multiple
maintenance checks to keep a fleet of aircraft airworthy. The allocation of maintenance tasks to mainte-
nance opportunities, also known as the task allocation problem (TAP), is a complex combinatorial prob-
lem that needs to be solved daily by maintenance operators. We propose a novel approach capable of
efficiently solving the multi-year task allocation problem for a fleet of aircraft in a few minutes. We for-
mulate this problem as a time-constrained variable-sized bin packing problem (TC-VS-BPP), extending
the well-known variable-sized bin packing problem (VS-BPP) by adding deadlines, intervals, and arrivals
for the repetition of tasks. In particular, we divide the planning horizon into variable size bins to which
multidimensional tasks are allocated, subject to available labor power and task deadlines. To solve this
problem, we propose a constructive heuristic based on the worst-fit decreasing (WFD) algorithm for TC-
VS-BPP. The heuristic is tested and validated using the maintenance data of 45 aircraft from a European
airline. Compared with the solution obtained with an approach using an exact method, the proposed
heuristic is more than 30% faster for all the test cases discussed with the airline. Most of the cases have

optimality gaps below 3%. Even for the extreme case, the optimality gap is still smaller than 5%.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Modern airliners have thousands of parts, systems, and com-
ponents that need to be recurrently maintained after undergoing
certain flight hours (FH), flight cycles (FC), calendar days (DY), or
months (MO). The FH, FC, DY, and MO are known as usage param-
eters, and their maximums allowed in operation are defined as in-
spection intervals. The optimal allocation of the maintenance tasks
to the best maintenance opportunities is a challenging problem
solved daily by maintenance planners. The common approach fol-
lowed by these planners is to group tasks into maintenance checks
(e.g., A-, B-!, C- and D-check) to ensure a consistent maintenance
program in which all tasks are performed before their associated
due dates. A typical A-check includes inspection of the interior or
exterior of the airplane with selected areas opened, e.g., checking
and servicing the oil, filter replacement, and lubrication (Ackert,
2010). C-check requires thorough inspections of individual systems

* Corresponding author.
E-mail address: q.deng@tudelft.nl (Q. Deng).
1 B-checks are rarely mentioned in practice. The tasks that could be included in
B-checks are commonly incorporated into successive A-checks.
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and components for serviceability and function. D-check? uncov-
ers the airframe, supporting structure and wings for inspection of
most structurally significant items.

To determine the optimal start date of the tasks, it is com-
mon in practice to adopt a sequential process: first, schedule the
A-, C- and D-checks and then allocate maintenance tasks to each
check. Although some tasks can quickly be packaged into these
letter checks, a large number of other tasks (more than 70% for
an Airbus A320 aircraft) are dephased from the intervals of these
checks. It means that they either have to be allocated to a more
frequent letter check or manually allocated by maintenance opera-
tors to different maintenance events based on the suitability of the
task to that check and the urgency of performing the task in due
time. In practice, both approaches are conducted according to the
experience of maintenance planners, leading to inefficiencies.

The task allocation problem (TAP) in aircraft maintenance refers
to the process of optimally allocating tasks in predefined main-
tenance checks. It determines the optimal start dates of aircraft
maintenance tasks so that all preventive tasks are performed as
close to their due dates as possible. TAP is complicated because of

2 Many airlines merge D-check into C-check and label it as a heavy C-check or
structural check.
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Fig. 1. Snapshot of maintenance overlap situation between aircraft.

its combinatorial nature, and it has to be solved for the entire fleet
at the same time. In real-life applications, multiple aircraft checks
can be scheduled in parallel, and tasks allocated to these checks
will share the maintenance resources. For example, Fig. 1 illus-
trates a case for five C-checks overlapping in time. Maintenance re-
sources include material, equipment, and a set of labor hours from
different skills. Furthermore, the allocation process is intricate also
because the maintenance tasks involved in these checks are usu-
ally associated with different intervals and elapsed time.

In this paper, we propose a novel approach to efficiently ad-
dress the TAP, which can solve the problem very fast without com-
promising the quality of the solution. Maintenance plans are fre-
quently being affected by flight schedules disruptions or the need
for unscheduled maintenance tasks, and they constantly need to
be revised or even re-planed (Steiner, 2006). Inspired by the bin
packing problem (BPP), we consider pre-scheduled maintenance
checks to be bins of different (time) dimensions and sharing a
multi-dimensional capacity, referring to the multiple types of labor
skills involved in the execution of the tasks. The items are the tasks
that need to be packed in the bins, and they also subject to time
constraints that limit the bin options. We formulate the problem
as an extension of the variable size bin packing problem (VS-BPP)
(Friesen & Langston, 1986) in which items are repeated within time
intervals, and bins have a variable time dimension. This extension
of the VS-BPP is named time-constrained VS-BPP (TC-VS-BPP). We
present a constructive algorithm to solve this problem efficiently.
We test this heuristic in a case study using data from a major Eu-
ropean airline and compare the results with the ones obtained us-
ing an exact method. The main contribution of this research can
be summarized in the following:

e This work is the first to formulate the TAP as a bin packing
problem and solve it with an efficient constructive algorithm.

o For the first time, to the best knowledge of authors, the classic
VS-BPP formulation is extended to consider time intervals for
the allocation of repeated items and variable time dimensions
for the bins.

We adapt the worst-fit decreasing algorithm for the classic BPP
to efficiently solve the TC-VS-BPP. The resulting constructive al-
gorithm is validated with a real case study and benchmarked
against the solution obtained using a commercial linear pro-
gramming solver.

The outline of this paper is as follows: Section 2 gives
an overview of the relevant literature on maintenance related
TAPs and bin packing problems (BPPs). The formulation of the
TC-VS-BPP for aircraft maintenance is described in Section 3.
Section 4 presents a task allocation framework and an associated
heuristic algorithm. Section 5 shows a case study from a Euro-
pean airline and the algorithm performance analysis. The last sec-
tion summarizes the research with concluding remarks and gives
an outlook on future work.
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2. Related work

In this section, we briefly discuss previous works. We divide
this literature overview into two subsections. The first subsection
reviews the research works dealing with the TAP for aircraft main-
tenance, with different perspectives and methodologies. The sec-
ond subsection discusses the literature on the bin packing prob-
lem.

2.1. Maintenance task allocation

In one of the initial studies on TAP of aircraft maintenance,
Van Buskirk et al. (2002) combined the maintenance task alloca-
tion with aircraft operation to one single problem. The authors
presented a two-stage system that supports maintenance chiefs in
planning both aircraft operations and maintenance activities. The
first stage assigns the planes to flight operations using a custom-
built, multi-level greedy search algorithm. The second stage
schedules all maintenance activities according to a constraint sat-
isfaction problem. The authors tested the system with 17 jets, and
results indicate that the system can schedule 3750 maintenance
activities for a 3-month planning horizon within 20 minutes. The
authors also state that the goal was to plan the activities given var-
ious constraints: calendar-based actions have to be done within a
specific time window; usage-based actions have to be done when
the usage clock on a part or subsystem reaches a particular value;
personnel has to be available to do the job (mechanics can only do
jobs that they are qualified for), and maintenance jobs have to be
inspected by a quality/safety inspector and so forth. However, this
initial work does not optimize the maintenance schedule given
that support for the flight operation was the top priority.

In contrast to Van Buskirk et al. (2002), Steiner (2006) pre-
sented a heuristic for aircraft maintenance planning, aiming at
minimizing the overall number of maintenance actions and uni-
formly distributing the capacity and flying hours over a given time
horizon. The main idea was to split the whole process into sub-
processes that could be handled computationally fast at the same
time. Determining the optimal position of the maintenance actions
was the least difficult one, whereas the balancing step was the
most challenging one. Even under various settings and constraints,
the proposed algorithms have shown to work reliably, fast, and
with good optimization results. According to the case study for a
5-year time horizon, the number of tasks scheduled per fleet was
around 50-500. The time to compute a new maintenance plan was
about 15 minutes.

In practice, many large airlines adopt the top-down approach
by appropriately grouping maintenance tasks into large packages
and fitting them into letter checks. Muchiri and Smit (2009) fol-
lowed this approach and developed a maintenance item allocation
model (MIAM) to cluster aircraft maintenance tasks into packages.
The MIAM first simulates the aircraft utilization, calculates when
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a maintenance item turns due, and then fits each maintenance
item into a package. The authors use the concept of de-escalation
to assess the quality of their MIAM, which can be interpreted as
the loss associated with maintenance items being performed more
frequently than necessary. The authors proposed a translation of
the de-escalation into additional labor costs essential in the long-
term to perform extra maintenance activities. According to a case
study of a Boeing 737-NG aircraft, the authors claimed that intro-
ducing an initial de-escalation, i.e., performing the first base main-
tenance before its due date, leads to a lower de-escalation labor
cost over time. The authors obtained the best result for an initial
de-escalation of 30 days, leading to a savings of 248 labor hours
(or €13,902) for a single aircraft. The importance of Muchiri and
Smit (2009) is that it provides an alternative of assessing main-
tenance costs using the causal relationship between expense and
labor hours.

Maintenance operation costs, in more detail, include the costs
of maintenance tools, labor hours, and aircraft spare parts. Each
maintenance task associates a cost. Since there are 1000-3000
tasks involved in aircraft maintenance, and many tasks can be
performed in parallel, one of the biggest challenges is to execute
the right maintenance task at the right time. Assigning priori-
ties to maintenance tasks, such as the rule of “the most urgent
task first”, can significantly reduce problem complexity. Holzel,
Schroder, Schilling, and Gollnick (2012) considered this aspect and
presented an optimization method for aircraft maintenance task al-
location integrating simulations of aircraft life-cycles. In a real-life
application, the authors obtained the best results when sorting the
tasks by cost (labor hours) in descending order. In this way, the
optimizer allocated the most expensive tasks to maintenance op-
portunities closer to the end of the lives of the components.

From an efficiency perspective, finding the best maintenance
opportunities and allocating maintenance tasks one after another
is exceptionally time-consuming. Since each task has some basic
properties to indicate similarities, such as ATA code, maintenance
interval, zone, and check type, it is more convenient to combine
several similar tasks into a work package and reduce the total
number of tasks. Li, Zuo, Lei, Liang, and Lu (2015) followed this
idea and gave different weights on properties to indicate task sim-
ilarities. Based on engineering experience, weighting factors 0.05,
0.8, 0.05, and 0.1 are assigned to ATA code, maintenance interval,
zone, and check, respectively. The authors solved the TAP of an air-
line using a fuzzy C-means clustering algorithm. Although conver-
gence and improvements were both achieved, the authors stated
there are still some pitfalls that need to be investigated, such as
the influence of model parameters on solution quality and conver-
gence rate.

In general, the literature on TAP, especially for a long term plan-
ning horizon, is very limited. Some of them address TAP on air-
craft level (Li et al., 2015; Muchiri & Smit, 2009), while others on
fleet level (Holzel et al., 2012; Steiner, 2006; Van Buskirk et al.,
2002). Even in the research work of TAP in fleet level, the authors
tackled task allocation of each aircraft independently, and eventu-
ally looped over the entire fleet. Furthermore, none of those re-
lated works has assessed the optimality of the proposed models or
heuristics. There is no comparison of how close the solution from
proposed models or heuristics to local/global optimum.

2.2. The bin packing problem

Despite the various task allocation models and methods dis-
cussed before, the TAP of aircraft maintenance is very analogous
with bin packing problem (BPP), where for TAP, the maintenance
opportunities are equivalent to bins, and maintenance tasks are
considered as items. The keys to solving BPP are the bin se-
lection and item allocation. For bin selection strategies, Johnson
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(1974) lists four fundamental and widely used algorithms, next-fit
(NF), first-fit (FF), best-fit (BF), and worst-fit (WF):

o Next-Fit (NF): If the item fits in the same bin as the previous
item, put it there. Otherwise, open a new bin and put it in
there.

First-Fit (FF): Put each item as you come to it into the oldest
(earliest opened) bin into which it fits. Only open a new bin if
an item does not fit into any previous bin.

Best-Fit (BF): Put items in bins in a way that it maximizes the
utilization of the bins that already have been opened.

Worst-Fit (WF): Put each item into the emptiest bin among
those with something in them. Only start a new bin if the item
does not fit into any bin that has already been started. If there
are two or more bins already started which are tied for empti-
est, use the bin opened earliest from among those tied.

If all items are the same size, there is no difference in the four
algorithms. Since items are very likely to have different sizes, the
allocation of items to bins becomes intricate and time-consuming.
And this may involve shifting bin contents continuously until the
item list is empty. Thus, some researchers proposed prioritizing
the items before putting them in bins. Johnson (1972) has sug-
gested some alternatives to the FF and BF. The author states that
if the items are sorted in descending order (i.e., the largest item
goes first), the worst-case behavior of bin packing problems can
be significantly improved. Therefore, it is now a common step
to prioritize items before allocation when solving the BPP. The
resulting algorithms are the equivalent first-fit decreasing (FFD)
and best-fit decreasing (BFD) algorithms. Similarly, there are also
next-fit decreasing (NFD) and worst fit decreasing (WFD) algorithms.

In practice, not only items can have various sizes, but also bins
can have different capacities, and this leads to variable-sized BPP
(VS-BPP). VS-BPP is an extension of the classic BPP, in which bins
no longer have the same size, and the cost of a bin is proportional
to its size (Friesen & Langston, 1986). VS-BPP is more challeng-
ing since putting items in bins affects the selections of opening
new bins later on and item allocations and vice versa. VS-BPP is
NP-hard (Correia, Gouveia, & da Gama, 2008). Researchers tend to
solve it using approximation algorithms instead of finding the ex-
act global optimum. Friesen and Langston (1986) listed some algo-
rithms for VS-BPP, such as next-fit using largest bins only (NFL), and
first fit decreasing using largest bins and at the end repack to small-
est possible bins (FFDLR). The authors also showed that allowing
repacking small bins and shifting bin contents improves algorithm
efficiency. And the FFDLR has better worst-case performance than
NFL because there is no repacking in the NFL. Friesen and Langston
(1986) further developed a new algorithm first fit decreasing us-
ing the largest bins, but shifting as necessary (FFDLS) to dynamically
shifting bin contents during the construction of packing. Case stud-
ies prove that with dynamically shifting bin contents, FFDLS out-
performs both NFL and FFDLR in the worst cases.

While Friesen and Langston (1986) is one of the first works in
VS-BPP, research in this topic continues and flourishes in many
other studies (Correia et al., 2008; Csirik, 1989; Haouari & Serairi,
2009; Kang & Park, 2003). The main focus of these studies is on
the development of algorithms. There is no deadline for putting
each item in bins in all of those studies. VS-BPP in scheduling,
especially maintenance planning, is very distinct from other fields
due to time constraints. For example, each maintenance task asso-
ciates a due date. In VS-BPP, it is equivalent to imposing a deadline
for each item (each item has to be put in a bin before a specific
time). Besides, and some tasks have to be performed repeatedly.
Once the task is executed, we can anticipate the next arrival time
of the same task.

The arrival times of items and item allocation deadlines make
the maintenance scheduling related VS-BPP unique and more
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complex. Some researchers categorize the VS-BPP, in which each
item has an associated arrival time and allocation deadline, as
time-constrained VS-BPP (TC-VS-BPP). In one of the very few avail-
able references, Fazi, van Woensel, and Fransoo (2012) presents
a Markov Chain Monte Carlo (MCMC) heuristic to address the
TC-VS-BPP in a working paper. The main difference between
TC-VS-BPP and VS-BPP is that in TC-VS-BPP, the arrival times of
the items have specific patterns, e.g., a probability distribution
in Fazi et al. (2012), and each item has to be allocated before a
particular deadline. The MCMC heuristic is a combination of local
search and Monte Carlo sampling. It starts with a simple greedy
approach to obtain an initial feasible solution. In this step, the
authors create two non-ordered lists for bins and items, respec-
tively, and apply the FF algorithm to put items in bins. After that,
the authors use MCMC to improve the initial feasible solutions
iteratively. One interesting finding from Fazi et al. (2012) is that
when time constraints are introduced, smaller and faster bins are
preferred to meet the deadlines. But in the classical VS-BPP, items
are often concentrated in few high capacitated bins. Two main
features in TC-VS-BPP, arrival times of the items and deadlines
of the items (Fazi et al., 2012), are also common in maintenance
scheduling. Since most of the maintenance tasks have deadlines
and follow periodic patterns, once a task is performed, we can
already anticipate its next execution.

The review of the literature on TAP, BPP, VS-BPP, TC-VS-BPP,
and corresponding solution techniques indicates that an aircraft
maintenance TAP is similar to TC-VS-BPP in the model formula-
tion in terms of maintenance capacity constraints, availability of
each maintenance hangar, the different costs in task execution,
workloads of performing tasks, task execution intervals, and dead-
lines of the maintenance tasks, meaning that the solution strate-
gies, such as NFD/FFD/BFD/WFD, to BPP/VS-BPP/TC-VS-BPP, can be
used to address TAP. Based on the findings from the literature, we
propose a constructive heuristic based on the WFD algorithm to
solve the long-term aircraft maintenance TAP. The main reason is
that more than 55% of the tasks belong to heavy maintenance (C-
/D-check), and we want to let the available workforce address as
many heavy maintenance tasks (large task blocks) as possible in
aircraft C-checks. In our problem, we are not trying to reduce the
number of bins being used - these were already pre-defined in
the maintenance schedule and as a consequence of the overlap-
ping of multiple checks in time. Furthermore, we want to spread
the tasks over the multiple bins in such a way that we avoid re-
source limitations at any point. So the idea is always to allocate
the item to the bin with the minimum load (or higher resources
available). Since our work focuses on practical application, instead
of worst-case performance analysis, we compare the results from
the heuristic to a solution from exact methods.

3. Problem formulation

In this section we define the TC-VS-BPP for aircraft mainte-
nance task allcoation. We start the section with specifying the
problem and its scope (Section 3.1), followed by a description of
the assumptions followed (Section 3.2). In Section 3.3 we introduce
some model considerations, including the concept of time segment
and the generation of the task items in our TC-VS-BPP. Finally, in
Section 3.4 we present the optimization model formulation.

3.1. Problem definition and scope

3.1.1. Task Classes

In the aircraft maintenance context, tasks can represent regular
maintenance jobs needed for the continuous airworthiness of the
aircraft or repairing works that need to be performed to correct
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malfunctions or damage. Accordingly, the tasks can be divided into
two main classes (Ackert, 2018):

» Routine Tasks: these are the regular tasks outlined in a Main-
tenance Planning Document (MPD) provided by the aircraft
manufacture or defined by the airline in their Operator Ap-
proved Maintenance Program (OAMP). These tasks have to be
scheduled within certain fixed intervals, specified in terms of
usage parameters such as FH, FC, and calendar days. A routine
task has to be performed before one of the usage parameters
reaches the specified interval.

+ Non-Routine Tasks: these are non-scheduled tasks that can re-
sult from defaults or damage identified when executing a rou-
tine task, pilot reports, or abnormal events such as hard land-
ings or ground damages. They can also represent abnormal
maintenance interventions suggested by, e.g., the aircraft man-
ufacturer (service bulletins) or the regulatory body (airworthi-
ness directives). When generated, these tasks are also associ-
ated with a time window for their execution. And this time
window can vary from having to perform the task before the
next flight to a couple of weeks after they were generated.

3.1.2. Task intervals

The aircraft maintenance tasks, regardless of being routine or
non-routine, have to be allocated to a maintenance event. These
events include line maintenance inspections (i.e., performed at the
ramp or remote stands during the turn-around time of the aircraft)
and hangar inspections. In this article, we only consider the latter
and ignore the small tasks usually performed during line mainte-
nance inspections.

Workforce

The available workforce constrains the task allocation to main-
tenance check; each maintenance task is associated with the work-
force requirements to perform the task. The maintenance work-
force is divided per skill types (e.g., engines and flight control
systems, avionics, aircraft metallic structure, and painting techni-
cians). It is limited per day or shift, according to the daily work-
force schedule. In this study, the availability of the workforce per
skill is an input to the model. The number of hours needed per
skill type is a characteristic of the task, which can only be allo-
cated to a maintenance opportunity if there is enough workforce
for all skill types involved in task execution.

3.1.3. Time horizon

Given that routine tasks have to be scheduled based on inter-
vals and that these intervals are re-started every time the tasks are
performed, the TAP should consider a time horizon that is large
enough to cover at least two following task executions. The reason
being that, otherwise, a possible action could be to delay the first
task as much a possible, disregarding the possibility of executing
the tasks the next time. And this can result in a poor or unfea-
sible solution in the long-term. For this reason, given that some
tasks having very large intervals (i.e., some are not performed ev-
ery year), a multi-year planning horizon is adopted.

3.14. Sequential approach

To plan hangar inspection tasks, we follow a sequential ap-
proach, consistent with the practice of most airlines. That is, we as-
sume that the aircraft maintenance check scheduling (AMCS) was
solved beforehand and that an optimal letter check schedule is
provided. According to this schedule, each check is considered as
a maintenance opportunity to perform a maintenance task. Conse-
quently, the goal of the TAP is to allocate the maintenance tasks to
the opportunities that are as close as possible to their due dates.
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Fig. 2. Overlapped maintenance checks are divided into several time segments.

3.2. Assumptions

This research is subject to the following assumptions:

. There are sufficient aircraft spare parts and available mainte-
nance tools and equipment, without constraining the optimal
allocation of tasks.

. The optimal allocation of tasks is constrained by the workforce
available. The optimal distribution of tasks per shift or worker
is not considered in the TAP.

. A-check tasks can be performed in a C-check, but not the other
way around.

. Non-routine tasks generated while executing other tasks can
also be performed during the same check, and this is consid-
ered by augmenting the task duration and labor power needed
according to “non-routine rates” estimated from historical data.

The first two assumptions are reasonable, considering that the
TAP is a long-term problem and spare parts, maintenance tools
and equipment, and labor force are planned following the mainte-
nance schedule. Assumptions A3 and A4 are common in practice.
The first, because the resources, skills, and time needed to perform
most C-check tasks are not compatible with the planning of an A-
check. The second, because the differing tasks from a hangar check
can result in pressure to perform these tasks another day, even-
tually causing disruptions in operations. Therefore, airlines usually
prefer to pre-allocate a time and workforce buffer in each mainte-
nance check to execute these non-routine tasks.

3.3. Model considerations

3.3.1. Time segments

In practice, maintenance operators are typically confronted with
situations of overlapped maintenance checks, in which several air-
craft undergo the same type of maintenance check at the time and
therefore competing for the limited maintenance resources. Fig. 2
depicts an example of such a schedule, and five aircraft are sched-
uled to perform C-checks maintenance between Apr 215 and May
30, During these overlap periods, resources have to be shared,
constraining the optimal allocation of tasks.

We divide the planning horizon depicted in Fig. 2 into time seg-
ments. A time segment is created every time the overlap condi-
tions change. In Fig. 2, the overlap of checks change on Apr 24th
and 30™, May 12th, 15th  18th 215t and 30t™. Therefore, we cre-
ate seven time segments: Apr 215t-24t Apr 24th_30th Apr 30th-
May 12th May 12th-15th May 15th-18th May 18t"-215t and May
215t-30th, Each time segment of an aircraft is considered to be a
bin, with a given duration (in days) and constrained by the labor
available on these days for each given skill type. For example, AC-
1 has four bins, T4-T8; AC-5 has only one bin, T3; AC-16 has four
bins, T1-T4; AC-17 has five bins, T2-T6; AC-21 has two bins, T6
and T7. It is worth mentioning that all the bins and their associ-
ated sizes are defined based on the maintenance check schedule
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and kept open. Unlike the classic BPP, we do not need to open a
bin when we allocate items (tasks). For the rest of the paper, when
we refer to TC-VS-BPP, we also imply that all the bins are prede-
termined.

3.3.2. Task items and maintenance opportunities

Most routine tasks have to be scheduled more than once for
the same aircraft over the time horizon considered. For example,
a task that has to be performed in every A-check (about every 7-
8 weeks), may have to be executed 38 times in a 5-year horizon.
In our approach, we consider each occurrence of these tasks to be
an item in our TC-VS-BPP. That is, a routine task that has to be
executed at most N times in the planning horizon will be trans-
lated into N tasks items in our optimization model. To do so, we
have to estimate the maximum number of repetitions in the plan-
ning horizon. Table 1 illustrates our approach for a given task of
a specific aircraft. In this example, the maintenance task has to be
performed every ten weeks, while the aircraft A-checks are per-
formed every seven weeks. There are five maintenance events dur-
ing the time horizon for the execution of the task (four aircraft A-
checks and one aircraft C-check, presented in chronological order).
This task can be executed from two times (only in A2 and A3) to
five times (in every maintenance check), which can be translated
as five task items in the task allocation. The procedure for creating
task items and defining the respective maintenance opportunities
can be summarized as follows:

- Step 1: The maintenance opportunities for the first execution
of the task are determined, according to the state of the task at
the start of the planning horizon and its inspection interval.

- Step 2: If the earliest maintenance opportunity for the previous
task item is the last maintenance event in the planning horizon,
we stop. Otherwise, we create a new task item (next execution).

- Step 3: For the new task item (new execution),

o Step 3.1: the first maintenance opportunity is the mainte-
nance event right after the earliest maintenance opportunity
from the previous task item;

o Step 3.2: the last maintenance opportunity is the last main-
tenance event, within the planning horizon, that can be con-
sidered before the end of its fixed interval.

o Step 3.3: all maintenance events between the first and
last maintenance opportunities are considered in the set of
maintenance opportunities.

- Step 4: Go back to Step 2.

For the task items which can potentially be allocated to a main-
tenance check after the end of the planning horizon, we create a
fictitious maintenance opportunity (bin). The fictitious bin is needed
because, eventually, not all task items have to be allocated within
the planning horizon to keep the aircraft airworthy. The fictitious
bin is added on the day right after the end of the planning horizon,
associated with infinite resources and no costs, and it is consid-
ered as a bin for all task items that can be scheduled after the end
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Illustration of the maintenance opportunities for repeated items of one maintenance
task with an inspection interval of 10 weeks (Task 1;-1s represent the 15t-5™ exe-
cution of the same task). The value of “1” indicates that the associated maintenance
check (column) is a possible maintenance opportunity for the execution (row).

Al A2 C1 A3 A4 Fictitious
week 1 week 8 week 12 week 15  week 22 opportunity
Task 1; 1 1 0 0 0 0
Task 1, 0 1 1 1 0 0
Task 13 0 0 1 1 1 1
Task 1, O 0 0 1 1 1
Task 15 0 0 0 0 1 1

of the planning horizon. This step-wise approach, repeated to all
maintenance tasks, will result in a list of task items N, per aircraft
k and the respective set of maintenance opportunities R;; associ-
ated with each task i in the list.

There are several task execution plans for the example pre-
sented in Table 1. Each plan is associated with a de-escalation cost,
depending on the letter checks that the task is executed. We can
choose a high-cost plan in which the task is executed in every
maintenance check (i.e., five times in the planning horizon) or a
low-cost plan in which the task is executed only twice, during the
A1l and the A3 checks. Even for two plans with the same num-
ber of total executions of a task, the de-escalation is different. For
instance, performing the task in A2, C1 and A3 results in a de-
escalation cost of:

(10— 8) +[10 — (12 — 8)] +[10 — (15 — 12)] = 15 weeks (1)

executing the task in A2, A3 and A4 results in a de-escalation cost
of:

(10—8) +[10— (15— 8)] +[10 — (22 — 15)] = 8 weeks  (2)

We can observe from (1) and (2) that the latter execution plan has
a lower de-escalation cost, and the goal of task allocation is to find
the task execution plan with the lowest cost, given the resources
available and the urgency of other tasks “competing” for the same
maintenance opportunities.

3.4. Problem formulation

3.4.1. Nomenclature
o Sets
e i: task indicator
o K: set of aircraft
o N;: set of task items for aircraft k (k € K)
o Tp: set of time segments for aircraft k (k € K)
* R;: set of time segments for task item i (i € Nj) of aircraft
k (k € K)
J: set of skills
¢ O; unit set with the task item that follows task item i (i €
Ny,) of aircraft k (k € K)

o Parameters

. c,F'k: cost of allocating task item i (i € N;,) from aircraft k (k €
K) to maintenance opportunity belonging to time segment t
(teT)

. ﬁ{; amount of available labor hours of skill type j (j €J) at
time segment ¢

. GR{.k: amount of labor hours of skill type j prescribed to per-
form task item i of aircraft k

« oll; “non-routine rate” indicating the amount of labor hours
needed from skill type | for every labor-hour prescribed
from skill type j (note: o4 > 1.0 Vje])

. Eivk: maximum number of days between rescheduling task
item i (t € Tp,) for aircraft k (k € K)
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e d': number of days from the start of the planning horizon
till maintenance opportunity belonging to time segment ¢t

. ﬁi,k: maximum number of flight-hours between reschedul-
ing task item i for aircraft k

e fht: number of accumulated flight-hours from the start of
the planning horizon till maintenance opportunity belong-
ing to time segment ¢t

. ﬁ,-,k: maximum number of flight-cycles between reschedul-
ing task item i for aircraft k

e fct: number of accumulated flight-cycles from the start of

the planning horizon till maintenance opportunity belong-

ing to time segment t

O_day;: total days of aircraft operations from the start of the

planning horizon to the due date of performing task item i,

following the task fix interval and if no resource constraints

are considered

interval;: average fix interval for task item i measured in

days

labor_rate;: labor rate, per hour, of skill type j (j €])

other_costs; ,: non-labor costs associated with task item i

(i € Ni) of aircraft k (k € K), such as costs of spare parts and

tooling

« Decision variables
. xIFk: 1 if task item i is assigned to maintenance opportunity
belonging to time segment t for aircraft k, and 0 otherwise

Mixed Integer Linear Programming (MILP) Formulation
Given a long-term aircraft A- and C-check schedule, we formu-
lated the TAP as a 0-1 MILP model.

min) "N xxf (3)
keK ieNy teR;

subject to:
dox,=1 VieN, Vkek (4)
teR;y
DY DGR xx xo <GR, VteT, Vle] (5)
keK ieNy, jeJ
Z dm er;kf Z dt XXkaSEi.k ViENk VpEOLk Vk e K
meR,, teR;y

(6)
Do OFAt X = 3" fhtx X, < fhy  VieN, VpeOy  Vkek
meR, i teRiy

(7)
D ft kX =Y fe <X < fo,  VieN, VpeOy  Vkek
meR, teRik

(8)
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Xf,k €{0,1} VkeK VieN, VteT, (9)

The objective function (3) aims at minimizing the total mainte-
nance costs, which reflect the de-escalation costs associated with
scheduling the task earlier than its due date and, consequently,
having to perform the task more frequently in the future. To com-
pute these costs, we estimate the due date to allocate the task
item beforehand. For example, if a maintenance task is to replace
an aircraft component, based on its previous execution date and
the associated maintenance interval, we simulate the utilization of
the component using the average aircraft’s daily utilization. In this
way, we can estimate the next due date of replacing this compo-
nent and its ideal maximum utilization O_day;. The de-escalation
costs can then be calculated by comparing how earlier the task
item is allocated when compared with its desired day (Holzel et al.,
2012):

¢ O_day; — d*

Lk “interval;

. [Z (Z o
jel \leJ

K X a"j) x labor_rate; + other_costs,»i|

(10)

The de-escalation costs indicated by (10) is a reference cost used as
a proxy of the goal of scheduling the tasks as later as possible, or
as less frequent as possible. In (10), the cost of allocating task item
i of aircraft k to maintenance opportunity t is a function of the
wasted interval of the task (first term), the labor hours required to
perform the task (second term), the labor hours cost per labor skill
(third term) and additional costs associated with maintenance task
i such as the cost for materials or expensive tooling (last term).
And this formulation aims at allocating tasks to the maintenance
opportunity closer to its due date while giving a higher priority to
labor-intensive tasks and tasks involving many labor skills or high
additional costs.

Constraints (4) guarantee that each task item is allocated ex-
actly once, either to a maintenance event or to the fictitious main-
tenance event after the planning horizon. Constraints (5) make
sure that the available labor hours for each skill type is not ex-
ceeded in each of the maintenance time segments. The left-hand
side of these constraints sums the labor hours needed to perform
each task item, including the workforce needed to perform the task
and, eventually, associated “non-routine” tasks. These two sets of
constraints are the ones that define the classic VS-BPP. The other
three set of constraints (6)-(8) are the features of TC-VS-BPP and
also ones that represent the maintenance time-intervals. They im-
ply the arrivals and deadline of tasks. Constraints (6) guarantee
that a subsequent task item is scheduled within the number of
days defined in the fix interval for the respective task, while con-
straints (7) and (8) reflect the fix interval in terms of flight-hours
and flight-cycles, respectively.

4. Task allocation framework

The same as BPP, TC-VS-BPP is also NP-hard (Garey & Johnson,
1990). Optimal solutions to small TC-VS-BPPs can be obtained us-
ing exact methods. Still, unfortunately, when the size of the prob-
lem grows, the running times of these exact methods become pro-
hibitive, especially for practical implementations. For this reason,
we propose a constructive heuristic to solve the TAP efficiently. The
proposed approach is an iterative process based on the WFD al-
gorithm. To the TAP for aircraft maintenance, we start by sorting
the tasks from the multiple aircraft into decreasing order of prior-
ity and then allocate those tasks one after another to the suitable
bin that has a lower load. In this section, we provide details on
the proposed constructive heuristic, explaining the general frame-
work, including the input data (Section 4.1), the necessary pre-
computation (Section 4.2) and the algorithm itself (Section 4.3).
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4.1. Input data

Four sets of input data are needed to formulate and solve the
TAP. The first set consists of maintenance task information present
in the OAMP for the considered aircraft fleet. This information
is not necessarily limited to maintenance tasks described in the
MPD. It could include additional maintenance tasks as required
by the airline, service bulletins, airworthiness directives, deferred
defects, or modifications (Ackert, 2018). Furthermore, information
about the last executed date of the routine tasks is used to calcu-
late the first due-date of the maintenance task. The second set in-
cludes the estimated daily aircraft utilization, in DY, FH, and FC, of
each aircraft for the entire time horizon. For the short term, these
values could be obtained using aircraft routes or flight schedules,
while in the long run, the most common approach is to use aver-
age aircraft utilization per day of the week, per month, or season.
It is convenient, however, to use the same input values used to
produce the maintenance check schedule. The third set of input is
the available workforce per skill type, per day, for the entire time
horizon. Again, detailed daily schedules could be provided for the
short term, while the average workforce per day can be used for
the longer term. The last set of data used is the A- and C-check
schedule, defining the starting dates and duration of all checks in
the planning horizon for each aircraft in the fleet.

4.2. Pre-computation

A set of pre-computation steps are necessary before initiating
the constructive task allocation algorithm. These steps can be di-
vided into task items and bins related pre-computations. Start-
ing with the task items related steps, maintenance tasks from the
same aircraft that have identical intervals, in terms of FH, FC, and
DY, are clustered together to reduce the number of tasks to be con-
sidered. For the resulting tasks, a set of task items are created, fol-
lowing the procedure explained in Section 3.3. The following step
is to compute the due-dates for the first item of the maintenance
tasks. And this is done by considering the initial state of each task
(i.e., number of FH, FC, and DY since its previous execution), the
task intervals as defined by the OEM or airline, and the simulation
of the aircraft utilization over time. Some tasks, such as deferred
defects or modifications, can be input already with fixed due dates
instead of task intervals.

For the bin related steps, the checks schedule is used to di-
vide the maintenance opportunities into bins, as explained in
Section 3.3.1. The bins are variable in size and discrete, composed
by a set of days. After that, we continue to convert the labor power
obtained per day into labor power available per bin.

4.3. Constructive heuristic

A constructive heuristic based on WFD is proposed for task
allocation. The pseudo-code of the heuristic is presented in
Algorithm 1, while the main procedures of the heuristic are ex-
plained next.

Sort Task List

After uploading the input data, the first procedure is to sort
the task items list according to the priorities of the items included
in the list. The prioritization is done according to a prioritization
function p(i) that classifies each task item i. This prioritization
function divides task items into three classes:

e High Priority - these are items from maintenance tasks that
have an interval equal to the interval of the aircraft checks. The
allocation process for these items is trivial since those tasks
have to be allocated to all equivalent checks in the schedule.
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Algorithm 1 Task Allocation Algorithm.

1:
2:
3:

10:

12:

13:
14:
15:
16:
17:

18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

34:
35:

N <« set of task items from all aircraft, N = UN,

@i < available labor hours from skill j in bin ¢

GR{_ < amount of labor hours of skill j prescribed to perform
task item i of aircraft k

: 0jm < “non-routine rate” from skill m from every hour of skill j

: procedure SORT TASK ITEMS LIST

Sort and reindex N so that p(i;) > p(i3) > ...
Prioritization of task items

> p(in) >

: end procedure

: procedure TAsK ITEMS Loop

while N # ¢ do

Select i from N > Select the first task in the list

Ri < R; Uty > Add ty as a fictitious opportunity
Sort and reindex R; so that Zﬁﬁm > Zﬁfﬂ T
) jeJ Jjel
Z GR{i,n
Jjel
procedure ALLOCATE TO BIN
n<«~0
while n < |R;| do
n<n+1
if GRl > Y GR/, x0j,  Vme] then
Jjel
Allocate i to t;
Set GR, =GR, —> GRl xoj, Vme]
jeJ
Compute next due-date for task item i
if Next due-date not within time horizon then
N < N\ {i} > Remove the maintenance task
else
Sort Task Items List
end if
break
end if
if n = |R;| then > In case of no allocation possible
Allocate i to tg
Report Alert
end if
end while
end procedure
end while

end procedure

This strategy of starting the allocation process with these tasks
follows the scheduling practice observed in practice, assigning
the workforce necessary to these tasks before starting the allo-
cation of maintenance tasks with more flexibility.

Medium Priority — these are the maintenance tasks dephased
from the aircraft checks intervals. Each of these tasks has an
interval length larger than the A-check interval (e.g., the task
in Table 1) and hence they will not necessarily be allocated to
every maintenance check.

Low Priority - these are the maintenance tasks with a low
frequency of occurrence. They are dephased from the aircraft
checks by, at least, being able to skip at least one A-check from
any day within the planning horizon. These tasks have some
flexibility, and they can be allocated at last.

The tasks within each of these classes are sorted by the main-

tenance costs, as expressed in the second and third terms in (10).
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4.3.1. Task items loop

Task item loop (TIL) is the main procedure of the algorithm. The
goal is to choose the best maintenance opportunity that minimizes
the maintenance costs, as defined in (10), and to select from the
bins the one that less compromises the best allocation of subse-
quent task items. After sorting all the task items according to their
costs, the first task item has the highest priority; the second task
item has the second-highest priority, and so forth. We define a list
of bins that would allow a feasible allocation of task item i before
the associate task interval is expired according to the maintenance
check schedule. A fictitious bin (tg) is added to this list of bins in
case none of the available bins has enough resources to allocate
the task item. Other than that, we will not create any new bin dur-
ing the task allocation.

After that, we sort the available bins for task item i accord-
ing to the maintenance resources within bins in descending or-
der. Namely, the bin with the most resources is always the first
to assign the task in it. After that, the allocation of each task item
following a “worst bin” selection process in the fourth step. There-
fore, the TIL procedure gives a higher preference to the bins closer
to the due date of the task item and, among these bins, to the ones
that have more available maintenance resources.

4.3.2. Allocation of tasks to bins

The next procedure is to allocate the task items to a bin, fol-
lowing the sorted list of bins. If the bin under consideration has
enough available labor hours for the necessary skills to perform
the respective maintenance task, we allocate an item to the bin.
In this case, we subtract the labor hours consumed to execute the
task from the total available labor hours from that bin. The next
step is to check the need to remove the task that has been allo-
cated. For a routine task, we simulate the evolution of usage pa-
rameters after allocation and estimate its new date according to
aircraft daily utilization. If the next due date is beyond the end of
the time horizon, we just remove the task from the task item list.
For a non-routine task, since they are not recurrently performed,
we generate a new due date after the end of the planning hori-
zon. For the case of running out of bins to which the task can be
allocated, we generate an alert and put the task into fictitious bin
to. This fictitious bin includes all the tasks that have not been al-
located to any available bin, and we will inform the maintenance
controller and let them address those tasks.

5. Case study

In this section, we present a case study on a major European
airline and illustrate the applicability of the TAP approach. The in-
put data includes aircraft utilization, a 4-year maintenance sched-
ule generated by the dynamic programming based methodology
described in the paper of Deng, Santos, and Curran (2020), task in-
formation from a heterogeneous fleet of 45 aircraft, and an associ-
ated estimation of available workforce per day. Our airline partner
currently follows a manual process to allocate the aircraft mainte-
nance tasks to checks, supported by a digital solution that keeps
track of the open tasks and suggests a prioritization of mainte-
nance activities. There are two maintenance planners in the airline
doing this job for the entire fleet.

We consider eight skill types and that the productivity factor of
each worker is equivalent to 4.8 productive labor hours per day,
following the airline practice. The remaining hours of the labor
shift are dedicated to transitioning meetings between work shifts,
collection of materials or equipment, obtaining information about
the maintenance task, reporting, and ancillary activities.

The results from this case study are discussed in Section 5.1,
followed by an analysis of the current airline practice of not per-
forming any aircraft C-check tasks in an A-check (Section 5.2). In
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Fig. 4. The amount of labor hours used for each skill type during the time segments within the overlap situation. Each time segment has eight different bars and each bar

represent a particular skill type (Group 1, Group 2,..., Group 8).

Section 5.3, we validate the results obtained using the proposed
task allocation heuristic. We suggest assessing the algorithm per-
formance by comparing it with the solution obtained when using
an exact method for solving the MILP presented in Section 3.4. Fur-
thermore, all results obtained by the proposed heuristic were vali-
dated by the maintenance planners of the airline partner.

5.1. Optimization results

In this subsection, we apply the proposed task allocation al-
gorithm to the case study, following the airline current policy of
not allowing to allocate C-check tasks to A-check maintenance op-
portunities. The problem was solved in less than 14 minutes by
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the algorithm. The outcome is a 4-year, fleet-wide task allocation
plan that satisfies labor-hour constraints and tasks fix intervals.
The plan includes around 85 thousand task items, from which 24%
of them are C-check tasks, and 76% are A-check tasks. Despite this,
the C-check tasks consume about 65.5% of the labor hours allo-
cated to perform the tasks. The algorithm achieves an average de-
escalation of 205 days for C-check tasks and 19.3 days for A-check
tasks.

Fig. 3 shows the distribution of labor hours per skill for the
maintenance of all aircraft in the fleet for the full planning horizon.
There is significant diversity in the required labor hours among the
aircraft. And the difference in aircraft age, the number of C-check
events in the maintenance schedule, and the differences in terms
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Fig. 5. Average wasted interval in days for increased C-check task labor hours thresholds.

of aircraft utilization cause this diversity. For instance, aircraft
AC-41 is phased-out a few days after the start of the planning
horizon, while AC-24 is phased out one and half years after the
beginning of the planning horizon, following a minor C-check and
10 A-checks. In the same way, it is possible to identify the aircraft
that perform a C-check early in the planning horizon and hence
have to undergo three C-check before the end of the planning
horizon. And this applies to aircraft AC-25, AC-26, and AC-29.

To analyze the maintenance plan in more detail, we decided to
focus on the overlap situation presented in Fig. 2. The allocation
of labor hours per time segment is depicted in Fig. 4. In this fig-
ure, there are eight bars per time-segment, representing the eight
different skill types. We observe that the first six time-segments
consume all the available labor hours of the Group 2 skill type.
And this restricts the allocation of tasks requiring labor hours from
Group 2 skill for AC-5, AC-16, and AC-17 since these aircraft will
have a fully constrained overlap situation. And this forces some of
the A-check tasks from these aircraft to be allocated to a previous
A-check. Similarly, there are also C-check tasks being anticipated
at an earlier C-check. In the latter case, it means that some com-
ponents are inspected or replaced about two years earlier than in-
tended.

5.2. Flexible task allocation policy

In this subsection, we question the current airline policy of not
allocating any C-check task to A-check maintenance opportunities,
even though we observe that there is a surplus of labor hours in
the A-checks scheduled. Several small C-check tasks would fit in
an A-check, in terms of time and resources needed. For this rea-
son, we performed a simulation in which these C-check tasks are
allowed to be allocated to A-check opportunities. We carry out the
analysis considering different thresholds for the size of these tasks.
After discussing with maintenance planners from the airline, we
agree on using the labor hours needed for the task as the refer-
ence metric for task size, and to consider a threshold varying from
zero to 2.5 labor hours.

The simulation results (presented in Fig. 5) indicate that the de-
escalation of C-check tasks can be reduced from more 205 days to
132 days when allowing C-check tasks within 2.5 labor hours to
be executed on A-check opportunities. From the results, it can also
be concluded that the marginal gain of extending the threshold re-
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duces as the threshold increases in value. In fact, it can be inferred
from Fig. 5 that, for this airline, after a labor hours threshold of
2.0 or 2.5, there are barely any benefits of extending this thresh-
old. The reason being that very few C-check tasks consume more
than 2.5 labor hours and can still be allocated in an A-check with-
out compromising the allocation of the A-check tasks to their best
A-check opportunities.

5.3. Algorithm performance analysis

To analyze the performance of the task allocation algorithm, we
compare it with the performance of an approach using an exact
method to solve the TAP formulated in Section 3.4. To provide a
more detailed comparison, we decided to vary the productivity fac-
tor of the workforce, from the initial considered 4.8 labor hours per
day to a restricted case of 3.2 labor hours per day.

To compute solutions with the exact method in a reasonable
time for the more restricted cases, we follow an iterative pro-
cess for the creation of task items and maintenance opportunities
for each maintenance task (Section 3.3.1). That is, we initially run
the MILP, then add new items and maintenance opportunities for
those task items that had the constraints violated and rerun the
MILP until the problem becomes feasible. For the 4.8 labor hours
case, the MILP formulation resulted in 1.15 million decision vari-
ables and 373 thousand constraints. The task allocation algorithm
is coded in Python 3.7, while the exact method is addressed using
the commercial solver Gurobi. The results from both approaches
are computed on an Intel Core i7 2.6 GHz laptop with 8GB ram.

We summarize the results in Table 2. Each line of Table 2 com-
pares the computation times and presents the optimality gap for a
given productivity factor between two different approaches, where
the results obtained from the solver is used as a reference. While
the computation time of the exact method (MILP solver) explodes
with the decrease of the productivity factor, the same does not
happen to the proposed heuristic algorithm. The proposed heuris-
tic is more than 30% faster than the exact method for the default
productivity factor of 4.8 labor hours, and the optimality gap is
only 0.03%. Even though the productivity labor hours decrease to
3.2, the optimality gap is still within 5%.

It is worth mentioning that for the most constrained test case,
the exact method requires about 4.9 hours to compute the optimal
solution, while the proposed heuristic needs less than 15 minutes.



M. Witteman, Q. Deng and B.F. Santos

Table 2
Simulation results of performance analysis.

Productivity =~ Computational time (s) Solution Gap

Labor hours MILP solver  Heuristic ~ Heuristic vs. Solver
4.80 1,135 773 0.03%
4.72 1,148 775 0.03%
4.64 1,154 776 0.03%
4.56 1,159 778 0.04%
4.48 1,168 779 0.05%
4.40 1,172 787 0.11%
4.32 1,181 792 0.23%
4.24 1,186 798 0.36%
4.16 1,187 803 0.54%
4.08 1,195 811 0.81%
4.00 1,639 818 1.17%
3.92 1,821 822 1.44%
3.84 1,903 828 1.61%
3.76 2,570 835 1.43%
3.68 3,097 839 1.90%
3.60 3,857 846 2.45%
3.52 4,702 851 2.88%
3.44 5,679 861 3.38%
3.36 8,243 866 3.89%
3.28 13,828 871 4.47%
3.20 17,636 879 4.95%

In summary, from a perspective of solution quality, the solution
gap between the heuristic algorithm and the optimal solution is
within 5% for all test cases. For cases where the productivity factor
was higher than 4.0 labor hours, the solution gap is below 1%, and
this confirms that the heuristic algorithm is capable of producing
good solutions in minutes for a realistic TAP with a fleet of 45 air-
craft.

6. Conclusion

The task allocation problem (TAP) of aircraft maintenance is
defined as assigning tasks to their optimal maintenance opportu-
nities. In this research, we formulate TAP as a time-constrained
variable-sized bin packing problem (TC-VS-BPP), in which we treat
maintenance opportunities as bins and the tasks as items, and
there are time constraints on both bins and items. TC-VS-BPP is
NP-hard and, therefore, challenging to solve for large case in-
stances. For this reason, we proposed a constructive heuristic to
solve the TAP (TC-VS-BPP). The proposed approach is an efficient
iterative process based on the worst-fit decreasing (WFD) algo-
rithm. According to a real-life case study on a heterogeneous fleet
of 45 aircraft, the heuristic is more than 30% faster than an ex-
act method, while the solution gap is smaller than 0.1%. For the
most restricted test case, the solution from the heuristic is only
5% worse than the solution obtained from the exact method, while
being much faster. The computation time of TAP is essential in the
aircraft maintenance domain since changes to the priority/urgency
of existing tasks or new (non-routine) tasks can require running
the proposed constructive heuristic many times per day. Therefore,
an algorithm that runs in a reasonable and stable computational
time, regardless of how restrictive is the problem, is something
very useful.

During the case study, we are told that some airline technicians
work just part-time at the hangar, and we overestimated the main-
tenance capacity if we set the productivity labor hours to 8 (all
technicians are working full time, 8 hours a day). The maintenance
capacity constraint (5) is not the main restriction during the task
allocation process. Since there is no other data to support sensi-
tivity analysis, we change the productivity labor hours to test the
proposed heuristic in a more constrained context.

The research presented in this paper is also one of the re-
quirements from the airline, continuing the work of aircraft main-
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tenance check scheduling optimization described in Deng et al.
(2020). The dynamic programming based methodology in Deng
et al. (2020) first determines the optimal start dates of all main-
tenance check for the entire fleet, and the optimal maintenance
check schedule indicates in which checks a maintenance task can
be allocated. Otherwise, without a maintenance check schedule, it
is very time-consuming to know when, which aircraft, and what
maintenance tasks should be performed. The results of the main-
tenance task allocation are the task execution plans for all mainte-
nance checks, which help the technicians to execute the right task,
on the right aircraft, at the right time.

We structure the task allocation problem of aircraft mainte-
nance as a bin packing problem (BPP) so that it can be solved
quickly using the worst-fit decreasing algorithm. Whenever un-
scheduled maintenance tasks occur, we can use the dynamic pro-
gramming based methodology presented in Deng et al. (2020) to
obtain a new maintenance check schedule, and then apply the task
allocation framework to update the tasks accordingly. The task al-
location framework is suitable for real-life applications. It can pro-
vide near-optimal solutions to the TAP, significantly reducing the
workload currently required in practice for the creation of mainte-
nance plans. Besides, given that it runs in minutes, it can poten-
tially be used to dynamically adjust the task allocation plans given
flight schedule disruptions during operations or emergency of un-
scheduled tasks during the execution of maintenance inspections.
Furthermore, the task allocation framework can be used to test
or analyze different maintenance concepts or policies, as demon-
strated in Section 5.2.

Future research on this work may consider the stochasticity as-
sociated with the TAP problem, or explore the uncertainty related
to, e.g., the emerge of “non-routine tasks” or the aircraft utiliza-
tion over the planning horizon. And this could enhance the robust-
ness of the outcoming task execution plan. Furthermore, a stochas-
tic approach could extend the current work to consider health
prognostics and diagnostics, investigating the possibility of incor-
porating condition-based maintenance in the proposed framework.
An alternative interesting future research direction is to integrate
the maintenance check schedule optimizer with the task allocation
framework proposed. And this could improve the overall quality of
the maintenance plan, including checks schedule and task alloca-
tion per check.
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