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Abstract

Laminar to turbulent transition is the process in which a smooth orderly laminar flow becomes turbulent,
chaotic and unpredictable. A laminar boundary layer (BL) may become turbulent due to growing
disturbances in the flow. If a disturbance is small its behavior is governed by linear stability theory
(LST). Early works on LST were focussed on the growth of normal modes in incompressible or ideal gas
compressible boundary layers, with the more recent inclusion of high-temperature and/or dense gas
effects. Consideration for growth of perturbations other than modal started in 1970s, and while it has
received considerable attention in ideal gas boundary layers, the study of non-modal growth in heavily
stratified boundary layers remains limited.

In recent years, research in supercritical fluids and their applications has risen substantially,
where supercritical CO2 (SCO2) stands out. It has been proposed as a working fluid for power
generation turbines, a heat carrier fluid in geothermal, etc. A supercritical fluid near its pseudo-
boiling temperature exhibits extremely large variations of physicochemical properties, leading to
strongly stratified transcritical boundary layer flows, which may heavily influence its stability. Recently,
transcritical boundary layers have been shown to be unstable to a novel mode, not found in ideal gas
boundary layers, further motivating the study of the hydrodynamic behaviour of supercritical fluids.

This study investigates the linear stability of SCO2 boundary layers in the region of the Widom line
in the phase diagram. Both heating and cooling are considered, in the sub-, super- and transcritical
regimes. Regarding the amplification of normal modes, a special focus is given to 3D perturbations and
the conditions for which a 3D perturbation is more amplified than a 2D perturbation. A moderate Mach
number is found to be necessary in the further destabilization of 3D waves when compared to 2D waves.
As indicated by previous works, the Tollmien-Schlichting (TS) mode is found to be preferentially 3D for
moderate Mach number in the sub- and supercritical regimes. However, in the transcritical regime, the
TS mode is found to be most amplified for stream-wise propagating waves. The novel mode II, found
solely in transcritical flows, is preferentially 3D at sufficiently high Mach number, both in the viscous and
inviscid regimes. Regarding non-modal stability, the energy growth of sub- and supercritical boundary
layers is comparable to that of an ideal gas compressible boundary layer, with optimal energy growth
driven by the lift-up mechanism. In the transcritical regimes, the lift-up mechanism also dominates, but
energy growth is considerably larger due to the presence of strong thermodynamic gradients within the
flow. This results in substantial energy growth associated with density and temperature streaks in the
perturbations. When considering purely kinetic effects, the cooled wall case shows higher growth when
compared to an ideal gas boundary layer, whereas the heated wall case shows a reduction of the kinetic
energy growth. The cooled wall condition results in high mean vorticity far from the wall, leading to
high energy growth, while the heated wall condition results in low mean vorticity far from the wall,
leading to a reduced energy growth.
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1
Introduction

When considering the flow of a low viscosity fluid over a body, the boundary layer is understood as the
very thin layer close to the body where viscosity is important. In the remaining region outside this layer
viscosity is assumed to be negligible. It was Prandtl (1905) who first introduced this treatment. Since,
many complex engineering problems have been clarified using this simplifying approach. Most notably,
boundary-layer theory is used to predicted aerodynamic loads and heat transfer rates on a body placed
in a fluid stream. Consider for instance the drag force experience by a ship in the sea, or by the wings of
a plane. Further, consider the flow of fluids through the blades of turbomachinery in refrigeration or
power cycles. It is boundary-layer theory that supplies an answer as to the form that it is necessary to
give the blades in order attain better efficiencies.

In many applications, the flow of a fluid over a body is characterized by an unorderly and chaotic
behaviour. In this state, a flow is called turbulent. Conversely, an orderly flow is called laminar. The
transition from a laminar to a turbulent flow is of great importance in engineering. Indeed, the heat
transfer rate and the loads experienced by a body in a fluid stream greatly depend on weather the flow
in the boundary-layer is laminar or turbulent. It is within this context of laminar-to-turbulent transition
that the stability of boundary layers is studied.

Hydrodynamic stability is concerned with the response of a laminar flow to a disturbance. Consider
that a small perturbation is applied to a laminar flow initially in equilibrium. If the perturbation decays
with time and the flow effectively returns to its initial state, the flow is considered stable. Conversely, if
the perturbation grows with time, the flow is considered unstable. Such an instability may cause the
flow to become turbulent.

Boundary layer stability was first considered by Prandtl (1921). Through a simplified approach,
Prandtl discovered an otherwise inviscidly stable boundary layer flow to be unstable in the presence of
viscous forces. It is relevant to stress the importance of this result, it uncovered the important role of
viscosity, traditionally viewed as a purely stabilizing force, in the destabilization of viscous flows. Since
1921, the stability of incompressible and ideal-gas compressible boundary layers has seen extensive
research.

During the 1990s, driven by the development of hypersonic vehicles, the interest in non-ideal bound-
ary layer stability increased. Studies feature various non-ideal behaviour, namely high-temperature and
dense gas effects. More recently, the work of Ren et al. (2019b) considers the stability of a supercritical
boundary layer. In some engineering applications, the use of supercritical fluids is advantageous due to
the ease of manipulation of their thermodynamic and transport properties by simply varying pressure
and temperature. For instance, in integrated circuit manufacturing, King and Williams (2003) reviewed
the use of supercritical carbon dioxide (SCO2) on wafer cleaning, film deposition, photoresist stripping,

1
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etc. A particularly exciting application of supercritical fluids is in power-cycles where SCO2 is often
proposed as the working fluid. These power-cycles have been extensively analyzed in recent literature
and have been shown to be theoretically competitive. SCO2 power-cycles find variety of applications,
including concentrated solar power, geothermal power, waste heat recovery, and nuclear reactors (White
et al., 2021). Motivated not only by the growing interest in supercritical fluids, but also by the result of
Ren et al. (2019b) which uncovered a previously unknown unstable mode in supercritical boundary-layer,
the present thesis aims to extend to research of boundary-layer stability with supercritical fluids.

In this introductory chapter, Section 1.1 offers an introduction to supercritical fluids. Section 1.2
presents important results regarding the modal and non-modal stability of boundary layers. Section 1.3
outlines the research objectives of the current work, and lastly, Section 1.4 provides the lay-out of the
present thesis.

1.1. Supercritical Fluids
A supercritical state of matter occurs at temperatures and pressures exceeding its critical point. At
subcritical conditions, below the critical temperature and pressure, a coexistence region exists where both
gas and liquid coexist in equilibrium. Additional heat added to the system results in the vaporization
of the liquid, with a sudden change in thermodynamic and transport properties. At supercritical
conditions, only a single phase exists. Therefore, at subcritical conditions there is a discontinuous
phase change from liquid to gas, while at supercritical pressures, the phase change is continuous and
occurs over a narrow range of temperatures around the pseudo-critical temperature. The pseudo-critical
temperature is defined as the temperature at which the specific heat at constant pressure (𝐶𝑝) reaches
its maximum. Figure 1.1 shows the phase diagram for CO2, with critical conditions 𝑇𝑐 = 304.1 K and
𝑝𝑐 = 73.8 bar. The supercritical region, shown in red, exists at pressures and temperatures above the
critical point. The gas-liquid coexistence region is represented by the black line in the 𝑝 − 𝑇 space. The
Widom line, or pseudo-critical line, is represented by the dotted line.

Figure 1.1: Pressure - Temperature phase diagram of CO2

At supercritical conditions, below the pseudo-critical temperature, a fluid exhibits properties
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typical of a liquid: high density, high viscosity, etc. Conversely, above pseudo-critical temperatures, a
supercritical fluid behaves in a gas-like manner. In the present work, a flow in which the temperature
crosses the Widom point is defined as a transcritical flow. A subcritical flow is a flow in which
the temperature is below pseudo-critical, and in a supercritical flow the temperatures are above
pseudo-critical.

1.2. Boundary Layer Transition
In practice, laminar-to-turbulent transition in boundary layers occurs due to the instability of the base
flow. Disturbances, such as sound or vorticity, enter the boundary layer and may subsequently get
amplified and ultimately lead to turbulence. The conversion from external disturbances into internal
modes is called receptivity (Morkovin, 1969). The different routes to turbulence (Morkovin, 1994) are
shown in Figure 1.2. Processes 1 and 2 entail the previously mentioned external disturbances forcing
and receptivity, respectively. In the case that the amplitude of the entrained disturbance is "small",
its growth is described by linear theory. The mechanisms for which linear theory is applicable are
highlighted in salmon.

Figure 1.2: Routes to turbulence in shear flows. Morkovin, 1994

The present study focuses on the linear stability of boundary layers with supercritical fluid. Both
of the highlighted processes in Figure 1.2 are considered: eigenmode growth and transient growth.
Eigenmode growth refers to exponentially growing eigenfunctions and may also be referred to as modal
growth or natural transition. If modal growth is dominant then transition occurs through path A in
Figure 1.2. This is conventional in low-disturbance environments, and the transition process is associated
with mode instabilities (TS wave, Mack modes, mode II), crossflow instability, and Görtler vortices. On
this route to turbulence, eigenmode growth is followed by secondary mechanisms, and transition occurs
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due to a cascade of successive instabilities: a growing primary instability leads to a modified base flow
and the excitation of further instabilities. Regarding transient growth, it considers how perturbations
may grow other than exponentially for a finite time. This phenomenon may lead to transition by
the excitation of secondary mechanisms (path C) or by triggering non-linear effects and effectively
by-passing the (weakly) linear stages (path D). Flows can also experience a competition between modal
and non-modal growth. It may be that a boundary layer experiences large non-modal energy growth,
but the dynamics of the transient growth mechanism are then surpassed by the exponential growth
of modal instabilities - this scenario corresponds to path B. Finally, path E corresponds to a situation
where the initial forcing is such that non-linearities are directly excited.

1.2.1. Modal Stability
Early works on the stability of shear flows consider solely the growth of normal modes. Rayleigh’s
inflection point criterion (Rayleigh, 1880) states a necessary condition for a modal instability in an
incompressible, inviscid parallel flow. It was shown that the velocity profile must be inflectional for the
existence of an inviscid instability. This result contradicted the prevailing thought that an inviscid flow
would always be unstable, and that viscosity acted purely as a stabilizing force. Prandtl (1921) first
discovered an otherwise inviscidly stable boundary layer flow to be unstable in the presence of viscous
forces. His work was continued by his former students, Walter Tollmien and Hermann Schlichting,
who showed the existence of an instability in the Orr-Sommerfeld equation, which describes the modal
growth in a parallel viscous flow. When considering an incompressible flat plate boundary layer flow,
in the absence of a pressure gradient, and thus of a velocity inflection point, by Rayleigh’s criterion
viscosity is indispensable in the destabilization of the base flow. A Tollmien-Schlichting (TS) wave takes
the form of a wave traveling in the streamwise direction. Schubauer and Skramstad (1947) first observed
these waves and demonstrated their connection to transition.

The investigation of compressible boundary layer modal stability started with the work of Lees and
Lin (1946). The authors considered a perfect gas. It was proved that, similar to Rayleigh’s criterion
for incompressible flows, a necessary condition for the existence of an invicidly unstable mode is the
presence of a generalized inflection point (GIP), that is, a point within the flow where 𝐷 (𝜌𝐷𝑈) = 0,
with 𝐷 representing the wall-normal derivative, 𝜌 the base flow density, and𝑈 the base flow velocity.
Numerical work by L. Mack (1963, 1964, 1965, 1984) extended compressible theory to the supersonic
case. The author revealed the existence of additional unstable modes, referred to as higher modes.
These belong to the family of trapped acoustic waves, travelling between the wall and the point at which
the wave travels sonically with relation to the base flow. Following Fedorov and Tumin (2011), Mack’s
higher modes result from the synchronization between fast modes from the continuous spectrum of
the fast acoustic branch and the slow mode, such that only one unstable mode (TS, or Mack’s higher
mode) is present at any given perturbation parameters. Mack’s second mode, the first higher mode, is
of particular importance as it shows a growth rate higher than the TS mode.

The wall temperature and Mach number are of great importance to the amplification of both the TS
mode and Mach’s second mode. Wall cooling was found to stabilize the TS mode, as predicted by Lees
and Lin, but destabilize the second mode (Mack, 1984, and experimental work by Lysenko and Maslov,
1984). The TS mode is stabilized for high Mach number, with maximum amplification for Mach number
lower than unity. The second mode is only present for supersonic flows with Mach number higher than
around 2.2, and it is most destabilized for Mach number around 5, (Bitter & Shepherd, 2014). Mack’s
second mode is preferentially non-skewed, that is, its highest growth rate is observed for 2D waves
traveling in the stream-wise direction. Conversely, at high Mach number, sweked waves are the most
amplified for the TS mode.

The stabilization/destabilization of the first (TS wave) and second Mack modes have been extensively
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studied considering several high temperature effects. M. Malik and Anderson (1991) studied chemical
non-equilibrium effects for Mach 10 and 15 boundary layers, that stabilizes the first mode and destabilizes
the second mode. Hudson et al. (1997) also considered the hypersonic case and further includes thermal
non-equilibrium effects through a vibrational temperature model. Thermal non-equilibrium effects
contributed to the further destabilization of the second mode, and to the stabilization of the first.

The effects of viscosity stratification on fluid stability was covered recently in a review paper by
Govindarajan and Sahu (2014). Viscosity stratification may be studied by considering two-layer flows.
Many studies focus on the interfacial instability, first discovered by Yih (1967) when considering two
immiscible layers for a Couette and Poiseuille flow. Given their importance in many engineering
applications, for instance in the transportation of crude oil (Joseph et al., 1997), two-layer closed flows
have seen the most consideration (Sahu et al., 2009, Joseph et al., 1984). Regarding two-fluid boundary
layers, Timoshin and Hooper (2000) and Özgen et al. (1998) studied the effect of parameters such as
gravity and surface tension, on the stabilization / destabilization of the TS and interfacial modes.

Studies on dense gas effects are also of particular interest. Gloerfelt et al. (2020) performed linear
stability analysis on a boundary layer flow with dense gases. The viscosity is observed to increase from
the wall, where the temperature is highest, to the center line (much like a liquid). Moreover, due to high
heat capacity, and consequently low value for the average Eckert number, friction heating effects are
nearly negligible. At low Mach number the boundary layer is unstable to a single viscous mode (TS
wave), preferentially two-dimensional. With an increase of the Mach number the most amplified 2D
mode is stabilized, and, for Mach number close to unity, the TS mode becomes most unstable to oblique
(3D) waves.

Within the field of supercritical fluid stability, Ren et al. (2019b) studied the linear stability of a
CO2 boundary layer near the pseudo-critical line at supercritical pressure of 80 bar. An adiabatic wall
boundary condition was prescribed, and viscous heating is controlled by varying the Eckert number.
It was shown that, if the temperature profile does not cross the pseudo-critical line, non-ideal effects
contribute to the stabilization of the boundary layer. Furthermore, an increase in Eckert number and a
proximity of the temperature profile to the pseudo-critical temperature also stabilizes the boundary
layer. In the subcriticial regime, for which 𝑇(𝑦) < 𝑇𝑝𝑐 , the Mach number was varied between 0.15 and
0.57, and the most unstable TS mode is 2D. Conversely, in the supercritical regime

(
𝑇(𝑦) > 𝑇𝑝𝑐

)
, the

Mach number was varied between 051 and 1.95, and the TS mode was found to be preferentially 3D for
the M∞ > 0.7 cases.

Ren et al. (2019b) most striking result occurs in the transcritical regime where the temperature profile
crosses the Widom line. In the transcritical case a new mode arises (mode II) in addition to mode I
(TS mode). These two unstable modes may coexist, unlike the TS and Mack’s higher modes. Within
the trancritical regime, an increase in Eckert leads to the increase of the height of the Widom line and
greater temperature stratification, which result in the further destabilization of the flow, particularly
mode II. The growth rate of mode II is much greater than mode I - one order of magnitude higher. Mode
II is associated with a GIP and thus inviscidly unstable. However, mode II is not acoustic, and hence not
connected to Mack’s second mode. Also, unlike mode 2, dispite being inviscidly unstable, mode II is
most amplified for finite Reynolds number, such that viscosity contributes towards its amplification.For
a transcritical case with moderate Mach number of 0.66, mode II was observed to be preferentially
two-dimensional, and mode I is three-dimensional.

Recently, Bugeat et al. (2022) considered the transcritical regime for a boundary layer flow. The
Van der Waals equation of state is employed, the wall is heated (isothermal), and the limiting case
of Eckert/Mach number zero (M∞ = Ec∞ = 0) is considered. Mode II is recovered in this approach,
bringing to light its significance to a more general class of fluids. Furthermore, mode II is directly linked
to the crossing of the Widom line. Under the assumption that viscosity effects dominate the balance
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of streamwise momentum of the base flow, the authors link the presence of a GIP to the strong local
gradients of dynamic viscosity, and a minimum of kinematic viscosity. Additionally, the authors suggest
that mode II could be recovered for a Couette flow, which could provide a more canonical framework
for its study.

1.2.2. Non-Modal Stability
Despite the success of eigenmode analysis, in many cases it fails to capture experimentally observed
phenomena. For instance, modal stability predicts that incompressible Couette flow is stable for all
Reynolds numbers. Moreover, many flows are observed to be unstable well below the computed critical
Reynolds number from modal theory, including boundary layer flows (Schmid, 2007). In comparison to
modal analysis, the non-modal framework is quite novel, and the body of literature significantly shorter.
Until very recently (1990s) transition phenomena which could not be explained by eigenmode analysis
was often labeled as bypass transition. Non-modal linear stability gives a plausible explanation to the
observed transition of flows that are modally stable. Consider that a perturbation imposed on the base
flow grows algebraically for a finite time, and by triggering non-linear effects leads to turbulence. In
such a case, modal analysis, and in particular the most unstable mode, do not provide any insight into
the dynamics of transition.

Non-modal instabilities begun to be uncovered through the work of Ellingsen and Palm (1975). The
authors considered a bounded parallel flow, assumed inviscid, incompressible and non-stratified. It
was shown that three-dimensional disturbances, independent of the 𝑥-direction, may grow linearly
in time. Landahl (1980) considered the temporal framework for an inviscid shear flow. It was shown
that the stream-wise extension of a 3D disturbance grows linearly with time, and, asymptotically, the
stream-wise velocity perturbation remains bounded. Therefore, elongated streaks evolve in a shear
layer. The physical mechanism behind the formation of these elongated streaks is called the lift-up
effect. This mechanism is most commonly explained by the redistribution of stream-wise momentum in
the wall-normal direction. An initial disturbance consisting of stream-wise vortex streaks transport high
velocity fluid, far from the wall, towards a region of low velocity fluid near the wall. Vice-versa, slow
moving fluid close to the wall is push towards a region of higher fluid velocity. Fluid particles initially
retain their stream wise momentum, hence this interaction results in stream wise velocity fluctuations
along the span-wise direction.

The early work that follow focused on the non-modal growth of incompressible shear flows as this
mechanism for transient growth provides an explanation for the experimentally observed transition
of flows that are modally stable (Gustavsson, 1991, Henningson et al., 1993, Schmid and Henningson,
1994, etc.). Hanifi et al. (1996) first employed the transient growth setting to a perfect gas compressible
boundary layer. The optimal initial perturbations, similarly to the incompressible case, are stream-wise
vortices. These evolve into elongated streaks (lift-up mechanism). The authors also conclude that, just
as observed in closed Couette and Poiseuille flows (Gustavsson, 1991, and Reddy and Henningson,
1993), the non-modal energy growth scales with the square of the Reynolds number Re2

𝛿 and the time of
maximum amplification with Re𝛿. The works of Tumin and Reshotko (2001) and Bitter and Shepherd
(2014) consider the parallel flow approximation and the spatial setting. In both cases the lift-up effect is
responsible for large energy growth. For an adiabatic wall, an increase in Mach number leads to an
increase of the maximum energy growth. While at zero Mach number only kinetic effects are responsible
for energy growth, with increasing Mach the flow becomes progressively more temperature and density
stratified, and non-kinetic effects contribute more towards the transient growth. However, under a
norm which keeps pressure work conservative (Mack’s energy norm), it is observed that for an ideal gas
cases, even for a hypersonic flow with M∞ = 5, the temperature/density perturbations have a minimal
contribution towards the optimal energy growth for stationary waves. Indeed, for adiabatic conditions,
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an increase in the Mach number results in a slight increase of the maximum energy growth. The energy
growth is higher when the wall and free-stream temperatures differ, such that generally, for a given
Mach number, the energy growth is minimum for an isothermal wall at the same temperature as the
free-stream. When considering an isothermal wall, an increase of the Mach number generally leads to a
decrease of the maximum energy growth.

In regard to strongly stratified flows, Parente et al. (2020) conducted modal and non-modal stability
analysis on a stably stratified Blasius boundary layer. The temporal framework is employed. The authors
investigated the effect of varying Prandtl, Reynolds and Richardson number. The latter representing the
ratio of the buoyancy effect and flow shear effects. An increase in the Richardson lead to a decrease of
the optimal energy growth. Notably, for the finite Richardson number cases, the optimal stream-wise
wave number is considerably different from zero, that is, the optimal condition is a stream-wise varying
perturbation. Additionally, the optimum growth scales linearly with the Reynolds number. These
finding suggest that both the Orr mechanism and the lift-up effect are at play.

The number of studies regarding the transient growth of mixing layer or two-fluid boundary layers
is limited. The work of Yecko and Zaleski (2005) explores the non-modal stability of a two-phase mixing
layer of immiscible fluids. The evolutions of the energy growth with time may feature oscillations due
to interfacial modes, these may be of comparable magnitude. The optimal initial perturbation consists
of two vertically aligned counter-rotating stream-wise vortices. At the interface the initial perturbation
consists of a span-wise velocity (with zero wall normal component), and the two vortexes have their
centre above and below the liquid-gas interface. The resulting perturbation consists of stream-wise
velocity streaks local with maximums vertically aligned with the centres of the vortexes.

A study on algebraic growth for a supercritical CO2 Poiseuille flow was recently carried out by
Ren et al. (2019a). In the limit of zero Eckert number the flow becomes isothermal, and transient
growth analysis yields the usual streamwise vortices and streaks, much like for the ideal gas case.
Furthermore, the authors compared non-modal growth for varying wall temperatures and numbers
of (Pr Ec). Independently of these parameters, the largest energy amplification is obtained for oblique
stream-wise independent perturbations, just as in the ideal gas case. While in the subcritical regime, an
increase in (Pr Ec) contributes to the destabilization of the non-ideal flow, in the supercritical regime it
contributes to its stabilization. Optimal initial and resulting disturbances remain generally unchanged
between ideal and non-ideal cases. These correspond, once again, to vortices and velocity streaks
aligned in the streamwise direction. A notable difference in the transcritical regime is the amplitude of
the thermal streak, which is much larger close to the wall.

1.3. Research Objective
In the present work, the modal and non-modal stability of SCO2 boundary layers near its Widom point
is analysed. The research objectives are summarized bellow:

1. To investigate the effect of Mach number on the amplification of oblique waves.

2. To investigate the transient growth of zero Mach number boundary layers near the fluid’s pseudo-boiling
point.

Regarding objective 1., while previous works on the modal stability of mode I show that for low
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Mach number mode I is preferentially 2D, at Mach number higher than around 0.7 mode I becomes
most amplified for oblique waves (Gloerfelt et al., 2020, Mack, 1984, Ren et al., 2019b). Despite the
apparent link between Mach number and the three-dimensional character of mode I, this is often not
made explicit. In the case of mode II, its three-dimensionality has yet to be studied. The present work
investigates the three-dimensionality of mode I and mode II. In the case of mode II, given its inviscid
nature, the analysis is extended to the inviscid regime, leading to the simplification of the governing
equations. Within this framework, the three-dimensionality of mode II is linked explicitly to the base
flow’s Mach number.

Regarding the non-modal energy growth of boundary layers. In the sub- and supercritical regimes
the boundary layers are close to ideal, as such their non-modal behaviour is expected to be similar
to what is observed for an ideal gas. Conversely, in the transcritical regime, the base flow profiles
are far from ideal. The velocity profiles are highly modulated when compared to an ideal gas case,
and, due to the modified velocity profile, the growth of kinetic energy may feature different structures.
This is observed in a mixing layer, see Yecko and Zaleski (2005). Moreover, due to the strong density
stratification, especially at the Widom point, the non-kinetic terms may contribute significantly to
the perturbation energy composition. As a final point of interest, in an ideal gas boundary layer, the
interaction between continuous modes and the TS mode can lead to significant transient growth. In
the transcritical scenario, where both the TS mode (mode I) and mode II are simultaneously present,
interactions between these two modes, along with the potential involvement of additional modes from
the continuous eigenspectrum, may result in substantial transient growth.

1.4. Thesis Lay-out
Chapter 2 – Theoretical Framework, introduces the governing equation for a fluid flow, and specifically
the equations which govern a self-similar zero-pressure gradient flat-plate boundary layer flow. Further,
the linear operator governing the dynamics of a growing perturbation is presented.

Chapter 3 – Numerical Methods and Validation, presents the numerical methods used to solve for
the boundary layer flows under investigation, and the perturbations. In addition, the code employed in
the present work is validated.

Chapter 4 – Results: Modal Stability Analysis, presents and analyses the stability results under
normal-mode stability, i.e., asymptotic stability.

Chapter 5 – Results: Non-Modal Stability Analysis, presents and analyses the stability results under
the non-modal approach, i.e. the presence of transient energy growth.

Chapter 6 – Conclusion, summarizes the main outcomes of the research. Provides recommendations
for future work.



2
Theoretical Framework

2.1. Governing Equations
The dynamics of a compressible viscous single-phase fluid are described by the Navier-Stokes equations.
These are expressed, in differential and dimensionless form, as


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∞
𝑝
𝜕𝑢𝑗

𝜕𝑥 𝑗
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𝜕𝑢𝑖𝜏𝑖 𝑗

𝜕𝑥 𝑗
+ 1

Re𝛿Pr∞
𝜕𝑞 𝑗

𝜕𝑥 𝑗
= 0,

(2.1)

where 𝑡 is time, 𝑥𝑖 = (𝑥, 𝑦, 𝑧) are the Cartesian coordinates in the streamwise, wall-normal and span-wise
directions, respectively, and 𝑢𝑖 = (𝑢, 𝑣, 𝑤) are the velocity components in the corresponding directions.
The fluid’s density, pressure, and internal energy are indicated by 𝜌, 𝑝 and 𝑒, respectively. The viscous
stress tensor (𝜏) is

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
+ 𝜆𝛿𝑖 𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

, (2.2)

where 𝛿𝑖 𝑗 is the Kronecker delta, 𝜇 stands for the dynamic viscosity and 𝜆 = 𝜇𝑏 − 2/3𝜇 is the second
viscosity, with 𝜇𝑏 being the bulk viscosity. As shown by Ren et al. (2019a), the effect of the bulk viscosity
𝜇𝑏 on the linear stability of a SCO2 channel flow is negligible, and thus it is set to zero for the present
analysis.

The heat flux vector (𝑞) is

𝑞𝑖 = −𝜅 𝜕𝑇

𝜕𝑥𝑖
, (2.3)

where 𝜅 is the thermal conductivity and 𝑇 the fluid’s temperature.
The governing equations are shown in dimensionless form. They are made dimensionless using the

definitions

(𝑢, 𝑣, 𝑤) = (𝑢∗ , 𝑣∗ , 𝑤∗)
𝑢∗∞

, (𝑥, 𝑦, 𝑧) = (𝑥∗ , 𝑦∗ , 𝑧∗)
𝛿∗

, 𝑡 =
𝑡∗𝑢∗∞
𝛿∗

, 𝑝 =
𝑝∗

𝜌∗∞𝑎
∗2
∞
, 𝑒 =

𝑒∗

𝐶∗
𝑝∞𝑇

∗
∞
, (2.4)

where the asterisk (·)∗ represents a dimensional quantity, 𝑎 is the speed of sound, and 𝐶𝑝 the specific
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heat capacity at constant pressure. The length scale 𝛿∗ is the local Blasius length scale:

𝛿∗ =

√
𝜇∗
∞𝑥∗

𝜌∗∞𝑢
∗
∞
. (2.5)

The remaining thermodynamic and transport properties are non-dimensionalized using their value
at the free stream, for example, the non-dimensional density is 𝜌 = 𝜌∗/𝜌∗∞. The non-dimensional
numbers are

Re𝛿 =
𝜌∗∞𝑢

∗
∞𝛿∗

𝜇∗
∞

, M∞ =
𝑢∗∞
𝑎∗∞

Ec∞ =
𝑢∗

2
∞

𝐶∗
𝑝∞𝑇

∗
∞
, Pr∞ =

𝐶∗
𝑝∞𝜇

∗
∞

𝜅∗
∞

. (2.6)

Finally, unless stated otherwise, fluid properties are calculated based on the NIST REFPROP library
(Lemmon et al., 2018). These are required in order to solve the base boundary-layer flow and the stability
analysis, which will be discussed in sections 2.2 and .2.3.

2.2. Steady-State Boundary Layer Flow
The base flow under consideration is a self-similar 2D zero-pressure gradient flat-plate boundary-layer
flow, under no gravitational forces, necessarily stationary. The governing equations are

𝜕𝜌𝑢

𝜕𝑥
+ 𝜕𝜌𝑣

𝜕𝑦
= 0,

𝜌

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
− 𝜕

𝜕𝑦

[
𝜇

Re𝛿
𝜕𝑢

𝜕𝑦

]
= 0,

𝜕𝑝

𝜕𝑦
= 0,

𝜌

(
𝑢
𝜕ℎ

𝜕𝑥
+ 𝑣 𝜕ℎ

𝜕𝑦

)
− 𝜇

Re𝛿

(
𝜕𝑢

𝜕𝑦

)2
− 1

Pr∞Re𝛿
𝜕

𝜕𝑦

(
𝜅
𝜕𝑇

𝜕𝑦

)
= 0,

(2.7)

where ℎ is the static enthalpy, which equals ℎ = 𝑒 +
(
Ec∞/M2

∞

)
(𝑝/𝜌), and is non-dimensionalized with

𝐶∗
𝑝∞𝑇

∗
∞. The derivation of the system 2.7 can be found in M. Malik and Anderson (1991).

A self-similar boundary layer is considered. The Lees-Dorodnitsyn transformation is employed

𝜉 =

∫ 𝑥

0
𝜌∗∞𝜇

∗
∞𝑢

∗
∞𝑑𝑥

∗ , 𝜂 =
𝑢∗∞√
2𝜉

∫
𝜌∗

𝜌∗∞
𝑑𝑦∗ , (2.8)

resulting in the set of ordinary differential equations (ODE)
𝜕

𝜕𝜂

(
𝐶
𝜕2 𝑓

𝜕𝜂2

)
+ 𝑓

𝜕2 𝑓

𝜕𝜂2 = 0

𝑓
𝜕𝑔

𝜕𝜂
+ 𝜕

𝜕𝜂

(
𝐶

Pr
𝜕𝑔

𝜕𝜂

)
+ 𝐶 𝑢

∗2
∞
ℎ∗∞

(
𝜕2 𝑓

𝜕𝜂2

)2

= 0
(2.9)

with
𝜕 𝑓

𝜕𝜂
=
𝑢∗

𝑢∗∞
, 𝑔 =

ℎ∗

ℎ∗∞
, 𝐶 =

𝜌∗𝜇∗

𝜌∗∞𝜇
∗
∞

Pr =
𝐶∗
𝑝𝜇

∗

𝜅∗ (2.10)
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and boundary conditions

𝑓 (0) = 0,
𝜕 𝑓 (0)
𝜕𝜂

= 0,
𝜕 𝑓 (𝜂 −→ ∞)

𝜕𝜂
= 1,

𝜕𝑔(𝜂 −→ ∞)
𝜕𝜂

= 1. (2.11)

Regarding the wall boundary condition for the dimensionless enthalpy 𝑔, two cases may be considered,
an adiabatic wall for which

𝜕𝑔(0)
𝜕𝜂

= 0 (2.12)

or an isothermal wall with
𝑔(0) = 𝑔𝑤 (2.13)

where 𝑔𝑤 is the dimensionless enthalpy at the wall. The derivation of the preceding equations 2.7 and
2.9 can be found in the standard text books such as Anderson (1989).

2.3. Linear Stability Analysis
Stability theory is concerned with the response of a dynamical system to a small perturbation around a
stationary solution. Consider that the state vector 𝑞 is decomposed into a steady-state solution 𝑞̄ and a
perturbation 𝑞′: 𝑞 = 𝑞̄ + 𝑞′. The dynamical system under consideration is non-linear, as governed by the
Navier-Stokes equations (Equation 2.1). Expressed in dynamical system form:

𝜕𝑞

𝜕𝑡
= 𝒩(𝑞) (2.14)

where 𝒩 is the Navier-Stokes operator. The stationary solution 𝑞̄ is the laminar boundary-layer flow,
which satisfies Equation 2.7. Note that, as a steady-state solution, 𝜕𝑞̄

𝜕𝑡 = 𝒩(𝑞̄) = 0. The evolution of the
perturbation 𝑞′ is governed by

𝜕𝑞′

𝜕𝑡
= 𝒩(𝑞̄ + 𝑞′). (2.15)

In linear stability analysis, the assumption is made that the perturbation 𝑞′ is small: 𝑞′ ∼ 𝒪 (𝜀) , 𝜀 ≪ 1.
Neglecting the terms of order 𝒪

(
𝜀2) in Equation 2.15 yields a linear system in 𝑞′, and can be expressed

as
𝜕𝑞′

𝜕𝑡
= ℒ(𝑞̄)𝑞′ (2.16)

where ℒ =

(
𝜕𝒩
𝜕𝑞

)
𝑞̄

is the linearized Navier-Stokes operator. For the sake of completeness, the linear

stability equations are written in their full form as:
• Conservation of mass:

𝜕𝜌′

𝜕𝑡
+ 𝜌̄(∇ · 𝑢′) +𝑈

𝜕𝜌′

𝜕𝑥
+ 𝑣′

𝜕𝜌̄

𝜕𝑦
= 0 (2.17a)
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• Conservation of momentum

𝜌̄

(
𝜕𝑢′

𝜕𝑡
+𝑈

𝜕𝑢′

𝜕𝑥
+ 𝑣′

𝜕𝑢̄

𝜕𝑦

)
+ 1

M2
∞
∇𝑝′ =

=
1

Re𝛿

[
𝜇̄∇2𝑢′ + 𝜇′ 𝜕

2𝑈

𝜕𝑦2 ®𝑒𝑥+

+ 𝜇̄∇(∇ · 𝑢′)+

+ 𝜕𝜇

𝜕𝑦

(
𝜕𝑢′

𝜕𝑦
+ ∇𝑣′

)
+ 𝜕𝑈

𝜕𝑦

(
𝜕𝜇′

𝜕𝑦
®𝑒𝑥 +

𝜕𝜇′

𝜕𝑥
®𝑒𝑦
)
+

+𝜆̄∇
(
∇ · 𝑢′

)
+

(
∇ · 𝑢′

)
∇𝜆̄

]
(2.17b)

• Conservation of energy

𝜌̄

(
𝜕𝑒′

𝜕𝑡
+𝑈 𝜕𝑒′

𝜕𝑥
+ 𝑣′ 𝜕𝑒

𝜕𝑦

)
=

− Ec∞
M2

∞
𝑝̄
(
∇ · 𝑢′

)
+ Ec∞

Re𝛿

[(
𝜕𝑈

𝜕𝑦

)2
𝜇′ + 2𝜇̄ 𝜕𝑈

𝜕𝑦

(
𝜕𝑣′

𝜕𝑥
+ 𝜕𝑢′

𝜕𝑦

)]
+ 1

Re𝛿Pr∞

[
𝑘∇2𝑇′ + 𝜕𝑘

𝜕𝑦

𝜕𝑇′

𝜕𝑦
+ 𝑘′ 𝜕

2𝑇̄

𝜕𝑦2 + 𝜕𝑘′

𝜕𝑦

𝜕𝑇̄

𝜕𝑦

]
(2.17c)

where ¯(·) pertains to base flow quantities and (·)′ to perturbation quantities. Additionally, the base flow
is assumed parallel with 𝑢̄ = 𝑈®𝑒𝑥 , and 𝑢′ is the perturbation velocity field 𝑢′ = (𝑢′, 𝑣′, 𝑤′).

As thermodynamic and transport properties are inter-dependent, the state vector is reduced to
𝑞 = [𝑝, 𝑢, 𝑣, 𝑤, 𝑇]𝑇 . Perturbation quantities for other thermodynamic and transport properties can be
obtained from 𝑝′ and 𝑇′. The remaining thermodynamic and transport properties of interest, a first
order Taylor series expansion is used. For example, the density perturbation is calculated by

𝜌′ =

(
𝜕𝜌

𝜕𝑝

)
𝑇

����
𝑞̄

𝑝′ +
(
𝜕𝜌

𝜕𝑇

)
𝑝

����
𝑞̄

𝑇′ (2.18)

For convenience, Equation 2.16 is written in the matrix form as

ℒ𝑡

𝜕𝑞′

𝜕𝑡
+ ℒ𝑥

𝜕𝑞′

𝜕𝑥
+ ℒ𝑦

𝜕𝑞′

𝜕𝑦
+ ℒ𝑧

𝜕𝑞′

𝜕𝑧
+ ℒ𝑞′𝑞

′+

+ ℒ𝑥𝑥

𝜕2𝑞′

𝜕𝑥2 + ℒ𝑦𝑦

𝜕2𝑞′

𝜕𝑦2 + ℒ𝑧𝑧

𝜕2𝑞′

𝜕𝑧2 + ℒ𝑥𝑦

𝜕2𝑞′

𝜕𝑥𝜕𝑦
+ ℒ𝑥𝑧

𝜕2𝑞′

𝜕𝑥𝜕𝑧
+ ℒ𝑦𝑧

𝜕2𝑞′

𝜕𝑦𝜕𝑧
= 0, (2.19)

and the non-zero terms of the above 5 × 5 base-flow matrices are given in appendix A.
In the context of 1D linear stability theory, the perturbation 𝑞′ is decomposed in Fourier modes in

time, with frequency 𝜔, and in the 𝑥−, and 𝑧− directions, with wave numbers 𝛼 and 𝛽, respectively:

𝑞′ = 𝑞̃(𝑦)𝑒 𝑖(𝛼𝑥+𝛽𝑧−𝜔𝑡) + c.c., (2.20)

and the perturbation is inhomogeneous in the 𝑦-direction.
The wave numbers 𝛼 and 𝛽 and the frequency 𝜔 are dimensionless, with reference values 𝛿∗ for the

wave numbers and 𝛿∗/𝑢∗∞ for the frequency. Note that the Blasius length scale (𝛿∗) increases with the
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streamwise coordinate 𝑥. Therefore, for a given physical perturbation, the dimensionless frequency 𝜔

changes as the perturbation travels downstream. The dimensionless parameter F, which is constant for
a perturbation with frequency 𝑓 ∗ in Hz, is introduced:

𝐹 =
2𝜋 𝑓 ∗𝜇∗

∞
𝜌∗∞𝑢

∗2
∞

=
𝜔

Re𝛿
(2.21)

A similar rationale is applied to the wave number 𝛽 and a dimensionless parameter B is considered:

𝐵 =
𝛽∗𝜇∗

∞
𝛿∗𝜌∗∞𝑢

∗
∞

=
𝛽

Re𝛿
(2.22)

Regarding Equation 2.19, and making use of Equation 2.20 yields(
𝛼2𝒜𝛼2 + 𝛼𝒜𝛼 + 𝜔𝒜𝜔 +𝒜0

)
𝑞̃ = 0 (2.23)

where
𝒜0 = 𝑖𝛽ℒ𝑧 + ℒ𝑞′ − 𝛽2ℒ𝑧𝑧 + (ℒ𝑦 + 𝑖𝛽ℒ𝑦𝑧)

𝜕

𝜕𝑦
+ ℒ𝑦𝑦

𝜕2

𝜕𝑦2

𝒜𝜔 = −𝑖ℒ𝑡

𝒜𝛼 = 𝑖ℒ𝑥 − 𝛽ℒ𝑥𝑧 + 𝑖ℒ𝑥𝑦
𝜕

𝜕𝑦

𝒜𝛼2 = −ℒ𝑥𝑥

(2.24)

For a locally convectively unstable flow, such as a flat-plate boundary layer, spatial theory is commonly
applied, where the frequency 𝜔 and the spanwise wave number 𝛽 are real and the streamwise number
𝛼 is complex, such that the perturbation can be considred to grow in 𝑥-direction. Then, Equation 2.23
forms a second order eigenvalue problem for the complex eigenpair 𝛼 and 𝑞̃.

The boundary conditions of the eigenvalue problem resulting from Equation 2.23 are

𝑢̃ = 𝑣̃ = 𝑤̃ = 0, 𝑦 = 0

𝑢̃ = 𝑣̃ = 𝑤̃ = 𝑇̃ = 0, 𝑦 −→ ∞
(2.25)

Additionally, the temperature perturbation boundary condition at the wall follows the boundary
condition employed for the base flow (Equation 2.12 or 2.13):

if 𝑔(0) = 𝑔𝑤 , 𝑇̃ = 0, 𝑦 = 0

if
𝜕𝑔(0)
𝜕𝜂

= 0, 𝜕𝑇̃

𝜕𝑦
= 0, 𝑦 = 0

(2.26)

2.3.1. Inviscid Analysis
In the limit of infinitely large Reynolds number (Re𝛿 → ∞), Equation 2.19 can be simplified to

𝜌̄𝑖 (𝛼𝑈 − 𝜔) 𝑣̃ = − 1
M2

∞

𝜕𝑝̃

𝜕𝑦
(2.27a)

𝜌̄𝑖 (𝛼𝑈 − 𝜔) 𝜕𝑣̃
𝜕𝑦

= 𝑖𝛼𝜌̄
𝜕𝑈

𝜕𝑦
𝑣̃ + (𝛼2 + 𝛽2)

[
M2

r − 1
] 1

M2
∞
𝑝̃ (2.27b)
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where Mr is the relative Mach number defined as

Mr =
M∞ (𝛼𝑈 − 𝜔)
𝑎̄
√
(𝛼2 + 𝛽2)

=
M∞
𝑎̄

(𝑈 cos(𝜃′) − 𝑐) , (2.28)

where 𝑎̄ is speed of sound of the mean flow, which is non-dimensionalized with the speed of sound
in the free-steam, 𝑐 is the wave’s phase speed 𝑐 = 𝜔/

√
𝛼2 + 𝛽2, and 𝜃′ represents the perturbation’s

propagation angle 𝜃′ = arctan (𝛽/𝛼). Consider briefly a 2D flow, the relative Mach number is

Mr =
M∞ (𝛼𝑈 + 𝛽𝑊 − 𝜔)

𝑎̄
√
(𝛼2 + 𝛽2)

, (2.29)

where W is the base flow velocity in the y-direction. The relative Mach number may also be expressed as

Mr =
M∞
𝑎̄

cos(𝜃)
(√
𝑈2 +𝑊2 − 𝑐𝑢̄

)
, (2.30)

where the angle 𝜃 represents the deviation between the base flow’s propagation direction and the phase
speed of the wave perturbation, and 𝑐𝑢̄ denotes the speed at which the wavefront travels in the axis
oriented along the base flow velocity, given by

𝑐𝑢̄ =
𝑤√

𝛼2 + 𝛽2

1
cos(𝜃) =

𝑤

𝛼 cos 𝜃̄ + 𝛽 sin 𝜃̄
, where 𝜃̄ = arctan

(
𝑊

𝑈

)
. (2.31)

This is illustrated in Figure 2.1. The intersection between the wavefront, with phase speed 𝑐 = 𝜔/
√
𝛼2 + 𝛽2

and shown in orange, with the axis oriented along the mean flow direction (𝑢̄), travels at speed 𝑐𝑢̄ .

Figure 2.1: Illustration of relevant quantities for the relative Mach number. The angle 𝜃 = ±(𝜃′ − 𝜃̄), represents the deviation
between the base flow’s propagation angle (𝜃̄) and the phase speed angle 𝜃′. The orange lines represent a wave front,
traveling with phase speed 𝑐.

In the case of a 1D base flow, Equation 2.30 reduces to

Mr =
M∞
𝑎̄

cos(𝜃′) (𝑈 − 𝑐𝑥) , where 𝑐𝑥 = 𝜔/𝛼. (2.32)

The quantity 𝑐𝑥 will prove be useful in the upcoming analysis.
For the inviscid system in Equations 2.27a and 2.27b, the state vector is reduces to 𝑞̃INV = [𝑝̃ , 𝑣̃]. In
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matrix form the system 2.23 reads(
𝛼2𝒜INV

𝛼2 + 𝜔2𝒜INV
𝜔2 + 𝛼𝜔𝒜INV

(𝛼𝜔) + 𝛼𝒜INV
𝛼 + 𝜔𝒜INV

𝜔 +𝒜0

)
𝑞̃INV = 0 (2.33)

The non-zero terms of the above 2 × 2 base-flow matrices are given in appendix A. Since at the wall, the
wall-normal perturbation velocity 𝑣̃ is zero, given Equation 2.27a, 𝐷𝑝̃ = 0. Thus, in the inviscid case, the
boundary conditions are

𝑣̃ =
𝜕𝑝̃

𝜕𝑦
= 0, 𝑦 = 0

𝑣̃ = 𝑝̃ = 0, 𝑦 −→ ∞
(2.34)

In the context of inviscid stability, an important property of the base flow is the presence of a
generalized inflection point, that is, a point within the boundary layer where

𝜕

𝜕𝑦

(
𝜌̄
𝜕𝑈

𝜕𝑦

)
= 0 (2.35)

Denote by 𝑦𝑠 the height of the GIP, that is, the point at which Equation 2.35 is satisfied. For a subsonic
perturbation, that is 𝑀2

𝑟 < 1, Lees and Lin (1946) show that the existence of a GIP is a sufficient and
necessary condition for the presence of an inviscid neutral instability, if 𝑦𝑠 > 𝑦0, where 𝑦0 is the point at
which𝑈 = 1 − 1/M∞. Also, the phase velocity 𝑐𝑥 = 𝜔/𝛼 of this neutral wave is (𝑐𝑥)𝑠 = 𝑈𝑠 = 𝑈(𝑦𝑠).

2.3.2. Non-Modal Stability
Classically, linear stability theory is concerned with the asymptotic fate of a perturbation. This framework
is referred to by modal stability. Since asymptotic behaviour is governed by the eigenvalues of Equation
2.23, the modal problem reduces to finding unstable solutions to the eigenvalue problem 2.23. Within
the spatial framework, unstable satisfy 𝛼𝑖 < 0, such that the perturbation grows exponentially in the
𝑥-direction. Conversely, non-modal stability is concerned with the transient behaviour of a perturbation.
Due to the non-normality of the linearized NS operator, a significant growth may occur before the
subsequent exponential behaviour.

While modal stability is realized by finding the solutions to the eigenvalue problem in Equation 2.23,
the non-modal analysis is mathematically more complex. The approach in Tumin and Reshotko (2001)
is closely followed. A perturbation solution to Equation 2.16 is expressed by an eigenvector expansion

𝑞′ =
𝑛∑
𝑘=1

𝜅𝑘 𝑞̃𝑘(𝑦) 𝑒 𝑖(𝛼𝑘𝑥+𝛽𝑧−𝜔𝑡) (2.36)

where 𝜅𝑘 are the expansion coefficients, and (𝑞̃𝑘 , 𝛼𝑘) the 𝑘-th eigenpair. Only the first 𝑛 eigenvectors
are considered, meaning that the state vector space is restricted to the space spanned by the first 𝑛
eigenvectors. The choice of eigenvectors considered in Equation 2.36, and hence the parameter 𝑛, is
explored in Chapter 3. In matrix form, Equation 2.36 reads

𝑞′ = Q Λ𝜅 𝑒 𝑖(𝛽𝑧−𝜔𝑡) (2.37)

where, the matrix Q contains the first 𝑛 eigenvectors, Λ is a diagonal matrix with Λ𝑗 , 𝑗 = exp
(
𝑖 𝛼 𝑗 𝑥

)
, and

the vector 𝜅 contains the expansion coefficients.
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The growth of the perturbation 𝑞′ is given by

𝑔(𝑥) =
∥𝑞′(𝑥)∥2

𝐸

𝑞′0

2
𝐸

(2.38)

where ∥·∥𝐸 stands for the energy norm. The conversion to an Euclidian norm (∥·∥2) is obtained by
considering a matrix W, which can be arbitrarily chosen, containing the necessary weights such that

∥𝑞′∥𝐸 =

∫ ∞

0
𝑞′𝐻W𝑞′𝜕𝑦 = ∥M𝑞′∥2 (2.39)

with M resulting from a Cholesky decomposition of W = M𝐻M. The choice of the weights W is left to
Section 2.3.2.

Interest lies in the maximum obtainable amplification, and its corresponding initial perturbation.
The maximum energy amplification 𝐺 at position 𝑥 is given by

𝐺(𝑥) = max
𝑞′0

𝑔(𝑥) = max
𝜅

∥M Q Λ𝜅∥2
2

∥M Q𝜅∥2
2

= max
F𝜅



F Λ F−1F𝜅


2

2

∥F𝜅∥2
2

=


F Λ F−1

2

2 (2.40)

where the matrix F results from the Cholesky decomposition F𝐻F = (M Q)𝐻 M Q.
Consider the singular value decomposition of the matrix F Λ F−1

F Λ F−1 = UΣV−1 (2.41)

where V and U are unitary matrices and Σ is diagonal, containing the singular values. The Euclidian
norm of F Λ F−1 is equal to its largest singular value, denoted 𝜎1

(

F Λ F−1


2

2 = 𝜎1

)
. Furthermore, the

right and left singular vectors associated with 𝜎1 satisfy

F Λ F−1 v1 = 𝜎1u1 (2.42)

The operator F Λ F−1 maps the right singular vector v1 onto u1, while increasing its amplitude by
𝜎1. Therefore, considering equations 2.37 and 2.40, the maximum amplified perturbation at position 𝑥,
denoted by 𝑞′out, is

𝑞′out = QF−1u1 (2.43)

and the associated initial perturbation, denoted by 𝑞′in is

𝑞′in = QF−1v1 (2.44)

For any considered frequency 𝜔 and wave number 𝛽, the energy amplification 𝐺(𝑥) is maximized
over all 𝑥 and denoted by 𝐺max:

𝐺max(𝛽, 𝜔) = max
𝑥
𝐺(𝑥) (2.45)

The optimal energy amplification 𝐺opt and optimal perturbation 𝑞′opt are, the maximum obtainable
amplification of 𝐺max and the corresponding initial perturbation, respectively.

𝐺opt = max
(𝛽,𝜔)

𝐺max (2.46)
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Choice of energy norm
The non-modal analysis requires an energy norm to be defined. Written in the general form

𝐸 =

∫
𝑉

(
𝑚𝑢 (𝑢∗𝑢′ + 𝑣∗𝑣′ + 𝑤∗𝑤′) + 𝑚𝜌𝜌

∗𝜌′ + 𝑚𝑒 𝑒
∗𝑒′

)
𝑑𝑉 (2.47)

While in incompressible boundary layers the kinetic energy of a perturbation is a logical and physically
meaningful choice for an energy norm, in compressible flows there is no such natural choice. Commonly
Chu’s energy norm (or Mack’s in the ideal gas case), which eliminates compression work is chosen.
Looking only at the pressure related terms of 𝐸:∫

𝑉

(
𝑚𝜌𝜌̄𝜌

′ (∇ · 𝑢′) + 𝑚𝑢
1

M2
∞

1
𝜌̄
𝑢′ · ∇𝑝′ + 𝑚𝑒

Ec∞
M2

∞

𝑝̄

𝜌̄
𝑒′ (∇ · 𝑢′)

)
𝑑𝑉 = 0 (2.48)

from which

𝑚𝜌 = − 1
M2

∞

1
𝜌̄

(
𝜕𝑒

𝜕𝜌

)
𝑝̄

(
𝜕𝑒

𝜕𝑝

)−1

𝜌̄

𝑚𝑢 = 𝜌̄ 𝑚𝑒 =
1

Ec∞
𝜌̄

𝑝̄

(
𝜕𝑒

𝜕𝑝

)−1

𝜌̄

(2.49)

However, at zero Mach number this norm is not physical. The weights 𝑚𝜌 , 𝑚𝑒 scale with M−1
∞ , such

that in the limit M2
∞ −→ 0, 𝑚𝜌 , 𝑚𝑒 −→ ∞, and the energy growth of a perturbation is not finite. For this

reason two energy norms are adopted. Firstly the kinetic energy growth of a perturbation is considered:

𝐾𝐸 =

∫
𝑉

𝜌 (𝑢∗𝑢′ + 𝑣∗𝑣′ + 𝑤∗𝑤′) 𝑑𝑉 (2.50)

which will be referred to as KE norm. Secondly, as to include all the terms of the perturbation vector 𝑞′,
the GE norm

𝐺𝐸 =

∫
𝑉

𝜌 (𝑢∗𝑢′ + 𝑣∗𝑣′ + 𝑤∗𝑤′ + 𝜌∗𝜌′ + 𝑒∗𝑒′) 𝑑𝑉 (2.51)

is also considered.



3
Numerical Methods and Validation

3.1. Numerical methods
The present section addresses the numerical methods employed to solve the base flow in Section 2.2,
and the viscous and inviscid eigenvalue problems in Section 2.3. A computational grid is constructed
with 𝑁 Gauss-Lobatto points

𝑦̂ 𝑗 = cos
{
𝑗𝜋

𝑁

}
, 𝑗 = 1, 2 . . . , 𝑁 (3.1)

The mapping between the physical domain, given by 𝑦, and the Gauss-Lobatto points 𝑦̂ is

𝑦 𝑗 = 𝑎
1 + 𝑦̂
𝑏 − 𝑦̂ , 𝑎 =

𝑦𝑖𝑦max

𝑦max − 2𝑦𝑖
, 𝑏 = 1 + 2𝑎

𝑦max
, (3.2)

where 𝑦max is the height of the domain. The grid clustering parameter 𝑦𝑖 causes the grid points to
cluster near the wall, ensuring a more accurate resolution of the boundary-layer. The grid points 𝑦 are
mapped into the interval [0, 𝑦max], with half being mapped onto [0, 𝑦𝑖].

Numerical derivatives are calculated using Chebyshev polynomials. The derivative with respect to
𝑦̂ is calculated as

𝜕

𝜕𝑦̂
= D𝐶 (3.3)

where D𝐶 is an 𝑁 × 𝑁 Chebyshev differentiation matrix, and can be found in Trefethen (2000). In the
physical domain, the first order derivative is

𝜕

𝜕𝑦
=

𝜕𝑦̂

𝜕𝑦

𝜕

𝜕𝑦̂
= D𝑀D𝐶 (3.4)

and for the second order derivative is

𝜕2

𝜕𝑦2 =
𝜕2 𝑦̂

𝜕𝑦2
𝜕

𝜕𝑦̂
+

(
𝜕𝑦̂

𝜕𝑦

)2
𝜕2

𝜕𝑦̂2 = D𝑀2D𝐶 + D2
𝑀D2

𝐶 (3.5)

where D𝑀 and D𝑀2 are diagonal matrices, given by

D𝑀𝑗 𝑗
=

𝜕𝑦̂ 𝑗

𝜕𝑦
=
𝑎(1 + 𝑏)
(𝑎 + 𝑦 𝑗)2

(3.6a)
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D𝑀2𝑗 𝑗 =
𝜕2 𝑦̂ 𝑗

𝜕𝑦2 =
−2𝑎(1 + 𝑏)
(𝑎 + 𝑦 𝑗)3

(3.6b)

3.1.1. Self-similar base-flow solution
Regarding base flow, Equation 2.9 is first decomposed into a set of first order ODEs of the form

𝜕𝑌

𝜕𝜂
= ℱ (𝜂, 𝑌) (3.7)

With

𝑌 =

©­­­­­­«

𝑓

𝑓 ′

𝑓 ′′

𝑔

𝑔′

ª®®®®®®¬
𝐹(𝜂, 𝑌) =

©­­­­­­­«

𝑌2
1
𝐶𝑌3

− 1
𝐶𝑌1𝑌3
Pr
𝐶 𝑌5

−Pr
𝐶 𝑌1𝑌5 − ℎ∗∞

𝐶𝑢2
∞
𝑌2

3

ª®®®®®®®¬
(3.8)

The integration of Equation 3.7 is carried out using a fourth-order Runge-Kutta (RK4) method

𝑌 𝑗+1 = 𝑌 𝑗 + Δ𝜂

6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) , 𝑗 = 1, . . . , 𝑁 − 1 (3.9)

where the superscript ’𝑗’ indicates the grid point, and where

𝑘1 = ℱ (𝜂𝑛 , 𝑌𝑛)

𝑘2 = ℱ
(
𝜂𝑛 + Δ𝜂

2 , 𝑌𝑛 + Δ𝜂

2 𝑘1

)
𝑘3 = ℱ

(
𝜂𝑛 + Δ𝜂

2 , 𝑌𝑛 + Δ𝜂

2 𝑘2

)
𝑘4 = ℱ (𝜂𝑛 + Δ𝜂, 𝑌𝑛 + Δ𝜂𝑘3)

(3.10)

At the wall, given the boundary conditions in equations 2.11 and 2.12 or 2.13

𝑌𝑛=1 =
[
0, 0, 𝑌𝑛=1

3 , 𝑌𝑛=1
4 , 0

]𝑇 if
𝜕𝑔(0)
𝜕𝜂

= 0

𝑌𝑛=1 =
[
0, 0, 𝑌𝑛=1

3 , 𝑔𝑤 , 𝑌
𝑛=1
5

]𝑇 if 𝑔(0) = 𝑔𝑤

(3.11)

The Newton-Raphson’s method is used to iteratively solve for the missing boundary conditions.
Convergence is achieved when the residual error (0.5 · | |𝑟𝑖 | |2) is less than 1e−14. Regarding the

computational mesh, convergence is found at 𝑁 = 10000, 𝑦𝑖 = 10, and 𝑦max = 60.

3.1.2. Eigenvalue problem solver
Discretization of equations 2.23 or 2.33, considering equations 3.4 and 3.5, result in the eigenvalue
problem (

𝛼2A𝛼2 + 𝜔2A𝜔2 + 𝛼𝜔A(𝛼𝜔) + 𝛼A𝛼 + 𝜔A𝜔 + A0

)
q̃ = 0 (3.12)

where the A matrices are 5𝑁 × 5𝑁 in the viscous problem and 2𝑁 × 2𝑁 in the inviscid problem.
Depending on the considered regime (viscous or inviscid), and on the considered framework
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(temporal or spatial) the resulting eigenvalue problem may be quadratic:(
𝜎2A𝜎2 + 𝜎A𝜎 + A0

)
q̃ = 0 (3.13)

where 𝜎 represents the eigenvalue 𝛼 in the spatial framework and 𝜔 in the temporal. In order to solve
the full quadratic EVP, the transformation[

A0 0
0 𝐼

] [
q̃
𝜎q̃

]
= 𝜎

[
−A𝜎 −A𝜎2

𝐼 0

] [
q̃
𝜎q̃

]
(3.14)

is applied, where 𝐼 is the identity matrix. The problem in Equation 3.14 is linear in 𝜎. The eigenvalue
problem is solved using the QZ algorithm.

3.2. Validation and Convergence studies
In regard to the self-similar boundary layer solver described in Section 3.1.1, obtained results are
compared to those of Ren et al. (2019b) in Figure 3.1. The obtained results are in agreement to those of
Ren et al. (2019b).

Regarding the eigenvalue solver described in Section 3.1.2, Figure 3.2 shows contour levels of 2D
instabilities (𝛽 = 0), in the Re𝛿 − F space for mode I and mode II. An Eckert number of 0.2 is considered.
For comparison, the neutral curve from Ren et al. (2019b) is shown with markers, and a good agreement
is found with the present results. The eigenfunctions for both modes are shown in Figure 3.3, where
𝐹 = 75¤10−6 is considered, where again the obtained results are in close agreement to those of Ren et al.

To validate the non-modal approach in Section 2.3.2, the results of Tumin and Reshotko (2001) are
reproduced. An ideal-gas boundary layer is considered over a range of Mach numbers. Note that, since
the fluid is considered calorically perfect, the boundary layer solver used in this case is slightly different,
since the fluid thermodynamic properties are obtained from the ideal gas equation of state. However,
the code employed to solve the EVP and obtain the non-modal results is identical, regardless of the
considered equation of state. Figure 3.4 shows the comparison with the work of Tumin and Reshotko
(2001). The results obtained with the present approach are in good agreement with those of Tumin and
Reshotko.

As a second validation case for the non-modal analysis, the results of Bitter and Shepherd (2014)
are replicated. In this case, air is considered as a thermally perfect gas. Therefore, neither the Prandtl
number nor the specific heat is assumed constant. The specific heats vary with temperature only. The
dynamic viscosity follows Sutherland’s formula and the thermal conductivity is modelled with Euken’s
method. A supersonic boundary layer at M∞ = 5 is considered, the wall is adiabatic and the free-stream
temperature is 𝑇∗

∞ = 70K. In this case the temporal framework is considered, meaning 𝜔 is complex,
and the perturbation grows with time. Figure 3.5 shows the global eigenvalue spectrum. The 10 modes
that contribute most significantly to the optimal disturbance are marked. The blue crosses represent
the results obtained with the present code, and in red circles the results of Bitter and Shepherd (2014).
Regarding the discrete modes, the obtained eigenvalues are nearly identical, whilst for the continuous
spectra, the marked eigenvalues are located in close proximity along the same continuous branch.

The calculation of the eigenvalue problem is performed with 𝑁 = 301 grid points, a domain height
of 𝑦max = 200, considering 𝑦𝑖 = 5 (see Equation 3.2). To verify that results for the EVP have converged,
point wise checks were performed with varying number of grid points and domain heights. An example
is show in Table 3.1, where the dependency of the complex wave number 𝛼 for mode I and mode II
is shown with respect to the number of grid points. Additionally, in Table 3.2, the dependency of
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(a) Velocity profiles (b) Temperature profiles

(c) Density profiles

Figure 3.1: Base-flow profiles for SCO2 boundary layers with varying Eckert number, 𝑃∗
∞ = 80bar, 𝑇∗

∞ = 280K, and adiabatic wall.
Temperature (panel 3.1b) and density (panel 3.1c) are non-dimensionalized by the pseudo-critical values: 𝑇 = 𝑇

∗/𝑇∗
𝑝𝑐 ,

and 𝜌 = 𝜌∗/𝜌∗𝑝𝑐 . The velocity (panel 3.1a) is non-dimensionalized by the free-stream velocity: 𝑈 = 𝑈∗/𝑈∗
∞. The lines

correspond to the results obtained with the present methodology, and the markers show the results from Ren et al.
(2019b)

𝐺𝑚𝑎𝑥 is shown with regard to the number of grid points. When considering 𝑦𝑖 = 5, for a number of
grid points higher than 301 (𝑁 > 301) both the calculated modal amplification (−𝛼𝑖) and real wave
number (𝛼𝑟) vary less than 1%, confirming that convergence is achieved. As for the non-modal results,
results are also shown to be converged for 𝑁 = 301, with a maximum error of less than 0.5%. The grid
clustering parameter 𝑦𝑖 used in the present study is half of that suggested by M. R. Malik (1990) for
hypersonic boundary layers. While for hypersonic boundary layers the boundary layer thickness is
large, the considered SCO2 boundary layers are more confined, and a lower value for 𝑦𝑖 result in the
proper resolution of the boundary layer for smaller 𝑁 . Indeed, a faster convergence is obtained with
𝑦𝑖 = 5 when compared to 𝑦𝑖 = 10, as is shown Table 3.1.

The full spatial formulation is used for the modal results, that is the term 𝛼2A𝛼2 in Equation 3.12 is
not neglected, and the eigenvalue problem is solved via the transformation in Equation 3.14. The full
spatial formulation results in a minor time penalty, since only the eigenvalue pertaining to mode I or
mode II needs to be calculated, as opposed to calculating the global eigenvalue spectrum. However,
in the case of the non-modal analysis, Equation 3.12 is linearized and the term 𝛼2A𝛼2 is neglected.
As the non-modal calculation requires the calculation of the global eigenvalue spectrum (that is, a
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Figure 3.2: Growth rates (−𝛼𝑖) of mode I and mode II in the Re𝛿 − F space, when considering 𝛽 = 0. SCO2 real gas boundary
layers with Ec∞ = 0.2, 𝑃∗

∞ = 80bar, 𝑇∗
∞ = 280K, and adiabatic wall. The colored contours represent the growth rate of

mode I and mode II. The red crosses represent the neutral curve as obtained by Ren et al. (2019b).

(a) Mode A
Re𝛿 = 1264.9, F = 75, 𝛼 = 0.188 − 𝑖5.75e−4

(b) Mode B
Re𝛿 = 1894.7, F = 75, 𝛼 = 0.414 − 𝑖93.0𝑒 − 4

Figure 3.3: Profiles of mode I (3.3a) and mode II (3.3b) perturbations. CO2 boundary layer with 𝑇∗
∞ = 280K, 𝑃∗

∞ = 80bar, and
adiabatic wall. The Eckert number is 0.2, the wave number in the 𝑧-direction is 𝛽 = 0, and the global frequency is
F = 75 × 10−6. For mode A (3.3a) Re𝛿 = 1264.9, and for mode B (3.3b) Re𝛿 = 1894.7.

Convergence of mode I and mode II for varying number of grid points (𝑁)
with 𝑦𝑖 = 10, and 𝑦𝑖 = 5

Mode I Mode II
N 𝑦𝑖 = 5 𝑦𝑖 = 10 𝑦𝑖 = 5 𝑦𝑖 = 10
101 85.679 - 2.388i 81.719 + 0.408i 125.16 - 9.86i 121.65 - 13.32i
201 85.891 - 2.042i 86.108 - 2.455i 129.07 - 5.90i 128.17 - 6.74i
301 85.888 - 2.056i 85.908 - 2.075i 128.85 - 6.02i 128.17 - 6.74i
401 85.888 - 2.056i 85.885 - 2.053i 128.86 - 6.02i 128.86 - 6.01i
501 85.888 - 2.056i 85.888 - 2.056i 128.86 - 6.02i 128.86 - 6.02i

Table 3.1: Convergence obtained for increasing number of grid points (𝑁) for mode A and mode B, considering 𝑦𝑖 = 10 and
𝑦𝑖 = 5. CO2 boundary layer at M∞ = 0.3, 𝑇∞ = 0.95𝑇𝑝𝑐 , 𝑇𝑤𝑎𝑙𝑙 = 1.05𝑇𝑝𝑐 , 𝑃∗

∞ = 80bar, when considering Re𝛿 = 1000,
𝛽 = 0.2, 𝜔 = 0.05.
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Figure 3.4: Maximum spatial energy amplification of sta-
tionary waves (𝜔 = 0) with varying span-wise
wave number (𝛽). Ideal gas boundary layer with
stagnation a temperature of 333K and adiabatic
wall. The specific heat ratio is 1.4, the dynamic
viscosity follows Sutherland’s formula, and the
Prandtl number is assumed constant Pr∞ = 0.7.
The markers represent the results obtained by Tu-
min and Reshotko (2001), and the line the results
obtained with the present approach.

Figure 3.5: Global eigen spectrum. Air boundary layer,
modelled as a thermally perfect gas. M = 5,
𝑇∞ = 70K, 𝑇𝑤𝑎𝑙𝑙 = 𝑇adiabatic. 𝛼 = 0.02, 𝛽 = 0.1,
and Re𝛿 = 300. The markers show the 10 most
relevant modes for the optimal disturbance. The
blue crosses the results obtained with the present
methodology, and the red circles are the results
of Bitter and Shepherd (2014).

Convergence of 𝐺max for increasing number of grid points (𝑁)
Re𝛿 = 1000, 𝛽 = 1

N 201 301 401 501

𝐺max
𝜔 = 0 6534 6773 6768 6752
𝜔 = 0.1 4888 5002 4998 4990

Table 3.2: Convergence obtained for 𝐺max with increasing number of grid points (𝑁), considering 𝑦𝑖 = 5 and 𝑦max = 200. CO2
boundary layer with M = 0.3, 𝑇∞ = 0.95𝑇𝑝𝑐 , 𝑇wall = 1.05𝑇𝑝𝑐 , 𝑃∞ = 80bar, Re𝛿 = 1000, 𝛽 = 1

discrete approximation to the entire eigenvalue spectrum), a sizeable time efficiency is gained with this
approach. To verify that the linearization is appropriate, at times, the quadratic problem is resolved,
following the method in Equation 3.14. Figure 3.6 compares the maximum energy growth obtained
when solving the full quadratic EVP to those obtained through linearization. The GE energy norm
is considered (Equation 2.51). The considered boundary layer is a heated wall transcritical flow with
𝑇wall = 0.95𝑇𝑝𝑐 , 𝑇∞ = 1.05𝑇𝑝𝑐 , and M∞ = 0.3. The Reynolds number is Re𝛿 = 1000, the span-wise wave
number is 𝛽 = 1, with varying frequency 𝜔. For this particular scenario a difference of less than 0.1% is
observed, confirming the validity of the results obtained through linearization of Equation 3.13.

The limiting case of M∞ → 0 is studied, for which a "very small" Mach is considered. To test the
validity of this approach, the modal stability of a heated wall transcritical flow with increasingly smaller
Mach number is investigated. Figure 3.7 shows the convergence obtained for the eigenvalues for mode I
and II, and Figure 3.8 shows the convergence obtained for the maximum energy growth 𝐺max For a
Mach number of order 10−3 results are found to be converged. A Mach 10−3 boundary layer is considered
for the zero Mach boundary layer results.
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Figure 3.6: Comparison between non-modal results obtained by solving the full quadratic EVP in Equation 3.12 and by linearizing
the EVP. The Reynolds number is Re𝛿 = 1000, the span-wise wave number is 𝛽 = 1. CO2 boundary layer with
𝑇∞ = 0.95𝑇𝑝𝑐 , 𝑇wall = 1.05𝑇𝑝𝑐 , 𝑃∞ = 80bar and M∞ = 0.3

(a) Growth rate (𝛼𝑖 ) (b) Phase speed (𝑐𝑥 = 𝜔/𝛼𝑟 )

Figure 3.7: Influence of increasingly smaller Mach number on modal stability. The growth rate in 3.7a and the phase speed
𝑐𝑥 = 𝜔/𝛼𝑟 in 3.7b for both mode I and mode II. Various Mach numbers for a CO2 boundary layer with 𝑇∞ = 0.95𝑇𝑝𝑐 ,
𝑇𝑤𝑎𝑙𝑙 = 1.05𝑇𝑝𝑐 , 𝑃∞ = 80bar, Re𝛿 = 1000, 𝛽 = 0.2, and varying 𝜔

Figure 3.8: Influence of Mach number on the maximum perturbation energy growth. The maximum energy growth (𝐺𝑚𝑎𝑥) is
plotted with respect to the frequency 𝜔. The Reynolds number is Re𝛿 = 1000, and the span-wise wave number 𝛽 = 1.
Various Mach numbers for a CO2 BL with 𝑇∞ = 0.95𝑇𝑝𝑐 , 𝑇wall = 1.05𝑇𝑝𝑐 , 𝑃∞ = 80bar.



4
Selected Base Flows

In this chapter, the base flow profiles under consideration are presented. We consider CO2 boundary
layers at a supercritical pressure of 80bar. The wall is isothermal, and the boundary layers are divided
into three regimes: subcritical, transcritical, and supercritical. In the subcritical regimes, the temperature
profiles remain below the pseudo-boiling temperature of 𝑇𝑝𝑐 = 307.7K, while in the supercritical regime,
the temperature profiles exceed this value. In the transcritical regime the temperature profile crosses the
pseudo-boiling temperature. For each flow regime, both wall cooling and wall heating are considered.

In the subcritical regime, the free-stream and wall temperatures are set at either 0.90 ·𝑇𝑝𝑐 or 0.95 ·𝑇𝑝𝑐 ,
depending on whether wall cooling or heating is considered. Similarly, for the supercritical regime, the
temperature boundary conditions are 1.05 · 𝑇𝑝𝑐 and 1.10 · 𝑇𝑝𝑐 . Finally, in the transcritical regimes, the
temperature boundary conditions are 0.95 · 𝑇𝑝𝑐 and 1.05 · 𝑇𝑝𝑐 . The Mach number is varied, and, given
the scaling in equation 2.1, the Mach number is varied in increments of its square, i.e., we consider
increments of M2

∞. The considered Mach numbers are M2
∞ = {0, 0.2, 0.4, 0.6, 0.8, 0.9}, where M2

∞ = 0.9
is chosen instead of M2

∞ = 1 as to avoid the sonic condition at the free-stream. For the heated subcritical
case, the maximum considered Mach number is M2

∞ = 0.6 as opposed to M2
∞ = 0.9. This is due to

the proximity of the temperature profile to the pseudo-boiling point for the M2
∞ > 0.6 cases. For

the high Mach number subcritical boundary layers, it was found the the modal response deviated
substantially from the low Mach number cases, and was in some regards qualitatively similar to a
trancritical boundary layer; for this reason M2

∞ > 0.6 is not considered. An overview of the different
cases is given in Table 4.1.

The base flow temperature, density and velocity profiles are shown in Figure 4.1 for the heated
wall cases, and in Figure 4.2 for the cooled wall cases. In the supercritical regime (for both heated and
cooled wall), an increase in Mach number results in a comparatively small change in the temperature
and density profiles. Viscous heating in the supercritical regime is reduced when compared to the
subcritical conditions ,which aligns with the Eckert numbers shown in Table 4.1. Furthermore, the
velocity profile in the supercritical regime is almost unvarying with the Mach number and very similar
to the Blasius profile.

The transcritical cases feature strong density gradients, specially in the vicinity of the Widom point.
In the heated wall cases, an increase in the Mach number results in a noticeable increase in the height
of the Widom point. However, for the cooled wall cases, the height at which the pseudo-boiling is
crossed remains almost unchanged with varying Mach number. Regarding the velocity profiles, similar
to the two-fluid boundary layer in Özgen et al., 1998, below the pseudo-boiling point the velocity
profile is near linear. In the heated wall transcritical cases, the near wall velocity gradient is large, with
the dynamic viscosity being low in this region. Conversly, for the cooled wall transcritical cases, the
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Subcritical Regime
𝑇∗
∞/𝑇∗

𝑝𝑐 𝑇∗
wall/𝑇

∗
𝑝𝑐 Pr∞ M2

∞ M∞ Ec∞ Case

CO2
at 𝑃∗ = 80bar

Heated Wall 0.90 0.95 2.11

1 · 10−4 0.01 0.000 SubHM0
0.2 0.447 0.106 SubHM20.2
0.4 0.632 0.211 SubHM20.4
0.6 0.775 0.317 SubHM20.6

Cooled Wall 0.95 0.90 2.39

1 · 10−4 0.01 0.000 SubCM0
0.2 0.447 0.045 SubCM20.2
0.4 0.632 0.090 SubCM20.4
0.6 0.775 0.135 SubCM20.6
0.8 0.894 0.180 SubCM20.8
0.9 0.949 0.202 SubCM20.9

Supercritical Regime
𝑇∗
∞/𝑇∗

𝑝𝑐 𝑇∗
wall/𝑇

∗
𝑝𝑐 Pr∞ M2

∞ M∞ Ec∞ Case

CO2
at 𝑃∗ = 80bar

Heated Wall 1.05 1.10 1.59

1 · 10−4 0.01 0.000 SupHM0
0.2 0.447 0.012 SupHM20.2
0.4 0.632 0.025 SupHM20.4
0.6 0.775 0.037 SupHM20.6
0.8 0.894 0.050 SupHM20.8
0.9 0.949 0.056 SupHM20.9

Cooled Wall 1.10 1.05 1.22

1 · 10−4 0.01 0.000 SupCM0
0.2 0.447 0.020 SupCM20.2
0.4 0.632 0.040 SupCM20.4
0.6 0.775 0.059 SupCM20.6
0.8 0.894 0.079 SupCM20.8
0.9 0.949 0.089 SupCM20.9

Transcritical Regime
𝑇∗
∞/𝑇∗

𝑝𝑐 𝑇∗
wall/𝑇

∗
𝑝𝑐 Pr∞ M2

∞ M∞ Ec∞ Case

CO2
at 𝑃∗ = 80bar

Heated Wall 0.95 1.05 2.39

1 · 10−4 0.01 0.000 TransHM0
0.2 0.447 0.045 TransHM20.2
0.4 0.632 0.090 TransHM20.4
0.6 0.775 0.135 TransHM20.6
0.8 0.894 0.180 TransHM20.8
0.9 0.949 0.202 TransHM20.9

Cooled Wall 1.05 0.95 1.59

1 · 10−4 0.01 0.000 TransCM0
0.2 0.447 0.012 TransCM20.2
0.4 0.632 0.025 TransCM20.4
0.6 0.775 0.037 TransCM20.6
0.8 0.894 0.050 TransCM20.8
0.9 0.949 0.056 TransCM20.9

Table 4.1: Numerical parameters of the cases investigated. CO2 boundary layer at supercritical pressure of 𝑝 = 80bar. The
free-stream and wall temperature are shown non-dimensionalized by the pseudo-critical temperature of 𝑇∗

𝑝𝑐 = 307.7K.
The wall is isothermal. Varying Mach numbers at the free-stream, which is prescribed. The Eckert and Prandtl numbers
at the free-stream result from the input parameters

dynamic viscosity is high near the wall, and the velocity gradient is low.
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Base flow profiles - Heated wall
(a) Temperature profiles (b) Density profiles

(c) Velocity profiles

Figure 4.1: Base flow profiles of all considered cases with a heated wall. The vertical red line in the temperature and density
panels (4.2a and 4.2b) represent the condition at the pseudo-critical point.
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Base flow profiles - Cooled wall
(a) Temperature profiles (b) Density profiles

(c) Velocity profiles

Figure 4.2: Base flow profiles of all considered cases with a cooled wall. The vertical red line in the temperature and density
panels (4.2a and 4.2b) represent the condition at the pseudo-critical point.



5
Results: Modal Stability Analysis

In this chapter, the modal stability of mode I and mode II is investigated. Firstly, the viscous problem is
considered, where the Reynolds number is finite. Section 5.1 explores mode I (TS mode) instability in
the subcritical and supercritical boundary-layer flows. Section 5.2 investigates mode I (when present)
and mode II in the transcritical flows. Particular attention is given to the amplification of 3D waves and
the effect of the Mach number in the further amplification of 3D waves when compared to their 2D
counterparts. Finally, in Section 5.3, the inviscid formulation is considered (Re𝛿 −→ ∞). In this case, only
mode II is present for the transcritical regimes. In this simplified scenario, the effect of Mach number in
the further amplification of 3D waves is analyzed once more.

5.1. Sub- and Supercritical Regimes
The subcritical and supercritical regimes are investigated – see Table 4.1. In these regimes, only the
viscous mode I is present. The analysis begins by considering the case M∞ −→ 0, representing the
limit of an infinitely high speed of sound and negligible compressibility effects. Figure 5.1 shows the
growth rate of mode I in the Re𝛿 − 𝜔 − B space for both heated and cooled wall scenarios in the sub-
and supercritical regimes at zero Mach number. At M∞ = 0, for all four boundary layers, as the global
span-wise wave number (B) increases, the unstable surfaces become smaller, and the maximum growth
rate decreases. Therefore, at M∞ = 0, mode I is observed to be preferentially 2D. For increasing wave
number B, mode I remains unstable only at lower Re𝛿 values. Still, the critical Reynolds number –
defined as the minimum Reynolds number at which an unstable wave exists – increases slightly with B.

The supercritical heated wall (SupHM0) and the subcritical cooled wall (SubCM0) cases (panels
5.1b and 5.1c) are both qualitatively and quantitative similar. Similarly, the supercritical cooled wall
(SupCM0) and the subcritical heated wall (SubHM0) scenarios exhibit comparable behavior. This
indicates that at M∞ = 0, a symmetry of the wall and free-stream temperatures, at the pseudo-critical
point, produce a similar modal response. The maximum growth rate for the SupHM0 and SubCM0
cases is approximately twice as high as the SupCM0 and SupHM0 cases and occurs at a lower Reynolds
number. This results in the boundary layer being unstable for higher values of the global span-wise
wave number B.

To investigate the three-dimensionality of mode I under compressibility effects, non-zero Mach
number is considered. The squared Mach number at the free stream is varied from M2

∞ = 0 to M2
∞ = 0.9.

The growth rate (−𝛼𝑖), optimized over all values of Re𝛿 and 𝜔, is computed for various 𝛽. Note that,
unlike Figure 5.1, where the global span-wise wave number B is varied, in this case, the span-wise wave
number 𝛽 is considered.

29
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(a) Subcritical Heated Wall (b) Supercritical Heated Wall

(c) Subcritical Cooled Wall (d) Supercritical Cooled Wall

Figure 5.1: Growth rate contour in the Re𝛿 − 𝜔 − B space for the Sub- and supercritical cases at zero Mach number (SubHM0 5.1a,
SupHM0 5.1b, SubCM0 5.1c, SupCM0 5.1d)

To quantify the effect of 𝛽 on the maximum modal amplification, the growth rate −𝛼𝑖 is normalized
by the amplification of the most amplified 2D mode. Let 𝑟 represent the ratio of the growth rate to that
of the most amplified 2D instability, given by

𝑟(𝛽) =
(max𝜔,Re𝛿 {−𝛼𝑖})𝛽
(max𝜔,Re𝛿 {−𝛼𝑖})𝛽=0

(5.1)

Table 5.1 shows the parameters of the most amplified 2D instability for all subcritical and supercritical
cases. For the supercritical cases, an increase in the Mach number leads to a decrease in the most
amplified modal amplification. This is accompanied by an increase in Re𝛿 number and a decrease in 𝜔

for the most amplified wave. Conversely, for the subcritical cases, an increase in Mach number leads a
decrease in Re𝛿 and an increase in 𝜔 of the most amplified wave. In the subcritical heated wall case the
growth rate of the most amplified 2D wave increases with the Mach number. However, in the cooled
wall case, the modal amplification at high Mach number is lower compared to the lower M2

∞ cases.
The growth rate ratio 𝑟(𝛽) is shown in Figure 5.2. In all cases, a sufficiently high Mach number

will lead to waves that are preferentially 3D. In the supercritical cases a higher growth rate ratio (𝑟) is
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(a) Heated Wall Subcritical Cases

Case Re𝛿 𝜔 𝛼 × 103

SubHM0 7484 0.0183 85.2 - 5.45 𝑖
SubHM20.2 4943 0.0218 90.8 - 6.45 𝑖
SubHM20.4 3792 0.0237 91.4 - 7.12 𝑖
SubHM20.6 2916 0.0251 89.7 - 7.53 𝑖

(b) Heated Wall Supercritical Cases

Case Re𝛿 𝜔 𝛼 × 103

SupHM0 1653 0.0368 115.9 - 9.1 𝑖
SupHM20.2 1734 0.0340 106.7 - 8.0 𝑖
SupHM20.4 1807 0.0315 98.2 - 6.9 𝑖
SupHM20.6 1861 0.0293 90.3 - 6.0 𝑖
SupHM20.8 1888 0.0273 83.3 - 5.1 𝑖
SupHM20.9 1886 0.0265 80.1 - 4.6 𝑖

(c) Cooled Wall Subcritical Cases

Case Re𝛿 𝜔 𝛼 × 103

SupHM0 1409 0.0368 123.1 - 10.1 𝑖
SupHM20.2 1345 0.0369 120.9 - 10.3 𝑖
SupHM20.4 1268 0.0369 118.0 - 10.3 𝑖
SupHM20.6 1158 0.0370 115.0 - 10.1 𝑖
SupHM20.8 990 0.0380 113.1 - 9.6 𝑖
SupHM20.9 876 0.0392 113.3 - 9.4 𝑖

(d) Cooled Wall Supercritical Cases

Case Re𝛿 𝜔 𝛼 × 103

SupCM0 5831 0.0185 90.3 - 5.9 𝑖
SupCM20.2 6601 0.0163 80.3 - 5.0 𝑖
SupCM20.4 7457 0.0143 70.9 - 4.2 𝑖
SupCM20.6 8283 0.0126 62.3 - 3.5 𝑖
SupCM20.8 8864 0.0112 54.5 - 2.7 𝑖
SupCM20.9 8924 0.0106 51.1 - 2.4 𝑖

Table 5.1: Parameters for the most amplified 2D mode I instability for all the sub- and supercritical cases

achieved when compared to the subcritical regime. For the supercritical cases, with an increase in Mach
number, the growth rate of the most amplified 2D perturbation decreases, and so does the range of 𝛽 for
which an instability exists. The opposite is observed in the subcritical regimes, where an increase in
Mach number leads to an increase of the growth rate of the 2D instability and of the maximum wave
number 𝛽 for which an instability exists. The similarity between the SupH and SubC cases (panels
5.2b and 5.2c), and the SupC and SubH cases, is lost for finite Mach number. This is not surprising
considering the loss of simetry in the base flow profiles shown in Figures 4.1 and 4.2.

Figure 5.3 shows, for varying 𝛽, the phase speed 𝑐𝑥 = 𝜔/𝛼𝑟 for the most amplified modes. As
shown in Section 2.3, the quantity 𝑐𝑥 = 𝜔/𝛼𝑟 is the phase speed along the x-axis. For all cases where
compressibility is negligible, including all zero Mach number cases, the phase speed of the most
amplified wave increases with increasing 𝛽. However, in the cases where 𝑟 > 1, indicating that mode I
is preferentially 3D, a decrease in the phase speed 𝑐𝑥 is observed before its subsequent increase. This
reduction in phase speed is more pronounced at higher Mach numbers, where the growth rate ratio 𝑟 is
also higher. There appears to be a link between the decrease of phase speed 𝑐𝑥 and the increase of the
amplification −𝛼𝑖 .

Figure 5.4 shows, for the highest considered Mach number in each panel of Figure 5.2, the most
amplified 2D perturbation alongside the most amplified 3D perturbation. Let 𝑦𝑐 denote the location at
which the base flow velocity equals the phase speed 𝑐𝑥 . This point, referred to as the critical layer, is
marked by a horizontal blue line in each panel of Figure 5.4. It is observed that for oblique perturbations,
the eigenfunctions are more confined in the boundary layer, meaning the eigenfunctions are "small"
away from the wall. For the 3D perturbations, the perturbation velocity in the 𝑧-direction is sizable and
its maximum amplitude close to 𝑦𝑐 . Both temperature and pressure perturbations become comparatively
smaller. Hence, the most unstable oblique perturbation has more of a kinetic nature when compared to
its 2D counterpart. Additionally, it is noted that the Reynolds number of the most amplified perturbation
increases with 𝛽, while the frequency 𝜔 decreases.
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(a) Subcritical Heated Wall (b) Supercritical Heated Wall

(c) Subcritical Cooled Wall (d) Supercritical Cooled Wall

Figure 5.2: Evolution of the growth rate ratio 𝑟 with the span-wise wave number for all sub- and supercritical cases. The maximum
obtained growth rate ratio is represented by a vertical dash.
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(a) Subcritical Regime (b) Supercritical Regime

Figure 5.3: Effect of the span-wise wave number 𝛽 on the phase velocity (𝑐𝑥 ) of the most amplified mode. All sub- and supercritical
cases. The point at which maximum growth rate ratio is achieved is marked with a dash.
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(a) Subcritical Heated Wall, M2
∞ = 0.6 (SubHM20.6)

2D: 𝛽 = 0,Re𝛿 = 2916, 𝜔 = 0.0251
3D: 𝛽 = 0.048,Re𝛿 = 3263, 𝜔 = 0.0235

(b) Supercritical Heated Wall, M2
∞ = 0.9 (SupHM20.9)

2D: 𝛽 = 0,Re𝛿 = 1886, 𝜔 = 0.0265
3D: 𝛽 = 0.052,Re𝛿 = 2335, 𝜔 = 0.0231

(c) Subcritical Cooled Wall, M2
∞ = 0.9 (SupHM20.9)

2D: 𝛽 = 0,Re𝛿 = 876, 𝜔 = 0.0392
3D: 𝛽 = 0.074,Re𝛿 = 1128, 𝜔 = 0.0339

(d) Supercritical Cooled Wall, M2
∞ = 0.9 (SupHM20.9)

2D: 𝛽 = 0,Re𝛿 = 8924, 𝜔 = 0.0106
3D: 𝛽 = 0.044,Re𝛿 = 13255, 𝜔 = 0.008

Figure 5.4: Profiles of the most amplified 2D and 3D perturbations. The horizontal blue line represents the location of 𝑦𝑐 , defined
has the point at which the base flow velocity𝑈 is the same as the phase speed 𝑐𝑥 (𝑈(𝑦𝑐) = 𝑐𝑥). For each panel, the
Mach number is the highest Mach in the respective panel in Figure 5.2: Case SubHM20.6 in 5.4a, case SupHM20.9 in
5.4b, case SubCM20.9 in 5.4c, and case SupCM20.9 in 5.4d.
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5.2. Transcritical Regime
In this section, the stability of mode I and mode II in the transcritical regime is investigated. While mode
I and mode II may coexist in transcritical boundary layers, for the considered temperature boundary
conditions, no mode I instability was found in the cooled wall scenario. As in Section 5.1, the analysis
begins by considering the case where M∞ → 0. Figure 5.5 shows the growth rates of mode I (panel 5.5c)
and mode II (panels 5.5b and 5.5b) in the Re𝛿 − 𝜔 − B space for both heated and cooled wall scenarios in
the transcritical regime at zero Mach number.

(a) Transcritical Heated Wall - Mode II (b) Transcritical Cooled Wall - Mode II

(c) Transcritical Heated Wall - Mode I

Figure 5.5: Growth rate contour, of mode I and mode II, in the Re𝛿 − 𝜔 − B space for the transcritical cases at zero Mach number

As in the subcritical and supercritical regimes, in the transcritical regime, at M∞ = 0, both mode I
and mode II are most amplified for 2D perturbations. Regarding mode I, its maximum growth rate
is of the same order of magnitude as in the sub- and supercritical regimes. However, with increasing
wave number B, the maximum growth rate decays more gradually. Thus, in the TransHM0 case,
mode I is unstable for a higher range of wave numbers 𝛽 when compared to the sub- and supercritical
cases. Moreover, unlike in the sub- and supercritical regimes where the unstable surface contracts with
increasing 𝐵, in the heated wall transcritical regime, the unstable surface expands for some values of
𝐵, despite the decrease in the maximum growth rate −𝛼𝑖 . Meaning that, for some fixed 𝜔, Re𝛿, the
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amplification of mode I may increase with 𝐵. Regarding mode II, its growth rate is significantly higher
than that of mode I. In the heated wall scenario the maximum growth rate of mode I is approximately
𝛼𝑖 = −7 · 10−3, whereas for mode II it is 𝛼𝑖 = −40 · 10−3, close to 6 times higher amplification. In
the cooled wall scenario, an even higher mode II amplification is obtained, reaching a maximum of
𝛼𝑖 = −74 · 10−3, representing a tenfold increase. Noticeably, mode II is unstable for a much larger range
of wave numbers B when compared to mode I, as evident from the differing scales of the B-axis.

(a) Heated Wall Transcritical Cases - Mode II

Case Re𝛿 𝜔 𝛼 × 103

TransHM0 1420 0.232 588.8 - 42.4 𝑖
TransHM20.2 1004 0.223 504.6 - 34.0 𝑖
TransHM20.4 710 0.220 451.8 - 27.9 𝑖
TransHM20.6 556 0.210 398.0 - 22.9 𝑖
TransHM20.8 454 0.201 356.6 - 19.3 𝑖
TransHM20.9 386 0.206 354.2 - 18.2 𝑖

(b) Cooled Wall Transcritical Cases - Mode II

Case Re𝛿 𝜔 𝛼 × 103

TransCM0 208 0.130 501.4 - 73.6 𝑖
TransCM20.2 219 0.128 502.4 - 70.8 𝑖
TransCM20.4 234 0.126 504.2 - 68.5 𝑖
TransCM20.6 247 0.125 511.3 - 65.2 𝑖
TransCM20.8 264 0.124 522.7 - 62.6 𝑖
TransCM20.9 270 0.126 535.2 - 61.3 𝑖
TransCM21.6 335 0.130 611.9 - 49.4 𝑖

(c) Heated Wall Transcritical Cases - Mode I

Case Re𝛿 𝜔 𝛼 × 103

TransHM20 566 0.134 241.1 - 6.7 𝑖
TransHM20.2 419 0.134 221.1 - 3.8 𝑖
TransHM20.4 338 0.132 203.2 - 1.7 𝑖

Table 5.2: Parameters for the most amplified 2D mode I and mode II instability for all the transcritical cases

To investigate the possible three-dimensionality of modes I and II under compressibility effects, the
growth rate ratio 𝑟 is shown in Figure 5.6 for all transcritical cases, with varying Mach number. Table
5.2 provides the parameters for the most amplified 2D wave. In both heated and cooled wall cases,
the growth rate of the most amplified mode I or II 2D wave decreases with increasing Mach number.
For the heated wall transcritical scenario, the amplification of mode I is only shown for M2

∞ ≤ 0.6, as
any mode I instability is dampened for M2

∞ = 0.8 and M2
∞ = 0.9. Regarding Figure 5.6, unlike what is

observed in the sub- and supercritical regimes, the amplification of mode I decreases with increasing
𝛽, regardless of the Mach number. High Mach number (M2

∞ = 0.8, 0.9) are not considered, but given
the evolution of 𝑟 for the plotted cases, it could be expected that further increasing the Mach number
will not result in an increase of 𝑟 with 𝛽, i.e. will not result in preferentially 3D waves. For mode II,
in both heated and cooled wall scenarios, a sufficiently high Mach number results in 3D waves with
higher growth rate than their 2D counterpart. In the heated wall case (panel 5.6a), for M2

∞ ≥ 0.4, two
local maxima are observed. For low values of 𝛽, a local maximum exists at a low Reynolds number. At
some 𝛽 > 0 a second local maximum appears, plotted with a dashed line, and at higher 𝛽, the initial
local maximum ceases to exist. For the cooled wall scenario an additional Mach number of M2

∞ = 1.6 is
considered as to achieve preferentially 3D waves. It is noted that the ratio 𝑟 of mode II is higher for the
heated wall case when compared to the cooled wall case.

Figure 5.7 shows the ratio 𝑐𝑥/𝑈𝑠 for the waves in Figure 5.6, where the subscript ’s’ stands for the
location of the generalized inflection point (GIP). Note that𝑈𝑠 varies with the Mach number. The phase
speed 𝑐𝑥 is normalized by the base flow speed at the GIP because, in the limiting case of Re𝛿 −→ ∞,
a neutral wave exists with phase speed 𝑐𝑥 = 𝑈𝑠 . That is, the non-trivial neutral inviscid wave meets
𝑐𝑥 = 𝑈𝑠 . Regarding the evolution of 𝑐𝑥/𝑈𝑠 in Figure 5.7, in the heated wall scenario, the phase speed of
mode II reveals a similar pattern to what is observed in the sub- and supercritical cases. For increasing 𝛽,
an increase in the growth rate is accompanied by a decrease of the phase speed 𝑐𝑥 , before its subsequent
increase. As for mode I, it is a preferentially 2D mode and the phase 𝑐𝑥 increasing with 𝛽, similar to
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(a) Transcritical Heated Wall - Mode II (b) Transcritical Cooled Wall - Mode II

(c) Transcritical Heated Wall - Mode I

Figure 5.6: Evolution of the growth rate ratio 𝑟 with the span-wise wave number for all transcritical cases. mode I in panels The
maximum obtained growth rate ratio is represented by a vertical dash.

what occurs in the sub- and supercritical regimes. In the cooled wall scenario (panel 5.6b), unlike the
other cases, the phase speed 𝑐𝑥 of high-𝛽 waves is lower when compared to 2D waves. This is justified,
as for high wave number 𝛽, the Reynolds number Re𝛿 is also high, such that the global span-wise wave
number B is relatively low. For Re𝛿 −→ ∞, the phase speed must satisfy 1 − 1/M∞ < 𝑐𝑥 < 1 (Mack, 1984).
Since in the cooled wall case the most amplified 2D wave has 𝑐𝑥 > 1, it follows that for high 𝛽 (and high
Re𝛿) the phase speed of mode II must decrease and eventually reach 1 at some high 𝛽,Re𝛿. However,
looking solely at the high Mach number cases, namely M2

∞ ≥ 0.4 (M∞ ≥ 0.63), where compressibility is
non-negligible, it is observed that in the case of 𝑟 > 1 there is a reversion of the evolution of 𝑐𝑥 compared
to the 𝑟 < 1 cases. For these boundary layers, in the case of decreasing 𝑟, 𝑐𝑥 decreases with increasing 𝛽,
and in the M2

∞ = 1.6 (M∞ = 1.26) case, increasing 𝑟 is accompanied by increasing 𝑐𝑥 . A link remains
between the evolution of the amplification −𝛼𝑖 and the evolution of the phase speed 𝑐𝑥 .

Figure 5.8 shows the profiles of the most amplified 2D waves alongside the most amplified 3D wave,
when considering the highest Mach number on each panel in Figure 5.6. Regarding mode I, in the
TransHM20.4 case, only the 2D perturbation is plotted since no 3D wave has a higher amplification. The
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(a) Transcritical Heated Wall - Mode II (b) Transcritical Cooled Wall - Mode I

(c) Transcritical Heated Wall - Mode I

Figure 5.7: Effect of the span-wise wave number 𝛽 on the phase speed (𝑐𝑥) of the most amplified mode. All transcritical cases.
The point at which maximum growth rate ratio is achieved is marked with a dash.
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(a) Transcritical Heated Wall, M2
∞ = 0.9 (TransHM20.9) - Mode II

2D: 𝛽 = 0, Re𝛿 = 374, 𝜔 = 0.20
3D: 𝛽 = 0.28, Re𝛿 = 464, 𝜔 = 0.18

(b) Transcritical Cooled Wall (TransCM21.4) - Mode II
2D: 𝛽 = 0, Re𝛿 = 321, 𝜔 = 0.13
3D: 𝛽 = 0.14, Re𝛿 = 330, 𝜔 = 0.12

(c) Transcritical Heated Wall, M2
∞ = 0.4 (TransHM20.4) - Mode I

Figure 5.8: Profiles of the most amplified 2D and 3D perturbations. The horizontal blue line represents the location of 𝑦𝑐 , and the
red line represents the location of the pseudo-boiling point 𝑦𝑤 . For each panel, the considered Mach number is the
highest Mach considered in the respective panel in Figure 5.6.

stream-wise velocity and temperature perturbations still feature a maxima near the critical layer 𝑦𝑐 , just
as in the sub- and supercritical regimes (Figure 5.4). Additionally, the stream-wise velocity perturbation
has a sharp decrease near the location where 𝑇 = 𝑇𝑝𝑐 , called the Widom line 𝑦𝑤 , and represented by
the horizontal red line in Figure 5.6. As for mode II, both in the heated and cooled wall cases, the
temperature and velocity perturbations also feature a maxima near the critical layer. In the cooled wall
scenario the pressure perturbation is significantly higher when compared to the heated wall case. When
comparing the 3D to the 2D perturbation, most noticeably, the most amplified 3D perturbations have
greatly reduced near-wall velocity perturbations. Similar to the sub- and supercritical regimes, the
perturbation temperature and pressure perturbations are comparatively small for the three-dimensional
waves, and the perturbation velocity in the z-direction is sizable with a maximum near the critical layer
𝑦𝑐 .
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5.3. Inviscid Regime
The limiting case of Re𝛿 → ∞ allows for the simplification of the governing equations for a perturbation
𝑞′. The system detailed in Section 2.3.1 is considered. The three-dimensionality of mode II is studied in
this simplified framework for all transcritical cases. Figure 5.9 shows the growth rate ratio 𝑟 in panels
5.9a and 5.9b for the heated and cooled wall scenarios, respectively. Additionally, in panels 5.9c and
5.9d the phase speed scaled by the base flow velocity at the GIP (𝑐𝑥/𝑈𝑠) is shown for the most amplified
wave.

(a) Transcritical Heated Wall, growth rate ratio 𝑟 (b) Transcritical Cooled Wall, growth rate ratio 𝑟

(c) Transcritical Heated Wall, scaled phase speed 𝑐𝑥/𝑈𝑠 (d) Transcritical Cooled Wall, scaled phase speed 𝑐𝑥/𝑈𝑠

Figure 5.9: Growth rate ratio (panels 5.9a and 5.9b), and scaled phase speed 𝑐𝑥/𝑈𝑠 (panels 5.9c and 5.9d) of the most amplified
inviscid wave, optimized over all frequencies 𝑤. CO2 BL with 𝑃∞ = 80bar. On the left (panels 5.9a, 5.9c) the
transcritical heated wall case with 𝑇∞ = 0.95𝑇𝑝𝑐 , and 𝑇wall = 1.05𝑇𝑝𝑐 , and on the right (panels 5.9b, 5.9d) a cooled wall
with 𝑇∞ = 1.05𝑇𝑝𝑐 , and 𝑇wall = 0.95𝑇𝑝𝑐

The results show a similar trend to what was initially observed in the sub- and supercritical regimes.
A sufficient increase of the Mach number leads to preferentially 3D waves. This is accompanied by a
decrease in the phase speed 𝑐𝑥 before its subsequent increase. Being that 𝑦𝑐 < 𝑦𝑠 , the critical layer is
located below or at the Widom point. Hence, in the heated wall scenario the critical layer is located
in a region where the fluid has a gas-like behavior, and conversely, in the cooled wall scenario the
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critical layer is in a region where the fluid is liquid-like. The growth rate ratio 𝑟 is higher for the
TransH case when compared to the TransC. It is noted that the phase speed 𝑐𝑥 of the most amplified
2D wave increases for high Mach number, and this increase is greater for the cooled wall case. Similar
observations could be made when comparing the super- and subcritical regimes in Figures 5.2 and 5.3.

Within the Re𝛿 −→ ∞ approximation, the system in 2.27 can be written as a single second order
differential equation for the pressure perturbation 𝑝̃ as

𝜕2 𝑝̃

𝜕𝑦2 − {𝜌̄(𝑈 − 𝑐𝑥)2}(1)
𝜌̄(𝑈 − 𝑐𝑥)2

𝜕𝑝̃

𝜕𝑦
− 𝜓𝑝̃ = 0 (5.2)

where the superscripts (𝑖) denote the ith order derivative with respect to the wall normal direction.
Equivalently, a second order differential equation for the wall-normal velocity perturbation 𝑣̃ exists:

𝜕2𝑣̃

𝜕𝑦2 + 𝜉(1)

𝜉
𝜕𝑣̃

𝜕𝑦
−

(
𝜓 + 𝜁

𝜉

)
𝑣̃ = 0 (5.3)

with
𝜉 =

𝜌̄

1 −𝑀2
𝑟

; 𝜓 =

(
𝛼2 + 𝛽2

) (
1 −𝑀2

𝑟

)
; 𝜁 =

1
𝑈 − 𝑐𝑥

𝜕

𝜕𝑦

(
𝜉
𝜕𝑈

𝜕𝑦

)
(5.4)

Consider the temporal framework where, in this case, 𝛼 and 𝛽 are real. The eigenvalue 𝑐𝑥 is complex
and forms an eigenvalue pair together with the vector 𝑞̃. The temporal framework was found to facilitate
the subsequent analysis. Inspiration is taken from Lees and Lin (1946). In the 1946 paper, in the presence
of a GIP, given the existence of a neutral 2D wave with wave number 𝛼 = 𝛼𝑠 and 𝑐𝑥 = 𝑈𝑠 , the authors
prove the existence of an amplified inviscid wave by considering the total derivative 𝑑𝑐/𝑑(𝛼2). In the
present work, interest lies in the amplification of 3D waves. Hence, consider a constant wave number
𝛼 > 0, s.t. 𝑐𝑥 is an analytical function of 𝛽2. In the neighbourhood of 𝛽 = 0, 𝑐𝑥 may be expressed by a
Taylor series expansion with respect to 𝜆 = 𝛽2:

𝑐𝑥 = (𝑐𝑥)|𝛽=0 + 𝜆
d𝑐𝑥
d𝜆

����
𝛽=0

+ 𝜆2

2
d2𝑐𝑥

d𝜆2

����
𝛽=0

+ . . . (5.5)

If Im
{

d𝑐𝑥
d𝜆

��
𝛽=0

}
≠ 0, then, at a first order Taylor approximation of 𝑐𝑥 , i.e. for small values of 𝛽2, the

growth rate should increase/decrease depending on the sign of Im
{

d𝑐𝑥
d𝜆

��
𝛽=0

}
. Take the derivative of the

pressure equation with respect to 𝜆:

𝜕2 𝑝̃𝜆

𝜕𝑦2 − {𝜌̄(𝑈 − 𝑐𝑥)2}(1)
𝜌̄(𝑈 − 𝑐𝑥)2

𝜕𝑝̃𝜆
𝜕𝑦

− 𝜓𝑝̃𝜆 =

( {𝜌̄(𝑈 − 𝑐𝑥)2}(1)
𝜌̄(𝑈 − 𝑐𝑥)2

)
𝜆

𝜕𝑝̃

𝜕𝑦
+ 𝜓𝜆 𝑝̃ (5.6)

where the subscript 𝜆 represents the total derivative with respect to 𝜆. Consider the equality

𝜕

𝜕𝑦

(
1

𝜌̄(𝑈 − 𝑐𝑥)2

[
𝑝̃
𝜕𝑝̃𝜆
𝜕𝑦

− 𝑝̃𝜆
𝜕𝑝̃

𝜕𝑦

] )
− 1

𝜌̄(𝑈 − 𝑐𝑥)2
𝑝̃2 =

=
1

𝜌̄(𝑈 − 𝑐𝑥)2

(
2𝑈 (1)

(𝑈 − 𝑐𝑥)2
𝑝̃
𝜕𝑝̃

𝜕𝑦
+ 2𝛼2M2

∞
1
𝑎̄2 (𝑈 − 𝑐𝑥)𝑝̃2

)
d𝑐𝑥
d𝜆

(5.7)

where
d𝑐𝑥
d𝜆 =

𝜕

𝜕𝜆
+ d𝑐𝑥

d𝜆
𝜕

𝜕𝑐𝑥
(5.8)

was used.
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By integrating both sides of Equation 5.7 an expression for d𝑐𝑥
d𝜆 is obtained. While numerically it is

possible to compute expression 5.7 for any amplified wave, since 𝑝̃ is complex, even for the neutral wave
with 𝑐𝑥 = 𝑈𝑠 , it is more convenient to make use of the wall normal velocity Equation 5.3. An equivalent
expression is obtained:

𝜕

𝜕𝑦

(
𝜉𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜉𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

)
+ 𝜉

𝜕

𝜕𝜆

(
𝜉(1)

𝜉

)
𝑣̃
𝜕𝑣̃

𝜕𝑦
− 𝜉

𝜕

𝜕𝜆

(
𝜓 + 𝜁

𝜉

)
𝑣̃2 =

=

[
−𝜉 𝜕

𝜕𝑐𝑥

(
𝜉(1)

𝜉

)
𝑣̃
𝜕𝑣̃

𝜕𝑦
+ 𝜉

𝜕

𝜕𝑐𝑥

(
𝜓 + 𝜁

𝜉

)
𝑣̃2

]
d𝑐𝑥
d𝜆

(5.9)

Integrating from the wall till 𝑦2 −→ ∞, and solving for d𝑐𝑥
d𝜆 :

d𝑐𝑥
d𝜆 =

∫ 𝑦2

0
𝜕
𝜕𝑦

(
𝜌̄𝑣̃ 𝜕𝑣̃𝜆

𝜕𝑦 − 𝜌̄𝑣̃𝜆 𝜕𝑣̃
𝜕𝑦

)
𝑑𝑦 +

∫ 𝑦2

𝑜
𝜉 𝜕
𝜕𝜆

(
𝜉(1)

𝜉

)
𝑣̃ 𝜕𝑣̃
𝜕𝑦 𝑑𝑦 +

∫ 𝑦2

0 −𝜉 𝜕
𝜕𝜆

(
𝜓 + 𝜁

𝜉

)
𝑣̃2𝑑𝑦∫ 𝑦2

0 −𝜉 𝜕
𝜕𝑐𝑥

(
𝜉(1)
𝜉

)
𝑣̃ 𝜕𝑣̃
𝜕𝑦 𝑑𝑦 +

∫ 𝑦2

0 𝜉 𝜕
𝜕𝑐𝑥

(
𝜓 + 𝜁

𝜉

)
𝑣̃2𝑑𝑦

(5.10)

Regarding the leftmost integral of the numerator:∫ 𝑦2

0

𝜕

𝜕𝑦

(
𝜌̄𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜌̄𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

)
𝑑𝑦 =

(
𝜌̄𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜌̄𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

) ����𝑦=𝑦2

𝑦=0
= −

(
𝜌̄𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜌̄𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

) ����
𝑦=𝑦2

(5.11)

where the last equality follows from the identity 𝑣̃ = 𝑣̃𝜆 = 0. At the upper limit (for 𝑦2 −→ ∞):

𝜕𝑣̃

𝜕𝑦

����
𝑦→∞

= −
√
(𝛼2 + 𝛽2) (1 −𝑀2

𝑟 ) 𝑣̃∞ (5.12a)

𝜕𝑣̃𝜆
𝜕𝑦

����
𝑦→∞

= −
√
(𝛼2 + 𝛽2) (1 −𝑀2

𝑟 ) (𝑣̃𝜆)∞ − d
d𝜆

[√
(𝛼2 + 𝛽2) (1 −𝑀2

𝑟 )
]
𝑣̃∞ (5.12b)

which for 𝛽 = 0 read
𝜕𝑣̃

𝜕𝑦

����
𝑦→∞

= −𝛼
√

1 − M2
∞(1 − 𝑐𝑥)2 𝑣̃∞ (5.13a)

𝜕𝑣̃𝜆
𝜕𝑦

����
𝑦→∞

= −𝛼
√

1 − M2
∞(1 − 𝑐𝑥)2 (𝑣̃𝜆)∞ −

©­­«
1

2𝛼
√

1 − M2
∞(1 − 𝑐𝑥)2

+ 𝛼M2
∞(1 − 𝑐𝑥)√

1 − M2
∞(1 − 𝑐𝑥)2

d𝑐𝑥
d𝜆

ª®®¬ 𝑣̃∞ (5.13b)

substitution in 5.11 yields

∫ 𝑦2

0

𝜕

𝜕𝑦

(
𝜌̄𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜌̄𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

)
𝑑𝑦 = −

©­­«
1

2𝛼
√

1 − M2
∞(1 − 𝑐𝑥)2

+ 𝛼M2
∞(1 − 𝑐𝑥)√

1 − M2
∞(1 − 𝑐𝑥)2

d𝑐𝑥
d𝜆

ª®®¬ 𝑣̃2 |𝑦2→∞ (5.14)

and since 𝑣̃ |𝑦2→∞ = 0, then ∫ 𝑦2

0

𝜕

𝜕𝑦

(
𝜌̄𝑣̃

𝜕𝑣̃𝜆
𝜕𝑦

− 𝜌̄𝑣̃𝜆
𝜕𝑣̃

𝜕𝑦

)
𝑑𝑦 = 0 (5.15)

Regarding the partial derivative terms of Equation 5.10:

𝜕

𝜕𝜆

(
𝜉(1)

𝜉

)
=

−{𝑀2
𝑟 }(1)

(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )2

(5.16)
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𝜕

𝜕𝜆

(
𝜓 + 𝜁

𝜉

)
= 1 − 2𝛼2M2

∞
𝑎̄(𝛼2 + 𝛽2)2(1 −𝑀2

𝑟 )2

{
𝑈 − 𝑐𝑥
𝑎̄

}(1)
𝑈 (1) (5.17)

𝜕

𝜕𝑐𝑥

(
𝜉(1)

𝜉

)
=

−2𝛼2M2
∞

𝑎̄(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )

[{
𝑈 − 𝑐𝑥
𝑎̄

}(1) (
1 + 2𝑀2

𝑟

1 −𝑀2
𝑟

)
− (𝑈 − 𝑐𝑥)

𝑎̄(1)

𝑎̄2

]
(5.18)

𝜕

𝜕𝑐𝑥

(
𝜓 + 𝜁

𝜉

)
=

{
𝜌̄𝑈 (1)}(1)

𝜌̄(𝑈 − 𝑐𝑥)2
+ 2𝛼2M2

∞
𝑎̄2

[
(𝑈 − 𝑐𝑥) +

𝑈 (1)

(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )

(
𝑎̄(1)

𝑎̄
− {𝑀2

𝑟 }(1)

1 −𝑀2
𝑟

)]
(5.19)

The term 1
𝜌̄(𝑈−𝑐𝑥 )2

{
𝜌̄𝑈 (1)}(1) is the only singular term, and is found in the denominator. Meaning,

when integrating while considering the neutral wave with 𝑐𝑥 = 𝑈𝑠 , all but the singular term are real and
finite. As shown by Lees and Lin (1946), the point at which 𝑀2

𝑟 = 1 is an apparent singularity: under
the formulation in Equation 2.27 the only singularity occurs at 𝑈 = 𝑐𝑥 . Thus, when considering the
neutral wave with 𝑐𝑥 = 𝑈𝑠 (with corresponding wave number 𝛼 = 𝛼𝑠), the sign of imaginary part of
(𝑑𝑐𝑥/𝑑𝜆)|𝛼𝑠 is given by:

sgn

{
Im

{
d𝑐𝑥
d𝜆

����
𝛼𝑠

}}
= sgn {−Num. · Im{Den.}} (5.20)

where Num. stands for the numerator of Equation 5.10, and Den. its denominator.
Regarding the singular term, Lees and Lin consider the same quantity and express the base density

and stream-wise velocity fields in a Taylor series centred around 𝑦 = 𝑦𝑐 = 𝑦𝑠 :∫ 𝑦2

0

[
𝜉

𝜌̄(𝑈 − 𝑐𝑥)2
{
𝜌̄𝑈 (1)

}(1)
𝑣̃2

]
𝑑𝑦 =

=

∫
𝑦2

0

[
𝑣̃2
𝑐 + 2𝑣̃𝑐 𝑣̃(1)𝑐 (𝑦 − 𝑦𝑐) + . . .

] [
𝜉𝑐

{
𝜌̄𝑈 (1)}(2)

𝑐
(𝑦 − 𝑦𝑐) + . . .

]
𝜌̄𝑐

(
𝑈

(1)
𝑐

)2
(𝑦 − 𝑦𝑐)2

[
1 +

(
𝑈

(2)
𝑐

2𝑈 (1)
𝑐

+ 𝜌̄(1)𝑐
2𝜌̄𝑐

)
(𝑦 − 𝑦𝑐) + . . .

]2 𝑑𝑦

(5.21)

where the subscript ’𝑐’ indicates that the function is being evaluated at 𝑦 = 𝑦𝑐 . The integrand of Equation
5.21 is a Laurent series centred around 𝑦𝑐 . The imaginary part is equal to

Im
{∫ 𝑦2

0

[
𝜉

𝜌̄(𝑈 − 𝑐𝑥)2
{
𝜌̄𝑈 (1)

}(1)
𝑣̃2

]
𝑑𝑦

}
=

=
1
2𝑖

∮
𝛾

[
𝑣̃2
𝑐 + 2𝑣̃𝑐 𝑣̃(1)𝑐 (𝑦 − 𝑦𝑐) + . . .

] [
𝜉𝑐

{
𝜌̄𝑈 (1)}(2)

𝑐
(𝑦 − 𝑦𝑐) + . . .

]
𝜌̄𝑐

(
𝑈

(1)
𝑐

)2
(𝑦 − 𝑦𝑐)2

[
1 +

(
𝑈

(2)
𝑐

2𝑈 (1)
𝑐

+ 𝜌̄(1)𝑐
2𝜌̄𝑐

)
(𝑦 − 𝑦𝑐) + . . .

]2 𝑑𝑦
(5.22)

where 𝛾 is a positively oriented simple closed curve around 𝑦𝑐 . Since the singularity is isolated, we may
arbitrarily choose 𝛾 = {𝑦 : |𝑦 − 𝑦𝑐 | = 𝜖 → 0}. From Cauchy residue theorem, Equation 5.22 yields

Im
{∫ 𝑦2

0

[
𝜉

𝜌̄(𝑈 − 𝑐𝑥)2
{
𝜌̄𝑈 (1)

}(1)
𝑣̃2

]
𝑑𝑦

}
= 𝜋 |𝑣̃𝑐 |2

{
𝜌̄𝑈 (1)}(2)

𝑐(
𝑈

(1)
𝑐

)2 < 0 (5.23)

The last inequality follows from Fjørtoft’s theorem, extended to varying density fluids, which states{
𝜌̄𝑈 (1)}(2)

𝑠
< 0, and thus Im{Den.} < 0 for 𝛼 = 𝛼𝑠 . In the context of trancritical flows, as shown by

Bugeat et al. (2022), the maximum of 𝜌̄𝑈 (1) at the GIP is associated with a minimum of kinematic
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viscosity. Near the Widom point, viscosity effects dominate the balance of stream-wise momentum
such that {𝜇𝑈 (1)}(1) ≈ 0, from which

{
𝜌̄𝑈 (1)}(1) ≈ −𝜌̄𝑈 (1)𝜈(1). The existence of a GIP is associated with

an extremum of 𝜈: 𝜈(1)𝑠 = 0. From which,
{
𝜌̄𝑈 (1)}(2)

𝑠
≈ −

{
𝜌̄𝑈 (1)𝜈(2)

}
𝑠
, and, in order to satisfy Fjørtoft’s

criterion, considering 𝑈 (1)
𝑠 > 0, the kinematic viscosity is at a minimum at the GIP: 𝜈(2)𝑠 > 0. Note

however that the result in Equation 5.23 is general for all boundary layer flows.
Figure 5.10 confirms that

{
𝜌̄𝑈 (1)}(2)

𝑐
< 0. The quantity

{
𝜌̄𝑈 (1)}(1) is plotted for both heated (panel

5.10a) and cooled (panel 5.10b) wall cases and various Mach numbers. The neutral inviscid mode with
𝑐𝑥 = 𝑈𝑠 has its critical layer at the GIP, i.e. the location where

{
𝜌̄𝑈 (1)}(1) = 0.

(a) Transcritical heated wall (b) Transcritical cooled wall

Figure 5.10: Generalized inflection point
{
𝜌̄𝑈(1)}(1) for the transcritical boundary layers cases. A heated wall in 5.10a, and cooled

wall in 5.10b.

Record Equation 5.20, since, as shown in Equation 5.23, Im{Den.} < 0, for constant 𝛼 = 𝛼𝑠 , an
inviscid mode is most amplified for a 3D wave if Num. > 0. Consider then the numerator of Equation
5.10, it reads ∫ 𝑦2

0
−𝜉𝑣̃2𝑑𝑦︸         ︷︷         ︸
𝑎1

+
∫ 𝑦2

0

𝜉{𝑀2
𝑟 }(1)

(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )2

(
𝑈 (1)

𝑈 − 𝑐𝑥
𝑣̃2 − 𝑣̃𝑣̃(1)

)
𝑑𝑦

(5.24)

For the zero Mach case, the relative Mach number 𝑀𝑟 is zero and 𝜉 −→ 𝜌̄. The leftmost integral is the
only non-zero term, and being that its integrand is negative for all 𝑦, then 𝑎1 ∈ R−, and Im

{
𝑑𝑐
𝑑𝛽2

}
< 0.

Thus, for M∞ −→ 0, the neutral inviscid wave with 𝛼 = 𝛼𝑠 is, for small values of 𝛽2, most amplified for
𝛽 = 0. The rightmost integral can be decomposed into two terms: ∫ 𝑦2

0
−𝜉𝑣̃2𝑑𝑦︸         ︷︷         ︸
𝑎1

+

+
∫ 𝑦2

0
𝜉

−{𝑀2
𝑟 }(1)

(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )2

𝑣̃𝑣̃(1)𝑑𝑦︸                                     ︷︷                                     ︸
𝑎2

+
∫ 𝑦2

0
𝜉

2𝛼2M2
∞

𝑎̄(𝛼2 + 𝛽2)2(1 −𝑀2
𝑟 )2

{
𝑈 − 𝑐𝑥
𝑎̄

}(1)
𝑈 (1)𝑣̃2𝑑𝑦︸                                                            ︷︷                                                            ︸

𝑎3

(5.25)
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Consider a subsonic wave (|𝑀𝑟 | < 1), such that 𝜉 > 0, and assume that the relative Mach number is

an increasing function with respect to the wall normal direction, meaning
{
𝑈−𝑐𝑥
𝑎̄

}(1)
≥ 0. The integrand

of 𝑎1 remains negative for all 𝑦, s.t. 𝑎1 ∈ R−. Regarding the term 𝑎2. The square of the relative Mach
number 𝑀2

𝑟 is a decreasing function for 𝑦 < 𝑦𝑐 , and an increasing function for 𝑦 > 𝑦𝑐 . On the contrary,
the perturbation 𝑣̃ is, generally, an increasing/decreasing function for (𝑦 < 𝑦𝑐)/(𝑦 > 𝑦𝑐). All other terms
in 𝑎2 are positive, thus it is expected that 𝑎2 is positive (𝑎2 ∈ R+). The integrand of 𝑎3 is positive for all 𝑦,
meaning 𝑎3 ∈ R+. The two zero-terms when M∞ = 0 (terms 𝑎2 and 𝑎3) are expected to be positive for
M∞ > 0. Thus, for M∞ > 0, the terms 𝑎2 and 𝑎3 have a positive contribution in the further amplification
of the wave with 𝛼 = 𝛼𝑠 for 𝛽 > 0. Figure 5.11 shows, for increasing Mach number, the values of 𝑎1,
and (𝑎2 + 𝑎3) for the transcritical heated wall case with 𝑇∞ = 0.95𝑇𝑝𝑐 , 𝑇wall = 1.05𝑇𝑝𝑐 . The temporal
framework is used. The 2D (𝛽 = 0) neutral wave with 𝑐 = 𝑈𝑠 is considered, note that𝑈𝑠 varies with the
Mach number, as does the wave number 𝛼𝑠 . The perturbation wall-normal velocity 𝑣̃ is normalized by:

𝑣̃

max{|𝑣̃ |}
|𝑣̃(𝑦 −→ ∞)|
𝑣̃(𝑦 −→ ∞) (5.26)

such that 𝑣̃ is real.

Figure 5.11: Evolution of the terms 𝑎1 and 𝑎2+𝑎3 of the numerator of Equation 5.10 with increasing Mach number. CO2 transcritical
boundary layer with heated wall. The temperature boundary conditions are 𝑇∞ = 0.95𝑇𝑝𝑐 , and 𝑇wall = 1.05𝑇𝑝𝑐 . For
each Mach number the neutral inviscid wave with 𝛼 = 𝛼𝑠 > 0 and 𝑐𝑥 = 𝑈𝑠 , where the subscript ’s’ denotes the GIP,
is considered. The imaginary part of (𝑑𝑐𝑥/𝑑𝜆) |𝛼𝑠 is plotted on the right 𝑦-axis. The vertical line indicates that the
neutral wave is sonic, that is max{|𝑀2

𝑟 |} = 1

The derivative 𝑑𝑐/𝑑𝜆 in Figure 5.11 is calculated from Equation 5.10, and validated using a 4th order
forwards difference method by solving the eigenvalue problem in Equation 2.27 for increasing 𝛽2. The
term (𝑎2 + 𝑎3) is observed to have a positive contribution towards the increase of Im{𝑑𝑐𝑠/𝑑𝜆}. The wave
with 𝛼 = 𝛼𝑠 reaches a higher amplification for 𝛽 > 0 still in the subsonic regime, where in this case
subsonic refers to the relative Mach number 𝑀𝑟 . The imaginary part of Equation 5.10 continues to
increase in the supersonic regime.

Considering amplified waves. Figure 5.12 shows the imaginary (panel 5.12a) and real part (panel
5.12b) of 𝑑𝑐𝑥/𝑑𝜆. Three values for 𝛼 are considered, and additionally, for each Mach number the value
of 𝛼 which maximizes the amplification of the 2D wave is considered (𝛼max).

For large Mach number the imaginary part of 𝑑𝑐𝑥/𝑑𝜆 is positive, and the real part is negative. For
low Mach number the opposite is true. Just as observed in Figure 5.9 a correlation exists between the
higher amplification of a 3D wave and the decrease of the phase speed 𝑐𝑥 . For high Mach number notice
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(a) Transcritical heated wall, Im{𝑑𝑐𝑥/𝑑𝜆} (b) Transcritical heated wall, Re{𝑑𝑐𝑥/𝑑𝜆}

Figure 5.12: Evolution of 𝑑𝑐𝑥/𝑑𝜆 with increasing Mach number. The imaginary part on panel 5.12a, and the real part in 5.12b.
Various wave number 𝛼. The red line represents the most amplified 2D wave for each Mach number.

that the imaginary and real part start to decrease in absolute terms. This is expected, as in the limit
of M∞ −→ ∞ all terms in Equation 5.25 are zero, and the three-dimensionality of the 2D neutral wave
depends on the higher order terms of Equation 5.5.

An important set of inviscid unstable waves in compressible hypersonic boundary layers are Mack’s
higher modes, and in particular Mack’s second mode. The current discussion would suggest that the
neutral second mode, with 𝑐 = 𝑈𝑠 , is most amplified for 𝛽 > 0. However, it is known that Mack’s second
mode is preferentially two-dimensional, that is, the mode is most amplified for a 2D wave. To highlight
some differences between mode II and Mack’s second mode a brief look into the latter follows. Figure
5.13 shows, in the 𝛼 − 𝛽 space, the temporal amplification of Mack’s second mode. An air boundary
layer, modelled as calorically perfect gas, is considered. The Prandtl number is constant and equal to
Pr = 0.72. The temperature at the free-stream is 𝑇∞ = 61.6K, and the wall is adiabatic. The free-stream
Mach number is M∞ = 4.5.

It is observed that, in agreement with the analysis of Equation 5.25, for high 𝛼, close to 𝛼𝑠 , the
amplification of 𝛽 > 0 waves is higher than at 𝛽 = 0. The horizontal red line represents the wave number
𝛼 for which Im{(𝑑𝑐/𝑑𝜆)0} = 0, above which three-dimensional wave are more amplified than their 2D
counterpart. If the mode with 𝛼 = 𝛼𝑠 meets Im{𝑑𝑐𝑠/𝑑𝜆} > 0, then an immediate difference between
Mack’s second mode and mode II is the sign of Re{𝑑𝑐𝑠/𝑑𝜆}. In the case of mode II since 𝑦𝑐 ≤ 𝑦𝑠 , it
must be that for any amplified mode 𝑐𝑟 < 𝑈𝑠 , such that Re{𝑑𝑐𝑠/𝑑𝜆} < 0. On the contrary, for Mack’s
second mode 𝑦𝑐 ≥ 𝑦𝑠 , and Re{𝑑𝑐𝑠/𝑑𝜆} > 0. In fact, for Mack’s second mode Re{𝑑𝑐/𝑑𝜆} > 0 for all 2D
waves, such that the critical layer rises with increasing 𝛽, regardless of the considered wave number 𝛼.
In contrast, when considering mode II, an increase of 𝛽 can lead to a decrease in the height of the critical
layer 𝑦𝑐 , which, as shown in 5.12 is connected with the increase of its temporal growth rate.
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Figure 5.13: Temporal amplification of Mack’s second mode. For 𝛼 close to 𝛼𝑠 , three-dimensional waves are more amplified than
their 2D counterpart, in agreement with the analysis of Equation 5.25



6
Results: Non-Modal Stability Analysis

In this chapter the non-modal stability of SCO2 boundary layers is investigated. The study is restricted
to the zero Mach number cases (M∞ → 0). The energy growth of perturbations is calculated in the 𝛽−𝜔

space, and the Reynolds number is fixed. The Reynolds number is chosen at random, subject to the
constraint that unstable modes are present at such a Reynolds number. For the purposes of this study, a
Reynolds number of 1000 is selected (Re𝛿 = 1000). In Section 6.1 the sub- and supercritical regimes
considered, and in Section 6.2 the transcritical cases are analyzed.

6.1. Sub- and Supercritical Regimes
In this section, the non-modal stability of the sub- and supercritical cases at zero Mach number is
analyzed. Figure 6.1 shows, in the 𝜔 − 𝛽 space, the maximum spacial energy amplification 𝐺max(𝜔, 𝛽).
For each panel, the kinetic energy growth (KE norm) is shown on the left, and on the right the GE energy
norm in Equation 2.50. The colored region represents the maximum energy amplification (𝐺max), while
in the grey region modal instabilities are present such that maximum energy amplification is infinite.
The outside-most contour line in the grey region is the neutral curve. Subsequent contour lines are
equally spaced by 10% of the maximum modal amplification max {𝛼𝑖}.

In every case, the energy amplification Gmax features a global maximum for an oblique stationary
wave (𝛽 ≠ 0, 𝜔 = 0). The optimal wave number 𝛽opt, energy amplification 𝐺opt, and stream wise
distance where energy amplification reaches its maximum 𝑥opt are given in the caption of each panel.
The similarity between the SubHM0 and SupCM0 cases, and the SubCM0 and SupHM0 cases initially
observed in Figure 5.1 remains: a symmetry of the free-stream and wall temperature boundary conditions
around the pseudo-critical temperature produce a similar non-modal response. Both energy norms
produce very similar results. The optimal energy amplification when only considering kinetic effects
varies between 4464 to 5268, being higher for the cooled wall cases. The inclusion of the thermodynamic
terms 𝑒′ and 𝜌′ in the energy norm only result in an increase of the optimal energy amplification by
around 2% in the subcritical regimes and around 4% in the supercritical regimes. Thus, the energy
amplification in these regimes is largely due to kinetic energy amplification.

For the RG energy norm, Figure 6.2 shows the optimal initial condition 𝑞′opt, and the resulting
disturbances at maximum growth 𝑞′out(𝑥 = 𝑥opt). These correspond to the respective maximum in
Figure 6.1. The optimal disturbance consists in wall-normal and span-wise velocities, and the amplified
disturbances in stream-wise velocity and temperature perturbations. These disturbances correspond to
the well-known stream-wise vortexes for the initial condition, and in stream-wise streaks of alternating
high/low stream-wise velocity and temperature for the resulting disturbance (Hanifi et al., 1996). The

48
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(a) Subcritical Heated Wall, Mach 0
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.40, 4464, 1467)
GE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.40, 4535, 1467)

(b) Supercritical Heated Wall, Mach 0
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.37, 4754, 1590)
GE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.38, 4965, 1554)

(c) Subcritical Cooled Wall, Mach 0
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.36, 5268, 1637)
GE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.37, 5386, 1593)

(d) Supercritical Cooled Wall, Mach 0
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.39, 4970, 1505)
GE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.39, 5151, 1501)

Figure 6.1: Contours of maximum spatial energy amplification (𝐺max) with varying stream-wise and span-wise wave number.
The Reynolds number is Re𝛿 = 1000. The considered boundary layers are the cases SubHM0, SupHM0, SubCM0, and
SubCM0, in panels 6.1a, 6.1b, 6.1c, and 6.1d, respectively

physical explanation for these disturbance amplifications is the lift-up effect, also observed in both
incompressible and compressible ideal gas boundary layers (Ellingsen and Palm, 1975, Landahl, 1980).
While the resulting optimal disturbances do contain noticeable temperature and density perturbations
the energy is mostly kinetic: the kinetic terms in Equation 2.51 contain between 96% and 98% of the
total energy.
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(a) Subcritical Heated Wall (b) Supercritical Heated Wall

(c) Subcritical Cooled Wall (d) Supercritical Cooled Wall

Figure 6.2: Optimal disturbances corresponding to Figure 6.1.

6.2. Transcritical Regimes
In this section the non-modal stability analysis is carried out for the transcritical regimes at zero Mach
number (cases TransHM0 and TransCM0). Figure 6.3 shows the maximum spatial energy amplification
𝐺max(𝜔, 𝛽), in the 𝜔− 𝛽 space. The area where modal instabilities are present is in grey, with the contour
lines corresponding to a decrease in 10% of the maximum modal amplification. The outermost contour
line is the neutral curve. Note that, in the transcritical heated wall case two modal instabilities are
present, corresponding to mode I and mode II, studied in Section 5.2. While in the cooled wall case,
only one instability is present, corresponding to mode II.

Firstly, consider the KE norm. In the heated wall case (panel 6.3a) the optimal condition is not
observed for stationary waves, but rather for 𝜔 = 0.003, indicating an interplay between the Orr and
lift-up mechanisms. The optimum energy amplification, at 𝐺opt = 3160, is lower compared to the sub-
and supercritical regimes, reaching only 60% to 70% of the energy growth observed in those regimes.
As for the cooled wall scenario (panel 6.3b), the global maximum occurs for oblique stationary waves,
with energy growth being driven by the lift-up mechanism. In this case, the energy amplification at
𝐺opt = 8990 is significantly higher than in the sub- and supercritical regimes, showing an increase of
70% to 100%.
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(a) Transcritical Heated Wall, Mach 0 (TransHM0)
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0.003, 0.38, 3160, 1980)

for 𝜔 = 0: (𝛽, 𝐺, 𝑥) = (0.44, 2295, 1282) is
maximum
GE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.77, 6192, 627)

(b) Transcritical Cooled Wall, Mach 0 (TransCM0)
KE norm: (𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0, 0.36, 8990, 1784)
GE norm:
(𝜔opt , 𝛽opt , 𝐺opt , 𝑥opt) = (0.0034, 0.46, 295279, 613)

for 𝜔 = 0: (𝛽, 𝐺, 𝑥) = (0.58, 287493, 753) is
maximum

Figure 6.3: Contours of maximum spatial energy amplification (𝐺max) with varying stream-wise and span-wise wave number.
The Reynolds number is Re𝛿 = 1000. The considered boundary layers are the cases TransHM0 and TransCM0 in
panels 6.3a and 6.3b, respectively.

Regarding the GE energy norm, in the heated wall case the global maximum is observed for oblique
stationary wave: energy amplification due to the lift-up effect. The optimal initial and resulting
disturbances are plotted in Figure 6.4a. Unlike in the sub- and supercritical regimes, the resulting
disturbance features large temperature and density components. These have a maximum at the pseudo-
boiling point where the respective base flow gradients are maximum. The streamwise velocity streak in
the resulting disturbance has a noticeable decrease in the proximity of the Widom point. The optimum
energy amplification is 3 times higher when compared to the maximum obtained using the KE norm.
This is mostly due to the non-kinetic terms of Equation 2.51: for the optimal resulting disturbance, the
kinetic terms only contain 25% of the total energy.

(a) Transcritical Heated wall (b) Transcritical Cooled wall

Figure 6.4: Optimal stationary (𝜔 = 0) disturbances corresponding to Figure 6.3
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In the TransHM0 GE norm case, a second local maximum is observed near mode I and mode II
neutral curves. At this condition, in the initial disturbance the (nearly) neutral modes A and B interact
destructively with highly damped eigenfunctions from the continuous vorticity/entropy spectrum.
As 𝑥 increases, the highly damped continuous modes decay and only the slowly-decaying modes I
and II remain, resulting in transient energy growth. This mechanism is also observed for ideal gas
boundary layers (Bitter & Shepherd, 2014), although in the present the process is unique due to the
presence of two slow-decaying discrete modes: mode II in addition to the TS mode (mode I). In the case
of slowly-decaying mode I and II, due to their non-orthogonality, the perturbation energy oscillates
with increasing 𝑥. Consider the case where both mode I and mode II are neutral (with the remaining
modes damped). At 𝑥 → ∞ only the two neutral modes remain, and the distarbance is

𝑞′ |𝑥→∞ =
(
𝜅𝐼 𝑞̃𝐼 exp{𝑖𝛼𝐼𝑥} + 𝜅𝐼𝐼 𝑞̃𝐼𝐼 exp{𝑖𝛼𝐼𝐼𝑥}

)
exp{(𝑖(𝛽𝑧 − 𝜔𝑡))} (6.1)

where the subscripts 𝐼 and 𝐼𝐼 refer to mode I and mode II respectively, and 𝜅 are expansion coefficients.
The energy of this disturbance is

∥𝑞′ |𝑥→∞∥E = | |𝜅𝐼 𝑞̃𝐼 exp{𝑖𝛼𝐼𝑥} + 𝜅𝐼𝐼 𝑞̃𝐼𝐼 exp{𝑖𝛼𝐼𝐼𝑥}| |E =

= ∥𝜅𝐼 𝑞̃𝐼 ∥2
E + ∥𝜅𝐼𝐼 𝑞̃𝐼𝐼 ∥2

E + 2 Re
{〈
𝜅𝐼 𝑞̃𝐼 exp{𝑖𝛼𝐼𝑥}, 𝜅𝐼𝐼 𝑞̃𝐼𝐼 exp{𝑖𝛼𝐼𝐼𝑥}

〉
E
}
=

= ∥𝜅𝐼 𝑞̃𝐼 ∥2
E + ∥𝜅𝐼𝐼 𝑞̃𝐼𝐼 ∥2

E + 2 Re
{
⟨𝜅𝐼 𝑞̃𝐼 , 𝜅𝐼𝐼 𝑞̃𝐼𝐼⟩E exp{𝑖(𝛼𝐼 − 𝛼𝐼𝐼)𝑥}

} (6.2)

which oscillates with period 2𝜋/|𝛼𝐼𝐼 − 𝛼𝐼 |. The amplitude of these oscillations is

max
𝑥

{
2 Re

{
⟨𝜅𝐼 𝑞̃𝐼 , 𝜅𝐼𝐼 𝑞̃𝐼𝐼⟩E exp{𝑖(𝛼𝐼 − 𝛼𝐼𝐼)𝑥}

}}
= 2



⟨𝜅𝐼 𝑞̃𝐼 , 𝜅𝐼𝐼 𝑞̃𝐼𝐼⟩E




2 (6.3)

This is shown in Figure 6.5, where (𝛽, 𝜔) = (0.32, 0.041) is considered. At this condition 𝛼𝐼 = 0.067 and
𝛼𝐼𝐼 = 0.11. In panel 6.5a the evolution of the energy amplification 𝐺(𝑥) is shown in black, and in blue
the energy amplification of the initial condition that obtains maximum energy amplification. For large
𝑥, two maximum are separated by a distance of Δ𝑥 = 144, which equals 2𝜋/|𝛼𝐼𝐼 − 𝛼𝐼 |. In panel 6.5b
the initial condition is shown alongside the disturbance at the locations marked with crosses in panel
6.5a. At the energy minimum, mode I and mode II cancel out each other’s temperature and density
components at the Widom line, while at the energy maximums these perturbations are large. The large
amplitude of the energy fluctuation is mostly due to the non-kinetic terms of Equation 2.51. When
mode I and II are slightly damped, decaying oscillations with irregular periods are observed.

Regarding the cooled wall case (panel 6.3b), and considering the GE norm, a local maximum is
observed for an oblique stationary wave: lift-up mechanism. The initial and resulting disturbances are
plotted in Figure 6.4b. Similar to the heated wall case, there are large temperature and density streaks in
the resulting disturbance, with a maximum at the pseudo-boiling point. In the cooled wall scenario, the
kinetic terms contain an even smaller percentage of the total energy, around 2%. The optimal energy
amplification when accounting for the non-kinetic terms is around 18 times higher when comparing to
the KE norm. A second local maximum of 𝐺max exists near the neutral curve of mode II, this being a
global maximum. Just as in the TransHM0 case, in this region amplification is high due to destructive
interactions between highly damped vorticity/entropy modes and a slowly-decaying mode II. This is
shown in Figure 6.6, where in panel 6.6a the global eigenspectrum is shown where the 10 most relevant
modes are highlighted with the blue marker, these can be identified as mode II and additional modes
from the continuous spectrum. In panel 6.6b the initial and resulting disturbances are shown. It is
observed that at the initial condition (𝑥 = 0) the interaction between mode II and the remaining modes
result in small temperature and density perturbations. As 𝑥 increases, the modes from the continuous
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(a) Energy amplification 𝐺(𝑥) in black and 𝑔(𝑥) in blue - see Equations 2.38 and 2.40. For 𝑔(𝑥)
the initial disturbance which attains maximum energy growth is considered.

(b) Perturbation at various downstream distances 𝑥, market with a cross in panel 6.5a

Figure 6.5: Energy growth oscillations due to non-orthogonality between mode I and II

spectrum quickly decay, resulting the large temperature and density perturbations, and ultimately, in
energy growth.

(a) Global eigenspectrum. The black markers represent the global
eigenspectrum, and the blue markers represent the 10 most
relevant modes for the optimal disturbance – i.e. modes for
which |𝜅 | is highest in Equation 2.36 (b) Optimal initial and resulting disturbances

Figure 6.6: Energy growth due to the destructive interaction between a nearly neutral discrete mode (mode II) and highly damped
vorticity/entropy modes from the continuous spectra
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6.2.1. The Lift-up Effect in Transcritical Boundary layers
The kinetic energy amplification through the lift-up effect is most commonly explained by the redistri-
bution of mean flow momentum in the wall normal direction. In the presence of a shear flow, vorticity
streaks oriented in the stream-wise direction transport fast moving fluid from the outer region of the
boundary layer towards the wall, and vice-versa, slow moving fluid near the wall is transported upwards.
This originates stream-wise velocity streaks along the span-wise direction. Alternatively, one may
interpret the origin of the stream-wise streaks as resulting from a tilting of the mean vorticity −𝜕𝑈/𝜕𝑦.
Perturbation stream-wise vorticity tilts the mean vorticity along the stream-wise direction. This results
in a perturbation vorticity oriented along the wall-normal direction, i.e. stream-wise velocity streaks.

In transcritical boundary layers, due to strong property stratification, particularly at the Widom line,
the base flow velocity profile differs greatly when compared to an ideal gas boundary layer. As a result,
the mean vorticity profile is also notably affected. The vorticity Ω is introduced:

Ω = ∇ × 𝑢 = ∇ × 𝑢̄ + ∇ × 𝑢′ = Ω +Ω′ (6.4)

where Ω is the mean flow vorticity and Ω′ the perturbation vorticity, given by

Ω = −𝜕𝑈

𝜕𝑦
®𝑒𝑧 (6.5a)

Ω′ =

(
𝜕𝑤′

𝜕𝑦
− 𝑖𝛽𝑣′

)
®𝑒𝑥 + (𝑖𝛽𝑢′ − 𝑖𝛼𝑤′) ®𝑒𝑦 +

(
𝑖𝛼𝑣′ − 𝜕𝑢′

𝜕𝑦

)
®𝑒𝑧 (6.5b)

Following the interpretation of the lift-up effect, the mean flow vorticity, optimal initial stream-
wise perturbation vorticity and the resulting stream-wise perturbation velocity is looked at for the
heated and cooled wall transcritical scenarios. As reference cases for comparison, two CO2 boundary
layers, modelled as a calorically perfect gas (CPG) with a constant Prandtl number of Pr = 0.77
are also considered. One with a heated wall, where the temperature boundary conditions satisfy
𝑇∞/𝑇wall = 0.95/1.05. The other CO2 CPG boundary layer having a cooled wall where the temperature
boundary condition is𝑇∞/𝑇wall = 1.05/0.95. Note that these ratios are equal to the temperature boundary
ratios in the SCO2 boundary layers. For each boundary layer, these being the heated and cooled CPG
boundary layers and the TransHM0 and TransCM0 cases, the non-modal kinetic energy growth is
optimized over 𝛽, considering 𝜔 = 0. Figure 6.7 shows the mean flow vorticity, the initial stream-wise
perturbation vorticity and the resulting stream-wise perturbation velocity for the heated (panel 6.7a)
and cooled (panel 6.7b) cases. Note that, since the resulting optimal wall-normal and span-wise velocity
perturbations are zero, the resulting span-wise vorticity perturbation is(

Ω′
𝑦

)
out

= (𝑖𝛽𝑢′) (6.6)

such that |Ω′
𝑦 |/|Ω′

𝑦 |max = |𝑢′ |/|𝑢′ |max. Thus, Figure 6.7 shows the base flow span-wise vorticity, the initial
stream-wise perturbation vorticity and the resulting wall-normal perturbation vorticity. Furthermore,
Figure 6.8 shows the initial velocity perturbations in the y-z plane

In the CPG boundary layers, shown in Figure 6.7, the mean vorticity is maximum at the wall and
slowly decreases with the distance from the wall. The initial perturbation vorticity has two maxima. The
further from the wall corresponds with the centre of a vortex structure, while the near-wall stream-wise
vorticity maximum is associated with the decay of the span-wise perturbation velocity. Close to the
wall, where the wall-normal perturbation velocity is low, the local vorticity maximum is driven by the
term 𝜕𝑤′

𝜕𝑦 in Equation 6.5. Despite this near-wall maximum in stream-wise vorticity, the redistribution of
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(a) Heated wall CPG: 𝐺opt = 4730
TransHM0: 𝐺opt = 2295

(b) Cooled wall CPG: 𝐺opt = 4955
TransCM0: 𝐺opt = 8990

Figure 6.7: Mean span-wise vorticity, initial stream-wise vorticity perturbation and resulting wall-normal vorticity perturbation
for the optimal stationary disturbance. The horizontal red line denotes the location of the Widom point. On the left, in
panel 6.7a, a heated GCP CO2 boundary layer and the TransHM0 case, and on the right a cooled GCP CO2 boundary
layer and the TransCM0 case

(a) Heated wall CPG: 𝐺opt = 4730
TransHM0: 𝐺opt = 2295

(b) Cooled wall CPG: 𝐺opt = 4955
TransCM0: 𝐺opt = 8990

Figure 6.8: Initial velocity perturbation in the y-z plane for the optimal stationary disturbance. The horizontal red line denotes
the location of the Widom point. On the left, in panel 6.8a, a heated GCP CO2 boundary layer and the TransHM0 case,
and on the right, in panel 6.8b, a cooled GCP CO2 boundary layer and the TransCM0 case

mean flow momentum along the wall-normal direction is low. It is in fact the vortex structure associated
with the vorticity maximum far from the wall that is responsible for the redistribution of mean flow
momentum, or alternatively, the tilting of the mean vorticity, which in turn generates stream-wise
velocity streaks. These conclusions are supported by the initial vortex structures plotted in Figure 6.8.

For the TransHM0 case, the mean vorticity has an abrupt decrease at the Widom line. It is low
above the Widom point and high below it, having a maximum at the wall. The initial stream-wise
perturbation vorticity has a maximum near the Widom line. However, this is linked to a sharp decrease
of the span-wise perturbation velocity – the 𝜕𝑤′

𝜕𝑦 term. In this region, while the mean flow vorticity
is high, the perturbation wall-normal velocity component in low, indicating minimal wall-normal
momentum redistribution. The vortex structure, responsible for the development of wall-normal
vorticity, is located far from the wall, where the mean flow vorticity −𝜕𝑈/𝜕𝑦 is low. This results in a
lower energy amplification when compared to the heated CPG case. Conversely, the TransCM0 case has
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a maximum of mean vorticity above the Widom point, while below it −𝜕𝑈/𝜕𝑦 is relatively low. As the
mean vorticity is high in a region far from the wall, where the wall-normal momentum redistribution is
high, the resulting velocity streaks obtain a higher amplitude, resulting in higher energy amplification
when compared to the CPG cooled wall case.

Near the Widom point, viscosity forces dominate the balance of stream-wise momentum (Bugeat
et al., 2022). The approximation 𝜕

𝜕𝑦

(
𝜇 𝜕𝑈

𝜕𝑦

)
≈ 0 holds, from which 𝜕

𝜕𝑦 log
(
Ω𝑧

)
≈ − 𝜕

𝜕𝑦 log(𝜇). The
derivative of the logarithm of the mean span-wise vorticity is approximately the derivative of the
logarithm of the mean dynamic viscosity. Alternatively, near the Widom line:

𝜕 log
(
Ω𝑧

)
𝜕𝑦

≈ − 1
𝜇

𝜕𝑇

𝜕𝑦

(
𝜕𝜇

𝜕𝑇

)
𝑃

. (6.7)

The quantity
(
𝜕𝜇
𝜕𝑇

)
𝑃

is negative, and large at the Widom point. Hence, in the case of wall heating,
𝜕𝑇/𝜕𝑦 < 0, and there is a large decrease of mean stream-wise vorticity at the Widom point. In the case of
wall cooling, 𝜕𝑇/𝜕𝑦 > 0 and a large increase in Ω𝑧 exists at the Widom point. With wall cooling, under
𝜕𝑈/𝜕𝑦 < 0, there is necessarily a local maximum of Ω𝑧 above the Widom line. Away from the wall,
as 𝑦 −→ ∞, the mean vorticity is zero

(
Ω𝑧 |𝑦→∞ = 0

)
. Since the mean vorticity is positive at the Widom

line and
(
𝜕Ω𝑧/𝜕𝑦

)
𝑤
> 0, there must exist a point at some 𝑦 > 𝑦𝑤 where 𝜕Ω𝑧/𝜕𝑦 = 0, corresponding to

a maximum of Ω𝑧 . The high mean span-wise vorticity far from the wall, present in the transcritical
cooled wall case, results in a large energy amplification.

Lastly, the evolution of the production of kinetic energy with the wall-normal direction is looked at.
The production of perturbation kinetic energy is recognized as the term

p𝐾(𝑥, 𝑦) = 𝑣′𝑢∗𝜌̄
𝜕𝑈

𝜕𝑦
(6.8)

The inner product 𝑣′𝑢∗ is a function of the wall-normal and stream-wise direction. The stream-wise
location which maximizes the total production P𝐾(𝑥) =

∫ 𝑦−→∞
𝑦=0 p𝐾(𝑥, 𝑦)𝑑𝑦 is considered. That is,

p𝐾(𝑥max{𝑃𝐾} , 𝑦) is considered, where

𝑥max{𝑃𝐾} = arg max P𝐾(𝑥) (6.9)

Figure 6.9 shows the evolution of the production of kinetic energy with the wall-normal direction, at
𝑥 = 𝑥max{𝑃𝐾}. The optimal stationary disturbance is considered, where panel 6.9a shows the heated wall
cases, and in panel 6.9b the cooled wall cases.

In the heated wall cases (panel 6.9a), the production of kinetic energy is higher in the trancritical
boundary layer near the wall, whereas higher in the CPG boundary layer far from the wall. This
observation is in agreement with the analysis of Figure 6.7. Near the wall, the mean vorticity is higher
for the trancritical boundary layer, resulting in a locally higher kinetic energy production, while the
opposite is true far from the wall. Vice-versa, in the cooled wall cases (panel 6.9b), the production of
kinetic energy is higher for the transcitical boundary layers far from the wall. This is linked to the
comparatively higher mean vorticity in this region, while near the wall, both the mean vorticity and
kinetic energy production are higher in the CPG boundary layer.

In transcritical boundary layers, wall cooling results in high mean vorticity away from the wall,
which in turn leads to an increased energy growth. Conversely, in the heated wall case, mean vorticity
is low far from the wall, leading to reduced energy growth. The distribution of mean vorticity is linked
to the distribution of dynamic viscosity. Specifically, mean vorticity is high in the region where the
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(a) Heated wall CPG: 𝐺opt = 4730
TransHM0: 𝐺opt = 2295

(b) Cooled wall CPG: 𝐺opt = 4955
TransCM0: 𝐺opt = 8990

Figure 6.9: Evolution of the production of kinetic energy with the wall-normal direction, for the optimal stationary disturbance.
The production term is normalized by the kinetic energy of the initial disturbance 𝐸0. The horizontal red line denotes
the location of the Widom point. On the left, in panel 6.9a, a heated GCP CO2 boundary layer and the TransHM0 case,
and on the right, in panel 6.9b, a cooled GCP CO2 boundary layer and the TransCM0 case

dynamic viscosity is low, i.e. in the region where the fluid is gas-like. Additionally, in the case of wall
cooling, it is shown that a local maximum of mean vorticity exists above the Widom line.

6.2.2. Influence of the location of the pseudo-boiling point
The influence of the location of the pseudo-boiling point on the non-modal perturbation energy growth
is investigated. Various zero Mach boundary layers are considered and the location of the Widom line
is controlled by changing the temperature boundary conditions at the wall and free stream. For the
heated/cooled wall scenario, the stree-stream/wall temperature is varied between 0.9𝑇𝑝𝑐 and 𝑇𝑝𝑐 , and
the wall/free-stream temperature keeps the relation |𝑇∞ − 𝑇wall |/𝑇𝑝𝑐 = 0.1. Focus is placed on energy
growth through the lift-up mechanism, and only stationary waves are considered (𝜔 = 0). For both
the heated and cooled wall scenarios, the energy growth is optimized over 𝛽. Figure 6.10 shows the
dependency of the optimum energy growth (𝐺opt) on the location of the Widom line. Only the kinetic
energy growth is considered (KE norm). The location of the pseudo-boiling point (𝑦𝑤) is scaled by the
𝛿99 thickness of the boundary layer. The location of the Widom line of the TransHM0 and TransCM0
cases, with temperature boundary conditions of 𝑇∞ = 0.95𝑇pc and 𝑇∞ = 1.05𝑇pc respectively, are marked
with the vertical lines. Two additional x-axis are provided, one with the free-stream temperature (𝑇∞)
for the heated wall case, and one with the free-stream temperature for the cooled wall case.

The kinetic energy amplification in the heated wall cases is always lower than in the reference CPG
cases introduced in Figure 6.7. As discussed, in the heated wall case, the mean vorticity features a
noticeable decrease at the location of the Widom line, which in turn results in perturbation wall-normal
vorticity of lesser amplitude. The opposite is true for the cooled wall case, where the mean vorticity
in high above the Widom line, in a region far from the wall. This results in a higher amplitude of
the resulting stream-wise velocity streaks, such that the energy amplification is always higher when
compared to the reference CPG case. For the cooled wall case, the kinetic energy amplification is
maximum for 𝑦𝑤/𝛿99 ∼ 0.35. This can be linked to a maximum of mean vorticity, as shown in Figure 6.11.
Indeed, it is observed that the maximum of the mean vorticity (𝜕𝑈/𝜕𝑦) is maximum for 𝑦𝑤/𝛿99 ∼ 0.35.
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Figure 6.10: Dependency of the optimal kinetic energy growth at 𝜔 = 0 with the location of the pseudo-boiling point. Zero Mach
number boundary layers are considered with varying temperature boundary conditions, which keep the relation
|𝑇∞ − 𝑇wall |/𝑇𝑝𝑐 = 0.1. In red the wall is heated (𝑇wall = 𝑇∞ + 0.1) while in blue the wall is cooled. The vertical lines
represent the location of the Widom line for the TransHM0 and TransCM0 cases. The horizontal lines represent the
optimal kinetic energy growth of the two CPG boundary layers in Figure 6.7. Two additional x-axis are provided,
with the free-stream temperature for the cooled and heated wall cases

Figure 6.11: Dependency of the mean span-wise vorticity (𝜕𝑈/𝜕𝑦) with the location of the Widom point, for the transcritical
cooled wall case.



7
Conclusion

The first main objective of this thesis is to investigate the modal growth of oblique waves. Section 5.1
investigated the amplification of oblique waves in the sub- and supercritical regimes. In agreement
with the current literature (Gloerfelt et al., 2020, Mack, 1984, Ren et al., 2019b), mode I (TS mode) is
found to be preferentially 3D for sufficiently high Mach number, around M∞ > 0.8. While the phase
speed 𝑐𝑥 increases with the wave number 𝛽, for the cases where mode I is preferentially 3D, an initial
decrease of the phase speed 𝑐𝑥 is observed before its increase for high 𝛽. In the heated wall transcritical
regime, addressed in Section 5.2, mode I, whose critical layer (𝑦𝑐) is above the Widom point (𝑦𝑤), is
found to be preferentially 2D. Conversely, mode II, whose critical layer is below the Widom point, is
preferentially 3D for sufficiently high Mach number, around M∞ > 0.7. The increase of the growth rate
with 𝛽 is, similar to the sub- and supercritical regimes, linked to the initial decrease of the phase speed
𝑐𝑥 . In the cooled wall transcritical case, for low Reynolds number the critical layer of mode II is above
the Widom point, this results in the crossing of the critical layer over the Widom point for high 𝛽. Thus,
for the cooled wall case, in the viscous regime, the phase speed 𝑐𝑥 of mode II decreases with the wave
number 𝛽. Still, for high Mach number, mode II is preferentially 3D, and the phase speed 𝑐𝑥 initially
increases with 𝛽 before its decrease for high 𝛽. Thus, a link is made between the evolution of 𝑐𝑥 with 𝛽

and the further amplification of 3D waves.
This link between the phase speed 𝑐𝑥 and the further amplification of 3D waves is confirmed in

the inviscid regime, in Section 5.3, where only mode II is present in the transcritical cases. The total
derivative of the complex phase speed 𝑐𝑥 with respect to 𝜆 = 𝛽2 is

d𝑐𝑥
d𝜆 =

∫ 𝑦2

0
𝜕
𝜕𝑦

(
𝜌𝑣̃ 𝜕𝑣̃𝜆

𝜕𝑦 − 𝜌𝑣̃𝜆 𝜕𝑣̃
𝜕𝑦

)
𝑑𝑦 +

∫ 𝑦2

𝑜
𝜉 𝜕
𝜕𝜆

(
𝜉(1)

𝜉

)
𝑣̃ 𝜕𝑣̃
𝜕𝑦 𝑑𝑦 +

∫ 𝑦2

0 −𝜉 𝜕
𝜕𝜆

(
𝜓 + 𝜁

𝜉

)
𝑣̃2𝑑𝑦∫ 𝑦2

0 −𝜉 𝜕
𝜕𝑐𝑥

(
𝜉(1)
𝜉

)
𝑣̃ 𝜕𝑣̃
𝜕𝑦 𝑑𝑦 +

∫ 𝑦2

0 𝜉 𝜕
𝜕𝑐𝑥

(
𝜓 + 𝜁

𝜉

)
𝑣̃2𝑑𝑦

(5.10 revisited)

where the temporal approach is adopted, as it is found to facilitate the analysis. For the (non-trivial) 2D
neutral inviscid wave, 𝑐𝑥 = 𝑈𝑠 , and 𝛼 = 𝛼𝑠 , the numerator is real and the denominator complex. It is
shown that, in the case of the neutral inviscid wave, the further amplification of 3D waves is due to the
change of sign of the numerator of Equation 5.10, which reads∫ 𝑦2

0
−𝜉𝑣̃2𝑑𝑦 +

∫ 𝑦2

0

𝜉{𝑀2
𝑟 }(1)

(𝛼2 + 𝛽2)(1 −𝑀2
𝑟 )2

(
𝑈 (1)

𝑈 − 𝑐𝑥
𝑣̃2 − 𝑣̃𝑣̃(1)

)
𝑑𝑦. (5.24 revisited)

The leftmost integral is negative, and the rightmost is positive. For zero-Mach number the rightmost
integral is zero, thus, the numerator is negative and the inviscid wave with 𝛼 = 𝛼𝑠 is damped for
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𝛽 > 0. For sufficiently large Mach the numerator is positive due to the contribution of the rightmost
integral, and the inviscid wave is amplified for 𝛼 = 𝛼𝑠 and 𝛽 > 0. Furthermore, the change of sign of the
numerator also justifies the change in the evolution of the real part of 𝑐𝑥 with 𝛽, as observed not only in
the inviscid mode II, but also in the viscous regime and also in the viscous TS mode (Figure 5.3b).

The second main objective of this thesis is to investigate the non-modal energy growth of transcritical
boundary layers. Section 6.1 considered both the sub- and supercritical boundary layers at zero-Mach
number. It is found that the energy growth is these boundary layers is similar to that observed in ideal
gas boundary layers. The optimal energy growth is obtained for oblique stationary waves – energy
growth through the lift-up mechanism. Furthermore, energy growth is in great part attributed to kinetic
effects. In the case of the transcritical boundary layers, explored in Section 6.2, optimal energy growth is
found to also be associated with the lift-up mechanism. However, in these cases the non-kinetic terms
contribute considerably to the energy makeup of the resulting optimal disturbances. Moreover, mode I
(TS) and mode II are found to be non-orthogonal resulting in energy oscillations at a frequency and
span-wise wave-number near their neutral curves. Lastly, in the case of the kinetic energy growth, the
modulation of the mean span-wise vorticity is attributed to the large kinetic energy growth observed
in the cooled wall transcritical case, and comparatively low kinetic energy growth for a heated wall.
Indeed, for a cooled wall trancritical boundary layer, due to the large decrease in viscosity with the
wall-normal direction, a maximum of mean vorticity is observed at a region far from the wall, which
results in large kinetic energy amplification.

7.1. Discussion and Further Research
In Chapter 5 the modal stability of the considered boundary-layers was investigated. Here, a link is
made between the Mach number and the further amplification of 3D waves, when compared to their 2D
counterpart. Within the inviscid approximation an analytical expression for the first order derivative of
𝑐𝑥 with respect to 𝛽 is obtained. However, the analysis of this equation is limited to the neutral inviscid
wave. In this case, for the inviscid wave with 𝑐𝑥 = 𝑈𝑠 and 𝛼 = 𝛼𝑠 , a greater-than-zero Mach is necessary
for the further amplification of 𝛽 > 0, 𝛼 = 𝛼𝑠 waves. It is observed that in the case of mode II, a slow
wave whose critical layer is below the GIP, 3D waves are more amplified than at 𝛽 = 0. However, in the
case of Mack’s second mode, it is observed that fast waves, whose critical layer is above the GIP, are less
amplified for increasing 𝛽. Firstly, a more detailed analysis of Macks’ second mode, and a comparison
between it and mode II, could bring clarity as to the mechanism responsible for the further amplification
of 3D inviscid waves. Moreover, the analysis of Equation 5.10 could be extended to amplified waves in
order to better understand the influence of the location of the critical layer (or equivalently, the speed of
the wave) in the further amplification of 3D waves. Finally, an interpretation of the terms in Equation
5.24, could also bring some clarity into the mechanism at play.

With regards to the non-modal stability analysis. The present study is restricted to zero Mach
number. In this case the transcritical regime can be obtained by considering a cooled or heated wall,
as opposed to an adiabatic wall. However, this approach makes the choice of an energy norm more
challenging, as Chu’s energy norm is no longer bounded. The present study can be extended to finite
Mach number with an adiabatic wall. In this case, Chu’s energy norm is bounded and offers a physically
meaningful energy norm which includes non-kinetic terms.
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A
The Stability Equations

Regarding the linear problem in equation 2.19:

ℒ𝑡

𝜕𝑞′

𝜕𝑡
+ ℒ𝑥

𝜕𝑞′

𝜕𝑥
+ ℒ𝑦

𝜕𝑞′

𝜕𝑦
+ ℒ𝑧

𝜕𝑞′

𝜕𝑧
+ ℒ𝑞′𝑞

′+

+ ℒ𝑥𝑥

𝜕2𝑞′

𝜕𝑥2 + ℒ𝑦𝑦

𝜕2𝑞′

𝜕𝑦2 + ℒ𝑧𝑧

𝜕2𝑞′

𝜕𝑧2 + ℒ𝑥𝑦

𝜕2𝑞′

𝜕𝑥𝜕𝑦
+ ℒ𝑥𝑧

𝜕2𝑞′

𝜕𝑥𝜕𝑧
+ ℒ𝑦𝑧

𝜕2𝑞′

𝜕𝑦𝜕𝑧
= 0 (2.19 revisited)

the matrices are 5 × 5, and their non-zero elements are

ℒ𝑡(1, 1) =
(
𝜕𝜌

𝜕𝑝

)
𝑇

ℒ𝑡(1, 5) =
(
𝜕𝜌

𝜕𝑇

)
𝑝

ℒ𝑡(2, 2) = ℒ𝑡(3, 3) = ℒ𝑡(4, 4) = 𝜌

ℒ𝑡(5, 1) = 𝜌

(
𝜕𝑒

𝜕𝑝

)
𝑇

ℒ𝑡(5, 5) = 𝜌
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𝜕𝑒

𝜕𝑇

)
𝑝

(A.1)

ℒ𝑥(1, 1) = 𝑈
(
𝜕𝜌

𝜕𝑝

)
𝑇

ℒ𝑥(1, 2) = 𝜌 ℒ𝑥(1, 5) = 𝑈
(
𝜕𝜌

𝜕𝑇
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𝑝
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Re𝛿
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(A.2)
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𝜕𝜌

𝜕𝑦

ℒ𝑞′(2, 1) = −
(
𝜕𝜇

𝜕𝑝

)
𝑇

𝜕2𝑈

𝜕𝑦𝑦2
1

Re𝛿
− 𝜕𝑈

𝜕𝑦

1
Re𝛿

((
𝜕2𝜇

𝜕𝑝2

)
𝑇

𝜕𝑝

𝜕𝑦
+ 𝜕2𝜇

𝜕𝑇𝜕𝑝

𝜕𝑇

𝜕𝑦

)
ℒ𝑞′(2, 3) = 𝜌

𝜕𝑈

𝜕𝑦
ℒ𝑞′(2, 5) = − 1

Re𝛿

(
𝜕𝜇

𝜕𝑇

)
𝑝

𝜕2𝑈

𝜕𝑦2 − 1
Re𝛿

𝜕𝑈

𝜕𝑦

((
𝜕2𝜇

𝜕𝑇2

)
𝑝

𝜕𝑇

𝜕𝑦
+ 𝜕2𝜇

𝜕𝑇𝜕𝑝

𝜕𝑃

𝜕𝑦

)
ℒ𝑞′(5, 1) = − 1

Re𝛿Pr

(
𝜕2𝑇

𝜕𝑦2

(
𝜕𝜅

𝜕𝑝

)
𝑇

+ 𝜕𝑇

𝜕𝑦

((
𝜕2𝜅

𝜕𝑝2

)
𝑇

𝜕𝑝

𝜕𝑦
+ 𝜕2𝜅

𝜕𝑇𝜕𝑝

𝜕𝑇

𝜕𝑦

))
− Ec

Re𝛿

(
𝜕𝜇

𝜕𝑝

)
𝑇

(
𝜕𝑈

𝜕𝑦

)2

ℒ𝑞′(5, 3) = 𝜌
𝜕𝑒

𝜕𝑦

ℒ𝑞′(5, 5) = − 1
Re𝛿Pr

(
𝜕2𝑇

𝜕𝑦2

(
𝜕𝜅

𝜕𝑇

)
𝑝

+ 𝜕𝑇

𝜕𝑦

((
𝜕2𝜅

𝜕𝑇2

)
𝑝

𝜕𝑇

𝜕𝑦
+ 𝜕2𝜅

𝜕𝑇𝜕𝑝

𝜕𝑝

𝜕𝑦

))
− Ec

Re𝛿

(
𝜕𝜇

𝜕𝑇

)
𝑝

(
𝜕𝑈

𝜕𝑦

)2

(A.5)
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ℒ𝑥𝑥(2, 2) = −4
3

𝜇

Re𝛿
ℒ𝑥𝑥(3, 3) = − 𝜇

Re𝛿
ℒ𝑥𝑥(4, 4) = − 𝜇

Re𝛿

ℒ𝑥𝑥(5, 5) = −𝜅 1
Re𝛿Pr

(A.6)

ℒ𝑦𝑦(2, 2) = − 𝜇

Re𝛿

ℒ𝑦𝑦(3, 3) = −4
3

𝜇

Re𝛿
ℒ𝑦𝑦(4, 4) = − 𝜇

Re𝛿

ℒ𝑦𝑦(5, 5) = −𝜅 1
Re𝛿Pr

(A.7)

ℒ𝑧𝑧(2, 2) = −
𝜇

Re𝛿
ℒ𝑧𝑧(3, 3) = − 𝜇

Re𝛿

ℒ𝑧𝑧(4, 4) = −4
3

𝜇

Re𝛿

ℒ𝑧𝑧(5, 5) = −𝜅 1
Re𝛿Pr

(A.8)

ℒ𝑥𝑦(2, 3) = −1
3

𝜇

Re𝛿

ℒ𝑥𝑦(3, 2) = −1
3

𝜇

Re𝛿

(A.9)

ℒ𝑥𝑧(2, 4) = −1
3

𝜇

Re𝛿

ℒ𝑥𝑧(4, 2) = −1
3

𝜇

Re𝛿

(A.10)
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ℒ𝑦𝑧(3, 4) = −1
3

𝜇

Re𝛿

ℒ𝑦𝑧(4, 3) = −1
3

𝜇

Re𝛿

(A.11)

As for the inviscid equation(
𝛼2𝒜INV

𝛼2 + 𝜔2𝒜INV
𝜔2 + 𝛼𝜔𝒜INV

(𝛼𝜔) + 𝛼𝒜INV
𝛼 + 𝜔𝒜INV

𝜔 +𝒜0

)
𝑞̃ = 0 (2.23 revisited)

the equations are 2 × 2 and their non-zero elements

𝒜INV
𝛼2 (2, 1) = 𝑈2

𝑎2 − 1
M2

∞
(A.12)

𝒜INV
𝛼 (1, 2) = 𝑖𝜌𝑈

𝒜INV
𝛼 (2, 2) = −𝑖𝜌𝑈

(
𝜕

𝜕𝑦
+ 𝜕𝑈

𝜕𝑦

) (A.13)

𝒜INV
𝛼𝜔 (2, 1) = −2𝑈

𝑎2
(A.14)

𝒜INV
𝜔2 (2, 1) = 1

𝑎2
(A.15)

𝒜INV
𝜔 (1, 2) = −𝑖𝜌

𝒜INV
𝜔 (2, 2) = −𝑖𝜌 𝜕

𝜕𝑦

(A.16)

𝒜INV
0 (1, 1) = 1

M2
∞

𝜕

𝜕𝑦

𝒜INV
0 (2, 1) =

𝛽2

M2
∞

(A.17)
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