
Investigation of the onset of chaos in an
ergodic cavity

Delft University of Technology
Bachelor final thesis

Applied Mathematics and applied physics

Freek Looman

4604350

Delft, 2021



i

Contents

1 Introduction 1

2 Defining a model 2
2.1 The physical situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Mathematical description of chaos 4
3.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Choosing coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Lyapunov exponent for quarter stadium billiards . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Lyapunov exponent for Circular billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Behavior of a toymodel field 9
4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Statistics around random waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Analyzing field distribution of random waves . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Analyzing field from restricted random waves . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Distribution of field intensity 14
5.1 Distribution of a single pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Using the Rayleigh distribution to show ergodicity . . . . . . . . . . . . . . . . . . . . . 16
5.3 Rayleigh distribution due to chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Convergence of the simulation 21
6.1 Convergence of the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Number of reflections needed for convergence . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Outlook 25
7.1 General losses inside the cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Modelling exit in quarter stadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Conclusion 28



1

1 Introduction
The behavior of light is well understood and well documented in many different scenarios. Nonetheless
the situations can get more complicated. We can easily calculate the electromagnetic field confined to
a cubic volume by solving the wave equations. However, this is not so easy for arbitrary geometries
of the boundary. The wave equation most likely does not have well defined Eigenmodes for arbitrary
shape of the boundary and conditions on this boundary. This complex situation can give a chaotic field.
In this bachelor thesis we are going to investigate this situation for a 2-dimensional cavity in the shape
of a quarter stadium, in which light can move freely and is reflected on the boundaries. The shape of
our cavity is expected to result in a really chaotic field, whose properties will be studied in detail below.

We will introduce ergodicity and compare the behaviors of a chaotic and non-chaotic cavity using
ergodic properties and looking at the divergence of two neighboring trajectories. Furthermore we will
look at the onset of chaos in the wave field inside the cavity and suggest a test to determine if a field
is completely chaotic.



2

2 Defining a model

2.1 The physical situation
We are going to implement a model that explains the chaotic behavior of light in the 2D quarter
stadium cavity [3] that can be seen below in figure 1. It is patterned in a silicon-on-insulator slab, as
commonly used in on-chip photonics. Light in this kind of photonic system is confined to the slilicon
slab in the z direction by total internal reflection at the interface between silicon and air. In the x
and y direction a so-called photonic crystal confines the light. The photonic crystal can be seen as
hexagonal array of holes, appearing light grey area in figure 1.
A photonic crystal is a structure of periodic dielectric materials with different refractive indices [2].
Certain wavelengths of light will destructively interfere with itself due to these periodic dielectrics. This
means we will get a certain band gap in the allowed wavelengths of light that exist in the dielectric
crystals. This band gap is comparable to band gaps in the energy of electrons in solids. In this
experiment we will use light with a wavelength of 1550nm which is in the band gap of this photonic
crystal.
The light enters this cavity from a feed-waveguide at the bottom left corner. In figure 1 , a second
waveguide at the top-right corner can be seen, from which light can escape the cavity.
We will call the shape of this cavity the quarter stadium. This shape is chosen because this will give
chaotic properties to the electromagnetic field inside of the cavity. This is because the shape of the
cavity is assumed to be ergodic [5].

Figure 1: A scanning electron micrograph of the experimentally realized cavity which we are modelling
in this thesis. The dark grey area is the silicon slab where light can travel freely and the light grey
part consists of the hexagonal photonic crystal array where light reflects upon.
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2.2 Ray tracing
In general the size of the system means that we are in a region where geometric optics stops to be a
good approximation and wave optics is necessary to fully describe the problem. The main reason for
geometric optics to stop being a good aproximation is the width of the waveguide and the wavelength
of the light being on the same scale. Nonetheless, we will see that using a combination of techniques
from both approaches allow us to extract a lot of information about the system.
The cavity itself can be described using geometric optics, since the cavity is 50µm long and the
wavelength of the light used is 1550nm. For this we will start with using a technique from geometric
optics called ray tracing.
With ray tracing we simulate the light, as we do in geometric optics, as a ray that bounces around
in our cavity. To model the effect of feeding light into the cavity trough the waveguide, which is
comparable in width to the wavelength, we use a collection of rays exiting at a random angle, bounded
by the diffraction limit.
For simplicity we will only calculate the electric field which is perpendicular to our cavity. The other
spatial components of this field could nonetheless be calculated with Maxwell’s equations. I did not
focus on this aspect in this thesis.
Now to calculate this electric field we will for every bounce in our simulation add a complex plane wave
with unit amplitude, which starts at position (x0,y0) and with a relative phase φ0. The propagation
direction of the wave is given by (kx,ky). For simplicity we will use a vector notation in the form of x̄
for these. Now the field generated from a single wave i is given by

Ei(x̄) = ej(k̄i·(x̄−x̄0,i)+φi) (1)

where j is the imaginary number. Assuming we have n reflections, it is easy to calculate location and
angles of the next ray segment by finding the intersection between boundary of the cavity and our ray.
The relative phase φi between subsequent rays requires a little more work. Here we start by finding
what phase the plane wave has right before interacting with the cavity boundary and add π to it. This
is because the wave needs to obey a certain boundary condition known as Fresnel equations where the
field is equal to 0 on the boundary. Now we can calculate the total field of a single ray that reflects
n-1 times, which means we have n ray segments.

E(x̄) =
n∑
i=1

ej(k̄i·(x̄−x̄0,i)+φi) (2)

Now we are interested in the electric energy density of the field. For this we will take the absolute
value of the field.

2.3 Fourier transform
To get more information from this field distribution, we will use a 2D Fourier transform.
When a wave reflects on a boundary, it changes direction. The wavelength is hereby being preserved.
We know that the Fourier transform of a single plane wave is a complex-valued delta peak at a
given point (kx, ky) in reciprocal coordinates. Because the wavelength is constant for all participating
waves, this delta peak will always be on a circle with radius |k̄|. Because of the linearity of the Fourier
transform we get that the Fourier transform of the total field is zero everywhere except on the circle
with radius |k̄|.
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3 Mathematical description of chaos
We already stated that the field inside the shown quarter stadium cavity is assumed to be chaotic. To
discuss the ramifications of chaos we will first define what it means if something is ergodic. After this
we will discuss how this relates to our quarter stadium cavity.

3.1 Ergodicity
First of all we will start with a mathematical treatment of ergodicity. This definition of ergodicity
relies a lot on measure theory [5]. We will assume a map T on a probability space (X,O,µ).
Note that a set A∈ O is called T-invariant if T−1(A) = A.

Definition 3.1 (Ergodicity) A map T of probability space (X,O,µ) is called ergodic if every T in-
variant set has either measure 0 or 1.

This might seem abstract but it can be interpreted for our quarter stadium cavity. However, for this
chapter we will use a billiard ball analogy. Assuming only geometric optics as first approximation of
our cavity, rays travel inside the cavity the same way a billiard ball would on a billiard table with the
same shape.
Let T be the map that gives the next reflection location in a trajectory and let A be a trajectory. For
now we briefly assume that A is T invariant, we will show this in the next chapter. Now if T, or in
other words the stadium, is ergodic, then all these possible trajectories have measure 0 or 1. If the
trajectory has measure 0 it reflects at finitely many distinct locations and is periodic. If it has measure
one it bounces almost everywhere on the boundary and becomes chaotic.

Ergodicity also has an important property, for which the mathematical description does not give
more insight in this thesis. However we will use this philosophy in the next chapter.

Theorem 3.1 (Birkhoff Ergodic Theorem) The time average will converge to the space average
of ergodic processes.

This theorem is powerful. By assuming ergodicity we can try to find a time average of a property
in our simulation on a single point and assume that it converges to the space average of this same
property.

3.2 Billiards
Before we can use anything ergodicity related, we will first properly define our billiard ball trajectory.
We start by defining our billiard table Q ⊂ R2 which we assume is an open, bounded and connected
set. This billiard table has a boundary Γ = δQ which is made of a collection of disjoint smooth
compact curves. The end points of these smooth compact curves can be non-smooth points such as
corners in a billiard. The set of all these points we call Γ∗.
We will need to define a trajectory of our so-called billiard ball on our table. At a given time the ball
is at location q ∈ Q and has a velocity v ∈ R2. However since we are only interested in the trajectory
and not the time it takes we will assume that v is on a unit circle. We call S1 the set containing these
v.
We only need to define what happens when a ball bounces. This bounce will follow normal dynamics
where angle of incidence is also the outgoing angle. Now we can talk about phase spaceM = ¯δQ×S1,
which contains every combination of velocity and location on our billiard table. We can now construct
a single trajectory, or flow, Φt in this phase space. Note that in Φt t can be seen as time.
This flow can also be defined by the locations and angles of the reflections. For this we construct a
second phase space describing the same flow but only defined at the boundary of the billiard table.

M = {x = (q, v) ∈M : q ∈ δQ and 〈v, n(q)〉 ≥ 0} (3)
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Here, n(q) is the inward orientated normal vector and 〈·, ·〉 is the inner product. This makes sure a
bounce is going in the right direction.
We will define a map from one reflection to the next reflection in a single flow. Let T : M −→ M be a
map such that for x ∈M we get Tx = Φτ(x)x where τ(x) is the time for which the flow is on the next
bounce defined by the following formula:

τ(x) =
{
t > 0 : Φtx ∈M

}
(4)

Note that also the angle after every reflection changes. These reflections will obey that the angle of
incidence is the same as the outgoing angle.
Looking at trajectories instead of single reflections, we let A be a trajectory defined as follows:

A =
{
..., T−2(x0), T−1(x0), x0, T (x0), T 2(x0), T 2(x0), ...

}
(5)

Note that we can now conclude that every trajectory is T-invariant because T−1(A) = A.

This map T is completely defined by the shape of the stadium, so this means that a stadium can
be in one of two categories. A stadium is ergodic or it is non-ergodic. A Bunimovich stadium is an
example of an ergodic cavity and a circle is known to be non-ergodic [[5]]. The Bunimovich stadium
is build from two half circles connected by two straight lines as can be seen in figure [2]

Figure 2: A Bunimovich stadium with 2 starting rays (red and yellow) with slightly different initial
direction. Image adapted from https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/

Now we can finally say something about an ergodic billiard. We have seen that every trajectory
is T-invariant when T is a reflection map and we will assume it is ergodic. Now every trajectory has
measure 0 or measure 1. This means that almost every trajectory is dense in phase space, and chaotic.

3.3 Choosing coordinates
Up to now we have defined our phase space using the location of reflection q and velocity v. We will
redefine our angle by defining it by the angle between the outgoing travel direction and the normal
from where it reflects which we call θ. Every possible point in phase space M can be described using
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this θ, so we will redefine M:

M =
{
x = (q, θ) ∈M : q ∈ δQ and − π

2 < θ <
π

2

}
(6)

3.4 Lyapunov Exponents
We will try to show that our stadium is chaotic using Lyapunov exponents [[1]]. Lyapunov exponent λ
is a way to estimate if two nearby trajectories in phase space will converge or diverge over time. This
estimate is given by

||δZ(t)|| = eλt||Z(0)|| (7)

where δZ(t) is the difference in 2 neighboring trajectories. We can conclude that we will get converging
flows when λ < 0. This thesis is focused on chaos so we will be looking for λ > 0 because we want
trajectories to diverge.

Note that the Lyapunov exponent is a property of a single flow in phase space and not the phase
space itself. We can speak of a chaotic field when all flows in phase space diverge, or in other words
have a positive Lyapunov exponent. An example of a trajectory with positive Lyapunov exponent can
be seen in figure 2.

We so far studied the system using a discrete time map. To evaluate the Lyapunov exponent of a
given flow, we start with assuming δZ0 and want to find δZ1. If we have this we can repeat the process
n times to get δZn. For discrete time steps this is the Jacobian of the map, which will be a 2 by 2
matrix, for our billiards given by

Jn(Z0) = J(Zn−1)J(Zn−2) · · · J(Z2)J(Z1) (8)

From this matrix we will try to approximate the Lyapunov exponent. For this we will use our largest
in absolute value eigenvalue Λ1 of this total Jacobian. Rewriting equation (7) will give us the following

λ(Z0) ' 1
n
ln |Λ1(Z0, n)| (9)

3.5 Lyapunov exponent for quarter stadium billiards
To find the Lyapunov exponent for trajectories in the quarter stadium billiard we only need to define
the Jacobian matrix J(Zi) and the distance between two directories δZi for some i. We will define δZi
by the difference in traveling angle θ and distance between the two close-by trajectories zi.

δZ =
(
δz
δθ

)
=
(
z − z′
θ − θ′

)
(10)

Now we will need to find the Jacobion matrix. We will define this by defining a Jacobian for the
trajectory traveling freely inside of the cavity and a Jacobian describing a reflection.
First we will look at this Jacobian matrix for a free traveling pathMT (xn) just until the next reflection.
The angle of two close rays does not change during free travel. However they will separate depending
on the angle difference

dδθ

dt
= 0, dδz

dt
= δθ (11)

Integrating this over time between two reflections we get the following:

δθn = δθn−1, δzn = δzn−1 + τδθn−1 (12)
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where τ is the time traveled. This is equivalent to the distance traveled because we chose the speed
to be 1. Now we will rewrite this in matrix notation

MT (xn) =
[
1 τ
0 1

]
(13)

Now we need to find the Jacobian matrix from reflection. Note that due to reflection the distance
between the two rays stays the same, however they switch position so δz gets a minus sign. This is
also the case for δθ. Interesting is the change in δθ.

δθ changes depending on the difference in angle of the normal of the cavity wall called δφ, given
by δθ = 2δφ. For finding δφ i refer the reader to chapter 9 of the chaos book [[1]], which results in
δφn = δzn

ρncos(φn) . Note that ρn is defined as the radius of the circle defining the local curvature. In
this thesis we will only look at reflection on the inside of a circle, making ρ non-positive. Combining
all of this we will get the Jacobian matrix

MR(xn) = −
[

1 0
rn 1

]
(14)

where rn = 2
ρncos(φn) . Now we can find the total Jacobian matrix for one reflection to be M(xn) =

MT (xn)MR(xn). Using equation (8) we get the total Jacobian for a trajectory by traveling freely and
reflecting p times from starting point x0

Mp(x0) = (−1)p
1∏

n=p

[
1 τn
0 1

] [
1 0
rn 1

]
(15)

We can now calculate our estimated Lyapunov exponent for trajectories in our quarter stadium using
equation (9). We will do this for 100 random starting points and look at the evolution of this Lyapunov
exponent over 1500 reflections. The results can be seen in figure 3. The Lyapunov exponent of these
simulations seem to converge between 0.02 and 0.05. All of these are clearly positive. From this result
we assume the exponent to be positive almost everywhere. This means that the quarter stadium is
chaotic.
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Figure 3: The Lyapunov exponent approximated for trajectories in the quarter stadium. 100 tra-
jectories are simulated for 1500 reflections and shown as different colors in the plot. The Lyapunov
exponent seems to converge between 0.02 and 0.05 which implies a chaotic behavior.

3.6 Lyapunov exponent for Circular billiard
We have shown a positive Lyapunov exponent for the quarter stadium. Now we will look at the
Lyapunov exponent for the circular stadium, which is known to be non-ergodic as stated before. A
trajectory in a circular stadium is rather simple. Every reflection preservers the angle of reflection φ,
the curvature ρ and the travel distance τ . We will simplify equation 15 using this knowledge to get
the Jacobian matrix for p reflections inside a circular stadium

Mp(x0) = (M1(x0))p =
(
−
[
1 τ
0 1

] [
1 0
r 1

])p
(16)

We can simplify this further by calculating τ and r. Using some simple geometry we get τ = 2R cosφ
and r = 2

−R cosφ where R is the radius of our circular stadium. Inserting this in equation 16 leads to

M1(x0) = −
[
1 2R cosφ
0 1

] [
1 0
2

−R cosφ 1

]
= −

[
−3 2R cosφ
−2

R cosφ 1

]
(17)

Using elementary linear algebra we can find that the Eigenvalue of Mp(x0). This results in

Eig (Mp(x0)) = (Eig (M1(x0)))p (18)

Calculating the eigenvalue of M1(x0) using equation 17 we get that Eig(M1(x0)) = {1}. We conclude
using equation 16 that Eig(Mp(x0)) = {1} for all p. This means that we get a maximum Lyapunov
exponent using equation 9 of 0. This means that nearby trajectories are not diverging. They can be
converging or keep the same distance. This is as expected for a non-ergodic billiard.
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4 Behavior of a toymodel field

4.1 The model
With the additional knowledge from the previous chapter about chaos and ergodicity we will look at
a simplified toy model for our chaotic cavity. We will use this model to get more experience with the
behavior of chaotic fields.

The model we described in chapter 2 has two parts. In the first part we calculate a trajectory,
and in the second part we will add a complex plane wave for every reflection. In this toy model we
will look at this second part. This will be done by assuming random waves which are independent of
each other. For this we will simplify formula (1) using φ′j = φj − kj · x0,j to get the following

Ej(x̄) = ei(k̄j ·(x̄−x̄0,j)+φi) = ei(k̄j ·x̄+φ′j) (19)

If we assume our reflection location and phase φ to be random and independent we can also assume
that φ′ can be seen as a single random variable. This means we can create a random wave using only
2 parameters. These are the angle the plane wave is traveling, determining k̄j , and the phase φ′. Note
that if we take a Fourier transform of a single wave, we will also get the phase φ′.

For every single ray we will use in this simulation, a single complex wave is added with randomly
distributed angle (k̄j) and phase (φ′).

Now that the basics of this model are clear we will look at mathematical approximations that al-
low us to gain further insight into the dynamics of the system.

4.2 Statistics around random waves

We will start by assuming a random field. This means that for every wave the angle (k̄j) and phase
(φ′) are uniformly and independently distributed.

We will now say something about the field at a single fixed location inside our simulation. To calculate
the field on this single location we will add up all the values of every generated plane wave on this
location. Since we have random waves, we can conclude that every wave adds up a value from the
complex unit circle. Note that we still assume every single wave to be independent. Let stochastic
variable Xj be the value of the random wave j on a fixed location. We reasoned that Xj is a random
number on the unit circle for each j. We will formally define this using a stochastic variable φi which
is uniformly distributed between 0 and 2π

Xj = eiφj (20)

The intensity of the field at this location is then given by

Z =

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ (21)

We want to know the expected value, and variance of Z. We will use the notation E(Z) and V ar(Z)
for these, respectively. We start with finding the expected value of Z2

E(Z2) = E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
2
 = E

 n∑
i=1

Xi ·
n∑
j=1

X̄j

 = E

 n∑
i=1
|Xi|2 +

n∑
i 6=j

XiX̄j

 (22)
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Now we utilize the independence of Xi and Xj

E

 n∑
i=1
|Xi|2 +

n∑
i 6=j

¯XiX̄j

 =
n∑
i=1

E
(
|Xi|2

)
+

n∑
i 6=j

E
(
XiX̄j

)
= n+

n∑
i 6=j

E(Xi)E(X̄j) = n (23)

To get the expected value of Z we will use Jensens inequality [6] to see:

E(|Z|) ≤
√
E (|Z|2) =

√
n (24)

Also, for the variance:
V ar(|Z|) = E(|Z|2)− E(|Z|)2 (25)

Noting that 0 ≤ E(|Z|) ≤
√
n we get:

0 ≤ V ar(|Z|) ≤ n (26)

From this result we can see that the standard deviation and the expected value of |Z| is at most
√
n

dependent for large enough n.
There is also reason to suspect that both need to be

√
n. The reason for this starts by assuming that

E(Z) has a smaller dependency. This will mean V ar(Z) needs to eventually be
√
n dependent.

We will show this by assuming E(|Z|) = a · nb where b < 1
2 . now for large enough n we get using

equation (25) the following.
std(|Z|) =

√
n− a · n2b ≈

√
n (27)

This argument goes both ways. So this means that at least one of the two is
√
n dependent.

4.3 Analyzing field distribution of random waves
We will now use the model described in the beginning of this chapter to analyze the field using a
uniform distribution in angle and phase. One such generated field can be seen in figure 4. We will also
test wether our estimation in equation 24 and equation 26 hold when we look at the collection of 100
by 100 pixels from one simulated field.

Figure 4: A simulation of a field calculated from the interference of 1000 waves with random angle
and phase. The amplitude of the field highlights the constructive and destructive interference of the
waves at different points in space, resulting in a chaotic pattern.
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Evaluating the field and extracting the average and standard deviation of the field for different
number of waves, n, results in the expected values. Both the average and standard deviation have the
n dependency expected from the calculation of the single pixel. This behavior can be seen in figure 5.

Figure 5: The number of waves n against the the average and standard deviation of the absolute value
of the field. The n dependency follows the results we found in the earlier analysis.

Note that this
√
n follows equations (24) and (26). Both the expected value and the standard

deviation seem to depend on the
√
n.

4.4 Analyzing field from restricted random waves
In the previous subsection we only analyzed the field for waves with properties from a uniform distri-
bution. However, we can also investigate if changing this distribution matters for the chotic nature
of the field. We implement this by excluding certain values for the angles of the waves or certain
phases. First we will exclude waves from certain angular ranges. In this case we will exclude waves
with direction of travel θ between 0 and π

2 . This gives a angle dependency of the field which can be
seen in figure 6.
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Figure 6: A simulation of a field calculated from 1000 waves with random phase. The angle of the
waves is random but no waves have angle between 0 and π

2 with respect to the x axis.

The n dependency of this restricted field can be seen in figure 7. This is not notably different from
figure 5. This means that this kind of gap in angle space does not influence our statistics and is not of
interest.

Figure 7: The n dependency of the standard deviation and expected value of an angle restricted field.
Angles between 0 to π

2 with the x axis are removed.

We will also perform this evaluation while excluding certain phases. The phases φ between 0 and
π
5 are excluded. This gives a far more interesting result which can be seen below.
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Figure 8: A simulation of a field calculated from 1000 waves with random angle. The phase is now
restricted such that no phase between 0 and π

5 are present. Due to these restrictions the intensity peak
will always be in the origin.

Figure 9: The number of waves n against the the average, standard deviation and maximum of the
absolute value of the field. The n dependency is slightly larger compared to the situation with no
restriction. The n dependency of the maximum in the simulations stated before is approximately

√
n

just like the average and standard deviation. This simulation has a n dependency of the maximum of
the field of 0.685.

This strongly resembles a rogue wave [3]. A rogue wave is a high peak in field intensity, several
times above the average of the field. This means that to find a rogue wave we could also look for a gap
in phase space from our simulations. Also interesting is that the maximum of the field depends on a
larger factor of n, meaning that the peak will have a relative higher amplitude for a larger number of
waves. However, The peak in intensity is always on the same spot with these restrictions. This might
be resolved by making the phase and angle dependent variables.
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5 Distribution of field intensity

5.1 Distribution of a single pixel
In the previous chapter we looked at the average and standard deviation of random fields. It would
be more insightful if we could make statements about the intensity distribution of a field. For this we
will derive an intensity distribution for a random pixel inside of the cavity.
It is known that the Rayleigh distribution is common when talking about random waves [3]. The
density function for this distribution is as shown in equation 28. The general Rayleigh distribution we
are talking about has the following probability density:

f(x, σ) = x

σ2 e
−x2

2σ2 , x ≥ 0 (28)

This distribution has a mean of σ π2 and a variance of σ2 4−π
2 . σ is the free parameter in this distribu-

tion, which controls the width.

We start this estimation by using theorem 3.1, the Birkhoff ergodic theorem. We will assume er-
godicity such that the time average converges to the space average. For the time average we will
calculate what intensity distribution we expect on a given pixel. We will compare this to the intensity
distribution of a single run, the space average in this case.

We now want to know the distribution of the the intensity on a given pixel Z. To evaluate this
we will need a few additional theorems.

Theorem 5.1 (Multivariate central limit theorem) Let Yi for i = 1, 2, ..., n be a collection of
independent random vectors of dimension k. These vectors have expectation µ, a finite covariance
matrix Σ and an average Ȳn. The central limit theorem for vectors states

√
n(Ȳn − µ) d−→ Nk(0,Σ)

where d−→ means converges in distribution and Nk(0,Σ) is the k-dimensional normal distribution.

Theorem 5.2 If X is a continuous random variable with density function fX and g is a strictly
increasing and differentiable function from R to R, then Y=g(X) has density function

fY (y) = fX
(
g−1(y)

) d
dy

[g−1(y)]

We will use the following theorem which is not defined in most common probability books. However
it is really useful and easily understandable. This theorem has been proven in chapter 4 of Statistical
tools [4].

Theorem 5.3 (Continuous mapping theorem) Let g be a continuous function and let Yn and Y
be stochastic variables. Then

Yn
d−→ Y =⇒ g(Yn) d−→ g(Y )

For this proof we will introduce a notation where we see the complex variables as a real valued vector
Z = (R, I), where R is the real part and I the complex part of Z. Therefore let there be for every
reflection a Xi = (Ri, Ii) where this is the contribution of a single ray i to the field on the given pixel.
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Note that Xi is defined differently than in equation (20). However, Ri and Ii will be defined in a
similar way using φi.

Ri = cosφi (29)

Ii = sinφi (30)

Z =
∥∥∥∥ n∑
i=1

Xi

∥∥∥∥ (31)

Additionally, we use the following notation

R̄ = 1
n

n∑
i=1

Ri (32)

Ī = 1
n

n∑
i=1

Ii (33)

We start by determining the covariance matrix Σ of the stochastic vector Xi.

Σ =
(

V ar(Ri) Cov(Ri, Ii)
Cov(Ii, Ri) V ar(Ii)

)
(34)

We can then use these expected value calculations as an intermediate step.

E(Ri) =
∫ 2π

0
cos (φi)

1
2πdφi = 0 (35)

E(Ii) =
∫ 2π

0
sin (φi)

1
2πdφi = 0 (36)

E(RiIi) =
∫ 2π

0
cos (φi) sin (φi)

1
2πdφi = 0 (37)

Now to conclude the variance and covariance

V ar(Ri) = E(R2
i )− E(Ri)2 =

∫ 2π

0
cos2 (φi)

1
2πdφi = 1

2 (38)

Cov(Ri, Ii) = E(RiIi)− E(Ri)E(Ii) = 0 (39)

Since the covariance is symmetric and the calculations for V ar(Ii) is almost identical to those for
V ar(Ri) and gives the same result. Now we know that the covariance matrix is finite. This means we
can and will use the central limit theorem to conclude the following:

√
2n(R̄, Ī) d−→ N2(0, I2) (40)

where I2 is the identity matrix of size 2. By utilizing the continuous mapping theorem [5.3] using
g(x, y) = x2 + y2 on (

√
2nR̄,

√
2nĪ) =

√
2n(R̄, Ī) we get the following

(
√

2nR̄)2 + (
√

2nĪ)2 d−→ χ2
2 (41)

Note that for the computation of g(N2(0, I2)) we use that N2(0, I2) = (U, V ), where U and V are
independent and standard normally distributed, which implies g(N2(0, I2)) = U2 + V 2 = χ2

2 where χ2
2
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is the Chi-squared distribution of degree 2.
We will rewrite

(
√

2nR̄)2 +(
√

2nĪ)2 =
(√

2
n
nR̄

)2

+
(√

2
n
nĪ

)2

= 2
n

(
n∑
i=1

Ri

)2

+ 2
n

(
n∑
i=1

Ii

)2

= 2
n

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥ = 2
n
Z2

(42)
This means that 2

nZ
2 d−→ χ2

2. If we subsequently use the continuous mapping theorem again with
g(x) =

√
x and the knowledge that the root of a χ2

2 distribution is a χ2 distribution, which is a stan-
dard Rayleigh distribution. We get that

√
2
nZ is standard Rayleigh distributed.

Now we will use theorem [5.2] in combination with the continuous mapping theorem to distribution
Y where Z converges towards. Let X be standard Rayleigh distributed we will use g(x) =

√
n
2x, leading

to

fY (y) = 2y
n
e
−y2
n = y(√

n
2
)2 e −y2

2(
√

n
2 )2

(43)

This means Z converges in distribution to a Rayleigh distribution with parameter σ =
√

n
2 . Thus,

E(Z) = π
√
n

2
√

2
≈ 1.11

√
n (44)

V ar(Z) = (4− π)n
4 ≈

(
0.46
√
n
)2 (45)

This result can also be seen from our simulation for which the results are indicated in figure 5, and
are in good agreement with the theoretically predicted values. This means the calculated statistics of
a random field and our simulation from this same field align well and is a direct hint towards this field
being ergodic. This is in this case trivial, because we simulated completely random waves which are
per definition ergodic.

5.2 Using the Rayleigh distribution to show ergodicity
First of all we will look at fully random waves. We will fit a Rayleigh distribution to the intensity
distribution of a simulation and compare this to our theoretical distribution on a single pixel for the
same amount of reflections. This can be seen in figure 10.



17

Figure 10: Histogram of the intensity of 100 by 100 pixels from a simulation with 1000 random rays.
The simulation seems to follow the theoretical Rayleigh distribution.

The simulation gives the expected result, with the same distribution as the theoretical distribution
calculated for a single pixel.

We have shown that our simulated random field seems to be ergodic. We conclude from this that
ergodic fields show us the predicted Rayleigh distribution for the intensity. However, this conclusion
does not allow us to claim that every field with Rayleigh distribution is ergodic. We therefore will look
in a next step at non-chaotic and non-ergodic fields.
For this we will investigate a circle stadium, which is non-ergodic as earlier stated. Due to its symme-
tries it does not fill phase space. This stadium gives the field shown in figure 11.

Figure 11: A simulation of a field calculated from 1000 reflections in a circular stadium. The field
approaches the expected axial symmetry.

After simulating 1000 reflections the field approaches axial symmetry which is expected in this
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stadium geometry. We will now look at the intensity distribution and compare this to the previously
calculated number of waves. We will additionally fit a Rayleigh distribution to this data and see how
this compares to the theoretically calculated distribution.

Figure 12: Histogram of the intensity of the pixels from a simulation in a circle stadium with 1000
reflections. This histogram follows a Rayleigh distributed but with a much lower σ than expected for
a fully random field.

While the distribution can be approximated by a Rayleigh distribution, it does not follow the
theoretically expected distribution due to a difference in its parameter σ.

This means that following a Rayleigh distribution is not a strong enough criteria for a field to be
ergodic, but is rather connected to the general behavior of the field. However, the sigma parameter
of the distribution seems to be a measure of ergodicity, with a smaller parameter corresponding to an
overall lower mean intensity. This is linked to the dominating constructive and destructive interference
in field distributions with high symmetry.

Conducting this test for the quarter stadium instead results in the data which can be seen in fig-
ure 13.



19

Figure 13: Histogram of the intensity of the pixels from a simulation in a quarter stadium with 1000
reflections. This is Rayleigh distributed with a similar parameter σ as theoretically expected.

The intensity distribution in this case is in agreement with our theoretically calculated distribution.
Our test would now say that this cavity is ergodic.

5.3 Rayleigh distribution due to chaos
We have seen that ergodic cavities follow the Rayleigh distribution with a σ of around

√
n
2 . Another

question worth asking is how m any reflections are needed for this behavior to emerge. One might
expect that a field calculated using 5 or less reflections has a lot more structure than a random field.
We will study the onset of chaos in a wave field by comparing the intensity histogram as we increase
the amount of reflections inside an ergodic system.
In figure 14 we looked at the field and intensity histogram for low numbers of reflection.
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Figure 14: A comparison for low number of random reflection fields and how good the estimation is.
There seems to be a slightly lower σ for n=5 and n=10.

Looking at the evolution of the field in figure 14 it seems that for the lowest numbers of n there
still is some structure to the field. This structure correlates with a lower fitted σ compared to the
theoretical σ. With this we will conclude that a differently valued and in most cases lower σ determines
that a field is not (yet) fully chaotic. It is beyond the scope of this thesis but it might be interesting
to look how well of a measure this is for the general structure of a field.

We can furthermore see in figure 14 that around 50 reflections the fitted Rayleigh distribution fol-
lows the expected Rayleigh distribution. Now with 100 reflections we can say for certain that the field
converged to the theoretically expected distribution.
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6 Convergence of the simulation
To check whether our model works correctly, we need to investigate its convergence behavior for many
iterations. For us this means that we require that the used properties converge after a given number
of reflections. This cutoff number additionally helps us to set a lower limit of necessary iterations to
allow us to get physically correct information.

6.1 Convergence of the field
The first kind of convergence we look at is the convergence of the field. This means that every pixel
in the field converges to a certain value, such that the picture of the field amplitude stays constant.
To test if this is true we simulated a closed cavity with no exits for 3.5 ·105 iterations. This simulation
resulted in the conclusion that the field does not converge this way as can be seen in figure [15]. It is
interesting that the field seems to be continuously changing with the amount of rays. In contrast, if we
would apply losses to this simulation such that at every reflection only a percentage of the light will be
reflected, we will get a converging field. This is because every pixel will be calculated as a geometric
sum, which is known to be convergent.

Figure 15: A simulation of the convergence of the field inside a closed of cavity. It can be seen that
the field does not converge and seems to be continuously changing.

6.2 Number of reflections needed for convergence
It is helpful to know how many reflections the simulation of our quarter stadium cavity needs to get a
reasonable converged result. Note that we can not use the distribution of the pixels as a measure for
chaos because a clearly non chaotic pattern also can be approximated with a Rayleigh distribution in
the same way as a chaotic field.
We will look at the number of reflections needed for a completely random field to obey our expected
Rayleigh distribution.
For this we will compare the n dependency of our fit parameter σ from our Rayleigh distribution. This
closely resembles the experiment we did earlier in chapter 4 with the expected value and standard
deviation because the expected value is linearly dependent of σ. The result for a completely random
field can be seen in figure 16



22

Figure 16: n dependency of fitted σ from a random wave field. This is in accordance with the theoretical
σ.

We can see that the random waves have a fitted σ in accordance with the theoretical σ. We will
now also test this for the quarter stadium cavity. The results for this can be seen in figure 17.

Figure 17: n dependency of fitted σ from a random wave from a quarter stadium. This is in accordance
with the theoretical σ.

The results from the quarter stadium are also in accordance with the theoretical Rayleigh distri-
bution. However, an aperiodic oscillation is visible in this data. For the explanation for this aperiodic
oscillation we will look at an outlier simulation of the quarter stadium. The evolution of the fitted
sigma can be seen in figure 18.
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Figure 18: n dependency of fitted σ from a random wave from a quarter stadium. This simulation was
a outlier which is not in accordance with the theoretical σ.

Up to 7000 reflections the datapoints in figure 18 follow the theoretical line well. After this point
the datapoints seem to stay the same value and flat line. For this situation figure 19 gives more insight
by showing the angle at which the wave propagates for every reflection. The flat lining of the fitted
Rayleigh parameter coincides with an ordered mode of reflecting in the cavity.

Figure 19: Angle of propagation for different reflections for the outlier of the quarter stadium. There
is a large part of ordered reflections.

This ordered mode of reflection is due to the ray reflecting up and down in the right side of the
cavity which is practically a square box. This ordered mode has no influence on the distribution of the
intensity of the field due to mostly destructive interference. This results in the field staying constant
during this ordered mode of reflections.

This explains the downwards motion of the aperiodic oscillation. The upwards motion can be
explained intuitively. After an ordered regime we continue in the chaotic regime for a longer time.
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Now for increasing time we get a larger percentage of the bounces from a chaotic regime with less
destructive interference and behavior closer to random waves with a know n dependency of

√
n. This

means we get an upward motion. Repeating this randomly might show something that looks like a
wave-like structure.

This behavior is a result of how this model is constructed. Implementing losses might solve this
problem and might be interesting for further research.
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7 Outlook
In the course of this thesis, several interesting aspects arose that are beyond the scope of the thesis.
Specifically related to introducing loss-channels in the cavity. These starting points for future inves-
tigations might lead to further understanding of the occurrence of certain features in the field of the
cavity, as well as bringing the numerically calculated results in even closer agreement with experimen-
tal studies.

Most importantly, the experimental cavity exhibits scattering losses, meaning light can escape, which
is not implemented in the model discussed. Loss can be implemented in ray tracing in 2 ways. The first
is by assuming the ray to have completely exited the cavity when the loss occurs. If this loss occurs
we continue the simulation with a new ray entering from the entrance. The second implementation
of loss can be done by multiplying the amplitude of the simulated wave by a factor smaller than one
every time a loss occurs. It might be interesting to compare both methods.
Implementing losses would make the simulated field convergent as stated in chapter 6.1. If the con-
vergence of the simulated spatial field distribution is desired I would suggest implementing the second
variant of losses.

7.1 General losses inside the cavity
In general there are 2 kind of losses in the physical cavity. One kind of loss is waves being (partially)
transmitted instead of perfectly reflected on the cavity boundary. The second kind of loss is waves
dissipating from the cavity into the z direction. This loss has a chance of occurring any time, assuming
there are imperfections in the silicon slab from which the wave can scatter. This loss is dependent on
the distance traveled of a single ray. So one might try implementing loss depending on this traveled
distance.
It is not yet clear which of these losses, if any, dominate. It might be interesting to research the
dominating loss and implement this in the ray tracing model.

7.2 Modelling exit in quarter stadium
A interesting part of the physical experiment are the exiting wave guides. Working on this thesis
introducing an exit in the simulation of the quarter stadium cavity has been started. This exit is in
the upper right corner of the cavity. This exit exists as a wave guide in the experimental cavity and
can be seen in figure 1.

However, as a first step here we assumed the light to always completely exit trough the wave guide,
meaning we continue the simulation with a new ray at the entrance of the cavity until the number
of reflections of interest has been reached. An example of a simulated trajectory with these assump-
tions can be seen in figure 20. It can be seen that the density of rays is not homogeneous anymore,
which might result in a deviation form a perfectly chaotic behavior and some kind of gap in phase space.
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Figure 20: Simulation of ray tracing in a quarter billiard stadium with a gap of 10µm in the upper
right corner.

The size of this gap changes the field behavior. Simulation of the field resulting from different
gap sizes can be seen in figure 21. For the simulations with a gap size below 20µm we find a field
comparable to a completely random simulated field as in figure 4. For larger gap sizes we slowly see
a directional structure in the field. It seems more right traveling waves are present. This is due to
light escaping our cavity trough the gap and not reflecting back into the cavity. Note that we can not
deduce from this plot the overall propagation direction of the light. However, we can reason the waves
are traveling to the right, because every ray starts in the bottom left corner and can escape on the
right side. This should resulting in an abundance of right traveling waves.
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Figure 21: Simulations of a field in a quarter billiard stadium with different sized gaps between 0µm
and 50µm in the upper right corner.

Investigation around the impact of introducing this gap might be interesting for further research
as it was beyond the scope of this thesis. Different and more realistic assumption are possible for the
interaction of light with the exiting wave guide. The implementation of this wave guide can be done
by assuming a loss due to this wave guide. This loss can be modelled using a probability of reflection
or a fraction reflecting as stated. For further research we recommend modeling an angle dependent
probability or fraction based on the acceptance angle of the exiting wave guide.
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8 Conclusion
In this thesis we have looked at different aspects of chaos in an ergodic cavity.

In a fist step, we showed that the quarter stadium cavity is chaotic because it has a positive Lya-
punov exponent by simulating multiple trajectories, resulting in a positive Lyapunov exponent for all
of them. This does not immediately mean it is also ergodic but strongly suggests it. Furthermore,
the Lyapunov exponent for trajectories in a circular billiard has been investigated. We proved that all
trajectories have a Lyapunov exponent of 0 meaning nearby trajectories do not diverge.

We additionally showed that the intensity of completely random waves is Rayleigh distributed with
the theoretical parameter of σ =

√
n
2 . Fields with more order than completely random fields also

seem to follow this Rayleigh distribution, which suggests that this distribution is more generally a
property of wave fields. However, more ordered fields seem to have a different distribution parameter
compared to completely random fields. Determining this distribution parameter might be a good test
for determining how ordered an intensity field is.

Our simulation has a σ <
√

n
2 while we expected it to be equal to

√
n
2 . We conclude that this

diverging from randomness is due to a highly structured way of reflecting in parts of the cavity which
destructively interferes with itself, lowering the distribution parameter.

The field intensity distribution being Rayleigh distributed with the right parameter might be a good
test for how ordered a wave field is in further research around this chaotic cavity and can help a lot
with analyzing the implementation of losses in the quarter stadium cavity.

I also would like to thank Johan Dubbeldam, Kobus Kuipers, Thomas Bauer and Thijs van Gogh
for helping me with writing this thesis during a difficult time for everyone.
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