

Delft University of Technology

Software Clones in Scratch Projects
On the Presence of Copy-and-Paste in Computational Thinking Learning
Robles, Gregorio; Moreno-León, Jesús; Aivaloglou, Efthimia; Hermans, Felienne

DOI
10.1109/IWSC.2017.7880506
Publication date
2017
Document Version
Final published version
Published in
2017 IEEE 11th International Workshop on Software Clones (IWSC)

Citation (APA)
Robles, G., Moreno-León, J., Aivaloglou, E., & Hermans, F. (2017). Software Clones in Scratch Projects: On
the Presence of Copy-and-Paste in Computational Thinking Learning. In N. A. Kraft, M. Godfrey, & H.
Sajnani (Eds.), 2017 IEEE 11th International Workshop on Software Clones (IWSC) (pp. 31-37). IEEE.
https://doi.org/10.1109/IWSC.2017.7880506
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IWSC.2017.7880506
https://doi.org/10.1109/IWSC.2017.7880506

Software Clones in Scratch Projects:
On the Presence of Copy-and-Paste in

Computational Thinking Learning
Gregorio Robles∗, Jesús Moreno-León†, Efthimia Aivaloglou‡, and Felienne Hermans‡

∗Universidad Rey Juan Carlos, Fuenlabrada (Madrid), Spain
grex@gsyc.urjc.es

†Programamos.es & Universidad Rey Juan Carlos, Spain
jesus.moreno@programamos.es

‡Delft University of Technology, The Netherlands
{e.aivaloglou, f.f.j.hermans}@tudelft.nl

Abstract—Computer programming is being introduced in
schools worldwide as part of a movement that promotes Compu-
tational Thinking (CT) skills among young learners. In general,
learners use visual, block-based programming languages to
acquire these skills, with Scratch being one of the most popular
ones. Similar to professional developers, learners also copy and
paste their code, resulting in duplication. In this paper we present
the findings of correlating the assessment of the CT skills of
learners with the presence of software clones in over 230,000
projects obtained from the Scratch platform. Specifically, we
investigate i) if software cloning is an extended practice in Scratch
projects, ii) if the presence of code cloning is independent of the
programming mastery of learners, iii) if code cloning can be
found more frequently in Scratch projects that require specific
skills (as parallelism or logical thinking), and iv) if learners
who have the skills to avoid software cloning really do so. The
results show that i) software cloning can be commonly found in
Scratch projects, that ii) it becomes more frequent as learners
work on projects that require advanced skills, that iii) no CT
dimension is to be found more related to the absence of software
clones than others, and iv) that learners -even if they potentially
know how to avoid cloning- still copy and paste frequently.
The insights from this paper could be used by educators and
learners to determine when it is pedagogically more effective to
address software cloning, by educational programming platform
developers to adapt their systems, and by learning assessment
tools to provide better evaluations.

I. INTRODUCTION

In recent years programming is being promoted in schools
around the world as part of a movement that aims to promote
Computational Thinking (CT) skills. CT is the process by which
a problem is formulated and a solution is expressed in such a
way that a computer can carry it out effectively. It is based on an
iterative process with three stages: the formulation of a problem
(abstraction), the expression of a solution (implementation), and
the execution and evaluation of the solution (analysis). Although
the term CT has recently been popularized by Wing [1], it was
already used by Papert in the 1980s [2].

There are many environments that help learners to acquire
these skills, mostly based on visual languages that allow
learners to implement their solutions by combining pre-defined

blocks. Among these solutions we can cite Alice [3], Kodu [4]
or Scratch [5], a framework with more than 15 million users and
over 18 million projects shared in its open online repository1.

In the same way as professional software developers use copy
and paste as an act of ad-hoc reuse, we can find such behavior
as well in learners. This behavior is harmful: a recent controlled
experiment with first year high-school students found that the
ones working on programs exhibiting code smells performed
significantly worse. Especially for the presence of code clones,
it was found that it decreases the students’ ability to modify
the Scratch programs [6].

Specifically, in this paper, we want to shed some light on
software cloning in programming learning environments. In
particular, we analyze a sample of over 230,000 Scratch projects
to answer following research questions:
• RQ1: How frequent is software cloning in Scratch

projects?
The aim of this question is to see if software cloning is
a common practice in Scratch projects. We compare this
magnitude with the presence of custom blocks, which is
the way functionality can be reused in Scratch programs.
We expect, based on our experience teaching kids, to
frequently find cloning in Scratch projects, more often
than custom blocks.

• RQ2: Is software cloning independent of the mastery
required to create a project?
The goal of this question is to find out if software cloning
occurs in Scratch projects of any level of complexity. If
this is not the case, it would be interesting to see if it
occurs in the early stages of the learning process (with
projects that require less mastery) and then disappears
while confronting more difficult projects, or even if it gets
more present as projects become more complex.
We expect that as the mastery score increases, cloning
should disappear, as learners with higher development of
skills will try to avoid clones.

1http://scratch.mit.edu

978-1-5090-6595-0/17/$31.00 c© 2017 IEEE IWSC 2017, Klagenfurt, Austria31

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

• RQ3: Is software cloning related more to any of the
CT dimensions?
This question addresses the fact that software cloning
might have a stronger relation to some of the CT
dimensions assessed by Dr. Scratch2.
We expect that some dimensions will be more related
to cloning. For instance, we naively assume that the
data representation dimension should be less affected
by software cloning than the parallelism dimension, as
while the former considers the use of variables and the
types of variables, the latter requires the use of two scripts
(and therefore the chances of having similar, cut-and-paste
prone, structures is higher).

• RQ4: Do learners who have the ability to avoid
software cloning do it?
Scratch offers several ways for learners to avoid software
cloning in their projects.
We expect that once learners have developed the skills
necessary to avoid cloning, software clones will not be
found in those Scratch projects.

The structure of the paper is as follows: After providing
some background information on related research, in Section III
we present the research methodology used in the paper, in
particular we explain how we have identified clones and
assessed the mastery of Scratch projects. The next section
introduces the case study, while Section V offers the findings of
our study. Finally, we discuss our results, including limitations
and possible paths for future research.

II. BACKGROUND

A. Cloning in Scratch Manuals

The most used Scratch manual is Creative computing [13], a
guide developed by members of the ScratchEd research team at
the Harvard Graduate School of Education. This guide, which
is available in eight languages, presents “a collection of ideas,
strategies, and activities for an introductory creative computing
experience using the Scratch programming language”. Software
cloning (and how to avoid it) is barely mentioned in this guide.
When the feature to create new, user-defined custom blocks is
introduced in unit 3, there is no discussion of code repetition.
In addition, the explanation for this feature and the examples
proposed do not include information on how to use parameters,
which limits the potential of user created blocks to be utilized
in different situations. In the last unit of the guide, dedicated
to advanced concepts, the feature to create instances of sprites
is introduced with the following, short explanation: “cloning
is an easy way to create multiples of the same sprite. You can
use cloning to make many objects and create cool effects in a
project”.

From reviewing other Scratch manuals, we have found no
uniform criteria in terms of how and when to explain the
concepts of software cloning and/or software reuse. Some of
them even omit it. In Scratch 2.0 Sams Teach Yourself in 24
Hours [14], a book that includes 24 sessions of one hour that

2http://www.drscratch.org

show how to create animations, simulations, stories and games,
the feature to create instances of sprites is presented in unit 9,
while the possibility of creating blocks is introduced in unit 15.
In Scratch Programming in Easy Steps [15], an introduction to
learn to create animations and games, no information appears on
the use of instances of sprites, while custom blocks is shown
in the very last chapter. Finally, in Learn to Program with
Scratch: A Visual Introduction to Programming with Games,
Art, Science, and Math [16], which is a collection of hands-on
projects that are designed to teach concepts to solve real-world
programming problems, one of the first chapters introduces
the creation of custom blocks “to enforce good programming
style from the beginning”; however, the creation of instances
of sprites is not discussed in this book.

B. Cloning in Learning Environments

Cloning has been found to decrease the ability of novice
programmers to modify Scratch programs in a controlled
experiment with 61 first year high-school students in [6]. Also
related to this work on clone identification is [12], which
analyzes the same dataset of Scratch projects for various code
smells, including code duplication. Code duplication is found
in 26% of the projects, which is more than what we find in this
work. This difference is attributed to the different definition
for code clones: that analysis uses 5 as the minimum number
of equal blocks in a sequence to be considered a clone, unlike
this work where we have set this limit to 6 blocks. Moreover,
while [12] also evaluates the projects in terms of utilized
programming concepts, it does not analyze the relationship
between code duplication and mastery or CT skills.

C. Assessment of CT Skills in Scratch

A number of studies have been carried out on assessing the
programming skills of novice programmers through the analysis
of Scratch programs for indications of learning of programming
concepts. Maloney et al. [17] analyzed 536 Scratch projects
for blocks that relate to programming concepts including loops,
conditional statements, variables, user interaction, synchro-
nization, and random numbers. Yang et al. examined the
learning patterns of programmers in terms of block use over
their first 50 projects [18]. In [19], the use of programming
concepts was examined in relation to the level of participation,
the gender, and the account age of five thousand Scratch
programmers. Dasgupta et al. investigated how project remixing
relates to the adoption of computational thinking concepts [20].
In [21], a model for assessing computational thinking in
primary school students is proposed and applied on 150 Scratch
projects, finding that design patterns requiring understanding of
parallelism, conditionals and, especially, variables were under-
represented until a certain age.

III. METHODOLOGY

A. Cloning in Scratch Projects

Hairball is a Scratch code analyzer that detects bad practices
in Scratch programs, such as never executed code or non-
initialized object attributes [7], [8]. Hairball is a plug-in based

32

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Two scripts repeating code.

architecture, in which we added functionality to detect dupli-
cated code3, called duplicate.DuplicateScripts within
a Scratch project. All blocks in a project are tokenized, so
that two sequences that only differ in the receiving values
are considered to be clones. The number of equal blocks in
a sequence to be considered a clone and not coincidentally
similar has been set to 5, i.e., the smallest possible sequence
is composed of 6 blocks. The identification procedure is intra-
project and not inter-project, so cloning between projects is
not considered in this study.

Figure 1 shows two programs containing blocks where the
only difference lies in the values that they receive as parameters.
When processed by the duplicate.DuplicateScripts plug-
in, these programs are tokenized. In both cases, the code of
the programs would be translated into the following sequence
of tokens:

’when I receive %s’
’set rotation style %s’
’repeat %s%s’
’move %s steps’
’next costume’
’if on edge, bounce’
’wait %s secs’

This would result in the plug-in considering them a clone.
The right way to implement this functionality in Scratch would
be by defining a custom block that receives several values per
parameter and reusing this block in both programs, as shown
in Figure 2. The maintainability of this implementation would
be higher. Custom blocks are sprite-specific, i.e., Scratch does
not support the definition of project-wide custom blocks. Our
plug-in takes this into consideration: it only considers software
clones found in the same sprite.

Scratch offers a feature that users can use to avoid duplicating
sprites. This feature, labeled create clone in the Scratch
environment, allows to generate new instances of a character;
each created instance executes the programs of the sprite. One
of the plug-ins developed for the Hairball environment allows
to detect the use of this feature in the source code of the
projects. Aiming to avoid confusion, in this paper we refer to
this feature as instances of sprites.

3The plug-in is publicly available at https://github.com/jemole/hairball/blob/
master/hairball/plugins/duplicate.py

Fig. 2. Definition of a custom block to avoid code repetition.

Fig. 3. Dr. Scratch analysis for a project with advanced CT Score. The Scratch
project is available at https://scratch.mit.edu/projects/2294898/

According to the classification in [10], in this paper we
are identifying clones of Type-1 (“an exact copy without
modifications”) and Type-2 clones (“a syntactically identical
copy; only variable, type, or function identifiers were changed”),
in the latter case –at least partially– as we do not take into
consideration changes to function identifiers.

B. Assessment of CT Skills

Dr. Scratch is a free web-based tool that analyzes Scratch
projects for the development of seven dimensions of the CT
competence: abstraction and problem decomposition, logical
thinking, synchronization, parallelism, algorithmic notions of
flow control, user interactivity and data representation [9].
These dimensions are evaluated by means of a static analysis
of the source code and are given a score that ranges from
0 to 3, following the criteria that are presented in Table I.
The aggregated sum of all dimensions gives the mastery score,
which is hence a number between 0 and 21. An example of
an assessment report can be seen in Figure 3; the project
analyzed has achieved 17 points of mastery score, pointing out
an advanced CT level of its author.

Dr. Scratch has been conceived following the ideas of
Scrape [11], a tool that allows visualizing the blocks being used
in a Scratch project, and its core is built on top of Hairball [7].

33

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
LEVEL OF DEVELOPMENT FOR EACH CT DIMENSION ASSESSED BY DR. SCRATCH [9]

CT dimension Basic (1pt) Developing (2pt) Proficient (3pt)
Abstraction and prob-
lem decomposition

more than one script and more than
one sprite

procedures (creation of custom
blocks)

use of clones (instances of sprites)

Parallelism two scripts on green flag two scripts on key pressed or on
the same sprite clicked

two scripts on when I receive mes-
sage, or video or input audio, or
when backdrop changes to

Synchronization wait message broadcast, stop all, stop
program

wait until, when backdrop changes
to, broadcast and wait

Flow control sequence of blocks repeat, forever repeat until
User interactivity green flag keyboard, mouse, ask and wait webcam, input sound
Logical Thinking if if else logic operations
Data representation modifiers of object properties variables lists

IV. CASE STUDY

The dataset that we used for this study is the one made
available from [12]. The dataset consists of 250,166 projects
scraped from the Scratch project repository. Those are the
projects most recently shared in the Scratch projects page4

when the web scraping program run on March 2nd 2016. The
web scraping program, as well as all scraped projects in JSON
format are available.5

We have run the duplicate.Duplicate scripts on all the
Scratch projects from our data set, storing in a CSV file the
information on the number of clones and custom blocks found
in each of the projects. In addition, we have run Dr. Scratch
on all projects in order to obtain the scores for the seven
dimensions and the total mastery score, and have added this
information to the CSV file. The data in the CSV file is then
analyzed with Pandas. The raw data and the IPython notebook
of the analysis can be obtained in the replication package6.

V. FINDINGS

A. RQ1: Frequency of Cloning in Scratch Projects

Out of the 231,050 projects that compose our sample, 46,653
(20.19%) contain at least one software clone. On the other hand,
we can find 17,863 projects that define custom blocks (7.73%).
This means that there are almost three times more projects with
software clones than with custom blocks. We have identified
as well 6,060 projects that contain both software clones and
custom blocks; this supposes 2.62% of all projects. 12.99% of
projects with clones have custom blocks, and 33.92% of the
projects that create custom blocks contain software clones.

The correlation between cloning and custom blocks is 0.124,
noting that –when considering the complete sample– we cannot
infer that projects with clones are more prone to use custom
blocks.

RQ1: Software clones can be commonly found in Scratch
projects (ca. 20%), almost three times more frequently than
custom blocks (ca. 7.5%). A third of the projects where
user-created custom blocks are found also contain software
clones.

4https://scratch.mit.edu/explore/projects/all/
5https://github.com/TUDelftScratchLab/ScratchDataset
6https://gsyc.urjc.es/~grex/repro/2016-iwsc-scratch

Fig. 4. Distribution of projects with clones (blue) and without clones (green)
in terms of their mastery score.

B. RQ2: Software Cloning and Mastery Score

Figure 4 offers a histogram with the distribution of the total
mastery score of the projects under analysis. As it can be seen
the mastery score is not evenly distributed, as most of the
projects are located in the range between 6 and 11 points. Only
a minor number of projects have a very low or very high score.
The figure also provides information on the projects with (blue)
and without (green) software clones; the amount of projects
that contain at least one clone is not relevant until a mastery
score of 6, and from then on, the share of projects with clones
increases with the mastery score. More than 52% the projects
that have at least 16 points of mastery have at least one clone.

RQ2: Cloning and custom blocks are almost non-existent
until a given mastery score (of 6/21). Cloning is then
extensively present in Scratch projects and becomes more
frequent as the mastery score rises. For projects of a relative
complexity onwards (mastery score > 15), more than half
of the projects contain software clones.

34

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NUMBER OF PROJECTS WITH CUSTOM BLOCKS (CUSTOMB), AND WITH

CUSTOM BLOCKS AND SOFTWARE CLONING (ABSOLUTE AND PERCENTAGE)
BY MASTERY SCORE.

Mastery w/CustomB w/CustomB∩w/Clones %w/CustomB∩w/Clones
6 457 1 0.22%
7 1,046 17 1.63%
8 1,107 43 3.88%
9 929 74 7.97%

10 778 81 10.41%
11 837 117 13.98%
12 975 151 15.49%
13 1,147 208 18.13%
14 1,061 236 22.24%
15 1,112 306 27.52%
16 1,391 553 39.76%
17 1,589 796 50.09%
18 1,587 907 57.15%
19 1,671 1,053 63.02%
20 1,907 1,446 75.83%
21 89 71 67.62%

C. RQ3: Software Cloning and CT Dimensions

Figure 5 shows the amount of projects with clones by the
score obtained for each dimension, as provided by Dr. Scratch.
As it can be seen, there is no dimension that is free of cloning.
For lower scores of some dimensions the absence of software
clones is related to the low complexity of the programs (as
we have already seen for projects that require a total mastery
below 6). However, for all of the dimensions around 50% of
the projects with three points have software clones. This means
that none of the current seven dimensions under evaluation
serves as a way of mitigating the effect of copy-and-paste by
learners.

RQ3: Software clones are present in all CT dimensions.
In the highest level of developed skills of all dimensions,
software cloning can be found in around half of the projects.

D. RQ4: Avoidance of Software Cloning by Advanced Learners

The results for the “Abstraction [and problem decomposition]”
dimension (on the left in Figure 5) allow us to answer RQ4.
In total numbers, there are 17,863 projects that incorporate
custom blocks. Of these, 6,060 projects (33.92%) also include
software clones.

Table II offers more insight into the common presence of
custom blocks and software cloning. The trend for the overall
mastery score (in Figure 4) is found to be replicated with
custom blocks: software cloning tends to increase with the
mastery required for the projects. However, while with mastery,
over 40% of the projects can be found to have software cloning
from a score of 13 onwards, in projects containing custom
blocks this happens for projects with at least a mastery score
of 17. In other words, although the use of custom blocks does
not mitigate software cloning, it delays its appearance towards
more complex projects.

Table III provides the results from analyzing the common
presence of instances of sprites and software cloning. Again,

TABLE III
NUMBER OF PROJECTS WITH INSTANCES OF SPRITES (IOS), AND WITH

INSTANCES OF SPRITES AND SOFTWARE CLONING (ABSOLUTE AND
PERCENTAGE) BY MASTERY SCORE.

Mastery w/IoS w/IoS∩w/Clones %w/IoS∩w/Clones
6 12 0 0.00%
7 112 0 0.00%
8 371 30 8.09%
9 979 179 18.28%

10 1,246 284 22.79%
11 1,787 241 13.49%
12 1,648 407 24.70%
13 1,582 386 24.40%
14 1,910 518 27.12%
15 2,183 955 43.75%
16 1,555 729 46.88%
17 1,828 992 54.27%
18 2,470 1,328 53.77%
19 2,709 1,937 71.50%
20 2,339 1,841 78.71%
21 105 86 81.90%

TABLE IV
CORRELATION COEFFICIENTS OF MASTERY SCORE, AS PROVIDED BY DR.

SCRATCH, WITH THE PRESENCE OF CLONES, OF CUSTOM BLOCKS
(CUSTOMB), AND OF INSTANCES OF SPRITES (IOS) IN SCRATCH PROJECTS.

Clones CustomB IoS
Mastery 0.465 0.099 0.191

the trend is similar as the previous ones for the total mastery
and custom blocks, with an increasing share of software cloning
with the mastery score. As can be seen, the use of this feature
delays the appearance of software cloning, although it does
not completely avoid the issue, since over 40% of projects
using instances of sprites with 15 mastery points or more
present software cloning. Comparing these results with those
in Table II, we can see that the use of instances of sprites has a
lesser impact on the reduction of software cloning than custom
blocks.

Table IV provides the correlation coefficients between the
mastery score given by Dr. Scratch and the presence of
clones (0.465), custom blocks (0.099) and instances of sprites
(0.191). In all cases the relationship is positive, but the
coefficient for clones is over twice as high as the one for
instances of sprites, and the latter is twice as high as the one
for custom blocks; this means that learners tend, while they
become more proficient in Scratch, to use far more clones than
to create instances of sprites and custom blocks.

RQ4: Learners who have the abilities to avoid software
clones, also clone. However, they clone less frequently with
the exception of very complex projects, where they clone
the same.

VI. DISCUSSION

We have found that software cloning is an extended practice
in the Scratch learning environment. Learners start to clone
when in the development level, but make heavy use of cloning

35

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Distribution of projects with clones (blue) and without clones (green) for each CT dimension assessed by Dr. Scratch.

during the master level. Although we expected cloning to
disappear with high mastery scores, the results show that this
does not happen.

In contrast, custom blocks are used far less than cloning
(around one third). We expected that the use of custom blocks
would make software cloning less used, but results show the
opposite. At a mastery score of 10 is where the gap between
cloning and custom blocks is highest. Probably it is at that point
where it makes sense to pedagogically address cloning with
learners, as at that point they have the necessity to have similar
functionality several times in their project, but they do not
know how to implement it. However, as Scratch currently does
not support project-wide custom blocks, learners sometimes
have no other option than to copy and paste custom blocks
in all sprites that need them. Note that as we only consider
intra-sprite clones in our study, this does not affect our results.

We argue that learning platforms, such as Scratch, should
have a way to make learners give custom blocks preference
to cloning. It is our opinion that by creating custom blocks,
learners are acquiring higher skills in the resolution of problems,
offering a more generalized solution that is easier to understand
and maintain. This argumentation is inline with the goals of
CT development in learners. We therefore argue that learning
environments such as Scratch should include functionality to
detect code cloning, and warn learners, advising to use custom
blocks, for instance.

We also have found that cloning has not been paid the
importance it should have, although some advances can be
counted in the last years. So, in Scratch 1.4 there was no
possibility of creating custom blocks or instances of sprites;
these were introduced with Scratch 2.0 in May 2013. However,
the most-used Scratch manuals do not sufficiently address the
problem (and how to solve it with user-made custom blocks).
On the other hand, the CT educational community has not
taken it into consideration for their assessment. As a matter of
fact, for the creation of the Dr. Scratch rubric, we analyzed
how educators performed their assessments manually; software
cloning was not part of any assessment, so it was not included
in Dr. Scratch’s assessment. As by now, custom blocks
contributes to 2 points for abstraction, while the creation of
sprite instances adds 3 points, as experts thought that the latter
requires a higher level of abstraction skills; if we consider
our results (especially, the ones from RQ4), the assignment of
points could be switched, as custom blocks address software

cloning more than the creation of sprite instances (see the share
of software clones for the Abstraction dimension in Figure 5).
In our opinion, given that to achieve a mastery level of CT
a proper use of custom blocks and cloning should be made,
we should value a change in the assessment rubric of Dr.
Scratch to specifically address the appearance of software
cloning by introducing a penalization score when found.

A. Threats to Validity

The number of projects under study is low, as it represents
around 1.5% of the total amount of Scratch projects that are
hosted in the Scratch repository. Even though the sample is
large, with over 230,000 projects, it could well be that it is
not representative of the whole population of projects.

In our quest to find clones, we only identify some of the types
of possible software clones (Type-1 and partially Type-2 clones).
The other types of clones that can be found in the literature,
Type-3 (“a copy with further modifications; statements were
changed, added, or removed” [10]) and Type-4 (“two or more
code fragments that perform the same computation but are
implemented by different syntactic variants” [22]) are not
considered. This means that we could potentially find more
clones than the ones found, i.e., the amount of clones we report
is a lower bound of the total number of clones. In this regard,
the problem of software cloning in Scratch projects could be
even worse than the one reported in this paper.

We only report intra-project cloning. The Scratch platform
offers the possibility to remix projects from other users, an
action that is similar to what is known as forking in well-known
development platforms such as GitHub. Given that there are no
libraries in Scratch, there are few possibilities to avoid inter-
project cloning, making this a minor threat to the validity of our
study. However, what can impact the results is the possibility
that learners might have remixed a complex project without
software clones, and then added these, resulting in a project
with high mastery score and software clones.

In this paper, we have assumed software cloning as a bad
practice, although there is evidence that in some contexts this
has not to be the case [23]. However, of all the patterns of
cloning described in [23], in our opinion only “Parameterized
Code” (“When implementing a solution to a common problem,
it is often the case that this solution can be modified to solve
a new problem by changing only a few identifiers or literals
in the code. This commonly occurs when implementing basic

36

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

solutions for very similar problems, such as opening a file
descriptor”) and “Replicate and Specialize” (“[developers] may
find code in the software system that solves a similar problem
to the one they are solving. However, code may not be the
exact solution, and modifications may be required. While the
developer could generalize the original code, this may have
a high cost in testing and refactoring”) would apply to the
Scratch environment; our intuition is that it would do in a very
limited way.

The findings in our paper are Scratch-specific and may not
be generalized to other block-based learning programming
languages. There may be elements in how Scratch is conceived
that pushes Scratch learners to cloning instead of to create
custom blocks.

VII. CONCLUSIONS AND FURTHER RESEARCH

We have found software cloning to be frequently used in
the Scratch learning environment. We show that it can be
found independently of the skills of the learner and that it is
independent of the CT dimensions that a learner develops. Even
those learners who know how to potentially avoid software
cloning, do it, although to a lesser extent until projects show
certain complexity, where these learners show a similar pattern
than the rest.

The insights from this paper could be used by educators and
learners to determine when it is pedagogically more effective to
address software cloning, by educational programming platform
developers to adapt their systems, and by learning assessment
tools to provide better evaluations.

Further research should be devoted to replicate this study
with other, block-based programming learning environments to
verify if cloning is widely used there as well. In addition, other
types of clones in learning environments such as Scratch could
be investigated. Other bad smells, such as long methods [6],
could be also researched in a similar fashion to software cloning,
as it has been done in this paper, to see if they as well are not
addressed conveniently and do not disappear as the mastery of
learners increases.

All in all, as researchers and educators it is our task to find
out how to address software cloning in learning environments.
As by now, and from our results from analyzing over 230,000
Scratch projects, the results show that there is a lot of room
for improvement.

ACKNOWLEDGMENTS

The first two authors are funded in part by the Region
of Madrid under project “eMadrid: Investigación y Desar-
rollo de tecnologías educativas en la Comunidad de Madrid”
(S2013/ICE-2715). The first author also acknowledges the
SENECA project (MSCA-ITN-2014-EID).

REFERENCES

[1] J. M. Wing, “Computational Thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, 2006.

[2] S. Papert, Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

[3] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-d tool for introductory
programming concepts,” Journal of Computing Sciences in Colleges,
vol. 15, no. 5, pp. 107–116, 2000.

[4] M. MacLaurin, “Kodu: End-user programming and design for games,”
in Proceedings of the 4th international conference on foundations of
digital games. ACM, 2009, p. 2.

[5] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52, no. 11,
pp. 60–67, Nov. 2009.

[6] F. Hermans and E. Aivaloglou, “Do code smells hamper novice
programming? a controlled experiment on Scratch programs,” in Program
Comprehension (ICPC), 24th International Conference on. IEEE, 2016,
pp. 1–10.

[7] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin,
“Hairball: Lint-inspired static analysis of Scratch projects,” in Proceeding
of the 44th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’13. New York, NY, USA: ACM, 2013, pp. 215–220.

[8] D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len, G. Dreschler,
G. Aldana, P. Almeida-Tanaka, B. Kiefer, C. Laird, F. Lopez, C. Pham,
J. Suarez, and R. Waite, “Assessment of computer science learning in a
Scratch-based outreach program,” in 44th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’13. New York, NY, USA:
ACM, 2013, pp. 371–376.

[9] J. Moreno-León, G. Robles, and M. Román-González, “Dr. Scratch:
Automatic analysis of Scratch projects to assess and foster Computational
Tshinking,” RED. Revista de Educación a Distancia, vol. 15, no. 46,
2015.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[11] U. Wolz, C. Hallberg, and B. Taylor, “Scrape: A tool for visualizing
the code of Scratch programs,” in Poster presented at the 42nd ACM
Technical Symposium on Computer Science Education, Dallas, TX, 2011.

[12] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the Scratch repository,” in 2016 ACM Conference
on Intl Computing Education Research. ACM, 2016, pp. 53–61.

[13] K. Brennan, C. Balch, and M. Chung, Creative Computing. Harvard
Graduate School of Education, 2014.

[14] T. Warner, Scratch 2.0 Sams Teach Yourself in 24 Hours. Sams
Publishing, 2014.

[15] S. McManus, Scratch Programming in Easy Steps. In Easy Steps
Limited, 2013.

[16] M. Marji, Learn to Program with Scratch: A Visual Introduction to
Programming with Games, Art, Science, and Math. No Starch Press,
Inc., 2014.

[17] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by Choice: Urban Youth Learning Programming with
Scratch,” in 39th SIGCSE Technical Symposium on Computer Science
Education, ser. SIGCSE ’08. ACM, 2008, pp. 367–371.

[18] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney, B. U. Gelman,
C. Beckley, and A. Johri, “Uncovering trajectories of informal learning
in large online communities of creators,” in Second ACM Conference on
Learning @ Scale. ACM, 2015, pp. 131–140.

[19] D. A. Fields, M. Giang, and Y. Kafai, “Programming in the wild: Trends
in youth computational participation in the online Scratch community,” in
Proceedings of the 9th Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’14. ACM, 2014, pp. 2–11.

[20] S. Dasgupta, W. Hale, A. Monroy-Hernández, and B. M. Hill, “Remixing
as a pathway to Computational Thinking,” in 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing, ser. CSCW
’16. New York, NY, USA: ACM, 2016, pp. 1438–1449. [Online].
Available: http://doi.acm.org/10.1145/2818048.2819984

[21] L. Seiter and B. Foreman, “Modeling the learning progressions of
computational thinking of primary grade students,” in Ninth Annual
International ACM Conference on International Computing Education
Research, ser. ICER ’13. New York, NY, USA: ACM, 2013, pp. 59–66.

[22] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[23] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful”
considered harmful: Patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

37

Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2021 at 10:04:14 UTC from IEEE Xplore. Restrictions apply.

