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Executive Summary

Amsterdam Airport Schiphol (AAS) is limited due to noise caused to the surrounding popula-

tion. If the airport wants to retain its top five position of major European hubs, it will have to

increase its capacity. In a crowded country like the Netherlands, this is challenging. In order to

cope with future growth, research projects focus on more sustainable operations. Bringing down

noise and fuel emissions leaves room for an increasing number of operations before the maximum

capacity of AAS is reached. Currently, only one Standard Instrument Departure (SID) track

and one flight procedure is used per runway departure fix combination. In contrast to tailored

arrivals, the potential benefit of tailored departures has been left relatively undiscovered. This

research focuses on the potential benefit of tailored SID and profile allocation as formulated by

the following research objective:

Quantify the potential benefit of tailored SID and profile allocation for Amsterdam Airport Schiphol

by developing a model that is capable of simulating departure trajectories per runway departure

fix and optimize the overall allocation of departing aircraft for noise and fuel consumption.

The aim of this research is to achieve significant noise reduction and fuel savings for departures at

AAS. In order to investigate the potential benefit of tailored SID and profile allocation, tailored

trajectories need to be available first. For this research, trajectory optimization is used to define

the tailored trajectories. Subsequently, these trajectories are used to study the allocation prob-

lem by means of mixed integer linear programming (MILP).

This research includes the development of two models. First, the trajectory optimization model

is developed to compute a set of tailored trajectories dependent of aircraft type, take-off weight

and flight procedure. The trajectory optimization model uses a parametrization technique to

simulate departure trajectories. Subsequently, a multi-objective genetic algorithm is used in

combination with an aircraft performance model and integrated noise model to perform a multi-

objective trajectory optimization. The resulting set of tailored trajectories serves as input data

for the second model. The second model is the allocation model. This model is developed to

compute the optimal allocation of flights to one of the simulated trajectories in order to optimize

for fuel, noise or a trade-off between these two objectives. By writing the problem down into a
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linear format the allocation problem is solved. The final results consist of the total fuel burned

and the number of people or houses within the noise contour. Additionally, the optimal alloca-

tion of flights and populated areas located within the noise contour are graphically represented

to the user.

A case study is performed to demonstrate the workings of the model when applied to a real case

scenario. The case scenario considered, is the 09 runway ARNEM departure fix combination.

Two different aircraft types with three different take-off weights are taken into account, resulting

in six different flight categories. For every flight category a set of tailored trajectories for both

NADP-1 and NADP-2 flight procedures is simulated using the trajectory optimization model.

Ground track parameters that define the actual ground track serve as input to the trajectory

optimization model to simulate current trajectories. It is assumed that current departures make

use of a NADP-1 flight procedure. Subsequently, the allocation model is used to calculate the

impact of current operations with respect to fuel and noise.

Historical flight data is used as input for the case study. Every flight from the flight schedule

is represented by one of the six flight categories. Subsequently, the allocation model is used to

compute the optimal allocation of flights to one of the simulated tailored trajectories in order

to optimize for fuel and noise. By adjusting weighting factor α (0 ≤ α ≤ 1) different weightings

are applied to the individual objectives. This allows for investigating different trade-off’s. By

comparing current departure procedures to results of the allocation model, the potential benefit

of tailored SID and profile allocation is investigated. The results of the model are presented on

a Pareto front, indicating the potential benefit with respect to the impact of current departure

operations.

Four different noise criteria were evaluated. By comparing results of the four different noise cri-

teria, the optimal range for weighting factor α was determined to be 0.14 ≤ α ≤ 0.66. Applying

the novel approach for the optimal range of α results in solutions that show potential fuel savings

and noise reduction for all four noise criteria. The first criteria considers the number of houses

located within a noise contour of 58 dB Lden and shows potential fuel savings of 6.1% and of

44.2% noise savings. The second criteria considers the number of people located within a noise

contour of 48 dB Lden and shows potential fuel savings of 7.1% and of 48.5% noise savings. The

third criteria considers the number of houses located within a noise contour of 48 dB Lnight and

shows potential fuel savings of 3.6% and of 78.8% noise savings. The fourth criteria considers the

number of people located within a noise contour of 40 dB Lnight and sows potential fuel savings

of 5% and of 64.2% noise savings.

Based on these results it is concluded that the potential benefit of tailored SID and profile

allocation can be quantified by means of the proposed methodology. Optimizing the allocation for

fuel results in assigning all departures to the most fuel efficient trajectories available. Optimizing

the allocation for noise results in a distribution of flights over the different tailored trajectories
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available. Furthermore, it is concluded that potential fuel savings are within a plausible range.

On the other hand, results show extreme values for potential noise savings. It is assumed that

these extreme values can be explained by the fact that an extreme scenario is considered for the

case study. Not only the runway departure fix combination is sensitive in terms of noise, but the

B744 aircraft model representing all wide body aircraft is dominant in terms of noise as well.

The fact that an extreme scenario is being considered probably results in an extreme outcome

for noise. Furthermore, it is likely that some of the grid points reach cumulative noise levels that

are very close, but just below the opposed noise limits. This modelling behaviour is related to

the optimization characteristics of MILP.
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1
Introduction

Statistics show it is likely that air travel demand is going to increase in the upcoming years. For

instance, a publication of the Airport Council International (ACI) presented an annual growth

of 5.7% in revenue passenger kilometer (RPK) [7]. Moreover, according to a forecasting report of

the International Air Transportation Association (IATA) airlines expect to see a 31% increase in

passenger numbers between 2012 and 2017 [8]. With almost 450,000 aircraft movements a year

Amsterdam Airport Schiphol (AAS) is getting near its maximum capacity of 510,000 movements

in 2020 [9]. Currently, the airport is one of the five major hubs in Europe. But if AAS wants to

hold on to its top five position it will have to make sure that it can deal with a growing number

of passengers in the near future. The airport will have to increase its capacity so that it can cope

with the growth of its industry.

Improving the airport capacity is easier said than done. The Netherlands has a high population

density and the area in the vicinity of AAS is getting more and more crowded, resulting in a

growing number of noise complaints. Secondly, sustainable awareness is rising among people

which makes aircraft emissions a critical point of discussion in politics. Strict regulations for

aircraft noise and emissions have always been present, but a continuously growing pressure from

political and social parties forces airports to bring down noise production and aircraft emissions

even further. In addition, the airlines have their own interest by aiming for more sustainable

operations to lower fuel costs as they struggle with tough competition. The many stakeholders

involved have different and often conflicting interests which makes it challenging for AAS to

increase its capacity.

In order to cope with future growth, a tremendous amount of research projects is initiated by

AAS in cooperation with several research institutes all over the world [10]. One of these insti-
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tutes is the Delft University of Technology, where this research is executed. The research projects

involve a large variety of targets and goals, but have one thing in common: all research projects

anticipate a growth in aviation and an increasing number of sustainable operations.

The aim of this research is to quantify the potential benefit of tailored departure tracks and

profile allocation for AAS. By means of a trajectory optimization model a set of alternative,

tailored trajectories are defined dependent on aircraft type and take off weight. Also the pos-

sibility of flying an alternative departure procedure is taken into account. Subsequently, the set

of tailored departure trajectories serves as input for a second optimization model. An allocation

model is developed and used to determine the optimal allocation of aircraft departures to the

set of tailored departure trajectories. Positive results have lead to promising recommendations

for future research on this topic.

A clear report structure is used to describe the full research project. The first two chapters are

used to introduce the research objective and familiarize the reader with the research context.

Therefore, the project plan is presented in chapter 2 of this report. This chapter starts with

a clear problem description to clarify the motivation for this research. Subsequently, chapter

3 provides background information on AAS. After the research objective and its context are

introduced, the main research of this project is discussed. In order to achieve the research goal

two models are developed. The first model is a trajectory optimization model. The development

and working principles of this model are discussed in chapter 4. The trajectory model computes

a set of tailored trajectories which serves as input for the second model. The second model

computes the optimal allocation of departing aircraft to the available trajectories as generated

by the trajectory model. The development and working principles of the allocation model are

explained in chapter 5. Subsequently, a case study is carried out to test the model. In chapter 6

several noise criteria are evaluated. Chapter 7 elaborates on the verification and validation of the

model. Finally, the conclusions, recommendations and future research proposals are presented

in chapter 8 of this report.
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2
Project Plan

In order to gain better understanding of the research objective this chapter starts by giving a clear

explanation of the motivation for this research in section 2.1. With the problem definition in mind

the research objective is formulated and presented in section 2.2 of this chapter. Subsequently,

section 2.3 will elaborate on the research methodology. In this section a project plan is presented

that is used to structurally work towards the final goal of this research. Finally, this chapter will

close with a short conclusion in section 2.4.

2.1 Problem Definition

2.1.1 Introduction to Aircraft Departures at AAS

AAS counts six different runways. Five of the six runways are available for commercial aviation.

The sixth runway is located in the east of AAS (Oostbaan) and is mainly used for general avi-

ation. For the year 2015 over 225.000 aircraft departed from AAS. What runway is used for

aircraft departures depends on multiple factors, mostly related to weather conditions and noise.

AAS uses a preference list that indicates which runway configuration is most preferable consider-

ing the situation at hand. After take off an aircraft is guided to one of the five departure sectors

in Dutch airspace. The five exits are marked by so called departure fixes. From a departure fix

the aircraft enters en route airspace and continues its flight in the desired direction towards its

final destination.

A Standard Instrument Departure (SID) is a prescribed set of instructions that defines the

ground track to be flown from take-off towards a certain departure fix. Meanwhile, the aircraft
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gains height by flying a departure profile, therefore defining the vertical component of a depar-

ture trajectory. A departure procedure prescribes thrust versus altitude and speed settings in

order to reach a certain altitude on time and specifies when to accelerate towards the desired

climb or cruise speed. Although aircraft follow the same procedure, the vertical profile of their

trajectories always differs due to differences in aircraft type, take-off weight and atmospheric

circumstances. A Noise Abatement Departure Procedure (NADP) is a departure procedure that

aims to minimize noise in the vicinity of the airport. Currently there are two different NADP’s

available. NADP-1 intends to alleviate the noise impact of departing aircraft on communities

close to the airport by first climbing towards an altitude of 3000 ft. before it starts accelerating

towards its en route climb speed. NADP-2 intends to alleviate the noise impact to communities

located further away from the airport by giving priority to accelerating towards the en route

climb speed before it climbs towards the desired departure fix altitude.

Looking at current departure operations at AAS, only one SID per runway and departure fix way

point is used, as well as only one departure procedure. This means that, independent of aircraft

type and weight, each departure flight follows the same ground track and climb procedures in

order to leave Dutch air space. One of the reasons to prescribe the SID and departure procedure

is because of safety regulations and regulating the complexity of the airspace for air traffic control

(ATC). Looking at current arrival procedures research already lead to the application of tailored

arrivals, especially in combination with continuous descent approaches (CDA). This means that,

dependent of aircraft type and weight, aircraft approaches at AAS follow tailored arrival routes.

In chapter 3 the airport operations of AAS will be discussed in more detail.

2.1.2 Noise: A Limiting Factor

AAS is limited in terms of noise caused to the surrounding population. In order to keep air-

craft noise to a minimum, authorities have restricted the number of people and houses allowed

to experience noise by 48 and 58 dB Lden respectively.1 In the forecasting process, authorities

distinguish between day-, evening- and night-time operations. The noise and emissions produced

by the aircraft movements around AAS are monitored on a yearly basis. Every year a forecast for

the expected amount of noise is done to manage expectations from people living in the vicinity

of AAS.

The restrictions to noise and emissions affect the capacity of AAS. In order to comply with the

regulations for noise, the number of aircraft movements is limited. It is not possible to increase

the number of aircraft operations at AAS, and therefore increase its capacity, unless the current

operations are able to be more sustainable and noise efficient. Air travel demand will grow but

with a continuously growing pressure from political and social parties to bring down noise levels,

it will be challenging to keep the capacity of AAS large enough to handle this growth. Therefore,

AAS would benefit from measures that make airport operations more sustainable by improving

1Lden is a metric for noise that takes the impact of day, evening and night flights into account
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the current noise impact and emissions in the vicinity of the airport.

2.1.3 Proposed Solutions

Reducing noise and emissions in the vicinity of the airport can be a way for AAS to comply with

future regulations and leave room to increase its capacity. Several noise abatement measures are

being researched in order to achieve this goal. One way is by approaching the source of the noise.

Research and development teams of aircraft manufacturers work on new technologies to design

more sustainable engines and improve the aerodynamics of aircraft. Another noise abatement

measure is by protecting the receiver from noise. For aviation this is an infeasible way to reduce

noise since one cannot expect people to wear earplugs 24/7 when living in the vicinity of the

airport.

Lastly, optimization studies work on more sustainable trajectories and an improved allocation

of flights to already existing routes. The Air Transport and Operations (ATO) department of

the faculty of Aerospace Engineering at the Delft University of Technology specializes in under-

standing, modelling and improving the air transport performance in capacity, cost effectiveness,

sustainability and safety. This research focusses on the final option to make current operations

more sustainable and alleviate noise in the vicinity of the airport. Research on tailored arrivals

has resulted in significant noise reduction and fuel savings during the final phase of flight. For

departures, research has been done on trajectory optimization of single events or optimal alloca-

tion to already existing routes. This leaves room to investigate the potential benefit of allocating

aircraft departures to a tailored SID and profile, depending on aircraft type, weight and time of

the day.

2.2 Research Objective Statement

Based on an introduction of the topic and a clear description of the problem definition in the

previous section, the research objective is formulated as follows:

Quantify the potential benefit of tailored SID and profile allocation for Amsterdam Airport

Schiphol by developing a model that is capable of simulating departure trajectories per runway

departure fix and optimize the overall allocation of departing aircraft for noise and fuel

consumption.

The main reason to execute this research is to achieve significant noise reduction and fuel savings.

These two elements are the main drivers for research on tailored arrivals as well, resulting in the

CDA. An optimal allocation of aircraft departures might decrease the number of people annoyed

due to aircraft noise while also resulting in fuel savings for the airlines. It should be noted that

the term ’tailored’ is used to emphasize that the SID’s are designed to be dependent of aircraft

type and weight.
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The use of more sustainable flight procedures reduces the yearly noise and emissions of aircraft

movements at AAS. This could also be used for additional airport operations before the limit-

ations on noise and emissions are reached. As a result the airport will be able to handle more

passengers. Therefore, the results of this study can contribute in balancing noise, fuel consump-

tions and airport capacity of AAS in the near future. Overall the findings of this research aim

to contribute to research on a more sustainable and environmental friendly way of performing

air transport operations at AAS.

Regardless of best practices, the level of detail of the project will have to be limited in order

to fit it in a fixed time span of 9 months. To limit the size of the project, the effects of wind

are not included in the scope of this project. Capacity and delay dependant constraints are not

taken into account. Departure flights for cargo traffic and general aviation are also left out of the

project scope, because the number of movements is relatively small with respect to commercial

traffic.

2.2.1 Sub-goals

This research investigates the potential benefit of tailored SID and profile allocation. In order

to achieve the research objective four sub goals are defined. The sub-goals support in achieving

the main research objective and are listed below.

• Define a limited number of departure trajectories dependent on aircraft type and take-off

weight per runway and departure fix2

• Distinct a limited number of departure procedures

• Calculate the noise of each aircraft type, weight, SID and profile combination

• Optimize the overall allocation for the following objectives:

– Minimize overall noise

– Minimize fuel consumption

– Minimum noise vs. fuel

2.2.2 Hypothesis

The main objective of this research is to quantify the potential benefit of tailored SID and profile

allocation for AAS. Before it is possible to investigate the potential benefit of the allocation prob-

lem, the tailored trajectories need to be available first. Unless the trajectories can be defined

by doing reasonable assumptions or gathered from existing data, trajectory optimization will

be required to define the tailored trajectories for this research. These trajectories can then be

used for the allocation problem. Therefore, it is expected that two research topics need to be

combined in order to achieve the main objective of this research, namely trajectory optimization

and trajectory allocation.

2tailored SID
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Looking at the basic concept of tailored SID and profile allocation it is expected that positive

results will be achieved on fuel savings. Although the results are expected to be positive, the

outcome of the model will probably show limited fuel savings of around 5% compared to cur-

rent departure operations at AAS. The model is expected to provide an optimal solution for

fuel savings, but this solution is expected not to be compatible with noise restrictions. Chapter

3 provides more information on legal obligation and restrictions that limit the operations of AAS.

Also for noise it is expected that the basic concept of tailored SID and profile allocation will lead

to positive results in terms of noise savings. The potential benefit for noise is expected to be

a lot higher with respect to fuel savings, probably around 10% compared to current departure

operations at AAS. Maximum savings for noise are achieved at the cost of fuel and vice versa. The

use of a trajectory optimization model creates the opportunity to design alternative routes that

avoid populated areas in the vicinity of the airport. Taking into account that time dependencies,

like capacity and delay constraints, are being left out of the scope leaves a lot of potential to

improve the noise impact of aircraft departures.

2.3 Research Methodology

The project is carried out at the faculty of Aerospace Engineering of the Delft University of Tech-

nology. The research is carried out independently of stakeholders like AAS, Luchtverkeersleiding

Nederland (LvNL) or any airline operating at AAS. Nevertheless, information about the airport

operations at AAS are conducted by means of interviews with employees of Schiphol Group.

In addition, a literature study is conducted to get familiar with relevant topics of the research

context. All the information about the research context forms a solid basis to develop a model

that is capable of defining a set of tailored SID per runway departure fix and optimize the over-

all allocation of departing aircraft for noise and fuel consumption. A complete overview of the

research methodology can be found in appendix A of this report.

2.3.1 Modelling Framework

A schematic representation of the proposed method in the form of a modelling framework is

given by figure 2.1. It shows that the model consists of two sub-models. The first sub-model

generates input data for the second sub-model. Since usually research focus either on trajectory

optimization or allocation problems, combining these two techniques in one research project is

rather unique and an addition to the body of knowledge, especially for the topic on noise abate-

ment departure trajectories. Both sub-models are discussed below.

The first model is the trajectory optimization model. This model is used to compute tailored SID

and profiles depending on a specific flight category. A flight category is defined by the aircraft

type and take-off weight of a specific flight. The flight trajectory is simulated by a combination

of ground track and profile segments. The segments are defined by parameters that form the
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decision variables of the optimization model. By means of a multi objective genetic algorithm

multiple solutions are computed and presented by a so-called Pareto optimal front. From the

Pareto optimal front several solutions for a specific flight category are chosen. In this way the

tailored trajectories are computed and used as input for the second sub model. The first sub

model is developed using Matlab version 15b in order to achieve the first three sub goals of the

main research objective.

Figure 2.1: Block diagram of the modelling framework, giving a general overview of the model

The second sub-model is the allocation model, which is used to optimally allocate the aircraft to

one of the simulated tailored departure tracks. The allocation model aims to optimize the overall

allocation with respect to noise and fuel, as indicated in section 2.2.1. The model makes use of a

data set generated by the trajectory optimization model to allocate the specific aircraft categories

to the most suitable tailored departure trajectories available. This means that the outcome of

the allocation model depends on the performance of the trajectory optimization model as well.

Again, Matlab will be used to develop the model in order to achieve the final sub goal of the

main research objective statement.

It should be noted that figure 2.1 only gives a general overview of the overall model. Both the

trajectory optimization model and the allocation model are explained in more detail in chapter
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4 and chapter 5 respectively. These chapters will elaborate on the modelling frameworks of each

sub-models individually.

2.3.2 Methodologies

The overview of the modelling framework showed that the overall model consists of two sub-

models. These models use different methodologies in order to achieve their individual goals. The

goal of the first model is to generate a set of tailored trajectories dependent on aircraft type and

take-off weight. Therefore, its main task is to perform a trajectory optimization for the different

flight categories involved. Several trajectory optimization studies have been done. Chircop et

al. used a generic framework for multi-parameter optimization of flight trajectories and Hebly

and Visser developed a departure profile optimization model based on a previous tool called

NOISHHH [11] [12].

For this study a multi objective genetic algorithm in the Matlab optimization toolbox is used

to compute the tailored departure trajectories. The tailored trajectories are optimized for fuel

and noise. Fuel flow models and an application of the Integrated Noise Model (INM) are used to

calculate the two objectives [13]. The computation methods for noise, fuel and trajectory optim-

ization are brought together in the first model to realize the required set of tailored departure

trajectories. The methodologies used by the first model are discussed in more detail in chapter 4.

The goal of the second model is to optimally allocate departure flights to one of the tailored

departure tracks. The allocation problem can be translated into a mathematical approximation

that aims to minimize an objective function while it is subject to several constraints. For these

kind of optimization problems the concept of Mixed Integer Linear Programming (MILP) is

frequently used. This method makes use of integer and binary states to identify allocation pos-

sibilities. MILP has several methods available to determine an optimal solution. For example,

the combination of First Come First Serve (FCFS) with a local Branch and Bound (BB) has

proven to be a promising method to determine the optimal solution within reasonable compu-

tation times [14]. The concept of MILP is also used by the second model and discussed in more

detail in chapter 5.

2.4 Conclusion

In this chapter the main research objected was presented to be:

Quantify the potential benefit of tailored SID and profile allocation for Amsterdam Airport Schiphol

by developing a model that is capable of simulating departure trajectories per runway departure

fix and optimize the overall allocation of departing aircraft for noise and fuel consumption.

The main reason to execute this research is to achieve significant noise reduction and fuel savings.
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These two elements are the main drivers to investigate the potential benefit of tailored departures.

Where research on tailored arrivals already lead to the practical implementation of CDA-s, the

potential benefit of tailored departures has been left relatively undiscovered yet. The proposed

method includes the development of two models. The first model is used to compute tailored

SID and profiles depending of aircraft type and take-off weight. This model is used to generate

input data for the second model. The second sub-model is the allocation model and used to

allocate aircraft departures to one of the simulated tailored departure tracks with the goal to

optimize for fuel, noise or a trade-off between these two objectives. The research methodologies

give a general overview of the different techniques used to develop the models. Before entering

the main research some background information on the airport operations of AAS is provided in

the next chapter.
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3
Amsterdam Airport Schiphol

Since this study is applied to AAS it is important to be more familiar with the airport and

some of its departure operation procedures. This chapter provides the required background

knowledge on the airport and its day-to-day operations. The chapter will start with section 3.1.

This section gives a description of the AAS runway lay out and a brief explanation of how the

different runways are used. In section 3.2 the current departure routes at AAS are discussed.

Subsequently, section 3.3 elaborates on different departure procedures. Finally, in section 3.4 the

legal obligations that are imposed on AAS are discussed.

3.1 Airport Lay Out and Runway Usage

AAS makes use of six different runways. Five of these runways are used for commercial aviation.

These are the ’Polderbaan’, the ’Zwanenburgbaan’, the ’Kaagbaan’, the ’Aalsmeerbaan’and the

’Buitenveldertbaan’. The sixth runway is the ’Oostbaan’ which is mainly used for general avi-

ation and sometimes for small commercial aircraft due to the limited length of the runway. Since

most research focus on commercial aviation this runway is usually left out of the scope. The

reason for this is because the noise impact caused by the general aviation operation can be neg-

lected compared to that of commercial aviation operations.

Figure 3.1 shows the runway configuration of AAS for landing and take-off operations. Every

combination of runway and direction has been given a code, as can be seen in the figure as

well. The numbers in the code represent the runway direction with respect to the magnetic

north. Since three of the five runway are perfectly aligned (’Polderbaan’, ’Zwanenburgbaan’ and

’Aalsmeerbaan’) an extra letter is added to the code to indicate the most left, the most right

and the center runway from the pilot’s point of view. Finally, it should be noticed that two of
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the six runways can only be used in one direction due to populated areas in the vicinity of the

airport. The noise sensitive areas are indicated in figure 3.1 by means of a red cross.

Figure 3.1: Runway lay out of Amsterdam Schiphol airport [1]

Although there are five runways available for commercial aviation, they are never operational

at the same time. The main reason for this is because air traffic control always prefers to use

the runway combination that imposes the least amount of noise impact on local communities.

Secondly, the weather is a dominant factor in determining what runway combination is suitable

for use. This has to do with the fact that there should be a minimum amount of cross and tail

wind present in order for aircraft to take off and land safely. Another reason is that simultan-

eous operations may result in crossing flight paths. These runway combinations are not allowed

because of safety reasons. Finally, once in a while the runways require maintenance. In that case

the runway is closed and not available for use.

It is already mentioned that AAS is an important hub in Europe. Most of the passengers are

transfer passengers. In order to make travelling via AAS as comfortable as possible the airport

tries to bring down the transfer times to a minimum. This results in peak hours for in- and

outbound traffic during the day. Therefore, plenty of aircraft arrive within a small time slot,

subsequently all passengers transfer to their connecting flights and all aircraft take-off within a

relatively short amount of time again. During these peak hours the capacity needs to be high

enough to handle all air traffic. The maximum airport capacity depends on the number and

combination of runways available which, in turn, depends on the limiting factors as discussed
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before. In between the peak hours it is relatively quiet at the airport and more easy to realize

the required capacity. Figure 3.2 shows an example of runway usage during peak and off hours

at AAS.

Figure 3.2: Runway usage for different scenario’s at Schiphol airport [2]

Concluding, the available airport capacity is mainly determined by weather conditions and safety

regulations that avoid interference between simultaneous operations. These factors exclude the

use of certain combinations of runways. The runway usage is determined by the required airport

capacity at a certain time during the day. High priority goes to runway combinations that avoid

noise sensitive areas in the vicinity of the airport. In order to cope with these constraints AAS

makes use of a preference list. The preference list ranks combinations of runways that are most

preferred by air traffic control. The list is composed with the aim to avoid noise sensitive areas

in the first place. Depending on the weather conditions one goes further down the list [15].

Table 3.1 shows the preference list used by AAS for start (S) and landing (L) procedures during

day-time operations.

Because AAS distinguishes different periods during the day, a different preference list is used for

operations during the night. Due to noise restrictions large penalties are imposed on night time

operations. Only a few fixed arrival and departure routes are allowed during the night. The

preference list for operations at night time is shown in table 3.2.

3.2 Departure Routes

The previous section explained that only a few combinations of runway directions can be opera-

tional at the same time. Still aircraft arrive from and leave in all directions. The different origins

and destinations of flights result in a lot of arrival and departure routes through Dutch air space.

In order to realize smooth and safe operations all aircraft are directed towards and from the

airport in an organized way. Inbound flights arrive via one of the three Initial Approach Fixes

(IAF) and outbound flights depart via one of the five outbound sectors. All outbound flights
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Table 3.1: Preference list for start (S) and landing (L) between 6:00 - 23:00 in 2015 [1]

Preference L1 L2 S1 S2 Visibility
1 06 (36R) 36L (36C) Good:
2 18R (18C) 24 (18L) visibility > 5000 m
3 06 (36R) 09 (36L) cloud base > 1000 ft
4 27 (18R) 24 (18L) within UDP

5a 36R (36C) 36L (36C) Good:
5b 18R (18C) 18L (18C) visibility > 5000 m

cloud base > 1000 ft

6a 36R (36C) 36L (18C) Good or marginal:
6b 18R (18C) 18L (18C) visibility > 1500 m

cloud base > 300 ft

Table 3.2: Preference list for start (S) and landing (L) between 23:00 - 6:00 in 2015 [1]

Preference L1 S1
1 06 36L
2 18R 24
3 36C 36L
4 18R 18C

are guided to one of these sectors. Each outbound sector is marked by so called departure fixes.

From a departure fix the aircraft leaves the controlled Dutch air space and continues its flight in

the desired direction towards its final destination. A departure or arrival route define the ground

track of a trajectories on the horizontal plane. Figure 3.3 shows the traffic distribution for AAS

based on the origin and destination of flights. Since aircraft arrivals are out of scope this section

only deals with current departure operations at AAS.

A SID is a fixed routes that guides aircraft from take off at AAS towards a departure fix. Ap-

pendix D shows an example of the SID that originate from runway 09. What SID is used depends

on the runway configuration and the aircraft’s destination. Logically, each runway should have

five SID’s: one for each exit sector in Dutch air space. However, a SID might not always be

available due to the risk of interfering with other flights that operate at the same time. Based

on the runway configuration another, more appropriate SID is chosen to direct the outbound

flights to their exit sector. Furthermore, it might happen that the amount of departure flights

exceeds the capacity of a SID. In that case a second SID is required. All SID are published by

the Aeronautical Information Publication (AIP) [6].

Aircraft that follow a SID can make use of Area Navigation (RNAV). This allows aircraft to

follow a predefined route very precisely by using ground based beacons and Global Navigation
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Figure 3.3: Traffic distribution for in- and outbound flights [1]

Satellite Systems (GNSS). RNAV routes consist of fly-by way points that are connected by Track

to a Fix (TF) legs and make use of Radius to a Fix (RF) legs in turns. A schematic representation

of TF and RF legs is given by figure 3.4.

3.3 Departure Procedures

The departure routes discussed in the previous section define the aircraft’s flight path in the

horizontal plane. The flight profile defines the flight path of a trajectory in the vertical plane.

A departure procedure prescribes thrust versus altitude and speed settings in order to reach

a certain altitude on time and specifies when to accelerate towards a desired climb or cruise

speed. Although aircraft can follow the same procedure, the vertical profile of their trajectories

always differs due to differences in aircraft type, take-off weight and atmospheric circumstances.

The Federal Aviation Administration (FAA) and the International Civil Aviation Organization

(ICAO) defined noise abatement flight procedures for airports, operators and ATC to manage

the air traffic of arrival and departure flights in the US and Europe respectively. Nowadays, these

procedures are applied all over the world. In general, there are four noise abatement departure

procedures. In 1993, the FAA defined the noise abatement departure procedures 1 and 2, which

are denoted as NADP-1 and NADP-2 respectively [16]. In the same year, ICAO promulgated the

procedures in its reports, but referred to it as ICAO-A and ICAO-B procedures. For consistency

reasons one refers to the departure procedures as NADP-1 and NADP-2 from now on. Both

procedures are discussed below.
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Figure 3.4: Schemetic representation of Track to a Fix (TF) and Radius to a Fix (RF) legs [3]

3.3.1 NADP-1 Procedures

NADP-1 is defined as a close-in procedure because it intends to alleviate the noise impact of

departing aircraft on communities close to the airport [17]. Therefore, the procedure involves a

thrust reduction at or above an altitude of 3000 ft. The take-off configuration for flaps and slats

is maintained until this altitude is reached. Once the prescribed altitude is reached, flaps/slats

are retracted on schedule and the aircraft is accelerated while maintaining a positive rate of climb

to reach en-route climbing speed. Figure 3.5 shows a schematic representation of the NADP-1

procedure.

Figure 3.5: NADP-1 procedure [3]
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3.3.2 NADP-2 Procedures

NADP-2 is defined as a distant procedure because it intends to alleviate the noise impact to

communities located further away from the airport. Therefore, the procedure involves flap and

slat retraction at 800 ft. The flaps and slats are retracted according to schedule. As the flaps/slats

are retracted, the aircraft reduces thrust at a point along the path that ensures satisfactory

acceleration performance. Subsequently, the aircraft starts accelerating while maintaining a

positive rate of climb to reach the desired climb speed at an altitude of 3000 ft. Once this

altitude is reached the aircraft transmits to en-route climb speed. Figure 3.6 shows a schematic

representation of the NADP-2 procedure. The close-in and distant procedures are described in

more detail by ICAO [3].

Figure 3.6: NADP-2 procedure [3]

3.4 Restrictions and Obligations

The previous sections explained how AAS is organized and how the air space around it is filled

with multiple arrival and departure routes. Naturally, all these trajectories increase the com-

plexity of Dutch air space and simultaneous operations make it challenging for ATC to guarantee

safe operations. Therefore, the design of new SID is limited to several constraints. Secondly,

AAS is limited to noise. In order to sustain liveability in the vicinity of the airport AAS needs

to comply with a number of obligations for noise. Both the operational constraints and legal

obligations for noise are discussed in this section.

3.4.1 Operational Constraints

Due to safety reasons all trajectories are subjected to operational constraints. In case of design-

ing a new SID it is necessary to take these constraints into account. First of all, it is important
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that aircraft keep sufficient distance to nearby obstacles when taking off. This is why obstacle

clearance is a primary safety constraint for departure trajectories. In case of AAS, it is not

necessary to account for particular obstacles that might form a risk for aircraft departure. ICAO

Doc 8168 provides guidelines to ensure that obstacle clearance is sufficient for every flight from

a given runway [3]. This comes down to the fact that aircraft should maintain runway direction

until a minimum turn height is reached. It follows that aircraft are not allowed to turn before

an altitude of 120 m. is reached [3].

Secondly, assuming that commercial aviation aims for comfortable flights aircraft trajectories are

subject to a maximum bank angle in turn phase. Given a certain air speed and turn radius the

aircraft will need a specific bank angle to stay on track. Aircraft that follow a turn with a small

turn radius in combination with high air speeds will require a large bank angle. This might result

in a very steep turn with potential g-forces applied on passengers and crew. Obviously, this is

not desirable in commercial aviation. Therefore, a maximum bank angle is applied on current

departure operations. The maximum bank angle increases stepwise from 15◦ to 25◦ between 125

m. and 915 m. [18].

A third operational constraint is imposed to avoid aircraft collisions between in- and outbound

flights in the terminal control area of AAS. Aircraft departures are subject to altitude restrictions

in order to keep in- and outbound flights on separate flight altitudes. The current procedure for

outbound flights includes a climb until an altitude of 6000 ft. is reached [6]. This altitude is

maintained until the outbound flight encounters the borders of Dutch airspace. From there it is

allowed to continue climb phase towards cruise altitudes. The altitude restrictions are primarily

imposed because of safety reasons. Secondly, it results in a more structured division of in- and

outbound flights which makes it easier for ATC to maintain control over Dutch air space.

3.4.2 Legal Obligations

The problem of noise involves many stakeholders like the government, airlines, municipalities

and other non-governmental organizations (NGO-s). Since Januari 2015 the ’Omgevingsraad

Schiphol’ is responsible for advising the government on noise related issues at AAS [19]. Every

year the noise restrictions are evaluated and redetermined. Negotiations between all stakeholders

result in a set of legal obligations for noise that AAS needs to comply with on a yearly basis.

AAS receives a penalty in the from of a fee or a restriction on the number of slots in case it is

not able to comply with the legal obligations. A slot contains the right for an airline to make

use of the airport once, that is one landing and one departure from AAS.

To guarantee that AAS is able to comply with the obligations Schiphol Group performs a forecast

on the number of operations for the upcoming year [1]. The forecast is based on statistical data

and probability analysis. Based on historical flight data and statistics on weather conditions a

model computes the probability of several air traffic scenario’s in combination with certain run-
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way configurations. Table 3.3 shows the noise criteria and prospects for the year 2015. As can be

seen from the table noise levels are expressed in dB Lden and dB Lnight. These metrics present

the average noise load for a 24 hours period or an 8 hours period during night respectively. den

stands for Day, Evening, Night. For the Lden calculation, the noise impact is multiplied by a

penalty factor of
√

10 and 10 for aircraft movements during the evening (19:00 - 23:00) and

during the night (23:00 - 07:00) respectively [20].

Table 3.3: AAS noise criteria for 2015 [1]

Aspect Noise Criteria Prospect for 2015
Number of aircraft
movements

Max. of 510.000 aircraft move-
ments on a yearly basis of which
only 32.000 aircraft movements
take place between 23:00 and
6:00

450.178 aircraft movements, of
which 29.619 operations between
23:00 - 6:00

Noise - Max. 11.900 homes experience
noise of 58 dB(A) Lden or more

- 8.600 homes are expected to ex-
perience noise of 58 dB(A) Lden
or more

- Max. 180.500 inhabitants seri-
ously affect by noise of 48 dB(A)
Lden or more

- 139.500 inhabitants are expec-
ted to experience serious noise
impact of 48 dB(A) Lden or more

- Max. 11.000 homes experience
noise of 48 dB(A) Lnight or more

- 6.200 homes are expected to ex-
perience noise of 48 dB(A) Lnight
or more

- Max. 49.000 awakenings be-
cause of noise of 40 dB(A) Lnight
or more

- 17.000 expected awakenings be-
cause of noise of dB(A) Lnight or
more

The first and third noise criteria are self explaining and can be calculated by counting the num-

ber of houses within the noise contour. The second and fourth noise criteria are less straight

forward since these criteria require a standard that indicates when people are seriously affected

or awakened by aircraft noise. Research is done on people experiencing aircraft noise. Based on

statistical analyses so called dose-response relations are formulated. By means of these relations

the response is calculated in % of people based on the average noise load. Dose-response relation-

ships for highly annoyed people as a result of aircraft noise are investigated in a publication of

Miedema [21]. The dose-response relation for awakenings is also used in a publication of Hartjes

and Visser [4].

The obligations for noise will probably become more hypothetical in the near future. The runway

configuration is highly dependent on weather conditions. Since this is hard to predict and

uncontrollable it is not reasonable to punish AAS for exceeding the noise limits. It is assumed

that AAS will always aim to minimize the number of annoyed people and that it will try to avoid
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noise sensitive areas as much as possible.

3.5 Conclusion

The previous sections explained more about the functionality of AAS and its current operations.

The volume of in- and out-bound air traffic is large enough to make the terminal control area very

busy during peak hours. The current movements leave their noise print in the vicinity of AAS.

Figure 3.7 shows the expected noise contours as result of aircraft movements on an average day

in 2015. The figure clearly shows that AAS tries to avoid populated areas as much as possible.

Areas like Hoofddorp, Amstelveen and the western and south-east districts of Amsterdam still

fall within a noise contour of 48 dB and some of the areas even experience noise levels of 58 dB.

Concluding, this chapter provided enough background information to understand the complexity

of airport operations at AAS. The research context will support in understanding why several

decisions or assumptions are made during the project as described in the upcoming chapters.

Secondly, the background information supports in understanding the potential of an allocation

model that is able to optimally allocate aircraft to tailored departure trajectories. As the research

context is now clear, the next chapter will continue with the main research of this MSc. thesis

project.

Figure 3.7: Expected noise contours as result of aircraft movements on an average day in 2015 [1]
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4
Trajectory Optimization Model

Currently, the number of SID’s at AAS is limited. Every runway departure fix combination has

at least one SID. What SID’s are available for take-off depends on the daily situation. The run-

way configuration of a particular day is determined by multiple factors, like the wind direction or

runway maintenance. All SID’s are officially documented by the AIP [6]. In order to investigate

the potential benefit of tailored SID and profile allocation for AAS, alternative trajectories need

to be available first. Therefore, a trajectory optimization model is developed that is capable of

designing novel tailored SID’s dependent on aircraft type and take-off weight.

This chapter describes the development and working principles of the trajectory optimization

model. In chapter 2 the modelling framework was presented. Figure 4.1 gives a clear indication of

the position of the trajectory model with respect to the modelling framework. Section 4.1 starts

with a concept description of the trajectory optimization model. Subsequently, the methodology

used to model the departure trajectories is discussed in section 4.2. Section 4.3 elaborates on

the structure of the trajectory optimization model. In section 4.4 explains how the output data

of the trajectory model is processed into input data for the trajectory allocation model. Finally,

section 5.4 includes a short summary of this chapter.

4.1 Concept Description

The trajectory optimization model is developed with the goal to generate a set of tailored depar-

ture trajectories that can be used as input data for the allocation model. The model is developed

in such a way that it is relatively easy to adjust for different flight categories and flight profile

procedures.1 Obviously, the latter is a requirement since the research objective is to investigate

1A flight category is defined by a combination of aircraft type and take-off weight.
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Figure 4.1: Block diagram of the project approach emphasizing the trajectory optimization block

the potential benefit of tailored trajectories. Due to these generic characteristics the model allows

to scale up the research by increasing the variety of aircraft within a certain fleet. Developing

the model generically is favourable since it might benefit future research on departure trajectory

optimization. The remaining part of this section describes the requirements and any assumptions

made in developing the model.

4.1.1 Requirements

In order to ensure the functionality of the trajectory optimization model, the following require-

ments are set:

• The model is capable of performing multi objective optimization (noise vs. fuel)

• Optimized trajectories are dependant of aircraft type and take-off weight

• Trajectories are optimized per runway departure fix

• Optimized trajectories have realistic values for noise and fuel consumption

• Minimum turn height of 120 m. is taken into account

• Maximum bank angle of 25◦ in turn segments is allowed

• Maximum deviation from departure fix of 50 m. is allowed

• The outcome of the model includes at least two different tailored departure trajectories
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(noise optimal & fuel optimal)

• Computation time remains within realistic bounds

• The model can be applied to a wide variety of aircraft types, take-off weights and flight

procedures

4.1.2 Assumptions

Some assumptions are made to simplify the development of the aircraft performance model and

trajectory optimization model. The most relevant assumptions are listed below.

• The Earth is flat and non-rotating

• No wind vector present

• Aircraft flight performance can be simulated by means of an intermediate point-mass model

• The aircraft performs a coordinated flight

• Altitude restrictions are set to 2000 m (ca. 6000 ft.) in order to prevent conflicts with

arrivals

• Departure fix is placed closer to start AAS but in line with original departure fix

• Flight path angle is sufficiently small (0◦ < γ < 15◦)

• Maximum bank angle remains constant

• Aircraft weight remains constant

• Initial and final coordinates of trajectory are fixed

• Only difference between NADP-1 and NADP-2 is height at which acceleration and flap

retraction schedule are initiated

• An average household consists of three people

4.2 Trajectory Parametrization

The optimization model makes use of a parametrization technique to compute the novel tailored

trajectories [4]. A trajectory consists of two components: its ground track and vertical profile. By

applying the parametrization technique to both components a mathematical approximation of

the departure trajectory is made. This allows the model to optimize the parametrized segments

for noise and fuel. In this section parametrization of the ground track and vertical profile are

explained in more detail. Subsequently, it is explained how parametrization makes optimization

by the model possible.

4.2.1 Parametrization of the Ground Track

The trajectory model uses the concept of Track to a Fix (TF) legs and Radius to a Fix (RF)

legs in turns to define the ground track. Based on these segment types the lateral trajectory is

defined by a combination of straight leg segments and turn segments. It follows that a straight

leg segment is defined by one parameter, being length L of the straight leg. A turn segment

is defined by two parameters, being turn radius R and heading change ∆χ of the fixed radius
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turn [4]. The parameters L,R and ∆χ are the decision variables for the trajectory optimization

model. A schematic representation of the parametrized ground track and corresponding decision

variables is given by figure 4.2. By finding optimal numbers for the decision variables the model

is able to optimize the ground track of the departure trajectory. By increasing the number of

segments the flexibility of the ground track improves, resulting in an increased number of decision

variables. This allows the model to define more flexible ground tracks with improved capabilities

to avoid noise sensitive areas.

Figure 4.2: Schematic representation of the parametrized ground track and corresponding decision
variables

It should be noted that, independent of the number of segments, two decision variables always

follow from basic geometry.2 An example is given in figure 4.3. Here, a basic track is presented

consisting of two straight legs and one fixed radius turn, resulting in four decision variables to

define the ground track. Assuming that the length of the first segment L1 and the fixed radius

of the second segment R2 are known, the other two decision variables follow from equation 4.1

and 4.2.

∆χ2 = 180− tan−1(
| xf − x0 |

| yf − y0 | −R2
)− cos−1(

R2√
(| xf − x0 |)2 + (| yf − y0 | −R2)2

) (4.1)

L3 =
√

(| xf − x0 |)2 + (| yf − y0 | −R2)2 −R2
2 (4.2)

It is concluded that for a ground track that is defined by n straight legs and m radius fixed

turns, the optimized ground track can always be determined by means of (n+ 2∗m)−2 decision

variables. This reduces the number of required optimization parameters significantly which will

improve the computation time of the optimization model. In addition, equation 4.3 shows that

for a given turn radius and the airspeed known, bank angle µ is no longer required as input to the

2Assuming that the initial and final coordinates of the ground track are fixed
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Figure 4.3: Geometric calculation of two unknown ground track parameters

model [4]. It should be noted that equation 4.3 is also used to set a constraint on the minimum

turn radius by assuming a maximum bank angle µmax.

Rmin =
V 2

g0 tan(µmax)
(4.3)

4.2.2 Parametrization of the Vertical Profile

For this research two different flight procedures are distinguished, namely NADP-1 and NADP-2.

It is assumed that the only difference between the two procedures is the height at which accel-

eration and flap retraction schedule are initiated. This allows for applying the parametrization

technique to the vertical profile. Figure 4.4 shows that the vertical procedures can be divided

into four separate segments. Each segment is defined by two flight parameters being the flight

path angle γn and the thrust setting ηn, where n specifies the segment.

It should be noted that γn is a percentage of the maximum allowable flight path angle, as shown

by equation 4.4 [4]. γmax prevents the aircraft from stalling and is determined by the aircraft

performance characteristics. γmin is set to zero to prevent the aircraft from descending again. In

a similar way, ηn is a percentage of the difference between the maximum and minimum allowable

thrust, as shown by equation 4.5 [4]. The remaining flight parameters follow from the aircraft

performance model, which will be discussed in section 4.3.

γ = (γmax − γmin)γn (4.4)

T = (Tmax − Tmin)ηn + Tmin (4.5)

The following assumptions are made to parametrize the vertical profile. Therefore, each
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Figure 4.4: Schematic representation of the parametrized vertical profile for four of the five profile
segments

segment is discussed separately:

• During the first segment aircraft accelerate from V2 at take-off towards a speed of V2 + 15

kts. Therefore, γ is left as a decision variable and η = 1

• During the second segment aircraft climb at constant speed towards height h1 at which the

acceleration segment is initiated. Therefore, γ is left as a decision variable and η = 0 since

γ determines the thrust required to maintain constant airspeed. There is no acceleration

present. The value of h1 depends on what procedure is flown (NADP-1 or NADP-2).

• During the third segment aircraft accelerate towards en-route climb speed and flap retrac-

tion schedule is initiated. Both η and γ are left as decision variables.

• During the fourth segment aircraft continue to climb under constant en-route climb speed

until the final altitude is reached (altitude restriction). Therefore, γ is left as a decision

variable and η = 0 since γ determines the thrust required to maintain constant airspeed.

There is no acceleration present. Once the final altitude is reached the aircraft maintains

constant altitude until the final coordinates of the departure trajectory are reached.

• A fifth segment is added for the fixed-radius turn segments. Here, it is assumed that aircraft

climb with constant air speed. Therefore, γ is left as a decision variable and η = 0 since

γ determines the thrust required to maintain constant airspeed. There is no acceleration

present.
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The parametrization of the vertical profile results in six additional decision variables. Again,

the number of segments could be expanded. This would allow for further optimization of the

vertical profile. Since optimization of the vertical profile falls outside the scope of this research

a fixed number of decision variables is taken into account by the trajectory optimization model

for defining the vertical profile of tailored departure trajectories.

4.2.3 Sensitivity Analysis

The previous sections explained how the model computes tailored trajectories by optimizing

parameters that define the ground track and vertical profile of the trajectory. The number of

parameters of the vertical profile is fixed, as explained in section 4.2.2. The number of para-

meters of the ground track is not fixed because it is desirable that the ground track has enough

flexibility to avoid noise sensitive areas.

A sensitivity analysis is done in order to determine the number of ground segments required to

guarantee enough flexibility. Therefore, the optimization is done a couple of times. For every

simulation the ground track is expanded with one straight segment and a turn, which is equal

to adding three decision variables to the optimization model. Increasing the number of decision

variables will increase the computation time of the optimization model. The optimal number

of ground track segments is reached when the results of the optimization model do not show

significant improvements with respect to the previous optimization. As long as the results show

significant improvement, the ground track is expanded with another straight segment and a turn.

4.3 Structure of the Model

This section elaborates on the modelling framework of the trajectory optimization model. A

schematic representation of the model is given in the form of a block diagram, as shown by

figure 4.5. The framework links input, optimizer and output with each other. Use is made of the

MATLAB optimization toolbox, an accessible tool for optimization problems in MATLAB [22].

The optimizer of the model makes use of a multi objective genetic algorithm with integrated air-

craft performance model, fuel flow model and integrated noise model (INM) [23]. After receiving

the input values, the optimizer is able to compute tailored departure trajectories by optimizing

the parameters (decision variables) that define the trajectory, as explained in section 4.2. The

integrated aircraft performance model and fuel flow model allow to optimize trajectories that

are dependent of aircraft type. Subsequently, the output consists of a Pareto front with multiple

optimal solutions. In this section the input-, optimizer- and output-blocks are discussed in more

detail. The entire model is programmed in MATLAB 2015b.

For the optimizer other applications and algorithms were taken into consideration as well. After

some test runs it is concluded that the global search algorithm scores bad on computation times

and feasibility due to the fact that it only computes one of multiple solutions in a single run [24].
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Furthermore, a MATLAB application of the Natural Sorting Genetic Algorithm II (NSGA-II) is

also considered [25]. This application does not show enough variety in its results. Computation

times are reasonable and comparable to the genetic algorithm of the MATLAB optimization

toolbox.

Figure 4.5: Schematic representation of the trajectory optimization model by means of a block
diagram
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4.3.1 Input

The trajectory optimization model is developed to define tailored departure trajectories depend-

ant of aircraft type and take-off weight. The aircraft type is already taken into account by

integrating an aircraft performance model into the optimizer. The only two input parameters

left are take-off weight and flight procedure, which are selected by the user. This results in the

fact that one simulation performs an optimization for aircraft type, take-off weight and flight

procedure. In case of changing aircraft types, another aircraft performance model will need to

be integrated in the optimizer.

4.3.2 Optimizer

The trajectory model uses a genetic algorithm for the multi objective optimization. Genetic

algorithms are also called evolutionary algorithms because its working principles are inspired by

Darwin’s principle of natural evolution. Due to this affinity many biological metaphors are used.

The different building blocks of the genetic optimization process are shown by the modelling

framework in figure 4.5.

Multi Objective Optimization using a Genetic Algorithm

The optimization process starts at the integrated aircraft performance model. The aircraft model

receives input parameters from the user and an initial set of candidate solutions (population) for

the decision variables that define the trajectory. The aircraft performance model calculates the

flight path and cost values by means of the integrated noise and fuel flow model. In each itera-

tion (generation), the better solutions are selected (parents) and used to generate new solutions

(offspring). This is done by recombining information of two parents (crossover) or modifying a

parent randomly (mutation). Some of the weaker solutions are then replaced by the new off-

spring solutions [26]. The aircraft performance model calculates the flight path trajectory and

cost values for the new population again. From this point onwards the process starts to repeat

itself until the stopping criteria are met. By iteratively selecting the solutions that are better

and use them to create new candidate solutions, the population ”evolves”. The solutions become

better and better at each generation. Just like Darwin’s principles, where individuals become

better adapted to their environment through evolution [26].

Since the trajectory model optimizes for both noise and fuel consumption it is not possible to

come up with a single optimal solution. A multi objective optimization problem usually results

in the fact that optimizing for one objective comes at the cost of the other objective and vice

versa. This results in a range of optimal solutions. Therefore, the genetic algorithm is able to

search for a representative set of Pareto-optimal solutions, approximating the true Pareto front

in one single run. It holds that every optimal solution on the representative Pareto front scores

better on either one of the two objectives with respect to all the other solutions. For every

iteration the representative set approximates the true Pareto front more and more [26].
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Figure 4.5 clearly shows how the aircraft performance model, fuel flow model and noise model

are integrated in the optimizer. All three are shortly discussed below. Also a brief description

of the MATLAB optimization toolbox is given.

The Aircraft Performance Model

Based on the assumptions made in section 4.1 the equations of motion of the aircraft performance

model can be simplified. The equations of motion are given by equation 4.6 [4].

ẋ = V cos(γ) sin(χ)

ẏ = V cos(γ) cos(χ)

ż = V sin(γ)

χ̇ =
g0 tan(µ)

V

(4.6)

Where ẋ, ẏ and ż are the aircraft velocity components in x−, y− and z−direction respectively

and χ̇ is the change in heading angle.

The aircraft performance model is controlled by the control parameters. Using the parametrized

control functions as input, the system dynamics propagate forward. The control parameters for

this performance model are the flight path angle γn and throttle setting ηn, as already defined

by equation 4.4 and equation 4.5 respectively. The latter equation shows that the throttle set-

ting determines the amount of thrust used to accelerate the aircraft model while preserving the

minimum thrust. Bank angle µ is no longer a control parameter for the model, as it follows from

equation 4.3.

The acceleration is determined by using equation 4.7. At constant air speed this equation equals

zero and can be rewritten into equation 4.8 and allows for calculating the maximum flight path

angle for a given air speed. Here, the maximum thrust is a function of airspeed V and altitude

h as shown by equation 4.9. The function for maximum thrust is unique for every aircraft type

being considered and follows from the aircraft performance model. Now that γmax is known the

actual flight path angle γ follows from equation 4.4 when decision variable γn is given. Equation

4.7 can be rewritten one more time into equation 4.10 to calculate the actual thrust for a given

airspeed and a given value for decision variable γn. It should be noted that it is assumed that T

equals Tmin in order to maintain constant air speed.

a =
1

2ρ

δρ

δh
V 2 sin(γ) + g0(

T −D
W

− sin(γ)) = 0 (4.7)

γmax = sin−1(
−2ρg0(Tmax −D)

W ( δρδhV
2 − 2ρg0)

) (4.8)
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Tmax = f(M,h) (4.9)

T =
W

g0
(g0sin(γ)− 1

2ρ

δρ

δh
V 2sin(γ)) +D (4.10)

For the acceleration segment the same steps are followed as when a = 0. For a given air speed

V, that increases at every time step, the same calculations are done. Only now, the throttle

setting ηn (decision variable) is also given. This results in the fact that T > Tmin. Therefore,

the aircraft accelerates and for every time step it holds that Vt > V(t−1).

The Fuel Flow Model

One of the objectives of the trajectory optimization model is fuel consumption. From a commer-

cial point of view this is of economical interest to the airlines. An integrated engine model allows

for fuel flow assessment of the tailored trajectories. Equation 4.11 shows that the fuel flow is a

function of air speed, altitude and thrust. The function is aircraft dependent, which proves that

the effect of aircraft performance on the fuel consumption is taken into account.

σ = f(M,h, T ) (4.11)

Compared to other optimization studies, often assumptions are made for the cost of fuel. In this

case, the thrust and fuel flow settings have direct effect on the aircraft performance, which has

its effect on the noise impact. Noise as a result of different aircraft types is an important cost for

this research. Therefore, it is decided to integrate the aircraft dependent fuel flow models into

the trajectory optimization model.

Integrated Noise Model

The other objective of the trajectory optimization model is noise. In order to assess the indi-

vidual departure trajectories on community noise impact, it is necessary to know the population

density in the vicinity of the airport. The optimization model makes use of population data from

’het Centraal Bureau van de Statistiek’ (CBS) containing population density information of the

Netherlands for a particular grid-size. The data gives the population density per xy-coordinate

of a 2D-grid with an accuracy of 500 m2. Concluding, to determine the noise cost of a trajectory

both the noise impact and population for each xy-coordinate of a 2D-grid need to be known.

The trajectory optimization model uses a replication of the in-flight noise model that is incorpor-

ated in INM [23]. This replication is called INMTM [13]. INMTM allows for performing noise

assessments for the majority of modern commercial aircraft. The integrated model provides a

number of noise metrics that are based on empirically determined Noise-Power-Distance (NPD)

tables from INM. These tables are interpolated for the thrust level and the distance between

observer and flight segment, assuming that the observer is standing directly below an aircraft

31



passing along a straight, infinite flight segment, at a given reference speed. Subsequently, IN-

MTM calculates the Single Event Noise Level (SEL) per grid-coordinate.

Using the replication of INM has two benefits. First, it is relatively easy to integrate INMTM

into the optimizer of the model. Secondly, it is not necessary to use INM as a whole which saves

computation power. The integrated noise model requires two inputs. The first input includes the

specifications of the grid. The second input consists of flight data. In order to calculate a SEL

value for each individual point on the 2D-grid INMTM requires the following flight parameters:

• x-, y- and z-coordinates

• Air speed V

• Thrust T

As INMTM computes the SEL value per grid-coordinate it is now possible to determine the noise

cost of a particular trajectory. A dose-response relationship is used to determine the percentage

awakenings per grid-coordinate as result of a single fly over. The dose-response relationship is

given by equation 4.12 and yields an upper limit to the percentage of expected awakenings due

to a single flyover at night time. This relationship is based on a research done by the Federal

Interagency Committee on Aviation Noise (FICAN) in 1997 [3]. An example of the relationship

is given by figure 4.6.

%Awakenings = 0.0087 · (SELindoor − 30)1.79 (4.12)

Figure 4.6: FICAN dose-response relationship [4]

By multiplying the number of people living on each grid point with the expected percentage of

awakenings, the maximum number of expected awakenings per grid point is calculated. The noise

cost of a trajectory is determined by calculating the total number of expected awakenings. A
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correction of 20.5 dB on the INMTM SEL-values is applied to account for the sound absorption of

an average house [27]. Furthermore, it is assumed that the number of houses per grid-coordinate

equals 1
3 of the population data.

MATLAB Optimization Toolbox

The MATLAB optimization toolbox allows for accessible use of the genetic algorithm [22]. By

means of the optimization application the preferred algorithm can be selected. In this case a

multi objective optimization is done by means of a genetic algorithm. Therefore, the gamultiobj

solver is selected. Subsequently, one can recall the fitness function, set lower and upper bounds

to the decision variables and add additional constraints. Furthermore, it is possible to set the

population size and stopping criteria manually. It is also possible to adjust the mutation settings

for the mating process. The optimization settings for the multi objective genetic algorithm are

given below.

• Population size: 60

• Selection method: tournament

• Crossover fraction: 0.8

• Crossover function: intermediate

• Mutation function: constraint dependant

• Pareto front population fraction: 0.7

• Generation size: 150

Furthermore, the optimization problem is subjected to several constraints. The first constraint

requires the trajectory to end within 50 m from the fixed final coordinates. The second constraint

sets a minimum turn height of 120 m. Additionally, for every turn segment a constraint is included

to limit the maximum bank angle to 25◦. Finally, lower and upper bounds are imposed on the

decision variables that define the horizontal ground track and vertical profile of the trajectory.

The lower and upper bounds are included in table 4.1. The upper bound of straight leg segments

varies as it depends on the specific ground segment n.

Table 4.1: Lower and upper bounds of decision variables

Description Symbol Lower Bound Upper Bound
Strait leg L 1000 m varies

Heading change ∆χ 1◦ 90◦

Fixed radius R 1000 m 9000 m
Flight path angle γn 0 1
Throttle setting ηn 0 1

4.3.3 Output

Since the trajectory model optimizes for both noise and fuel consumption it is not possible to

come up with a single optimal solution. In trajectory optimization studies optimizing for noise
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usually comes at the cost of fuel consumption and vice versa. This results in a range of optimal

solutions presented by the optimal Pareto front. An example of the output of the trajectory

optimization model is given by figure 4.7. For every solution on the Pareto front it holds that

it always scores better on either one of the two objectives with respect to all other solutions.

Otherwise it would not be one of the optimal solutions. Furthermore, every solution on the

optimal Pareto front has its unique combination of decision variables that define the departure

trajectory.

Figure 4.7: Example of model output by means of optimal Pareto front

4.3.4 Computation Times

From the requirements it follows that computation times should stay within realistic bounds.

Genetic algorithms are meta-heuristic. In general, there is no analysis available to compute

the computation time of genetic algorithms. It is more common to analyse the convergence

time when analysing the complexity of genetic algorithms. However, one can note that the

computation time of one iteration (generation) depends on its inner operations (e.g. selection,

crossover, mutation). The settings of inner operations are problem dependent and easy to adjust

by means of the MATLAB optimization toolbox. Furthermore, the computation time of genetic

algorithms also depends on the number of iterations required to converge to a set of optimal

solutions. Research is done on probabilistic analyses and several other techniques to find the

average convergence time of genetic algorithms [28][29].

For this research, an average computation time of 2 hours is observed in order to execute a single
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run. One single run generates an optimal Pareto front with multiple solutions (tailored departure

trajectories) for one particular flight category following one flight procedure. The set of optimal

solutions is then presented by means of an Optimal pareto front. A computation time of 2 hours

is considered to be acceptable for this research.

4.4 From Optimization Output to Allocation Input

The objective of the trajectory optimization model is to generate a set of tailored departure tra-

jectories that can serve as input data for the allocation model. The previous sections explained

how the model is capable of doing this. One single run generates an optimal Pareto front with

multiple solutions for one particular flight category following one flight procedure. All solutions

represent tailored departure trajectories with unique cost for noise and fuel. Therefore, all solu-

tions could be used as input for the allocation model. In that case, the number of alternative

departures for a particular flight category would equal the total number of optimal solutions on

the Pareto front.

Due to limited computational power of the allocation model it is not feasible to use all optimal

solutions from the trajectory model output. Taking all solutions into account for every flight

category and two different profile procedures would result in a tremendous amount of input data

for the allocation model. Secondly, many of the solutions show only minor differences in their

cost values. These solutions can be grouped and represented by a single solution. Concluding,

it is preferred to select a limited number of tailored trajectories from the optimal Pareto front

that can serve as input for the allocation model.

The Derivative Method

To investigate the optimal allocation for noise and fuel it is desirable to take the fuel optimal

and noise optimal solutions from the Pareto front into account. These are the two outer lying

solutions on the optimal Pareto front and the first two tailored trajectories that will serve as

input for the allocation model. A third solution is selected to also analyse the intermediate

behaviour of the allocation model. In order to select the third solution the remaining solutions

on the Pareto front are analysed by means of the derivative method.

For multi objective optimization problems a set of multiple solutions is generated. One should

note that it is not possible to come up with a single optimal solution since the trajectory model

optimizes for both noise and fuel consumption. This makes it difficult for the decision maker

to select a third optimal solution from the Pareto front. Research is done on computing the

most significant solutions from a Pareto front in multi objective problems [30]. Comparison of

different methods in multi objective decision making is also investigated [31]. It is concluded that

research on this topic has one thing in common. All focus on developing techniques that select

the most suitable solutions from the optimal Pareto front. Since it is not possible to identify one
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Figure 4.8: Part of an optimal Pareto front showing selection of the third optimal solution for the
allocation model

single optimal solution, research focus on developing selection methods resulting in a set of most

suitable solutions.

Investigating the different methods would be rather time consuming and out of the scope of this

research. Therefore, the derivative method is used to select a third optimal solution from the

optimal Pareto front. This method allows for analysing the position of each solution with respect

to its neighbouring solutions on the optimal Pareto front. By means of the derivative method a

selection of the most suitable solutions is made. Based on additional criteria a third trajectory

is selected for the allocation problem.

Figure 4.8 shows a part of the optimal Pareto front. It is preferable to choose a solution like point

B. Compared to point C, solution B can save a sufficient amount of fuel while keeping additional

costs for noise relatively low. Comparing point A to point B, fuel savings are relatively small and

associated with a significant cost increase for noise. In order for a point to comply with these

conditions the difference between derivatives D1 and D2 should result in a large and positive

number. Equations 4.13 and 4.14 define the derivatives between point B and C, and point A and

B respectively. For a candidate solution point it holds that D1−D2 is a large positive number.3

3For a particular point B from figure 4.8 D1 will be a small negative number and D2 will be a large negative
number

36



The derivative method makes a selection of all points that comply with the desired characteristics

of point B in figure 4.8. This are all points on the Pareto curve for which D1 − D2 is a large

positive number. The downside of this method is that points lying in the upper left part of the

Pareto front are quickly selected as well because of the steepness of the Pareto curve. Therefore,

an additional criteria is applied to select the third optimal solution. It holds that it is desirable

that the third solution lies half way the Pareto front to guarantee enough improvement in terms

of fuel or noise with respect to the other two trajectories. By calculating the derivatives for

every solution on the optimal Pareto front and applying the additional criteria, a third tailored

trajectory is selected.

D1 =
dy1
dx1

(4.13)

D2 =
dy2
dx2

(4.14)

Once the three optimal solutions are selected the following data of the tailored departure tra-

jectories is required as input for the allocation model:

• Fuel cost

• Noise impact per grid-coordinate

4.5 Conclusion

In the previous sections the development and working principles of the trajectory optimization

model were explained. The model is developed with the goal to generate a set of tailored depar-

ture trajectories dependent on aircraft type and take-off weight. By means of a parametrization

technique the model is capable of simulating the departure trajectories. Subsequently, a multi

objectives genetic algorithm is used in combination with an integrated aircraft fuel flow model

and integrated noise model to perform a multi objective trajectory optimization. Results of the

trajectory optimization model are presented by means of an optimal Pareto front. By applying

the derivative method a limited number of optimal solutions per flight category is chosen. Run-

ning the model for different flight categories will result in a sufficient amount of trajectories with

enough variety in flight category. The entire set of tailored trajectories is used by the trajectory

allocation model to investigate the potential benefit of tailored SID and profile allocation. The

working principles of the allocation model are discussed in the next chapter.
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5
Allocation Model

The previous chapter showed how new alternative departure tracks were designed by means of

a trajectory optimization model. By running the trajectory model for different flight categories

with different profile procedure a set of tailored SID is generated that are dependent of aircraft

type, departure weight and profile procedure. The complete set serves as input for the allocation

model. Figure 5.1 gives a clear indication of the position of the trajectory model with respect to

the modelling framework.

This chapter describes the development and the working principles of the trajectory allocation

model. Section 5.1 starts with a concept description of the model. Subsequently, section 5.2

elaborates on the concept of linear programming which is used by the model to solve the allocation

problem. In section 5.3 the structure of the trajectory allocation model is discussed. Finally,

section 5.4 provides a short summary of this chapter.

5.1 Concept Description

The trajectory allocation model developed for this research is able to assign aircraft to novel

tailored departure trajectories based on an optimization trade-off between fuel consumption

and noise impact on the environment. The model allows for testing different departure flight

schedules and analyse the results on potential noise and fuel savings. In this way, the potential

benefit of tailored SID and profile allocation is quantified. The allocation model is developed in

MATLAB. A generic set-up is used to allow for scaling the model to different problem sizes. This

allows for adding tailored departure trajectories for the same or for different runway departure

fix combinations to the model. Due to the generic characteristics the model can even be applied

to other airports. This could be beneficial for future research on this topic. The remaining
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Figure 5.1: Block diagram of the project approach emphasizing the blocks that are involve in with
the allocation model

subsections describe the requirements and any important assumptions made for the development

of the trajectory allocation model.

5.1.1 Requirements

In order to ensure the functionality of the trajectory allocation model, the following requirements

are set:

• For every flight category the allocation model has the option to assign aircraft to at least

two alternative departure trajectories with at least one departure profile procedure

• All flights from the departure schedule are assigned to a trajectory

• The allocation model is able to find the optimal allocation of flights for minimum noise

impact

• The allocation model is able to find the optimal allocation of flights for minimum fuel

consumption

• The allocation model is able to find the optimal allocation of flights for different weightings

to noise and fuel consumption

• The allocation model is able to find the optimal allocation of flights for different aircraft
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types with different take-off weights

• The allocation model takes the noise impact of day-, evening- and night-time operations

into account

• Use is made of a realistic departure flight schedule

• The allocation model is applicable to AAS

• Results of the allocation model are presented to the user in a visual way

• Computation time has to stay within acceptable bounds

5.1.2 Assumptions

Some assumptions are made to simplify the development of the trajectory allocation model. The

most relevant assumptions are listed below.

• All flights from the departure flight schedule do take off

• Aircraft grouping can be used to take a wide range of aircraft types into account

• Separation of flights does not affect the optimal allocation of departure flights

• There is no wind vector present that can influence the optimal allocation of departure

flights

• Visibility does not affect the optimal allocation of departure flights

• Complexity of the air space does not limit the optimal allocation of departure flights

• The legal obligations discussed in chapter 3 can be used as reference values for the noise

contour limits

5.2 Linear Programming

The allocation model uses Mixed Integer Linear Programming (MILP) to solve the optimization

problem. After discussing the concept of MILP the trajectory allocation problem will be written

out according to linear programming standards. All parameters and variables are written down

in a structured way. Also the objective function, cost coefficients and constraints are presented

in this section. In this way, an overview is given of the optimization problem as to be solved by

the trajectory allocation model. The goal of the allocation model is to minimize the objective

function for the cost coefficients representing fuel consumption and noise respectively.

5.2.1 Mixed Integer Linear Programming

Linear Programming is a mathematical method used to find the optimal solution of a problem.

The method includes the minimization or maximization of a linear function that is subject to

linear constraints. Linear programming is used in various fields of research. The method gained

a lot of popularity among operations research in the field of business and economics and has

proven its value for engineering studies and other fields of research [32]. For aviation linear

programming is often applied to complex linear optimization problems like aircraft planning,
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routing and scheduling problems.

Equation 5.1 gives a canonical formulation of a standard linear problem [14]. With linear pro-

gramming a single objective function CTx is optimized (maximization or minimization). Here,

x represents a vector with all decision variables. C represents another vector containing all cost

coefficients of each decision variable in x. The objective function is subject to a set of equal-

ity constraints, inequality constraints or a combination of both (Ax ≤ b and x ≥ 0). Here, a

pre-established matrix A contains several linear relations between the decision variables that are

subject to a corresponding value in vector b.

Minimize CTx

Subject to Ax ≤ b

x ≥ 0

(5.1)

Just like other mathematical methods there are some variations possible on the basic concept

of linear programming. One refers to Integer Linear Programming (ILP) when all decision vari-

ables are restricted to be integers. For ILP equation 5.2 is added to the canonical formulation

of the problem. Here, Zn represents a set of integer values. When the decision variables of the

problem are allowed to be either integers or continuous variables one refers to the problem as

Mixed-Integer Linear Programming (MILP).

∀x ∈ Zn (5.2)

Finally, one refers to Binary Integer Linear Programming (BILP) when all decision variables

are restricted to be binary integers [33]. For the optimal solution of problems with a binary

nature the decision variables are either 1 or 0. For BILP equation 5.3 is added to the canonical

formulation. Linear programming for multi-objective optimizations is also possible. In that case

the different objectives need to be normalized by normalization factors, as becomes clear in the

following sections of this chapter. The trajectory allocation model uses a combination of ILP

and BILP to solve the multi-objective optimization problem and is therefore considered to be a

form of MILP as well.

∀x ∈ [0, 1] (5.3)

5.2.2 Sets and Indices

The following sets are used for the problem:

• Aa = set of aircraft types

• Ww = set of aircraft departure weights

• Dd = set of different periods of the day

• PP = set of profiles
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• Rr = set of routes

• Gxy = set of x-, y-coordinates (Grid)

The following indices are used for the problem:

• a = aircraft type index

• w = aircraft departure weight index

• d = period of the day index

• p = profile index

• r = routing index

• xy = coordinate index

An additional set Ff includes the complete set of departure flights consisting of all different flight

categories included in the problem. The additional set is used to simplify reporting of the linear

problem. Ff is composed by three different flight characteristics. Each departure flight can be

categorized by aircraft type (a ∈ Aa), departure weight (w ∈ Ww) and the period of the day at

which the operation takes place (d ∈ Dd). This means that the size of set Ff equals the sum of

all combinations of a ∈ Aa, w ∈Ww and d ∈ Dd.

For all f in Ff the trajectory optimization model calculated a set of alternative tailored traject-

ories. The trajectories are defined by the lateral ground track (routing) and vertical procedure

(profile). The diversity between different tailored trajectories for one specific flight category res-

ults from the option to fly different flight profiles (either NADP-1 or NADP-2) or to fly different

ground tracks. The trajectory optimization model was able to compute several tailored SID by

means of a genetic algoritm, as explained in chapter 4.

5.2.3 Objective Function

The trajectory allocation model minimizes a multi objective function shown by equation 5.4.

Z = α · nf
∑
a∈A

∑
w∈W

∑
d∈D

∑
p∈P

∑
r∈R

CFa,w,d,p,r · xa,w,d,p,r + β · nn
∑
xy∈G

CNxy · xxy (5.4)

The right hand side of the objective function consists of two objectives. The first summation

on the right hand side of the equation represents the objective for fuel consumption ZF . The

second summation on the right hand side of the equation represents the objective for noise ZN .

By means of this objective function the model aims to find the optimal allocation of departure

flights while minimizing fuel consumption and noise impact. Below, decision variables xa,w,d,p,r

and xxy and cost functions CFa,w,d,p,r and CNxy are explained in more detail. After discussing the

problem’s constraints in section 5.2.4, weighting factors α and β and normalization factors nf

are nn discussed in section 5.2.5.
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Decision Variables

Decision variable xa,w,d,p,r represents a number of flights of a specific flight category fa,w,d that

follows a trajectory with route r and profile p. It holds that xa,w,d,p,r is a positive integer if route

r with profile p for a number of flights fa,w,d is selected (xa,w,d,p,r > 0), otherwise xa,w,d,p,r = 0.

Therefore, ∀xa,w,d,p,r ∈ Z+.

xa,w,d,p,r (5.5)

Second decision variable xxy represents a grid point of total grid size G. It holds that xxy = 1

if grid point xy of grid G falls within the noise contour with a predefined noise limit, otherwise

xxy = 0. Therefore, ∀xxy ∈ [0, 1].

xxy (5.6)

Cost Coefficients

The cost coefficients represent the cost of a flight category fa,w,d that follows route r and profile

p. The cost is expressed in terms of noise and fuel burn respectively. Both cost functions are

discussed below.

The cost for fuel of a flight fa,w,d that follows route r and profile p is given by CFa,w,d,p,r. The

cost coeffeicient can be expressed in kilograms, pounds or price. Since the fuel consumption of

a specific tailored SID is already specified in kilograms by the trajectory optimization model,

this unit is also used for the allocation problem. It holds that the cost for fuel is independent of

d. The period of the day of the particular operation does not affect the fuel consumption for a

specific flight category f .

Fuel cost coefficient : CFa,w,d,p,r (5.7)

The cost for noise of flight fa,w,d following a trajectory with route r and profile p is given by

CNxy. The cost for noise can be expressed in number of people living within a contour of 40 dB

Lnight or 48 dB Lden and the number of houses within a contour of 48 dB Lnight or 58 dB Lden.

It holds that the cost for noise is evaluate per xy-coordinate of a specified grid size G. The grid

size G covers the area of interest around AAS. Unlike the cost coefficient for fuel, the period

of the day does affect the cost coefficient for noise. Period of the day is taken into account by

including Lden penalties in one of the constraints.

Noise cost coefficient : CNxy (5.8)

5.2.4 Constraints

The objective function is subject to several constraints. The different constraints are discussed

below.
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Equality constraints

To guarantee that all departure flights of a specific category are assigned to a tailored SID and

flight procedure the conservation constrain is applied. The conservation constraint is defined by

equation 5.9. It holds that the sum of allocated flights of a specific fight category should equal

the total number of departure flights of that specific category.

Conservation constraint :
∑
p∈P

∑
r∈R

xa,w,d,p,r = Na,w,d ; ∀a ∈ A

∀w ∈W

∀d ∈ D

(5.9)

The decision variables xa,w,d,p,r are restricted to be either a positive integer or zero. This depends

on how many flights fa,w,d of a particular flight schedule are assigned to a trajectory with route

r and profile procedure p.

∀xa,w,d,p,r ∈ Z+ (5.10)

The decision variable xxy is restricted to binary lower and upper bounds. This means that the

noise limit for a xy-coordinate within grid G is either reached or not and thus,

∀xxy ∈ [0, 1] (5.11)

Inequality constraints

The cost for noise in the objective function of equation 5.4 is expressed in number of people

living within a contour of 40 dB Lnight or 48 dB Lden and the number of houses within a contour

of 48 dB Lnight or 58 dB Lden. In order to determine whether a coordinate lies within the

noise contour, each xy-coordinate of grid G is evaluated individually. By applying the inequality

constraint of equation 5.12 to each xy-coordinate in G it is possible to assess the noise impact of

the overall allocation of departure flights and determine weather a specific coordinate lies within

the noise contour or not.

Noise constraint :
∑
a∈A

∑
w∈W

∑
d∈D

∑
p∈P

∑
r∈R

CNa,w,d,p,r,xy · xa,w,d,p,r, −M · xxy ≤ Nlimit

; ∀xy ∈ G

(5.12)

Here, CNa,w,d,p,r,xy represents the noise impact in dB Lden or dB Lnight of an occupied flight

(xa,w,d,p,r>0) on a specific xy-coordinate of grid G. The penalty factor M represents a large

number that prevents the inequality constraint from reaching its noise limit Nlimit. When the

summation of allocated flights reaches the noise limit xxy is forced to become one in order to com-

ply with this constraint. As a result, the optimal solution for the allocation problem will always
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comply with the noise constraint. The fact that xxy is also included in the objective function

allows for optimizing the number of grid points, or the number of people/ houses, located within

the noise contour (when xxy = 1). Equation 5.12 is called a soft constraint, where M serves as a

switching function that decides whether a specific grid point falls within the noise contour or not.

Finally, it is important to note that initially CNa,w,d,p,r,xy is served as input to the model in SEL

(dB). Since this metric is of a logarithmic scale it can not simple be add up in the summation

of equation 5.12. By using equation 5.13 the SEL values are converted to dB Lden [20]. Sub-

sequently, by bringing all terms in front of the summation to the right hand side of the equation,

the left hand side of the constraint is left with a summation of the acoustic energy which over-

comes the problem of the logarithmic scale. The soft constraint for noise can be rewritten into

equation 5.14.

Lden = 10 · log[
t0
T0

∑
a∈A

∑
w∈W

∑
d∈D

∑
p∈P

∑
r∈R

gd · 10
SEL
10 ] (5.13)

∑
a∈A

∑
w∈W

∑
d∈D

∑
p∈P

∑
r∈R

gd · 10
SEL
10 · xa,w,d,p,r − 10

M·xxy
10 · T0

t0
≤ 10

Nlimit
10 · T0

t0
(5.14)

Where gd represents the noise penalties for flights during day, evening and night which are 1,

3.162 and 10 respectively. The summation is performed over all aircraft noise events that occur

during the specified reference time period T0 which is 86400 seconds for a 24 hour time frame.

t0 = 1 is a reference time to determine the weighted equivalent sound level in Lden for SEL values.

In a similar way, SEL values are converted to dB Lnight [20]. It is not necessary to use noise

penalties for different periods of the day, since only night flights are taken into account. Therefore,

gd = 1. The summation is performed over all aircraft noise events that occur during the night

which means that T0 = 28800 seconds (8 hours) and t0 = 1 to determine the weighted equivalent

sound level in Lnight for SEL values.

5.2.5 Normalization Methods

Weighted Sum Method

The weighted sum method allows to write the multi-objective optimization problem as a single

objective function [34]. Looking at equation 5.4 each objective of the multi-objective optimization

problem is multiplied by a coefficient (α or β). To correctly apply this method the sum of these

coefficients equals one. Therefore, β always follows from α as shown by equation 5.15. By means

of coefficients α and β different weightings are applied to the two objectives of the multi-objective

optimization problem. The weighting can be adjusted to find the fuel optimal solution, the noise

optimal solution or any trade-off in between.

β = 1− α (5.15)
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Normalization Factors

Since the two objectives have different dimensions, it is required to normalize the multi-objective

function. The coefficients nf and nn from equation 5.4 represent the normalization factors.

The normalization is done by optimizing each of the objectives individually first. Subsequently,

each objective is divided by its individual range. That will say, the difference between the

objective optimum value and the objective value corresponding to the individual optimization of

the counter objective. Equations 5.16 and 5.17 give the normalization factors for fuel and noise

respectively. The objective function now consist of dimensionless, normalized terms and both

objectives can be equally compared.

nf =
1

| ZFnoiseoptimum − ZFfueloptimum |
(5.16)

nn =
1

| ZNfueloptimum − ZNnoiseoptimum |
(5.17)

Optimal Pareto-front

By applying different weightings to the multi-objective function the trajectory allocation model

is able to find different optimal solutions. The optimal solutions form a second optimal Pareto-set

containing the optimal distribution of flights for different values of α and β [35]. Just like with

the trajectory optimization model, the solutions that correspond to the optimal Pareto-set are

called Pareto optimal solutions. By connecting these solution a second optimal Pareto-front is

formed. By including a reference scenario into the optimal Pareto-front figure a clear indication

of potential savings for different optimal solutions is given. As shown by figure 5.2 optimal

solutions A and B can easily be compared to reference case D, which is marked by a red dot.

Solutions C, E, F and G fall in the feasible search area but are not considered to be optimal

solutions since the points are not located on the optimal Pareto-front.

Figure 5.2: Example of the optimal Pareto-front resulting from different values of α, including
optimal solutions A and B, feasible solutions C, E, F and G, and reference case D [5]
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5.3 Structure of the Model

This section will elaborate on the modelling framework for the allocation problem. A schematic

representation of the model is given in the form of a block diagram, as shown by figure 5.3. The

model consists of different building blocks which will be discussed in this section separately. The

entire model is programmed in MATLAB.

Figure 5.3: Schematical representation of the allocation model by means of a block diagram

5.3.1 Input

The allocation model uses two resources to get its input from. Part of the input comes from

the tailored SID trajectory model, which is discussed in the previous chapter. The trajectory

model designed several alternative departure trajectories dependent of aircraft type and depar-

ture weight. For each alternative SID the fuel consumption and noise impact for a pre-specified

grid were calculated. The latter two define the cost for a SID and are therefore necessary input
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parameters to the model.

The second resource used by the allocation model includes raw input data. This includes scenario

dependent data that should be taken into account for the optimization of specific scenario’s. The

raw input data includes grid-coordinates, population data and information about the departure

flight schedule. An overview of all necessary inputs is given below.

Tailored SID trajectory model:

• Fuel consumption data

• Noise impact grid

Raw input data:

• Grid coordinates

• Population data

• Departure flight schedule

5.3.2 Pre-processor

The main objective of the pre-processor is to write a linear programming file (LP-file) for the

optimizer of the model. In order for the optimizer to solve the optimization problem it has to

be fed with an LP-file. The first task of the pre-processor is to transform all complex details

from the input block into manageable sets of variables. These sets can then be used by the

pre-processor to easily generate an LP-file. When the LP-file is constructed it is handed over to

the optimizer of the allocation model.

A second task of the pre-processor is to reduce the computational process time of the optimizer.

This can be realized by filtering the input data in the transformation process of the pre-processor.

The variables that will not have any effect on the outcome of the optimization problem are filtered

out beforehand and will not be taken into by the optimizer at all. In this way the manageable

sets of variables only include variables of interest.

The output of the pre-processor consists of an LP-file that includes the objective function and

its constraints. The decision variables and their bounds are also defined in the LP-file.

5.3.3 Optimizer

The allocation model makes use of the IBM ILOG CPLEX Optimization Studio 12.6 optimizer.

The cplex optimizer works as a black box. It needs an LP-file with the MILP problem as input.

The MILP problem will then be solved by the optimizer and its solution is returned as an

output. Subsequently, the output is passed on to the post-processor. The working principles of

the optimizer will not be discussed in more detail since it is not relevant for the working of the

optimization model.
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5.3.4 Post-processor

The post-processor receives the set of solutions as input from the optimizer. The main objective

of the post-processor is to transform the solution set of the optimizer into a manageable set of

variables that can easily be used for the visual and graphical representation of results. After

transforming the MILP solutions into a manageable set of variables a graphical representation of

the optimal solution is generated. The post-processor is responsible for translating the optimal

solution of the model into a graphical representation of modelling results. In this way the output

is interpretable to the user as shown by the block diagram in figure 5.3.

5.3.5 Output

The output of the model, as generated by the post-processor, provides the following information

to the user:

• Distribution of allocated flights

• Noise grid indicating populated areas and populated areas that fall within a specified noise

contour

• Total fuel burn

• Total number of people and houses within a specified noise contour

5.3.6 Computation Times

For all variations on linear programming the problem is NP-hard (non-deterministic polynomial

time). NP-hard finds its meaning in computational complexity theory and represents a class of

problems for which solutions can be found within polynomial time by a non-deterministic Turing

machine. The time required to solve these kind of problems increases rapidly as the problem size

grows [36]. The trajectory allocation model uses a combination of ILP and BILP to solve the

multi-objective optimization problem and is therefore considered to be a form of MILP as well.

Since this allocation problem remains limited in its size the computational time of the model is

not expected to become an issue.

5.4 Conclusion

In the previous sections the development and working principles of the allocation model were

explained. The model is developed with the goal to compute the optimal allocation of flights

for fuel, noise and a trade-off between these two objectives. In order to do so, the allocation

model makes use of the tailored departure trajectories described in the previous chapter. It

was explained that the model consist of several modelling blocks, being the pre-processor, the

optimizer and the post-processor. The pre-processor of the model writes the problem down

in a linear format. In this way, the allocation model can make use of mixed integer linear

programming to solve the problem. Subsequently, Matlab is able to solve the linear problem by

50



making use of the CPLEX Optimization Studio 12.6 optimizer. Finally, results are past on to the

post-processor to process results in the right format. This is necessary in order to present results

in a clear and understandable way. By means of the allocation model the optimal allocation for

an actual departure flight schedule can now be computed. In the next chapter a case study is

carried in which this is done.
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6
A Case Study for Amsterdam

Airport Schiphol

This chapter describes the work of a case study. The models discussed in chapter 4 and chapter 5

are applied to a specified scenario at Amsterdam Airport Schiphol. The case study is performed

to demonstrate the workings of the model when applied to a real case scenario. The goal of

the case study is to compare the use of current departure routes to the use of the novel tailored

trajectory allocation method, as discussed in previous chapters. Historical flight data is used

as input to the model. Fuel and noise calculations are done to compute tailored departure

trajectories for different aircraft types with different take-off weights. Subsequently, the optimal

allocation of flights is determined by means of the trajectory allocation model. The model output

is compared to actual airport operations, which serves as reference data for the case study. In

this way, the potential benefit of tailored SID and profile allocation is quantified for AAS. In

section 6.1 the case is described in more detail. Section 6.2 explains how the reference data is

obtained. Final results of the model are compared to current operations and discussed in section

6.3.

6.1 Experimental Set-up

In this section a clear description of the case study is given. The experimental set-up consists

of a case scenario to be evaluated. Subsequently, this has implications on the developed model

and its input parameters. Both elements are discussed below.
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6.1.1 Scenario Description

Ideally, the complete airport configuration is taken into account so that the model can be applied

for a full operational day. Unfortunately, this would require a number of trajectory optimiza-

tions for the computation of tailored trajectories that would exceed the limited time period of a

MSc thesis project of nine months. Therefore, the model is applied to one runway departure fix

combination only. Considering a full operational day means that the current case scenario needs

to be scaled up to include all runway departure fix combinations. Furthermore, the number of

flight categories needs to be increased to take the complete departure flight scheme into account.

Both interventions would require an increased amount of trajectory optimizations resulting in a

similar but much larger data set. This does not affect the core working principles of the model.

Therefore, the current experimental set-up is assumed to allow for sufficient analysis of the de-

veloped model.

As the model is tested for a real case, it is preferred to use a suitable scenario. It is expected

that the use of the model will be most beneficial in high populated and therefore noise sensitive

areas in the vicinity of AAS. The trajectory optimization model allows for computing tailored

trajectories that pave their way through the populated areas, while the allocation model will try

to reduce the overall noise impact by computing the optimal distribution of flights. In chapter

3 several noise sensitive areas in the vicinity of AAS were addressed, like Hoofddorp, Aalsmeer

and Amstelveen. For this case study the ARNEM departure from runway 09 is analysed. The

current SID crosses high populated areas like Aalsmeer and the south east of Amsterdam. The

09 runway of AAS is known for its noisy characteristics and is therefore a suitable candidate

scenario for the case study. Figure 6.1 shows the case scenario.

Figure 6.1: Case scenario ARNEM departure from runway 09, marked by a green color [6]
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The runway departure fix combination chosen for this case study is not often used by AAS due

to the fact that wind directions most of the time originate from the south west. Although this

runway departure fix combination is not often used, its noisy characteristics do provide a suitable

extreme for the case study. As already mentioned, the goal of the case study is to compare the

use of current SID with the use of the novel tailored trajectory allocation model. Therefore, a

suitable scenario like the ARNEM departure from runway 09 is preferable.

6.1.2 Model Input

In chapter 4 it was explained that take-off weight and flight profile procedure are the only two

input parameters defined by the user. For the case study a specific scenario is considered. Several

assumptions are made to simulate a real case scenario with the developed model. This results in

some implications on the model. Below, the assumptions made are presented after which further

implications on the model are explained in more detail.

Assumptions

It is important to note that several assumptions are made to simulate a real case scenario with

the developed model. The most relevant assumptions are listed below.

• No wind vector present

• The B733 aircraft can be used to represent all narrow body aircraft

• The B744 aircaft model can be used to represent all wide body aircraft

• Aircraft types can be categorized by three different take-off weights

• Aircraft weight remains constant during departure flight

• Fuel flow calculations are aircraft type dependent

• Noise calculations are aircraft type dependent

• Noise evaluated area can be limited to a 40 x 21 km grid around AAS

• Flight schedule is based on actual data from AAS

• Population density is based on historical data from CBS

• Tailored trajectories are optimized between fixed initial and final coordinates

• Final coordinates of trajectory (ARNEM departure fix) are set to be 52.13854 latitude,

5.59067 longitude (Barneveld)

Flight Categories

Use is made of two aircraft models to take different aircraft types into account for this research.

A B733 aircraft model is used to represent all narrow body aircraft [37]. A B744 aircraft model is

used to represent all wide body aircraft from the flight schedule [38]. Each aircraft performance

model is integrated separately in de trajectory optimization model and has direct impact on the

aircraft’s flight performance, fuel consumption and noise impact.
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Furthermore, three different weight classes are considered to take different take-off weight classes

into account for this researched. The different aircraft types are categorized for low, medium

and heavy take-off weights respectively. Obviously, the weight classes differ per aircraft type.

The different weights are quantified by calculating the maximum fuel weight (MFW) which

is the difference between the maximum take off weight (MTOW) and the maximum zero fuel

weight (MZFW). The low and medium weight class follow from adding 1
3 and 2

3 of the MFW

to the MZFW. The heavy weight class equals to the MTOW. The mathematical formulation for

calculating the different weight classes are given by equation 6.1. The quantified take-off weight

is given as user input to the model.

WL = MZFW +
1

3
(MTOW −MZFW )

WM = MZFW +
2

3
(MTOW −MZFW )

WH = MTOW

(6.1)

Considering three different weight classes for two different aircraft types eventually results in

six different flight categories. The different flight categories are listed in table 6.1. For every

flight category the trajectory optimization model runs two times in order to compute tailored

departure trajectories for both NADP-1 and NADP-2 flight procedures.

Fuel

Fuel calculations are done according to the fuel flow equations provided by the aircraft perform-

ance models. As explained in chapter 4 the integrated fuel flow models, thrust equations and

flap retraction schedules are based on the aircraft performance models as well. This allows the

trajectory optimization model to compute tailored trajectories that are dependent of aircraft

type. By means of the fuel flow model the total fuel consumption for a trajectory is calculated.

Once the tailored trajectories of a specific flight category are selected the values for fuel are used

as cost values for the allocation model.

Noise

Both the trajectory model and the allocation model optimize for noise. The impact of noise on

the environment is largest in the vicinity of the airport. As the aircraft gain height, noise will

reduce to a minimum and will not be considered as an issue to the surrounding communities

any more. Therefore, it is not necessary to assess the total length of the trajectories on noise.

Considering the current case scenario, only a limited area in the vicinity of AAS is selected to

optimize the trajectories and allocation for noise. The selected area covers a large part of the

area in which the optimizations are done. The area being assessed for noise is marked in figure

6.2 by a red box. Furthermore, the allocation model defines noise according to AAS standards.

Therefore, the the allocation model optimizes the number of people or houses within a specified

contour as explained in chapter 3.
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Runway - Departure Fix Coordinates

The trajectories are optimized between fixed initial and final coordinates. The initial coordinates

correspond to 2
3 of the 09 Buitenveldertbaan. Final coordinates of the departure trajectory

correspond to the ARNEM departure fix. Since the ARNEM departure fix is located near the

German border, this will result in low noise impact for the final phase of flight. The noise impact

will be too low to have any influence on the optimization. Therefore, the departure fix for the

case study is replaced and set closer to AAS. The temporary departure fix is placed near the city

of Barneveld, in line with the 09 runway and the original ARNEM departure. Figure 6.2 marks

the points between which the tailored trajectories are computed. The blue dot marks the point

of take-off, whereas the red dot marks the departure-fix for the case scenario.

Figure 6.2: Noise evaluated area (red box), point of take-off (blue dot) and final point of tailored
trajectory (red dot)

Sensitivity Analysis of the Tailored Trajectory

For this specific case study a sensitivity analysis is done on the number of ground track segments

of the departure trajectories. As explained in section 4.2 of this report, a sensitivity analysis is

done to assure sufficient flexibility of the ground track while optimizing for tailored trajectories.

Furthermore, a B737-300 model with medium take-off weight is considered. It is assumed that

this model is representable for all other flight categories as well. It should be noted that a new

sensitivity analysis is required for a different case scenario because the required flexibility is de-

pendent on the population density on the ground.

The trajectory optimization model required three runs for three different cases in order to come

to a satisfying conclusion. Optimizations are done for 3 ground segments (2 decision variables),
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5 segments (5 decision variables) and 7 segments (8 decision variables). Expanding the ground

track from 3 to 5 segments showed significant improvements in the number of awakenings. Ex-

panding from 5 to 7 segments did not show significant improvement in the number of awakenings.

The cost range for fuel consumptions remains unchanged for all three cases. Assuming that every

additional decision variable increases the complexity of the optimization problem, it is concluded

that an optimal number of 5 ground segments is required for the trajectory optimization model

for this specific case scenario. Results of the sensitivity analysis can be found in appendix B.

A second sensitivity analysis is done to verify the added value of optimizing the vertical profile

segments. Using the same settings, the trajectory is optimized a second time with additional

decision variables that define the six segments of the vertical flight profile. The outcome is com-

pared to the results of the first sensitivity analysis that included ground track parameters only.

All cases show that including the profile parameters to the decision variables of the optimization

results in additional savings of 200 awakenings on average, except for the case with three ground

segments. This case shows even better improvements. The cost range for fuel consumptions

remains unchanged. Plots of the optimal Pareto fronts for the second sensitivity analysis are

included in appendix B as well.

As a result, the additional benefit of including optimization of the six vertical profile segments

is proven to be ca. 200 awakenings, which equals to additional noise savings of 5% with respect

to the optimization results for ground track segments only. It is concluded that the trajectory

should be optimized for 11 decision variables: 5 variables defining the ground track and 6 variables

defining the vertical profile.

6.2 Reference Scenario

To quantify the potential benefit of tailored SID and profile allocation for AAS, the outcome of

the model is compared to the current situation. An actual flight schedule is used and the actual

departure procedures are used to simulate the current situation by means of the developed

models. The current situation is simulated after which it serves as reference data for the case

study. By comparing the model output with the reference data the potential benefit of tailored

SID and profile allocation is quantified.

6.2.1 Departure Flight Schedule

An actual flight schedule is provided by AAS and used for this case study. The flight schedule

can be found in appendix C of this report. The schedule is filtered on departure flights only.

Cargo flights are left out of the schedule as well as they are excluded from the project scope.

Considering the runway departure fix combination for this case study, only departure flights with

destinations in eastern Europe, the middle east, Australia and Asia are included. This selection

is made according to figure 3.3 in chapter 3 of this report. Subsequently, every flight that is left
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on the departure schedule is represented by one of the six flight categories that were introduced

in this section. Additionally, the period of the day at which the operation takes place is also

taken into account.1 An overview of the entire operation for this case study is given by table 6.1.

Table 6.1: Number of flights per flight category, based on actual flight schedule from AAS

Cat. Day Evening Night

B733-L 58 19 1

B733-M 13 3 4

B733-H 4 3 1

B744-L 1 2 0

B744-M 7 0 0

B744-H 9 5 1

Flights: 131

6.2.2 Current SID and Flight Procedures

The current situation serves as reference data for the case study and is simulated by following

actual airport procedures. The SID used to simulate current departures is provided by the AIP

and already discussed in section 3.2 of this report. According to the standard departure chart

that can be found in appendix D outbound flights from runway 09 towards ARNEM end up at

IVLUT way point after turns at EH055 and EH042. From IVLUT the aircraft change heading

towards the alternative departure fix that is set at Barneveld for this case study. In general, the

NADP-1 is used for vertical take-off procedures at AAS [1].

The trajectory model is used to simulate the current situation. By following current airport

procedures, the departure trajectories can be defined by four straight legs and three fixed radius

turns [39]. Subsequently, the trajectory model is used to simulate the current departure tra-

jectories. This is done by providing fixed input parameters to the model. The parameters used

to simulate the current trajectories are listed in table 6.2. Lengths L and fixed radius turns R

are expressed in meters, ∆χ is expressed in degrees and γ and η are percentages. An example

of the simulated B733-M trajectory in its current state is shown by figure 6.3. The departure

trajectories of all flight categories that are simulated according to current airport procedures are

included in appendix E.

The trajectory model calculates corresponding cost values for fuel consumption and noise impact

per xy-coordinate of the assessed grid. The cost values are used to calculate total fuel consump-

tion and noise impact for the entire operation considered during this case study when making

use of current SID and profile procedures. Use is made of the Microsoft EXCEL to calculate the

cost values manually. Cost for the current situation are included in table 6.3.

1The allocation model makes use of the Lden metric which assigns extra noise penalties for operations during
the evening and at night (chapter 5)
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Table 6.2: Fixed input parameters used to simulate current departure trajectories

L1 R2 χ2 L3 R4 χ4 L5 R6 γ1 γ2 γ3 η3 γ4 γ5
7000 6000 23 4000 6000 7 21000 5000 1 1 .15 .98 .5 .15

Figure 6.3: Simulated trajectory of the B733 medium take-off weight class

Table 6.3: Cost values for the reference scenario

Noise Limit [dB] Noise Fuel [kg]

58 Lden 5213 houses 118686

48 Lden 110700 people 118686

48 Lnight 9013 houses 5954

40 Lnight 110850 people 5954

6.3 Results

In this section the results of the case study are presented. First, a set of tailored trajectories

is generated. The results of the trajectory optimization model and the final selection for the

allocation model are discussed in the first subsection. Secondly, the selected trajectories are

used by the allocation model to determine an optimal distribution of flights for fuel and noise.

The second subsection elaborates on the outcome of the allocation model. Finally, results are

compared to the reference scenario in the third subsection.
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6.3.1 Trajectory Model

B733 Trajectories

Several simulation are done to compute tailored trajectories for the B737-300. The trajectory

model optimized for three different take-off weight classes for two different flight procedures. For

each flight category and flight procedure an optimal Pareto front is computed. After applying the

selection method discussed in section 4.4 three tailored trajectories per flight category and profile

procedure are chosen. An example of the optimal Pareto front for a B733 light take-off weight

flying an NADP-2 procedure is given by figure 6.4. The selected trajectories corresponding to

this Pareto front are shown in figure 6.5. The Pareto fronts and selected tailored trajectories of

other weight classes and profile procedures of the B733 model can be found in appendix F.

Figure 6.4: Optimal Pareto front solutions for the B733 light take-off weight class NADP-2
procedure. Selected solutions are indicated by red diamonds.
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Figure 6.5: Selected tailored trajectories for the B733 light take-off weight class NADP-2 procedure.

The cost values of the selected trajectories for the different weight classes of the B733 are included

in tables 6.4, 6.5 and 6.6 respectively.

Table 6.4: Cost values for selected tailored trajectories of a B737-300 light take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 477,5 5665 458,1 4915

Intermediate 502,5 3065 463,42 3440

Noise Optimal 662,5 2351 489,74 1951

Table 6.5: Cost values for selected tailored trajectories of a B737-300 medium take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 501,89 4367 475,84 5583

Intermediate 512,69 3652 483,9 2507

Noise Optimal 561,05 3161 503,08 1941
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Table 6.6: Cost values for selected tailored trajectories of a B737-300 heavy take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 541,67 6067 518,29 5529

Intermediate 548,94 4195 540,8 3031

Noise Optimal 576,51 3179 564,21 2449

B744 Trajectories

Several simulation are done to compute tailored trajectories for the B747-400. The trajectory

model optimized for three different take-off weight classes for two different flight procedures. For

each flight category and flight procedure an optimal Pareto front is computed. After applying the

selection method discussed in section 4.4 three tailored trajectories per flight category and profile

procedure are chosen. An example of the optimal Pareto front for a B744 light take-off weight

flying the NADP-2 procedure is given by figure 6.6. The selected trajectories corresponding to

this Pareto front are shown in figure 6.7. The Pareto fronts and selected tailored trajectories of

other weight classes and profile procedures of the B744 model can be found in appendix F.

Figure 6.6: Optimal Pareto front solutions for the B744 light take-off weight class NADP-2
procedure. Selected solutions are indicated by red diamonds.
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Figure 6.7: Selected tailored trajectories for the B744 light take-off weight class NADP-2 procedure.

The cost values of the selected trajectories for the different weight classes of the B747-400 are

included in tables 6.7, 6.8 and 6.9 respectively.

Table 6.7: Cost values for selected tailored trajectories of a B747-400 light take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 1864,33 10286 1688,56 9881

Intermediate 1941,96 8732 1705,7 8806

Noise Optimal 2120,01 7670 1711,01 8681

Table 6.8: Cost values for selected tailored trajectories of a B747-400 medium take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 2297,67 12828 2138,75 12640

Intermediate 2487,22 11978 2154,04 12276

Noise Optimal 2525,09 11694 2561,24 11998

64



Table 6.9: Cost values for selected tailored trajectories of a B747-400 heavy take-off weight class

NADP-1 NADP-2

Trajectory Fuel [kg] Awakenings Fuel [kg] Awakenings

Fuel Optimal 2777,17 12164 2585,49 16763

Intermediate 2861,3 10463 2586,34 16220

Noise Optimal 3130,34 9782 2871,91 16138

Final Set of Tailored Trajectories

The results for the B733 aircraft show clear differences between the tailored trajectories of a spe-

cific flight category. For fuel optimal trajectories the optimization model computes trajectories

that follow short routes towards the final departure-fix. Furthermore, these trajectories show

large flight path angles of the optimized profile segments. For noise optimal trajectories the

optimization model computes trajectories that avoid high populated areas as much as possible.

Furthermore, these trajectories show smaller flight path angles of the optimized profile segments.

The intermediate trajectories show characteristics that lie in between these two outliers. Looking

at the cost values of different tailored trajectories, it becomes clear that for every take-off weight

class of the B733 the NADP-2 procedures score better than the NADP-1 procedures. For every

NADP-1 trajectory there is an NADP-2 trajectory available with better fuel and noise charac-

teristics. Since the goal of this research is to quantify the potential benefit of this method for

fuel and noise, it would not be beneficial for the outcome of the model to included trajectories

with higher fuel and noise characteristics. For this reason, and to limit the input data of the

trajectory allocation model, it is decided to eliminate all NADP-1 results for B733 aircraft from

the final set of tailored trajectories.

The results for the B744 aircraft show less differences between the tailored trajectories of a spe-

cific flight category. After multiple runs for each flight category and profile procedure the three

selected tailored trajectories show only minor differences in the ground track. The difference in

fuel and noise characteristics mainly results from different flight path angles of the optimized

profile segments. A possible explanation for this is that the trajectory optimization model con-

verges to local optima. This problem is also experienced during the sensitivity analysis on the

ground track segments of the B733 aircraft. The optimization model tends to converge to a local

optimum when the number of decision variables is too low. Therefore, an additional sensitivity

analysis for the B744 aircraft trajectory segments might possibly lead to an increased number

of decision variables that define the ground track and allow the trajectory model to generate

tailored trajectories that show more variety in ground track and vertical profile. Another reason

for this behaviour could be the aircraft characteristics. In general, the B744 is known to be a bad

climber and to show deviating behaviour with respect to other aircraft types when it comes to

trajectory optimization studies. For now, the current results are used for the continuing process

of this work. The B744 sensitivity analysis is included as a recommendation for future research

in the final chapter of this report.
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Looking at the fuel and noise characteristics of different tailored trajectories of the B744 flight

categories, it becomes clear that only three trajectories score bad on both fuel and noise charac-

teristics with respect to the other tailored trajectories. Therefore, it is decided to include both

the NADP-1 and the NADP-2 results in the final set of tailored trajectories. This results in a

final set of tailored trajectories with the following characteristics:

• For all B733 flight categories it holds that the allocation model has three options to assign

the particular flight to

• For all B744 flight categories it holds that the allocation model has six options to assign

the particular flight to

An overview of the final set of tailored trajectories is included in table F.1 in appendix F of this

report.

6.3.2 Allocation Model

The allocation model uses the final set of tailored trajectories to compute the optimal allocation

of flights for fuel, noise and different trade-off’s between the two objectives. In doing this, the

model evaluates four different criteria. These criteria are currently used by AAS and already

discussed in chapter 3. Below, the results for all four criteria are discussed.

Criteria 1: 58 dB Lden

The first criteria involves the number of houses experiencing noise of 58 dB Lden. After de-

termining the normalization factors for a noise limit of 58 dB Lden the optimal allocation for

fuel and noise is computed by the model. Figure 6.8 shows the optimal allocation of flights for

minimizing fuel consumptions. The bar plots give an overview of the allocation of flights per

flight category and time of the day. The green bars mark NADP-1 procedures and the blue bars

mark NADP-2 procedures. The difference between fuel efficient and noise efficient trajectories

is indicated by a difference in contrast. It follows that all flights are allocated to the most fuel

efficient trajectories. For all flight categories this is the NADP-2 trajectory optimized for fuel.

Figure 6.9 shows the grid points that fall inside the noise contour as a result of optimizing the

allocation for fuel.
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Figure 6.8: Allocation of flights when optimizing for fuel consumptions

Figure 6.9: Grid points within the noise contour when optimizing for fuel

The potential benefit of the allocation when optimizing for fuel is quantified by comparing results

with the reference scenario. This is shown by figure 6.10. It follows that an optimal allocation of

the flight schedule results in maximum fuel savings of 8.8% with corresponding noise savings of

-1.5%. Therefore, the results show that optimizing for fuel comes at the cost of producing more

noise.
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(a) Potential fuel savings of 8,8% (b) Corresponding noise savings of -1,5%

Figure 6.10: Potential benefit for criteria 1 when optimizing for fuel

Optimizing for noise leads to a different allocation of flights with different noise contours. Figure

6.11 shows the optimal allocation of flights. It follows that the flights are distributed over the

trajectories that are available in order to keep noise to a minimum. Unlike the optimal allocation

for fuel, not all flights are assigned to the most noise efficient trajectories. The corresponding

grid points that fall inside the noise contour when minimizing for noise are shown by figure 6.12.

Although the noise contour seems to reach further compared to the fuel optimal contour, it finds

its way through less populated areas. In this way high populated grid points are exchanged for

grid points with a low population density resulting in less noise for this criteria.

Figure 6.11: Allocation of flights when optimizing for noise
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Figure 6.12: Grid points within the noise contour when optimizing for noise

The potential benefit of the allocation when optimizing for noise is quantified by comparing

results with the reference scenario. This is shown by figure 6.13. It follows that an optimal

allocation of the flight schedule results in maximum noise savings of 44.25% with corresponding

fuel savings of 0.97%. Therefore, the results show that optimizing for noise comes with minimal

savings for fuel as well.

(a) Corresponding fuel savings of 0,97% (b) Potential noise savings of 44,25%

Figure 6.13: Potential benefit for criteria 1 when optimizing for noise

Finally, different values for α are applied to the allocation model to vary the weightings on each

objective. This allows for a trade-off between the two objectives. The resulting Pareto front with

different optimal solutions is presented in figure 6.14. The values for α are selected by means of

an iterative process. In this way, only the values for α that show a different allocation of flights
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with respect to the other values for α are included in the Pareto front.

The reference scenario is indicated in red. In this way, all solutions are compared to the reference

scenario. All solutions that lie above the horizontal dashed line and left of the reference scenario

show potential savings for fuel only. All solutions that lie right of the vertical dashed line and

below the reference scenario show potential savings for noise only. All solutions that lie in

between the dashed lines show potential savings for both fuel and noise and are considered to

be optimal solutions with respect to the reference scenario. An overview of the Pareto front

solutions that are included in figure 6.14 is given by table 6.10. The results show that beneficial

savings can be achieved for both objectives when 0 ≤ α ≤ 0.9.

Figure 6.14: Optimal Pareto front solutions of the allocation model for different values of alpha

Table 6.10: Potential savings for Criteria 1 when applying different values of alpha

Fuel [kg] Savings Noise [Houses] Savings

Ref. Scenario 118686,47 0% 5213 0%

α

1 108210 8.8% 5290 -1.5%

0.9 108560 8.5% 4230 18.9%

0.5 111490 6.1% 3540 32.1%

0.4 112970 4.8% 3253 37.6%

0.3 116670 1.7% 2917 44.1%

0.2 116860 1.5% 2910 44.2%

0 117540 0.97% 2907 44.3%
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Criteria 2: 48 dB Lden

The second criteria involves the number of people seriously affected by noise of 48 dB Lden or

more. It should be noted that the allocation model optimizes for the number of people living

within the noise contour and not for the number of people that are seriously affected. After

determining the normalization factors for a noise limit of 48 dB Lden the optimal allocation for

fuel and noise is computed by the model. Optimizing the optimal allocation for fuel results in

the fact that all flights are allocated to the most fuel efficient trajectories. Therefore the optimal

allocation of flights is the same as for criteria 1, as shown by figure 6.8. Figure 6.15 shows the

corresponding grid points that fall inside a noise contour of 48 dB Lden.

Figure 6.15: Grid points within the noise contour when optimizing for fuel

The potential benefit when optimizing for fuel is shown by figure 6.16. It follows that an optimal

allocation of the flight schedule results in maximum fuel savings of 8.8% with corresponding

noise savings of -35.7%. Therefore, the results show that optimizing for fuel comes at the cost

of producing more noise.
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(a) Potential fuel savings of 8,8% (b) Corresponding noise savings of -35.7%

Figure 6.16: Potential benefit for criteria 2 when optimizing for fuel

Optimizing for noise leads to a different allocation of flights with different noise contours. Figure

6.17 shows the optimal allocation of flights. It follows that the flights are distributed over the

trajectories that are available in order to keep noise to a minimum. The results show similar

behaviour as for criteria 1. The corresponding grid points that fall inside a noise contour of

48 dB Lden when minimizing for noise are shown by figure 6.18. Just like for criteria 1, high

populated areas are avoided to minimize the number of people living within the noise contour.

Figure 6.17: Allocation of flights when optimizing for noise
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Figure 6.18: Grid points within the noise contour when optimizing for noise

The potential benefit when optimizing for noise is shown by figure 6.19. It follows that an optimal

allocation of the flight schedule results in maximum noise savings of 48.8% with corresponding

fuel savings of -2.9%. Therefore, the results show that optimizing for noise comes at the cost of

higher fuel consumptions.

(a) Corresponding fuel savings of -2.9% (b) Potential noise savings of 48.8%

Figure 6.19: Potential benefit for criteria 2 when optimizing for noise

Finally, different values for α are applied to the allocation model to vary the weightings on each

objective. The resulting Pareto front with different optimal solutions is presented in figure 6.20.

All solutions that lie in between the dashed lines show potential savings for both fuel and noise,

and are considered to be optimal solutions with respect to the reference scenario. An overview
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of the Pareto front solutions that are included in figure 6.20 is given by table 6.11. The results

show that beneficial savings can be achieved for both objectives when 0.01 ≤ α ≤ 0.66.

Figure 6.20: Optimal Pareto front solutions of the allocation model for different values of alpha

Table 6.11: Potential savings for Criteria 2 when applying different values of alpha

Fuel [kg] Savings Noise [People] Savings

Ref. Scenario 118686,47 0% 110700 0%

α

1 108210 8.8% 150220 -35.7%

0.9 108220 8.8% 126090 -13.9%

0.66 110300 7.1% 99000 10.6%

0.6 111080 6.4% 88970 19.6%

0.5 112660 5.1% 74780 32.5%

0.4 115460 2.7% 60120 45.7%

0.2 116810 1.6% 57050 48.5%

0.01 117420 1.1% 56930 48.6%

0 122180 -2.9% 56700 48.8%
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Criteria 3: 48 dB Lnight

The third criteria involves the number of houses experiencing noise of 48 dB Lnight. In order to

evaluate this criteria only night flights are taken into account. Furthermore, the reference time

period T0 is set to 25200 seconds to account for Lnight only. The penalties for different periods

of the day are not necessary since only night flights are being considered. After determining the

normalization factors for a noise limit of 48 dB Lnight the optimal allocation for fuel and noise

is computed by the model. Optimizing the optimal allocation for fuel results in an allocation to

the most fuel efficient trajectories for all flights. Therefore the optimal allocation of flights is the

same as for criteria 1 and 2, as shown by figure 6.8. Figure 6.21 shows the corresponding grid

points that fall inside a noise contour of 48 dB Lnight.

Figure 6.21: Grid points within the noise contour when optimizing for fuel

The potential benefit when optimizing for fuel is shown by figure 6.22. It follows that an optimal

allocation of the flight schedule results in maximum fuel savings of 8.2% with corresponding noise

savings of 53.3%. Therefore, the results show that optimizing for fuel leads to potential savings

for noise as well.
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(a) Potential fuel savings of 8,2% (b) Corresponding noise savings of 53.3%

Figure 6.22: Potential benefit for criteria 3 when optimizing for fuel

Optimizing for noise leads to a different allocation of flights with different noise contours. Figure

6.23 shows the optimal allocation of flights. The results show similar behaviour as for criteria 1

and 2. It follows that the flights are distributed over the trajectories that are available in order

to keep noise to a minimum. The corresponding grid points that fall inside a noise contour of 48

dB Lnight when optimizing for noise are shown by figure 6.24. Just like for criteria 1 and 2, high

populated areas are avoided in order to minimize the number of people living within the noise

contour.

Figure 6.23: Allocation of flights when optimizing for noise
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Figure 6.24: Grid points within the noise contour when optimizing for noise

The potential benefit when optimizing for noise is shown by figure 6.25. It follows that an optimal

allocation of the flight schedule results in maximum noise savings of 78.8% with corresponding

fuel savings of -2.5%. Therefore, the results show that optimizing for noise comes at the cost of

higher fuel consumptions.

(a) Corresponding fuel savings of -2.5% (b) Potential noise savings of 78.8%

Figure 6.25: Potential benefit for criteria 3 when optimizing for noise

Finally, different values for α are applied to the allocation model to vary the weightings on each

objective. The resulting Pareto front with different optimal solutions is presented in figure 6.26.

All solutions that lie in between the dashed lines show potential savings for both fuel and noise

and are considered to be optimal solutions with respect to the reference scenario. An overview
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of the Pareto front solutions that are included in figure 6.26 is given by table 6.12. The results

show that beneficial savings can be achieved for both objectives when 0.13 < α ≤ 1.

Figure 6.26: Optimal Pareto front solutions of the allocation model for different values of alpha

Table 6.12: Potential savings for Criteria 3 when applying different values of alpha

Fuel [kg] Savings Noise [Houses] Savings

Ref. Scenario 5954,23 0% 9013 0%

α

1 5465 8.21% 4213 53.3%

0.6 5741 3.6% 2203 75.6%

0.4 5793 2.7% 2050 77.3%

0.13 6042 -1.5% 1903 78.8%

0 6102 -2.5% 1903 78.8%
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Criteria 4: 40 dB Lnight

The fourth criteria involves the number of awakenings because of noise of 40 dB Lnight or more.

It should be noted that the allocation model optimizes for the number of people living within

the noise contour. In order to evaluate this criteria only night flights are taken into account.

Furthermore, the same settings as for criteria 3 are used. After determining the normalization

factors for a noise limit of 40 dB Lnight the optimal allocation for fuel and noise is computed by

the model. Optimizing the optimal allocation for fuel results in assigning all flights to the most

fuel efficient trajectories. Therefore, the optimal allocation of flights is the same as for the other

evaluated criteria, as shown by figure 6.8. Figure 6.27 shows the corresponding grid points that

fall inside a noise contour of 40 dB Lnight.

Figure 6.27: Grid points within the noise contour when optimizing for fuel

The potential benefit when optimizing for fuel is shown by figure 6.28. It follows that an optimal

allocation of the flight schedule results in maximum fuel savings of 8.2% with corresponding noise

savings of 29.5%. Therefore, the results show that optimizing for fuel leads to potential savings

for noise as well.
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(a) Potential fuel savings of 8,2% (b) Corresponding noise savings of 29.5%

Figure 6.28: Potential benefit for criteria 4 when optimizing for fuel

Optimizing for noise leads to a different allocation of flights with different noise contours. Figure

6.29 shows the optimal allocation of flights. The results show similar behaviour as for the

other evaluated criteria. It follows that the flights are distributed over the trajectories that are

available in order to keep noise to a minimum. The corresponding grid points that fall inside a

noise contour of 40 dB Lnight when optimizing for noise are shown by figure 6.30. Just like for

the other evaluated criteria, high populated areas are avoided to minimize the number of people

living within the noise contour.

Figure 6.29: Allocation of flights when optimizing for noise
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Figure 6.30: Grid points within the noise contour when optimizing for noise

The potential benefit when optimizing for noise is shown by figure 6.31. It follows that an optimal

allocation of the flight schedule results in maximum noise savings of 64.9% with corresponding

fuel savings of 0.84%. Therefore, the results show that optimizing for noise results in minor

savings for fuel consumptions as well.

(a) Corresponding fuel savings of 0.84% (b) Potential noise savings of 64.9%

Figure 6.31: Potential benefit for criteria 4 when optimizing for noise

Finally, different values for α are applied to the allocation model to vary the weightings on each

objective. The resulting Pareto front with different optimal solutions is presented in figure 6.32.

All solutions in between the dashed lines show potential savings for both fuel and noise, and are

considered to be optimal solutions with respect to the reference scenario. An overview of the

Pareto front solutions that are included in figure 6.32 is given by table 6.13. The results show
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that beneficial savings can be achieved for all values of α.

Figure 6.32: Optimal Pareto front solutions of the allocation model for different values of alpha

Table 6.13: Potential savings for Criteria 4 when applying different values of alpha

Fuel [kg] Savings Noise [People] Savings

Ref. Scenario 5954,23 0% 110850 0%

α

1 5465 8.2% 78100 29.5%

0.6 5657 5% 46510 58%

0.4 5673 4.7% 44810 59.6%

0.3 5768 3.1% 39730 64.2%

0.1 5787 2.8% 39210 64.6%

0 5904 0.8% 38930 64.9%

82



6.3.3 Case Study Results

Combining the outcome of the allocation model for all four criteria leads to the final result of this

case study. Looking at the optimal Pareto fronts of all four criteria it can be observed that the

allocation model provides satisfying results for both fuel and noise criteria for a specific range

in values of α. Combining the lower and upper bounds of all criteria results in a final optimum

range for α, as shown by equation 6.2. It holds that positive results are achieved for all four

criteria when applying values for α that are within the optimal range.

αlb ≤ α ≤ αub ,where αlb = 0.14

αub = 0.66
(6.2)

The optimal range for α has its effect on each criteria. The potential benefit of tailored SID and

profile allocations that can be achieved by means of this method is now limited due to the lower

and upper bound of the optimal range. An overview of maximum savings per evaluated criteria

as a result of the optimal range for α is provided by table 6.14.

Table 6.14: Maximum savings on fuel and noise as a result of the optimal range for α

Max Savings
Criteria Fuel: α = .66 Noise: α = .14

1 6.1% 44.2%
2 7.1% 48.5%
3 3.6% 78.8%
4 5% 64.2%

Looking at the final results the question rises why the trajectories developed by the model are

not used in real practice when the potential benefit of tailored SID and profile allocation has

proven to be so significantly high, especially for noise.

First of all, it should be noted that part of the extreme outcome can be declared by the behaviour

of the allocation model. In order to compute the optimal allocation of flights the model will try

to keep as much grid points as possible just below the noise limit. Therefore, at some point, other

trajectories than the most noise efficient trajectories are selected by the model as well. It is likely

that some of the grid points reach cumulative noise levels that are very close, but just below the

opposed noise limits. Therefore, according to the model the corresponding population remains

outside the noise contour although in real practice the experienced noise levels are almost similar

as the opposed noise limits.

Secondly, it should be noted that the case scenario is chosen because its noisy characteristics

provide a suitable extreme for the case study. Furthermore, the B744 aircraft model is used to

represent all wide body aircraft, which is dominant in terms of noise. Subsequently, the reference

data is simulated by assuming that all flights follow the same SID crossing areas with high pop-

ulation densities. Compared to the tailored SID, which are optimized for noise, it is likely that
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the extreme results for noise can partly be declared by the extreme scenario that is evaluated

for this case study.

Nevertheless, the potential benefit of tailored SID and profile allocation is still proven to be

significantly high. When trying to answer the question why tailored trajectories are not yet used

in real practice, one enters a political discussion with many stakeholders involved. It requires a

lot of effort to find compromises between the different stakeholders in order to change the current

state of airport operations at AAS. All stakeholders have their own interests. It often comes down

to the fact that economical interest is given priority. Unless the outcome of scientific research is

expected to realize economical growth and guarantee that main stakeholders can profit directly,

it is less likely that those stakeholders will invest in the implementation of novel technologies like

tailored SID and profile allocation. Although, for this research it seems to be the case that many

stakeholders would benefit from the developed trajectories, it might still not be the right time for

implementation in order to gain full profit of the potential that tailored departure trajectories

have for AAS.
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7
Verification and Validation

In the process of doing this research two models are developed to investigate the potential benefit

of tailored SID and profile allocation. In this chapter the verification and validation of the models

is discussed. Section 7.1 explains what methods are used to verify the models. Subsequently, the

validation of the models is discussed in section 7.2.

7.1 Verification

By means of verification it is checked whether the predefined design requirements are met and if

the model shows desired behaviour. Verification of the model is done by checking the individual

building blocks of each model separately. For the trajectory optimization model this means that

the trajectory simulation block and noise impact model are checked on desired behaviour before

applying the multi-objective optimization algorithm. The behaviour and outcome of the tra-

jectory model is checked for different input parameters, consisting of a variety in aircraft type,

take-off weight and flight profile procedures. Subsequently, the optimization algorithm is applied.

The outcome of the trajectory optimization model is checked on sufficient variety between the

trajectory parameters of different optimal solutions.

The same strategy is applied to the trajectory allocation model. Individual blocks of the alloca-

tion model are verified separately. Expected outcomes for noise and fuel are calculated manually

and compared to the results of the model. Additionally, a concept case is performed to test the

behaviour of the two models combined. The concept case is performed in order to test the work-

ing principle of the overall model and decide whether developed method is sufficient in achieving

the overall research objective of the MSc. thesis research. For the concept case two tailored

trajectories are developed. One noise optimal trajectory that avoids a centralized population
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area and one fuel optimal trajectory that crosses the centralized population area. Subsequently,

the allocation model computed the optimal allocation of flights for one aircraft type with fixed

take-off weight. In this way, the main objectives and requirements of the model are verified.

Details of the concept case can be found in appendix G of this report.

Finally, an extra verification is done by means of the case study discussed in chapter 6. Just like

with the concept case, the case study provides another possibility to check whether the predefined

design requirements are met and if the model shows desired behaviour. By comparing the case

study results to the reference data, it is verified whether the developed model leads to positive

results for this research. In this way, it is verified if the main objective of the developed model

is achieved.

7.2 Validation

By means of validation it is verified whether outcomes of the model correspond to actual data.

Validation is done to check if the model generates realistic results. This gives an indication of

the feasibility of the developed model. In order to validate the allocation model noise levels are

compared with measurements of an official measurement system of AAS. This are the ’handhav-

ingspunten’ around AAS. By means of the ’handhavingspunten’ actual noise levels as a result

of the aircraft movements are measured to give an indication of the actual noise impact on the

environment [40]. Since a specific scenario is considered for the case study, only a limited number

of ’handhavingspunten’ is selected for the validation. From the 35 measurment points only five

(points 19-23) are located in the vicinity of the Buitenveldert runway and on track of the 09

departure trajectory. The exact location of all ’handhavingspunten’ can be found in appendix

H together with a table that includes the noise limit values and actual measured noise values

corresponding to each ’handhavingspunt’.

In table 7.1 actual data of the selected ’handhavingspunten’ is compared to the outcome of the

model. The table shows that results are within a reasonable range from the actual data. Positive

results are found for points 19 and 22 where the outcome of the model shows noise levels that

are lower than the actual data. For the other three locations the simulated noise levels exceed

the reference data. This deviation can be declared due to the fact that the noise values from

the ’handhavingspunten’ are based on average yearly movements. On the other hand, the model

takes a specific scenario into account for a 24 hours day only. Assuming that other days can

compensate for current results, outliers are allowed as long as they stay within a reasonable range

from the reference data. Furthermore, all wide body aircraft are represented by a B744 model,

which is one of the noisiest and worst climbers of the entire fleet operating at AAS. This can be

the cause of higher noise levels measured at locations close to the departure track.

The validation method of the ’handhavingspunten’ proved to be not completely satisfying. The

fact that result are based on a different scenario with respect to the reference data results in
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Table 7.1: Validation of noise levels in the vicinity of runway 09

Location Limit [Lden] Measured Value [Lden] Simulated Value [Lden]
19 54.57 53.54 51.05
20 59.56 59.29 63.17
21 58.39 56.92 60.34
22 58.32 55.41 53.14
23 57.72 56.16 62.10

some deviation which is assumed to be declarable. Another way to validate model outcome is

by validation of the trajectory optimization model. Realistic values of the single tailored tra-

jectories should result in realistic outcome of the allocation model as well. Fuel values of the

trajectory model are checked with BADA and compared to results of other optimization studies

evaluating the same aircraft types [4] [12]. The same strategy is used to validate noise levels of

the trajectory optimization model. Validation of the single tailored trajectories is done for both

aircraft types individually. Knowledge of experts in the field of trajectory optimization is used

as an extra validation measure.

Additionally, several experts in the field of noise and climate effects or trajectory optimization

have been consulted to discuss the results of the model. Their advice contributed to the validation

of the model and achieve improvements on the model outcome. Among these experts were people

from the ATO section of the aerospace faculty in Delft and people from Schiphol Group.
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8
Conclusions & Recommendations

This research investigates the potential benefit of tailored SID and profile allocation. The main

driver for this research is to achieve significant noise reduction and fuel savings for AAS. Where

research on tailored arrivals already lead to the practical implementation of CDA’s, the potential

benefit of tailored departures has been left relatively undiscovered. An optimal allocation of

tailored aircraft departures potentially decreases the number of people annoyed by noise and

result in fuel savings for the airlines. The research is executed after formulating the following

research objective statement:

Quantify the potential benefit of tailored SID and profile allocation for Amsterdam Airport

Schiphol by developing a model that is capable of simulating departure trajectories per runway

departure fix and optimize the overall allocation of departing aircraft for noise and fuel

consumption.

For this purpose two models are developed after which results have been compared with results

of a simulated real case scenario from AAS. In this chapter the conclusions of the research

are presented. Subsequently, the main limitations of the model are discussed. This allows to

think of any improvements to be made for further development of the models and formulate

recommendations for future research on this topic. This chapter will start with presenting the

conclusions in section 8.1. In section 8.2 the main limitations of the model are discussed. Finally,

recommendations for future research are done in section 8.3.

8.1 Conclusions

The most important conclusion for this research is that the potential benefit of tailored SID and

profile allocation can now be quantified by means of the proposed method. This method includes
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the development of two optimization models. The first model is capable of simulating tailored

departure trajectories dependent on aircraft type and take-off weight. By running the model for

different combinations of aircraft type and take-off weight a final set of tailored trajectories is

generated, which serve as input for the second model. The second model is capable of computing

the optimal allocation of flights to the tailored trajectories and calculate corresponding cost for

fuel and noise.

A second important conclusion is that the potential benefit of tailored SID and profile alloca-

tion has proven to be significant for both fuel consumption and noise abatement purposes. The

concept of tailored SID and profile allocation is tested by applying the models to a real case

scenario and evaluate the results for four different noise criteria. It should be noted that the

outcomes of this research correspond to the initial phase of departure flights only. This includes

the moment of take-off until a specified departure fix is reached. According to the hypothesis

stated in chapter 3 of this report a potential benefit of 5% fuel savings with respect to current

departure operations was expected. The case study results showed potential fuel savings that

range from 3.6% to 7.1%, as shown by table 8.1. For three of the four noise criteria the case

study results either confirmed or exceed expectations that were done in the hypothesis. It can be

concluded that the potential benefit of tailored SID and profile allocation for fuel consumptions

exceeds expectations and is therefore considered to be a positive outcome of this research.

According to the hypothesis done in chapter 3 of this report a potential benefit of 10% noise

savings with respect to current departure operations was expected. The case study results showed

potential noise savings that range from 44.2% to 78.8%, as shown by table 8.1. For all four noise

criteria the case study results exceed expectations that were done in the hypothesis and are

rather extreme. The main reason for this is that the B744 aircraft model is used to represent

all wide body aircraft, which is dominant in terms of noise. Furthermore, the reference case

scenario is simulated by assuming that all flights follow one fixed SID and profile which crosses

areas with high population densities compared to the tailored SID, which are optimized for noise.

In combination with the fact that a noise dominant aircraft type is used for the case study, it is

assumed that this causes the extreme results for noise.

Table 8.1: Maximum savings on fuel and noise as a result of the optimal range for α

Max Savings

Criteria Fuel: α = .66 Noise: α = .14

1 6.1% 44.2%

2 7.1% 48.5%

3 3.6% 78.8%

4 5% 64.2%

A second reason is the fact that noise contours of the current situation are simulated and located

in populated areas, whereas the allocation model tries to relocate noise contours to less populated
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areas. The latter will be explained in more detail later on in this section. Nevertheless, it is

expected that for a wider range of aircraft types, the case study will still show positive results

for noise but to a lesser extend. It should be noted that a noise sensitive area in combination

with a noise dominant aircraft has been used for the case study. It is assumed that this has

its effect on the extreme outcome of noise abatement results. Overall, it can be concluded that

the potential benefit of tailored SID and profile allocation for noise exceeds expectations and is

therefore considered to be a positive outcome of this research.

Now that the main conclusions are discussed, several conclusions with respect to the process of

aircraft trajectory modelling can be made. The tailored trajectories are developed by perform-

ing a multi objective optimization of a single event for different flight categories. Firstly, it can

be concluded that noise optimal trajectories come at the cost of fuel and vice versa. This is

confirmed by the outcome of the trajectory optimization model. Results of the multi objective

genetic optimization algorithm are presented by means of optimal Pareto fronts which illustrates

the trade-off to be made between two objectives. Looking at the results for the B733 aircraft

model it can be concluded that fuel optimal routes follow the shortest route towards the depar-

ture fix and use a NADP-2 profile procedure. Noise optimal routes tend to avoid populated areas

and use a NADP-2 procedure as well.

Furthermore, it can be concluded that the number of ground track segments requires an addi-

tional sensitivity analysis per aircraft type taken into account for the case study. The sensitivity

analysis is performed to determine the number of ground track segments required for satisfying

results of the trajectory optimization model. For the case study a sensitivity analysis is done for

the B733 only. Subsequently, the same number of ground segments is used for the development

of the B744 tailored trajectories. Final results for the B744 trajectories tend to originate from a

local optimum in the optimization problem. This follows from the fact that the different tailored

trajectories show only minor differences in ground track parameters.

To conclude this section, several conclusions with respect to the allocation model are discussed

as well. The allocation model computes the optimal allocation for a cumulative set of events with

respect to noise, fuel or a trade-off between these two objectives. It can be concluded that when

optimizing the allocation for fuel all flights are assigned to the most fuel efficient trajectories

available for the specific flight categories from the assessed flight schedule.

When optimizing the overall allocation for noise it can be concluded that flights from the as-

sessed flight schedule are distributed over the different tailored trajectories available. It follows

that not all flights are assigned to the most noise efficient trajectories available. The reason

for this is that, when optimizing for noise, the model allocates flights to a tailored trajectory

until the noise limit at the corresponding grid points is almost reached. In order to optimize for

noise other alternative trajectories are considered as well before cumulative noise levels of the

corresponding grid points pass the threshold. Secondly, when the noise contour increases as a
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result of additional departures, the model assigns the flights in such a way that the grid points

with the lowest population densities are included in the noise contour.

This results in the fact that the possibility exists that part of the flights is assigned to trajectories

other than the most noise efficient trajectories. It is important to realize that optimization of

single events is not necessarily determined for optimization of cumulative events. Although it

is unlikely that the allocation model will assign flights to the B733 trajectories with a NADP-1

flight procedure, it can be concluded that it might have been premature to ignore them for the

allocation problem.

8.2 Limitations

In this section several limitations of the model are discussed. It is important to be aware of the

model’s limitations. This allows to formulate clear recommendations for future research on the

topic of tailored SID and profile allocation, which will be discussed in the next section. In this

section the main limitations of the overall research, the trajectory optimization model and the

allocation model are discussed separately.

The Main Research

The current outcome of the model is limited to a specific case scenario and only considers one

runway departure fix combination. Applying the model to other scenario’s would require some

adjustments to the trajectory model in terms of geometric calculations of the departure traject-

ory. Scaling up the problem is expected to be time consuming.

The model outcome is not directly feasible for practical use. In order to investigate the practical

feasibility of tailored SID and profile allocation the basic concept should be expanded first and

include all possible runway departure fix combinations of AAS.

It should be noted that this method does not take the practical burden of living within the noise

contour into account. Once a specific point falls inside the contour the model tends to allocate

flights to trajectories crossing this point because it already falls inside the noise contour. In this

way, the model avoids that other grid points fall inside the contour as well. Relating this to real

life it might be concluded that it is unfair to leave people with an increased flight intensity while

they already experience significant noise levels.

On the other hand, the model will try to keep as much grid points as possible just below the

noise limit. Therefore, at some point, other trajectories than the most noise efficient trajectories

are selected by the model as well. It is likely that some of the grid points reach cumulative noise

levels that are very close, but just below the opposed noise limits. Therefore, according to the

model the corresponding population remains outside the noise contour although in real practice
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the experienced noise levels are almost similar as the opposed noise limits.

Trajectory Model

Currently, one of the main limitations of the trajectory model involves the fact that many steps

need to be executed manually. The main steps are listed below.

• Changing input parameters for aircraft type, take-off weight and departure profile.

• Adjust take-off speed, V2 and flap setting retraction schedule as a result of different flight

category.

• After running the optimization, the derivative method is used to make a selection of optimal

solutions that are candidate solutions for the third tailored trajectory. The final selection

of this third point is done manually.

Furthermore, final results for noise levels seem to be higher than expected. This can have several

causes. First of all, it should be noted that the low diversity between the B744 ground tracks has

large impact on the noise contours of the allocation model. Furthermore, it is generally known

that the B744 is a bad climber. Only 50% of the wide body aircraft from the departure schedule

is actually a B744. The other 50% consists of other wide body aircraft types that are presented

by this noise dominant B744. This probably causes higher noise levels with respect to actual

noise data.

Expanding the number of aircraft types will be time consuming. The number of parameters

required to assure enough flexibility of the ground track might differ with respect to other aircraft

types. It is likely that a new sensitivity analysis is required for every single aircraft type added

to the fleet when scaling up the number of aircraft types.

Allocation Model

It is not possible to optimize for the dose-response relations due to their non-linear characterist-

ics. Currently, optimizations for noise are based on the number of people or houses per grid point.

Secondly, normalization factors need to be determined for every individual criteria evaluated by

the allocation model.

8.3 Recommendations

After discussing the limitations of this research, this section provides any suggestions for further

improvements of the developed model. Secondly, recommendations for future research on the

topic of tailored trajectory and profile allocation are done. The recommendations are discussed

below.
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First of all, most potential can be found in scaling up the research case. The proposed method

of this research proved to be a valid way of quantifying the potential benefit of tailored SID and

profile allocation for an individual case scenario. Scaling up the research would allow to evaluate

the potential benefit for yearly operations at AAS. Since it is expected that this process will be

rather time consuming the following step by step approach is recommended:

• First, apply the model to other departure fixes. This allows for assessing a full departure

schedule since all five departure fixes are taken into account. It should be noted that in

this case it is still assumed that all flights depart from the 09 runway.

• Secondly, expand the number of aircraft types. This will positively influence the case study

since flights from the actual flight schedule can be represented by the right combination of

aircraft type and take-off weights. Just like for this research, this can be done by integ-

rating aircraft performance models of other aircraft types into the trajectory optimization

model. Another way to expand the number of aircraft types is by considering several

sub classes. Aircraft types that show similar performance characteristics can make use of

already generated tailored trajectories. This makes trajectory optimization unnecessary

and only requires to calculate the cost coefficients for fuel and noise of the different sub

classes.

• Thirdly, take an extra runway into account and combine this with all five departure fix

combinations. In this way a real case scenario can be simulated with respect to runway

configuration which allows to evaluate peak and off-peak hours.

• Finally, it is desirable to take all runway departure fix combinations into account. This

would allow for evaluating different airport runway configuration scenario’s and challenge

the current preference list.

In case future research results in clear insights to the potential benefit of tailored SID and profile

allocation for AAS as a whole, new opportunities arise. Positive results could be combined with

research into optimal allocation of aircraft arrivals. This would allow for investigating the po-

tential benefit of runway allocation for AAS taking both tailored arrivals and tailored departures

into account.

The main requirement for applying the allocation model to other runway configuration scenario’s

is the availability of data on tailored trajectories. This is experienced to be the main challenge

and most time consuming process of the research. Future research on this topic not only includes

application of the trajectory model to other airport scenario’s, but also involves expanding the

number of aircraft types taken into account. In order to keep future projects within realistic time

bounds, one should look for efficient ways to generate the required data on tailored trajectories.

In order to do so, several suggestions are done below:

• The use of already existing trajectory optimization models is highly recommended. The

models should be able to optimize trajectories for different aircraft types and take-off

weights. In order to use the data for the allocation model it is important that the outcome
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of these models include cost values for fuel and noise values (SEL) per grid point of the to

be evaluated grid.

• Tailored trajectories can be defined by doing reasonable assumptions, based on data files

from programmes like BADA, INM, etc. By making use of aircraft grouping, thrust-to-

weight ratio’s reasonable assumptions can be made as well.

• As a final option, it would be possible to simply assume departure trajectories and use

a program like INM to calculate the noise impact per grid point. The downside of this

approach, is that the term ’tailored’ is not applicable any more since the potential benefit

of a specific aircraft type take off weight combination is not incorporated by a trajectory

model.

Looking at the developed trajectory optimization model several suggestions can be done for fur-

ther improvement of the model. Currently, many steps need to be executed manually in order

to generate a set of tailored trajectories for one specific flight category. It is recommended to

investigate the possibilities to make the current process more efficient. For instance, this could

be done by adding a post-processor to the trajectory model. By means of the post-processor the

process of selecting the final solutions from the optimal Pareto-front could be optimized.

Furthermore, an additional study could be carried out on how many tailored trajectories actually

are necessary to significantly improve noise abatement. For this study only three trajectories

were selected per flight category. The result showed that for a noise optimal allocation the model

tends to divide flights over multiple trajectories in order to keep the noise contour to a minimum.

A sensitivity analysis on the number of tailored trajectories required would say something about

the limits of this research.

Looking at the developed allocation model several suggestions can be done for further improve-

ment of the model. The current model optimizes for the number of people or houses within the

noise contour. It evaluates whether the cumulative noise level of a grid point is below or above

the threshold and therefore, if the corresponding population falls within or outside the noise

contour. After optimization the cumulative noise level per grid point is known. This allows for

calculating the dose-response relations per grid point after the optimization is done and display

the values in the Pareto front. In this way, the model outcomes can be compared to the real

noise criteria of AAS. It should be noted that for this case study the model still optimizes for

the number of people within a certain noise contour and not for the number of people seriously

hindered!
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A
Research Methodology

Figure A.1: Schematic representation of the research methodology used for this MSc thesis
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B
Sensitivity Analysis

B.1 Overview of the Sensitivity Analysis

Figure B.1: An overview of the different cases and their results, as being evaluated during the
sensitivity analysis
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B.2 Sensitivity Analysis on Ground Track Only

Figure B.2: Optimal Pareto-front solutions for optimization with 3 (left) and 5 (right) ground
segments

Figure B.3: Optimal Pareto-front solutions for optimization with 7 ground segments

B.3 Sensitivity Analysis with Vertical Profile Segments In-

cluded
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Figure B.4: Optimal Pareto-front solutions for optimization with 3 (left) and 5 (right) ground
segments, including vertical profile segments

Figure B.5: Optimal Pareto-front solutions for optimization with 7 ground segments, including
vertical profile segments
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C
AAS Flight Schedule
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Table C.1: Actual flight schedule provided by AAS. All flights that are outside the scope of this
research are removed from the flight schedule.

ID STime DepArr Origin Destination ACType Pax FLType AirlineCode Freight
19 16:30 Dep Airport AGP B737700 119 NAT HV 0
20 07:40 Dep Airport AGP B737700 119 NAT HV 0
21 14:15 Dep Airport ALA B767200 176 INT KL 35.200000762939503
24 14:00 Dep Airport AMM A320 112 INT RJ 3.5
26 04:30 Dep Airport AOK B737800 149 NAT HV 0
36 07:30 Dep Airport ASR A300 238 INT F2 11.300000190734901
37 10:05 Dep Airport ATH B737700 98 NAT KL 0
38 20:00 Dep Airport ATH B737700 98 NAT KL 0
39 12:40 Dep Airport ATH B737400 117 NAT OA 1.79999995231628
40 06:00 Dep Airport ATH B737800 149 NAT HV 0
46 20:30 Dep Airport AYT B757PW 175 INT F2 5.5
48 14:25 Dep Airport BAH B767200 176 INT KL 35.200000762939503
62 19:35 Dep Airport BEY B737700 98 INT KL 0
67 19:20 Dep Airport BGY B737700 119 NAT HV 0
68 06:55 Dep Airport BGY B737700 119 NAT HV 0
69 09:50 Dep Airport BHX B737300 118 NAT WW 0
70 18:05 Dep Airport BHX B737300 118 NAT WW 0
71 16:15 Dep Airport BHX FK100 81 NAT KL 4.6999998092651403
72 21:00 Dep Airport BHX B737700 98 NAT KL 0
73 13:55 Dep Airport BHX B737700 98 NAT KL 0
74 18:35 Dep Airport BHX FK70 64 NAT KL 5.9000000953674299
75 07:15 Dep Airport BHX FK70 64 NAT KL 5.9000000953674299
76 09:45 Dep Airport BHX B737700 98 NAT KL 0
77 20:00 Dep Airport BKK B747200 216 INT KL 40.900001525878899
78 14:25 Dep Airport BKK B747400 318 INT CI 14.8999996185303
79 12:35 Dep Airport BKK B747400 218 INT BR 54.5
91 10:25 Dep Airport BOM DC1030 216 INT NW 13.5
114 10:30 Dep Airport BTS B737500 106 NAT NE 3.4000000953674299
115 16:15 Dep Airport BUD B737700 98 NAT MA 0
116 14:15 Dep Airport BUD B737700 98 NAT MA 0
117 20:30 Dep Airport BUD B737700 98 NAT MA 0
118 10:00 Dep Airport BUD B737700 98 NAT MA 0
119 10:15 Dep Airport BUD B737500 106 NAT 5P 3.4000000953674299
120 20:40 Dep Airport BUD B737500 106 NAT 5P 3.4000000953674299
121 13:25 Dep Airport BUD B737700 98 NAT KL 0
122 20:10 Dep Airport CAI MD11 226 INT KL 46.099998474121101
123 16:00 Dep Airport CAI A320 116 INT MS 0
141 10:25 Dep Airport CGN FK50 40 NAT KL 3.5
142 19:35 Dep Airport CGN FK50 40 NAT KL 3.5
143 16:05 Dep Airport CGN FK50 40 NAT KL 3.5
167 12:00 Dep Airport DAM A320 122 INT RB 0
168 19:25 Dep Airport DAM B737700 98 INT KL 0
169 11:25 Dep Airport DEL MD11 226 INT KL 46.099998474121101
170 12:40 Dep Airport DMM B767200 176 INT KL 35.200000762939503
188 14:35 Dep Airport DXB B777200 229 INT KL 22
204 21:15 Dep Airport ESB A300 238 INT F2 11.300000190734901
205 23:30 Dep Airport ESB B737800 124 INT TK 0
222 14:40 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
223 10:30 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
224 12:15 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
225 20:20 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
226 15:55 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
227 19:40 Dep Airport FRA B737500 82 NAT LH 1.70000004768372
228 20:50 Dep Airport FRA A310 147 NAT PK 12.8999996185303
229 07:00 Dep Airport FRA BAE146200 64 NAT LH 0
230 18:25 Dep Airport FRA A320 115 NAT LH 1.5
231 12:55 Dep Airport FRA B757PW 154 NAT 4L 5.5
232 16:15 Dep Airport FRA FK70 64 NAT KL 5.9000000953674299
233 13:55 Dep Airport FRA FK70 64 NAT KL 5.9000000953674299
234 19:05 Dep Airport FRA FK70 64 NAT KL 5.9000000953674299
235 08:50 Dep Airport FRA FK100 81 NAT KL 4.6999998092651403
236 09:45 Dep Airport FRA B737300 98 NAT LH 2.4000000953674299
255 09:50 Dep Airport HAJ FK70 64 NAT KL 5.9000000953674299
256 19:20 Dep Airport HAJ FK70 64 NAT KL 5.9000000953674299
257 15:50 Dep Airport HAJ FK70 64 NAT KL 5.9000000953674299
258 12:30 Dep Airport HAJ FK50 40 NAT KL 3.5
273 06:00 Dep Airport HER B737800 149 NAT HV 0
287 11:35 Dep Airport IST B737800 124 INT TK 0
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ID STime DepArr Origin Destination ACType Pax FLType AirlineCode Freight
288 07:20 Dep Airport IST B737800 124 INT TK 0
289 17:30 Dep Airport IST B737800 124 INT TK 0
290 10:10 Dep Airport IST B737700 98 INT F2 0
291 10:00 Dep Airport IST B737700 98 INT KL 0
292 19:30 Dep Airport IST B737700 98 INT KL 0
300 10:05 Dep Airport KBP B737700 98 NAT PS 0
301 11:15 Dep Airport KBP B737700 98 NAT KL 0
304 12:45 Dep Airport KIV A320 115 NAT 9U 0
315 14:50 Dep Airport LCA B737800 149 INT HV 0
372 10:15 Dep Airport LJU CRJ200 38 NAT JP 0.40000000596046398
422 20:30 Dep Airport MNL B777200 229 INT KL 22
434 17:05 Dep Airport MUC CRJ100 40 NAT LH 0.69999998807907104
435 08:45 Dep Airport MUC CRJ100 40 NAT LH 0.69999998807907104
436 06:55 Dep Airport MUC CRJ100 40 NAT LH 0.69999998807907104
437 21:10 Dep Airport MUC CRJ100 40 NAT LH 0.69999998807907104
438 19:05 Dep Airport MUC CRJ700 56 NAT LH 0
439 20:30 Dep Airport MUC B737700 98 NAT KL 0
440 11:20 Dep Airport MUC FK70 64 NAT KL 5.9000000953674299
441 14:05 Dep Airport MUC B737700 98 NAT KL 0
442 08:00 Dep Airport MUC B737700 98 NAT KL 0
443 17:50 Dep Airport MUC FK70 64 NAT KL 5.9000000953674299
444 13:00 Dep Airport MUC CRJ100 40 NAT LH 0.69999998807907104
470 14:20 Dep Airport NUE FK70 64 NAT KL 5.9000000953674299
471 19:05 Dep Airport NUE FK70 64 NAT KL 5.9000000953674299
472 09:30 Dep Airport NUE FK70 64 NAT KL 5.9000000953674299
491 10:40 Dep Airport OTP B737700 98 NAT KL 0
492 08:55 Dep Airport OTP B737700 98 NAT KL 0
493 19:30 Dep Airport OTP B737700 98 NAT KL 0
497 13:40 Dep Airport PFO A330300 236 INT CY 9
501 09:25 Dep Airport PRG B737500 85 NAT QS 3.4000000953674299
502 16:20 Dep Airport PRG B737500 83 NAT OK 1
503 10:05 Dep Airport PRG B737400 112 NAT OK 1.20000004768372
504 08:55 Dep Airport PRG B737700 98 NAT KL 0
505 14:10 Dep Airport PRG B737700 98 NAT KL 0
506 19:25 Dep Airport PRG A320 120 NAT OK 1
518 11:50 Dep Airport SIN B777200 258 INT SQ 48.099998474121101
519 20:45 Dep Airport SIN B747200 216 INT KL 40.900001525878899
521 05:25 Dep Airport SMI B737800 149 NAT HV 0
522 10:00 Dep Airport SOF B737300 109 NAT FB 0
547 16:20 Dep Airport THR B767200 176 INT KL 35.200000762939503
555 19:50 Dep Airport TLV B737700 98 INT KL 0
556 10:25 Dep Airport TLV B767200 165 INT LY 10.800000190734901
562 08:10 Dep Airport TXL B737700 115 NAT AB 0
563 09:35 Dep Airport TXL B737700 98 NAT KL 0
564 19:20 Dep Airport TXL B737700 98 NAT KL 0
565 07:10 Dep Airport TXL FK70 64 NAT KL 5.9000000953674299
566 16:05 Dep Airport TXL FK100 81 NAT KL 4.6999998092651403
567 14:05 Dep Airport TXL FK100 81 NAT KL 4.6999998092651403
571 20:05 Dep Airport VIE A319 101 NAT OS 0
572 16:45 Dep Airport VIE FK70 64 NAT KL 5.9000000953674299
573 20:00 Dep Airport VIE B737700 98 NAT KL 0
574 08:10 Dep Airport VIE FK100 81 NAT KL 4.6999998092651403
575 13:45 Dep Airport VIE B737700 98 NAT KL 0
576 07:45 Dep Airport VIE A319 101 NAT OS 0
577 10:45 Dep Airport VIE A319 101 NAT OS 0
578 16:35 Dep Airport VIE CRJ200 40 NAT OS 0
582 19:50 Dep Airport WAW B737700 98 NAT KL 0
583 10:10 Dep Airport WAW B737700 98 NAT KL 0
584 13:35 Dep Airport WAW B737700 98 NAT KL 0
585 07:45 Dep Airport WAW EMB145 38 NAT LO 4.3000001907348597
586 10:35 Dep Airport WAW EMB145 38 NAT LO 4.3000001907348597
587 19:45 Dep Airport WAW EMB170 56 NAT LO 7.4000000953674299
594 17:40 Dep Airport ZAG A319 106 NAT OU 6.6999998092651403
595 11:20 Dep Airport ZAG A319 106 NAT OU 6.6999998092651403
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D
Schiphol Runway 09 Standard

Instrument Departure Chart
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Figure D.1: Standard Instrument Departures from runway 09 at AAS [6]
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E
Reference Case Trajectories

This appendix includes the simulated trajectories of the reference case. The trajectories are

simulated by the developed trajectory model. Use is made of fixed input parameters that follow

from actual airport operations. The parameters are presented in chapter 6 of this report. Tra-

jectories of the B737-300 and B747-400 of the light, medium and heavy take-off weight class are

shown by figure E.1, E.2 and E.3 respectively.

(a) Current trajectory of the B733 low
take-off weight

(b) Current trajectory of the B744 low
take-off weight

Figure E.1: Current trajectories of light weight class from 09 runway ARNEM departure fix
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(a) Current trajectory of the B733
medium take-off weight

(b) Current trajectory of the B744
medium take-off weight

Figure E.2: Current trajectories of medium weight class from 09 runway ARNEM departure fix

(a) Current trajectory of the B733
heavy take-off weight

(b) Current trajectory of the B744
heavy take-off weight

Figure E.3: Current trajectories of heavy weight class from 09 runway ARNEM departure fix
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F
Results Case Study

Table F.1: Final set of tailored trajectories that serves as input for the allocation model

NADP-1 NADP-2

Flight Cat. Fuel [kg] Awakenings Fuel [kg] Awakenings

- - 458,1 4915

B733-L - - 463,42 3440

- - 589,74 1951

- - 475,84 5583

B733-M - - 483,9 2507

- - 503,08 1941

- - 518,29 5529

B733-H - - 540,8 3031

- - 564,21 2449

1864,33 10286 1688,56 9881

B744-L 1941,96 8732 1705,7 8806

2120,01 7670 1711,01 8681

2297,67 12828 2138,75 12640

B744-M 2487,22 11978 2154,04 12276

2525,09 11694 2561,24 11998

2777,17 12164 2585,49 16763

B744-H 2861,3 10463 2586,34 16220

3130,34 9782 2871,91 16138
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F.1 Results Trajectory Optimization Model

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.1: B737-300 light take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.2: B737-300 light take-off weight and NADP-2 flight procedure
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(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.3: B737-300 medium take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.4: B737-300 medium take-off weight and NADP-2 flight procedure
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(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.5: B737-300 heavy take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.6: B737-300 heavy take-off weight and NADP-2 flight procedure
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(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.7: B747-400 light take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.8: B747-400 light take-off weight and NADP-2 flight procedure
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(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.9: B747-400 medium take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.10: B747-400 medium take-off weight and NADP-2 flight procedure
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(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.11: B747-400 heavy take-off weight and NADP-1 flight procedure

(a) Pareto-front of optimal solutions.
The red diamonds mark the selected solutions

(b) Selected tailored trajectories
-

Figure F.12: B747-400 heavy take-off weight with NADP-2 flight procedure
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G
Verification: Conceptual Model

This appendix provides an overview of the concept case used to verify the two models. The

concept case is performed in order to test the working principle of the overall model and de-

cide whether developed method is sufficient in achieving the overall research objective of the

MSc. thesis research. For the concept case two tailored trajectories are developed. One noise

optimal trajectory that avoids a centralized population area and one fuel optimal trajectory

that crosses the centralized population area. Subsequently, the allocation model computed the

optimal allocation of flights for one aircraft type with fixed take-off weight.

G.1 Experimental Set-Up

Scenario

• Only one aircraft type is being considered

• Only one departure weight is being considered

• The departure schedule is predefined and spread throughout a 24 hrs day

• Two different SID are being considered

• For both SID two different profiles are being considered (NADP-1 & NADP-2)

• Only one runway is being considered

• All departure tracks lead to the same departure fix

• Populated areas in the vicinity of the airport are centralized
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Figure G.1: Graphical representation of the concept scenario in grid form [rijkscoordinates]

Table G.1: Departure trajectory characteristics for the concept case: showing fuel consumption [kg
]and noise impact [Awakenings] per trajectory

SID 1 SID 2
NADP-1 477 kg, 796 Aw 550 kg, 319 Aw
NADP-2 661 kg, 1109 Aw 665 kg, 223 Aw

G.2 Conceptual Model

The analytical content of the model for the experimental set-up is written below.

Sets and indices

• Ff = 3 (set of flight categories)

• Aa = 1 (set of aircraft types)

• Ww = 1 (set of aircraft departure weights)

• Dd = 3 (set of different periods of the day)

• PP = 2 (set of profiles)

• Rr = 2 (set of routes)

Cost functions

The cost of the tailored trajectories for the concept case are included in table G.1.
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Equality Constraints ∑
p∈P

∑
r∈R

x1,1,1,p,r = 500 (G.1)

∑
p∈P

∑
r∈R

x1,1,2,p,r = 150 (G.2)

∑
p∈P

∑
r∈R

x1,1,3,p,r = 10 (G.3)

Inequality Constraints

The noise limit Nlimit and the penalty factor M are set by the user. CNa,w,d,p,r is computed by

the trajectory simulation model and given as an input to the allocation model.
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H
Validation: Handhavingspunten
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Figure H.1: Handhavingspunten at AAS
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Figure H.2: Noise limits and measured values per measurement point
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