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Synthesizing spoken descriptions of images

Xinsheng Wang, Justin van der Hout, Jihua Zhu, Member, IEEE Mark Hasegawa-Johnson, Fellow, IEEE,
Odette Scharenborg, Senior Member, IEEE

Abstract—Image captioning technology has great potential in
many scenarios. However, current text-based image captioning
methods cannot be applied to approximately half of the world’s
languages due to these languages’ lack of a written form. To solve
this problem, recently the image-to-speech task was proposed,
which generates spoken descriptions of images bypassing any
text via an intermediate representation consisting of phonemes
(image-to-phoneme). Here, we present a comprehensive study
on the image-to-speech task in which, 1) several representative
image-to-text generation methods are implemented for the image-
to-phoneme task, 2) objective metrics are sought to evaluate
the image-to-phoneme task, and 3) an end-to-end image-to-
speech model that is able to synthesize spoken descriptions of
images bypassing both text and phonemes is proposed. Extensive
experiments are conducted on the public benchmark database
Flickr8k. Results of our experiments demonstrate that 1) State-
of-the-art image-to-text models can perform well on the image-
to-phoneme task, and 2) several evaluation metrics, including
BLEU3, BLEU4, BLEUS, and ROUGE-L can be used to evaluate
image-to-phoneme performance. Finally, 3) end-to-end image-to-
speech bypassing text and phonemes is feasible.

Index Terms—Image-to-speech generation, multimodal mod-
elling, speech synthesis, cross-modal captioning.

I. INTRODUCTION

UTOMATICALLY describing visual scenes using natural

language has great potential in many scenarios, e.g., for
helping visually-impaired people interact with their surround-
ings. In recent years, many studies [1], [2], [3], [4], [S], [6],
[71, [8] have been conducted in the field of image captioning
which aims to automatically generate textual descriptions of
images. These neural captioning models follow the encoder-
decoder architecture, and are inspired by neural machine
translation. The image captioning task has achieved impressive
results by integrating various attention mechanisms [4], [5],
[9]. However, such text-based image captioning technology
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cannot be used by people whose language do not have a stan-
dard written form. In fact, nearly half of the world’s languages
does not have a generally-agreed upon written standard [10].
In order to make such image captioning technology accessible
to speakers of such unwritten languages, it is necessary to
develop technology that automatically creates spoken descrip-
tions of visual scenes, bypassing text. Moreover, such image-
to-speech technology [11] has great potential in many other
scenarios, e.g., for describing images to visually-impaired
people or describing an image when watching a screen is not
possible (e.g., when driving a car).

Hasegawa-Johnson et al. [11] first proposed the image-to-
speech task that tries to generate spoken descriptions of images
without using textual descriptions. In their method, the image-
to-speech was decomposed into two stages. The first stage
generates speech units, e.g., phonemes, with an image as input.
This is also referred to as the image-to-phoneme or image-to-
speech unit task. The second stage performs a phoneme-to-
speech synthesis process, and completes the image-to-speech
task. Importantly, this approach is crucially dependent on the
availability of descriptions of the images in terms of sequences
of sound units in order to train the first stage. Hasegawa-
Johnson et al. compared three different ways of obtaining these
sound units: L1 phonemes transcribed by an ASR that was
trained on the same language, L2 phonemes transcribed by
an ASR that was trained on another language, and so-called
pseudo phones that were automatically discovered using an
unsupervised acoustic unit discovery system. Only the second
two methods would allow for an image-to-speech system that
would work for an unwritten language. Unfortunately, only
the system based on the L1 phonemes achieved a reasonable
performance.

More recently, Hsu et al. [12] used an audio-visual ground-
ing model, named ResDAVEnet-VQ [13], to learn discrete
linguistic units from visually-grounded speech. The learned
speech units were then used for the image-to-speech task using
the image-to-speech unit and speech unit-to-speech approach.
Their results show reasonable performance in the image-to-
speech task, indicating that the speech units learned by their
visually grounded speech method can be used in the image-to-
speech task. Effendi et al. [14] also adopted a discrete speech
unit discovery model to learn the speech unit representations.
Different from [12], in [14], the speech unit discovery model
was trained in a self-supervised manner with a speech-only
database rather than with a paired image-speech database.
Moreover, their speech unit discovery model has an encoder-
decoder architecture, in which the decoder takes a speech
unit sequence as input and outputs speech representations in
the form of spectrograms, allowing this decoder to synthesize
speech from the speech units predicted by the image-to-speech
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unit model. Both these approaches outperformed the pseudo-
phone-based method in [11].

So several efforts [11], [12], [14] have pursued the goal
of image-to-speech synthesis using the consecutive steps of
image-to-speech unit and speech unit-to-speech, and with
reasonable results. However, many questions still remain. This
paper focuses on three. First, although image-to-speech is
a new task, it shares the same idea as text-based image
captioning methods, both of which follow the basic structure
of neural machine translation. There are, however, many more
models proposed for image captioning than for image-to-
speech; none of which have been investigated for the image-
to-speech (unit) task. So the first question we aim to answer in
this work is: In how far can current image captioning methods
be used for the image-to-speech task, and more specifically
the image-to-phoneme task? To that end, we implemented
several representative image captioning models in the image-
to-phoneme system. The image-to-phoneme model proposed
in [11] was re-implemented to serve as the baseline to which
the image-to-text-based systems were compared.

In the original image-to-speech paper [11], the evaluation
of the system was only carried out for the image-to-phoneme
task. BLEU score and speech unit (phoneme) error rates
were adopted as the evaluation metrics. Our recent work [15]
investigated the suitability of several metrics for the objective
evaluation of the image-to-phoneme task by correlating these
metrics with human ratings. BLEU4 was found to be the
best metric. However, in this work, only one model, i.e.,
a re-implementation of the model developed by [11] was
considered. Therefore, the second aim of the current paper
is to further investigate objective measures with different
models. Here, we extend our previous work by investigating
the suitability of these objective metrics on the evaluation of
the image-to-phoneme task by correlating the scores for the
different image captioning models on the image-to-phoneme
task with the scores on these metrics after conversion of the
automatically generated phoneme sequences to words.

Third, as explained above, the performance of the speech
unit-based method crucially depends on the quality of the used
speech units to train the image-to-speech unit stage. So the
third question we aim to answer here is whether the image-
to-speech task can be realized by an end-to-end model that
bypasses the need for both text and intermediate speech units.
To that end, we propose an end-to-end image-to-speech model
which can generate spoken descriptions directly from images
without using any intermediate speech units.

In this work, we focus on both the image-to-phoneme task
and the image-to-speech task. The contributions of this work
are as follows:

« Experiments on various image captioning models that
were implemented for the image-to-phoneme task showed
that image captioning methods can have a good perfor-
mance on the image-to-phoneme task.

« Analysis of various evaluation metrics’ effectiveness on
the image-to-phoneme task showed that BLEU3, BLEU4,
BLEUS, and ROUGE-L evaluations of a phoneme string
correlate well with objective evaluations of the resulting
text output.

« For the first time, an end-to-end image-to-speech method
was proposed, which demonstrated that generating spoken
descriptions for images while bypassing text and interme-
diate speech units is feasible.

The rest of the paper is organized as follows: Section II
reviews related works on image captioning and visual-speech
multi-modal learning. Section III introduces several image
captioning models that will be re-implemented in the image-to-
phoneme task. Section IV describes the proposed end-to-end
image-to-speech method. Section V and VI present the results
of the image-to-phoneme task and the end-to-end image-to-
speech method, respectively. Section VII discusses the results
of the experiments and proposes research directions for the
future. Finally, Section VIII concludes this paper.

II. RELATED WORKS
A. Image captioning

Earlier image captioning approaches were retrieval-based
or template-based methods. In retrieval-based methods, the
caption of an image is obtained by retrieving one or a set
of sentences from a pool of existing sentences [16], [17].
The template-based method is normally based on the outputs
of an object detector or attribute predictor to compose a
sentence by adding these objects or attribute words to a caption
template [18], [19]. Although both these methods usually
lead to grammatically correct and fluent captions, the obvious
disadvantage is that the number of different captions that can
be generated is limited due to the use of pre-existing sentences
and templates.

In recent years, inspired by the development of neural ma-
chine translation, the neural-based encoder-decoder paradigm
has been the basic framework used for image captioning. In
[20], [21], the image is encoded by a Convolutional Neural
Network (CNN), and a Recurrent Neural Network (RNN) is
used as a sentence decoder to generate a text description of
the input image. This encoder-decoder framework has shown
to achieve promising results [20]. However, as is well known,
an image contains rich information, much of which typically
is not described by humans when captioning the image (e.g.,
the clouds in the sky or trees in the background). Motivated by
the visual attention mechanism of primates and humans, the
attention mechanism has been successfully used in automatic
image captioning systems, which led to large improvements
(11, [4], [22], [23], [24].

In [1], the authors integrate the attention mechanism into the
decoder to encourage more interactions between the image and
generated sentences by selecting the relevant image regions
during the decoding process. After that, many efforts [4],
[22], [25] have been made to boost the image captioning
performance by designing more effective architectures of the
attention mechanisms. For instance, in [22], an adaptive atten-
tion mechanism is introduced to decide when to activate the
visual attention. The Attention on Attention model proposed
in [4] is designed to determine the relevance between the
attention result and the query.

Most recently, due to its success in natural language process-
ing (NLP) [26], the Transformer model has been implemented



in the image captioning task [3], [4], [5], [27]. In [4], a
Transformer-like encoder was paired with an LSTM decoder.
M? Transformer [5] is completely based on the Transformer.
Compared to the vanilla Transformer architecture, in the M?
Transformer, the encoding and decoding layers are connected
in a mesh-like structure to exploit multi-level relationships
among image regions. In [9], the authors integrate the pro-
posed X-Linear attention block with the Transformer archi-
tecture for the image captioning task.

In this paper, several representative models of image cap-
tioning [1], [4], [20], [25], [9], which vary from a classical
method to a state-of-the-art method, are adopted in the image-
to-phoneme task. Details of these adopted models can be found
in Section III-B.

B. Cross-modal learning between visual and speech

Inspired by human infants’ ability to learn spoken language
by listening and paying attention to the concurrent speech and
visual scenes, recently a new research area emerged in which
speech representations are learned grounded by corresponding
images [28], [29], [30], [31], [32], [33], [34], the so-called
visual-grounded speech learning task. For instance, in [29],
images and the corresponding spoken captions were mapped
into a common embedding space by an image encoder and
a speech encoder respectively. In the embedding space, the
image representation can work as the supervision information
to train the speech encoder. This task which relies on a
matching relationship between images and their corresponding
spoken descriptions spawned several other cross-modal tasks
between visual and speech, i.e., the segmentation of the objects
in an image and keywords in an utterance [28], [35] and
multimodal word discovery [36], [37]. Most recently, Wang
et al. [38], [39] proposed the S2IGAN model to generate
images based on spoken descriptions. In this speech-to-image
generation model, the speech representations are also learned
with the grounding of corresponding images.

III. IMAGE-TO-PHONEME

To investigate whether image captioning models can be
used in the image-to-phoneme task, several representative
image captioning models were implemented for the image-to-
phoneme task. Additionally, we used our re-implementation
[15] of the original image-to-phoneme system proposed in
[11] as the baseline system. Details of those image captioning
models and the re-implemented image-to-phoneme system will
be introduced in this section.

A. Re-implementation of the image-to-phoneme model

Our baseline image-to-phoneme model [15] is based on the
extensible Neural Machine Translation Toolkit (XNMT) [40].
The image-to-phoneme model is an attention-guided encoder-
decoder architecture. The encoder takes image features as
input, and the decoder outputs the predicted phoneme se-
quence. The encoder uses 3 layers pyramidal LSTM with
128 units. The attender uses a multi-layer perceptron with a
state dimension of 512 and a hidden dimension of 128. The

decoder is a 3 layer LSTM with 512 units followed by a multi-
layer perceptron with a hidden dimension of 1024 working as
a transformation between the outputs of LSTM and a final
softmax layer. Compared to the original image-to-phoneme
model [11], the number of encoder layers was increased from
1 to 3 and the attender state dimension was increased from 128
to 512, which led to a performance increase. More details of
this re-implementation and a comparison of its performance
with the original model of [11] can be found in [15]. For
convenience, this re-implemented image-to-phoneme model is
referred to as R-I2P hereafter.

B. Image captioning methods

Several image captioning models [1], [4], [20], [25], [9],
including a basic encoder-decoder architecture (Neural Image
Caption [20]), a standard attention-guided model (Show, At-
tend and Tell [1]), and several state-of-the-art models (Updown
model [25], Attention on Attention Model [4], and X-Linear
Attention Network [9]), were implemented for the image-
to-phoneme task. All these models use an encoder-decoder
architecture but with different attention mechanisms or none:

Neural Image Caption (NIC) [20] is a basic image cap-
tioning model, which uses a deep CNN to encode the input
image and uses an LSTM to decode the caption sequence.
In this system, the image is only shown to the LSTM at the
beginning and no attention mechanism is adopted.

Show, Attend and Tell (SAT) [1] uses the soft attention
mechanism proposed in [1], which is a standard attention
mechanism. In this model, the spatial attention mechanism
on the image feature map is used to automatically focus on
salient objects when inferring the next word to be generated.

Updown model [25] combines bottom-up and top-down
attention that enables attention to be calculated at the level
of objects and other salient image regions. The “bottom-up”
refers to the purely visual feed-forward attention mechanisms
and the “top-down” refers to attention mechanisms driven by
non-visual or task-specific context. In this model, the bottom-
up mechanism is based on the Faster-RCNN [41] to detect the
interesting regions of the images, and the top-down mechanism
determines the feature weights of different image regions.

Attention on Attention model (AoANet) [4] uses a multi-
head attention mechanism that is similar to the attention
mechanism in the Transformer model to encode the image
features. Different from the original Transformer encoder, in
AoANet, the feed-forward layer is replaced by the proposed
Attention on Attention module (AoA). In the decoder, the
AoA module is incorporated with the LSTM to predict word
sequences. The AoA module is designed to determine the
relevance between the attention results and the query.

X-Linear Attention Network (X-LAN) [9] utilizes a new
attention block, referred to as the X-Linear attention block,
which adopts bilinear pooling to capture the 2nd order inter-
action between the input single-modal or multi-modal features.
In the X-Linear attention block, both the spatial and channel-
wise bilinear attention distributions are considered. A variant
of X-LAN, named X-Transformer, is obtained by plugging X-
Linear attention blocks into the Transformer.



C. Training and inferring methods

All the models that were originally designed for image
captioning and are adopted in this paper were trained with a
phoneme-level cross-entropy loss. Both reinforcement learning
and beam search strategies have shown good performance on
the image captioning task [6], [42], therefore both strategies
were also investigated in the image-to-phoneme experiments.
Image captioning models are usually trained using the cross-
entropy loss, while they are evaluated using discrete and
non-differentiable NLP metrics such as BLEU, ROUGE,
METEOR, or CIDEr. Therefore, a discrepancy could occur
between the training objective function and the evaluation
metrics. Reinforcement learning that directly optimizes on
the metrics showed a good performance for image captioning
[6]. Here, we adopt the self-critical sequence training (SCST)
method proposed in [6]. Due to the best correlation with
human rating [15], BLEU4 was adopted as the reward. During
the inference process, the auto-regressive model normally
greedily selects the most probable output of the next step.
Here, we investigate the beam search method which maintains
a list of the N most probable sub-sequences generated so far,
generates posterior probabilities for the next word of each of
these sub-sequences, and then again prunes down to the N-
best sub-sequences. The beam search method was found to
provide a boost in the performance of image captioning [6],
[42].

D. Evaluation metrics

Ideally, the image-to-speech task should be evaluated in
terms of the generated speech signal. However, the generated
speech from the phoneme sequence will be affected by the
particular phoneme-to-speech system that is used. Because
we want to evaluate the content of the caption irrespective
of the naturalness or intelligibility of the generated speech,
we evaluate the image-to-phoneme task on the level of the
generated phoneme sequences.

The evaluation metrics we use are several popular metrics
for the image captioning tasks, i.e., BLEU [43] (bilingual eval-
uation understudy), METEOR [44] (Metric for Evaluation of
Translation with Explicit ORdering), ROUGE-L [45] (Recall-
Oriented Understudy for Gisting Evaluation with the Longest
Common Subsequence), and CIDEr [46] (Consensus-based
Image Description Evaluation). In calculating the metrics, we
follow the standard approaches as used in image captioning
evaluation, in which all captions of each image are used as
reference sentences.

E. Dataset

One of the key reasons behind the image-to-speech task is
to allow speakers of unwritten languages benefit from image
captioning systems. However, unwritten languages are not only
low-resourced, but also under-researched. Currently, there are
no appropriate databases of unwritten languages that can be
used in the image-to-speech task. In this paper, the well-
resourced language, i.e., English, is adopted as the working
language, and treated as if it were a low-resource, unwritten

language. The benefit of using English as the working lan-
guage is that it allows for easy evaluation of the captions.
Specifically, the Flickr8k [16] and its associated Flickr-Audio
corpus [47] are used in this research. The Flickr8k image
database contains 8,000 images from Flickr, and each image
has five textual captions, which have been obtained using
Amazon Mechanical Turk (AMT) [16]. The audio corpus,
which was also collected via AMT [47], consists of speech
recordings of the textual captions. The utterances were forced
aligned with their corresponding phonemic transcriptions (in
ARPABET) using the Janus Recognition Toolkit [48].

We use the standard way to split the Flickr8k: 6,000 images
for training and 1,000 images both for development and test
set. However, a few sentences could not be forced aligned,
therefore, we eventually used 5,662 images, 961 images, and
952 images for the training set, validation set, and test set,
respectively. Each image has up to 5 phoneme sequences, and
the final training set, validation set, and test set have 28,205,
4,741, and 4,741 phoneme sequence captions, respectively.

In the original I2P model in [11], image CNN features
were obtained using VGG-16 [49] pre-trained on ImageNet
[50] by scanning the penultimate convolutional layer of VGG-
16 in raster-order, resulting in 196 sequential feature vectors
of dimension 512 of each image. We followed this approach
in our baseline model. The other image captioning models,
to compare them fairly, are based on the feature extracting
method proposed in [25], in which the Faster-RCNN [41]
model pre-trained on ImageNet [50] and Visual Genome [51]
was adopted.

IV. END-TO-END IMAGE-TO-SPEECH

The proposed end-to-end model, referred to as the Show
and Speak (SAS) model, is based on an encoder-decoder
framework. The encoder plays the same role as in the image
captioning systems and the image-to-phoneme systems, and
encodes an input image to an embedding space, where the
image is represented by a sequence of feature vectors. Then,
the decoder takes these image feature vectors as input to
synthesize a spoken description of the image. In the proposed
framework, the speech is represented by a spectrogram. The
architecture of the proposed method is shown in Fig. 1 and
will be explained in detail below.

A. Encoder

The structure of the encoder is shown in the left-most col-
umn in Fig. 1. Given an image, the encoder obtains a sequence
of image feature vectors {vy, vy, ..., v;} of [ object regions from
the image using a pre-trained object detector. Here, following
[25], the Faster-RCNN [41] model pre-trained on ImageNet
[50] and Visual Genome [51] is adopted to extract image
features of [ = 36 object regions. The extracted feature vectors
of one image are presented as {fi, f>, ..., fi} € R*?, where
d = 2048 is the feature dimension. For each local feature f;,
the pre-trained Faster-RCNN [25] provides its position in the
image, predicts the class label, and computes its confidence
score (possibility), which are represented as p;, c¢;, and s;
respectively. Specifically, p; € R consists of four bounding
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Fig. 1: Architecture of the Show and Speak (SAS) model.

box coordinate values, i.e., top left (x,y) and bottom right
corner (X,y), and one ratio value of the bounding box area to
the image area. The predicted class label ¢; € R'%! is a one-
hot vector, and its corresponding confidence score s; is a real
value. One advantage of adding this information is to correct
the errors caused by the detection model. An ideal detected
region should contain only one object and should contain
it completely, in which case the confidence score would be
highest. In contrast, in a badly detected case, e.g., several
objects appear in the same detected region. This will result
in a low confidence score, and the SAS decoder can learn to
use this low score to suppress the role of the feature from this
region. Following [52], the image feature v; is obtained via

vi=fi®[FC(pi®ci ®si)], )]

where @ means concatenation and FC is a linear projec-
tion with 1024 units. Then the image is represented as
V = {vi,va,...,v;} € R332 Finally, in order to create
image representations that are more consistent with spoken
captions, the image features are passed through two linear
transformation layers of 1025 and 512 units respectively to get
image embeddings with the dimension of 512. The decoder
is trained (parameters of the pre-trained Faster-RCNN are
fixed) in the encoder-decoder system with the extra embedding
constraint that will be introduced in Section IV-C.

B. Decoder

The structure of the decoder is shown in the middle column
of Fig. 1 (from the decoder input to the spectrogram before

the WaveNet). The decoder takes the image feature sequence
output from the encoder as input to synthesize speech spec-
trograms in an autoregressive way. The speech is represented
by 80 channel log mel spectrogram computed through a short-
time Fourier transform (STFT) with 50 ms frame size and a
12.5 ms frame hop. The decoder architecture follows the struc-
ture of Tacotron2’s decoder [53]. Specifically, the generated
spectrogram frame from the previous time step passes through
a Pre-Net and is then concatenated with an attention context
vector before being passed through two LSTM layers. The
attention context vector is obtained from the encoder output
with the location-sensitive attention [54], and the Pre-Net
consists of 2 fully connected layers both of which have 256
hidden units. The output of the LSTM is concatenated with
the attention context vector and then passed through a linear
projection to generate the spectrogram frame of the next time
step. Then, the generated spectrogram passes through a Post-
Net, which consists of 5 convolutional layers with 512 filters,
to get a spectrogram residual that is added to the spectrogram
before the Post-Net in an element-wise way, achieving the final
generated spectrogram. Finally, the generated spectrograms are
inverted into time-domain waveform samples via a modified
version of WaveNet [55] in [53].

C. Objective function

Following the objective function in Tacotron2 [53], mean
squared error (MSE) is used to optimize the generation of
spectrograms before and after Post-Net. We denote the syn-
thesized spectrograms before and after Post-Net by X? and
X“ respectively, and denote the ground-truth spectrogram by
X, the loss function for optimizing the spectrogram is defined
as

1 v 2
L= ;Zl (It = x|+ flx? = x.][) @
where n is the batch size.

To allow for the model to dynamically determine the length
of the predicted spectrogram instead of synthesizing a fixed-
length sequence, a “Stop Token” prediction module that is
similar to the module in [53] is adopted in the proposed frame-
work. Specifically, the concatenation of the decoder LSTM
output and attention context vector passes through a linear
transformation layer to obtain a scalar followed by a sigmoid
activation, resulting in a probability which predicts whether the
output sequence has completed or not. The corresponding loss
function is binary cross-entropy (BCE) loss, which is defined
as

Ly =

] n m
o D007 g log i + (1= yij) log (1 - z)],
j=1 =1

3)
where y is the label to indicate whether the frame is a stop
token or not. z is the output of the sigmoid activation layer.

m and n indicate the length of the spectrogram sequence and
the batch size respectively.



In parallel to the prediction of the spectrograms and stop
tokens, an image embedding constraint (EC) loss is introduced
to penalize any component in the image embedding that cannot
be predicted from the spoken caption, i.e., any component of
the image embedding that is semantically independent of the
caption. The rounded boxes with the green background in Fig.
1 show the operations for the image embedding constraint.
The image global feature vector, u, is obtained by averaging
the encoder outputs, and a linear transformation layer is
implemented on the averaged vector to get the final image
global feature vector that is used to calculate the EC loss.
The neural network structure to get the speech embedding
vector is similar to the speech encoder in [38]. Specifically,
the ground-truth speech spectrogram first passes through a
1-D convolutional layer, and the fixed-length speech feature
vector, r, is obtained by averaging the output of a two-layer bi-
directional gated recurrent units (GRU). The matched image-
speech vectors should be close to each other, while at the same
time different from other unmatched vectors. To that end, we
use the Masked Margin Softmax (MMS) method [31] to obtain
the EC loss. The EC loss is defined as

=-- Zlg n +Zlog PR )

where n is the batch size, S is a similarity matrix between
each feature vector pair within a batch. Each element in the
similarity is defined as the dot product between the feature
vectors:

Si,j:ui-rj. (5)

The total loss for training the SAS model in an end-to-end
way is given by

L = Ls + Lst + /LEeCs (6)

where A is a hyperparameter to balance the image embedding
constraint. The value of A is experimentally set as 0.25 out of
{0.1,0.25,0.5,0.75, 1.0}.

D. Evaluation metrics

The image-to-speech task is evaluated in terms of how well
the synthesized spoken caption describes its corresponding im-
age. However, it is difficult to directly evaluate the spoken cap-
tions. As explained in Section III-D, we want to evaluate the
content of the generated speech rather than the speech signal.
Therefore, in order to objectively evaluate the image-to-speech
task, the synthesized speech is automatically transcribed to
text. To that end, an automatic speech recognition (ASR)
system! built with Kaldi [56] is used. The ASR system consists
of a hybrid factorized time-delay neural network (TDNN-F)
[57] acoustic model (AM) and a four-gram language model
(LM), both trained using the 960-hour Librispeech English
database [58].

The transcribed textual captions are then evaluated using
the evaluation metrics for image captioning [4], [S]: BLEU4,

Ihttps://kaldi-asr.org/models/m13

METEOR, ROUGE, and CIDEr. Because the evaluation is
performed on the textual captions that are transcribed from the
spoken captions using the ASR system, higher scores of those
metrics will also to a certain extent reflect a better quality of
the synthesized speech as a worse quality of the synthesized
speech would seriously affect the accuracy of the ASR system.

E. Training Details

We train the SAS network using the Adam optimizer with
a warmup in the first 4,000 iterations, and a learning rate that
decreases with a continuous exponential decrease from 2e-3.
The standard neural sequence-to-sequence training procedure,
referred to as the teacher-forcing method, feeds the decoder
with the ground-truth spectrogram. In the inference stage, this
training method could yield errors that can accumulate quickly
along the generated sequence due to the discrepancy between
training and inference. Here, we adopt the scheduled sampling
[59] to alleviate this problem.

F. Dataset

Following the previous experiments on the image-to-
phoneme task, Flickr8k [16] is also used in this end-to-end
experiment, and we use the same training, validation, and test
set splits as in the previous experiments. The speech recordings
of this database come from 183 different speakers, making
speech synthesis a challenging task. Here, to eliminate the
impact of speakers, we adopt a text-to-speech (TTS) system
[53] trained on a single speaker to synthesize the spoken
captions. This TTS system is pre-trained on LJSpeech [60]
which consists of 13,100 audio clips recorded from a single
speaker. While the multi-speaker speech synthesis is not a
main concern in the current work, we still conduct a further
experiment with the original recorded multi-speaker spoken
descriptions to investigate how well the proposed model can
perform on the multi-speaker natural speech dataset (see
Section III-E).

V. RESULTS ON THE IMAGE-TO-PHONEME TASK

In this section, we first investigate which evaluation metrics
can evaluate the image-to-phoneme task well. Subsequently,
the different image-to-phoneme models are compared on the
image-to-phoneme task in terms of those metrics that were
found most suitable for evaluating the image-to-phoneme
task (Section V-B). Finally, we present the results of the
experiments on the effect of beam search and reinforcement
learning on the image-to-phoneme task.

A. Evaluation of metrics

In the previous human rating experiments [15], it has been
demonstrated that BLEU3, BLEU4, BLEUS, and ROUGE-
L show a higher correlation with the human ratings than
other metrics. However, these results are obtained on only one
model. To further investigate the usefulness of these metrics
for the speech-to-phoneme task, we 1) calculate the scores
of the different metrics on the generated phoneme sequences
from several models. However, instead of correlating these
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Fig. 2: Comparison of the image-to-phoneme scores and the image-
to-text scores in terms of the different evaluation metrics. On the
left, the model lists are ranked in an ascending order based on the
BLEU4 scores on the image-to-text results. On the right, the model
lists are ranked in an ascending order based on the CIDEr scores on
the image-to-text results.

with human ratings, which is a time-consuming and costly
enterprise, we take advantage of existing evidence of the
correlation between the image captioning metrics on text and
human ratings, and we 2) compare them with the scores
of the same metrics computed on word sequences that are
automatically derived from the generated phoneme sequences
in the next subsection.

We first compute the scores of all the metrics, i.e., BLEUI-
BLEUS, METEOR, ROUGE-L, and CIDEr, on the generated
phoneme sequences of the different image-to-phoneme models
(see Section III), including the baseline R-I2P model. Here,
image-to-phoneme models are evaluated with and without
beam search respectively. For instance, “NIC-bs” means the
NIC model was implemented with beam search, while no beam
search exists in the "NIC". We then use the wFST from [15]
to convert all generated phoneme sequences of all image-to-
phoneme models to text. We refer to this output as image-to-
text. Please note that the used WFST is rather strict as it does
not allow for phoneme insertions, substitutions or deletions.
Consequently, isolated phonemes may occur in the final word
sequence. In [15], these isolated phonemes were removed from
the word sequence for the convenience of the human rating
experiments. Here, however, we treat these phonemes as errors
of the model, and consequently, their existence reduces the
measured quality of the text caption produced by any given
model.

In order to investigate which metrics, when applied to the
phoneme string, correlate well with objective evaluations of
the corresponding word string, we first evaluate the perfor-
mance on image-to-text of each model. We take two metrics
that are able to evaluate text captions well, i.e., BLEU4 and
CIDEr, of which BLEU4 is the most commonly used metric
out of BLEU@N in image captioning [6], [61] and CIDEr is
a metric that well correlates with human judgment [46]. We
use these two metrics to compute the scores for all image-
to-text output. So for every model, we now have a score for
each of the metrics on the image-to-phoneme output and a
score for BLEU4 and CIDEr on the image-to-text output. For
each metric, a higher score means a better performance of the
model.

The different scores calculated on the transcribed text results
can be ranked in order of increasing performance, i.e., a
ranking of the models from worst-to-best performing model.
A good metric for the image-to-phoneme task, then, should
be able to show a similar worst-to-best ranking as BLEU4
and CIDEr on the image-to-text output. Therefore, in order to
investigate which of the metrics is able to evaluate the image-
to-phoneme task, we plot the scores of the metrics on the
image-to-phoneme task, separately for each metric, and ranked
in order of increasing score of the BLEU4 for on the image-
to-text output (see the left part of Fig. 2; green, bottom plot)
and ranked in order of increasing performance on the CIDEr
metric for the image-to-text output (see the right part of Fig.
2; green, bottom plot).

For the convenience of display, the scores in each histogram
are normalized to [0.1,1.1]. Comparing the rankings of the
two text-based metrics, we see they are similar and only
have two pairs of adjacent models, i.e., Updown-bs/SAT-bs



TABLE I: Performance of the different models on 1) the image-to-
phoneme task, where the generated phoneme strings are evaluated
using BLEU3 (B3), BLEU4 (B4), BLEUS (B5), and R(OUGE-L);
2) the image-to-text output where the text results are evaluated using
BLEU4 (B4), M(ETEOR), R(OUGE-L), and C(IDEr), respectively.
Bold indicates the best result of each metric. Higher scores are better.
Effendi et al. only reported the BLEU4 score.

\ Phoneme results Transcribed text results

Methods ‘ B3 B4 B5 R ‘ B4 M R C

R-12P 464 36.1 24.6 493 | 8.1 157 303 21.7
Effendi et al. [14] | — 462 — — | — — — —
NIC [20] 484 383 31.1 483 84 158 327 220
SAT [1] 554 463 39.1 534|128 194 379 40.3
Updown [25] 548 45.6 384 532|129 19.8 37.7 40.7
AoANet [4] 572 48.6 41.6 545|147 20.6 39.0 444
X-LAN [9] 589 504 434 55.6 (152 21.2 39.7 46.9
X-Transformer [9] | 58.7 50.1 43.1 55.1|15.0 209 39.5 46.2

and X-Transformer/AoANet-bs, with different orders. How-
ever, because the scores for Updown-bs/SAT-bs and for X-
Transformer/AoANet-bs are very similar for both metrics, this
reversal of the exact ranking is not important.

Comparing the different metrics on the image-to-phoneme
output (blue panels) with the ranking of BLEU4 and CIDEr
on the image-to-text output, we can see that the different
metrics do not show the exact same ranking in performance
of the models as the bottom panels. As shown in Fig. 2,
the ranking of the performance of the models in terms of
the METEOR metric shows large differences from that of
BLEU4 and CIDEr on the image-to-text output in the bottom
panels. In the BLEU@N scores, when the N is small, i.e., less
than 3, the differences are also obvious. Those results indicate
that METEOR, BLEU1, BLEU2, and BLEU3 are not suitable
metrics to evaluate the image-to-phoneme output.

From Fig. 2, we can see that BLEU3, BLEU4, BLEUS,
BLEU6, ROUGE-L and CIDEr produce a similar increasing
trend to the text-based scores, indicating they are better metrics
to evaluate the image-to-phoneme task.

So, in line with the human rating experiment in [15], we also
observe here that BLEU3, BLEU4, BLEUS5, and ROUGE-L
seem to be the best metrics to evaluate the image-to-phoneme
task. Henceforth, these objective measures will be used to
evaluate and compare the different models on the image-to-
phoneme task.

B. Comparison of the performance of the different models on
the image-to-phoneme task and image-to-text output

The performance of the different models is compared on
both the image-to-phoneme task and the image-to-text output.
Please note that the commonly used metrics for the image-
to-text task are BLEU4, METEOR, ROUGE, and CIDEr (see
Section IV-D). Therefore, we will evaluate our image-to-text
output (i.e., the word sequences converted from the generated
phoneme sequences) with these four metrics. The results are
presented in Table 1. The left side of the table presents the
evaluation of the generated phoneme sequences of the image-
to-phoneme models. The right side of the table presents the
evaluation of the word sequences converted from the generated
phoneme sequences (the image-to-text output). In addition to

TABLE II: Effect of reinforcement learning and beam search. + bs
means the beam search was adopted during inference, + rf means
the reinforcement learning was used to fine-tune the model during
training. Bold indicates the best result of each metric, and italics
indicate worse results compared to the corresponding model without
reinforcement learning and beam search.

\ Phoneme results \Transcribed text results

Methods \ B3 B4 B5 R \ B4 M R C

NIC + bs [20] 51.0 41.6 34.8 49.5| 8.8 16.1 32.7 23.4
SAT + bs [1] 58.7 50.1 43.2 54.5|14.5 19.7 38.2 43.0
Updown + bs [25] 58.9 50.5 43.7 54.9[13.8 20.1 384 44.1
AoANet + bs [4] 59.6 51.4 44.8 55.1|15.1 20.4 38.7 45.3
X-LAN + bs [9] 61.5 534 46.8 56.6]16.7 21.4 40.2 48.4
X-Transformer + bs [9] 60.1 52.0 454 55.6|15.4 20.6 39.2 475
NIC + rf [20] 55.6 45.5 37.8 50.4| 8.0 15.7 32.1 23.3
SAT + rf [1] 59.4 50.1 42.6 53.4|11.2 17.5 35.2 33.1
Updown + rf [25] 61.5 52.5 449 53.2|11.9 18.2 36.5 35.7
AoANet + rf [4] 64.5 56.4 49.6 56.2|16.1 20.3 39.8 47.0
X-LAN + rf [9] 64.4 56.7 50.1 57.8|18.3 21.4 40.8 51.3
X-Transformer + rf [9] 63.4 55.3 48.6 56.9[17.2 20.8 404 48.7
NIC + rf + bs [20] 55.6 45.6 37.8 50.4| 8.0 155 32.1 228
SAT + rf + bs [1] 59.7 50.5 43.1 53.3|11.2 17.5 35.1 32.7
Updown + rf + bs [25] 61.4 525 449 53.1|11.8 18.2 36.5 35.7
AoANet + rf + bs [4] 64.6 56.6 49.8 56.1/16.2 20.3 39.7 47.1
X-LAN + rf + bs [9] 65.2 57.6 51.1 57.8|18.8 21.4 41.0 51.7
X-Transformer + rf + bs [9]]63.9 56.2 49.7 57.0(17.4 20.7 40.4 48.5

the baseline R-I2P model, we also add the Image2Text model
proposed by Effendi et al. [14] to this table, as they also
performed their Image2Text model on the same dataset, which
allows us to compare directly. As can be seen, all models that
were originally designed for the image captioning task and the
model proposed by Effendi et al. achieve a better performance
than the baseline R-I2P model in [14] on both the generated
phoneme sequences and the converted text output.

Especially, the state-of-the-art image captioning models
AoANet, X-LAN, and X-Transformer achieve a large improve-
ment compared to the baseline system. X-LAN achieves the
best performance, which is 39.6% and 90.1% relatively higher
than the baseline R-I2P in terms on the BLEU4 metric on the
generated phoneme sequences and text outputs respectively.
Compared with the Image2Text model in [14], except for
NIC [20], all other image captioning models obtain better
performances.

C. The effect of reinforcement learning and beam search

Table II shows the performance of the different models
with reinforcement learning and/or beam search. Similar to
the previous section, we report the results using the different
metrics on the image-to-phoneme output and on the image-
to-text output. The results in Table II should be compared
to those in Table I, which shows the models’ performance
without reinforcement learning and beam search. Looking at
the image-to-phoneme output, we see that both reinforce-
ment learning and beam search boost the performance of
all image-to-phoneme models. Compared to the beam search,
the reinforcement learning brings more improvements on the
phoneme-based objective metric scores. The combination of
the reinforcement learning and beam search brings a further
slight improvement.



TABLE III: Comparison of the end-to-end SAS and speech unit based
method and also the word-based image captioning method. Bold
indicates the best result of each metric. ROUGE-L score was not
reported by Katiyar et al.

Intermediate‘ Methods ‘BLEU4 METEOR ROUGE-L CIDEr
Word  |Katiyar et al. [62]| 21.4 20.0 — 55.5
Discovered Hsu et al. [12] 12.5 14.5 39.1 24.5
Speech Unit |Effendi et al. [14]| 14.8 17.4 45.8 329
Phonem R-I2P 8.1 15.7 30.3 21.7
oneme X-LAN 16.7 214 402 484
— \ SAS \ 35 11.3 232 8.0

However, when we compare the text-based results in Table
IT and Table I, the improvements we observe of the phoneme-
based results do not always lead to a better image-to-text
performance. While the best image-to-text performance is
achieved by the combination of reinforcement learning and
beam search, only using reinforcement learning or in combi-
nation with beam search leads to an obvious decrease for the
NIC, SAT, and Updown models. This decrease in performance
when reinforcement learning is used could be caused by the
reward scores, i.e., BLEU4, during reinforcement learning
being calculated on the phoneme sequences with the aim
to produce phoneme sequences with higher either BLEU4
score rather than being calculated on the word sequences.
Interestingly, phoneme sequences with higher BLEU4 scores
apparently do not necessarily lead to higher BLEU4 scores for
the word sequences.

The use of beam search on the other hand seems to
bring a relatively stable improvement on the image-to-text
output. Note that there is no specific optimization on the
phoneme sequences in term of objective metrics. Thus, the
beam search could be an effective addition to the image-to-
phoneme system.

VI. RESULTS OF IMAGE-TO-SPEECH
A. Objective Results

The baseline R-I2P and the best performing image-to-
phoneme method, i.e., X-LAN, listed in Table I and Table
II are compared with our SAS model on the image-to-speech
task. In order to compare the output of the SAS model with
those of the baseline and X-LAN models, we use the image-
to-text output of the latter two models, while the synthesized
speech of the SAS model was automatically transcribed into
words using an ASR (see Section IV-D). Moreover, the SAS
model’s performance is compared to the two recently proposed
speech unit-based methods [12], [14]. We also added a direct
image-to-word (image captioning) model [62] to the table; this
model shows state-of-the-art performance on Flickr8k, and can
be taken as the upper-bound performance. The word-based
captions are then evaluated in terms of BLEU4, METEOR,
ROUGE-L, and CIDEr. The results are shown in Table III,
with bold indicating the best performance for each metric.

Table III clearly shows that all the speech unit-based
methods, i.e., the automatically discovered speech unit-based
methods [62], [12] and the phoneme-based methods (the

baseline and the X-LAN models) outperform our SAS method
on all evaluation metrics. So, the performance of the end-to-
end image-to-speech SAS model falls short of the performance
of the image-to-speech models that use intermediate represen-
tations.

The explanation for the worse performance of the end-to-
end SAS model is likely that the end-to-end image-to-speech
task is much more challenging than the image-to-speech unit
task, due to the following reasons: 1) for a given stretch of
speech of the same duration, SAS generates a spectrogram
sequence that is much longer than its transcribed phoneme se-
quence (because a phoneme consists of a sequence of spectra),
while at the same time there is no explicit alignment between
the spectrograms and image regions, making it impossible
to explicitly learn the alignment as in [63], [64], [65], and
2) in the image-to-phoneme model, the phoneme generation
process during inference can be seen as an autoregressive
phoneme prediction process that predicts a phoneme based
on an implicitly learned phoneme dictionary at each step.
Consequently, it can generate a meaningful phoneme at each
step, while there is no dictionary for spectra in the SAS model.

Regarding our question how well state-of-the-art image
captioning models perform on the image-to-speech task, we
can see that the phoneme-based X-LAN model outperforms
the two best systems, i.e., the two automatically discovered
speech unit-based methods, (except for the ROUGE-L metric,
where Effendi et al. [14] outperforms the other models).
Regarding the image-to-phoneme task, comparing the results
of [14] (see also Table I) shows that X-LAN also outperforms
[14] on the image-to-speech unit task. When X-LAN includes
beam search (see Table II), the performance is even higher,
showing that X-LAN performs well on the image-to-speech
unit task.

B. Visual inspection of some generated examples

Generated examples of some good and bad automatically
generated spoken captions are shown in Fig. 3 and Fig. 4,
respectively. For ease of the reader, the synthesized speech
content was transcribed and presented below each image:
“ASRs” means that the textual descriptions were created by the
ASR system, and “Manual” means that the text was transcribed
manually by a human listening to the synthesized speech
without access to the corresponding images. The generated
spoken captions of the examples in Fig. 3 and Fig. 4 and
additional examples can be found on the project website?.

As shown in Fig. 3, the proposed SAS model is able
to generate spoken captions that describe the image well,
indicating that end-to-end image-to-speech generation bypass-
ing phonemes is feasible. Moreover, based on the fact that
spoken captions of low audio quality would yield bad ASR
transcriptions, the comparison of the transcriptions provided
by the ASR system and those created by the human indirectly
show the good quality of the synthesized speech.

However, there are also many cases where our SAS model
failed to generate spoken captions that describe the image. Fig.
4 shows three such cases. In the top image, the synthesized

Zhttps://xinshengwang.github.io/projects/SAS/
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ASRs: A little boy jumps on a bed and looking
on the bed.

Manual: A little boy jumps on a bed and
looking on the bed.
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ASRs: A black and white dog is playing in the
water.
Manual: A black and white dog is playing in the
water.
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ASRs: A golden brown dog is jumping over a
barrier in a field.
Manual: A golden brown dog is jumping over a
barrier in a field.
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ASRs: A little girl is sliding down a playground
slide.

Manual: A little girl is sliding down on the
playground's slide.

Fig. 3: Examples of automatically generated spoken descriptions
which describe the image well.

speech is of good quality, i.e., it is intelligible, but the spoken
caption does not describe the image well. In the middle
image, the quality of the synthesized speech is good at the
beginning but gets worse throughout the spoken caption. The
bottom image indicates the worst case in which the synthesized
speech performance of the proposed method needs further
improvement.

C. Further investigations into SAS

We further investigated the possibilities and limitations of
our SAS model. In addition to the experiment performed on
the Flickr8k database with synthesized spoken captions, two
further experiments were carried out. First, we investigated
the performance of the model when trained with multi-speaker
natural speech for which the natural spoken captions from the
183 speakers from Flickr8k were used. These captions were
collected by [47] using Amazon Mechanical Turk workers who
were asked to pronounce the original written captions. Second,
we investigated whether more training data would improve
the performance of SAS for which an extended version of
Flickr8k, i.e., Flickr30k [66] was used. Flickr30k consists of
around 31000 images. Since no natural spoken captions exist
for these 31000 images, all spoken captions in Flickr30k are
synthetic speech. In all experiments, the same test set was used
as for the first SAS experiment. In the multi-speaker Flickr8k
experiment, the speaker id is represented by an embedded one-
hot label that is concatenated with the encoder output of SAS.
As the utterances from the training set and test set share the
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ASRs: Three people talking in a city street.
Manual: Three people talking in the city street.
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ASRs: Three people sit on the side of a pole
man in his it is his tail.

Manual: Three people sit on the side of
<unintelligible>
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ASRs: Goo jigs glowing gaff weary yo hands.
Manual: <unintelligible>

Fig. 4: Examples of automatically generated spoken descriptions
which do not describe the image well. The (unintelligible) in the
manually transcribed text means that the corresponding speech is
unintelligible.

TABLE IV: Performance of the SAS model with the natural multi-
speaker spoken caption dataset and the larger training data Flickr30k.
The results of our SAS model are repeated in this table for the
convenience of the reader.

Dataset | BLEU4 METEOR ROUGE-L CIDEr
Flickr8k | 35 11.3 23.2 8.0
Multi-speaker 0.4 6.8 15.7 0.7
Flickr30k 4.6 13.7 24.6 8.0

same speakers, during inference, we directly use the speaker
id of each utterance.

The results are shown in Table IV. For comparison, the per-
formance on the synthetic single-speaker database of Flickr8k
is also listed in this table (Flickr8k). As can be seen, the
performance on the natural multi-speaker database is much
worse compared to the performance on the synthetic single
speaker database (Flickr8k). This phenomenon is easy to
explain: 1) Speech synthesis models depend on high-quality
recorded speech that is normally recorded by professional
speakers in a recording studio. In contrast, the spoken captions
of Flickr8k are recorded by amateurs with various styles and
home equipment, which makes this database unsatisfactory
for speech synthesis models; 2) Compared to single-speaker
database, multi-speaker information also brings challenges to
this task. In contrast, training with a larger database, i.e.,
Flickr30k, the performance improves substantially, although
its performance still falls short of that of the two methods
which use automatically discovered speech units and X-LAN.

D. Component analysis

As the image features showed an important impact on the
image captioning task [25], the performance of the bottom-
up features and vanilla ResNet features are compared in this



TABLE V: Results of the component analysis: The effect of image
features, the image embedding constraint, and scheduled sampling
on image-to-speech synthesis. Bold indicates the best result of each
metric. The results of our SAS model are repeated in this table for
the convenience of the reader.

Methods | BLEU4 METEOR ROUGE-L CIDEr
SAS ‘ 3.5 11.3 23.2 8.0
SAS-ResNet 3.1 11.0 224 7.3
SAS w/o EC 2.8 11.1 22.8 6.8
SAS w/o ss 2.7 10.8 22.8 6.7

section. Moreover, the effectiveness of the proposed image
embedding constraint and the scheduled sampling during the
training process are also investigated through an ablation study.

The results are shown in Table V, “SAS-ResNet” means
the image features are extracted from the pre-trained ResNet-
101 rather than the faster-RCNN, “SAS w/o EC” means that
the SAS model drops the module of the image embedding
constraint, and “SAS w/o ss” means that the SAS model
is trained with the teacher-forcing method without using the
scheduled sampling. As shown in the table, SAS shows better
performance than SAS-ResNet, indicating that the bottom-up
features outperform the ResNet-101 features in the image-
to-speech task. The SAS w/o EC shows worse performance
than the SAS on all metrics. Specifically, the BLEU4 score
drops from 3.5 to 2.8, showing the importance of the image
embedding constraint module. Training the model with the
teacher-forcing method instead of the scheduled sampling
also shows an obvious performance decrease, indicating the
importance of the scheduled sampling strategy on training the
end-to-end image-to-speech model.

VII. DISCUSSION

Image-to-speech is a new task, closely related to the image
captioning task, that tries to generate spoken descriptions of
images, without the use of text as an intermediate representa-
tion. Previous work generated sequences of phonemes (which
we here refer to as the image-to-phoneme task) that could
be synthesized in a subsequent step (completing the image-
to-speech task). In this work, 1) we compared different image
captioning models and the effect of beam search and reinforce-
ment learning on the image-to-phoneme task, and 2) compared
different objective evaluation metrics to evaluate how well
the generated phoneme sequences described the scenes in
the images. Finally, 3) we presented an end-to-end image-to-
speech method, bypassing any intermediate representation.

In order to find the best evaluation metric for the image-
to-phoneme task, we compared several well-known objective
metrics to several text-based objective metrics on the text
outputs that were converted from the generated phoneme
sequences. The comparisons of phoneme-based objective eval-
uation results with the human ratings in the previous work [15]
and the transcribed text-based evaluation results showed that
BLEU3, BLEU4, BLEUS, and ROUGE-L are most suitable
to evaluate the image-to-phoneme task. Interestingly, all these
metrics have medium length n-grams, i.e., 3-grams, 4-grams,
5-grams are used in BLEU3, BLEU4, and BLEUS respec-

tively, and the Longest Common Subsequence (LCS) is used
in ROUGE-L.

The performance of the various image captioning models
showed that image captioning models that are originally de-
signed for the image-to-text task work reasonably well for the
image-to-phoneme task, and better than the baseline model.
The best models were X-LAN [9] and X-Transformer [9].
Their superior performance could be attributed to the X-Linear
attention block, used in both models but not the baseline
model, which can obtain a better interaction between different
modalities, in this case speech and images.

The beam search in the inference process was found to have
a positive effect on the performance of the different models
on the image-to-phoneme task, both in terms of how well the
generated phoneme sequences were able to describe the scenes
in the images and in terms of the textual descriptions converted
from the phoneme sequences. On the other hand, fine-tuning
the image-to-phoneme models with the reinforcement learning
brought improvements on the image-to-phoneme task, but
failed to bring improvements at the text-output level. How to
define a reward function that can consider the performance
in terms of words could be an interesting topic for future
research.

The experiments with the proposed end-to-end image-to-
speech model SAS showed that synthesizing spoken descrip-
tions of images bypassing any intermediate representation is
feasible. The performance of the proposed model on the natu-
ral multi-speaker database is much worse than the performance
on the synthetic single speaker database. This difference in
performance is most likely due to the low quality of the
recorded natural speech. However, generally, obtaining crowd-
sourced data is a lot easier than obtaining high-quality speech
recorded by professional speakers in a recording studio. This
is typically especially the case for those languages that are
low-resourced and/or unwritten. Since crowd-sourced data is
of a lower quality than studio data, strategies need to be
employed to deal with the noise and generally lower quality
of these recordings. For instance speech enhancement [67]
and background noise disentangling [68] could be considered
for improving the performance of the end-to-end image-to-
speech model trained with a low-quality natural multi-speaker
database.

The current end-to-end model’s performance is far behind
those of the speech unit-based models, and the synthesized
speech is not always of high quality or intelligible, which
could be caused by the much longer frame sequence of the
spectrogram and also the frame’s variety. In order to improve
on the image-to speech task, one could further improve the re-
cently proposed approaches that use automatically discovered
speech units by building better speech unit discovery models
or use better image-to-speech unit models, e.g., X-LAN [9].

The motivation of the image-to-speech task is to allow
speakers of unwritten languages benefit from text-independent
image description technology. However, as unwritten lan-
guages typically are low-resourced, no existing appropriate
databases, i.e., consisting of images and captions, of an actual
unwritten language could be used for the current work. Future
work should focus on moving beyond using English as the



working language, and focus on building image-to-speech
models for a real unwritten language.

VIII. CONCLUSION

This paper presents a study on synthesizing spoken cap-
tions of images, i.e., image-to-speech synthesis, bypassing
the need for intermediate representations such as phonemes
or text, and the evaluation of the generated captions. Ex-
tensive experiments demonstrate that standard image caption-
ing models can be used in the image-to-phoneme task and
automatic evaluation metrics, i.e., BLEU3, BLEU4, BLEUS,
and ROUGE-L can be used to evaluate the performance of
image-to-phoneme models. Additionally, the proposed end-
to-end image-to-speech synthesis model, the first of its kind,
showed that directly synthesizing spoken descriptions of im-
ages bypassing any text and phonemes is feasible, although its
performance falls short of that of models that use phonemes
as intermediate representation.
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